-1 Universiteit
4] Leiden
The Netherlands

Scholarship in interaction: case studies at the intersection of

codework and textual scholarship
Zundert, ]J.J. van

Citation

Zundert, J. J. van. (2022, September 27). Scholarship in interaction: case studies
at the intersection of codework and textual scholarship. Retrieved from
https://hdl.handle.net/1887/3464403

Version: Publisher's Version

Licence agreement concerning inclusion of doctoral thesis
in the Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/3464403

License:

Note: To cite this publication please use the final published version (if
applicable).


https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/3464403

Chapter 9

Conclusion

The overarching claim I make with this dissertation is that there is a
knowledge space between software engineering and textual scholarship
that is undertheorized, academically underdeveloped, and intellectually
undervalued. The following summary of the mostimportant conclusions of
the prior chapters will serve to substantiate this claim. The primary subject
of this work as a whole is the interaction between software engineering and
textual scholarship, as explained in the introduction (chapter 1). The second
chapter, delving into hermeneutics, provided a theoretical background,
while chapters three and four are essentially case studies of this interaction,
pertaining to the creation of digital scholarly editions and the creation
of related tools in the context of the Huygens Institute. The following
chapters reflect on this and similar work and are more concerned with
questioning academic authority, critique, and evaluation in the context of
software development in textual scholarship. The research underpinning
this dissertation is strongly interdisciplinary work and it will probably be
clear by now that the main argument and conclusions of each chapter do
not fall neatly inside this or that disciplinary category. For clarity however,
I have tried to gather the conclusions of the various chapters under the
headings of three disciplinary categories or perspectives.

9.1 The Textual Scholarship Perspective

Read as a theoretical and practical study of the problems that exist with
the currently prevalent way of expressing scholarly digital editions in textual

253



Conclusion

scholarship, my work provides a rationale for a practical solution. Chapter
3 and 4 theorize from experience the limitations of markup models. These
chapters add to the intellectual work that arose in the context of “the prob-
lem of overlap” in markup languages. On the practical level that problem
may seem trivial to software engineers and digital scholars — and they might
interpret it as a mere conflation of text structure and the structure of XML.
However, the application of XML as a form of markup for text structure
in a purely hierarchical fashion, as it was adopted by the TEI based on a
post hoc rationale by DeRose et al. (1990), caused a lively intellectual debate
about text, structure, meaning, and digital affordances for their expression
(e.g. Buzzetti 2002; DeRose 2004; McGann 2004 etc.). On the basis of this
literature and my own work I conclude that hierarchical markup is an inad-
equate fit to capture and express the multidimensional nature of text. In
chapters s and 7 I propose graph models as a technical solution that exceeds
any hierarchical markup model in expressiveness. These chapters also report
on some of the practical aspects of my work that contributed to the devel-
opment of the graph model as a more versatile descriptive model for form,
structure, meaning, and interpretation of text and documents. It is exceed-
ingly gratifying to see that the hard and experimental work by me and oth-
ers with regard to graph technologies is slowly finding a toehold in textual
scholarship, as indicated by various publications (e.g. Haentjens Dekker and
Birnbaum 2017; Andrews et al. 2018; Neill and Kuczera 2019; Efer 2017) and
conferences such as the annual Graphentechnologien/Graph Technologies
conferences since 2018, initiated by the Akademie der Wissenschaften Mainz,
and the 2019 Workshop on Scholarly Digital Editions, Graph Data-Models
and Semantic Web Technologies at the Université de Lausanne).

