The good? The bad? The mutant! Characterization of cancer-related somatic mutations and identification of a selectivity hotspot in adenosine receptor Wang, X. ## Citation Wang, X. (2022, September 20). The good? The bad? The mutant!: Characterization of cancer-related somatic mutations and identification of a selectivity hotspot in adenosine receptor. Version: Publisher's Version Licence agreement concerning inclusion of doctoral License: thesis in the Institutional Repository of the University of Leiden Downloaded from: **Note:** To cite this publication please use the final published version (if applicable). # **Chapter 2** G protein-coupled receptors expressed and studied in yeast. The adenosine receptor as prime example. This chapter is based upon: Xuesong Wang, Gerard J.P. van Westen, Laura H. Heitman and Adriaan P. IJzerman *Biochemical Pharmacology* **2021**, 187:114370 #### Abstract G protein-coupled receptors (GPCRs) are the largest class of membrane proteins with around 800 members in the human genome/proteome. Extracellular signals such as hormones and neurotransmitters regulate various biological processes via GPCRs, with GPCRs being the bodily target of 30–40% of current drugs on the market. Complete identification and understanding of GPCR functionality will provide opportunities for novel drug discovery. Yeast expresses three different endogenous GPCRs regulating pheromone and sugar sensing, with the pheromone pathway offering perspectives for the characterization of heterologous GPCR signaling. Moreover, yeast offers a "null" background for studies on mammalian GPCRs, including GPCR activation and signaling, ligand identification, and characterization of disease-related mutations. This review focuses on modifications of the yeast pheromone signaling pathway for functional GPCR studies, and on opportunities and usage of the yeast system as a platform for human GPCR studies. Finally, this review discusses in some further detail studies of adenosine receptors heterologously expressed in yeast. **Keywords:** G protein-coupled receptor, engineered yeast system, adenosine receptors ## Introduction G protein-coupled receptors (GPCRs) are the largest family of membrane-bound proteins with approximately 800 members identified from the human genome^{1,2}. They share a common basic architecture of seven-transmembrane (7TM) α-helices, linked by three intracellular (IL) and three extracellular (EL) loops, an extracellular amino terminus, and an intracellular carboxyl terminus². According to their sequence homology, human GPCRs can be classified into five main families according to the GRAFS system: glutamate, rhodopsin, adhesion, frizzled/taste, and secretin³. Alternatively, GPCRs are divided in three main classes (A, B, and C)⁴. GPCRs respond to a wide diversity of extracellular endogenous ligands, including neurotransmitters and hormones. Intracellularly, GPCRs are coupled to different families of heterotrimeric G proteins, which contain three subunits, α , β , and γ^2 . Upon extracellular stimulation, conformational changes in GPCRs leads to the replacement of GDP for GTP at the G_{α} subunit resulting in the dissociation of the $G_{\beta\gamma}$ subunit from G_{α} and further interactions with effector proteins in the cell^{5,6}. Based on sequence similarity and functionality, the G_{α} -subunit family is divided into four major subfamilies, $G_{\alpha s}$, $G_{\alpha r}$ GPCRs play a crucial role in human physiology due to their abundant distribution and numerous GPCR-related downstream pathways. Moreover, they are substantially involved in human pathophysiology⁶. During the past decades, GPCRs have thus been investigated as pharmacological targets with the focus on their extracellular ligand binding site9. The major disease indications for GPCR modulators have shifted over the years from high blood pressure to metabolic diseases, as well as several central nervous system disorders, and more recently also to tumor initiation and progression^{6-8,10-12}. Their role in both physiological and pathophysiological conditions have made GPCRs the target of approximately 30% of the rapeutic drugs to date9. Thereby, ongoing further characterization of GPCR functionality will offer new opportunities for drug discovery. However, due to the complexity of mammalian GPCR signaling pathways, using mammalian cells as the host for investigating GPCR signaling is relatively time-consuming and can result in ambiguous output. The latter can be problematic due to the wide distribution and variety of endogenous receptors and their ligands in such cells, and also expensive. In this case, engineered yeast systems provide a relatively cost-effective and useful model system to analyze human GPCRs. In this review, we will discuss strategies to link human GPCR expression and functionality to the endogenous yeast pheromone mating pathway in *Saccharomyces cerevisiae* (*S. cerevisiae*) as well as expression strategies in *Pichia Pastoris* (*P. pastoris*). Finally, we will focus on functional studies on adenosine receptor signaling using yeast reporter systems. ## General features of yeast Among the many yeast species *S. cerevisiae* and *P. pastoris* have been genetically well characterized as a model system. The first crystal structures of recombinant mammalian membrane proteins were obtained by their overexpression in these two yeast species^{13,14}. Since then, yeast expression has been frequently used for harvesting, purifying and subsequently obtaining crystal structures of membrane proteins deposited in the ProteinDataBank¹⁵. *P. pastoris*, as a recombinant expression host system, is an engineered methylotrophic microorganism using methanol as carbon and energy source¹⁶. The strain Y-11430 (wild-type) is not used for heterologous protein expression due to low transformation efficiency, while the GS115 strain is one of the most commonly used expression systems particularly for industry¹⁷. The *P. pastoris* system shows high similarity to advanced eukaryotic expression systems like CHO and HEK293 cell lines, as cotranslational and posttranslational modifications also occur¹⁸. However, this inexpensive yeast system constitutes a more rapid expression platform, and *P. pastoris* does not overglycosylate therapeutic proteins in comparison to *S. cerevisiae*¹⁸. The budding yeast S. cerevisiae expresses three different endogenous GPCRs involved in sugar and pheromone sensing¹⁹. Glucose sensing is mediated via the yeast G protein-coupled receptor-1 (Gpr1) and the G_g protein Gpa2 (Figure 1A)^{20,21}, and pheromone sensing via GPCRs α-factor receptor (Ste2) and a-factor receptor (Ste3), as well as the G_g protein Gpa1 (Figure 1B)²². During the past decades the yeast pheromone pathway has been the most extensively studied GPCR signaling cascade^{23,24}. Similar to mammalian GPCR signaling, Ste2 or Ste3, couples to the yeast trimeric G protein upon activation by a- or α-factor pheromones, consisting of Gpa1(α subunit), Ste4 (β subunit) and Ste18 (γ subunit)^{19,25}. Activation of the receptor results in the dissociation of the βy-dimer from the α-subunit. The βy-dimer further couples and induces mating-specific responses by activating the mitogenactivated protein kinase (MAPK) signaling cascade²⁶. Ultimately, the translocation of the transcription factor Ste12 mediated by activation of the MAPK cascade further regulates the expression of numerous mating pathway target promotors^{27–29}. Based on the similarity between the yeast mating pathway and mammalian GPCR signaling pathways, human GPCRs have been expressed and further coupled to a reporter gene output in order to more broadly study GPCR signaling²³. #### Modifications in engineered yeast system Yeast has been used as a vehicle for more than three decades for the structural and functional characterization of endogenously and heterologously expressed GPCRs^{23,30,31}, for the discovery of novel GPCR ligands (deorphanization)^{32,33}, for metabolic engineering purposes^{34,35}, and for the minimization of GPCR signaling complexity³⁶. With the deletion of yeast GPCRs, the yeast system provides a synthetic 'null' GPCR background for investigating non-native receptors^{23,25,37}. In comparison to mammalian systems, shorter doubling time and simple cell culture are among the benefits when studying GPCRs in yeast³⁸. The yeast mating pathway with its resemblance to mammalian GPCR signaling pathways, therefore, offers a framework with multiple engineering possibilities to link heterologous GPCRs to a reporter output³⁶. Hereby, we will discuss the modifications of the natural yeast pathway to investigate GPCR signaling and deorphanization (Figure 1C). **Figure 1.** Overview of GPCR signaling pathways in *S. cerevisiae*, adapted from Versele *et al.* (2001)¹⁹ and Lengger *et al.* (2020)⁶³. A) Glucose signaling via Gpr1, B) pheromone signaling via Ste2 and Ste 3 and C) modifications of pheromone signaling pathway for coupling to human GPCRs. ## Engineered G proteins In general, heterologous GPCRs show preferences in G protein coupling depending on their native $G_{\rm a}$ coupling³⁹. Although it has been reported that heterologous GPCRs can couple to the endogenous Gpa1 subunit³⁴, higher coupling efficiency has been achieved by using chimeric $G_{\rm a}$ subunits, which are thus commonly preferred^{37,40}. In the chimeric $G_{\rm a}$ subunits, the last five amino acids of the C-terminus have been transplanted based on the mammalian $G_{\rm a}$ sequence to improve receptor recognition^{41,42}. Apart from identifying matching GPCRs, optimization of G protein subunit expression is crucial for successfully engineering and restoring GPCR signaling. It has been computationally and experimentally confirmed that optimally balanced levels of G protein subunits maintain high pathway output but low basal activity^{36,43,44}. #### Gene
