-1 Universiteit
4] Leiden
The Netherlands

Scholarship in interaction: case studies at the intersection of

codework and textual scholarship
Zundert, ]J.J. van

Citation

Zundert, J. J. van. (2022, September 27). Scholarship in interaction: case studies
at the intersection of codework and textual scholarship. Retrieved from
https://hdl.handle.net/1887/3464403

Version: Publisher's Version

Licence agreement concerning inclusion of doctoral thesis
in the Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/3464403

License:

Note: To cite this publication please use the final published version (if
applicable).


https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/3464403

Summary

Hermeneutics, or the theory and method of interpretation, has a long his-
tory that is deeply intertwined with the philosophical and exegetic roots of
the type of textual scholarship that developed in Europe. Postmodern rela-
tivism and the transient, shapeshifting nature of digital technology are dis-
concerting forces for a textual scholarship in this tradition that is concerned
with human culture memory function and that is therefore fact and stabil-
ity oriented. However, stability is romantic. Any textual scholarship work
must succumb to what could be called the “hermeneutic condition” — there
exists nothing but interpretation.

When moving towards post-digital forms of interpretation, understanding
the relation between hermeneutics, textual scholarship, and digital technol-
ogy is an urgent and important academic need. An intimate understanding
of digital code and how it affects textual scholarship is needed, but no struc-
tural scientific agenda to do so exists. In part this is the result of a lingering
uneasiness between those scholars with a vested interest in digital (or “quan-
titative”) approaches and those on the “qualitative” side of the spectrum.
This methodological anxiety became more profound in the last two decades
of the twentieth century and inhibited a sincere discourse concerning digi-
tal hermeneutics to develop within the digital humanities (DH). More re-
cently some inroads seem to develop (cf. work by e.g. Rockwell, Stephen
Ramsay, and Rafael Capurro). However, in debates there is still a tendency
to reduce the potential of computation to a methodology of quantification
and reduction (with, for instance, Johanna Drucker as a strong proponent
of this argument). DH has a nature that is more hybrid than these debates
suggest and there is not an a priori discontinuity with the hermeneutic tra-
ditions. Even if many computational methods in DH today lean towards
quantified and reductive techniques, formalizations and analysis patterns

263



Summary

are not hermeneutics-free. Just as philological practice fundamentally can-
notescape hermeneutics, neither modeling nor quantification can escape the
hermeneutics involved in choosing the assumptions on which their formal-
izations are based, nor can they escape the hermeneutics involved with the
interpretation of their results. Thus, as Katherine Hayles states, the tension
between algorithmic analysis and hermeneutic close reading should not be
overstated. However, a real challenge is, as inter alia David Berry and Feder-
ica Frabetti point out, that we need to understand the internal hermeneutics
of code and computational methods to their core. We can only gain this un-
derstanding from a deep intimate engagement with “digitality” and software
code itself.

Particular effects of the interaction between digital technology and textual
scholarship do little to further this engagement. These effects may be un-
covered using science and technology studies methods that offer a frame-
work to systematically observe and reflect on scientific processes. In doing
50, it appears that, for instance, a graphical user interface suggests a fictitious
transparency of model and paradigm. The graphical interface is as much an
opaque barrier to the internal paradigm of a system as it is a means of engag-
ing with that very system. The interface is not the model, but a visualization
that adds its own limitations, interpretations, and affordances. If interfaces
are mostly formulated as expressions of an existing paradigm, they may well
inhibit the appreciation and adoption of the affordances of new models and
paradigms. This is for instance the case in textual scholarship where most
digital editions are essentially digital remediations of books. They are based
on a fully mimetic representational philosophy in which the digital edition
is nothing more or less than a visualization that mimics as closely as possible
the physical print document, which negates the affordances of other possible
models. This effect I call paradigmatic regression, and it provides one expla-
nation why extremely little experimentation with alternative modeling pos-
sibilities are found in textual scholarship. Such experimentation could even
be based on very elementary and widely available Web technology. HT'TP-
links could be used to model intertextuality, for instance, which is a potential
that has been pointed out well also within the textual scholarship commu-
nity by, for example, George Landow and Theodor Nelson. Of course this
paradigmatic effect is also linked to the conscience theoretical and practical

264



Summary

choices that textual scholars make, both individually and as an academic com-
munity. The strong document-mimetic tenets of TEI- XML and the invia-
bility of, for instance, the “social edition” suggest that these choices are in a
certain sense conservative and in favor of a paradigm in which the ownership
of the edition is still fully appropriated by the scholarly editor and in which

the model is dominated by the format and limitations of the codex.

There is little evidence that the interaction between textual scholarship and
digital technology results in significant methodological change. An expected
effect of such change would be the development of a methodological pidgin
and the exchange of technical and methodological vocabulary. The case stud-
ies presented in this thesis — mostly in the context of research at the Huygens
Institute — do not provide examples of such exchange beyond some project
management terminology that does not strictly relate to textual scholarship
methods or computational analysis. What change there is seems to be in-
troduced rather “covertly” at the level of programmed models and statistical
analysis, the technical details of which are again covered over by graphical
interfaces.

