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Abstract
This paper considers three classes of interacting particle systems on Z: independent random
walks, the exclusion process, and the inclusion process. Particles are allowed to switch their
jump rate (the rate identifies the type of particle) between 1 (fast particles) and ε ∈ [0, 1]
(slow particles). The switch between the two jump rates happens at rate γ ∈ (0,∞). In
the exclusion process, the interaction is such that each site can be occupied by at most one
particle of each type. In the inclusion process, the interaction takes places between particles
of the same type at different sites and between particles of different type at the same site.
We derive the macroscopic limit equations for the three systems, obtained after scaling space
by N−1, time by N 2, the switching rate by N−2, and letting N → ∞. The limit equations
for the macroscopic densities associated to the fast and slow particles is the well-studied
double diffusivity model. This system of reaction-diffusion equations was introduced to
model polycrystal diffusion and dislocation pipe diffusion, with the goal to overcome the
limitations imposed by Fick’s law. In order to investigate the microscopic out-of-equilibrium
properties, we analyse the system on [N ] = {1, . . . , N }, adding boundary reservoirs at sites
1 and N of fast and slow particles, respectively. Inside [N ] particles move as before, but now
particles are injected and absorbed at sites 1 and N with prescribed rates that depend on the
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particle type.We compute the steady-state density profile and the steady-state current. It turns
out that uphill diffusion is possible, i.e., the total flow can be in the direction of increasing total
density. This phenomenon, which cannot occur in a single-type particle system, is a violation
of Fick’s law made possible by the switching between types. We rescale the microscopic
steady-state density profile and steady-state current and obtain the steady-state solution of a
boundary-value problem for the double diffusivity model.

Keywords Switching random walks · Fast and slow particles · Duality · Scaling limits ·
Uphill diffusion · Fick’s law

Mathematics Subject Classification Primary: 60J70 · 60K35 · Secondary: 82C26 · 92D25

1 Introduction

Section 1.1 provides the background and the motivation for the paper. Section 1.2 defines the
model. Section 1.3 identifies the dual and the stationary measures. Section 1.4 gives a brief
outline of the remainder of the paper.

1.1 Background andMotivation

Interacting particle systems are used to model and analyse properties of non-equilibrium
systems, such as macroscopic profiles, long-range correlations and macroscopic large devia-
tions. Somemodels have additional structure, such as duality or integrability properties,which
allow for a study of the fine details of non-equilibrium steady states, such as microscopic
profiles and correlations. Examples include zero-range processes, exclusion processes, and
models that fit into the algebraic approach to duality, such as inclusion processes and related
diffusion processes, or models of heat conduction, such as the Kipnis-Marchioro-Presutti
model [9,17,22,30,37]. Most of these models have indistinguishable particles of which the
total number is conserved, and so the relevant macroscopic quantity is the density of particles.

Turning to more complex models of non-equilibrium, various exclusion processes with
multi-type particles have been studied [24,25,41], as well as reaction-diffusion processes
[7,8,18–20], where non-linear reaction-diffusion equations are obtained in the hydrodynamic
limit, and large deviations around such equations have been analysed. In the present paper, we
focus on a reaction-diffusion model that on the one hand is simple enough so that via duality
a complete microscopic analysis of the non-equilibrium profiles can be carried out, but on
the other hand exhibits interesting phenomena, such as uphill diffusion and boundary-layer
effects. In our model we have two types of particles, fast and slow, that jump at rate 1 and
ε ∈ [0, 1], respectively. Particles of identical type are allowed to interact via exclusion or
inclusion. There is no interaction between particles of different type that are at different sites.
Each particle can change type at a rate that is adapted to the particle interaction (exclusion
or inclusion), and is therefore interacting with particles of different type at the same site.
An alternative and equivalent view is to consider two layers of particles, where the layer
determines the jump rate (rate 1 for the bottom layer, rate ε for the top layer) and where on
each layer the particles move according to exclusion or inclusion, and to let particles change
layer at a rate that is appropriately chosen in accordance with the interaction. In the limit as
ε ↓ 0, particles are immobile on the top layer.
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We show that the hydrodynamic limit of all three dynamics is a linear reaction-diffusion
system known under the name of double diffusivity model, namely,{

∂tρ0 = �ρ0 + ϒ(ρ1 − ρ0),

∂tρ1 = ε�ρ1 + ϒ(ρ0 − ρ1),
(1.1)

where ρi , i ∈ {0, 1}, are the macroscopic densities of the two types of particles, and
ϒ ∈ (0,∞) is the scaled switching rate. The above system was introduced in [1] to model
polycrystal diffusion (more generally, diffusion in inhomogeneous porous media) and dis-
location pipe diffusion, with the goal to overcome the restrictions imposed by Fick’s law.
Non-Fick behaviour is immediate from the fact that the total density ρ = ρ0 + ρ1 does not
satisfy the classical diffusion equation.

The double diffusivity model was studied extensively in the PDE literature [2,33,35],
while its discrete counterpart was analysed in terms of a single random walk switching
between two layers [34]. The same macroscopic model was studied independently in the
mathematical finance literature in the context of switching diffusion processes [49]. Thus,
we have a family of interacting particle systemswhosemacroscopic limit is relevant in several
distinct contexts. Another context our three dynamics fit into are models of interacting active
randomwalks with an internal state that changes randomly (e.g. activity, internal energy) and
that determines their diffusion rate and or drift [3,16,28,32,38,39,44,46].

An additional motivation to study two-layer models comes from population genetics.
Individuals live in colonies, carry different genetics types, and can be either active or dormant.
While active, individuals resample by adopting the type of a randomly sampled individual
in the same colony, and migrate between colonies by hopping around. Active individuals
can become dormant, after which they suspend resampling and migration, until they become
active again. Dormant individuals reside in what is called a seed bank. The overall effect of
dormancy is that extinction of types is slowed down, and so genetic diversity is enhanced by
the presence of the seed bank.Awealth of phenomena can occur, depending on the parameters
that control the rates of resampling,migration, falling asleep andwaking up [6,31]. Dormancy
not only affects the long-term behaviour of the population quantitatively. It may also lead to
qualitatively different equilibria and time scales of convergence. For a panoramic view on
the role of dormancy in the life sciences, we refer the reader to [42].

From the point of view of non-equilibrium systems driven by boundary reservoirs, switch-
ing interacting particle systems have not been studied. On the one hand, such systems have
both reaction and diffusion and therefore exhibit a richer non-equilibrium behaviour. On the
other hand, the macroscopic equations are linear and exactly solvable in one dimension, and
so these systems are simple enough to make a detailed microscopic analysis possible. As
explained above, the system can be viewed as an interacting particle system on two layers.
Therefore duality properties are available, which allows for a detailed analysis of the system
coupled to reservoirs, which is dual to an absorbing system. In one dimension the analysis
of the microscopic density profile reduces to a computation of the absorption probabilities
of a simple random walk on a two-layer system absorbed at the left and right boundaries.
From the analytic solution we can identify both the density profile and the current in the
system. This leads to two interesting phenomena. The first phenomenon is uphill diffusion
(see e.g. [12–14,21,40]), i.e., in a well-defined parameter regime the current can go against
the particle density gradient: when the total density of particles at the left end is higher than at
the right end, the current can still go from right to left. The second phenomenon is boundary-
layer behaviour: in the limit as ε ↓ 0, in the macroscopic stationary profile the densities in
the top and bottom layer are equal, which for unequal boundary conditions in the top and
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bottom layer results in a discontinuity in the stationary profile. Corresponding to this jump
in the macroscopic system, we identify a boundary layer in the microscopic system of size√

ε log(1/ε) where the densities are unequal. The quantification of the size of this boundary
layer is an interesting corollary of the exact macroscopic stationary profile that we obtain
from the microscopic system via duality.