deletions The yeast pheromone pathway regulates mating initiation¹⁹, however, there is no requirement of mating genes for studying GPCR signaling. Instead, they may even intervene with functional studies of heterologous GPCRs. In order to boost GPCR signaling strength, certain pheromone pathway-related genes were thus eliminated, for example through knock-out of the three native GPCRs, down regulation of Gpa1 and SST2 expression, as well as deletion of the FAR1 gene, a cell cycle arrest inducer during mating^{34,38,40,45,46}. More recently, deletion of BAR1 and pheromone genes has been proven to (further) minimize the pheromone response³². Moreover, yeast proteases may target intracellular loops of GPCRs resulting in receptor degradation. Thus, deletion of the central portion of the intracellular loops of heterologous GPCRs and the usage of a protease-deficient yeast strain have been shown to increase receptor amounts^{47–49}. In addition, targeted insertion of defined sequences at the deletion sites allows re-introduction of key signaling genes, which provides a highly tunable GPCR signaling pathway in the yeast system³⁶. #### Optimization of receptor expression Multiple GPCRs have been successfully expressed in yeast cells, while the development of expressing functional GPCRs is still ongoing. In *P. pastoris*, GPCRs are typically and deliberately truncated at the C-terminus to prevent degradation, which increases the expression and stability of receptor^{16,50}. Besides, strong constitutive promoters, such as TDH3 or PGK1, have also been reported to increase GPCR levels^{32,51}. Additionally, agonist-mediated fluorescence reporter intensity could be dramatically increased by the upstream insertion of the Kozak-like sequence (-AAAAAAAUGUCU-) to a neurotensin GPCR open reading frame^{51,52}. To increase GPCR expression by expanding the post-translational processing, the fusion of a leader sequence to the N-terminus of the receptor has been shown to assist the plasma membrane insertion of the receptor 53 . An early study on the β_2 -adrenoreceptor suggested that replacing part of the receptor N-terminus with the corresponding sequence of Ste2 supported the expression and functionalization of the β_2 -adrenoreceptor Moreover, the addition of a hydrophobic pre-prosequence resulted in higher expression and better insertion into the membrane for 12 different human GPCRs in a GPCR fusion study Although all these 12 GPCRs were successfully expressed with high yields, all except the adenosine A_{2A} receptor were primarily observed within the cells and detected with intact or partially cleaved leader sequences, indicating the problem of improper ER translocation and thus the limiting step of human GPCR production in *S. cerevisiae* for the problem of human GPCR production in *S. cerevisiae* for the problem of th #### Accessory proteins Despite the transcriptional and post-transcriptional controls discussed above, lack of accessory proteins also hampers the development of functional GPCR assays in yeast^{40,55,56}. Co-expression of human odorant receptor OR7D4 with an accessory protein, receptor-transporting protein, have been reported to increase receptor transportation to the yeast membrane⁵⁷. Other accessory proteins, such as receptor-activity modifying proteins (RAMPs), can dimerize with GPCRs and modulate their activity, including ligand selectivity, transport to the cell surface, internalization and even downstream signaling⁵⁸. # Synthetic transcriptional factors and promoters MAPK cascade-mediated Ste12 translocation regulates the expression of endogenous mating pathway target promoters in yeast cells²⁹. Thus, the use of Ste12 as a controller for reporter gene expression via the FUS1, FUS2 and FIG1 promoters is the most commonly used design for studying GPCR signaling in yeast^{59–62}. However, the expression strength of Ste12 needs to be limited to prevent impaired cell growth³⁶. Therefore, in this case, coupling heterologous GPCR signaling to a synthetic transcription factor is able to target the reporter gene without influencing yeast mating target promoters⁶³. For instance, compared to the FIG1 promoter, using the synthetic promoter PLexA(4x) results in a 7-fold increase of green fluorescent protein (GFP) expression upon the activation of olfactory OR1G1 GPCR in response to decanoic acid³⁴. ## GPCR signaling read-outs Functional GPCR screening assays often involve cell growth, fluorescence, and/or colorimetric or phenotypic screens^{36,64,65}. A growth assay coupling GPCRs to a HIS3 reporter gene was designed for ligand screening of inverse agonists and weak partial agonists^{66,67}. Complementarily, inverted reporter systems coupling to CAN1 and FUI, encoding permeases, can only survive with the addition of agonists and have been used to investigate non-functional GPCRs, such as mutant GPCRs with abolished receptor activation^{67–69}. Moreover, GPCR antagonists have been investigated using the inverted reporter system with fluorescent read-outs⁷⁰. Overall, the usage and optimization of novel sensitive fluorescent markers with high signal-to-noise ratio have become the trend for functional assays of GPCR signaling in yeast^{51,71,72}. ## **GPCR** studies in yeast As mentioned above, *P. pastoris* is a preferred platform for GPCR production due to its high expression capacity³¹. Functional characterization of GPCR signaling has been extensively studied employing the *S. cerevisiae* mating pathway^{23,25,37}. In this section, we will discuss some examples in which yeast systems are used as a crucial platform in the development of GPCR purification and signaling characterization, as well as for GPCR deorphanization studies (Table 1). #### Purification of GPCRs Crystal structures of GPCRs in complex with various ligands and/or G proteins nowadays provide numerous initial models for drug design and discovery⁶. However, large quantities of high-quality pure protein are always required for X-ray crystallography, which constitutes a major hurdle in GPCR expression and purification. Therefore, relatively cheap and easy-to-handle yeast systems are used as expression systems for GPCRs, also to improve expression and stability of the receptors^{31,73}. S. cerevisiae has been developed as a chassis for rapid expression and characterization of four functional human GPCRs and their variants as a starting point for X-ray crystallography, viz. β₂-adrenoreceptor, acetylcholine M₂ receptor, histamine H₄ receptor and neurotensin NTS₄ receptor⁷³. In this study, the expression of a stabilized H₄ receptor variant was scaled up to 65 pmol/mg in P. pastoris and successfully purified for crystallization trials, indicating that the combined strategy of using S. cerevisiae for rapid screening and P. pastoris for high expression could be effective for GPCR structural studies73. Human smoothened receptor with an N-terminal purification tag has been successfully expressed, visualized, and purified from the S. cerevisiae system74. High expression levels of N-terminal histidinetagged β₂-adrenoreceptor were successfully achieved in *P. pastoris* with optimized codon usage and further purified with hydroxyapatite and gel-filtration columns⁷⁵. In fact the P. pastoris expression system has been specifically used to produce membrane proteins, such as