Paradigmatic regression effect is a divergent force that drives close and distant
reading “schools” further apart rather than closer to each other. Scholarly ed-
itors and computational literary researchers supposedly cater to each other’s
needs. However, digital documentary editions are mostly computationally
inaccessible monolithic XML-tag “cathedrals”, while computational literary
research projects produce mostly unsustainable “raw” text streams and anno-
tations. A better common model is needed if the strengths of both need to
apply to textual scholarship and digital scholarly editing. Knowledge graphs

could provide such a model.

Arguably textual scholarship should take an interest in models of descrip-
tion and analysis that are more adequately geared towards digital objects.
First of all because there is a general trend towards softwarization in soci-
ety, resulting in ever more cultural objects and processes being expressed as
digital objects and processes. Secondly because a similar softwarization pro-
cess, more covertly than not, affects textual scholarship methods. If scholarly
tasks and decisions are delegated to software engineers, and if many of these
decisions and tasks are delegated by the programmers to the code that they

265



Summary

develop, then it becomes utmost important that textual scholarship devel-
ops and adopts the means to make such delegated processes and decisions
scientifically accountable in the case of bespoke code that is applied in schol-
arship. Contrary to what pernicious metaphors suggest, software is not a
neutral and objective tool. Software code is a product of human creativity
that harbors inbuilt assumptions about and models of reality. Thus, to war-
rant scientific process and quality control, a sufficient framework for code
peer review and the critical study of code should be in place, so that engi-
neers that create bespoke scholatly software can be held to scientific account-
ability and responsibility. The boundary between code that should be sub-
mitted to a form of code peer review and code that need not, is not exactly
defined. Obviously the inner workings of a statistical computer language
like R do not require scholarly peer review, but just the understanding that
it has been rigorously examined and tested by computer scientists and statis-
ticians. But code purposefully written — even if using, for instance, R — to ex-
ecute a specific scholarly task in the context of a one-time-use research design,
does require peer review. Notwithstanding the admirable achievements of
software studies, critical code studies, and media-studies with regard to crit-
ical interrogating the role of software in society, such a framework for peer
review of bespoke code applied in scholarship does not exist. Code peer re-
view however, requires code literacy. And code literacy is a rare commodity
in academic scholarship.

When code replaces certain tasks in scholarship this warrants questioning
in some detail the role of those in scholarship that write the code. In a sense
programmers are becoming scholarly authors and editors. Thus a discussion
on authorship and editorship is relevant. Very concisely put the intellectual
and philosophical history of authorship is a discourse on the question who
“owns” the authority to determine the meaning of the text. Depending on
time and context the answer to this question has varied between “deities” or
“God” (in more historical times), “the author”, and “the reader” (in more
recent times). The claims to this authority over interpretation are related to
claims on who gets to decide about truth. Obviously post-structuralist rela-
tivism and the “death of the author” recast any such claims as subjective.

Scholarly editing by and large responded in two ways to the post-structuralist
“crisis” of factuality, determinability, and authority. One was by proposing

266



Summary

archive-like and open forms of scholarly editions that fully recognize the in-
tersubjectivity of editing and interpretation. This direction in scholarly edit-
ing recognizes the fluidity of text and the process-like nature of authoring,
editing, and reading. It favors inclusivity of materials and readership. Ide-
ally all possible resources related to a text should be included in an edition —
which might rather be called “archive” in that case. The process of editing
should be as open as possible and the edition itself should be open ended, so
readers are able to add their own interpretations (e.g. by adding notes and
annotations). Web 2.0 and digital technology in general are considered ideal
means to realize this type of editions and editorial processes. The other re-
sponse is a strong retreat on documentary editing. Rather than exploring
new models, this direction in scholarly editing aims to impose the existing
model of the book on digital technology. It reasserts and reaffirms the pri-
macy of “philological fact” over interpretation. Itis not uncommon for prac-
titioners and theorists in textual scholarship to sway between these extremes,
as for instance Jerome McGann did.

A closer inspection of the roles of author, editor, and engineer, reveals that
writing code is a form of authorship. Both editing and programming in the
context of textual scholarship turn out to be forms of revisionary authorship.
However, in the majority of cases coding in a scholarly context is a form of
unclaimed or, worse, misappropriated authorship. The authorship of code
inserts at least one layer of interpretation into the process of scholarly editing
in comparison to traditional modes of editing. This creates two problems.
Firstly, the text and its interpretation potentially become even more fluid
and unstable. This is contrary to the aim of philology and scholarly editing,
which can generally be understood as an attempt to stabilize the text. Of
course this notion of stabilizing the text is highly problematic in itself, but
adding the authoring and performance of digital code into the process of
editing is likely to further destabilize the text and its interpretation. One rea-
son for this is that code is endowed with “deferred agency”: its execution may
result in autonomous scholarly decisions. Another reason is that code also
has its own rhetoric and its own performativity, that are both still poorly
understood. The second problem is that all possible effects of coding as a
form of revisionary authorship within textual scholarship go unchecked by
current scholarly processes. The reason for this is that programming is not

267



Summary

recognized as authoring nor as scholarly editing, neither by scholars nor pro-
grammers. Therefore the potential influence of programming on scholarly
editing, irrespective of its aims, goes largely unevaluated.

