
Scholarship in interaction: case studies at the intersection of
codework and textual scholarship
Zundert, J.J. van

Citation
Zundert, J. J. van. (2022, September 27). Scholarship in interaction: case studies
at the intersection of codework and textual scholarship. Retrieved from
https://hdl.handle.net/1887/3464403

Version: Publisher's Version

License: Licence agreement concerning inclusion of doctoral thesis
in the Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/3464403

Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/3464403

Chapter 5

Code, Scholarship, and Criticism:
When Is Code Scholarship and When
Is It Not?1

“l’historien de demain sera programmeur ou il ne sera plus”
(Le Roy Ladurie 1968)

5.1 The Softwarization of Scholarship

There is no single easy definition of code. Code can be regarded as a new
semiotics with its own literacy (Knuth 1984; Vee 2013). It can also be seen
as a mode of existence of software, which at least has two such modes: a
textual and a processual dimension (Hiller 2015). The textual dimension is
connected to code in its form of source code, which is the text produced by
a programmer in a formal language that – once interpreted by a computer –
results in executable software. The processual dimension is connected to the
execution of code as a computer program, which invokes also a performative
nature. MarkMarino has argued that we should “analyse and explicate code

1A previous version of this chapter has been published as Van Zundert, Joris J., andRonald
Haentjens Dekker. 2017. “Code, Scholarship, and Criticism: When Is Coding Scholar-
ship andWhen Is It Not?” Digital Scholarship in the Humanities 32 (Suppl_1): i121–i123.
https://doi.org/10.1093/llc/fqx006. This article was co-authored, but the greater major-
ity of research and all of thewritingwas done by the first author, supported by comments
from the co-author. Some sentences were redacted for clarification and a paragraphmore
precisely delineating “code criticism” in the context of this book was added.

117

https://doi.org/10.1093/llc/fqx006

Code, Scholarship, and Criticism

as a text like any other, ‘a sign system with its own rhetoric’ and cultural
embeddedness” (Marino 2006). For the argument presented here code is
regarded as source code mostly. That is, code in its guise as blueprint for a
program that canbe executed. With regard to such code thequestion iswhen
a particular piece of code acquires a scholarly nature. What properties or
qualities force us to consider the source code of software as a scholarly object
of study? And ifwe candetermine thoseproperties, thenhowdowe evaluate
the scholarly merit of these code objects? As we shall see in answering these
questions, the operative aspect of code (“what it does”) turns out to be of
essence too.

However, before turning to such issues a pivotal question needs to be an-
swered first: why does code deserve scholarly attention at all, for in past
decades it has not been a given that code is indeed of scholarly interest (cf. for
instance Bauer 2011). A rationale for the humanities to consider code as a
scholarly object of study and to consider code as a scholarly object itself can
be argued along two approaches at least. The first is related to a general “soft-
warization” of society as described by, inter alia, Berry (2014). The second is
a more specific realization of this trend that relates to how we understand
tools as instruments applied in research.

The “softwarization” of society that Berry argues has also been vividly de-
scribed by Jones (2014) who refers to it as “eversion”. This “eversion” is a
term coined in the 2007 novel Spook Country by William Gibson, who is
also famed as the author of the cyberpunk cult novel Neuromancer. The
concept of “eversion” serves to identify the process of cyberspace turning it-
self inside out and flowing out into society beyond the point where either is
truly separable (Jones 2014:28). Where prior to 2007, cyberspace was an al-
ternate but separate and virtual reality into which human existence in some
visionsmight eventually even transmigrate; after 2007, the ubiquity of access
points to the digital realm, the omnipresence of embedded computer tech-
nology, and the primacy of digital streams as carriers of information let the
worlds of the virtual and of reality merge and intersect to a point that it is
very hard to tell them apart. Jones marks the appearance of the smartphone
around 2007 as the point of articulation between these realizations of digi-
tality. Berry describes in a similar vein the pervasiveness of computation and
digital information, and questions it from a perspective of critical theory. At

118

The Softwarization of Scholarship

this point in time, cultural artifacts and the processes of creation and inter-
pretation tied to these artifacts are as much digital as they are not. Arguably
therefore, the humanities should concern themselves with the humanistic
status and interpretationof such artifacts andwith the creative processes that
they result from.

Concerns with how pervasive forms of computation affect society are raised
often in the context or as a result of critical theory. People such as Coyne
(1995), Berry (2014), Marino (2006), and McPherson (2012) approach the
digital from a socio-philosophic vantage point and interrogate how social
context shapes software and how it in turn affects society and the relation
of humans to digital technology – mostly with the aim to critically examine
whether the technology liberates or limits the potential for personal, cultural,
or social freedomanddevelopment. Theomnipresent andmassive impact of
digital objects and processes on society and culture should also be of concern
to the humanities in and of itself because it deeply affects the socio-technical
processes by which cultural artifacts are created and interpreted, thus affect-
ing the object of study of the humanities.