calcium and potassium channels, nitrate and phosphate transporters, and the H₁ histamine receptor³¹. The fusion of T4 lysozyme (T4L) into the third intracellular loop of GPCR favors GPCR stabilization and crystallization⁷⁶. P. pastoris was also used to express the H, receptor-T4L fusion protein, which was later used for a crystallographic study of the receptor in complex with doxepin, a firstgeneration H₁ receptor antagonist^{77,78}. Furthermore, functional cannabinoid receptors (both CB, and CB, receptors) with a c-myc epitope and a hexahistidine tag at the C-terminus were successfully expressed and purified in the P. pastoris system^{79,80}. However, non-homogenous glycosylation and the presence of unprocessed α-factor sequence were detected at the N-terminus of the CB, receptor expressed in the same *P. pastoris* system, where this unprocessed α-factor appeared to be the cause of poor ligand binding at the CB, receptor⁸¹. Hence, it makes yeast suitable for CB, receptor purification, but less or unsuitable for functional characterization of the protein. #### Characterization of novel ligands and GPCR signaling The human β_2 -adrenoreceptor was the first functional heterologously expressed GPCR in yeast responding to its agonist isoproterenol⁵⁴. Since then, many more human GPCRs have been linked to the yeast pheromone pathway for functional studies²⁴. Most sub-families of class A and few receptors of class B GPCRs have shown successful expression in yeast^{34,37,38,47,54,66,82–93}. A comparative study between the *S. cerevisiae* and a mammalian system with respect to the P2Y₁ receptor indicated that the reporter gene HIS3-coupled yeast system was suitable for screening both agonists and antagonists of the P2Y, receptor94. Wild-type and the constitutively active mutant (N119S) CXCR4 chemokine receptor were expressed in S. cerevisiae coupled to the FUS1 promoter controlling reporter genes HIS3, FUI, and lacZ, and tested for receptor signaling mediated by T140 derivatives⁶⁷. Of note, relatively high concentrations of chemokine were needed to obtain a response in the yeast system, as compared to more conventional mammalian functional assays. Besides, novel allosteric CXCR4 antagonists were identified from a screening a library of 160,000 known chemokine receptor ligands using the S. cerevisiae system coupled to reporter genes HIS3 and lacZ95. Propionate and further short-chain carboxylic acids were identified as agonists on orphan receptors GPR41 and GPR43 from routine ligand bank screening using the yeast system coupled to β-galactosidase activity96. Similarly, yeast-based
screening assays on GPR68 suggested the benzodiazepine lorazepam as a non-selective agonist of this orphan receptor85. For GPR119 a novel agonist PSN375963 was identified with a similar potency to the reported endogenous ligand, oleoylethanolamide^{97–99}. The usage of yeast systems with different G protein modifications for glucagon-like peptide-1 receptor revealed the importance of the co-expression of receptor activity-modifying protein-2 (RAMP-2) with the receptor in ligand binding and G protein selectivity experiments⁵⁶. The lacZ reporter gene was used as functional read-out of acetylcholine M, receptor ligands in S. cerevisiae strains containing different chimeric G proteins, indicating functional selectivity of this receptor upon coupling to different G_a subunits¹⁰⁰. The same reporter gene was coupled to P2Y₁₂ receptors expressed in S. cerevisiae as a functional read-out of agonist-induced activation, revealing similar functional pharmacological properties between human and murine P2Y₁₂ receptors¹⁰¹. Functional chimeras of P2Y, P2Y, and/or leukotriene BLT, receptors have been successfully expressed in an S. cerevisiae system with the lacZ reporter gene to define regions required for ligand-induced activation. This provided a new approach to study receptors with low coupling efficiency in the given system¹⁰². A mutagenesis study of complement peptide C5a, receptor has been done in an S. cerevisiae system with the HIS3 reporter gene, demonstrating a particular role of the WXFG motif in the first extracellular loop during C5a, receptor activation 103. In order to characterize antagonists and analyze mutations of 5-hydroxytryptamine receptor 1A, a high-sensitivity yeast system was developed with an engineered G_a subunit and coupled to a fluorescent reporter, ZsGreen¹⁰⁴. Additionally, yeast strains coupling human GPCR activation to the HIS3 reporter gene were used in a mutagenesis study for the investigation of the role of the C-terminus in G protein activation by the human hydroxycarboxylic acid receptors 2 and 386. Recently, light-sensing human rhodopsin has been coupled to the yeast mating pathway with successful expression and characterization of disease-causing mutations, enabling cost-efficient ligand screening in a semi-high-throughput format^{38,105}. #### Biosensors For the investigation of the neurotensin NTS $_1$ receptor, a fluorescence-based microbial yeast biosensor has been constructed to monitor receptor activation stimulated by agonists, which is also a promising approach in the diagnosis of NTS $_1$ receptor-related diseases and agonist development 106 . For the angiotensin AT $_1$ receptor, a fluorescence-based yeast biosensor was also developed with the yeast-human chimeric G_{α} for the introduction of single mutations into the receptor to screen agonistic peptides 107 . In this system, the engineered yeast cells produced and secreted the autocrine Ang II peptide and an analog, which activated AT $_1$ receptors expressed in the same system 107 . Engineered human P2Y $_{14}$ receptors with different ligand specificities and efficacies expressed in *S. cerevisiae* in combination with a fluorescent read-out were suitable biosensors for detecting ligands in complex mixtures, and for differentiating among (stereo)chemically related ligands 108 . Moreover, an olfactory biosensor has been developed in engineered *S. cerevisiae* yeast cells expressing human olfactory receptor OR17-40 to detect odorants with a high sensitivity and selectivity 109 . ## Deorphanization In an early deorphanization study in yeast, the olfactory receptor KIAA0001, now known as P2Y $_{14}$ receptor, was expressed and coupled to different G_{α} subunits, which ultimately identified UDP-glucose as a specific agonist 82 . Human receptor OSGPR1116, now known as GPR119, has been identified with fatty-acid ethanolamides as agonists in a yeast system 97 . Recently, seven human orphan olfactory receptors were expressed in a yeast system, their presence determined by immunofluorescence microscopy, and eventually screened with 57 chemicals, suggesting the value of yeast-based screening systems for olfactory receptor deorphanization 33 . ## Adenosine receptor studies in yeast The adenosine receptors belong to Class A, rhodopsin-like GPCRs and exist of four subtypes, A_1 , A_{2A} , A_{2B} and A_3 . They have attracted much attention in recent years as therapeutic targets³. Depending on the adenosine receptor subtype, binding of extracellular adenosine leads to activation of different downstream signaling cascades¹¹¹0-¹¹¹⁵. The A_1 and A_3 receptors inhibit adenylate cyclase and reduce cAMP levels mainly via G_1 -coupling¹¹²²,¹¹³. Conversely, A_{2A} and A_{2B} receptors are mainly coupled to G_5 proteins and increase the levels of cAMP¹¹¹⁴,¹¹⁵. The A_1 receptor, abundant in the central nervous system (CNS) and identified in numerous peripheral tissues, plays a pivotal role in neuronal, renal and cardiac processes¹¹¹6-¹¹¹9</sup>. Thus, the A_1 receptor has been underinvestigation as a drug target for brain pathologies, such as pain, depression and memory disorders¹²²ð-¹²²³. High expression levels of A_{2A} receptor are found in the CNS and the immune system¹²²ð. The A_{2A} receptor is therefore involved in CNS disorders, Table1. Examples of human GPCR studies in yeast systems. | Receptors | Yeast species | Applications | Read-outs | Reference | |--|---|---|--|--| | 5-hydroxytryptamine receptor 1A
Acetylcholine M, receptor | S. cerevisiae
S. cerevisiae | Characterization of ligand and site-directed mutants
Crystallization | Fluorescence (ZsGreen) | [104]
[73] | | Acetylcholine M ₃ receptor
Adenosine A ₁ receptor | S. cerevisiae
S. cerevisiae
S. cerevisiae | Functional selectivity Ligand characterization Structural characterization | Fluorescence (β-galactosidase)
Fluorescence (β-galactosidase)
Growth (HIS3) | [100]
[134]
