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1 | Introduction

In Greek mythology, the cosmos (κόσμος) is an ordered state that came from chaos
(χάος), the void1. In a similar vein, the field of cosmology attempts to fill up the
metaphorical void in our understanding of the Universe: where did it come from and
how does it evolve? While some form of cosmology has been practised for millennia,
only in the last century has it evolved from a philosophical pastime into a fully fledged
scientific subject. All it took was the development of large and powerful telescopes that
allowed us to study the spectra of fuzzy nebulae—the nearest of which are visible with the
naked eye in unpolluted skies—to come to the realization that these are actually conglom-
erations of stars, some of which are receding away from us at “unparalleled velocities”
(Curtis, 1915; Wilson, 1915; Slipher, 1921, 1922; Stromberg, 1925). While this conclu-
sion proved controversial initially as evidenced by the “Great Debate” between Shapley
& Curtis (1921), the discovery of individual Cepheid variable stars in Andromeda and the
Triangulum galaxy by Hubble (1925) provided a definitive proof for the immense distance
and the extra-galactic nature of these and similar spiral nebulae. Lemaître (1927) was the
first to interpret the high recession velocities to these galaxies as proof for an expanding
Universe as predicted by general relativity. Hubble (1929) later explicitly showed that
galaxies at larger distances recede away at higher velocities, as required for an expanding
Universe. This breakthrough heralded the start of observational cosmology.

In the past almost century since this initial discovery of the increasing recession ve-
locity of more distant galaxies, a wealth of disparate observations have elucidated the
distribution of matter on cosmological scales, spanning millions to billions of lightyears.
The picture emerged of an expanding Universe containing structure on different scales:
galaxies bunch together inside groups and clusters, which form the filaments and nodes
of an extensive network of overdensities, known as the cosmic web. Dark matter, which
only feels gravity, forms the backbone of the cosmic web, constituting about 25% of the
total energy density of the Universe, whereas the ordinary matter that we are all familiar
with, present in gas clouds, stars, planets and their inhabitants, only accounts for 5%.
The final 70% is contributed by the mysterious and unknown dark energy, which coun-
teracts gravity and forces the Universe into a seemingly never-ending phase of accelerated
expansion.

To shed light on the properties of dark energy, a slew of telescopes will see their first
light in the coming decade. Their aim? To observe over a billion galaxies and use them
to map the evolution of the total matter distribution—both dark and ordinary—over the
past 10 billion years. The real breakthrough expected from these surveys is their ability
to directly probe the era in which dark energy starts dominating the energy content of the
Universe, about 3.6 billion years ago. The accelerating expansion of space counteracts the
gravitational attraction of matter, slowing down the formation of new structures, leaving a
clear mark on the distribution of galaxies. However, inferring the distribution of the total
matter while only observing the galaxies is a challenge.

1Hesiod, Theogony, 110
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2 The challenges of future surveys

Using weak gravitational lensing, a statistical method that measures the tiny but coher-
ent distortion of galaxy shapes due to the curvature of space-time caused by intervening
matter, it is possible to probe the full cosmologically evolving matter distribution. From
these distortions, the total mass between us, the observers, and those galaxies can be in-
ferred. When used to directly study the large-scale distribution of matter, these distortions
are called cosmic shear, as the cosmic matter is shearing the images of galaxies. Weak
lensing can also measure the total mass, including dark and ordinary matter, of individual
objects, such as clusters of galaxies. Clusters are rare objects: they take a long time to
form and they contain enormous amounts of matter. The change in the cluster abundance
over time strongly constrains the evolution of the matter content and dark energy.

The problem this thesis focusses on, is interpreting these weak lensing observations to
obtain the correct mass. A complex issue, since we need to know how the ordinary matter,
known as baryons to cosmologists, traces the dominant dark matter. Only normal matter
feels the electromagnetic force which substantially changes its behaviour on the smaller
scales, cosmologically speaking, of galaxies—as a matter of fact, galaxies can only exist
because of this fundamentally different behaviour. Paradoxically, however, not all of this
normal matter is visible to us as a significant fraction of the total normal matter in the
Universe resides in hot, low-density gas, which we are unable to observe directly with
our current X-ray telescopes. Hence, we need to find a way to disentangle the unknown
contribution of the normal matter from the measured weak lensing signal. Our suggested
solutions combine the predictions of computer-simulated universes, evolving billions of
particles in time, with simplified models that reproduce the observed distribution of hot
gas inside clusters of galaxies, but that freely vary the amount of matter where no ob-
servations are available, to quantify how strongly our ignorance of the relation between
ordinary and dark matter will affect the analysis of the aforementioned planned surveys.
Additionally, we study how baryons affect cluster mass determinations and we suggest
a new analysis method for cluster abundance studies that is less sensitive to our lack of
knowledge of the exact distribution of normal matter in the outskirts of galaxy clusters.

1.1 The challenges of future surveys

Three major missions are planned for the next decade: the Euclid space telescope2 (Lau-
reijs et al., 2011), the Vera C. Rubin Observatory3 in Chile (LSST Science Collaboration
et al., 2009), and the Nancy Grace Roman Space Telescope4 (Spergel et al., 2015). Col-
lectively, they are called stage IV surveys by the community. Peaking back in time, these
surveys aim to detect over 1 billion galaxies over the area of the sky not blocked by our
own Milky Way. Different from the Hubble Space Telescope and large, ground-based
telescopes such as the Very Large Telescope (VLT) or the Keck telescopes, these planned
observatories are designed to have large fields-of-view to image huge swathes of the sky
in a short amount of time.

2https://www.euclid-ec.org
3https://www.lsst.org/
4https://roman.gsfc.nasa.gov/

https://www.euclid-ec.org
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https://roman.gsfc.nasa.gov/
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The Euclid space telescope has a 1.2m primary mirror with a field-of-view of 0.5 deg2

(approximately twice the area of the Sun on the sky). To compare, the Wide Field Cam-
era 3 on the Hubble Space Telescope covers a mere 0.002 deg2 of the sky. The planned
Euclid survey will cover an area > 15 000 deg2—more than a third of the entire celes-
tial sphere—probing back in time over the past 10 billion years. It will yield a sample
of more than 1.5 billion galaxies whose distorted shapes will constrain the interven-
ing matter. Additionally, the observations will generate a sample of > 100 000 galaxy
clusters whose abundance will constrain the late-time evolution of matter and dark en-
ergy. The survey will reach limiting magnitudes of ≈ 24.5 in a single, wide visual band,
with a small point-spread function (PSF) < 0.2 arcsec for optimal galaxy shape measure-
ments. Similar limiting magnitudes are expected in the three near-infrared filters within
the wavelength range of 1.1 − 2.0µm, which will be used to photometrically measure
the distance to the observed galaxies. With these properties, an average number density
of ngal ≈ 30 arcmin−2 background galaxies is expected in each Euclid image, approxi-
mately 54 000 galaxies in total. To improve its distance calibrations, Euclid will rely on
large, ground-based surveys to supplement its visual band observations.

The Earth-based Rubin observatory, on the other hand, boasts an 8.4m primary mirror
with an impressive 9.6 deg2 field-of-view, allowing it to—theoretically—image its entire
20 000 deg2 survey area in only ≈ 2000 exposures of less than 1min each. The more
familiar name of this survey is the Legacy Survey of Space and Time (LSST). Similarly
to Euclid, the Rubin observatory is expected to reach limiting magnitudes of ≈ 24.5 in
a single exposure resulting in ngal ≈ 30 arcmin−2. The fast turnover time of the ob-
servations means that the LSST will be able to probe its full area more than a hundred
times, allowing it detect galaxies to very high depths, yielding a baffling sample of 10
billion galaxies, out of which approximately 3 billion are expected to be useful for weak
lensing. We will undoubtedly discover many unknown transient phenomena thanks to
the high-cadence observations enabled by the massive field-of-view. Since the survey
is ground-based, however, it will face varying observing conditions and seeing, signifi-
cantly affecting its angular resolution and resulting in the blending of galaxies. Due to
the large overlap between LSST and the Euclid survey, a close collaboration will benefit
both surveys (Rhodes et al., 2017, 2019).

Finally, the Nancy Grace Roman Space Telescope consists of a 2.4m primary mirror,
just like Hubble, but with a significantly wider field-of-view of 0.28 deg2. The telescope
housing and mirrors were a gift from the National Reconnaissance Office to NASA—
the original mission was planned to house a 1.3m primary mirror (Hand, 2012). While
the final mission became more expensive, the large diameter will allow high-resolution
observations of fainter objects in its four near-infrared bands down to magnitudes of ≈
26.5. The expected number of detected background galaxies is impressive at ngal ≈
45 arcmin−2. However, the planned survey area for large-scale structure studies will
only cover 2200 deg2 on the sky, yielding an expected 380 million galaxies to measure
the cosmic shear and 40 000 galaxy clusters to constrain the abundance. The overlapping
area with Euclid and LSST will boost the performance of those missions significantly, as
it can be used as a powerful calibration tool.