There is also a more narrow methodological rationale for the study of code
in the humanities. Just as software and digital information pervades society,
it emerges in the humanities virtually everywhere. It appears both as source
and object of study, e.g. in the form of digital data and information, and as
resource, in the form of tools and infrastructure. If code is thus an emerging
object and method of study – such as text is for the humanities – it should
arguably be the subject of scholarly examination. A rejoinder to this is the
often-invoked metaphor that one does not need to understand an engine to
drive a car. That however is an improper metaphor for software. An article
by IanHacking (1981) “DoWe SeeThrough aMicroscope?” will be useful in
understanding why this metaphor is erroneous, even pernicious. Hacking’s
argument centers on the question of how to establish the reality of what we
see with a microscope. Fundamentally there is no way of knowing this. As
humans we cannot empirically verify or testify that there is an object under
the microscope when it is too small to sense. We trust however that the the-
ory of optics holds, and that therefore the image we perceive is true to the
nature of the object. We accept and trust that the way light passes through a
system of lenses is accurately described and predicted by the theory of optics.

119

Code, Scholarship, and Criticism

Yet this remains “just” a theory, despite the fact that it has repeatedly held
up under testing. But exactly because no one has yet been able to prove that
the theory is incorrect regarding the behavior of light in a microscope, we
trust that what we see is what is actually there. Or in Hacking’s words: “It
may seem that any statement about what is seen with amicroscope is theory-
loaded; loaded with the theory of optics or other radiation. I disagree. One
needs theory to make a microscope. You do not need theory to use one”.

Hacking’s remark sounds very similar indeed to “One needs computer liter-
acy to make software. You do not need computer literacy to use it”. The
crucial difference is that code and software are not governed by a law of na-
ture in the same way optics are. If the curvature of a lens is incorrect a user
will get a foggy or blurred picture of a plant cell (for instance). But it will
remain a blurred picture of a plant cell. No matter how broken the lens, it
will not transform a picture of a plant cell into a picture of the facetted eye of
an insect. Software code by contrast is “written” or “built” by humans and
is not bound to natural rules of proper and verified behavior. Most mobile
phones carry an inbuilt lens these days, with a camera “app” to take pictures.
It would be rather easy to change the camera’s software in such a way that
whenever a user takes a picture, some randompicture on the Internet would
be presented as the photograph. Thus what Hacking justifiably concludes
for microscopes on the basis of a general and well-supported theory of op-
tics does not hold for software. In both cases there is a situation of trust. In
the case of lenses we trust that a well-verified theory of light and optics will
hold and that the nature of light and its interactions with materials will not
change overnight. In the case of software there is a trust that the result of cre-
ative coding work will do what the creator of that work says it will do. But
software tools are lenses of a different kind: at the time of writing according
to TextMate (a robust no-nonsense text editor for Mac OS) this text up to
here has 1,167 words, according to MS Word it has 1,174. If something as de-
ceptively simple as counting the number of words in documents gives differ-
ent results in different pieces of software, how dowe trust complicated topic
modeling software likeMallet that produces hundreds of clusters of terms as
suggested topics found in a corpus? Software is governed not by laws of na-
ture, but by the rules that are programmed into it by the engineer, that can
be set by anyone having access to the design process of the software, and that

120

Scholarly Assumptions in Code

can result in incredibly complex heuristics and algorithms. This fact should
by itself warrant some systematic approach to critiquing code. But especially
now that more digital tools are getting integrated into the methodology of
humanities, the adequacy and validity of analyses depend to a certain extent
on an adequate understanding of such specific rules.

5.2 Scholarly Assumptions in Code

To make this more concrete let us study the case of CollateX (Haentjens
Dekker et al. 2015). CollateX is software under active development at the
Huygens Institute for the History of the Netherlands.2 CollateX is – as the
name suggests – a collation engine. The core of CollateX consists of an algo-
rithm – that is, a defined sequence of precisely specified steps that produce
an output (Schmidt 2016). Algorithms as mathematical and programming
concepts have a long history of themselves (cf. Bullynck 2016). Also some in-
roads toward the study of algorithms have been made from the humanities
and social sciences, most noticeably from the perspective whether and what
knowledge of algorithms is pertinent to humanities (Seaver 2013; Schmidt
2016). Here I am not interested so much in a mathematical proof of Colla-
teX’s working, but in a similar vein as Seaver we want to know how partic-
ular assumptions of the developers about text and text scholarship become
inscribed in the algorithm that makes up the core of CollateX. In the follow-
ing all statements on theCollateX software pertain to the 2.0.0 version of the
Python port available on the Python library repository PyPI (Python Pack-
age Index).3. The open-source code of CollateX is available under GPLv3
license in GitHub.4

CollateX’s algorithm, if given a number of texts that are largely but not ex-
actly the same, will align the parts of texts that run parallel, or “match” as this
is usually called. For instance, if the algorithm is given the following texts:

�� WKH EODFN FDW KRSV RYHU WKH UHG GRJ

2http://collatex.net/
3https://pypi.python.org/pypi/collatex
4https://github.com/interedition/collatex/tree/master/collatex-pythonport

121

http://collatex.net/
https://pypi.python.org/pypi/collatex
https://github.com/interedition/collatex/tree/master/collatex-pythonport

Code, Scholarship, and Criticism

�� WKH ZKLWH FDW KRSV RYHU WKH GRJ
�� WKH EODFN FDW KRSV RYHU WKH UHG FDW

It would align these “witnesses” (as variant texts are usually called in textual
scholarship) as follows:

�� WKH _ EODFN _ FDW KRSV RYHU WKH _ UHG _ GRJ
�� WKH _ ZKLWH _ FDW KRSV RYHU WKH _ ܗ _ GRJ
�� WKH _ EODFN _ FDW KRSV RYHU WKH _ UHG _ FDW

Collation is a scholarly task central to the field of textual scholarship, which is
itself concerned with establishing a solidly argued representation of a given
text. Because the process of collation is labor-intensive, repetitive, tedious,
and error-prone (Robinson 1989), it is a good candidate for automation. As
with all software, any such automationwill result in an implementationof an
algorithm that to a certain extent rests on particular assumptions (Lehman
andRamil 2000). The algorithm of CollateXmakes three tacit assumptions
on the heuristics of alignment:

1. It is desirable to minimize the number of differences between wit-
nesses

2. Phenomena that are shared acrossmostwitnesses should be preserved
3. The number and order of witnesses are arbitrary

Furthermore the algorithm of CollateX is based on at least one axiom that
states that it is computationally infeasible to distinguish between a transpo-
sition and a combination of substitution and deletion. That is, if the algo-
rithm finds the following alignment:

�� WKH FDW KRSV RYHU WKH EODFN GRJ
�� WKH GRJ KRSV RYHU WKH EODFN FDW

It is nigh impossible for any computational algorithm to decide whether the
“cat” and “dog” in the first sentence were switched (textual scholars speak of

122

Scholarly Assumptions in Code

a “transposition”) or if either of them was individually replaced (i.e. substi-
tuted by a consecutive deletion and addition).

The issue here is not whether these assumptions are correct, but rather that
they exist in the code as such. They represent rules and choices that could
have been different as a result of different scholarly reasoning and argument.
Assumptions are inscribed tacitly in code rather than being explicitly men-
tioned or described by it. It would be very hard indeed, even for skilled engi-
neers, to reverse engineer or read the code so that these assumptions become
apparent. Yet they are part of the very rationale behind the mechanism that
fulfills the scholarly task of alignment.

In the case of CollateX, the aforementioned assumptions may not be shared
by each textual scholar. They are indeed not laws of nature, nor are they
generic mathematically proven principles. Especially the axiom concerning
transpositions could be subject to scholarly debate. A human reader will ap-
prehend quickly that in the example above, the “cat” and the “dog” were
transposed. But unless evidence external to the texts is presented, funda-
mentally this is not deducible with complete certainty – it could have been
that the cat was replacedwith another dog. The apprehension of the human
reader is in fact an assumption, conjecture based on intuition and experience.
A rule of thumb could be that when more words are involved in a potential
transposition (so longer fragments are switched) and the fewer words there
are between the two potentially transposed fragments, the likelier it is that a
deliberate transposition occurred. It is unlikely that an author would for in-
stance switch around a “the” at the beginning of a textwith a “the” at the end
of that text. If we find “It was a dark and stormy night” in one witness at the
beginning of a text, and in another witness at the end, it is more likely that
deliberate transposition was the cause. It would be very time-consuming to
take this rule of thumb into account when computing the alignment of wit-
nesses because the number of comparisons that need to be performed by the
code would grow exponentially. Hence the axiom: it is fundamentally im-
possible to know from the texts alone if a transposition happened, and it is
computationally highly costly to compute all potential transpositions; thus,
it is computationally infeasible to distinguish between a transpositionor two
independent substitutions.

123

Code, Scholarship, and Criticism

The third assumption, which posits that the alignment should be indepen-
dent of the number and order of witnesses, is also debatable from the per-
spective of textual scholarship. Suppose that it is clear fromexternal evidence
– e.g. from the bindings of amanuscript or the type ofmaterials used – that a
particular witness is older than any other. In those circumstances it becomes
a legitimate scholarly questionwhether thatwitness should be a guiding text,
or a “base text” as it is called when specifically used as a guide for decision-
making in the process of alignment (Roelli 2015). In unmarked situations,
however, it is assumed that baseless collation is preferable (cf. Andrews and
Macé 2013). During the development of CollateX, great carewas taken there-
fore to prevent it from presenting a result that is in some ways biased or col-
ored by the particulars of one specific witness. Indeed this feature became a
“unique selling point”.

The contention based on the above is that code through its mathematical
and algorithmic origins does not acquire some inherent objective and neu-
tral correctness. Instead the construction of code is situated and depends on
the assumptions of its builders, be they subjective, supposedly objectified, or
scholarly. In this respect code and software cannot escapewhat has been simi-
larly found for data and facts. There is no such thing as “rawdata” (Gitelman
2013), rather data and facts are carefully constructed (Bowker 2006; Latour
and Woolgar 1986). This does not deny the potential solidity of facts, but it
calls attention to the situatedness of their creation. Even what “constitutes”
data is dependent on context and often even far from clear, especially in the
humanities (Borgman 2015; Kouw, Van den Heuvel, and Scharnhorst 2013).
Within the digital humanities this has given rise to criticism on how data
should be understood, on data representation (Drucker 2011), and on the
use of (standards for) digital formats (Vitali 2016).