9.2 Science and Technology Studies Perspective

This dissertation is also the result of Science and Technology Studies labor.
The STS perspective calls attention foremost to the coding work that is re-
lated to graph models and especially the tools producing the graphs, such
as CollateX (chapter 5 and others) and Stemmaweb (chapter 7). The soft-
ware engineering work involved with these graph-oriented approaches pro-

254



Science and Technology Stucies

vides a more precise example of how actual software code impacts textual
scholarship. A paramount difference exists between the “xmlificaton” and
digitization work in textual scholarship and such codework approaches. I
found (cf. chapters 3 and 4) that the use of markup results only in a shal-
low form of remediation which accepts digital technology predominantly
as a way to reproduce a digital metaphor of the book on a computer screen.
However, the algorithmic work involved with CollateX and Stemmaweb sig-
nals a partial shift of agency and control related to scholarly editing. Part of
textual scholarship’s agency and authority shifts, in more covert than overt
ways, first from scholarly editor towards engineer and second, most interest-
ingly I think, from engineer to code (see for this chapter s, but foremost the
section “The author and the engineer” in chapter 6). This shift of agency and
control is not as absolute as the title of Lev Manovich’s work Soffware Takes
Command might suggest. Manovich (2013), like Berry (2014), Coyne (1995),
Morozov (2013), and others take rather grand perspectives, arguing how soft-
ware and digital information may affect societies as a whole. This sometimes
truly suggests images of software as an omnipresent “invisible hand”. My
STS work examines the shaping power of software code ata decidedly smaller
scale, and finds that code does not truly take over. Rather, some components
of scholarship are trading places. As tedious and error-prone tasks, their con-
trol and the associated agency are delegated from the scholar, via the software
engineer, to software code.

It should be stressed that this process of delegation progresses in a rather un-
observed manner. I witnessed that there is little explicit methodological re-
flection builtinto either the ad hoc processes or the formal software engineer-
ing methodology that governs projects where software engineers and textual
scholars collaborate. Slightly covertly therefore, and unintentionally, this
process of delegation passes over a number of important theoretical, method-
ological and epistemological questions. A number of these matters were in-
vestigated in chapters s and 6. The main conclusion I draw from this work is
that digital textual scholarship and the associated coding work is in dire need
of a framework for evaluation. Although it has earned me several remarks
that Critical Code Studies, Software Studies, and platforms such as Cultural
Analytics' long since provide this kind of evaluation, I stand firmly by my

*https://culturalanalytics.org/

255



Conclusion

contention: code peer review and academic acknowledgement of code work
are tremendously underdeveloped in textual scholarship and, by extension,
in the humanities. None of these domains and platforms provide precise,
code level, peer review and evaluation. Their engagement with the schol-
arly work is at a level of method that is detached from actual software code
and considers only the analytic results obtained through code. Whether that
code functioned correctly and in accordance with theory and hypotheses is
never evaluated.

The conclusion that the evaluation of coding in textual scholarship is inad-
equate is important, as it pertains to pivotal concerns about who produces
knowledge and how we evaluate that. Currently my case studies in the con-
text of the Huygens Institute, and partly beyond, suggest that most textual
scholars conveniently assume that authority and control over scholarly work
still resides firmly with the scholars — and literature suggests this holds for a
wider scope than just the Huygens Institute (cf. Robinson 2016; Bordalejo
2018). ButasIargue in chapter 6, scholarship expressed in code results in the
same appropriation of revisionary authorship as scholarly editing does. Soft-
ware engineers and code both produce knowledge, and as such they must not
be denied a proper form of evaluation and crediting in any academic system.
Both scholars and software engineers should take full responsibility to find
and establish ways that acknowledge the scholarly contribution that code
and programmers make. A formal means of acknowledgment must allow
software engineers — no matter whether they are scholars, software engineers,
or both - to be credited and, moreover, accountable for their work.