These surveys will revolutionize our understanding of the evolution of the late-time
matter distribution due to the immense size of their detected galaxy samples, their high
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spatial resolution and the depth to which they can detect galaxies. No current survey
comes close: the completed Kilo-Degree Survey (KiDS), carried out by the 2.6m VLT
Survey Telescope covers an area of 1000 deg2, but at a lower angular resolution limited
by the seeing to ≈ 0.7 arcsec and a limiting magnitude between 23.5 in the i filter to 25
in the ugr filters (Kuijken et al., 2019). Importantly, the whole survey area is addition-
ally covered by five band near-infrared bands using the 4.1m Visible and Infrared Survey
Telescope for Astronomy (VISTA), which significantly improves the distance measure-
ments to galaxies. The final KiDS sample contains about 21 million of galaxies with
accurate distance measurements with ngal ≈ 6 arcmin−2 (Giblin et al., 2021). The Dark
Energy Survey (DES), using the 4m Blanco telescope in Chile, probes a larger area of
5000 deg2, but to a lower depth than the KiDS data (Abbott et al., 2021). The DES sam-
ple contains about 390 million galaxies (Sevilla-Noarbe et al., 2021). Finally, the Hyper
Suprime-Cam Survey (HSC) has the largest mirror size, observing with the 8.2m Subaru
telescope, probing an area of 1400 deg2 down to a deeper limiting magnitude of ≈ 26
(Aihara et al., 2018). Due to the large collecting area of the telescope, a number of back-
ground galaxies ngal ≈ 20 arcmin−2 can be reached (Mandelbaum et al., 2018). The
whole area has not yet been observed, so a final sample size is not available for the HSC
survey.

The ambitious goal of future stage IV surveys is to constrain the statistical distribution
of matter, quantified by the matter power spectrum, to 1% precision, and to pin down the
evolving behaviour of dark energy, specifically, the constant and the time-varying equa-
tion of state parameters to 2% and 10%, respectively. The gargantuan galaxy samples
will provide sufficient statistical power to reach such high precision. However, biases in
the analysis can arise if we do not control the systematic uncertainties in the theoretical
models we use to analyse the observations to the same level of accuracy (e.g. Hearin et al.,
2012; Taylor et al., 2018). Hence, we need to scrutinize our models to identify all possi-
ble sources of uncertainty that would bias the data analysis and the inferred cosmological
model. In this thesis we will consider the impact of uncertainties in the normal matter
distribution for both cosmic shear analyses and galaxy cluster abundance studies.

1.2 A brief history of our Universe

Before diving into the cosmologist’s mathematical toolkit that allows them to model the
evolution of the Universe, a brief status overview of our knowledge of the Universe is in
order.

The current standard model, the Lambda Cold Dark Matter (ΛCDM) cosmology, is an
immense achievement both theoretically and observationally: a theory tweaked and pol-
ished over the past century. Einstein’s theory of general relativity provides the framework
to model the evolution of an expanding, isotropic and homogeneous universe composed
of ordinary matter contributing a mere 5% of the total energy content of the Universe,
dark matter (≈ 25%), and dark energy (≈ 70%), lending its name to the model through
the cosmological constant, Λ (Planck Collaboration et al., 2020b). Radiation, in terms of
photons emitted by gas and stars, and neutrinos generated in radioactive decays, amounts
to a negligible fraction of ≈ 0.01% of the total energy density of our Universe. Against
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Figure 1.1: Timeline of the Universe from the beginning, on the left, to today, on the
right. The vertical size represents the spatial expansion (not to scale). Inflation generates
macroscopic density perturbations from the quantum fluctuations present in the beginning
of the Universe. The dark matter fluctuations grow as soon as matter dominates the energy
content, eventually attracting ordinary matter when it decouples from radiation around
400 000 years after the Big Bang. The ordinary matter collapses, forming stars that make
up the galaxies that we see. Over time, these galaxies coalesce into more massive groups
and clusters, forming the cosmic web. In the past 3.6 billion years, dark energy has started
to dominate the expansion of the Universe, inaugurating a phase of accelerated expansion.
Figure by the NASA/WMAP Science Team.

this smooth backdrop, tiny density perturbations generated during the early inflationary
phase of exponentially fast expansion, will coalesce into ever more massive dark matter
overdensities under the influence of gravity, eventually drawing in the ordinary matter,
sparking star formation about 400 million years after the Big Bang and forming galaxies.
After about 10 billion years, the expansion of the Universe has sufficiently diluted the
matter density for dark energy to become the dominant energy density component, top-
pling the Universe into a supposedly everlasting accelerated expansion. This is where we
are now, about 13.8 billion years after the Big Bang. Fig. 1.1 shows an illustration of the
expansion history of the Universe with several milestones in the development of structure.

The standard cosmological model has been immensely successful in simultaneously
explaining an eclectic range of observations, including the typical size of pressure waves
propagating in the primordial plasma imprinted as fluctuations in both the cosmic mi-

https://wmap.gsfc.nasa.gov/media/060915/index.html
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crowave background (CMB), approximately 380 000 years after the Big Bang (e.g. Spergel
et al., 2003) and the late-time distribution of luminous red galaxies, about 10 billion years
after the Big Bang, known as baryon acoustic oscillations (BAO, e.g. Cole et al., 2005;
Eisenstein et al., 2005), the absence of a decrease in the velocity with which galaxies en-
circle massive agglomerations known as galaxy clusters (Zwicky, 1933), and also of stars
in the outskirts of galaxies (Rubin et al., 1980) due to an additional mass contribution of
a non-directly observable, “dark” matter, the accelerating expansion of the Universe as
probed by supernovae at cosmological distances (e.g. Riess et al., 1998; Perlmutter et al.,
1999), the clustering of galaxies (e.g. Peacock et al., 2001; Percival et al., 2001), the sta-
tistical distortion of observed galaxy shapes due to the weak lensing effect of intervening
matter (e.g. Wittman et al., 2000; Van Waerbeke et al., 2000; Bacon et al., 2000; Hoekstra
et al., 2002), the abundance of massive clusters of galaxies (e.g. Bahcall & Cen, 1993)
and more.

There are two hidden elephants in the room, however. Neither dark matter nor dark
energy fit comfortably within the standard model of particle physics. While there are
many smoking guns pointing to a consistent dark matter component, dark energy still
remains a mystery. The inferred amount of dark matter is required to explain a range
of different observations. Peebles (2017) provides an interesting personal and historical
overview of how the evidence and the acceptance of cold dark matter has grown over the
past century—another fascinating account on the history of cosmology in general is given
in Peebles (2012). We provide a small summary: Firstly, the ratio of the acoustic peaks in
the statistical distribution of CMB anisotropies indicate an extra gravitational forcing due
to a non-baryonic component (e.g. Hu & Dodelson, 2002; Planck Collaboration et al.,
2020b)5. Ubiquitous already established dark matter structures are also required at the
time of the CMB to explain how the tiny observed ordinary matter perturbations were able
to quickly collapse and form galaxies by the current time. Additionally, the flat rotation
curves of stars in galaxies (e.g. Rubin & Ford, 1970; Rubin et al., 1980) and the lack of
decreasing velocity of galaxies toward the outskirts of clusters indicate the need for an
additional invisible mass (e.g. Zwicky, 1933). Finally, gravitational lensing observations
of colliding clusters indicate that most of the (dark) mass stays confined to the cluster
while the hot gas is left behind in the collision, as observed in the Bullet Cluster (Clowe
et al., 2006). However, so far no dark matter particle candidates have been found in any
direct searches (e.g. Undagoitia & Rauch, 2016).

Dark energy, on the other hand, remains elusive. From quantum field theory, we ex-
pect the vacuum of space to have an associated energy, but the measured cosmological
constant comes out about 120 orders of magnitude lower than the predicted value (Wein-
berg, 1989). However, the energy density of the cosmological constant inferred from
observations simultaneously explains both the flatness of the Universe and the late-time
accelerating expansion (for a review, see Frieman et al., 2008). Many different theoretical
dark energy models exist, ranging from scalar fields with negative pressure to modifica-
tions to the laws of gravity (e.g. Joyce et al., 2016). So far, however, the data do not show
a preference for more complicated models over a standard cosmological constant (e.g.
Chiba et al., 2013; Wang et al., 2018; Gerardi et al., 2019).

5Clear animated plots can be found on Wayne Hu’s personal website

http://background.uchicago.edu/~whu/intermediate/intermediate.html
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Now that late-time observational probes of the cosmological expansion history and
the matter distribution are gaining statistical power, another potential problem is appear-
ing for ΛCDM in the guise of tensions between cosmological parameters inferred from
the CMB and late-time probes (for a recent overview, see Abdalla et al., 2022). Most fa-
mously, the current value of the Hubble parameter inferred from distances to supernovae
in galaxies flowing along with the expanding Universe, is larger and in a 5σ tension with
that extrapolated from the CMB—a discrepancy known as the Hubble tension (Planck
Collaboration et al., 2020b; Riess et al., 2021). Additionally, late-time probes of the mat-
ter distribution consistently find values of the matter clustering between 2−3σ lower than
predicted by the CMB—dubbed the S8 tension (e.g. Bocquet et al., 2019; Heymans et al.,
2021). There are two possible ways to solve these problems: either there are unidentified
sources of systematic error in at least one of the analysis methods or there are unaccounted
for physical effects present in the data—colloquially, we speak of “new physics”.