5.3 Scholarly Code Criticism

The assumptions that underpin the code of specific software in textual schol-
arship ought not to be the idiosyncratic musings and intuitions of individ-
ual programmers. In the case of CollateX assumptions were inferred from
close and repeated conversations between the lead developer and a variety of

124

Scholarly Code Criticism

textual scholars who had a particular interest and experience with text col-
lation. These assumptions are in this sense a result of aggregated, carefully
interpreted scholarly knowledge re-inscribed in code. It is this process of
aggregation, interpretation, and re-inscription of knowledge that lends the
code of CollateX a particular scholarly nature. Insofar as interfaces and code
bases can also be thought of as arguments (cf. Galey and Ruecker 2010), it is
these assumptions by which the code of CollateX captures and adds to the
ongoing scholarly debate on collation. As argued above however, the argu-
ment that codemakes is very implicit. How can scholars – or for that matter
other programmers – examine and critique this code and these assumptions
as an integral part of academic discourse?

This question points to a clear need for a method or a framework within
the humanities to systematically explore and validate scientific software engi-
neered for and used in the humanities. No such agreed upon formalmethod
or framework for critical evaluation of code exists. Nor is there an agreed
uponmethod to share any results of the critical evaluation of code. AsMark
Marino has stated in a field report on critical code studies (CCS): “there re-
mains a considerable amount of work to develop the frameworks for dis-
cussing code” (Marino 2014). Marino’s report presents a concise history of
CCS that suggests that they are indeed an application of critical theory. CCS
studies the social context and processes surrounding code and its creation.
A good example isMcPherson’s 2012 contribution toDebates in Digital Hu-
manities, titled “Why Are the Digital Humanities So White? or Thinking
the Histories of Race and Computation” (McPherson 2012). Read superfi-
cially it is an article that will make many (white male) computer engineers
roll their eyes and sigh: sure, UNIX is racist. However that is not McPher-
son’s argument: “I am not arguing that the programmers creating UNIX at
Bell Labs and in Berkeley were consciously encoding new modes of racism
and racial understanding into digital systems. […] Rather, I am highlighting
the ways in which the organization of information and capital in the 1960s
powerfully responds – across many registers – to the struggles for racial jus-
tice and democracy that so categorized the United States at the time. […]
The emergence of covert racism and its rhetoric of color blindness are not
somuch intentional as systemic. Computation is a primary deliverymethod
of these new systems, and it seems at best naive to imagine that cultural and

125

Code, Scholarship, and Criticism

computational operating systems don’t mutually infect one another.”

Another clear concern of CCS is the aesthetics of code and code-as-text.
Marino (2006) is interested in reading code as text: “I would like to propose
that we no longer speak of the code as a text in metaphorical terms, but that
we begin to analyze and explicate code as a text, as a sign systemwith its own
rhetoric, as verbal communication that possesses significance in excess of its
functional utility.” Given this proposition it is understandable that CCS is
fascinated with poststructuralism-inspired uses and interpretations of code,
such as Alan Sondheim’s concept of codework that mixes computer code
and text, and in which computer code thus additionally becomes a medium
for artistic expression (Wark 2001).

Although critical theory inspired code criticism arguably should be part of
any framework for evaluating the scholarly qualities of code in the humani-
ties, the approaches and examples from the field of CCS also still leave a lot
to be desired. To understand this, consider a remark Evan Buswell made
during a HASTAC 2011 CCS event (Marino 2014). Buswell stated that CCS
cannot only deal with the arbitrary elements of code because that would rel-
egate code criticism to aesthetics only. This was a reaction toMarkMarino’s
suggestion to try to read code as text and to use code variables as meaning
forming elements to see how this would give expression to the meaning of
code. Buswell was quick to note that variable names are arbitrary because of
an ubiquitous code mechanism called indirection. Variable names are wrap-
pers and boxes: what is printed on them needs not to have an intrinsic rela-
tion with what is in them. Thus if one reads in e.g. JavaScript:

YDU ZHOFRPHBPHVVDJH
:HOFRPH WR P\ KRPHSDJH�
�

It simply means that there is a variable with the name “welcome_message”
that holds the text “Welcome to my homepage!”. However, that name is
arbitrary. The code:

YDU EDQDQDV
:HOFRPH WR P\ KRPHSDJH�
�

creates the same result (which is that there is a variable with the text value
“Welcome tomyhomepage!”). Thus the name of the variable does not entail
anything about the value of the variable or its meaning within the code, or
beyond.

126

Scholarly Code Criticism

Mark Marino’s argument was based on the assumption that developers
usually use “speaking names” for variables, precisely because it keeps the
code somewhat readable, and hopefully clear to other developers. Under
these conditions variable names may indeed reveal something about the
assumptions and norms connected to the context in which the code was
developed. If the variable was named “opening_sentence” instead of “wel-
come_message”, this may reveal something about the intention or frame
of mind of the developer. The former might indicate an engineer foremost
focused on text structure, the latter might suggest that the programmer was
thinking more about user interaction.

