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Frequent or chronic reduction in heart rate variability (HRV) is a powerful predictor of
cardiovascular disease, and psychological stress has been suggested to be a co-
determinant of this reduction. Recently, we evaluated various methods to measure
additional HRV reduction in everyday life and to relate these reductions to psychological
stress. In the current paper, we thoroughly evaluate these methods and add two new
methods in both newly acquired and reanalyzed datasets. All of these methods use
a subset of 24 h worth of HRV and movement data to do so: either the first 10 min
of every hour, the full 24 h, a combination of 10 min from three consecutive hours, a
classification of level of movement, the data from day n to detect episodes in day n
+ 1, or a range of activities during lab calibration. The method that used the full 24 h
worth of data detected the largest percentage of episodes of reduced additional HRV
that matched with self-reported stress levels, making this method the most promising,
while using the first 10 min from three consecutive hours was a good runner-up.

Keywords: additional HRV, psychological stress, worry, cardiovascular disease, heart rate variability

INTRODUCTION

With cardiovascular disease being the dominant cause of death in the world (Alwan, 2011), studying
predictors of this serious ailment is imperative. The development of cardiovascular disease can be
powerfully predicted by frequent or chronic reductions in the variation of time between successive
heart beats (i.e., by reductions in so-called heart rate variability or HRV; Bosma et al., 1998; Orth-
Gomér et al., 2000; Matthews and Gump, 2002; Rosengren et al., 2004; Kivimäki et al., 2006) as well
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as to precede the development of several risk factors, like
hypertension, high cholesterol, diabetes, and immunological
markers of pathogenic states (Thayer and Lane, 2007; Thayer
et al., 2010; Jarczok et al., 2019). The risk of negative
cardiovascular events may be increased by as much as 32–
45% by low HRV (Hillebrand et al., 2013) and a potential
cause of such HRV reductions may be prolonged exposure to
psychological stress (McEwen, 2001). Stress can be considered
to be a complicated, multidimensional phenomenon that may
be strongly related to the consistency of a person’s emotional
response to life events (e.g., with happiness, anger, etc.,
Lazarus, 1993).

The relationship between stress and changes in physiological
parameters that are not due to changes in physical activity was
demonstrated first by Blix et al. (1974) in helicopter pilots during
take-off. Our lab has recently developed a technique to detect
episodes of reduced HRV in ambulatory participants (Verkuil
et al., 2016), and to relate these physiological episodes to the
participants’ self-reported episodes of psychological stress and
worrying (Verkuil et al., 2016; Brown et al., 2018). We had
participants wear an ECG sensor for 24 h, as they went about
their daily doings. Each experimental session started with a
short calibration period in the lab, during which participants
engaged in four classes of energy-expending physical activity
that might also be performed during a regular day: standing,
cycling, climbing stairs, and lying down. The participants’ HRV
was measured during each of these classes of activity. We used
these data to compute an HRV baseline during various levels
of physical activity1. Some studies have excluded all periods
of high physical activity (Brosschot et al., 2007; Pieper et al.,
2007, 2010), and/or have identified epochs of non-movement
by using accelerometer readings (Sowder et al., 2010), but the
interrelatedness of activity levels and HRV (Rennie et al., 2003)
makes it imperative to take levels of physical activity into
account when studying HRV. Research has consistently shown
that during episodes of physical activity, heart rate increases
are associated with HRV decreases (for an extensive review, see
Michael et al., 2017). A number of other factors influence HRV
(reviewed in Fattison et al., 2016), and we therefore only include
participants who neither smoked, nor were on antihypertensive
or cardiological medication like beta-blockers (also see the
Discussion). Our approach enabled us to estimate the amount of
HRV that is not due purely to physical activity (i.e., additional
physiology, in the current study, HRV: the term additional was
coined by Blix et al., 1974) and this, in turn, allowed us to examine
the relationship between psychological factors such as stress and
emotions and physiological activity.

In the Verkuil et al. (2016) study, the HRV and physical
activity data that were collected during a calibration period
in the lab, were used to compute personalized algorithms for
each participant, which could then be utilized to detect episodes
associated with reductions in additional HRV. Given that these
episodes of reduced additional HRV were not associated with
concurrent levels of movement, they can therefore considered

1By physical activity, we mean bodily movement of various intensities (e.g., casual
walking vs. climbing stairs).

to be related to psychological stress (Myrtek et al., 2005).
Furthermore, participants were prompted hourly to fill out
some questionnaires on mobile phones while wearing their ECG
sensors. The questionnaires assessed whether participants had
experienced stress or worry during the previous hour, enabling
us to associate physiological stress markers and psychological
stress markers.

Techniques to estimate additional physiology are involved
methods that have only occasionally been used in ambulatory
emotion-related studies; furthermore, heart rate was typically
studied instead of HRV and, crucially, no individualized
algorithms were utilized (Myrtek and Brügner, 1996; Myrtek,
2004; Myrtek et al., 2005; Ebner-Priemer et al., 2007; Prill and
Fahrenberg, 2007). Verkuil et al. (2016) developed a two-step
process to detect episodes of additional HRV reductions: first,
the relationship between HRV and movement (i.e., walking,
cycling, etc., all expressed as acceleration) was formalized by
fitting an inverse regression model to the data that were acquired
during the calibration period. This was done separately for each
participant. The obtained model parameters were then utilized to
detect episodes of reduced additional HRV (see below, as well as
Verkuil et al., 2016, for more detail). In a follow-up study, we then
related these episodes of reduced additional HRV to episodes of
worry or stress that were self-reported by participants (Brown
et al., 2018). In the same study, we explored alternative methods
to that used by Verkuil et al. (2016). All of these methods,
which are detailed in the “Materials and Methods” section
below, are based on a similar principle: the construction of an
inverse regression model that quantifies the relationship between
HRV and movement. However, these alternative methods use
different subsets of the data to compute those inverse regression
models. For example, instead of using data obtained during a
calibration phase, as Verkuil et al. (2016) did, in one of our
alternative methods, we used the first 10 min worth of data
from every available hour to create our inverse regression model.
One alternative method seemed particularly promising: simply
using all available data (in the Verkuil et al., 2016, study, that
yielded 24 h worth of data) for a given participant led to a
considerably better match between physiological episodes of
reduced additional HRV and self-reported psychological episodes
of worry and stress than using the data from the lab calibration.