For Planck, there seem to be inconsistencies in the data between measurements when
using only small or large scales (e.g. Addison et al., 2016), partially manifesting as a
smoothing of the small scale peaks, similar to the signal expected from a stronger lensing
of the CMB (Planck Collaboration et al., 2017). However, these features are stronger than
expected from direct constraints inferred from the higher-order correlations that the lens-
ing induces in the anisotropies of the CMB (e.g. Obied et al., 2017; Motloch & Hu, 2018,
2020). Tantalizingly, excluding the small-scale information shifts the best-fitting values
of both the Hubble parameter and the matter clustering closer to the late-time measure-
ments (Planck Collaboration et al., 2017). However, given the high dimensionality of the
parameter space, Planck Collaboration et al. (2017) finds shifts in the cosmological pa-
rameters with a similar significance in about 10% of their simulated data, consistent with
statistical fluctuations. The inconsistencies could also point to some unknown systematic
effects in the Planck analysis, or to unaccounted for physical processes.

The supernovae analyses calibrate distances to nearby galaxies that have hosted a su-
pernova explosion, using a standard candle, such as Cepheid variable stars (e.g. Riess
et al., 2021). This method has several requirements. Firstly, it requires an accurate cali-
bration of the standard candle, for example, the Cepheid period–luminosity relation, ex-
trapolated to more distant, SN-hosting galaxies. Additionally, geometric distance calibra-
tions to local galaxies are needed. Finally, the decay in the supernova brightness must
follow a universal, redshift-independent relation. Riess et al. (2021) carefully investigate
and dispel most currently hypothesized sources of systematic error for Cepheid distance
calibrations, such as biases induced by crowding of background stars in the Cepheid pho-
tometry, inconsistencies in the period–luminosity relation for different galaxies, or the
impact of using different nearby anchors for the distance ladder (as detailed in the re-
sponses to Efstathiou 2020, and also in the discussion of Riess et al. 2021). However, the
complex analysis, the possible astrophysical sources of systematic uncertainty and the fact
that different distance calibrations, using, for example, the tip of the red giant branch (e.g.
Freedman et al., 2019; Freedman, 2021; Anand et al., 2022), or lensing time delays (e.g.
Birrer et al., 2020), result in parameter determinations consistent with the CMB predic-
tion, should serve as a caution before concluding that a modification to ΛCDM is needed.
In a few years, a completely independent measurement using standard gravitational sirens
will be able to shed light on this issue (e.g. The LIGO Scientific Collaboration and The
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Virgo Collaboration et al., 2017; Feeney et al., 2019; Soares-Santos et al., 2019).
Finally, the most significant discrepancy in the inferred matter clustering compared to

the CMB data is found in cosmic shear analyses (e.g. Asgari et al., 2021; Amon et al.,
2022b,a). Inferring cosmological parameters from measuring the statistical shape dis-
tortion of galaxies caused by the intervening matter is a complicated problem beset by
possible systematic uncertainties. First of all, for a fixed lensing signal over or underesti-
mating the distance to the source galaxies results in higher or lower values for the inferred
clustering of matter, respectively (Joudaki et al., 2020). Additionally, intrinsic alignments
of galaxies in each other’s neighbourhood can masquerade as a cosmological signal (e.g.
Croft & Metzler, 2000; Heavens et al., 2000; Hirata & Seljak, 2004). The details of this
alignment signal will depend on galaxy formation processes and the galaxy population,
but current models are likely too simplistic to capture the full behaviour (e.g. Joachimi
et al., 2015). Different analysis methods and different surveys find significantly different
values for the strength of the intrinsic alignment signal (e.g. Efstathiou & Lemos, 2018;
Asgari et al., 2021), which could indicate that the parameter is accounting for another sys-
tematic uncertainty in the data. Calibrating the intrinsic alignment signal observationally,
as suggested by Fortuna et al. (2021), could reduce this effect. However, tests of the inter-
nal consistency of the observations and variations in the systematic uncertainty modelling
have not identified any significant possible reductions in the tension which could point to
the need for modifications to the cosmological model (e.g. Asgari et al., 2021; Joachimi
et al., 2021; Amon et al., 2022b).

As the saying goes: “May you live in interesting times”, and we certainly do. The
advent of future surveys aims to constrain the expansion history and the matter content of
the Universe with revolutionary precision. Any inconsistencies in the standard model of
cosmology will be tremendously magnified with the future data, that is, if we are able to
adequately control the systematic uncertainties in the challenging data analysis.

1.3 The basics of cosmology

To understand how weak lensing can probe the matter distribution of the Universe, we
first need to introduce the tools of modern cosmology. We start by introducing how we
can model the smooth background evolution of the average density of the Universe in Sec-
tion 1.3.1, then, we will detail in Section 1.3.2 how small density fluctuations generate
structure on top of this smooth background, providing the seed locations to form galax-
ies. Finally, we will describe how baryons condense into the galaxies that we observe in
Section 1.3.3.

1.3.1 Smooth background evolution

The current cosmological framework rests on the foundational assumption that our Uni-
verse is homogeneous and isotropic when averaged over sufficiently large length scales,
also known as the cosmological principle. The distribution of galaxies and quasars on
scales & 100Mpc (about 330 million lightyears) provides evidence for homogeneity (e.g.
Hogg et al., 2005; Laurent et al., 2016; Ntelis et al., 2017), and the remarkable isotropy of
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the cosmic microwave background is taken as strong evidence for the latter. The maturing
of cosmology as a scientific subject started with the development of Einstein’s theory of
general relativity (Einstein, 1916). In its full glory, the theory of general relativity involves
solving the highly non-linear set of Einstein field equations relating the local curvature of
four dimensional space-time to the matter and energy density. In compact index notation,
the field equations can be written as

Rµν +

(
Λ− 1

2
R

)
gµν =

8πG

c4
Tµν , (1.1)

where Rµν is the Ricci curvature tensor, R is the scalar curvature, i.e. the trace of the
Ricci tensor, Λ is the cosmological constant, gµν is the metric tensor, G is Newton’s
gravitational constant, c is the speed of light, and, finally, Tµν is the stress-energy tensor.
The different Greek subscript letters can be any of either the three spatial dimensions or
the single time dimension, resulting in a set of 4 × 4 = 16 equations. The fundamental
geometric quantity in general relativity is the metric, gµν , since the Ricci tensor can be
derived from it. The metric acts as a ruler, allowing distances in a curved space to be
uniquely defined, independently of the assumed coordinate system, in accordance with the
relativity principle promoted by Einstein. Physical properties of the matter enter through
the stress-energy tensor.

The cosmological principle greatly simplifies the Einstein field equations. Under the
assumption of homogeneity and isotropy, the space-time line element, defined by the
Friedmann-Lemaître-Robertson-Walker (FLRW) metric, can be written as

ds2 = gµνdx
µdxν

= −c2dt2 + a2(t)dχ2

= −c2dt2 + a2(t)
(
dχ2 + fK(χ)(dθ2 + sin2 θdφ2)

)
, (1.2)

where we have introduced standard spherical coordinates, (χ, θ, φ), the scale factor, a(t),
and

fK(χ) =


1/

√
K sin(

√
Kχ) K > 0

χ K = 0

1/
√
−K sinh(

√
−Kχ) K < 0

(1.3)

introduces the dependence on the spatial curvature, K, which is measured to be indis-
tinguishable from 0 (Planck Collaboration et al., 2020b). The FLRW metric implies a
Universe consisting of flat, three-dimensional hypersurfaces with an increasing physical
distance dl = a(t)dχ between observers that move along with its expansion. The comov-
ing distance, χ, provides a spatial distance measure that is unaffected by the expansion,
and the scale factor, a(t), which can be freely set to be 1 at our current time, functions
as a clock, measuring time in terms of how much the Universe has expanded. In the
beginning, t = 0, the FLRW metric implies a singularity, a = 0, where all matter was
packed together so densely that our known laws of physics no longer hold. This initial hot
and dense state of the Universe is known as the Big Bang. Since the expansion of space
also stretches the wavelength of individual photons, another way of measuring time is by
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identifying the observed wavelength, λobs, of a known atomic emission line at wavelength
λem. The redshift, z, of the emission lines tells us how much smaller the Universe was at
the time of emission from the relation

λobs
λem

= 1 + z =
a(tobs)

a(tem)
. (1.4)

Since practically all the information from the distant Universe reaches us through photons
(neglecting gravitational waves and neutrinos), the redshift is the best tool to correctly
situate observed objects or events in the history of the Universe.