1.2 ThreeModels

For σ ∈ {−1, 0, 1} we introduce an interacting particle system on Z where the particles
randomly switch their jump rate between two possible values, 1 and ε, with ε ∈ [0, 1]. For
σ = −1 the particles are subject to the exclusion interaction, for σ = 0 the particles are
independent, while for σ = 1 the particles are subject to the inclusion interaction. Let

η0(x) := number of particles at site x jumping at rate 1,

η1(x) := number of particles at site x jumping at rate ε.

The configuration of the system is

η := {η(x)}x∈Z ∈ X =
{

{0, 1}Z × {0, 1}Z, if σ = −1,

N
Z

0 × N
Z

0 , if σ = 0, 1,

where

η(x) := (η0(x), η1(x)), x ∈ Z.

We call η0 = {η0(x)}x∈Z and η1 = {η1(x)}x∈Z the configurations of fast particles, respec-
tively, slow particles. When ε = 0 we speak of dormant particles (see Fig. 1).

Definition 1.1 (Switching interacting particle systems) For ε ∈ [0, 1] and γ ∈ (0,∞), let
Lε,γ be the generator

Lε,γ := L0 + εL1 + γ L0�1, (1.2)

acting on bounded cylindrical functions f : X → R as

(L0 f )(η) =
∑

|x−y|=1

{
η0(x)(1 + ση0(y))

[
f ((η0 − δx + δy, η1)) − f (η)

]
+ η0(y)(1 + ση0(x))

[
f ((η0 + δx − δy, η1)) − f (η)

]}
,

(L1 f )(η) =
∑

|x−y|=1

{
η1(x)(1 + ση1(y))

[
f ((η0, η1 − δx + δy)) − f (η)

]
+ η1(y)(1 + ση1(x))

[
f ((η0, η1 + δx − δy)) − f (η)

]}
,

(L0�1 f )(η) = γ
∑
x∈Zd

{
η0(x)(1 + ση1(x))

[
f ((η0 − δx , η1 + δx )) − f (η)

]

+ η1(x)(1 + ση0(x))
[
f ((η0 + δx , η1 − δx )) − f (η)

]}
.

The Markov process {η(t) : t ≥ 0} on state space X with

η(t) := {η(x, t)}x∈Z = {
(η0(x, t), η1(x, t))

}
x∈Z,
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Fig. 1 Two equivalent representations of switching independent random walks (σ = 0)

hopping rates 1, ε and switching rate γ is called switching exclusion process for σ = −1,
switching random walks for σ = 0 (see Fig. 1), and switching inclusion process for σ = 1.

	


1.3 Duality and Stationary Measures

The systems defined in (1.2) can be equivalently formulated as jump processes on the graph
(see Fig. 1) with vertex set {(x, i) ∈ Z

d × I }, with I = {0, 1} labelling the two layers, and
edge set given by the nearest-neighbour relation

(x, i) ∼ (y, j) when

{
|x − y| = 1 and i = j,

x = y and |i − j | = 1.
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In this formulation the particle configuration is

η = (ηi (x))(x,i)∈Z×I

and the generator L is given by

(L f )(η) =
∑
i∈I

∑
|x−y|=1

εiηi (x)(1 + σηi (y)) [ f (η − δ(x,i) + δ(y,i)) − f (η)]

+ εiηi (y)(1 + σηi (x)) [ f (η − δ(y,i) + δ(x,i)) − f (η)]
+
∑
i∈I

γ
∑
x∈Z

ηi (x)(1 + ση1−i ) [ f (η − δ(x,i) + δ(x,1−i)) − f (η)].
(1.3)

Thus, a single particle (when no other particles are present) is subject to two movements:

(i) Horizontal movement In layer i = 0 and i = 1 the particle performs a nearest-neighbour
random walk on Z at rate 1, respectively, ε.

(ii) Vertical movement The particle switches layer at the same site at rate γ .

It is well known (see e.g. [47]) that for these systems there exists a one-parameter family
of reversible product measures{

μθ =
⊗

(x,i)∈Z×I

ν(x,i),θ : θ ∈ 
}

with  = [0, 1] if σ = −1 and  = [0,∞) if σ ∈ {0, 1}, and with marginals given by

ν(x,i),θ =

⎧⎪⎨
⎪⎩
Bernoulli (θ), σ = −1,

Poisson (θ), σ = 0,

Negative–Binomial (1, θ
1+θ

), σ = 1.

(1.4)

Moreover, the classical self-duality relation holds, i.e., for all configurations η, ξ ∈ X and
for all times t ≥ 0,

Eη[D(ξ, ηt )] = Eξ [D(ξt , η)],
with {ξ(t) : t ≥ 0} and {η(t) : t ≥ 0} two copies of the process with generator given in
(1.2) and self-duality function D : X × X → R given by

D(ξ, η) :=
∏

(x,i)∈Zd×I

d(ξi (x), ηi (x)), (1.5)

with

d(k, n) := n!
(n − k)!

1

w(k)
1{k≤n} (1.6)

and

w(k) :=
{

�(1+k)
�(1) , σ = 1,

1, σ = −1, 0.
(1.7)

Remark 1.2 (Possible extensions) Note that we could allow for more than two layers, for
inhomogeneous rates and for non-nearest neighbour jumps as well, and the same duality
relationwould still hold (see e.g. [26] for an inhomogeneous version of the exclusion process).
More precisely, let {ωi ({x, y})}x,y∈Z and {αi (x)}x∈Z be collections of bounded weights for
i ∈ IM = {0, 1, . . . , M} with M < ∞. Then the interacting particle systems with generator
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(LD,γ f )(η) =
M∑
i=0

Di

∑
|x−y|=1

ωi ({x, y})
{
ηi (x) (αi (y) + σηi (y))

[
f (η − δ(x,i) + δ(y,i)) − f (η)

]

+ ηi (y) (αi (x) + σηi (x))
[
f (η − δ(y,i) + δ(x,i)) − f (η)

]}

+
M−1∑
i=0

γ{i,i+1}
∑
x∈Z

{
ηi (x)

[
f (η − δ(x,i) + δ(x,i+1)) − f (η)

]

+ ηi+1(x)
[
f (η − δ(x,i+1) + δ(x,i)) − f (η)

]}
,

(1.8)

with η = (ηi (x))(x,i)∈Z×IM , {Di }i∈IM a bounded decreasing collection of weights in [0, 1]
and γ{i,i+1} ∈ (0,∞), are still self-dual with duality function as in (1.5), but with I replaced
by IM and single-site duality functions given by d(x,i)(k, n) = n!