Thus there is certainly reason to do asMarino suggests and to read code also
simply as “a text”. However, code is a text that performs. It also represents
a program that can be executed, and fundamentally variable names do not
reveal this performativity. They do not reveal necessarily the aim of the code,
nor how it operates. Thus, as Buswell concluded, student engineers may
learn fromCCS to carefully choose their variable names because they will be
working with culturally sensitive programmers in various cultural contexts
and settings – but “all the while there will be an invisible line between CCS
and CS, protecting the core from the periphery, insulating and separating
from critique the power structure of code itself, and constructing a discourse
of good code and bad code to go along with the discourse of good business
and bad business that tends to dominate naive anti-capitalist critique”.

Before I claim that a solid framework for criticism of source code applied
in scholarship is lacking, as I will, I should explain what this means exactly.
Of course there is a tremendous amount of work done in both software
studies andmedia studies to construct frameworks to critique software. Lev
Manovich’s Software Takes Command (2013), Expressive Processing by Noah
Wardrip Fruin (2009), and the already mention work by Tara McPherson
(2012) testify to this achievement. But to call these works “code criticism”
would be somewhat of amisnomer. And in fact that is notwhere these schol-
ars position themselves: they talk about software andmedia criticism. These
works study the effects of software, which is the performance aspect of code:
thatwhat the user sees, the interface, its uses and affordances. They study the
performative aspect of software as a performance: how software creates ef-
fects in people’s behavior, work, opinions, and so forth. They also study soft-

127

Code, Scholarship, and Criticism

ware “in the wild”: the socio-political effects of mainstream software used in
industry, as games, and as a tool of personal and institutional productivity.
But what they do not do, is critique or evaluate the actual source code of
software, the particular kind of text that formulates the behavior of software.
Also their object of study is that of software in society, not specifically that of
source code applied as a scientific tool in the humanities (or sciences). Hence
they are not studies of scholarly code and they are not code peer review, but
they are studies of social effects of software at large.

This is what I mean when I speak of “code criticism” in particular: a scien-
tific framework for peer review of source code that is written specifically for
and applied in textual scholarship (or other scientific fields) to evaluate that
source code for its scientific reliability, implied methodological choices, and
implicit scholarly interpretations. My concern is the fact thatwe increasingly
use bespoke code – i.e. tailor made, one off applications to serve specific pur-
poses and specific concerns in particular scholarly editing or research. For
the critique of this kind of code, in textual scholarship and by implication
the humanities more in general, we lack an established theoretical and prac-
tical framework.

As a framework for code criticismCCS seem to lack a rigorousmethod for ex-
amining and critically interrogating actual code beyond reading the “code as
text”. In addressing this it would make sense to draw a parallel between the
interdependent relationship of textual criticism and literary criticism on the
one hand and between code criticism and CCS on the other hand. Literary
criticism is the application of critical theory and aesthetics to literature. It is
occupiedwith the interpretationof literature, its contextualizedmeaning, its
cultural inwardly and outwardly influences, its development over time, etc.
Textual criticism is less about reception, meaning, cultural situatedness, and
writerly text.5 Rather it is the critical skill of establishing a well-argued repre-
sentation of a text. Though “fact” in the light of post-structuralist theory is a
problematic term to say the least, it is not unreasonable to posit that textual
criticism is pre-occupied with scientific textual fact finding and accountabil-
ity: textual criticism tries to establish as close a “factual” representation as

5For a concise explanation of “writerly text” see Mambrol (2016). This aspect is also dealt
with in some more depth in the next chapter.

128

Scholarly Code Criticism

possible of a text through a scientifically accountable process (cf. McGann
2013).

Textual criticism faces its own particular challenges resulting from digitality.
Since authors turn to personal computers and text processing software for
text production, textual criticism – used to an almost exclusively physical
materiality of manuscript and print publications – is confronted with the
realities of digital materiality. Scholars in this field are therefore augmenting
and adapting existing methodologies to this new reality. This includes, for
instance, new approaches to the preservation of personal archives left by au-
thors on hard drives (Grigar et al. 2009; Kirschenbaum et al. 2009). It also
includes adaptation of scholarly methodology aimed at studying the genesis
of authorial documents, since genetic stages change from “manuscript draft”
and “print proof” to revisions stored in for instance .docx files, the standard
file format for more recent versions of MS Word (Ries 2010; Buschenhenke
2016).

Arguably a framework for scholarly evaluation of code could encompass
components of CCS and components that aremore directly aimed at factual
code review – similar to how text critique encompasses literary criticism and
text criticism. The CCS component would focus on answering questions
of broader socio-technical impact. For instance, is there an ideology un-
derlying this code? What are the cultural assumptions and biases apparent
in the code? What was the social context of its development? The code
criticism component would aim at critically examining the actual code and
its scholarly or scientific intentions. What is the stated purpose of this
code? Which scholarly task – perhaps in relation to the concept of scholarly
primitives (Unsworth 2000) – is it trying to accomplish? How well is it
accomplishing that task? What concepts and relations are modeled into the
code?