We have evaluated these alternative methods by reanalyzing
data and found promising results, so further tests on a dataset
that was acquired for that specific purpose was in order. We have
therefore acquired data for six participants, who were subjected
to three 24 h test sessions. Not only did this allow us to test our
methods on a dedicated dataset, but it also allowed us to evaluate
two more methods to further explore the optimal method to
estimate reductions in additional HRV. First of all, we have added
a class of activity to Verkuil et al. (2016) calibration phase in the
lab: participants were required to read a complicated text out loud
and they had to clench their fists and tense their shoulders for 3
min. We expected that reading out loud while the experimenter
listened would evoke feelings of stress in the participants, while
clenching their fists and tensing their shoulders might reduce
their HRV, which is common for such isometric activity (i.e.,
clenching muscles without actually moving; Stewart et al., 2007).
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Incorporating this “stress-induction” class of activity into the lab
calibration phase may therefore improve the sensitivity to detect
episodes of reduced additional HRV in the method that used
lab calibration data. Having access to 72 h worth of data for
every participant allowed us to introduce and explore one further
method: it might be possible to use the data of day n to detect
episodes of reduced additional HRV in day n + 1. This method
has the advantage of avoiding “double dipping” into the data by
using an inverse regression model that was established on one
dataset (i.e., one 24 h period) to detect episodes in another dataset
(i.e., another 24 h period) of the same participant.

Given the modest sample size of the current study—although
the results were clear and in line with earlier work—we have also
reanalyzed a dataset from our lab, which also included 72 h worth
of data for participants (Versluis et al., 2018). However, we were
unable to test all of our hypotheses in this dataset alone, as the
participants in this dataset were not subjected to the laboratory
calibration phase that was used by Verkuil et al. (2016).

The goal of the current paper is to further explore the
optimal way to study and quantify the relationship between
additional HRV reductions and movement, to learn more about
this powerful and important predictor of cardiovascular disease.
We will compare the performance of the various methods in a
number of ways and, crucially, we will determine which of the
methods is best able to detect episodes of reduced additional
HRV, as demonstrated by a high correspondence between
such method-identified physiological episodes and participant-
reported episodes of psychological stress and worrying. Given our
previous findings, we expect the method that used all available
data for a given session to perform best. The method that used
the first 10 min of three consecutive hours may also perform well,
based on previous findings. Our two new methods (extended lab
calibration that incorporated stress induction and using the data
of day n to detect episodes of reduced additional HRV in day
n+ 1) may, in turn, outperform these two methods.

MATERIALS AND METHODS

Study Design
We reanalyzed one dataset (Versluis et al., 2018, institutional
review board approval number 4689348773) and we acquired
data from six new participants to evaluate a number of methods
to optimally detect episodes of reductions in additional HRV.

Setting
Participants for the new dataset were tested at Leiden University
in 2015 and 2016. Participants were recruited via posters in
the building and through Leiden University’s digital participant
recruitment system. For the Versluis et al. (2018) dataset,
please see the section “Materials and Methods” section in the
relevant paper.

The six new participants we tested for this study were invited
into the lab, were fitted with an ECG sensor, mounted on a
chest strap, and were provided with an Android-based Motorola
Razr cell phone which prompted them once an hour, at random
moments within that hour, to fill out a set of psychological

questionnaires about whether they had experienced stress and
worry during the past hour, and how long these episodes
had lasted (for more information, see Verkuil et al., 2016,
whose procedure was followed). Participants then undertook
the following types of (physical) activity, without breaks in
between: (1) sitting down for 3 min while watching a relaxing
video; (2) standing up for 3 min while counting in steps of
two (to keep participants’ minds off of ruminating); (3) lying
down for 3 min while counting in steps of two; (4) cycling
on a stationary bike for 3 min; (5) sitting down, clenching
one’s fists and tensing the shoulders for 3 min; (6) reading
a text on the history of Leiden University out loud for 3
min, while the experimenter listened; (7) climbing four flights
of stairs (63 steps). Two types of activity were added to the
Verkuil et al. (2016) lab calibration: clenching one’s fists and
tensing the shoulders, which was expected to reduce HRV, and
reading a complicated text out loud, which was expected to
evoke feelings of stress. After engaging in all of these types of
activity, participants were sent home, with instructions to wear
the ECG monitor for 24 h and fill in the hourly questionnaires on
the smartphones.