(n−k)!
1

w(x,i)(k)
1{k≤n} with

w(x,i)(k) :=

⎧⎪⎨
⎪⎩

αi (x)!
(αi (x)−k)!1l{k≤αi (x)}, σ = −1,

αi (x)k, σ = 0,
�(αi (x)+k)
�(αi (x))

, σ = 1.

In the present paper we prefer to stick to the two-layer homogeneous setting in order not to
introduce extra notations. However, it is straightforward to extend many of our results to the
inhomogeneous multi-layer model. 	


Duality is a key tool in the study of detailed properties of interacting particle systems,
since it allows for explicit computations. It has been used widely in the literature (see, e.g.,
[20,43]). In the next section, self-duality (which implies microscopic closure of the evolution
equation for the empirical density field) will be used to derive the hydrodynamic limit of
the switching interacting particle systems described above. More precisely, we will use self-
duality with one and two dual particles to compute the expectation of the evolution of the
occupation variables and of the two-point correlations. These are needed, respectively, to
control the expectation and the variance of the density field.

1.4 Outline

Section 2 identifies and analyses the hydrodynamic limit of the system in Definition 1.1 after
scaling space, time and switching rate diffusively. In doing so, we exhibit a class of interact-
ing particle systems whose microscopic dynamics scales to a macroscopic dynamics called
the double diffusivity model. We provide a discussion on the solutions of this model, thereby
connecting mathematical literature applied to material science and to financial mathematics.
Section 3 looks at what happens, both microscopically and macroscopically, when boundary
reservoirs are added, resulting in a non-equilibrium flow. Here the possibility of uphill diffu-
sion becomes manifest, which is absent in single-layer systems, i.e., the two layers interact
in a way that allows for a violation of Fick’s law. We characterise the parameter regime for
uphill diffusion. We show that, in the limit as ε ↓ 0, the macroscopic stationary profile of the
type-1 particles adapts to the microscopic stationary profile of the type-0 particles, resulting
in a discontinuity at the boundary for the case of unequal boundary conditions on the top layer
and the bottom layer. Appendix A provides the inverse of a certain boundary-layer matrix.
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2 The Hydrodynamic Limit

In this section we scale space, time and switching diffusively, so as to obtain a hydrodynamic
limit. In Sect. 2.1 we scale space by 1/N , time by N 2, the switching rate by 1/N 2, introduce
scaledmicroscopic empirical distributions, and let N → ∞ to obtain a systemofmacroscopic
equations. In Sect. 2.2 we recall some known results for this system, namely, there exists
a unique solution that can be represented in terms of an underlying diffusion equation or,
alternatively, via a Feynman-Kac formula involving the switching diffusion process.

2.1 FromMicroscopic to Macroscopic

Let N ∈ N, and consider the scaled generator Lε,γN (recall (1.2)) with γN = ϒ/N 2 for
some ϒ ∈ (0,∞), i.e., the reaction term is slowed down by a factor N 2 in anticipation of
the diffusive scaling we are going to consider.

In order to study the collective behaviour of the particles after scaling of space and time,
we introduce the following empirical density fields, which are Radon measure-valued cádlág
(i.e., right-continuous with left limits) processes:

XN
0 (t) := 1

N

∑
x∈Z

η0(x, t N
2) δx/N , XN

1 (t) := 1

N

∑
x∈Z

η1(x, t N
2) δx/N ,

where δy stands for the Dirac measure at y ∈ R.
In order to derive the hydrodynamic limit for the switching interacting particle systems,

we need the following set of assumptions. In the following we denote by C∞
c (R) the space

of infinitely differentiable functions with values in R and compact support, by Cb(R; σ) the
space of bounded and continuous functions with values inR+ for σ ∈ {0, 1} and with values
in [0, 1] for σ = −1, by C0(R) the space of continuous functions vanishing at infinity, by
C2
0 (R) the space of twice differentiable functions vanishing at infinity and by M the space

of Radon measure on R.

Assumption 2.1 (Compatible initial conditions) Let ρ̄i ∈ Cb(R; σ) for i ∈ {0, 1} be two
given functions, called initial macroscopic profiles. We say that a sequence (μN )N∈N of
measures on X is a sequence of compatible initial conditions when:

(i) For any i ∈ {0, 1}, g ∈ C∞
c (R) and δ > 0,

lim
N→∞ μN

(∣∣∣∣〈XN
i (0), g〉 −

∫
R

dx ρ̄i (x)g(x)

∣∣∣∣ > δ

)
= 0.

(ii) There exists a constant C < ∞ such that

sup
(x,i)∈Z×I

EμN [ηi (x)2] ≤ C . (2.1)

	

Note that Assumption 2.1(ii) is the same as employed in [11, Theorem 1, Assumption (b)]
and is trivial for the exclusion process.

Theorem 2.2 (Hydrodynamic scaling) Let ρ̄0, ρ̄1 ∈ Cb(R; σ) be two initial macroscopic
profiles, and let (μN )N∈N be a sequence of compatible initial conditions. Let PμN be the law
of the measure-valued process

{XN (t) : t ≥ 0}, XN (t) := (XN
0 (t), XN

1 (t)),
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induced by the initial measure μN . Then, for any T , δ > 0 and g ∈ C∞
c (R),

lim
N→∞PμN

(
sup

t∈[0,T ]

∣∣∣∣ 〈XNi (t), g〉 −
∫
R

dx ρi (x, t)g(x)

∣∣∣∣ > δ

)
= 0, i ∈ I ,

where ρ0 and ρ1 are the unique continuous and bounded strong solutions of the system{
∂tρ0 = �ρ0 + ϒ(ρ1 − ρ0),

∂tρ1 = ε�ρ1 + ϒ(ρ0 − ρ1),
(2.2)

with initial conditions {
ρ0(x, 0) = ρ̄0(x),

ρ1(x, 0) = ρ̄1(x).
(2.3)

Proof The proof follows the standard route presented in [48, Section 8] (see also [11,20]).We
still explain the main steps because the two-layer setup is not standard. First of all, note that
themacroscopic equation (2.2) can be straightforwardly identified by computing the action of
the rescaled generator LN = Lε,ϒ/N2 on the cylindrical functions fi (η) := ηi (x), i ∈ {0, 1},
namely ,

(LN fi )(η) = εi [ηi (x + 1) − 2ηi (x) + ηi (x − 1)] + ϒ

N 2

[
η1−i (x) − ηi (x)

]
and hence, for any g ∈ C∞

c (R),

∫ t N2

0
ds LN (〈XN

i (s), g〉)

=
∫ t N2

0
ds

εi

N

∑
x∈Z

ηi (x, s)
1
2

[
g((x + 1)/N ) − 2g(x/N ) + g((x − 1)/N )

]

+
∫ t N2

0
ds

1

N

∑
x∈Z

g(x/N )
ϒ

N 2

[
η1−i (x, s) − ηi (x, s)

]
,

where we moved the generator of the simple random walk to the test function by using
reversibility w.r.t. the counting measure. By the regularity of g, we thus have