The introduction of the programmer — or computer science expert — into
the scholarly process, raises an as of yet unanswered question of account-
ability. If digital objects and code are an integral part of the scholarly ar-
gument then their producers have an obligation to claim the contribution
they make to the argument. Not just to make a righteous claim to academic
credit, but foremost in order to be accountable for the scholarly argument
they co-create. The intent of the revisionary authorship that code authoring
produces, is not self-evident and not self-explanatory. This is true for any
form of authorship. As early as the 1980s Donald Knuth acknowledged that
code has rhetorical functions and that code authoring has poetics — if mostly
only tacitly. He provided a model and implementation of a system to express
the rhetoric and poetics of code more explicitly. Unfortunately his rationale
has since been poorly understood and taught, and has been applied even less.
Such rationales deserve revisiting and programmers should claim explicitly
the revisionary authorship they appropriate through executable code.

The case studies in this dissertation show that an interdisciplinary commu-
nity of developers and textual scholars is actively seeking new points of con-
tact between scholarship and digital models of text. Different models fore-
ground different aspects. TEI-XML seems in the majority of its applications
to foreground the model of the codex and the structures of text in printed
books. Statistical models in distant reading analyses foreground the idea of
text as meaningfully quantifiable strings of tokens. Both models produce
highly sophisticated and valuable interpretations. However, both models
also put forward a particularly narrow understanding of texts as either pre-
dominantly document structures or “bags of words”. They are demonstra-
ble “lossy” with regard to the objects they describe, which is easily to gauge
from the fact that they both forgo most material aspects of any text. This
is not to say these models are fundamentally unable to capture and express
these aspects, but rather to say that their particular makeup introduces a se-
lective focus on the aspects they capture particularly well. If you use a “lens”
that is exceptionally good at describing text structure, text structure is analyt-
ically foregrounded. If you use a lens that excels at describing bags of words,

268



Summary

all texts start to look like bags of words. If you only have a hammer, many
things look like nails.

The traditional analytical means of textual scholarship, to which for instance
the classical apparatus belongs, are models too. Any model imparts some spe-
cific effect to interpretation. New models create new affordances that may
lead to new perspectives and that may uncover new knowledge. As argued
however, textual scholarship exhibits paradigmatic regression that inhibits
productive experimentation with new models. The overwhelming freedom
of modeling that the digital environment offers may be in part an explana-
tion for this regression. That freedom stands in stark contrast to the specific
constraints of epistemological devices such as an “apparatus criticus”, that
have been developed over multiple centuries and have been shaped to cer-
tain extents by the particular materiality of the codex. But in the interest of
exploring new epistemologies for textual scholarship it would serve to also
liberate texts from such known models and to examine the affordances of
new and different models.

Case studies point in the direction of graphs as powerful means to express the
multidimensionality of text. This suggests that the graph model is an inter-
esting candidate to be one of these possible new models to be applied in tex-
tual scholarship. It can be succinctly shown that graph models offer a num-
ber of benefits over traditional models, such as feasibly solving TEI- XML
overlap, representing multidimensionality, and computationally “mapping”
textual variation.

Reflection on methodology is one of the most important obligations within
any scientific domain. The social sciences, especially in the shape of science
and technology studies, provide effective tools and techniques for such reflec-
tion, for instance through ethnography and autoethnography. Many more
case studies of the interaction between computer science, software engineer-
ing, and the humanities will be needed before any firm conclusion can be
drawn about what constitutes viable digital technological innovation in the
latter, strongly hermeneutic domain. An autoethnography and case studies
of attempts at such innovation in the textual scholarship domain at the Huy-
gens Institute show that it is very difficult to innovate methodology while
appreciating and safeguarding hermeneutic approach. It appeared that both

269



Summary

scholars and technologists should strive to be much more aware of their own
methodological limitations, and that both groups should accept the scien-
tific strengths of the other group as complementing the weaknesses of their
own group. In this respect, an autoenthnography of fifteen years experience
of working on the intersection of these domains shows that both scholars
and technologists need to be more respectfully aware of each others’ scien-
tific qualities, and that they need to be more aware of their individual and
shared scientific responsibilities in methodological innovation, accountabil-
ity, and reflection.

Current computational approaches to hermeneutic scholarship are too
much rooted in the rhetoric of speed and scale of automation, driving
attention away of a particular hard but interesting computational problem
to explore: that of computational hermeneutics. Scholars should strive
to be both less intimidated by, and more welcoming to computational
explorations. While doing so they should be confident and fully aware of
the immeasurable scientific wealth and value incurred by more than twenty
centuries of hermeneutics.

270