Another effect that my STS approach to the problem of interaction
between software engineering and scholarship uncovered is the process of
paradigmatic regression: affordances of unknown or new methodology
may become hidden when they are narrowly used to express concepts and
terminology of a prior and more familiar paradigm. The digital interfaces,
especially graphical interfaces, that stand between computational model
and scholar are strange beasts that play a crucial role in this process. They
open up as much as they hide the computational model (cf. chapter 3
and chapter 7). At the same time that they make it useable, they distort
the computational model in ways that provide endless opportunities for
misinterpretation, misunderstanding, and uninformed or plain incorrect

256



Humanities Computing

use of computational tools. Because they are made by humans they
are far from neutral, but they still carry something of a halo of perfect
impartiality because this is, however incorrectly in itself, associated with
digital computing. Computational models are not neutral and their makers
are not perfectly disinterested. Interfaces are loaded and situated. I have
found little to no evidence that collaboration between textual scholars
and software engineers specifically on graphical interfaces results in any
significant methodological gain or diffusion in either direction (cf. chapter
3 and especially chapter 4). If anything, graphical interfaces act more like
fences that keep epistemologies well apart and inhibit methodological
knowledge exchange more than they enable it. I think this “interface effect”
(Galloway 2012) has been especially pernicious in the case of the scholarly
digital edition. The fully representational paradigm that digital textual
scholarship writ large has preferred for digital scholarly editing has been
reaffirmed consistently by skeuomorphic visualization — that is, making the
graphical interface look as closely as possible to a physical book, if possible
down to mimicking cover, paper, and ink. Arguably the benefits of the
tremendous increase in scale of access to (digitized) sources and knowledge
do warrant the equally tremendous economical, technical, and personnel
resources that representational digital scholarly editions require, even if
institutions and scholars still struggle to establish sensible strategies for the
sustainability of scholarly digital objects and infrastructure. However, the
strong regression towards the representational paradigm - powered and
reaffirmed continuously by graphical interfaces — has all but eradicated the
appreciation for actual methodological affordances that might be found
in a genuine interaction between computing and textual scholarship. To
many computing and textual scholarship may seem like irreconcilable foes.
Based on my findings however, my contention is that they are the very two
components that together underpin a paramount task of methodological
scholarship for the next decade: the establishment of a true computational
hermeneutics.

257



Conclusion

9.3 The Humanities Computing Perspective

Obviously this dissertation also results from interdisciplinary work in hu-
manities computing. However, increasingly I have difficulty with the term
“interdisciplinary”. Like “interface”, it implies a separation as much as it sug-
gests some cross-discipline dynamic. I no longer have a use for this separa-
tion. In fact, I find it unhelpful and bothersome. The neat disciplinary
boundaries that we ourselves maintain place constraints and limits on the
use and application of our collective but distributed knowledge. I am a pro-
fessionally trained programmer, an academically trained textual scholar, and
a novice science and technology studies researcher. It is my own hybrid na-
ture rather than the interdisciplinary nature of my work that allowed me
to assemble the theoretical knowledge (chapters 2, 4, and 6), practical work
(chapters 3 and s), and experience (chapter 8) that resulted in an understand-
ing of the interaction between software engineering and textual scholarship,
informed by multiple perspectives. This in turn allows me forcefully to con-
clude that there is indeed a terrifying gap between software engineering and
textual scholarship. This is the intellectual space I aimed at in the first para-
graph of this conclusion — an intellectual space that is undertheorized, un-
derdeveloped, and undervalued. Itis the knowledge space of computational
hermeneutics.

Mostly by way of chapters 2 and 8 I have argued in more detail how central
hermeneutics is to textual scholarship. An understanding and practice of
computational hermeneutics becomes urgentin a society and culture increas-
ingly producing its textual legacy through digital text and its digital-native
relative: code. It is therefore both surprising and disappointing how little
interest there is either in computer science, software engineering, or textual
scholarship for the computability of hermeneutics. Scholars have called at-
tention to digital hermeneutics (e.g. Capurro 2010; Frabetti 2012; Meister
199s; Thaller 2018), but a rigorous theoretical and applied program of scien-
tific investigation involving the three related disciplines — computer science
(including software engineering), textual scholarship, and science and tech-
nology studies — remains wanting.