∫ t N2

0
ds LN (〈XN

i (s), g〉)

=
∫ t

0
ds 〈XN

i (sN 2), εi�g〉 +
∫ t N2

0
ds

ϒ

N 2

[〈XN
1−i (s), g〉 − 〈XN

i (s), g〉]+ o( 1
N2 ),

which is the discrete counterpart of the weak formulation of the right-hand side of (2.2), i.e.,∫ t
0 ds

∫
R
dx ρi (x, s)�g(x)+ϒ

∫ t
0 ds

∫
R
dx [ρ1−i (x, s)−ρi (x, s)] g(x). Thus, as a first step,

we show that

lim
N→∞PμN

(
sup

t∈[0,T ]

∣∣∣∣〈XN
i (t), g〉 − 〈XN

i (0), g〉 −
∫ t

0
ds 〈XN

i (sN 2), εi�g〉

−
∫ t N2

0
ds

ϒ

N 2

[〈XN
1−i (s) − XN

i (s), g〉]
∣∣∣∣∣ > δ

)
= 0.
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In order to prove the above convergence we employ the Dynkin’s martingale formula for
Markov processes (see, e.g., [48, Theorem 4.8]), which gives that the process defined as

MN
i (g, t) := 〈XN

i (t), g〉 − 〈XN
i (0), g〉 −

∫ t N2

0
ds LN (〈XN

i (s), g〉)

is amartingalew.r.t. the natural filtration generated by the process {ηt }t≥0 andwith predictable
quadratic variation expressed in terms of the carré du champ, i.e.,

〈MN
i (g, t), MN

i (g, t)〉 =
∫ t

0
ds EμN

[
�N
i (g, s)

]
with

�N
i (g, s) = LN

(
〈XN

i (s), g〉
)2 − 〈XN

i (s), g〉LN
(
〈XN

i (s), g〉
)

.

We then have, by Chebyshev’s inequality and Doob’s martingale inequality (see, e.g., [36,
Section1.3]),

PμN

(
sup

t∈[0,T ]

∣∣∣∣〈XN
i (s), g〉 − 〈XN

i (s), g〉 −
∫ t

0
ds 〈XN

i (sN 2), ε�g〉

−
∫ t N2

0
ds

ϒ

N 2

[〈XN
1−i (s), g〉 − 〈XN

i (s), g〉]
∣∣∣∣∣ > δ

)
(2.4)

≤ 1

δ2
EμN

[
sup

t∈[0,T ]

∣∣∣MN
i (g, s)

∣∣∣2
]

≤ 4

ε2
EμN

[∣∣∣MN
i (g, T )

∣∣∣2]

= 4

δ2
EμN

[
〈MN

i (g, T ), MN
i (g, T )〉2

]

= 4

δ2N 2EμN

⎡
⎣∫ N2T

0
ds

∑
x∈Zd

ηi (x, s)(1 + σηi (x ± 1, s))

(
g

(
x ± 1

N

)
− g

( x

N

))⎤⎦

+ 4ϒ

δ2N 4EμN

⎡
⎣∫ N2T

0
ds

∑
x∈Zd

(ηi (x, s)+η1−i (x, s)+2σηi (x, s)η1−i (x, s))g
2
( x

N

)⎤⎦ ,

(2.5)

where in the last equality we explicitly computed the carré du champ. Let k ∈ N be such that
the support of g is in [−k, k]. Then, by the regularity of g, (2.4) is bounded by

4

δ2N 2 (N 2T )(2k + 1)N
‖∇g‖∞

N 2 sup
x,∈Z,s∈[0,N2T ]

EμN [ηi (x, s)(1 + σηi (x + 1, s))]

+ 4ϒ

δ2N 4 (N 2T )(2k + 1)N‖g‖∞ sup
x,∈Z,s∈[0,N2T ]

EμN

[
ηi (x, s) + η1−i (x, s)

+2σηi (x, s)η1−i (x, s)
]
. (2.6)

We now show that, as a consequence of (2.1), for any (x, i), (y, j) ∈ Z × I ,

EμN [ηi (x, s)] ≤ C, EμN

[
ηi (x, s)η j (y, s)

] ≤ C, (2.7)
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from which we obtain

PμN

(
sup

t∈[0,T ]

∣∣∣∣〈XN
0 (s), g〉 − 〈XN

0 (s), g〉 −
∫ t

0
ds 〈XN

0 (sN 2), ε�g〉

−
∫ t N2

0
ds

ϒ

N 2

[〈XN
1 (s), g〉 − 〈XN

0 (s), g〉]
∣∣∣∣∣ > δ

)

≤ 8T

δ2N
(2k + 1)‖∇g‖∞C + ϒ

16T

δ2N
(2k + 1)‖g‖∞C, (2.8)

and the desired convergence follows. In order to prove (2.7), first of all note that, by the
Cauchy-Schwartz inequality, it follows from (2.1) that, for any (x, i), (y, j) ∈ Z × I ,

EμN

[
ηi (x)η j (y)

] ≤ C . (2.9)

Moreover, recalling the duality functions given in (1.5) and defining the configuration ξ =
δ(x,i) + δ(y, j) for (x, i) �= (y, j), we have that D(ξ, ηt ) = ηi (x, t)η j (y, t) and thus, using
the classical self-duality relation,

EμN

[
ηi (x, t)η j (y, t)

] = EμN [D(ξ, ηt )] =
∫
X
Eη[D(ξ, ηt )] dμN (η)

=
∫
X
Eξ [D(ξt , η)] dμN (η) = Eξ

[
EμN [D(ξt , η)]] .

Labeling the particles in the dual configuration as (Xt , it ) and (Yt , jt ) with initial conditions
(X0, i0) = (x, i) and (Y0, j0) = (y, j), we obtain

EμN

[
ηi (x, t)η j (y, t)

]
= Eξ

[
EμN [ηit (Xt )η jt (Yt )1l(Xt ,it )�=(Yt , jt )] + EμN [ηit (Xt )(ηit (Xt ) − 1)1l(Xt ,it )=(Yt , jt )]

]
≤ Eξ

[
EμN [ηit (Xt )η jt (Yt )]

] ≤ Eξ

[
sup

(x,i),(y, j)∈Z×{0,1}
EμN [ηi (x)η j (y)]

]
≤ C, (2.10)

wherewe used (2.9) in the last inequality. Similarly, for ξ = δ(x,i) and (Xt , it ) the dual particle
with initial condition (X0, i0) = (x, i), we have that EμN [ηi (x, t)] ≤ EμN [D(ξ, ηt )] =
Eξ [EμN [ηit (Xt )]]. Using that ηi (x) ≤ ηi (x)2 for any (x, i) ∈ Z × I and using (2.1), we
obtain (2.7). The proof is concluded after showing the following:

(i) Tightness holds for the sequence of distributions of the processes {XN
i }N∈N, denoted by

{QN }N∈N.
(ii) All limit points coincide and are supported by the unique path Xi (t, dx) = ρi (x, t) dx ,

with ρi the unique weak (and in particular strong) bounded and continuous solution of
(2.2).