Code criticism in this sensewould first of all bepragmatic. If literary criticism
asks the question “What does thismean?” andCCS ask “Howdoes this code
affect us?”, then textual criticism asks “What was written here?” and code
criticism asks “What does this code do?” Code criticism could deliberately
pose deceptively simple questions to code because this aids in revealing the

129

Code, Scholarship, and Criticism

scholarly nature of code. As an example one can compare CollateX with
eLaborate, another tool developed for use by textual scholars.

ELaborate is a tool for digital transcription created and actively maintained
by theHuygens Institute for theHistory of theNetherlands.6 Transcription
is undeniably a scientifically valid and valuable primitive of humanities, espe-
cially with regard to scholarly editing and philology. Is therefore eLaborate
to be deemed a scholarly tool? The software supports the scholarly task of
transcription. Does this mean that the software and the code itself are schol-
arly and thus examples of scholarship? The key is in the distinction between
enabling and performing tasks. ELaborate enables the scholarly task of tran-
scription, but the transcription itself and all the scholarly skills and decisions
tied to it are still performed by the user. ELaborate is not somehow magi-
cally more adequate in registering the keystrokes of a scholarly editor than
WordPress, MS Word, TextMate, or any other text editor. It has a number
of features that greatly facilitate the task, and allow the editor to really focus
on it. Otherwise it does its best to get as much out of the way of the schol-
arly editor as it can. It has less feature clutter than for instance Word, it has
a centralized and institutionally backed repository for all its data, it is Web-
based, and so forth. In comparison with other tools this means that there
is seemingly always one specific feature that makes eLaborate a better fit for
the scholarly task thanmost other text editors. Yet it would be hard to argue
that the code propelling eLaborate is scholarly in itself and by itself.

This distinction of the scholarly nature of code is based on the question
whether “scholarly decisions and choices are delegated to the code level”.
This implies that there is no absolute certain measure that can tell whether
code is scholarship because establishing the scholarly nature of the code
depends on convincingly arguing that such decisions indeed were delegated
to the level of code, which is an argument that always should take into
account the situatedness of both the code’s development and its intended
purpose. In the case of CollateX this can indeed be argued considering
the currently pervasive practice of aligning variant texts by hand in textual
scholarship. Decisions currently normally taken by a scholar are delegated
to the code, as the algorithm results in a possible alignment of variant texts

6http://elaborate.huygens.knaw.nl/

130

http://elaborate.huygens.knaw.nl/

Scholarly Code Criticism

that implies decisions on which words between variants match. In contrast,
the code of eLaborate does not effect or propose as a result such choices or
decisions that currently would be deemed scholarly significant in textual
scholarship.

In all, this thendoes not preclude at all that the “code building” connected to
the development of eLaborate canbe a scholarly valuable act or contribution.
The development of eLaborate is certainly a valuable scholarly achievement:
scholarly thought and argument were part of the process of its creation and
the design of its specific functionalities (Beaulieu, Van Dalen-Oskam, and
Van Zundert 2012), and much subsequent scholarship was enabled through
the use of eLaborate. Because scholarly argument at some level is involved, it
is still relevant to critically examine eLaborate’s interface, features, and capa-
bilities. This would be tool criticism however, not code criticism. Obviously
tool criticismmight at some point very well be integrated into the approach
suggested here, but that is beyond the scope of this argument. In the case
of CollateX decisions that are understood as scholarly responsibilities in the
current context of textual scholarship are delegated more extensively to the
code itself than in the case of eLaborate. Therefore, unlike eLaborate, the
code of CollateX “performs” a scholarly task: based on the tacit assumptions
built into its code, the algorithm of CollateX independentlymakes scholarly
informed decisions – or rather proposes these, as the decisions until now are
always ultimately corroborated by a scholar. It is arguable therefore that the
code of CollateX in the current context of textual scholarship is endowed
more with a scholarly nature than the code for eLaborate. That in fact the
code of CollateX represents scholarship and is itself a scholarly object. This
is no different from a monograph or print edition, each one a scholarly ob-
ject whose scholarly nature arises from the arguments they constitute and
represent.

Critically examining this argument and the scholarly nature of the code itself
is not straightforward however. Above the mostly tacit nature of scholarly
assumptions built into code was already pointed out. But code is uninten-
tionally covert in other ways as well. Engineers often talk about the “model”
that underlies their code. “Model” is rather a “hopelessly polysemous”word,
as Willard McCarty remarks (2005:27). There is extensive literature mean-
while also in the field of digital humanities on the meaning, purpose, appli-

131

Code, Scholarship, and Criticism

cations, and epistemologyofmodels andmodelingpertaining to scholarship,
data, and code, notably McCarty (2005), Flanders (2012), Jannidis and Flan-
ders (2013), Ciula and Marras (2016) – but there are many more. Obviously
there is a relation between the analytic model and data used by researchers
and the data and object models constructed through code by programmers.
The collection of digital object (definitions) and their relations expressed in
code make up the domain model, as defined by Fowler (2002:116), which es-
sentially expresses the programmer’s “understanding” of themodels used by
the researcher(s).