The finite speed of light allows us to look back in time, with photons leaving galaxies
in the very early Universe travelling for billions of years before finally reaching our de-
tectors. The finite speed of photons also results in a cosmological “horizon”, the region
from which light is able to reach us in the age of the Universe. Since photons travel along
null geodesics, ds2 = 0, the metric in Eq. (1.2) gives the comoving horizon size,

χh(t) = c

∫ t

0

dt′

a(t′)
, (1.5)

which at the current time equals about 14Gpc.
Now, we only need Einstein’s field equations to solve for the scale factor and to cap-

ture the expansion history of the Universe (e.g. Weinberg, 1972). Friedmann (1922) was
the first to show that the scale factor in the FLRW metric must obey the relation

H2(t) ≡
(
ȧ(t)

a(t)

)2

=
8πG

3
ρ(t)− Kc2

a2(t)
(1.6)

also known as the Friedmann equation, which follows from the space-space and time-time
components of Einstein’s equations. We have introduced the common notation d/dt ≡ ˙
and the density,

ρ(t) = ρm(t) + ργ(t) + ρΛ , (1.7)

consisting of a matter (m), radiation (γ), and cosmological constant (Λ) contribution.
Additionally, the time-time component of Einstein’s equations gives

ä(t)

a(t)
= −4πG

3

(
ρ(t) +

3p(t)

c2

)
, (1.8)

where the pressure,
p(t) =

∑
i

wiρi(t) , (1.9)

depends on the equation of state parameter, wi, of each density component. Eqs. (1.6)
and (1.8) explicitly show how the expansion of the Universe depends on the physical
properties, that is the density and the pressure, of its constituent matter and energy com-
ponents. Defining Eq. (1.6) in terms of the critical density for which the Universe is flat,
that is, for which space is Euclidean,

ρcrit(t) =
3H2(t)

8πG
, (1.10)
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we obtain the most-widely used form for a flat universe,

H2(z) = H2
0 (Ωm,0(1 + z)3 +Ωγ,0(1 + z)4 +ΩΛ,0) , (1.11)

where Ωi ≡ ρi/ρcrit and the subscript 0 indicates that the quantity is measured at the
current time t0, or, identically, a = 1 and z = 0. Observationally, the parameters are con-
strained to H0 = 67.44± 0.42 km s−1 Mpc and (Ωm,0,ΩΛ,0) = (0.311, 0.689)± 0.006,
with Ωγ,0 < 10−4 (Planck Collaboration et al., 2020b). Here, we have used Eq. (1.8) with
the equation of state parameters for a photon gas, wγ = 1/3, pressureless dark and ordi-
nary matter, wm = 0, and dark energy in the form of a cosmological constant, wΛ = −1.
The radiation density decreases strongly with time since the spatial expansion decreases
the number density of photons and additionally stretches their wavelength, reducing the
total energy density. Matter, on the other hand, is only affected by the decreasing num-
ber density. Finally, the cosmological constant permeates space with a fixed background
density, unaffected by the expansion of the Universe.

According to the most recent Planck Collaboration et al. (2020b) measurements of
the temperature fluctuations imprinted in the cosmic microwave background (CMB), the
Universe is currently approximately 13.8 billion years old. It has passed through differ-
ent epochs in which different density components dominate its expansion history. The
early Universe was dominated by radiation, until about 20 000 years after the Big Bang
(or z ≈ 5700) when matter took over. Interestingly, about 3.6 billion years ago (or
z ≈ 0.3)—recent history, cosmologically speaking—dark energy started dominating over
matter, initiating a phase of seemingly never-ending, accelerated expansion. However,
until we fully understand what causes the observed acceleration, that is, until we have a
satisfactory model of dark energy or modified gravity that is observationally preferred,
reports about the of final fate of the Universe are greatly exaggerated.

A final important consequence of our expanding Universe for observational cosmolo-
gists is that measuring distances to objects is more complex. In the neighbourhood of our
own galaxy, we can infer distances, D, to objects from their flux, Ftot, if we know their
total bolometric luminosity, Ltot, using the fact that

DL =

√
Ltot

4πFtot
. (1.12)

Alternatively, if we know some physical size, δl, we can infer the distance from the angle,
δθ, it subtends on the sky since

Dθ =
δl

δθ
. (1.13)

In a flat, expanding Universe, the expansion of space need to be taken into account
when inferring distances in a similar way. It is useful to first define the line-of-sight co-
moving distance, χ, between us, the observers, and a point located at a particular redshift,
z, as

χ(z) =

∫ z

0

dz
c

H(z)
, (1.14)

which follows from the metric in Eq. (1.2). This comoving distance defines the spherical
surface over which photons emitted at redshift z will be spread out by z = 0. Additionally,
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photons are redshifted by the time they reach the detector, decreasing the energy and
increasing the arrival time interval, resulting in a measured flux

Ftot,obs =
Ltot

4πχ2(z)(1 + z)2
(1.15)

from which we get the luminosity distance

DL = (1 + z)χ(z) . (1.16)

The angular diameter distance, which is the generalization of Eq. (1.13), is easily derived
from the metric, Eq. (1.2). The proper size, δl, of an object or feature at redshift z, a
comoving distance χ from an observer at the origin, fixes the angular size, δθ, seen by the
observer to

δl2 = a2(tem)f
2
K(χ)δθ2 , (1.17)

giving

DA =
fK(χ)

1 + z
. (1.18)

A fascinating property of our expanding Universe is that objects of fixed physical size,
δl, will reach a minimum angular size between z ' 1 − 2, but for higher redshifts their
angular sizes actually become larger because the physical distance to the observer was
significantly smaller at the time of emission, resulting in a larger angular size.

Being able to convert angles on the sky or luminosities on a detector into distances,
requires so-called standard rulers or standard candles. With a ruler or a candle in hand,
observational cosmologists are able to constrain the expansion history and the geometry
of the Universe through the inferred comoving distance, χ(z), to said ruler or candle,
which depends on the Hubble parameter, H(z). Some of the strongest current constraints
on the properties of our Universe were derived this way. Anisotropies in the cosmic mi-
crowave background provide a fossil record of the sound horizon, the maximum distance
that pressure waves were able to travel since the start of the Universe, at the time of recom-
bination of protons and electrons around 380 000 years (z ≈ 1100) after the Big Bang.
The physical size of the sound horizon depends on the matter-to-photon ratio, due to the
balance between gravitational collapse and radiation pressure that generate the oscillation
responsible for the pressure waves (e.g. Peebles & Yu, 1970; Hu et al., 1997). The angu-
lar scale of these perturbations has been measured to be 0.59643 deg (about the angular
size of the Sun on the sky) with an exquisite accuracy of 0.05% by the Planck satellite
(Planck Collaboration et al., 2020b). The angular size additionally depends on the ex-
pansion history of the Universe through χ(z), as can be seen from Eq. (1.17), making
the CMB a powerful cosmological probe. Since these perturbations are also imprinted—
although strongly damped—in the baryons which collapse under gravity to form galaxies,
another standard ruler can be found in the statistical distribution of galaxies at much later
times. This baryon acoustic oscillation (BAO) feature was first detected by Eisenstein
et al. (2005) and Cole et al. (2005). Finally, type Ia supernova explosions can function as
standard candles, since they are generated when a white dwarf reaches the Chandrasekhar
limit of ≈ 1.44M� through mass accretion from a companion, which results in a fixed
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luminosity explosion event. These standard candles have been used by Riess et al. (1998)
and Perlmutter et al. (1999) to constrain the distance–redshift relation out to z ≈ 1 and
show that the Universe is entering a phase of accelerated expansion.

1.3.2 Growth of structure
Even though the modelling of the evolution of the average density of the entire Universe is
an impressive feat, it does not bring us closer to understanding how the observed galaxies
form and cluster together in the cosmic web and how we can predict the lensing signal
that this matter distribution generates. For that, we need to know the initial distribution of
density perturbations and their evolution in time.

The stage for galaxy formation is set extremely early when quantum fluctuations get
inflated to scales orders of magnitude larger than the causal horizon—the region where
particles have been able to communicate—in a phase of exponential expansion, known as
inflation (Guth, 1981; Linde, 1982). Inflation ends in a reheating period that spawns the
standard model particles and initiates the radiation-dominated period of our Universe. The
inflationary scenario provides an explanation for the counter-intuitive observed isotropy
of the CMB: patches on opposite parts of the sky that cannot possibly be in thermal
equilibrium, are observed to have the same temperature to within a fractional difference
of ∆T/T ≈ 10−5. Inflation explains this isotropy since these regions were actually in
causal contact before they were stretched outside of each other’s horizons, meaning they
were in thermal equilibrium before inflation. Additionally, inflation also smooths out any
initial curvature present in the early Universe, explaining why the current Universe is
observed to be flat even though any tiny deviation from flatness exacerbates with time.

Due to the stochastic nature of the initial quantum fluctuations, we can only ever
describe the spatial distribution of density perturbations in a statistical sense. Standard
inflationary models predict that the initial density perturbation compared to the mean
density, ρ̄,

δ(x, t) =
ρ(x, t)

ρ̄(t)
− 1 , (1.19)

is a zero-mean Gaussian random field with correlations on length scales λ = 2π/k de-
scribed by a power spectrum,

P (k) = 〈|δk|2〉 ∝ kns , (1.20)

that is almost scale-free, i.e. ns ≈ 1. Here, scale-free means that all density perturba-
tions have the same amplitude when they re-enter the horizon after inflation has ended
and radiation dominates the energy density (e.g. Bardeen et al., 1983). As a zero-mean
Gaussian random field, the initial density perturbations are fully specified by the power
spectrum since all even, non-zero higher-order moments can be derived from it.