While for (i) we provide an explanation, we skip the proof of (ii) because it is standard and
is based on PDE arguments, namely, the existence and the uniqueness of the solutions in the
class of continuous-time functions with values in Cb(R, σ ) (we refer to [48, Lemma 8.6 and
8.7] for further details), and the fact that Assumption 2.1(i) ensures that the initial condition
of (2.2) is also matched.

Tightness of the sequence {QN }N∈N follows from the compact containment condition
on the one hand, i.e., for any δ > 0 and t > 0 there exists a compact set K ⊂ M such
that PμN (XN

i ∈ K ) > 1 − δ, and the equi-continuity condition on the other hand, i.e.,

123



33 Page 12 of 45 S. Floreani et al.

lim supN→∞ PμN (ω(XN
i , δ, T )) ≥ e) ≤ e for ω(α, δ, T ) := sup{dM (α(s), α(t)) : s, t ∈

[0, T ], |s − t | ≤ δ} with dM the metric on Radon measures defined as

dM (ν1, ν2) :=
∑
j∈N

2− j
(
1 ∧

∣∣∣∣
∫
R

φ jdν1 −
∫
R

φ jdν2

∣∣∣∣
)

for an appropriately chosen sequence of functions (φ j ) j∈N in C∞
c (R). We refer to [48,

Section A.10] for details on the above metric and to the proof of [48, Lemma 8.5] for
the equi-continuity condition. We conclude by proving the compact containment condition.
Define

K :=
{
ν ∈ M s.t . ∃ k ∈ N s.t . ν[−�, �] ≤ A(2� + 1)�2 ∀ � ∈ [k,∞] ∩ N

}
with A > 0 such that Cπ

6A < δ. By [48, Proposition A.25], we have that K is a pre-compact
subset of M . Moreover, by the Markov inequality and Assumption 2.1(ii), it follows that

QN (K̄ c) ≤
∑
�∈N

PμN

(
XN
i ([−�, �]) ≥ A(2� + 1)�2

)
≤
∑
�∈N

1

A(2� + 1)�2
EμN

[
XN
i ([−�, �])

]

=
∑
�∈N

1

A(2� + 1)�2
∑

x∈[−�,�]∩ Z

N

EμN

[
ηi (x, t N

2)
] ≤

∑
�∈N

1

A(2� + 1)�2
2�N + 1

N
C

≤ C

A

∑
�∈N

1

�2
< δ,

from which it follows that QN (K̄ ) > 1 − δ for any N . 	


Remark 2.3 (Total density)

(i) If ρ0, ρ1 are smooth enough and satisfy (2.2), then by taking extra derivatives we see
that the total density ρ := ρ0 + ρ1 satisfies the thermal telegrapher equation

∂t (∂tρ + 2ϒρ) = −ε�(�ρ) + (1 + ε)� (∂tρ + ϒρ) , (2.11)

which is second order in ∂t and fourth order in ∂x (see [2,33] for a derivation). Note
that (2.11) shows that the total density does not satisfy the usual diffusion equation.
This fact will be investigated in detail in the next section, where we will analyse the
non-Fick property of ρ.

(ii) If ε = 1, then the total density ρ satisfies the heat equation ∂tρ = �ρ.
(iii) If ε = 0, then (2.11) reads

∂t (∂tρ + 2ϒρ) = �(∂tρ + ϒρ) ,

which is known as the strongly damped wave equation. The term ∂t (2λρ) is referred to
as frictional damping, the term �(∂tρ) as Kelvin-Voigt damping (see [10]).

	


Remark 2.4 (Literature)Wemention in passing that in [38] hydrodynamic scaling of interact-
ing particles with internal states has been considered in a different setting and with a different
methodology. 	
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2.2 Existence, Uniqueness and Representation of the Solution

The existence and uniqueness of a continuous-time solution (ρ0(t), ρ1(t)) with values in
Cb(R, σ ) of the system in (2.2) can be proved by standard Fourier analysis. Below we recall
some known results that have a more probabilistic interpretation.
Stochastic representation of the solution

The system in (2.2) fits in the realm of switching diffusions (see e.g. [49]), which are
widely studied in the mathematical finance literature. Indeed, let {it : t ≥ 0} be the pure
jump process on state space I = {0, 1} that switches at rate ϒ , whose generator acting on
bounded functions g : I → R is

(Ag)(i) := ϒ(g(1 − i) − g(i)), i ∈ I .

Let {Xt : t ≥ 0} be the stochastic process on R solving the stochastic differential equation

dXt = ψ(it ) dWt ,

where Wt = B2t with {Bt : t ≥ 0} standard Brownian motion, and ψ : I → {D0, D1} is
given by

ψ := D0 1{0} + D1 1{1},

with D0 = 1 and D1 = ε in our setting. Let L = Lε,ϒ be the generator defined by

(L f )(x, i) := lim
t↓0

1

t
Ex,i [ f (Xt , it ) − f (x, i)]

for f : R × I → R such that f (·, i) ∈ C2
0 (R). Then, via a standard computation (see e.g.

[29, Eq.(4.4)]), it follows that

(L f )(x, i) = ψ(i)(� f )(x, i) + ϒ[ f (x, 1 − i) − f (x, i)]

=
{

� f (x, 0) + ϒ [ f (x, 1) − f (x, 0)], i = 0,

ε� f (x, 1) + ϒ [ f (x, 0) − f (x, 1)], i = 1.

We therefore have the following result that corresponds to [29, Chapter 5, Section 4, Theorem
4.1](see also [49, Theorem 5.2]).

Theorem 2.5 (Stochastic representation of the solution) Suppose that ρ̄i : R → R for i ∈ I
are continuous and bounded. Then (2.2) has a unique solution given by

ρi (x, t) = E(x,i)[ρ̄it (Xt )], i ∈ I .

Note that if there is only one particle in the system (1.2), then we are left with a single
random walk, say {Yt : t ≥ 0}, whose generator, denoted by A, acts on bounded functions
f : Z × I → R as

(A f )(y, i) = ψ(i)

[∑
z∼y

[ f (z, i) − f (y, i)]
]

+ ϒ [ f (y, 1 − i) − f (y, i)].

After we apply the generator to the function f (y, i) = y, we get

(A f )(y, i) = 0,
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i.e., the position of the random walk is a martingale. Computing the quadratic variation via
the carré du champ, we find

A(Y 2
t ) = ψ(it )[(Yt + 1)2 − Y 2

t ] + ψ(it )[(Yt − 1)2 − Y 2
t ] = 2ψ(it ).

Hence the predictable quadratic variation is given by∫ t

0
ds 2ψ(is).

Note that for ε = 0 the latter equals the total amount of time the random walk is not dormant
up to time t .

When we diffusively scale the system (scaling the reaction termwas done at the beginning
of Sect. 2), the quadratic variation becomes∫ t N2

0
ds ψ(iN ,s) =

∫ t

0
dr ψ(ir ).

As a consequence, we have the following invariance principle:

Given the path of the process {it : t ≥ 0},

lim
N→∞

YN2t

N
= W∫ t

0 dr
√

ψ(ir )
,

where Wt = B2t with {Bt : t ≥ 0} is standard Brownian motion.