In the context of source code creation by software engineers, themodel com-
ponent of the code is thus that which comes to represent the conceptual or
phenomenological model of the problem domain. That is, the concepts, the
relations, and the operations thatmimic the problems, objects, andprocesses
the software developers are trying to automate or solve on behalf of a client
or, in our case, a researcher. In the case of eLaborate, the model has coded
objects such as “Transcription” and “Annotation”. Annotation objects in
the code may have associated functions or methods, such as “create”, “up-
date”, or “delete”. Of course all the components are needed in ameticulously
orchestrated combination to make the software function; all components
are in that sense essential to it. Not any framework for code criticism can
therefore conveniently eschew some part of a body of code. However, the
components that capture the domain model are probably the most closely
associated with inscribing the conceptual model of the researcher into code,
as opposed to data storage components or visualization components. To
complicate matters even more maybe, visualization obviously constitutes a
transformation of the data that by itself is modeled too. Visualization trans-
formations therefore also constitute an interpretation and argument about
data. Like tool criticism however, the problem of interface critique is out of
scope here – even though it is readily imaginable that the “code” that drives
visualizations could be subject to code criticism within a framework of code
criticism framework.

Even ifweboil code criticismdown to critiquing the domainmodel, effective
code criticism may turn out to be a strenuous activity. Domain models may
be hard to gauge or peruse from the code that is eventually published, and
they can be unintentionally obfuscated. Models may be as tacitly expressed

132

Scholarly Code Criticism

in the code as the assumptions underpinning it, or they may be confusingly
cloaked by different code expressions. Part of the algorithm of CollateX, for
instance, is based on a decision tree. This tree is used to recallwhich decisions
were made by the algorithm to come to an alignment between witnesses. If
a new witness needs to be added into the comparison, previous alignment
solutions canbe compared to favor one solution. For reasons of performance
(i.e. speed) and scalability, the decision tree is not expressed in the code as a
tree, however. Instead the engineer chose to use a matrix that will deliver
the same power of decision but at a very much lower performance penalty.
Reading directly from the code, it would be hard, or at least considerably
confusing, to see that amatrixwas used to perform the function of a decision
tree.

Thus just as with the variable names that can be arbitrarily chosen and thus
obfuscating, code may be for good reasons unintentionally enigmatic. The
nature of code in this sense seems to resemble poetry more than prose. Po-
etry sometimes intentionally uses enigmatic or hermetic language, forcing
the reader to reread and rethink possible meanings. Code will in general be
less intentionally enigmatic, but will sometimes be no less hermetic. Some-
times such hermetic code becomes a goal in itself, for instance when coders
try to come upwith “oneliners”: tiny algorithms of one line of code that per-
form certain, sometimes incredibly complex tasks. Arguably one of the best-
known examples of this “onelining” is “10 PRINTCHR$(205.5 þRND(1));:
GOTO 10”, to which even a full book publication was dedicated (Montfort
et al. 2012). Such witty solutions may earn particular admiration of other
coders, the solution being regarded as a particular “elegant” one. Yet the
“coolness” of the solution may result in code that is particularly obfuscated
and hard to read. Also the actual algorithm may be counter-intuitive even
if mathematically highly efficient. This is arguably the case with the Quick-
sort algorithm, which is an algorithm for sorting that carves the series to be
sorted into subseries.7 This “divide and conquer” strategy results in a perfor-
mance gain (i.e. sorting speed) several magnitudes larger than the approach
generally found to be more “intuitive”, called insertion sort, which involves
starting at the top of the list and inserting each item in the series in its “nat-

7https://en.wikipedia.org/wiki/Quicksort

133

https://en.wikipedia.org/wiki/Quicksort

Code, Scholarship, and Criticism

ural order” position.8

5.4 Criticism in a Continuum of Literacies

How then do we critically examine code that may be particularly hard to
read, scrutinize, and understand? At the very least, an attempt should be
made at reading the code, even if simply to establish the degree of readabil-
ity of the code, because this is valuable information for criticism too. If the
code is nigh incomprehensible, what does this mean? Can the reasons for
possible intentional obfuscation be deduced and/or reasonably established?
Is the illegibility a result of unskilled coding? Obviously inline comments
and external documentation should offer help in determining the intent of
the code as well. Also establishing the software development methodology
used can reveal useful insights. There are various methodologies to build
software, from highly formalized and rigorous to fully pragmatic “cowboy
coding”. Some methodologies are bound to be a better fit than others for
the heterogeneous nature of humanities data and research questions (Van
Zundert 2012).

Mostly however: why not talk to the creators of the code themselves? As-
suming that engineers indeed apply current so-called “good practices”, soft-
ware development is a highly dialectic practice. The adequacy and effective-
ness of code are mostly determined by how well the model that is inscribed
in the code fits the domain model of the problem or task that the software
was developed for. To deduce a best-fit model, engineers should go to great
lengths. Analysis and design for modeling in most current software develop-
ment methodologies will involve deep client and/or user interaction. That
is, during the design phase, engineers will interview the client over and over
again to explore the exact properties of the domain model. And during any
implementation phase, engineers will in all likelihood repeatedly expose the
execution of the code to the scrutiny of the researcher and will adapt the de-
sign iteratively to what the researcher reports back as to shortcomings, omis-
sions, etc. Thus the model is designed, tweaked, and tuned in a continu-

8Cf. https://en.wikipedia.org/wiki/Insertion_sort

134

https://en.wikipedia.org/wiki/Insertion_sort

Criticism in a Continuum of Literacies

ous communicative and dialectic feedback cycle between developers and re-
searchers.