The initial growth of density perturbations depends on the dominant energy com-
ponent of the Universe. Perturbations that re-enter the horizon during the radiation-
dominated epoch will stall their growth until matter becomes the dominant component
and dark matter perturbations start to collapse and establish the potential wells in which
galaxies will eventually form. This stalled growth imprints the comoving horizon size at
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Figure 1.2: The linear matter power spectrum at z = 0 inferred from different observa-
tional probes. The Planck satellite measures the temperature fluctuations (TT) and the
polarization (EE) of the cosmic microwave background at z ≈ 1100, but also how it is
lensed by the intermediate large-scale structure around z ' 0.5− 1 (φφ). The Sloan Dig-
ital Sky Survey (SDSS) measures the clustering of luminous red galaxies (LRGs) with
z < 0.5. The Baryon Acoustic Oscillation Spectroscopic Survey (BOSS) Ly-α forest
probes Ly-α absorption features in spectra of quasars that closely trace the underlying
matter distribution. Finally, cosmic shear uses the weak gravitational lensing shape dis-
tortion of large samples of galaxies to constrain the statistical matter distribution between
the observer and the galaxies. Figure taken from Planck Collaboration et al. (2020a).

matter–radiation equality, dH,eq ≈ 100Mpc or keq ≈ 0.01Mpc−1, as a characteristic
scale in the power spectrum of small fluctuations, δ < 1, also known as the linear power
spectrum. Fig. 1.2 shows observational constraints on the linear matter power spectrum
inferred from the CMB, galaxy clustering, the Ly-α forest absorption feature in quasar
spectra, and cosmic shear, together with the linear power spectrum predicted from the
best-fit Planck Collaboration et al. (2020b) constraints. On large scales (k < keq), the
power spectrum retains its initial ∝ k dependence, whereas on small scales (k > keq), the
scaling changes to a ∝ k−3 dependence since smaller scales entered the horizon earlier
and have been stalled for longer.

The seed locations of structure formation can be determined by following the growth
of small, linear dark matter perturbations on top of the smooth background density of
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the Universe. The growth of subhorizon dark matter perturbations in a matter-dominated
Universe is captured by the simplified, Newtonian fluid equation

δ̈ + 2Hδ̇ = 4πGρ̄δ , (1.21)

with δ � 1. Here, the right-hand side exerts a gravitational pull, increasing the overden-
sity, whereas the expansion of the Universe, represented by the Hubble parameter term on
the left-hand side, opposes this growth, decreasing the perturbation growth rate from an
exponential, in the case of no expansion (H = 0), to a power-law, δ ∝ a, in the matter-
dominated regime. Hence, even in the presence of the expansion of the Universe, dark
matter perturbations will grow, eventually reaching δ ≈ 1, where the linear approximation
no longer holds and higher-order terms in δ need to be included in Eq. (1.21).

The evolution of non-linear overdensities can be modelled with a simplified spheri-
cal collapse model, treating spherical overdensities as their own separate universes with
higher density (e.g. Peebles, 1965, 1967). This calculation shows that overdensities first
decouple from the Hubble flow and start to collapse when they are about 4 times denser
than the average density of the Universe. The resulting haloes are about 200 times more
dense than the average background density at their formation time. From these models, we
know that this collapse occurs when the linear density perturbations in Eq. (1.21) reach a
critical value of δc ≈ 1.686. Non-linearities become important on scales λ . 10Mpc, or,
equivalently, k & 0.1Mpc−1, where the total matter power spectrum will start deviating
from the linear matter power spectrum shown in Fig. 1.2.

Press & Schechter (1974) used similar analytic arguments to predict the distribution
of collapsed objects consisting of cold gas—dark matter was not yet considered in the
cosmological models back then—as a function of their mass. They argued, following the
spherical collapse model, that when linear perturbations on a scale R reach the threshold
for collapse, they will form a structure of mass m ∝ ρ̄R3. Assuming that the probability
P (δR > δcrit) determines the fraction of the mass of the Universe present in objects of
mass > m, the resulting halo distribution is fully determined by the possible cosmology
dependence of the critical density for collapse, δcrit, and the variance of the overdensity
field. Impressively, their prediction based on linear theory was later shown to qualitatively
reproduce the mass-dependent abundance of haloes in simulations (e.g. Efstathiou et al.,
1988).

Our understanding of how structure forms was furthered by studying the clustering
of the most significant peaks in the density field: clusters of galaxies. Kaiser (1984)
noted that the larger correlation lengths observed for clusters compared to lower-mass
galaxies could be explained if clusters are a biased tracer of the underlying density
field. That is, clusters only form when the local density field is coherently boosted by
a large-wavelength perturbation allowing large-scale overdensities to become significant
and form massive haloes with correlations on the lengthscale of the wavelength. Smaller
fluctuations behave more like noise and small patches can reach significant overdensities,
resulting in the formation of low-mass haloes with smaller coherence lengths. The ana-
lytic population properties of the peaks of random Gaussian fields have been worked out
meticulously by Bardeen et al. (1986).

Studying the details of halo formation requires N-body simulations that model the
gravitational evolution of collisionless matter particles in an expanding Universe. The
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Figure 1.3: The cosmic dark matter distribution at z = 0 predicted by the Millennium
simulation of Springel et al. (2005) in a 15h−1 Mpc thick slice of the simulated vol-
ume. The cosmic web with dense, yellow nodes and connective filamentary structures
surrounding empty voids is clearly visible. Galaxies predominantly form in haloes along
the filaments, clustering in groups and clusters, which are located at the nodes of the cos-
mic web. Figure by the Virgo consortium.

first computer simulations in a cosmological context, carried out by Aarseth (1963),
only followed the gravitational evolution of 100 collisionless particles, limited by the
available computational power and the N2 scaling of the direct force calculation be-
tween all the particles. In the early 80s, Efstathiou & Eastwood (1981) carried out the
first cosmological simulation with 20 000 particles, using the more advanced particle–
particle/particle–mesh (abbreviated as P3M) method, introduced by Eastwood (1975).
The P3M method reduces the computational expense of N-body simulations by intro-
ducing a mesh with M3 cells over which the average gravitational potential is calculated.
Forces on individual particles receive a large-scale contribution from the mesh and a short-
range particle–particle contribution that only includes particles within a fixed, smaller
distance from each other, saving a significant amount of computation and enabling much
larger ensembles of particles to be modelled. Current simulation codes have upgraded
their gravity calculations to a TreePM method that calculates short-range forces more ef-
ficiently using a tree structure while keeping the mesh for large scales (e.g. Barnes & Hut,
1986; Xu, 1995).

In the 90s, Navarro et al. (1996, 1997) showed that haloes in simulations modelling
solely the evolution of dark matter in universes with different initial power spectra fol-
low a universal density profile, now known as the Navarro-Frenk-White (NFW) profile,
characterized by

ρNFW(r) ∝
(
r

rs

)−1(
1 +

r

rs

)−2

, (1.22)

where rs is the scale radius where the power-law slope d ln ρNFW/d ln r = −2, transi-
tioning between the r−1 and r−3 scaling of the inner and outer halo, respectively.

From the early 2000s to now, an increase in the computational power of supercomput-

https://wwwmpa.mpa-garching.mpg.de/galform/millennium/
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ers has lead to ever larger simulations being run with increasing numbers of particles and
for many different cosmological models. Springel et al. (2005) introduced the Millennium
simulation, evolving over 10 billion dark matter particles, each weighing ≈ 109 h−1 M�,
in a comoving volume of 500h−1 Mpc, where h = H0/100 km s−1 Mpc−1. Such sim-
ulations aim to self-consistently model the full cosmological evolution of a large, repre-
sentative patch of the Universe. They start at high redshift, well before the first galaxies
formed, usually z > 100—less than ≈ 15 million years after the Big Bang—with a parti-
cle distribution that follows the statistical distribution predicted for a chosen cosmology.
Evolving these particles through time, including the effects of gravity and the expansion
of the Universe, we end up with accurate predictions for the structure of the Universe, in-
cluding the cosmic web and highly non-linear haloes, as shown in Fig. 1.3. Many features
of the large-scale clustering of matter can be accurately inferred from such simulations
since the ordinary matter—which is not included in these dark matter-only simulations—
approximately follows the dark matter.

To predict the cosmology-dependence of quantities such as the halo abundance or mat-
ter clustering from simulations, we need a sample of simulations that vary the cosmologi-
cal parameters and the resulting matter distribution and evolution. Heitmann et al. (2006)
and Habib et al. (2007) suggested to run a set of simulations with cosmological parameters
sampled on a grid that maximizes the minimum distance between all the parameter vec-
tors. This enables an efficient interpolation between the results with sufficient accuracy
while also minimizing the computational expense since the sampling can be relatively
sparse. Such emulator approaches are gaining popularity owing to the stringent theoret-
ical accuracy requirements of future galaxy surveys. Emulators have been developed for
the halo abundance (e.g. McClintock et al., 2019; Nishimichi et al., 2019; Bocquet et al.,
2020) and the matter power spectrum (e.g. Heitmann et al., 2009; Euclid Collaboration
et al., 2018), both quantities of interest for this thesis. However, simulations can only be
fully representative of our actual Universe with its stars, gas and galaxies, when they also
include baryons and their associated physical processes, as we will discuss next.