Thus, if we knew the path of the process {ir : r ≥ 0}, then we could express the solution
of the system in (2.2) in terms of a time-changed Brownian motion. However, even though
{ir : r ≥ 0} is a simple flipping process, we cannot say much explicitly about the random
time

∫ t
0 dr

√
ψ(ir ). We therefore look for a simpler formula, where the relation to a Brownian

motion with different velocities is more explicit. We achieve this by looking at the resolvent
of the generator L. In the following, we denote by {St , t ≥ 0} the semigroup on Cb(R) of
{Wt : t ≥ 0}.
Proposition 2.6 (Resolvent) Let f : R × I → R be a bounded and smooth function. Then,
for λ > 0, ε ∈ (0, 1] and i ∈ I ,

(λI − L)−1 f (x, i)

=
∫ ∞

0
dt

1

εi
e− 1+ε

ε
�(ϒ,λ)t

(
cosh(tcε(ϒ, λ)) + 1 − ε

ε
�ε(ϒ, λ)

sinh(tcε(ϒ, λ))

cε(λ)

)
(St f (·, i))(x)

+
∫ ∞

0
dt e− 1+ε

ε
�(ϒ,λ)t

(
ϒ

ε
sinh(tcε(ϒ, λ))

)
(St f (·, 1 − i))(x),

(2.12)

where cε(ϒ, λ) =
√( 1−ε

ε

)2
�(ϒ, λ)2 + ϒ2

ε
and �(ϒ, λ) = ϒ+λ

2 , while for ε = 0,

(λI − L)−1 f (x, i) =
∫ ∞

0
dt e−λ

2ϒ+λ
ϒ+λ

t
((

ϒ
λ+ϒ

)i
(St f (·, 0))(x) +

(
ϒ

ϒ+λ

)i+1
(St f (·, 1))(x)

)
.

(2.13)

Proof The proof is split into two parts.
Case ε > 0. We can split the generator L as

L = ψ(i)L̃ = ψ(i)

(
� + 1

ψ(i)
A

)
= ψ(i)(� + Ã),
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i.e., we decouple Xt and it in the action of the generator. We can now use the Feynman-Kac
formula to express the resolvent of the operator L in terms of the operator L̃. Denoting by Ẽ
the expectation of the process with generator L̃, we have, for λ ∈ R,

(λI − L)−1 f (x, i) =
(

λI
ψ

− L̃
)−1 ( f (x, i)

ψ(i)

)

=
∫ ∞

0
dt Ẽ(x,i)

[
e− ∫ t0 ds λ

ψ(is )
f (Xt , it )

ψ(it )

]
,

and by the decoupling of Xt and it under L̃, we get
(λI − L)−1 f (x, i)

=
∫ ∞

0
dt Ẽi

[
e−λ

∫ t
0 ds

1
ψ(is )

1{0}(it )
ψ(it )

]
(St f (·, 0))(x)

+
∫ ∞

0
dt Ẽi

[
e−λ

∫ t
0

1
ψ(is )

1{1}(it )
ψ(it )

]
(St f (·, 1))(x)

=
∫ ∞

0
dt Ẽi

[
e−λ

∫ t
0 ds

1
ψ(is ) 1{0}(it )

]
(St f (·, 0))(x)

+ 1

ε

∫ ∞

0
dt Ẽi

[
e−λ

∫ t
0 ds

1
ψ(is ) 1{1}(it )

]
(St f (·, 1))(x).

Defining

A :=
[−ϒ ϒ

ϒ −ϒ

]
, ψε :=

[
1 0
0 ε

]
,

and using again the Feynman-Kac formula, we have

(λI − L)−1
[
f (x, 0)
f (x, 1)

]
=
∫ ∞

0
dt Kε(t, λ)

[
(St f (·, 0))(x)
(St f (·, 1))(x)

]

with Kε(t, λ) = etψ
−1
ε (−λI+A)ψ−1

ε .
Using the explicit formula for the exponential of a 2 × 2 matrix (see e.g. [4, Corollary

2.4]), we obtain

etψ
−1
ε (−λI+A) = e− 1+ε

ε
�(ϒ,λ)t

×
[
cosh(tcε(ϒ, λ)) + 1−ε

ε
�(ϒ, λ)

sinh(tcε (ϒ,λ))
cε (ϒ,λ)

ϒ
sinh(tcε (ϒ,λ))

cε (ϒ,λ)

ϒ
ε

sinh(tcε (ϒ,λ))
cε (ϒ,λ)

cosh(tcε(ϒ, λ)) − 1−ε
ε

�(ϒ, λ)
sinh(tcε (ϒ,λ))

cε (ϒ,λ)

]

(2.14)

with cε(ϒ, λ) =
√( 1−ε

ε

)2
�(ϒ, λ)2 + ϒ2

ε
and �(ϒ, λ) = ϒ+λ

2 , fromwhich we obtain (2.12).
Case ε = 0. We derive K0(t, λ) by taking the limit ε ↓ 0 in the previous expression, i.e.,
K0(t, λ) = limε↓0 Kε(t, λ). We thus have that K0(t, λ) is equal to

lim
ε↓0 e

− 1+ε
ε

�(ϒ,λ)t

[
cosh(tcε (ϒ, λ)) + 1−ε

ε
�(ϒ, λ)

sinh(tcε (ϒ,λ))
cε (ϒ,λ)

ϒ
ε

sinh(tcε (ϒ,λ))
cε (ϒ,λ)

ϒ
ε

sinh(tcε (ϒ,λ))
cε (ϒ,λ)

1
ε
cosh(tcε (ϒ, λ)) − 1−ε

ε2
�(ϒ, λ)

sinh(tcε (ϒ,λ))
cε (ϒ,λ)

]

= e−λ
2ϒ+λ
ϒ+λ

t

⎡
⎣ 1 ϒ

ϒ+λ

ϒ
ϒ+λ

(
ϒ

ϒ+λ

)2
⎤
⎦ ,

from which (2.12) follows. 	
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Remark 2.7 (Symmetric layers) Note that for ε = 1 we have

(λI − L)−1 f (x, i) =
∫ ∞

0
dt e−λt

(
1+e−2ϒ t

2 (St f (·, i))(x) + 1−e−2ϒ t

2 (St f (·, 1 − i))(x)
)

.

	

We conclude this section by noting that the system in (2.2) was studied in detail in [2,

33]. By taking Fourier and Laplace transforms and inverting them, it is possible to deduce
explicitly the solution, which is expressed in terms of solutions to the classical heat equation.
More precisely, using formula [33, Eq.2.2], we have that

ρ0(x, t) = e−ϒ t (St ρ̄0)(x) + ϒ

1 − ε
e−ϒ t

∫ t

εt
ds

((
s − εt

t − s

)1/2

I1(υ(s)) (Ss ρ̄0)(x)

+I0(υ(s)) (Ss ρ̄1)(x)) (2.15)

and

ρ1(x, t) = e−ϒ t (Sεt ρ̄1)(x) + ϒ

1 − ε
e−σ t

∫ t

εt
ds

((
s − εt

t − s

)−1/2

I1(υ(s)) (Ss ρ̄1)(x)

+I0(υ(s)) (Ss ρ̄0)(x)

)
, (2.16)

where υ(s) = 2ϒ
1−ε

((t − s)(s − εt))1/2, and I0(·) and I1(·) are the modified Bessel functions.