Participants
We tested six participants (four females, mean age 26.5
years), who were each subjected to three 24-h test sessions.
Unfortunately, one 24-h dataset was not recorded by the ECG
sensor due to technical reasons; this left us with five complete
72-h datasets and one dataset of 48 h. We have included the
participant for whom we had 48 h worth of data in our analyses
and considered one 24 h dataset to be statistically “missing
data” that were not replaced. We have also reanalyzed data
from Versluis et al. (2018). Due to technical reasons which
have resulted in noisy data, we were only able to analyze
5 participants from the control condition of the study from
Versluis et al. (2018) (all females, mean age 26 years), which
obviously limits the power of the concomitant analyses; we
consider this to be a set of exploratory analyses. All participants
signed informed consent before being included and they
were financially compensated according to Leiden University’s
policy for the remuneration of participants. For both studies,
participants who smoked, or who were on antihypertensive or
cardiological medication (like beta-blockers) were not allowed to
participate in the studies.

Variables
In the current study, we have evaluated six alternative methods
to the additional HRV detection method that was described
by Verkuil et al. (2016). All of these methods used a similar
approach: an inverse regression model was fitted for every
individual to quantify the relationship between HRV, expressed
as the root mean squares of successive differences, RMSSD2,

2There are multiple methods to estimate HRV either in the time or frequency
domains. We selected this specific method because it is commonly used (Task
Force of The European Society of Cardiology and The North American Society
of Pacing, and Electrophysiology, 1996; Berntsen et al., 2017, p. 196) and recently,
single RMSSD values were shown to be powerful predictors of health risk factors
in a very large sample (Jarczok et al., 2019).
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and movement, which was expressed as acceleration in g (the
averaged acceleration in three axes), according to Eq. 1.

Expected RMSSDi,j = B0i +
B1i

accelerationi,j
(1)

In this inverse regression model, an expected RMSSD value
for participant i at 30-s sampling interval j was computed as the
sum of the value of RMSSD while no acceleration was present
(i.e., the intercept, B0i) and the change in RMSSD that was due to
acceleration (i.e., the slope, B1i). The standard error of the mean
of RMSSD was also computed, to be used in later computations
(see section “Data Sources/Measurement” below).

RMSSD was computed for 30-s intervals throughout the
entire 24-h test session and was then averaged over samples that
spanned different amounts of time, depending on the particular
method used (see below). g, as used in this study, has been
demonstrated to be a valid method to measure movement,
especially walking, jogging, sitting, and lying down (Lugade
et al., 2014). We then fitted the inverse regression model to
a subset of all the data points that were available for a given
participant; for example, Verkuil et al. (2016) fitted such a model
to the HRV and movement data that were acquired during
a laboratory calibration period while participants performed
various activities. The parameters from these regression models
were then utilized, for each individual participant, to predict HRV
levels as a function of movement levels. Whenever actual HRV
levels fell two standard errors below predicted HRV levels, and
such a difference lasted at least 7.5 consecutive minutes3, we
considered this to represent an episode of decreased additional
HRV (formulae are presented in Verkuil et al., 2016). In line with
Verkuil et al. (2016), if multiple such episodes were identified
within a given hour, we only used the first episode that was
detected within that hour in further analyses.

Data Sources/Measurement
All 24-h ECG data and movement data were collected with
an ecgMove sensor (ECGMove 3, Movisens, GmbH, Karlsruhe,
Germany). Data were processed offline in Movisens Data-
Analyzer version 1.12 (preprocessing and artifact rejection were
described in Verkuil et al., 2016); the Data-Analyzer software
uses automated algorithms to detect and remove artifacts in
the data. Data were then analyzed in MATLABTM (MathWorks,
Natick, Massachusetts). Analysis scripts are available from the
corresponding author. The methods that were used to detect
episodes of reduced additional HRV are described next.

Method 1: First 10 Min of Every Hour
This method, described previously in Brown et al. (2018),
computed inverse regression models based on the first 10 min

3The Verkuil et al. method was developed in a first attempt to identify episodes of
reduced additional HRV in an ambulatory setting, and it has guided the current
work. Requiring actual HRV to be two standard errors below the predicted HRV
for 7.5 min is a carefully considered but potentially seemingly arbitrary decision.
Verkuil et al. reasoned that two standard errors would provide a pronounced
enough difference between the two variables, and that 7.5 min would be enough
time to qualify a period as representing worrying or stress. For a discussion of
these decisions, see Brown et al. (2018).

of every hour for which data were collected. For example, this
yielded 24 separate inverse regression models if 24 h worth of data
were available. Episodes of reduced additional HRV (see above)
were detected for every hour, using the model parameters for that
specific hour. An advantage of this method is that episodes of
reduced additional HRV within a given hour were detected with
a model that was based on data from that specific hour. This
“double dipping” is also this method’s disadvantage: (part of) the
data from hour n were used to detect additional HRV episodes
in hour n. Such episodes were also looked for in the first 10 min
of data, which was the time period used to construct the inverse
regression model that was utilized for this detection process in the
first place. Nevertheless, this appears to be a fairly minor concern:
should an episode of reduced additional HRV be identified in the
first 10 min of a given hour, then there seems to be no empirical
reason to question whether a person actually experienced worry
or stress during those 10 min (also see section “Discussion”).

Method 2: Full Dataset
This method used the entire period for which data were collected
during a given test session to compute an inverse regression
model. For example, if 24 h worth of data were available, a single
inverse regression model was computed, based on that entire
24-h period. The parameters from this model were then used
to identify episodes of reduced additional HRV separately for
every hour in that dataset. The inverse regression models in this
method are based on a large number of data points, rendering
these models more robust than models based on just 10 min
worth of data, which is an advantage this method offers. This
advantage is slightly offset by the levels of movement and HRV
being averaged over the total available time period and them not
being modeled separately for each hour. This method has been
described previously in Brown et al. (2018).