1.3.3 Galaxy formation
The formation of galaxies is the next step after dark matter structures have collapsed.
Dark matter has an approximately 350 000 year head start, being able to collapse as soon
as matter dominates the energy budget of the Universe. Normal matter, on the other hand,
only decouples from radiation when the Universe has cooled down to Tdec ≈ 3000K (at
zdec ≈ 1100) and photon collisions can no longer keep the primordial gas ionized. At this
stage, the gas becomes neutral and can collapse into the already established dark matter
potential wells.

The crucial difference between ordinary and dark matter is that ordinary matter takes
part in electromagnetic interactions. As a result, gas particles can collide with each other,
exerting a pressure that can balance gravitational collapse. Hence, collapsed dark matter
haloes form a gaseous halo with an equilibrium, virial temperature and density profile set
by the mass of the halo. This is not the full story, however: if the density and tempera-
ture are sufficiently high, the gas becomes ionized and collisions between electrons and
atoms can excite electronic transitions or even ionize more atoms, resulting in radiative
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cooling (which is more efficient for higher-metallicity gas due to the availability of more
electrons). Gas at temperatures comparable to the ionization energy of the atomic lines,
mostly between 104−106 K, will be able to cool efficiently through these processes, frag-
menting to form stars in low-mass haloes (e.g. Rees & Ostriker, 1977; Silk, 1977; White
& Rees, 1978). The small initial angular momentum of the gas clouds, imparted by grav-
itational tidal torques from the surrounding large-scale structure, gets amplified in the
collapse, resulting in the formation of a disk (e.g. Fall & Efstathiou, 1980). Subsequent
halo mergers grow the total halo and stellar mass, possibly disturbing the disk, resulting in
the formation of elliptical galaxies. The emerging picture is one of hierarchical growth of
haloes, with the central galaxy mass increasing due to continuous accretion and mergers,
and with large haloes accreting smaller haloes and their galaxies as a satellite population.

A successful galaxy formation model should be able to reproduce the observed abun-
dance of galaxies as a function of properties such as their mass, colours, sizes, and their
observed clustering. To self-consistently model the growth of dark matter haloes from
their initial perturbations as well as the formation of galaxies, we need to resort to cosmo-
logical hydrodynamical simulations that simultaneously evolve dark matter and gas while
accounting for the formation of stars and their associated feedback such as stellar winds
and supernovae explosions (for a review, see Somerville & Davé, 2015). The immense
dynamic range of galaxy formation requires a trade-off to be made between the mass res-
olution and the volume of the simulation. Processes that cannot be resolved due to the
limited resolution of the simulations are included as subgrid physics recipes.

First of all, gas in the simulations needs to be able to cool. Hence, gas particles in
cosmological hydrodynamical simulations typically track the abundance of the 11 dom-
inant atomic species for cooling and interpolate the pre-calculated cooling and heating
rates tabulated as a function of the density, temperature, metallicity and redshift of the gas
(e.g. Wiersma et al., 2009a). When the gas becomes dense enough, it should be able to
form stars. Gas particles are stochastically converted into stellar particles, representing
stellar populations of thousands of stars, when their density exceeds the critical density
for gravitational collapse (e.g. Schaye, 2004; Schaye & Dalla Vecchia, 2008). The stel-
lar populations evolve, generating type II supernovae and stellar winds that enrich the
surrounding gas (e.g. Wiersma et al., 2009b). The supernovae additionally kick or heat
their neighbours, simulating the violent explosions that can shut down the star formation
in low-mass galaxies by heating and dispersing the high-density star-forming gas (e.g.
Dalla Vecchia & Schaye, 2008, 2012). This stellar feedback is important since it allows
simulations to reproduce the observed low-mass slope of the galaxy stellar mass function
(e.g. Puchwein & Springel, 2013).

Finally, most massive galaxies are observed to host central supermassive black holes
(SMBHs) and hot haloes (e.g. Faber et al., 1997; Magorrian et al., 1998). The supermas-
sive black holes are expected to form early on from the coherent collapse of massive gas
clouds and grow through continuous gas accretion and mergers. Gas is funnelled onto the
SMBH accretion disk, growing the black hole and fuelling powerful galactic-scale winds
and jets that heat the surrounding gas, eventually unbinding it and ejecting metal-enriched
gas into the hot halo while suppressing star formation (e.g. Silk & Rees, 1998; Blandford,
1999; Fabian, 1999). This AGN feedback is important to reproduce the high-mass end
of the galaxy stellar mass function and also the observed baryon fractions in groups and
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clusters of galaxies (e.g. Fabjan et al., 2010; McCarthy et al., 2010; Puchwein & Springel,
2013). In simulations, black hole particles can save up energy that they will eventually
redistribute among their neighbours, heating them and suppressing star formation (e.g.
Booth & Schaye, 2009).

To ensure that these physically inspired subgrid prescriptions result in realistic galaxy
populations, their free parameters need to be calibrated to reproduce a chosen set of ob-
servations (see the discussion in Section 2.1 of Schaye et al., 2015). This necessary step
does not detract from the predictive power of cosmological, hydrodynamical simulations:
the highly non-linear relation between the subgrid model parameters and the simulated
galaxy properties means that reproducing one observable does not imply that the simu-
lation correctly predicts non-calibrated galaxy properties—if only. Hence, simulations
should always be judged based on how well they can reproduce a wide range of obser-
vations. In this thesis, we mainly work with the BAHAMAS simulations, since they
have been calibrated to reproduce the large-scale distribution of matter by fitting both the
galaxy stellar mass function, ensuring that the abundance of galaxies as a function of mass
is accurately reproduced, and the hot gas mass fraction of clusters, meaning that clusters
contain the correct amount of baryons (McCarthy et al., 2017).

1.4 Weak gravitational lensing

One of the first confirmations of Einstein’s theory of general relativity came from the
stronger predicted lensing effect of massive objects compared to Newton’s theory ob-
served in the 1919 solar eclipse (e.g. Eddington, 1919; Dyson et al., 1920). In the 80s,
Tyson et al. (1984) suggested to use this lensing effect to measure the mass of galax-
ies through the coherent statistical distortion that their mass will induce in the shape of
randomly oriented background galaxies.

1.4.1 The basics
Weak gravitational lensing relies on the fact that a point mass, M , will deflect the path of
photons travelling within a closest distance ξ, by an angle

α̂ =
4GM

c2
ξ

|ξ|2
(1.23)

= 12.5

(
M

1014.5 M�

)(
1Mpc

ξ

)
arcsec ,

where G is the gravitational constant and c the speed of light. The geometry of this
deflection is illustrated in Fig. 1.4. This relation holds in the region where the gravitational
field is weak, that is, ξ is much larger than the Schwarzschild radius, rS = 2GM/c2, of
the point mass, and α̂ � 1. In this regime, the apparent change in the source position in
the source plane, δα, for the observer can be written as

δα = θ − β =
Dds

Ds
α̂ , (1.24)
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Figure 1.4: The geometry of the deflection of a ray of light by a point mass. The mass,M ,
bends a light ray emitted in the source plane at physical position η, or angular position
β, by an angle α̂(ξ,M), resulting in an apparent angular position θ for the observer. In
a curved Universe, the angular and physical positions can be related using the angular
diameter distances Di, with i = d indicating the deflector and i = s the source. Figure
taken from Bartelmann & Schneider (2001).

where Dds is the angular diameter distance to the source as seen from the deflector, and
Ds is the angular diameter distance from the observer to the source plane.

This principle also holds for mass distributions, such as galaxies or clusters of galax-
ies, that are located at a fixed redshift, but with a density profile that varies along the line-
of-sight. As long as the total deflection along the mass distribution is small,

∑
i δαi � 1,

photons will travel in approximately straight lines and their total deflection is simply the
sum of all the thin lens contributions along a fixed line-of-sight, l, through the matter
distribution

α(θ) =
4G

c2

∫
d2θ′dl

DdsDd

Ds
ρ(θ′, l)

θ − θ′

|θ − θ′|2
(1.25)

=
1

π

∫
d2θ′ κ(θ′)

θ − θ′

|θ − θ′|2
, (1.26)

where we have changed to angular coordinates, using θ = ξ/Dd, we have assumed
δl � Dd, and we have introduced the convergence,

κ(θ) =
Σ(θ)

Σcrit
, (1.27)



1

Introduction 21

where Σ is the surface mass density of the mass distribution along the line-of-sight and

Σcrit =
c2

4πG

Ds

DdsDd
(1.28)

is the critical surface mass density. The deflection in Eq. (1.26) can be written as a force
sourced by a two-dimensional potential given be the Poisson equation,

∇2
θψ(θ) = 2κ(θ) , (1.29)

with
ψ(θ) =

1

π

∫
d2θ′ κ(θ′) ln |θ − θ′| , (1.30)

from which it is easy to see that

α(θ) = ∇θψ(θ) . (1.31)