[135] | | Adenosine A ₂₄ receptor | P. pastoris | Crystallization | | [146] | | Adenosine A ₂₈ receptor | P. pastoris S. cerevisiae S. cerevisiae S. cerevisiae S. cerevisiae | Purification Expression purpose Thermostabilizing mutation screening Structural characterization Characterization of cancer-related mutations | - Radioligand binding; fluorescence (GFP) Growth (HIS3); fluorescence (β-galactosidase) Growth (HIS3) | [147–149]
[55,142–145]
[136]
[137–141]
[151] | | Adenosine A, receptor Angiotensin AT, receptor Cannabinoid CB, receptor Cannabinoid CB, receptor | S. cerevisiae
S. cerevisiae
P. pastoris
P. pastoris | Expression purpose Microbial biosensor Purification Purification | Fluorescence (GFP) | [150]
[107]
[80]
[79,81] | | Complement peptide C5a, receptor | S. cerevisiae | Structural characterization | Growth (HIS3) | [103] | | CXCR4 Glucagon-like peptide-1 receptor GPR119 GPR41 and GPR43 | S. cerevisiae S. cerevisiae S. cerevisiae S. cerevisiae | Ligand screening
Ligand screening and G protein selectivity
Ligand screening and deorphanization
Ligand screening | Growth (HIS3 and FUI); fluorescence (β-galactosidase) Fluorescence (β-galactosidase) Fluorescence (β-galactosidase) Fluorescence (β-galactosidase) | [67,95]
[56]
[97–99]
[96] | | Histamine H ₁ receptor | | Crystalization (fused with T4L)
Crystalization | | [76-78]
[78-78]
[73] | | Hydroxycarboxylic acid receptors 2 and 3
Leukotriene BLT, receptor | S. cerevisiae
S. cerevisiae | Structural characterization
Functional characterization of receptor chimeras | Growth (HIS3)
Fluorescence (β-galactosidase) | [86]
[102] | | Neurotensin NTS, receptor | S. cerevisiae | Purification | | [73] | | Olfactory receptor | S. cerevisiae
S. cerevisiae | Microbial biosensor
Microbial biosensor | Fluorescence (GFP)
Conductance | [106] | | Olfactory receptor 10S1 | S. cerevisiae | Deorphanization | Fluorescence (GFP) | [33] | | Olfactory receptor 2T4 | S. cerevisiae | Deorphanization | Fluorescence (GFP) | [33] | | P2Y, receptor
P2Y, and P2Y, receptors | S. cerevisiae
S. cerevisiae | Ligand screening
Functional characterization of recentor chimeras | Growth (HIS3)
Fluorescence (8-galactosidase) | [94] | | $P2Y_{12}$ receptor $P2Y_{14}$ receptor | S. cerevisiae
S. cerevisiae | Characterization of murine receptor in comparison to human receptor Deorphanization | Fluorescence (β-galactosidase)
Fluoresence (β-galactosidase) | [101]
[82] | | | S. cerevisiae | Biosensor | Fluoresence (β-galactosidase) | [108] | | Rhodopsin | S. cerevisiae | Functional characterization of disease-causing mutations | Fluorescence (GFP, mCherry) | [38,105] | | Smoothened receptor β_z -adrenoreceptor β_z -adrenoreceptor | S. cerevisiae
P. pastoris
S. cerevisiae | Purification
Purification
Expression and functional characterization of the wild-type receptor | -
Radioligand binding; fluorescence (β-galactosidase) | [74]
[73,75]
[54] | inflammation, pain and drug addiction 116,125,126. The A_{2B} receptor is ubiquitously expressed in many organs, as well as on microvascular, endothelial and immune cells^{127,128}. This receptor is only activated by high concentrations of adenosine and is known to modulate inflammation and immune responses in several pathological conditions, such as cancer, diabetes and lung diseases 129,130. The A3 receptor is suggested to mediate allergic responses, airway
contraction and apoptotic events in certain cell types^{117,118}. High expression levels of A₂ receptor have been determined in tumor cells compared to healthy cells, demonstrating its potential role as a tumor marker¹³¹. In the tumor microenvironment adenosine accumulation is mediated via the catabolism of extracellular ATP to adenosine by CD38, CD39, and CD73, which suppresses anti-tumor immune responses via the activation of adenosine receptors¹³². Therefore, multiple antagonistic antibodies and small molecule inhibitors targeting adenosine receptors have been developed as new strategies in cancer immunotherapy and display therapeutic efficacy in clinical trials against different solid tumors¹³³. During the past years, it has become clear that activation of adenosine receptors not only depends on the ligand binding and G protein coupling sites, but also on other, more distant regions in the receptor architecture 134-141. Yeast systems, in this case, have been used as a host for adenosine receptors for receptor purification and the characterization of ligands, receptor structure and function, and disease-related mutations (Table 1). ## Expression and purification of adenosine receptors The first functional human adenosine receptor expressed in a yeast system was the A_{2A} receptor using S. cerevisiae and confirmed by a radioligand binding assay¹⁴². In this study, the expression and functionality of A_{2a} receptors were not altered by the co-overexpression of several ER-resident proteins, suggesting that interactions with these proteins did not decrease human GPCR expression in yeast142. Later on, the A_{2A} receptor with a C-terminal GFP tag was expressed and analyzed in S. cerevisiae, and the obtained results suggested that limited heterologous GPCR expression was caused by translational or post-translational events¹⁴³. The same team also obtained and selected a yeast strain with a high expression level using flow cytometry, which was eventually used to purify the A_{2A} receptor¹⁴⁴. Further optimizations were performed by fusing a purification tag to the A_{2A} receptor, as well as developing a suitable purification scheme, resulting in large enough quantities for spectroscopic characterization¹⁴⁵. Furthermore, in order to better understand the improper trafficking and inactivation of GPCRs in heterologous expression systems, 12 human GPCRs with a GFP tag were transformed in S. cerevisiae⁵⁵. Among these GPCRs, only the A_{2A} receptor proved active and was located primarily at the plasma membrane with proper leader sequence processing, indicating a crucial role of translocation in producing active human GPCRs in S. cerevisiae⁵⁵. A crystal structure of the A_{2A} receptor with the complete third intracellular loop and an allosteric inverse-agonist antibody was obtained using P. pastoris as the expression host of the receptor 146. Moreover, the A_{2A} receptor was expressed in *P. pastoris* and encapsulated into styrene maleic acid lipid particles (SMALPs) to increase thermostability, which enabled purification procedures without the requirement of detergent ¹⁴⁷. The same combination of *P. pastoris*-expressed human A_{2A} receptor and SMALPs has recently been used to characterize the binding capability ¹⁴⁸, and to investigate ligand-induced conformational changes of the A_{2A} receptor in response to an inverse agonist and full agonist ¹⁴⁹. More recently, the A_3 receptor was successfully expressed in *S. cerevisiae* in which the C-terminus was replaced by the corresponding tail of the A_{2A} receptor¹⁵⁰. The A_3/A_{2A} chimeric receptor significantly increased receptor expression and decreased unfolded protein in comparison to wild-type A_3 receptor. Thus, chimeric receptor variants can be used as a strategy to produce "difficult-to-express" receptors in yeast for further drug discovery¹⁵⁰. ## Functional characterization of adenosine receptors In order to characterize both antagonists and agonists of the A, receptor, S. cerevisiae strains expressing the receptor and different human-yeast chimeric G proteins were used in combination with a lacZ reporter gene¹³⁴. In this study, β-galactosidase activity was measured as a read-out of receptor activation, suggesting that R-PIA was an agonist with high efficacy when coupling to G_{qq} , $G_{qi1/2}$, and G_{qi3} proteins, while VCP-189 was an agonist with low efficacy selectively coupling to the G_{ci1/2}, and G_{g/3} proteins¹³⁴. Besides, results obtained in a mammalian system were in general agreement with those in the yeast system, except for VCP-189 which also activated G_{m} coupling in mammalian cells¹³⁴. The role of extracellular loops in receptor activation and allosteric modulation was examined in another study in which the adenosine A, receptor was expressed in yeast135. Here, receptor signaling was coupled to yeast growth via a chimeric Gpa1/G_{ri3} protein, and single alanine mutations were introduced to the extracellular loops of the receptor via site-directed mutagenesis. Results obtained from this study implicated the importance of many residues located at the second and third extracellular loops in receptor activation, and identified two residues, W156^{EL2} and E164^{EL2}, regulating the effect of the allosteric modulator¹³⁵. Screening of thermostabilizing mutations in the adenosine A_{2A} receptor was performed in a yeast system