If the engineering of a model is governed by dialectic, the most adequate
mode of scholarly code criticism could be parallel. Code as an argument can
be adequate but obscure, and in such cases a good way of establishing the
model tacitly underlying the code could be to reverse engineer it through dis-
course. Thus by reversing the dynamic of the dialogue, we may understand
software in the same way as its development was articulated and argued: by
a deep and continuous, even “intimate” as Frabetti (2012) suggests, dialectic.
What is reversed during the phases of creation and criticism is the role of the
interviewer and interviewee.

A similar parallelismandmirroring arises in another potential avenue for crit-
ically examining code. It is a goodpractice in code engineering todevelopnot
just code but also a test suite for that code.9 A test suite or harness is a set of
tests expressed as code that can be run to check that software is working cor-
rectly. Engineers can in this way guarantee the correct working of the code.
Tests are used to check the workflow, to test against critical conditions, to in-
spect certain expected output for given input, to test the formal constraints
of a model, and so forth. It may turn out to be as valuable for code criticism
to examine the test suites that accompany code as the contents of the code it-
self. Much may be gauged from these tests about assumptions, corner cases,
conditions, flow, limitations, and intent of the code.

But an even more intriguing application of test suites might be for scholarly
code critics to develop these suites themselves. Currently test suites and au-
tomated tests for software are tools of the engineer. But there is no reason
why the frameworks that help engineers to control, check, and validate their
work would not be used to probe, explore, and test the same software by
code critics. Instead of facing the engineer, test harnesses might just as well
face the critic and user. Several people involved with CCS have expressed
similar ideas. Montfort et al. (2012:322) speak of studying “software by cod-
ing new software”. David Berry refers to such possible test suites as “coping
tests” (Berry 2014).

9https://en.wikipedia.org/wiki/Best_coding_practices

135

https://en.wikipedia.org/wiki/Best_coding_practices

Code, Scholarship, and Criticism

The possible application of code to test code, to create test suites to exam-
ine codebases as a form of humanities informed criticism, can also be cast as
a continuum of two literacies. Three decades ago Donald Knuth believed
that the time was “ripe for significantly better documentation of programs,
and that we can best achieve this by considering programs to be works of
literature” (Knuth 1984). His language called WEB lets the same program
produce working code as well as an explanatory narrative about that code.
WEB however, did not find a broad audience, neither in computer science
nor in the humanities –with the odd exception (e.g.Huitfeldt and Sperberg-
McQueen 2008). Knuth was interested in code as a form of literature and
in writing software as a specific kind of literacy. In other words, he was in-
terested in how two kinds of literacy, that of computer language and that
of human-authored text, could merge. As a proponent of computational
methods in the humanities, Franco Moretti appears to agree that this merg-
ing has a lot of promise (Dinsmann 2016). Literacy enables one to write and
read, to express and inquire. From these perspectives the understanding of
the literacy of code and the literacy of text as different and opposed literacies
seems artificial and intellectually lazy. Instead, to develop a valid and ade-
quate mode for scholarly criticism of code, they need to be understood as
variations within a continuum of literacies (cf. Kittler 1993b).

These notions so far are theoretical. Also in the realm of this chapter, I have
only been able to sketch the outlines of a possible practical approach to code
criticism for code created in the humanities. Based on these more theoret-
ical ideas currently work is undertaken to explore how text and computa-
tional literacy may amalgamate into a concrete method for code criticism.
This work takes the form of an iPython Notebook in development10 that
reports on the investigation of the code underpinning a publication by Ted
Underwood and Jordan Sellers (Underwood and Sellers 2016). A follow-up
publication will be dedicated to this explorative practical code criticism case
study.

10https://github.com/interedition/paceofchange

136

https://github.com/interedition/paceofchange

Conclusion

5.5 Conclusion

Code criticism and code peer review are hardly even nascent in the humani-
ties and digital humanities. Some work has been done in the realm of CCS,
but these fledgling approaches have focused primarily outward from code
and have considered codemostly as a culturally situated part of a larger socio-
technical system. Almost no examples of thorough code criticism exist that
regard code from a humanities methodological point of view. The type of
criticism that asks: what ismethodologically expressed here, how is it argued,
and how can we validate it? Given the large ramifications that digital infor-
mation and software have for humanities sources, resources, and methodol-
ogy, this situation is rather surprising, and methodologically unhealthy. In
this chapter I sketched the outlines of an approach that would do justice to
the work that has been done in the realm of code criticism but that would
also self-reflectively turn criticism toward the code that promises new tools
to the humanities.

For centuries, argument, logic, interpretation, and reasonhavebeenboth the
means to put forward results in the humanities as well as the tools to judge
those results. Humanities methodology is highly self-reflective. Methodol-
ogy now increasingly means digital methodology, but that does not imply
that critical self-reflectivity should disappear: there is no self-evident correct-
ness of technology just because it is digital technology. Muchwork still needs
tobedone to remediate the critical aspects of humanities scholarship into the
digital realm. This is a critical task digital humanists should be aware of.

137