For strong gravitational lensing, which occurs when κ > 1, background galaxies can
generate multiple images and these images can get spectacularly distorted, as shown for
the galaxy cluster Abell 370 in Fig. 1.5. Abell 370 was one of the first clusters for which
these arcs have been detected (Paczynski, 1987). In the weak lensing regime, on the other
hand, this deformation is not so obvious: it can only be measured statistically by looking
at the coherent distortion of background galaxy shapes equidistant from the cluster centre.
The weak lensing distortion can be calculated by considering how much the emitted light
ray position changes in the source plane for small changes in the lens plane, that is,

Aij =
∂βi
∂θj

= δij − ψ,ij(θ) =

(
1− κ− γ1 −γ2

−γ2 1− κ+ γ1

)
ij

, (1.32)

where we identify the ith component of the vector x as xi, we have definedψ,i ≡ ∂ψ/∂θi,
κ is the convergence from Eq. (1.29), and we have introduced the components of the shear

γ1(θ) =
1

2
(ψ,11(θ)− ψ,22(θ)) (1.33)

γ2(θ) = ψ,12(θ) . (1.34)

By diagonalizing the matrix A, it is easy to see that the distortion matrix, A−1, has eigen-
values λ± = (1 − κ ∓ |γ|)−1, where |γ| =

√
γ21 + γ22 , showing that the convergence

magnifies source images in the lens plane, whereas the shear distorts images, magnifying
and compressing them along the eigenvectors located at an angle φ+ and φ− from the
θ1-axis, respectively, with φ± = γ1/γ2 ∓

√
1 + (γ1/γ2)2.

Weak lensing observations are unable to probe the shear and the convergence directly,
instead they can only measure galaxy shapes. The coherent shape distortion caused by the
intervening mass distribution can be measured under the assumption that the background
galaxies are intrinsically randomly oriented following a specific ellipticity distribution.
We show an illustration of this effect in Fig. 1.6. Observers measure galaxy ellipticities
from the moments of the light distribution (e.g. Blandford et al., 1991; Bartelmann &
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Figure 1.5: The galaxy cluster Abell 370, imaged with the Hubble Space Telescope by
the Frontier Fields team. Circular arcs are clearly visible around the cluster centre: these
are background galaxies that are strongly lensed and distorted by the mass of the cluster.
Towards the cluster outskirts, this effect diminishes and it can only be detected statisti-
cally in the coherent distortion of large samples of background galaxies. Picture from
ESA/Hubble.

Schneider, 2001). In the weak lensing regime, the intrinsic complex ellipticity of the
source, εs, is related to the measured ellipticity after lensing, ε, through a transformation
that only depends on the reduced shear, g,

ε ≈ εs + g (1.35)

with

g(θ) =
γ(θ)

1− κ(θ)
, (1.36)

and γ = γ1 + iγ2. Since the sources are assumed to be randomly oriented, we expect
〈εs〉 = 0 for small local patches containing sufficient galaxies. This means that the mea-

https://esahubble.org/images/heic1711a/
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Figure 1.6: The differential bending of photon paths due to an intervening mass distribu-
tion, as illustrated in the top-right slice through the density field of the Euclid Flagship
simulation, distorts the observed galaxy shapes (bottom panels). A massive cluster, in-
dicated by the red circle, strongly lenses background galaxies close to the cluster centre,
distorting them into clearly visible arcs (bottom-left image). Further out, the effect is
smaller and the distortion can only be inferred by averaging over the shape of a large
sample of galaxies (bottom-right inset). The thick bars in the top-right corner show the
true shear signal (bottom bar) and the signal inferred from averaging the observed galaxy
shapes (top bar). Figure created by combining Euclid flagship mock data and illustrations
by Mellier (1999).

sured ellipticity directly probes the reduced shear,

〈ε〉 ≈ g ≈ γ . (1.37)

Since weak lensing is by definition a small effect, a sufficient number of galaxies is needed
to obtain a statistically significant measurement of the reduced shear.

1.4.2 Cosmic shear

Blandford et al. (1991) extrapolated the weak lensing idea of galaxies and clusters to
measure the mass fluctuations over large regions of the sky to constrain the typical clus-
tering of matter between us and samples of background galaxies. This effect is known as
“cosmic shear”.

https://sci.esa.int/web/euclid/-/59348-euclid-flagship-mock-galaxy-catalogue
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The power spectrum of the cosmic shear can be derived heuristically from the conver-
gence defined in Eq. (1.27). First, we can define the convergence for a source at redshift
zs being lensed by an overdense thin matter slice at redshift zd as follows

δκ(θ, zs, zd) =
4πG

c2
DdsDd

Ds
(ρ(θ, zd)− ρ̄(zd))δl . (1.38)

We can integrate this expression along the line-of-sight to the source while switching to
comoving coordinates and using the fact that ρ(θ, z)− ρ̄ = δ(θ, z)ρ̄ and

ρ̄ =
3H2

0Ωm,0

8πG
, (1.39)

giving the effective convergence

κeff(θ, χs) =
3H2

0Ωm,0

2c2

∫ χs

0

dχ
fK(χs − χ)fK(χ)

fK(χs)

δ(fK(χ)θ, χ)

a(χ)
, (1.40)

where fK(χ), defined in Eq. (1.3), enters through the comoving angular diameter distance
as can be seen from Eq. (1.18). Realistically, the shapes of many source galaxies over a
range of redshifts, or comoving distances, will be measured. Assuming a source redshift
distribution, n(z), with n(z)dz = n(χ)dχ, a selection limit, χlim, and accounting for the
fact that only galaxies behind the matter overdensity will be lensed, we find

κeff(θ) =
3H2

0Ωm,0

2c2

∫ χlim

0

dχW (χ)fK(χ)
δ(fK(χ)θ, χ)

a(χ)
, (1.41)

with the lensing efficiency for the source distribution given by

W (χ) =

∫ χlim

χ

dχsn(χs)
fK(χs − χ)

fK(χs)
. (1.42)

This simple argument gives the same result as a full general relativistic calculation of the
deviation between neighbouring photons that reach the observer from minutely different
angular positions after travelling through a perturbed homogeneous and isotropic universe
(e.g. Bartelmann & Schneider, 2001).

The cosmic shear power spectrum, Pγ(`), is then given by the correlations between
galaxy shape distortions on different scales, `, in the plane of the sky. This power spec-
trum can be calculated from the convergence power spectrum, since the Fourier compo-
nents of the shear, γ, and the convergence, κ, only differ by a phase—which can easily
be derived from Eqs. (1.29), (1.33), and (1.34), and the fact that γ =

√
γ21 + γ22e

2iφ.
Using the Limber approximation (full details can be found in Section 2.4 of Bartelmann
& Schneider, 2001), the projected correlations on the sky can be related to the 3D power
spectrum of density fluctuations, Pm, as follows

Pκ(`) =
9H4

0Ωm,02

4c2

∫ χlim

0

dχ
W 2(χ)

a2(χ)
Pm(`/fK(χ), χ) , (1.43)
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where ` = fK(χ)k⊥ and k⊥ is the wavevector in the plane of the sky. This result has
some noteworthy implications: a fixed lengthscale, `, on the sky receives contributions
from many different physical scales along the line-of-sight, since it corresponds to larger
scales at higher redshifts. Interestingly, however, fluctuations along the line-of-sight do
not contribute to the cosmic shear, which implies that we can limit the impact of small-
scale non-linearities by choosing an appropriate cutoff `max.

In conclusion, in cosmic shear analyses, the statistical shape distortion of galaxies at
different distances from us, constrains the typical clustering of matter between us and
those galaxies (e.g. Tyson et al., 1984; Blandford et al., 1991). A successful weak lens-
ing analysis is observationally challenging since it needs to be able to accurately measure
the galaxy shapes, which requires a small and well-characterized point-spread function,
a good understanding of the image noise, the blending of sources, and the impact of un-
detected background galaxies (e.g. Hoekstra et al., 2017, 2021). Another difficulty arises
in the distance measurement to galaxies: due to the massive size of the survey, not all
galaxies will have reliable spectroscopic measurements to determine distances from their
spectra. Instead, their distance will have to be inferred photometrically with the infor-
mation available from broadband filters, which results in significantly larger uncertainties
(for a recent review, see Salvato et al., 2019).

Additionally, background galaxies that are part of coherent large-scale structures
along the line-of-sight can have intrinsic correlations in their shape which are not of
cosmological origin, but that depend on galaxy formation processes (e.g. Croft & Met-
zler, 2000; Heavens et al., 2000). Hirata & Seljak (2004) identified that lensing structures
additionally generate anti-correlated shape distortions between galaxies local to the lens
that are stretched along the tidal field towards overdensities, and background galaxies that
will be distorted tangentially to the tidal field generated by the overdensity. These intrin-
sic galaxy alignments pose a significant challenge for weak lensing surveys with different
surveys finding different values for the strength of this signal (e.g. Efstathiou & Lemos,
2018). Fortunately, Fortuna et al. (2021) found that it is possible to constrain the strength
of the intrinsic alignment of galaxies observationally, which can prevent the parameter
being high-jacked to hide non-related systematic uncertainties in the analysis.