3 The Systemwith Boundary Reservoirs

In this section we consider a finite version of the switching interacting particle systems
introduced in Definition 1.1 to which boundary reservoirs are added. Section 3.1 defines the
model. Section 3.2 identifies the dual and the stationarymeasures. Section 3.3 derives the non-
equilibrium density profile, both for themicroscopic system and themacroscopic system, and
offers various simulations. In Sect. 3.4 we compute the stationary horizontal current of slow
and fast particles both for the microscopic system and the macroscopic system. Section 3.5
shows that in the macroscopic system, for certain choices of the rates, there can be a flow of
particles uphill, i.e., against the gradient imposed by the reservoirs. Thus, as a consequence of
the competing driving mechanisms of slow and fast particles, we can have a flow of particles
from the side with lower density to the side with higher density.

3.1 Model

We consider the same system as in Definition 1.1, but restricted to V := {1, . . . , N } ⊂ Z. In
addition, we set V̂ := V ∪ {L, R} and attach a left-reservoir to L and a right-reservoir to R,
both for fast and slow particles. To be more precise, there are four reservoirs (see Fig. 2):

(i) For the fast particles, a left-reservoir at L injects fast particles at x = 1 at rate ρL,0(1 +
ση0(1, t)) and a right-reservoir at R injects fast particles at x = N at rate ρR,0(1 +
ση0(N , t)). The left-reservoir absorbs fast particles at rate 1 + σρL,0, while the right-
reservoir does so at rate 1 + σρR,0.
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Fig. 2 Case σ = 0, ε > 0 with boundary reservoirs: two equivalent representations

(ii) For the slow particles, a left-reservoir at L injects slow particles at x = 1 at rate ρL,1(1+
ση1(1, t)) and a right-reservoir at R injects slow particles at x = N at rate ρR,1(1 +
ση1(N , t)). The left-reservoir absorbs fast particles at rate 1 + σρL,1, while the right-
reservoir does so at rate 1 + σρR,1.

Inside V , the particles move as before.
For i ∈ I , x ∈ V and t ≥ 0, let ηi (x, t) denote the number of particles in layer i at site x

at time t . For σ ∈ {−1, 0, 1}, the Markov process {η(t) : t ≥ 0} with

η(t) = {η0(x, t), η1(x, t)}x∈V
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has state space

X =
{

{0, 1}V × {0, 1}V , σ = −1,

N
V
0 × N

V
0 , σ = 0, 1,

and generator
L := Lε,γ,N = Lbulk + L res (3.1)

with

Lbulk := Lbulk
0 + εLbulk

1 + γ Lbulk
0�1 (3.2)

acting on bounded cylindrical functions f : X → R as

(Lbulk
0 f )(η) =

N−1∑
x=1

{
η0(x)(1 + ση0(x + 1))

[
f (η0 − δx + δx+1, η1) − f (η0, η1)

]
+ η0(x + 1)(1 + ση0(x))

[
f (η0 − δx+1 + δx , η) − f (η0, η1)

]}
,

(Lbulk
1 f )(η) =

N−1∑
x=1

{
η1(x)(1 + ση1(x + 1))

[
f (η0, η1 − δx + δx+1) − f (η0, η1)

]
+ η1(x + 1)(1 + ση1(x))

[
f (η0, η1 − δx+1 + δx ) − f (η0, η1))

]}
,

(Lbulk
0�1 f )(η) =

N∑
x=1

{
η0(x)(1 + ση1(x))

[
f (η0 − δx , η1 + δx ) − f (η0, η1)

]
+ η1(x)(1 + ση0(x))

[
f (η0 + δx , η1 − δx ) − f (η0, η1))

]}
,

and

L res := L res
0 + L res

1 (3.3)

acting as

(L res
0 f )(η) = η0(1)(1 + σρL,0)

[
f (η0 − δ1, η1) − f (η0, η1)

]
+ ρL,0(1 + ση0(1))

[
f (η0 + δ1, η1) − f (η0, η1)

]
+ η0(N )(1 + σρR,0)

[
f (η0 − δN , η1) − f (η0, η1)

]
+ ρR,0(1 + ση0(N ))

[
f (η0 + δN , η) − f (η0, η1)

]
,

(L res
1 f )(η) = η1(1)(1 + σρL,1)

[
f (η0, η1 − δ1) − f (η0, η1)

]
+ ρL,1(1 + ση1(1))

[
f (η0, η1 + δ1) − f (η0, η1)

]
+ η1(N )(1 + σρR,1)

[
f (η0, η1 − δN ) − f (η0, η1)

]
+ ρR,1(1 + σρR,N )

[
f (η0, η1 + δN ) − f (η0, η1)

]
.

3.2 Duality

In [9] it was shown that the partial exclusion process, a system of independent random walks
and the symmetric inclusion processes on a finite set V , coupled with proper left and right
reservoirs, are dual to the same particle system but with the reservoirs replaced by absorbing
sites. As remarked in [27], the same result holds for more general geometries, consisting of
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inhomogeneous rates (site and edge dependent), and for many proper reservoirs. Our model
is a particular instance of the case treated in [27, Remark 2.2]), because we can think of the
rate as conductances attached to the edges.

More precisely, we consider the system where particles jump on two copies of

V̂ := V ∪ {L, R}
and follow the same dynamics as before in V , but with the reservoirs at L and R absorbing.
We denote by ξ the configuration

ξ = (ξ0, ξ1) := ({ξ0(x)}x∈V̂ , {ξ1(x)}x∈V̂ ),

where ξi (x) denotes the number of particles at site x in layer i . The state space is X̂ =
N
V̂
0 × N

V̂
0 , and the generator is

L̂ := L̂ε,γ,N = L̂bulk + L̂ L,R (3.4)

with

L̂bulk := L̂bulk
0 + ε L̂bulk

1 + γ L̂bulk
0�1

acting on cylindrical functions f : X → R as

(L̂bulk
0 f )(ξ) =

N−1∑
x=1

{
ξ0(x)(1 + σξ0(x + 1))

[
f (ξ0 − δx + δx+1, ξ1) − f (ξ0, ξ1)

]
+ ξ0(x + 1)(1 + σξ0(x))

[
f (ξ0 − δx+1 + δx , ξ1) − f (ξ0, ξ1)

]}
,

(L̂bulk
1 f )(ξ) =

N−1∑
x=1

{
ξ1(x)(1 + σξ1(x + 1))

[
f (ξ0, ξ1 − δx + δx+1) − f (ξ0, ξ1)

]
+ ξ1(x + 1)(1 + σξ1(x))

[
f (ξ0, ξ1 − δx+1 + δx ) − f (ξ0, ξ1)

]}
,

(L̂bulk
0�1 f )(η) =

N∑
x=1

{
ξ0(x)(1 + σξ1(x))

[
f (ξ0 − δx , ξ1 + δx ) − f (ξ0, ξ1)

]
+ ξ1(x)(1 + σξ0(x))

[
f (ξ0 + δx , ξ1 − δx ) − f (ξ0, ξ1)

]}
,

and

L̂ L,R = L̂ L,R
0 + L̂ L,R

1

acting as

(L̂ L,R
0 f )(ξ) = ξ0(1)

[
f (ξ0 − δ1, ξ1) − f (ξ0, ξ1)

]+ ξ0(N )
[
f (ξ0 − δN , ξ1) − f (ξ0, ξ1)

]
,

(L̂ L,R
1 f )(ξ) = ξ1(1)

[
f (ξ0, ξ1 − δ1) − f (ξ0, ξ1)

]+ ξ1(N )
[
f (ξ0, ξ1 − δN ) − f (ξ0, ξ1)

]
.