Method 3: First 10 Min of Three Consecutive Hours
As discussed previously in Brown et al. (2018), this method
computed an inverse regression model based on the first 10 min
worth of data for three consecutive hours, which allowed us to
compensate for fluctuations over time in movement or HRV.
In this method, every regression model was therefore based on
30 min worth of data. The inverse regression models for the first
and last hours of a dataset were based on the first 10 min of the
first and second hours of the dataset and on the first 10 min of
the penultimate and final hours, respectively. So, if 24 h worth of
data were available, we computed 24 separate inverse regression
models. An advantage of this method is that changes in HRV or
movement levels over three consecutive hours were taken into
account. Furthermore, the inverse regression models were based
on an average of the first 10 min of three consecutive hours,
which leads to more reliable model parameter estimations than
10 using only 10 min worth of data would (cf. Method 1, above).
However, using HRV and movement data from three consecutive
hours is also a disadvantage: more data may be used to compute
inverse regression models, but movement and HRV levels are
autocorrelated over time, which would reduce variation in these
levels over three consecutive hours.
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Method 4: Movement Level Bins
This method, discussed previously in Brown et al. (2018),
used the natural variation in a participant’s movement levels
throughout the day. We therefore binned movement data based
on quartiles that were defined per participant, thus creating four
bins that classified levels of movement that ranged from relatively
very low to relatively very high. Each bin contained 5 consecutive
minutes’ worth of data: a participant’s level of movement within
these 5 min had to be in between two quartiles to be assigned
to a specific bin. Given our desire to identify all four bins for
as large a number of participants as possible, we chose to base
bins on periods of five consecutive minutes; making bins wider
(i.e., encompassing more time), would attenuate the number
of participants for whom all four bins could be identified (see
below). Our analysis was restricted to the 5 min bin of every
movement class that occurred first. For example, if four clusters of
quartile-1 movement were identified for a given participant, only
the first cluster was used in subsequent analyses, so that each bin
contained the same amount of data for each participant (e.g., not
5 min for one participant and 80 min for another participant).
Inverse regression models were based on all available quartile
data, so a maximum of 20 min worth of data. By representing four
levels of movement in the inverse regression models, this method
takes variations in an individual’s movement into account, which
is an advantage that is not offered by methods that only use
the data from the first 10 min of every hour, which are, of
course, unlikely to contain each possible level of movement by
mere chance. Another advantage of this method is that it only
requires the computation of a single inverse regression model, as
opposed to methods that require models for every hour of data.
Unfortunately, not all four bins could be identified in one of the
six newly tested participants. Of course, this participant did have
movement data that fell between two quartiles, but s/he simply
did not have 5 consecutive minutes’ worth of such data. However,
the other three bins could be identified in this participant,
yielding 15 min worth of data that were usable to compute an
inverse regression model. The same applied to the five reanalyzed
participants from the Versluis et al. dataset. In a way, this activity
bin method is comparable to the laboratory-based method of
Verkuil et al. (2016), which was based on four predetermined
physical activity categories: lying down, standing, cycling and
climbing stairs. However, the activity bin method it is data-driven
and does not depend on a laboratory-based calibration data,
which might not be available to interested researchers, and this
renders the activity bin method more versatile.

Method 5: Extended Calibration
This method is highly comparable to the original method by
Verkuil et al. (2016): we computed an inverse regression model
on the data acquired during the lab calibration, but we added
two types of activity: reading a complicated text out loud and
clenching one’s fists while tensing one’s shoulders. We expected
these two activities to be stressful and to lower HRV, respectively.
Therefore, adding these two types of activity may lead to the
formulation of a model that has a better fit than Verkuil et al.
(2016) original models, as (simulated) stress and an HRV-
lowering procedure are now also included in the calibration

phase. A disadvantage of this method is that it is difficult to
find a text that is difficult to read for all participants; although
most of our participants stumbled over such words as “string
galvanometer” and the Latin names of ancient professors (e.g.,
Jacobus Arminius, Daniel Heinsius, etc.), other participants read
through these texts with few issues.

Method 6: Next-Day Prediction
An important question following the work that was reported by
Brown et al. (2018) was whether it might be possible to use the
inverse regression model of day n to identify episodes of reduced
additional HRV in day n + 1. This method was performed on a
subset of all available data: we used all the data for a participant’s
first testing day to detect episodes of reduced additional HRV in
his or her second day, and all the data from his or her second
day to detect episodes in the third day. The advantage of this
method is that there is no double dipping into the data, as the
model used to detect episodes of reduced additional HRV in a
given day is based on data from a completely different day. The
obvious disadvantage was that no episodes of reduced additional
HRV could be detected in the first test session (n), because that
would require an inverse regression model to be computed for
day n – 1; theoretically, one could use the data from, for example,
the last testing day for that purpose. Given our specific interest in
the efficacy of “next-day” predictions, we have not explored that
option further (cf. section “Discussion”).

Episodes Detected During Sleep
Occasionally, our methods identified episodes of decreased
additional HRV during a participant’s sleep. If actual measured
HRV is well below expected HRV levels, this can happen,
but clearly, such a phenomenon cannot be due to conscious
psychological stress during a participant’s sleep. Having said that,
for methods in which the inverse regression model was calculated
based on data acquired during waking periods, these episodes
of decreased additional HRV may have meaning, given that an
association between low sleeping HRV and preceding stress has
been reported (e.g., Hall et al., 2004; Brosschot et al., 2007). This
relationship has been suggested to reflect unconscious stress-
related cognition (Brosschot, 2010; Brosschot et al., 2010). Given
that nocturnal HRV was not the primary focus of this paper, we
have chosen not to include such episodes in our analyses.