On the theoretical side, we also need accurate predictions of the average non-linear
matter clustering, Pm(k) and its time evolution in order to correctly interpret the observed
signal and infer the cosmological matter distribution (e.g. Jain & Seljak, 1997; Schneider
et al., 1998). The non-linear behaviour can be predicted accurately by dark matter-only
(DMO) simulations. However, cosmological hydrodynamical simulations that evolve the
ordinary and dark mater distribution jointly in an expanding universe, have shown that
violent AGN feedback processes significantly alter the large-scale structure compared to
universes that only contain dark matter (e.g. Rudd et al., 2008; Semboloni et al., 2011; van
Daalen et al., 2011, 2020). While these effects can be mitigated by only considering large
scales (as is done by the Dark Energy Survey, e.g. Amon et al., 2022b), future surveys
would be throwing away a considerable amount of useful information by neglecting small
scales (e.g. Taylor et al., 2018).

In the absence of observational data that can fully constrain the normal matter distri-
bution, including small-scale baryonic effects in the matter power spectrum necessarily
relies on cosmological, hydrodynamical simulations to predict the expected effect. As
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McCarthy et al. (2017) stresses, it is important that the simulations correctly reproduce
the observed properties of the large scale matter distribution. The main idea is to come up
with an analysis method that can either add the baryonic contribution to the matter power
spectrum predicted from suites of dark matter-only simulations, or remove the baryonic
signal from the data. Eifler et al. (2015) and Huang et al. (2019) perform a principal com-
ponent analysis of the matter power spectrum including baryonic effects which results in
a flexible model for the expected signal that can be marginalized over in the cosmological
analysis. Mead et al. (2015) use hydrodynamical simulations to calibrate a halo model
with additional freedom in the halo density profiles to flexibly capture the total matter
power spectrum, including baryons. Schneider et al. (2019) phenomenologically modify
the matter distribution in DMO simulations by shifting particles in haloes such that the
density profiles more closely match those in observations.

The need to account for all the aforementioned effects makes cosmic shear a complex
cosmological observable. However, the potential gain in information about the Universe
from directly probing the total matter distribution is enormous.

1.5 Galaxy clusters

The final cosmological probe of interest to this thesis, is the abundance of massive galaxy
clusters. Clusters are located at the nodes of the intricate cosmic web, resulting in a
continuous accretion of smaller galaxy groups, gas, and an occasional merger with another
massive cluster. The cluster mass growth depends strongly on the amount of matter in
the Universe and how clustered it is. The late-time accelerating expansion due to dark
energy suppresses their growth and leaves a clear imprint in the cluster abundance as a
function of mass and redshift, making clusters powerful probes of the matter distribution
of the Universe and also of the history of dark energy (e.g. Allen et al., 2011). However,
since the cluster abundance decreases exponentially with increasing mass, any error in the
cluster mass calibration will result in highly biased estimates of the cosmology.

Clusters are fascinating laboratories: they contain hundreds to thousands of galaxies
within a radius of a few million lightyears, making them easy to detect as localized over-
densities of galaxies in large optical surveys. In the 50s and 60s, Abell (1958) and Zwicky
et al. (1961, 1963, 1966) released large catalogues of clusters identified exactly this way.
The launch of the first X-ray telescopes in the 70s, opened up a whole new view (e.g.
Sarazin, 1986). It became clear that clusters are filled with hot, metal-enriched gas that is
supported in a state of quasi-equilibrium with the gas pressure opposing full gravitational
collapse. The hot gas is a shining beacon in X-rays. Additionally, the hot cluster electrons
can boost the photons of the CMB through inverse Compton scattering, leaving behind a
clear hole in the temperature fluctuations of the CMB below a frequency of ≈ 200GHz,
known as the Sunyaev–Zel’dovich effect (Sunyaev & Zeldovich, 1972). There are thus
many different ways to observationally identify clusters.

On the theoretical side, we can use large-volume, dark matter-only simulations to
accurately predict the abundance of clusters for varying cosmologies (e.g. McClintock
et al., 2019; Nishimichi et al., 2019; Bocquet et al., 2020). The problem that we face,
however, is that a significant fraction of the total mass of actual clusters consists of hot
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gas that behaves differently from the dark matter. Velliscig et al. (2014) showed that
AGN feedback redistributes the hot cluster gas component to large scales, resulting in
lower masses closer to the cluster centre when comparing to clusters consisting purely
of collisionless dark matter. Since galaxy clusters dominate the total matter along their
line-of-sight, their total mass, including dark and ordinary matter, can be measured from
the weak lensing signal that they generate in the shapes of the background galaxies, as
described in Section 1.4.1. This effect was first detected by Tyson et al. (1990). The only
remaining problem is then linking the inferred mass from observations to the theoretical,
DMO cluster mass.

The mass change is small for the most massive clusters (m500c > 1014.5 M�)6 since
they are able to retain practically all their baryons within the radius r500c where weak
lensing observations are able to infer the total mass. Hence, the differing distribution
of the baryons is not a big problem for current cluster surveys whose detection limit is
m500c,lim ≈ 1014.5 M� (e.g. Bocquet et al., 2016). However, future surveys will be
able to detect clusters down to masses m500c,lim ≈ 1014 M� (e.g. Sartoris et al., 2016),
where the mass change compared to the DMO halo is predicted to significantly exceed
the sub-percent statistical uncertainty of the cluster mass determination afforded by the
massive cluster sample (e.g. Köhlinger et al., 2015). Our only options are then to either
link the observed cluster mass to the theoretical mass that the same cluster would have
in a universe consisting only of dark matter (e.g. Balaguera-Antolínez & Porciani, 2013;
Cusworth et al., 2014), or to predict the cosmology dependence of the cluster abundance
in large-volume cosmological hydrodynamical simulations. Unfortunately, the computa-
tional cost of the latter option has so far been a barrier to its realization.

1.6 This thesis

In this thesis, we study how our imperfect knowledge of galaxy formation processes and
their impact on the total matter distribution impacts the cosmological analysis of future
all-sky galaxy surveys. Galactic winds generated by supernova explosions or buoyant
bubbles lifted by the powerful supermassive black holes at the centres of galaxies signifi-
cantly alter the matter distribution compared to what it would be if we only accounted for
gravitational collapse. This poses a challenging problem for future surveys, since these
processes are still not well-understood theoretically.

In Chapter 2, we shed light on the issue of the total matter distribution uncertainty
for cosmic shear surveys. We resort to a phenomenological halo model that can incorpo-
rate observational information to constrain the total matter distribution, while including
enough freedom to quantify how the unobserved baryonic matter can impact the final an-
swer. We show that it is crucially important to constrain the amount of hot gas in groups
and clusters of galaxies, since these objects dominate the total matter clustering signal on
intermediate scales that dominate the cosmic shear signal. We also reiterate the impor-
tant point that the dominant baryonic effect is not changing the clustering properties of

6The mass m500c is the total mass within the region r500c where the average density of the cluster is
〈ρ〉(< r500c) = 500ρcrit(z).
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haloes, but rather the redistribution and systematic lowering of the halo mass compared
to a universe that only includes dark matter.

We switch our focus to cluster abundance studies in Chapter 3, instigated by how
successfully the halo model of Chapter 2 reproduces the impact of baryons on the matter
distribution seen in simulations, while only using observational data for the baryon distri-
bution. We use X-ray observations of the hot gas in clusters to constrain the total galaxy
cluster density profile and we establish a link between observed haloes and the theoretical
haloes in a universe containing only dark matter whose abundance we can predict with
simulations. Inferring the cluster mass from mock weak lensing observations then allows
us to quantify the mass bias incurred when not properly accounting for the differing den-
sity profiles between the ordinary and the dark matter. We show that future surveys with
such inaccurate mass calibrations will infer significantly biased values for the amount of
matter, its clustering, and the dark energy equation of state.

In Chapter 4, we tackle the mass calibration of galaxy clusters in a different way.
We suggest that, currently, there is an unfair onus on weak lensing mass calibrations to
constrain 3D cluster masses that are easy to measure in simulations but difficult to infer
observationally. We propose to calibrate the cluster abundance as a function of the excess
projected mass of a cluster: a quantity that is directly probed observationally and easily
measured in simulations. We show that these projected masses have a significantly lower
observational uncertainty than 3D cluster masses. Moreover, using a large suite of dark
matter-only simulations, we find that the cluster abundance as a function of the projected
mass is at least as sensitive to changes in cosmology as the abundance measured for
3D masses. As a result, this projected mass determination can significantly reduce the
systematic uncertainty in the mass calibration for cluster abundance studies.

Finally, in Chapter 5, we use cosmological hydrodynamical simulations to quantify
the impact of baryons on the excess projected mass measurements proposed in Chap-
ter 4 by comparing the change in mass between the same haloes in universes with and
without baryons. We find that the projected masses are slightly less affected by feedback
processes than 3D halo masses, since the projected mass receives contributions from the
halo outskirts along the line-of-sight where the baryons eventually trace the dark matter.
While the reduction is not dramatic, together with the decreased systematic uncertainty in
the mass calibration it provides another benefit to projected mass calibrations.
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