with an engineered G protein and HIS3 and lacZ reporter genes¹³⁶. Alanine mutation of residues R199 and L208 completely abolished the constitutive activity of the A_{2A} receptor. Besides, decreased potency was observed on mutant receptor R199A while reduced efficacy was displayed on mutant receptor L208A, supporting key roles of these residues in receptor signaling¹³⁶. Several mutagenesis studies have been performed on the A_{2B} receptor in a yeast system with engineered G protein and HIS3 reporter gene^{137–141}. Inverse agonists of the A_{2B} receptor were discovered using constitutively active mutants (CAMs) expressed in the yeast system¹³⁹. In this study, CAMs with different constitutive activity levels were used to determine the relative intrinsic efficacy of the three inverse agonists, DPCPX, MRS1706, and ZM241385¹³⁹. Two high-level CAMs were identified to lock the receptor in the active state and to be irresponsive to these inverse agonists 139. In a study focusing on the interaction between the A_{2B} receptor and the C-terminus of G subunits, wild-type and mutant receptors were investigated in eight yeast strains expressing different chimeric G proteins¹³⁷. Three residues, R103, I107 and L236, were revealed to be important in receptor activation via altering G protein interaction and activation¹³⁷. Besides, key residues in the NPxxY(x)_{5.6}F motif and helix 8 of the receptor were screened in the yeast system with chimeric Gpa1/G_{ri3} protein¹³⁸. Four mutants P287A, Y290A, R293A and I304A were identified with a complete loss of function, and eight more residues, N286, V289, Y292, N294, F297, R298, H302 and R307, were also found to be vital in receptor activation¹³⁸. A random mutagenesis study on the first extracellular loop of the adenosine A₂₈ receptor expressed in an S. cerevisiae strain demonstrated the necessity of a polar residue at position 74¹⁴⁰. Various mutations at residues 71 and 74 were able to dramatically influence receptor activation, suggesting that the first extracellular loop of A₂₈ receptor is (also) essential for receptor activation (Figure 2)140. Furthermore, random mutagenesis on the fragment encoding the second extracellular loop flanked by the fourth and **Figure 2.** Representative concentration-growth curves of wild-type and A) mutant adenosine A_{2B} receptors of residue F71 and B) mutant A_{2B} receptors of residue D74 in response to the ribose agonist NECA or the non-ribose agonist BAY 60-6583. The maximum activation level of wild-type A_{2B} receptors was set at 100%, the background of the selection medium was set at 0%. Mutations are shown in the numbering of the A_{2B} receptors amino acid sequencing. WT in the figures represents wild-type. Reproduced with permission from Peeters *et al.* (2011)¹⁴⁰. fifth transmembrane helices resulted in 22 different single and double mutant receptors with decreased constitutive activity and agonist potency 141 . Comparing these constitutively inactive mutants (CIMs) and CAMs previously identified from the same fragment, six residues were found in both CAM and CIM screening, indicating their crucial roles in both activation and inactivation of the $\rm A_{2B}$ receptor (Figure 3) 141 . Recently, the same yeast strain was used in characterizing cancer-related somatic mutations in the $\rm A_{2B}$ receptor 151 , as described in **Chapter 4**. These mutations might even be cancer-specific as they did not match any point mutations identified from the natural variance set 151 . Several of these cancer-related mutations caused significantly altered receptor pharmacology (Figure 4) 151 . ## Conclusion A considerable number of human GPCRs has been investigated in a yeast platform with different purposes, including protein purification, investigation of receptor activation and signaling, as well as ligand identification. *P. pastoris* yeast strains can be highly efficient and cost-effective expression systems for GPCRs of interest for the purpose of protein purification and eventually crystallization/structure elucidation. The pheromone signaling pathway of the budding yeast *S. cerevisiae* has been engineered with various modifications to provide a robust platform for functional studies on human GPCRs, both wild-type and mutated. Therefore, these yeast platforms are a very useful and attractive addition to the more commonly employed mammalian cell lines for receptor expression, such as CHO and HEK293 cells. **Figure 3**. Location of constitutively inactive mutants (CIMs) and constitutively active mutants
(CAMs) in the human adenosine A_{2B} receptor. (A) A snake-plot structure of the fragment used in the CIMs and CAMs screening. The positions are shown in the numbering of the A_{2B} receptors amino acid sequencing as well as according to the Ballesteros–Weinstein numbering¹⁵². (B) Based on the multiple sequence alignment, the mutated residues identified from the screen were mapped onto the crystal structure of the A_{2A} receptor (PDB: 3YDV). The positions are labeled according to the Ballesteros–Weinstein numbering¹⁵². The CIMs are shown in red, CAMs in blue, and positions identified in both screens are shown in green (overlay). Reproduced with permission from Peeters *et al.* (2014)¹⁴¹. **Figure 4.** Concentration-growth curves for the wild-type and 15 cancer-related mutant A_{2B} receptors in response to the reference full agonist NECA. The maximum activation level of wild-type A_{2B} receptors was set at 100%, the background of the selection medium was set at 0%. The mutations are shown in the numbering of the A_{2B} receptors amino acid sequencing as well as according to the Ballesteros–Weinstein numbering ¹⁵². The no-effect mutants are shown in blue, less active mutants in red, constitutively active mutants in green and loss of function mutants in grey. Reproduced with permission from Wang *et al.* (2020)¹⁵¹. #### Reference - Rask-Andersen, M., Masuram, S. & Schiöth, H. B. The druggable genome: Evaluation of drug targets in clinical trials suggests major shifts in molecular class and indication. Annu. Rev. Pharmacol. Toxicol. **54**, 9–26 (2014). - Vassilatis, D. K. et al. The G protein-coupled receptor repertoires of human and mouse. Proc. Natl. Acad. Sci. 100, - 4903–4908 (2003). Fredriksson, R., Lagerström, M. C., Lundin, L.-G. & Schiöth, H. B. The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. *Mol. Pharmacol.* **63**, 1256–72 (2003). Kolakowski, L. F. J. GCRDb: a G-protein-coupled receptor database. *Receptors Channels* **2**, 1–7 (1994) - Simon, M., Strathmann, M. & Gautam, N. Diversity of G proteins in signal transduction. Science (80-.). 252, 802-808 (1991). - Hauser, A. S., Attwood, M. M., Rask-Andersen, M., Schiöth, H. B. & Gloriam, D. E. Trends in GPCR drug discovery: 6. New agents, targets and indications. Nat. Rev. Drug Discov. 16, 829-842 (2017). - Hollenberg, M. D. et al. Biased signalling and proteinase-activated receptors (PARs): Targeting inflammatory disease. Br. J. Pharmacol. 171, 1180–1194 (2014). - Kenakin, T. The potential for selective pharmacological therapies through biased receptor signaling. BMC Pharmacol. - Toxicol. 13, 1–8 (2012). Lagerström, M. C. & Schiöth, H. B. Structural diversity of G protein-coupled receptors and significance for drug discovery. *Nat. Rev. Drug Discov.* 7, 339–57 (2008). Lynch, J. R. & Wang, J. Y. G protein-coupled receptor signaling in stem cells and cancer. *Int. J. Mol. Sci.* 17, 707-725. - (2016). - O'Hayre, M., Degese, M. S. & Gutkind, J. S. Novel insights into G protein and G protein-coupled receptor signaling in cancer. Curr. Opin. Cell Biol. 27, 126-135 (2014). - Sever, R. & Brugge, J. S. Signal transduction in cancer. Cold Spring Harb. Perspect. Med. 5, a006098 (2015) - Jidenko, M. et al. Crystallization of a mammalian membrane protein overexpressed in Saccharomyces cerevisiae. - Strock, Natl. Acad. Sci. U. S. A. 102, 11687–11691 (2005). Long, S. B., Campbell, E. B. & MacKinnon, R. Crystal structure of mammalian voltage-dependent shaker family K+channel. Science. 309, 897–903 (2005). - Channel. Science. 309, 897–903 (2005). Zorman, S., Botte, M., Jiang, Q., Collinson, I. & Schaffitzel, C. Advances and challenges of membrane-protein complex production. Curr. Opin. Struct. Biol. 32, 123–130 (2015). Cereghino, G. P. L., Cereghino, J. L., Ilgen, C. & Cregg, J. M. Production of recombinant proteins in fermenter cultures of the yeast Pichia pastoris. Curr. Opin. Biotechnol. 13, 329–332 (2002). Julien, C. Production of Humanlike Recombinant Proteins in Pichia pastoris. BioProcess Tech. 4, 22–31 (2006). Karbalaei, M., Rezaee, S. A. & Farsiani, H. Pichia pastoris: A highly successful expression system for optimal synthesis of heterologous proteins. J. Cell. Physiol. 