Bias
Given that there was no experimental manipulation in this study,
experimenter bias toward participants was minimized. Given that
all analyses were automatized through scripts, and the outcome
variables were the number of episodes of reduced additional
HRV that were detected by those scripts, experimenter bias and
subjectivity were minimized.

Study Size
Following the work reported by Brown et al. (2018), we
continue to explore and refine our methods to detect episodes of
reduced additional HRV. Our choice of sample size reflects this
exploratory nature (also see the Discussion).
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Quantitative Variables
The handling of quantitative variables was described in detail
under Data sources/management.

Statistical Methods
The current paper’s objective was to evaluate the efficacy of the
six methods described above in detecting episodes of reduced
additional HRV. To this end, we have compared these methods
in three ways, following the strategy introduced in Brown et al.
(2018). Two of these comparisons served to demonstrate the
variation in number of episodes of reduced additional HRV that
was identified by each method. Firstly, to explore the variation
in numbers of identified episodes of reduced additional HRV,
we compared the number of episodes each method detected by
using repeated-measures analyses of variance (ANOVAs) with test
day and the different additional HRV estimation method (e.g.,
first 10 min of every hour, etc.) as within-subjects factors. We
then computed Pearson correlations between the numbers of
episodes that were detected in three 24 h periods, to test the
temporal reliability of these methods. These two analyses have
been performed for both datasets analyzed here.

In our newly acquired data, participants reported once an
hour whether they had been stressed or worried during the
past hour. We then performed a vital analysis, in which the
onsets of participants’ self-reported episodes of psychological
stress and worry were compared to the onsets of the episodes
of reduced additional HRV that were identified by each of the
methods. The first two analyses charted the distribution of the
number of physiological episodes of reduced additional HRV
that the different methods identified, as well as the temporal
reliability of each method, but this key comparison revealed
true episodes of reduced additional HRV by demonstrating
to what extent these physiological events matched up with
psychological events of stress and worry. We have therefore
computed, separately for every method and for every available
hour worth of data, the percentage of participants that had
matches between episodes of reduced additional HRV and self-
reported stress and worry episodes. We then calculated the
average percentage of such matches within a given method. These
three comparisons are expected to assess the quality of each of the
methods discussed here and to ascertain which of these methods
seems to be the best alternative to the laboratory calibration
method presented by Verkuil et al. (2016).

RESULTS

Reanalysis of Versluis and Colleagues
Data
As there was no calibration phase in the study by Versluis et al.
(2018), we utilized four methods to identify episodes of additional
HRV: we used the first 10 min of every hour, the full dataset of
24 h, the method that used a combination of the first 10 min
of three consecutive hours, and the method that used activity
type bins. Some methods identified more reduced additional
HRV-episodes than others, as presented in Table 1.

TABLE 1 | Mean number of additional HRV episodes (SD) identified in three test
days of 24 h each.

First 10 min of
every hour

Full 24 h of
first test day

First 10 min
of 3 h

Activity
type bins

T1 9.6 (2.6) 16.4 (2.1) 12.4 (1.1) 5.2 (3.3)

T2 7.8 (3.7) 14.6 (3.1) 12.8 (2.9) 11.0 (6.1)

T3 6.8 (1.9) 13.6 (2.0) 10.4 (1.1) 14.0 (2.5)

X 8.1 14.9 11.9 10.1

Calibration time period was also included in detection periods. Every method
detected additional HRV episodes in all five analyzed participants.

A repeated-measures ANOVA with test day and estimation
method as within-subjects factors revealed a significant difference
between methods, F(3, 12) = 25.5, p < 0.0005, ηp

2 = 0.72.
This effect suggested that the method that used the full dataset
identified the largest mean number of episodes of reduced
additional HRV (14.9), while the methods that used the first
10 min of every hour identified the lowest number of episodes
(8.1). There was no reliable effect of test day, F(2, 8) = 0.14,
p = 0.87, ηp

2 = 0.03, but test day and method interacted,
F(6, 24) = 10.0, p< 0.0005, ηp

2 = 0.72. Three of the four methods
investigated here seem to identify relatively robust numbers of
additional HRV episodes over time, but this interaction seems
to be driven by the outlying observation in the first test day for
the method that used activity class to detect reduced additional
HRV episodes (5.2 episodes in the first session vs. 11.0 and 14.0
episodes in the second and third sessions, respectively). This
may be an artifact of the low power of the analyzed sample,
as there is no theoretical reason to assume this method would
identify a lower number of additional HRV episodes in one of
the three 24 h periods that were analyzed. Furthermore, pairwise
comparisons suggested that the only significant differences in
identified additional HRV episodes were those between the first
and second test day for the activity class method, t4 = 3.7, p = 0.02
and between the first and third times series for the activity
class method, t4 = 4.5, p = 0.01. All other differences were not
significant (all ps > 0.06).