I'have found four main factors that inhibit the various disciplines from pro-

258



Humanities Computing

gressing productively into this space. The first is the fully representational
paradigm and associated technologies of markup that digital textual scholar-
ship has championed as its prime philosophy. A computational hermeneu-
tics for textual scholarship at the very least requires scholars to appreciate the
differences in nature and behavior of digital text, its relation to code, and es-
pecially the precise performative nature of code with its dual guise of textand
executable. However, textual scholarship appears singularly interested in
bookish screen essentialism. The fully representational paradigm gives rise
to the second main factor: an exaggerated attention to (XML) encoding of
texts in whatlittle digital humanities education there is in textual scholarship.
Although ever more digital humanities minors and masters have sprung into
existence, attention to code and coding is — especially in the Dutch situation
- negligible. But code literacy is an essential skill for the next generation of
textual scholars (cf. Vee 2013).

Third, computer science (and especially its practical counterpart, industry
level software engineering) and textual scholarship sustain a rhetoric that
causes a myopic understanding of computing and its uses for textual scholar-
ship. Scholars predominantly sustain a rhetoric of reductiveness about com-
putational methods. While it is true that machine learning, natural language
processing, and stylometrics, for instance, are currently rather reductive tech-
niques, this does not mean at all that code must ever be reductive. However,
merely pointing this out continually (Johanna Drucker is a well known pro-
ponent of this type of rhetoric) is only of limitedly help. Technologists aggra-
vate this situation by emphasizing a rhetoric of speed and scale, by mystifying
code (which is actually a rather straightforward semiotics to describe objects
and actions), and by sustaining a lack of interest in the potential hermeneu-
tic forms of coding. Attention for possible hermeneutic forms of computer
code in scholarship is equally minimal, with the odd notable exception, such
as Manfred Thaller (2018).

Lastly, institutional knee-jerk reactions hardly help. It is still too difficult
to amass academic credit for digital objects and coding work. This problem
is annoyingly persistent. Added to this is an institutional preference for
outdated organizational philosophies and structures. Nowhere do I see
this dividing force more up close than in the Huygens Institute, now
part of the Amsterdam Humanities Cluster. Continuous reorganizations

259



Conclusion

have reaffirmed the boundaries between scholarship and research on the
one hand and software engineering on the other. The organizational
charts of the successive Constantijn Huygens Institute, Huygens Institute,
Huygens Institute for the History of the Netherlands, and the Humanities
Cluster have consistently reaffirmed through old-fashioned organizational
boundaries who is allowed to produce — or rather who will be credited with
having produced - scientific knowledge, and who is not. These boundaries
have consistently separated scientific programmers from their scholarly
colleagues. Rather than being embedded in research departments they
have been increasingly put at an ever-increasing distance from researchers.
The separation resulting from such a professionalization of IT services also
results in token reaffirmation of these boundaries through ticket systems,
administrative resource management requirements, product managers, and
so forth. Rather than providing for interdisciplinary work and hybridiza-
tion of knowledge and skills, this organizational inertia obviously does little
to contribute to methodological innovation.

However, I want to close this dissertation on a more upbeat tone. I repeat
that I am a professionally trained programmer, an academically trained
textual scholar, and a novice science and technology studies researcher.
Through my studies and experiences at the Huygens Institute and beyond,
over more than fifteen years, I have learned an enormous amount about
the interaction between software engineers and textual scholars. The same
context, problematic as it sometimes may be, challenges me to keep learning
every day, which is a blessing that I am tremendously thankful for. STS
method has taught me how to reflect analytically on this ongoing work.
These reflections have enabled me to venture beyond my initial personal
preoccupations, to look harder, and to question more earnestly. It has been
the multidisciplinary context that brought the contours of a “computa-
tional hermeneutic void” to my attention. My hope is that this dissertation
contributes to an acknowledgement of the intellectual space that exists
between computer science and textual scholarship. My expectation is that
one day textual scholarship, computer science, and software engineering
will truly meet each other in this space. My wish is to explore that space
and to understand this beast called “computational hermeneutics” while
walking with it.

260



Humanities Computing

—Joris van Zundert
Utrecht, 9 September 2019

261