235, 5867–5881 (2020). Versele, M., Lemaire, K. & Thevelein, J. M. Sex and sugar in yeast: two distinct GPCR systems. EMBO Rep. 2, 574–579 (2001) - 574-579 (2001). - Colombo, S. et al. Involvement of distinct G-proteins, Gpa2 and Ras, in glucose- and intracellular acidification-induced cAMP signalling in the yeast Saccharomyces cerevisiae. EMBO J. 17, 3326–3341 (1998). Kraakman, L. et al. A Saccharomyces cerevisiae G-protein coupled receptor, Gpr1, is specifically required for - glucose activation of the cAMP pathway during the transition to growth on glucose. Mol. Microbiol. 32, 1002-1012 - Nakayama, N., Miyajima, A. & Arai, K. Nucleotide sequences of STE2 and STE3, cell type-specific sterile genes from Saccharomyces cerevisiae. *EMBO J.* 4, 2643–2648 (1985). Dohlman, H. G., Thorner, J., Caron, M. G. & Lefkowitz, R. J. Model systems for the study of seven-transmembrane-segment receptors. *Annu. Rev. Biochem.* 60, 653–688 (1991). Liu, R., Wong, W. & Izzerman, A. P. Human G protein-coupled receptor studies in Saccharomyces cerevisiae. - Biochem. Pharmacol. **114**, 103–115 (2016). - Pausch, M. H. G-protein-coupled receptors in high-throughput screening assays for drug discovery. *Trends Biotechnol.* 15, 487–494 (1997). Leberer, E., Dignard, D., Harcus, D., Thomas, D. Y. & Whiteway, M. The protein kinase homologue Ste20p is required to link the yeast pheromone response G-protein βγ subunits to downstream signalling components. *EMBO J.* 11, 4815–4824 (1992). Hung, W. Olson, K. & Breitkreutz, A. & Sadowski, J. Characterization of the hasal and pheromone-stimulated. - Hung, W., Olson, K. A., Breitkreutz, A. & Sadowski, I. Characterization of the basal and pheromone-stimulated phosphorylation states of Ste12p. *Eur. J. Biochem.* 245, 241–251 (1997). Bardwell, L. A walk-through of the yeast mating pheromone response pathway. *Peptides* 26, 339–350 (2005). Roberts, C. J. *et al.* Signaling and circuitry of multiple MAPK pathways revealed by a matrix of global gene expression arcticle. *Patra* 273, 280 (2002). - profiles. Science. 287, 873–880 (2000). Ladds, G., Goddard, A. & Davey, J. Functional analysis of heterologous GPCR signalling pathways in yeast. *Trends* Biotechnol. 23, 367-373 (2005). - Byrne, B. Pichia pastoris as an expression host for membrane protein structural biology. Curr. Opin. Struct. Biol. 32, 9-17 (2015) - 32. Billerbeck, S. et al. A scalable peptide-GPCR language for engineering multicellular communication. Nat. Commun. - 9, (2018). Yasi, E. A. et al. Rapid Deorphanization of Human Olfactory Receptors in Yeast. Biochemistry 58, 2160–2166 33. 2019). - Mukherjee, K., Bhattacharyya, S. & Peralta-Yahya, P. GPCR-Based Chemical Biosensors for Medium-Chain Fatty Acids. ACS Synth. Biol. 4, 1261–1269 (2015). Ehrenworth, A. M., Claiborne, T. & Peralta-Yahya, P. Medium-Throughput Screen of Microbially Produced Serotonin via a G-Protein-Coupled Receptor-Based Sensor. Biochemistry 56, 5471–5475 (2017). Shaw, W. M. et al. Engineering a Model Cell for Rational Tuning of GPCR Signaling. Cell 177, 782-796.e27 (2019). - 37. Brown, A. J. et al. Functional coupling of mammalian receptors to the yeast mating pathway using novel yeast/ - mammalian G protein α-subunit chimeras. Yeast 16, 11–22 (2000). Scott, B. M. *et al.* Screening of Chemical Libraries Using a Yeast Model of Retinal Disease. *SLAS Discov.* 24, 969–977 (2019). - Syrovatkina, V., Alegre, K. O., Dey, R. & Huang, X. Y. Regulation, Signaling, and Physiological Functions of G-Proteins. J. Mol. Biol. 428, 3850–3868 (2016). Erlenbach, I. et al. Single Amino Acid Substitutions and Deletions That Alter the G Protein Coupling Properties of the - V2 Vasopressin Receptor Identified in Yeast by Receptor Random Mutagenesis. J. Biol. Chem. 276, 29382–29392 - Liu, J., Conklin, B. R., Blin, N., Yun, J. & Wess, J. Identification of a receptor/G-protein contact site critical for signaling specificity and G-protein activation. *Proc. Natl. Acad. Sci. U. S. A.* 92, 11642–11646 (1995). Conklin, B. R., Farfel, Z., Lustig, K. D., Julius, D. & Bourne, H. R. Substitution of three amino acids switches receptor specificity of Gqa to that of Gia. *Nature* 363, 274–276 (1993). Bush, A. *et al.* Yeast GPCR signaling reflects the fraction of occupied receptors, not the number. *Mol. Syst. Biol.* - **12**, 898-918 (2016). - 44. Bridge, L. J., Mead, J., Frattini, E., Winfield, I. & Ladds, G. Modelling and simulation of biased agonism dynamics at a G protein-coupled receptor. J. Theor. Biol. 442, 44–65 (2018). - 45. Dohlman, H. G., Song, J., Ma, D., Courchesne, W. E. & Thorner, J. Sst2, a negative regulator of pheromone signaling in the yeast Saccharomyces cerevisiae: expression, localization, and genetic interaction and physical association with Gpa1 (the G-protein alpha subunit). *Mol. Cell. Biol.* **16**, 5194–5209 (1996). - 46. Leplatois, P. et al. Neurotensin induces mating in Saccharomyces cerevisiae cells that express human neurotensin - receptor type 1 in place of the endogenous pheromone receptor. *Eur. J. Biochem.* **268**, 4860–4867 (2001). 47. Erlenbach, I. *et al.* Functional expression of M1, M3 and M5 muscarinic acetylcholine receptors in yeast. *J. Neurochem.* **77**, 1327–1337 (2001). - Routledge, S. J. et al. The synthesis of recombinant membrane proteins in yeast for structural studies. Methods 95, 26-37 (Ž016). - Sander, P. et al. Heterologous Expression of the Human D₂₈ Dopa Saccharomyces cerevisiae Strains. Eur. J. Biochem. **226**, 697–705 (1994). Dopamine Receptor in Protease-Deficient - Saccharomyces cerevisiae Strains. Euir. J. Biochem. 226, 697–705 (1994). Singh, S. et al. A purified C-terminally truncated human adenosine A_{2A} receptor
construct is functionally stable and degradation resistant. Protein Expr. Purif. 74, 80–87 (2010). Hashi, H., Nakamura, Y., Ishii, J. & Kondo, A. Modifying Expression Modes of Human Neurotensin Receptor Type 1 Alters Sensing Capabilities for Agonists in Yeast Signaling Biosensor. Biotechnol. J. 13, 1–11 (2018). Hamilton, R., Watanabe, C. K. & de Boer, H. A. Compilation and comparison of the sequence context around the AUG startcodons in Saccharomyces cerevisiae mRNAs. Nucleic Acids Res. 15, 3581–3593 (1987). Seraj Uddin, M., Hauser, M., Naider, F. & Becker, J. M. The N-terminus of the yeast G protein-coupled receptor Ste2p place stitical value in surface averaging signaling and pagative regulation. Ricohim. Ricohim. Acta. Ricomembr. - plays critical roles in surface expression, signaling, and negative regulation. Biochim. Biophys. Acta Biomembr. **1858**, 715–724 (2016). - 54. King, K., Dohlman, H. G., Thorner, J., Caron, M. G. & Lefkowitz, R. J. Control of yeast mating signal transduction by a mammalian β2-adrenergic receptor and Gs α subunit. *Science (80-.).* **250**, 121–123 (1990). O'Malley, M. A. *et al.* Progress toward heterologous expression of active G-protein-coupled receptors in - Saccharomyces cerevisiae: Linking cellular stress response with translocation and trafficking. Protein Sci. 18, 2356-2370 (2009). - Weston, C. et al. Modulation of glucagon receptor pharmacology by receptor activity-modifying protein-2 (RAMP2). J. Biol. Chem. 290, 23009–23022 (2015). Fukutani, Y. et al. Improving the odorant sensitivity of olfactory receptor-expressing yeast with accessory proteins. Anal. Biochem. 471, 1–8 (2015). Klein, K. R., Matson, B. C. & Caron, K. M. The expanding repertoire of receptor activity modifying protein (RAMP) function. Crit. Rev. Biochem. Mol. Biol. 51, 66–71 (2016). Muller, E. M., Mackin, N. A., Erdman, S. E. & Cunningham, K. W. Fig1p facilitates Ca²⁺ influx and cell fusion during mating of Saccharomyces cerevisiae. J. Biol. Chem. 278, 38461–38469 (2003). Alvaro, C. G. & Thonger, I. Heterotrimeric G. protein-coupled receptor signaling in yeast mating pheromone response. - Alvaro, C. G. & Thorner, J. Heterotrimeric G protein-coupled receptor signaling in yeast mating pheromone response. J. Biol. Chem. 291, 7785-7798 (2016). - J. Biol. Chem. 291, 785–7798 (2016). Trueheart, J. & Fink, G. R. The yeast cell fusion protein FUS1 is O-glycosylated and spans the plasma membrane. Proc. Natl. Acad. Sci. U. S. A. 86, 9916–9920 (1989). Trueheart, J., Boeke, J. D. & Fink, G. R. Two genes required for cell fusion during yeast conjugation: evidence for a pheromone-induced surface protein. Mol. Cell. Biol. 7, 2316–2328 (1987). Lengger, B. & Jensen, M. K. Engineering G protein-coupled receptor signalling in yeast for biotechnological and medical purposes. FEMS Yeast Res. 20, 1–13 (2020). - Price, L. A., Kajkowski, E. M., Hadrock, J. R., Ozenberger, B. A. & Pausch, M. H. Functional coupling of a mammalian somatostatin receptor to the yeast pheromone response pathway. *Mol. Cell. Biol.