To further explore the reliability of the methods over time,
we computed Pearson correlations between the average number
of episodes detected over time, separately for every method. The
largest correlation observed was the one between the number of
episodes detected in the second and third test day for the method
that used a combination of 10 min from three consecutive hours,
r = −0.97, p = 0.008, CI95 = [−0.99, −0.61]. The correlation
between the first and second test day for the method that used
activity type was also large, r = 0.88, p = 0.051, CI95 = [-0.01, 0.99].
The lack of statistically robust correlations is likely due to the
low power of the analyzed sample: we therefore urge the reader
to interpret these correlations as effect sizes without reliance on
the associated p-values; excepting the activity class method, all
methods seem to identify numerically relatively similar numbers
of additional HRV episodes over time. Note that the method
that used the full dataset to identify episodes of reduced HRV,
which was associated with a good match between episodes of
self-reported stress and worry and method-identified episodes
of additional HRV in other work (Brown et al., 2018), also
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appears to provide a stable estimate of additional HRV reduction
episodes over time (all rs between 0.70 and 0.80). Unfortunately,
the crucial test, in which self-reported psychological stress and
worry episodes are related to method-identified physiological
episodes of reduced additional HRV, could not be performed for
the Versluis et al. (2018) dataset, as there was no hourly self-
reported stress or worry data available for these participants. This
was a powerful motivation to test additional participants.

New Data to Test All Methods
We tested six new participants to further evaluate all six methods
and to corroborate findings reported elsewhere (Brown et al.,
2018). We first compared the numbers of episodes of reduced
additional HRV that were identified by every method. Given
that we could only analyze two of the three days’ worth of data
for the method that used the data of day n to detect episodes
of reduced additional HRV in day n + 1 (because there is no
data before day 1, only days 2 and 3 could be analyzed with
this method), we have evaluated that method separately. We
therefore first performed a repeated-measures ANOVA with test
day and estimation methods as within-subjects factors, which
suggested that the various methods identified different numbers
of episodes of reduced additional HRV, F(5, 20) = 6.6, p = 0.001,
ηp

2 = 0.62.
As can be seen in Table 2, Verkuil et al. (2016) lab calibration

method detected the lowest number of episodes (3.6), while the
method that used the full dataset identified the largest number
of episodes (11.4). Interestingly, pairwise comparisons revealed
no significant differences whatsoever, suggesting that the different
methods each identified reliable numbers of episodes of reduced
additional HRV over time. Furthermore, it is interesting to note
that, once again, the method that used the full dataset identified
the largest number of episodes overall. There was no reliable
effect of test day on number of episodes detected, nor did method
and test day reliably interact (ps of 0.29 and 0.49, respectively).

We then computed Pearson correlations between numbers of
episodes detected over time, again, separately for every method:
we have, once more, treated these correlations as effect sizes. The
largest correlation was for the numbers of episodes detected in
test days 1 (6.1 episodes) and 3 (6.8 episodes) for the method that
used bins of activity type, r = 0.95, p = 0.01, CI95 = [0.61, 0.99].
The majority of correlations (11 out of 15) exceeded r = 0.40.
Clearly, these correlations are based on a low-powered dataset.
Furthermore, these low correlations are not necessarily indicative
of poor temporal reliability of the methods evaluated here, as
participants could simply have experienced different numbers

of episodes of reduced additional HRV on the various days
they were tested on.

We performed another repeated measures ANOVA like the
one described above, but we now incorporated the final method,
which used the data from day n to detect episodes of reduced
additional HRV in day n + 1. Because this method only allowed
us to analyze data from the second and third days of testing,
we have only incorporated these two test days for every method
analyzed. This analysis revealed a reliable difference in number of
identified episodes of reduced additional HRV; even taking just
the second and third test day for every participant into account,
the lab calibration method by Verkuil et al. (2016) still identified
the lowest number of episodes (3.5), while the method that used
the data of day n to detect episodes in day n - 1 identified the
largest number of episodes (11.2; 9.4 episodes during the second
day and 13.0 during the third), F(5, 20) = 6.7, p < 0.0005,
ηp

2 = 0.63. It is interesting that the latter method identified
marginally more episodes than the method that used the full
dataset (10.9). There was no effect of test day, nor did method
and test day interact (ps 0.59 and 0.41, respectively).

Associations With Worries and Stress
The crucial test for any of these methods is to see how well the
physiological episodes of reduced additional HRV they detected
correspond with participants’ self-reported episodes of stress and
worrying. After all, the detected physiological events are only
of real interest if they actually coincide with—so, represent—
known episodes of worrying or stress: only then do they actually
signify reductions in additional HRV, as opposed to possibly
random physiological events in the data that may not have a
clear psychological cause. Participants reported and average of 2.8
(SD = 3.2) episodes of worrying and/or stress.

To this end, we first calculated the percentage of participants
with at least one match between an episode of method-identified
reduced HRV and an episode of self-reported worrying or
stress in their data. These percentages were calculated separately
for every method. As presented in the first row of Table 3,
certain methods were characterized by considerably higher match
percentages than others.

For example, the method that utilized the full dataset was
associated with an 85.7% match between participants’ self-
reported stress and worrying episodes and the episodes of
reduced additional HRV identified by this method; this method
was also found to be very promising in other work (Brown et al.,
2018). Interestingly, the method that used the first 10 min of
three consecutive hours to detect episodes of reduced additional

TABLE 2 | Mean number of additional HRV episodes (SD) identified in three test day of 24 h each.

Verkuil et al. lab calibration First 10 min of every hour Full dataset (3 × 24 h) First 10 min of 3 h Activity type bins Extended lab calibration

T1 3.8 (3.1) 6.4 (2.7) 12.4 (3.9) 8.4 (3.2) 6.2 (5.5) 4.4 (4.2)

T2 3.8 (3.6) 6.2 (2.1) 11.5 (2.2) 6.7 (3.7) 5.0 (2.6) 4.5 (4.2)

T3 3.2 (1.6) 6.2 (3.2) 10.3 (2.6) 7.2 (3.7) 6.8 (4.3) 3.7 (3.2)

X 3.6 6.3 11.4 7.4 6.0 4.2

Calibration time period is also included in detection periods. Every method detected additional HRV episodes in all five analyzed participants. The bottom row contains
the number of identified episodes averaged over test day.
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TABLE 3 | Matches between method-identified episodes of reduced additional HRV and self-reported episodes of stress and worry (expressed as percentages).

Verkuil et al. lab
calibration (%)

First 10 min of
every hour (%)

Full dataset
(3 × 24 h) (%)

First 10 min of
3 h (%)

Activity type
bins (%)

Extended lab
calibration (%)

Next day
detection (%)

Participants with ≥ 1 match 42.9 78.6 85.7 85.7 78.6 42.9 60.0

Mean percentage of matches 50.9 65.5 70.1 73.6 59.8 53.0 68.7

The first row presents percentages of participants with at least one match between method-identified episodes of reduced additional HRV and self-reported episodes of
stress and worry. The second row presents, for this subset of participants, the percentage of average matches between method-identified episodes of reduced additional
HRV and self-reported episodes of stress and worry.

HRV was associated with an identical percentage of matches.
The Verkuil et al. (2016) lab calibration method was associated
with a match of 42.9%. This would suggest that the methods
that used all available data for a given test session and that used
a combination of 10 min of three consecutive hours’ worth of
data are more sensitive in detecting actual episodes of reduced
additional HRV than Verkuil et al. (2016) lab calibration method,
which we considered to be a golden standard. Indeed, earlier
work (Brown et al., 2018) had identified the method that used
a combination of 10 min of three consecutive hours to be a good
“runner-up” to the method that used the full dataset.

The percentages reported above merely indicate how many
participants had at least one match between method-detected
episodes of reduced additional HRV and self-reported stress
or worry episodes. A crucial next step is to compute the
percentage of matches between method-detected episodes of
reduced additional HRV and self-reported stress or worry
episodes within the participants with at least one such match.
Those percentages reveal how well, on average, each method
was able to identify physiological episodes of reduced additional
HRV that match and therefore represent self-reported episodes
of stress or worry (provided that a participant had at least one
such match). These percentages are listed in the second row
of Table 3. Once more, the methods that used the full dataset
and a combination of 10 min of three consecutive hours appear
the most promising, with an average match between method-
identified episodes of reduced additional HRV and self-reported
stress worry of 70.1 and 73.6%, respectively. Although the method
that used the data of day n to identify episodes of additional
HRV reduction in day n + 1 performed relatively well, with
a matching percentage of 68.7%, this method was only able to
detect matches in 60.0% of all tested participants. The extended
calibration method performed similarly to the Verkuil et al.
(2016) lab calibration method, which is not surprising, given that
it is based on that method. Taken together, all of the results above
suggest that using the full dataset to create an inverse regression
model, which will then be used to detect episodes of reduced
additional HRV, or using a combination of the first 10 min of
three consecutive hours’ worth of data to create such an inverse
regression model appear to be the most promising methods.
These two methods were associated with the best overall match
between additional HRV physiology and self-reported stress and
worry in the highest number of participants. Interestingly, all
of the methods evaluated here identified more physiological
reduced additional HRV episodes than that participants reported
episodes of stress or worrying. The methods identified more
episodes, on average, than participants reported in 85.2% of cases.

DISCUSSION

The goal of the current paper was to evaluate several methods
that can be used to identify episodes of reduced additional
HRV and to identify the optimal method. As in previous work
(Brown et al., 2018), we found that using every data point
available in a given dataset appears to be a very promising
method. Interestingly, the method that was identified to be
a “runner-up” in our earlier study, slightly outperformed the
method that used the full dataset in the current experiment:
using the first 10 min of three consecutive hours to detect
episodes of reduced additional HRV also led to a very good
match between such physiological episodes and self-reported
episodes of psychological stress and worry. Finally, the method
that used the first 10 min of every available hour to detect
episodes of reduced additional HRV also seemed to perform
well enough to be considered an interesting option. The
advantage of all three of these methods is that they do not
rely on a calibration phase in the laboratory, which facilitates
the identification of episodes of reduced additional HRV for
researchers who do not have access to the calibration procedure
introduced by Verkuil et al. (2016).

Two new methods were evaluated here: introducing an
additional class of activity during the calibration phase, and
using the data from day n to detect episodes of reduced
additional HRV in day n + 1. These two methods did
not perform as well as the three methods described above:
the extended calibration method performed similarly to the
Verkuil et al. (2016) calibration method; the method that
used data from day n to detect episodes in day n + 1
seemed the more promising of the two new methods, and
it may therefore warrant further exploration. One problem
with this method is that it requires the acquisition of at
least two sessions’ worth of data, while episodes of reduced
additional HRV are detected in only one of those sessions. Of
course, one could devise ways to utilize the data of the “lost”
session, for example by using the data of the last available
test session to create an inverse regression model and to
then use the resulting model parameters to detect episodes
of reduced additional HRV in the first available test session.
Clearly, this would complicate the method, as one would no
longer be using a predictive model to detect episodes, but
one would be using a kind of retroactive “prediction.” For
this reason, and given the method’s overall unpromising level
of performance, we have not explored this method beyond
simply analyzing the data from the second and third test
sessions in this paper.
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One issue that we have commented on before (Brown
et al., 2018), but that also characterizes the data of the six
participants we have tested here, is the discrepancy in numbers
of self-reported episodes of psychological worry and stress and
method-identified physiological episodes of reduced additional
HRV. The numerous methods invariably identify (occasionally,
considerably) larger numbers of episodes of reduced additional
HRV than that participants report episodes of stress and
worry. For example, on average, the method that used the
full dataset identified 11.4 episodes of reduced additional HRV,
averaged over three test sessions, while participants reported
2.8 episodes of psychological stress or worry, averaged over
three test sessions. It seems implausible that this effect is caused
by technological glitches in the cell phones that were used
to record participants’ responses to questionnaires about their
current psychological state. This leaves two explanations: either
participants underreported episodes of stress and worry for any
number of reasons (social expectations, shame, forgetfulness,
etc.), or the episodes of reduced additional HRV that were
detected by the various methods but that were not matched by
self-reported stress and worrying episodes were due, at least in
part, to unconscious stress. The latter option is corroborated by
other work from our lab (Brosschot, 2010; Brosschot et al., 2010).