* **15**, 6188–6195 (1995). Ostrov, N. *et al.* A modular yeast biosensor for low-cost point-of-care pathogen detection. *Sci. Adv.* **3**, e1603221 - Zhang, W. B. et al. A point mutation that confers constitutive activity to CXCR4 reveals that T140 is an inverse agonist and that AMD3100 and ALX40-4C are weak partial agonists. *J. Biol. Chem.* **277**, 24515–24521 (2002). Evans, B. J. *et al.* Expression of CXCR4, a G-Protein-Coupled Receptor for CXCL12 in Yeast. Identification of New- - Generation Inverse Agonists. *Methods in Enzymology* **460**, 399-412 (2009). 68. Li, B. *et al.* Rapid identification of functionally critical amino acids in a G protein-coupled receptor. *Nat. Methods* **4**, - 169–174 (2007). 69. Scarselli, M., Li, B., Kim, S. K. & Wess, J. Multiple residues in the second extracellular loop are critical for M₃ muscarinic acetylcholine receptor activation. *J. Biol. Chem.* 282, 7385–7396 (2007). - Fukuda, N., Ishii, J., Kaishima, M. & Kondo, A. Amplification of agonist stimulation of human G-protein-coupled receptor signaling in yeast. *Anal. Biochem.* **417**, 182–187 (2011). Kaishima, M., Ishii, J., Matsuno, T., Fukuda, N. & Kondo, A. Expression of varied GFPs in *Saccharomyces cerevisiae*: - Codon optimization yields stronger than expected expression and fluorescence intensity. *Sci. Rep.* **6**, 1–15 (2016). Nakamura, Y., Ishii, J. & Kondo, A. Bright Fluorescence Monitoring System Utilizing Zoanthus sp. Green Fluorescent Protein (ZsGreen) for Human G-Protein-Coupled Receptor Signaling in Microbial Yeast Cells. *PLoS One* **8**, e82237 (2013) - Shiroishi, M. et al. Platform for the rapid construction and evaluation of GPCRs for crystallography in Saccharomyces cerevisiae. Microb. Cell Fact. 11, 1-11 (2012) - Nehmé, R. et al. Stability study of the human G-protein coupled receptor, Smoothened. Biochim. Biophys. Acta Biomembr. 1798, 1100–1110 (2010). Noguchi, S. & Satow, Y. Purification of Human β2-Adrenergic Receptor Expressed in Methylotrophic Yeast Pichia - pastoris. J. Biochem. **140**, 799–804 (2006). 76. Mathew, E., Ding, F. X., Naider, F. & Dumont, M. E. Functional fusions of T4 lysozyme in the third intracellular loop of a G protein-coupled receptor identified by a random screening approach in yeast. Protein Eng. Des. Sel. 26, 59-71 (2013). - Shiroishi, M. et al. Production of the stable human histamine H, receptor in Pichia pastoris for structural determination. Methods 55, 281-286 (2011). - 78. Shimamura, T. et al. Structure of the human histamine H, receptor complex with doxepin. Nature 475, 65–72 (2011). - Feng, W., Cai, J., Pierce, W. M. & Song, Z. H. Expression of CB2 cannabinoid receptor in *Pichia pastoris. Protein Expr. Purif.* 26, 496–505 (2002). Kim, T. K. et al. Expression and characterization of human CB1 cannabinoid receptor in methylotrophic yeast *Pichia* - pastoris. Protein Expr. Purif. 40, 60–70 (2005). - Zhang, R. et al. Biochemical and mass spectrometric characterization of the human CB2 cannabinoid receptor expressed in Pichia pastoris-Importance of correct processing of the N-terminus. Protein Expr. Purif. 55, 225–235 - 82. Chambers, J. K. *et al.* A G protein-coupled receptor for UDP-glucose. *J. Biol. Chem.* **275**, 10767–10771 (2000). 83. Arias, D. A., Navenot, J. M., Zhang, W. B., Broach, J. & Peiper, S. C. Constitutive activation of CCR5 and CCR2 Arias, B. A., Naveriot, J. M., Zhang, W. B., Broach, J. & Pelper, S. C. Constitutive activation of CCR5 and CCR2 induced by conformational changes in the conserved TXP motif in transmembrane helix 2. J. Biol. Chem. 278, 36513–36521 (2003). Brown, N. A., Schrevens, S., van Dijck, P. & Goldman, G. H. Fungal G-protein-coupled receptors: mediators of pathogenesis and targets for disease control. Nat. Microbiol. 3, 402–414 (2018). - Huang, X. et al. Allosteric ligands for the pharmacologically dark receptors GPR68 and GPR65. Nature **527**, 477–483 (2015). - Liu, R., Van Veldhoven, J. P. D. & IJzerman, A. P. The role of the C-terminus of the human hydroxycarboxylic acid receptors 2 and 3 in G protein activation using Gα-engineered yeast cells. *Eur. J. Pharmacol.* 770, 70–77 (2016). Kajkowski, E. M., Price, L. A., Pausch, M. H., Young, K. H. & Ozenberger, B. A. Investigation of growth hormone - releasing hormone receptor structure and activity using yeast expression technologies. J. Recept. Signal Transduct. - Res. 17, 293–303 (1997). Miret, J. J., Rakhilina, L., Silverman, L. & Oehlen, B. Functional expression of heteromeric calcitonin gene-related - peptide and adrenomedullin receptors in yeast. *J. Biol. Chem.* **277**, 6881–6887 (2002). Ladds, G., Davis, K., Hillhouse, E. W. & Davey, J. Modified yeast cells to investigate the coupling of G protein-coupled receptors to specific G proteins. *Mol. Microbiol.* **47**, 781–792 (2003). - 90. Bass, R. T. et al. Identification and characterization of novel somatostatin antagonists. Mol. Pharmacol. 50, 709-715 1996) - 91. Baranski, T. J. et al. C5a Receptor Activation face other helices in a modeled seven-helix bundle. Biochemistry 274, 15757-15765 (1999) - Kokkola, T. et al. Mutagenesis of human Mel(1a) melatonin receptor expressed in yeast reveals domains important for receptor function. Biochem. Biophys. Res. Commun. 249, 531–536 (1998). - Campbell, R. M. et al. Selective A, adenosine receptor antagonists identified using yeast Saccharomyces cerevisiae functional assays. *Bioorganic Med. Chem. Lett.* **9**, 2413–2418 (1999). 94. Niebauer, R. T., Gao, Z. G., Li, B., Wess, J. & Jacobson, K. A. Signaling of the human P2Y1 receptor measured by - a yeast growth assay with comparisons to assays of phospholipase C and calcium mobilization in 1321N1 human - a yeast growth assay with companions to assays of phospholipase C and calcium mobilization in 1321N1 human astrocytoma cells. *Purinergic Signal.* 1, 241–247 (2005). Sachpatzidis, A. *et al.* Identification of allosteric peptide agonists of CXCR4. *J. Biol. Chem.* 278, 896–907 (2003). Brown, A. J. *et al.* The orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids. *J. Biol. Chem.* 278, 11312–11319 (2003). - Overton, H. A. *et al.* Deorphanization of a G protein-coupled receptor for oleoylethanolamide and its use in the discovery of small-molecule hypophagic agents. *Cell Metab.* 3, 167–175 (2006). Brown, A. J. Novel cannabinoid receptors. *Br. J. Pharmacol.* 152, 567–575 (2007). Overton, H. A., Fyfe, M. C. T. & Reynet, C. GPR119, a novel G protein-coupled receptor target for the treatment of type 2 diabetes and obesity. *Br. J. Pharmacol.* 153, 76–81 (2008). Stewart, G. D., Sexton, P. M. & Christopoulos, A. Detection of novel functional selectivity at M. muscarinic - 100. Stewart, G. D., Sexton, P. M. & Christopoulos, A. Detection of novel functional selectivity at M₃ muscarinic acetylcholine receptors using a saccharomyces cerevisiae platform. ACS Chem. Biol. 5, 365–375
(2010). 101. Pausch, M. H. et al. Functional expression of human and mouse P2Y12 receptors in Saccharomyces cerevisiae. Biochem. Biophys. Res. Commun. 324, 171–177 (2004). 102. Gearing, K. L. et al. Complex chimeras to map ligand binding sites of GPCRs. Protein Eng. 16, 365–372 (2003). 103. Klco, J. M., Nikiforovich, G. V. & Baranski, T. J. Genetic analysis of the first and third extracellular loops of the C5a receptor reveals an essential WXFG motif in the first loop. J. Biol. Chem. 281, 12010–12019 (2006). 104. Nekroura, Y. Lehii, I. & Kondo, A. Applications of weat based signaling sones for characterization of antagonist. - 104. Nakamura, Y., Ishii, J. & Kondo, A. Applications of yeast-based signaling sensor for characterization of antagonist and analysis of site-directed mutants of the human serotonin 1A receptor. *Biotechnol. Bioeng.* 112, 1906–1915 (2015) - 105. Scott, B. M. et al. Coupling of human rhodopsin to a yeast signaling pathway enables characterization of mutations associated with retinal disease. Genetics 211, 597–615 (2019). - 106. Ishii, J. et al. Microbial fluorescence sensing for human neurotensin receptor type 1 using Gα-engineered yeast - cells. *Anal. Biochem.* **446**, 37–43 (2014). 107. Nakamura, Y., Ishii, J. & Kondo, A. Construction of a yeast-based signaling biosensor for human angiotensin II type 1 receptor via functional coupling between Asn295-mutated receptor and Gpa1/Gi3 chimeric Ga. Biotechnol. Bioeng. - 111, 2220–2228 (2014). 