Another explanation could be that positive psychosocial
events evoked these yet unexplained reductions in HRV. Indeed,
previous work has shown that such events can also lead to
increases in heart rate and therefore to concomitant reductions
in HRV (see, e.g., Jacob et al., 1999). However, sustained increases
in heart rate have been shown to be associated with events
of negative valence only (Brosschot and Thayer, 2003). Given
that the duration of our additional HRV reduction detection
episodes was 7.5 min, and given that Brosschot and Thayer
showed that heart rate already starts to decrease (and therefore,
HRV starts to increase) after 5 min of being presented with a
positively-valenced stimulus, we do not believe that additional
HRV reductions due to positive psychosocial events provide an
alternative explanation of our findings.

We also acknowledge that there are many factors that are
known to affect HRV (Fattison et al., 2016; Sammito and
Böckelmann, 2016), such as various cardiopulmonary diseases
and metabolic diseases like diabetes mellitus, as well as lifestyle
habits like alcohol consumption and smoking, plus external
factors like heat. Of course, even respiration itself affects HRV.
It is impossible to control for every possible confound in a
study, but we believe that by excluding smokers and participants
who used antihypertensive or cardiological medications, we have
excluded some major confounds. Our participants were also
relatively young students who typically were in good physical
shape. Generally speaking, it is difficult to study the relationship
between HRV and metabolic demands, because the increased
heart rate that accompanies intense physical exercise complicates
the delineation of the different non-neural mechanisms such
as respiration, which are thought to underlie HRV changes
under such intense circumstances (Casadei et al., 1995, 1996;
Cottin et al., 2004, 2006; Michael et al., 2017). Furthermore,
chronic anxiety is associated with increased autonomic tone (for
a review, see Curtis and O’Keefe, 2002), and adverse childhood

events can also affect HRV (Aimie-Salleh et al., 2018; Bakema
et al., 2020). This may lead to baseline differences in HRV, but
the current study was not designed to address such factors.
Generally speaking, we believe that additional HRV decreases
as measured with our methods can be interpreted to reflect
psychosocial stress; of course, there might be other, unmeasured,
sources of stress as well as long-term physiological baseline
differences that our methods cannot currently detect. Having
said that, now that our methods to estimate reductions in
additional HRV have been evaluated twice, it would be very
interesting to use them to further explore the role of these kinds
of factors that are known to affect HRV. In future work, we intend
to combine the methods described in the current paper with
between-subjects designs, which will allow us to assess baseline
differences in HRV, as well as potential underlying causes of
such differences.

Currently, there is debate about whether or not methods that
estimate HRV, like the RMSSD method that we used in this
and previous papers, should be corrected for heart rate (for a
review, see de Geus et al., 2018). This is an important matter,
because as the interval between two heart beats increases, so
does the variability of this interval (de Geus et al.), making
heart rate a potential confound. We have chosen not to correct
HRV for heart rate because there is strong empirical evidence to
suggest that such corrections are not necessary (e.g., Thayer et al.,
2020) or even do more harm than good, by removing variance
that is due to autonomic or neuropsychological processes
(de Geus et al., 2018).

Our findings have clear clinical relevance: episodes of reduced
additional HRV cannot be sensed by people, but they do represent
periods of either psychological or physical health (or both, of
course). Therefore, methods to optimally and objectively detect
such episodes can be of great use to clinicians as well as to
end users both by signaling epochs during which interventions
are most desirable (or even required) and by teaching end
users what triggers evoke such epochs. One challenge for future
work will thus be to further develop ways to probe participants’
reduced additional HRV periods, and to assess all possible causes
of these reductions. If these are indeed strongly related to
bouts of (mindless) stress and worry, probing end users (e.g.,
patients suffering from stress-related (psychological or somatic)
pathology) on their smartphones might become a new strategy to
promote learning about and dealing with stress. One could easily
not only make people more aware of their physiological stress
level, but also provide them with a range of interventions that
can be applied in order to directly change the stress level (i.e.,
breathing exercises, cognitive techniques).

We are aware that the analyses reported here have been
performed on relatively low numbers of participants. However,
given that we have now demonstrated, in three separate datasets,
that using every available data point to detect episodes of reduced
additional HRV appears to be a very accurate method to do so,
and given the relative computational straightforwardness of that
method, we feel confident that this method is promising and
will lead to accurate results. It is particularly interesting that this
method requires no special calibration phase: every researcher
who has HRV and movement data will be able to analyze that data
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using this method. Hopefully, further applications of
this method by researchers in this field will further
corroborate the validity of this method. We hope that
this new method will lead to fruitful insights into
reductions in additional HRV which, in turn, may lead
to a better understanding of this powerful predictor of
cardiovascular disease.
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