108. Ault, A. D. & Broach, J. R. Creation of GPCR-based chemical sensors by directed evolution in yeast. *Protein Eng. Des. Sel.* 19, 1–8 (2006). 109. Marrakchi, M., Vidic, J., Jaffrezic-Renault, N., Martelet, C. & Pajot-Augy, E. A new concept of olfactory biosensor based on interdigitated microelectrodes and immobilized yeasts expressing the human receptor OR17-40. *Eur.* Biophys. J. 36, 1015-1018 (2007). - Biophys. J. 36, 1015–1018 (2007). 110. Jockers, R. et al. Species difference in the G protein selectivity of the human and bovine A₁-adenosine receptor. J. Biol. Chem. 269, 32077–32084 (1994). 111. Palmer, T. M., Gettys, T. W. & Stiles, G. L. Differential interaction with and regulation of multiple G-proteins by the rat A₃ adenosine receptor. J. Biol. Chem. 270, 16895–16902 (1995). 112. Freund, S., Ungerer, M. & Lohse, M. J. A, adenosine receptors expressed in CHO-cells couple to adenylyl cyclase and to phospholipase C. Naunyn. Schmiedebergs. Arch. Pharmacol. 350, 49–56 (1994). 113. Zhou, Q.-Y. et al. Molecular cloning and characterization of an adenosine receptor: the A₃ adenosine receptor. Proc. Natl. Acad. Sci. 89, 7432–7436 (1992). 114. Schulte, G. & Fredholm, B. B. The Gs-coupled adenosine A₂₈ receptor recruits divergent pathways to regulate ERK1/2 and p38. Exp. Cell Res. 290, 168–176 (2003). 115. HIRANO, D. et al. Functional coupling of adenosine A₂₉ receptor to inhibition of the mitogen-activated protein kinase - 115. HIRANO, D. et al. Functional coupling of adenosine A₂ receptor to inhibition of the mitogen-activated protein kinase cascade in Chinese hamster ovary cells. Biochem. J. 316, 81–86 (1996). 116. Yaar, R., Jones, M. R., Chen, J.-F. & Ravid, K. Animal models for the study of adenosine receptor function. J. Cell. Physiol. 202, 9–20 (2005). 117. Palmer, T. M. & Stiles, G. L. Adenosine receptors. Network Medical Stiles, 1995. - 118. Fredholm, B. B., IJzerman, A. P., Jacobson, K. a, Klotz, K. N. & Linden, J. International Union of Pharmacology, XXV. - Nomenclature and classification of adenosine receptors. Pharmacol. Rev. 53, 527-52 (2001) - 119. Glukhova, A. et al. Structure of the Adenosine A, Receptor Reveals the Basis for Subtype Selectivity. Cell 168, 867-877.e13 (2017) - 120. Dunwiddie, T. V. The Physiological Role of Adenosine In The Central Nervous System. Int. Rev. Neurobiol. 27. 63-139 (1985). - 121. Johnston, J. B. et al. Diminished adenosine A, receptor expression on macrophages in brain and blood of patients - with multiple sclerosis. *Ann. Neurol.* **49**, 650–658 (2001). 122. Nascimento, F. P. *et al.* Adenosine A, Receptor-Dependent Antinociception Induced by Inosine in Mice: Pharmacological, Genetic and Biochemical Aspects. *Mol. Neurobiol.* **51**, 1368–1378 (2015). - De Mendonça, A. & Ribeiro, J. A. Influence of metabotropic glutamate receptor agonists on the inhibitory effects of adenosine A, receptor activation in the rat hippocampus. *Br. J. Pharmacol.* 121, 1541–1548 (1997). De Lera Ruiz, M., Lim, Y. H. & Zheng, J. Adenosine A_{2A} receptor as a drug discovery target. *J. Med. Chem.* 57, - 3623-3650 (2014). - 125. Fredholm, B. B., Irenius, E., Kull, B. & Schulte, G. Comparison of the potency of adenosine as an agonist at human adenosine receptors expressed in Chinese hamster ovary cells. *Biochem. Pharmacol.* **61**, 443–8 (2001). - 126. El Yacoubi, M., Costentin, J. & Vaugeois, J.-M. Adenosine A., receptors and depression. Neurology 61, Ś82 LP-S87 (2003). 127. Klotz, K. N. Adenosine receptors and their ligands. *Naunyn. Schmiedebergs. Arch. Pharmacol.* **362**, 382–391 - (200Ó). - (2000). (2000). (28 Franco, R. et al. Partners for adenosine A, receptors. J. Mol. Neurosci. 26, 221–231 (2005). (29 Fredholm, B. B. Adenosine receptors as drug targets. Exp. Cell Res. 316, 1284–1288 (2010). (30 Borea, P. A., Gessi, S., Merighi, S., Vincenzi, F. & Varani, K. Pharmacology of Adenosine Receptors: The State of the Art. Physiol. Rev. 98, 1591–1625 (2018). (31. Gessi, S., Merighi, S., Sacchetto, V., Simioni, C. & Borea, P. A. Adenosine receptors and cancer. Biochim. Biophys. Acta 1808, 1400–1412 (2011). (32 Merighi, S. et al. A clarge at adenosine receptors: povel target for antitumor therapy. Pharmacol. Ther. 100, 31–48. - 132. Merighi, S. et al. A glance at adenosine receptors: novel target for antitumor therapy. Pharmacol. Ther. 100, 31-48 (2003). - 133. Sek, K. et al. Targeting Adenosine Receptor Signaling in Cancer Immunotherapy. Int. J. Mol. Sci. 19, 3837 (2018). - 134. Stewart, G. D. et al. Determination of adenosine A, receptor agonist and antagonist pharmacology using Saccharomyces cerevisiae: Implications for ligand screening and functional selectivity. J. Pharmacol. Exp. Ther. - Saccharomyces cerevisiae: Implications for ligand soldering and 331, 277–286 (2009). 135. Peeters, M. C. *et al.* The role of the second and third extracellular loops of the adenosine A₁ receptor in activation and allosteric modulation. *Biochem. Pharmacol.* 84, 76–87 (2012). 136. Bertheleme, N., Strege, A., Bunting, S. E., Dowell, S. J. & Byrne, B. Arginine 199 and Leucine 208 have key roles in the control of adenosine A₂ receptor signalling function. *PLoS One* 9, 1–7 (2014). 137. Liu, R., Groenewoud, N. J. A., Peeters, M. C., Lenselink, E. B. & IJzerman, A. P. A yeast screening method to decipher the interaction between the adenosine A_{2B} receptor and the C-terminus of different G protein α-subunits. *Purioratic Signal* 10, 441–453 (2014). - Purinergic Signal. 10, 441–453 (2014). 138.Liu, R., Nahon, D., le Roy, B., Lenselink, E. B. & IJzerman, A. P. Scanning mutagenesis in a yeast system delineates the role of the NPxY(x)5,6F motif and helix 8 of the adenosine A_{2B} receptor in G protein coupling. *Biochem.* Pharmacol. 95, 290-300 (2015). - 139.Li, Q. et al. ZM241385, DPCPX, MRS1706 Are Inverse Agonists with Different Relative Intrinsic Efficacies on Constitutively Active Mutants of the Human Adenosine A₂₈ Receptor. J. Pharmacol. Exp. Ther. 320, 637–645 (2007). 140. Peeters, M. C. et al. GPCR structure and activation: an essential role for the first extracellular loop in activating the - adenosine A_B, receptor. *FASEB J.* **25**, 632–43 (2011). 141. Peeters, M. C. *et al.* Domains for activation and inactivation in G protein-coupled receptors A mutational analysis - of constitutive activity of the adenosine A₂₈ receptor. *Biochem. Pharmacol.* **92**, 348–357 (2014). 142. Butz, J. A., Niebauer, R. T. & Robinson, A. S. Co-expression of molecular chaperones does not improve the heterologous expression of mammalian G-protein coupled receptor expression in yeast. *Biotechnol. Bioeng.* **84**, 292–304 (2003). - 143. Niebauer, R. T., Wedekind, A. & Robinson, A. S. Decreases in yeast expression yields of the human adenosine A_{2a} receptor are a result of translational or post-translational events. *Protein Expr. Purif.* **37**, 134–143 (2004). - 144. Niebauer, R. T. & Robinson, A. S. Exceptional total and functional yields of the human adenosine (A_{2a}) receptor expressed in the yeast *Saccharomyces cerevisiae*. *Protein Expr. Purif.* 46, 204–211 (2006). 145. O'Malley, M. A., Lazarova, T., Britton, Z. T. & Robinson, A. S. High-level expression in *Saccharomyces cerevisiae* - enables isolation and spectroscopic characterization of functional human adenosine A2a receptor. J. Struct. Biol. **159**, 166-178 (2007) - 146. Hino, T. et al. G-protein-coupled receptor inactivation by an allosteric inverse-agonist antibody. Nature 482, 237–240 - 147. Jamshad, M. *et al.* G-protein coupled receptor solubilization and purification for biophysical analysis and functional studies, in the total absence of detergent. *Biosci. Rep.* **35**, 1–10 (2015). - 148. Grime, R. L. et al. Single molecule binding of a ligand to a G-protein-coupled receptor in real time using fluorescence correlation spectroscopy, rendered possible by nano-encapsulation in styrene maleic acid lipid particles. *Nanoscale* 12, 11518–11525 (2020). - 149. Routledge, S. J. et al. Ligand-induced conformational changes in a SMALP-encapsulated GPCR. Biochim. Biophys. Acta Biomembr. 1862, 183235 (2020). 150. Jain, A. R. & Robinson, A. S. Functional Expression of Adenosine A₃ Receptor in Yeast Utilizing a Chimera with the - A₂₄R C-Terminus. Int. J. Mol. Sci. 21, 4547 (2020). - 151. Wang, X. et al. Characterization of cancer-related somatic mutations in the adenosine A₂₈ receptor. Eur. J. Pharmacol. 880, 173126 (2020). - 152. Ballesteros, J. A. & Weinstein, H. Integrated methods for the
construction of three-dimensional models and computational probing of structure-function relations in G protein-coupled receptors. in *Methods in Neurosciences* 25, 366–428 (1995).