Proposition 3.1 (Duality) [9, Theorem 4.1] and [27, Proposition 2.3] The Markov processes

{η(t) : t ≥ 0}, η(t) = {η0(x, t), η1(x, t)}x∈V ,

{ξ(t) : t ≥ 0}, ξ(t) = {ξ0(x, t), ξ1(x, t)}x∈V̂ ,
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with generators L in (3.1) and L̂ in (3.4) are dual. Namely, for all configurations η ∈ X ,
ξ ∈ X̂ and times t ≥ 0,

Eη[D(ξ, ηt )] = Eξ [D(ξt , η)],
where the duality function is given by

D(ξ, η) :=
(∏
i∈I

d(L,i)(ξi (L))

)
×
(∏
x∈V

d(ξi (x), ηi (x))

)
×
(∏
i∈I

d(R,i)(ξi (R))

)
,

where, for k, n ∈ N and i ∈ I , d(·, ·) is given in (1.6) and

d(L,i)(k) = (
ρL,i

)k
, d(R,i)(k) = (

ρR,i
)k

.

The proof boils down to checking that the relation

L̂ D(·, η)(ξ) = LD(ξ, ·)(η)

holds for any ξ ∈ X and ξ ∈ X̂ , as follows from a rewriting of the proof of [9, Theorem 4.1].

Remark 3.2 (Choice of reservoir rates)

(i) Note that we have chosen the reservoir rates to be 1 both for fast and slow particles. We
did this because we view the reservoirs as an external mechanism that injects and absorbs
neutral particles, while the particles assume their type as soon as they are in the bulk of
the system. In other words, in the present context we view the change of the rate in the
two layers as a change of the viscosity properties of the medium is which the particles
evolve, instead of a property of the particles themselves.

(ii) If we would tune the reservoir rate of the slow particles to be ε, then the duality relation
mentioned above would still holds, with the difference that the dual system would have
ε as the rate of absorption for the slow particles. This change of the reservoir rates does
not affect our results on the non-Fick properties of the model (see Sect. 3.5 below) and
on the size of the boundary layer (see Sect. 3.6 below). Indeed, the limiting macroscopic
properties we get by changing the rate of the reservoir of the slow particles are the same
as the ones we derive later (i.e., the macroscopic boundary-value problem is the same
for any choice of reservoir rate). Note that we do not rescale the reservoir rate when
we rescale the system to pass from microscopic to macroscopic, which implies that our
macroscopic equation has a Dirichlet boundary condition (see (3.44) below).

	

Also in the context of boundary-driven systems, duality is an essential tool to perform

explicit computations. We refer to [37] and [9], where duality for boundary-driven systems
was used to compute the stationary profile, by looking at the absorption probabilities of the
dual. This is the approach we will follow in the next section.We remark that, for the inclusion
process and for generalizations of the exclusion process, duality is the only available tool to
characterize properties of the non-equilibrium steady state (such as the stationary profile),
whereas other more direct methods (such as the matrix formulation in e.g. [17]) are not
applicable in this setting.
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3.3 Non-equilibrium Stationary Profile

Also the existence and uniqueness of the non-equilibrium steady state has been established
in [27, Theorem 3.3] for general geometries, and the argument in that paper can be easily
adapted to our setting.

Theorem 3.3 (Stationary measure) [27, Theorem 3.3(a)] For σ ∈ {−1, 0, 1} there exists a
unique stationary measure μstat for {η(t) : t ≥ 0}. Moreover, for σ = 0 and for any values
of {ρL,0, ρL,1, ρR,0, ρR,1},

μstat =
∏

(x,i)∈V×I

ν(x,i), ν(x,i) = Poisson(θ(x,i)), (3.5)

while, for σ ∈ {−1, 1}, μstat is in general not in product form, unless ρL,0 = ρL,1 = ρR,0 =
ρR,1, for which

μstat =
∏

(x,i)∈V×I

ν(x,i),θ , (3.6)

where ν(x,i),θ is given in (1.4).

Proof For σ = −1, the existence and uniqueness of the stationary measure is trivial by
the irreducibility and the finiteness of the state space of the process. For σ ∈ {0, 1}, recall
from [27, Appendix A] that a probability measure μ on X is said to be tempered if it is
characterized by the integrals

{
Eμ[D(ξ, η)] : ξ ∈ X̂} and that if there exists a θ ∈ [0,∞)

such that Eμ[D(ξ, η)] ≤ θ |ξ | for any ξ ∈ X̂ . By means of duality we have that, for any
η ∈ X and ξ ∈ X̂ ,

lim
t→∞Eη[D(ξ, ηt )] = lim

t→∞ Êξ [D(ξt , η)]

=
|ξ |∑
i0=0

i0∑
i0,L=0

|ξ |−i0∑
j1,L=0

ρ
i0,L
L,0 ρ

i0−i0,L
R,0 ρ

i1,L
L,1 ρ

|ξ |−i0−i1,L
R,1 (3.7)

× P̂ξ

(
ξ∞ = i0,Lδ(L,0) + (i0 − i0,L)δ(R,0) + i1,Lδ(L,1) + (|ξ | − i0 − i1,L)δ(R,1)

)
,

(3.8)

from which we conclude that limt→∞ Eη[D(ξ, ηt )] ≤ max{ρL,0, ρR,0, ρL,1, ρR,1}|ξ |. Let
μs be the unique tempered probability measure such that for any ξ ∈ X̂ , Eμstat [D(ξ, η)]
coincides with (3.7). From the convergence of the marginal moments in (3.7) we conclude
that, for any f : X → R bounded and for any η ∈ X ,

lim
t→∞Eη[ f (ηt )] = Eμstat [ f (η)].

Thus, a dominated convergence argument yields that for any probability measure μ on X ,

lim
t→∞Eμ[ f (ηt )] = Eμstat [ f (η)],

giving that μstat is the unique stationary measure. The explicit expression in (3.5) and (3.6)
follows from similar computations as in [9], while, arguing by contradiction as in the proof
of [27, Theorem 3.3], we can show that the two-point truncated correlations are non-zero for
σ ∈ {−1, 1} whenever at least two reservoir parameters are different. 	
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3.3.1 Stationary Microscopic Profile and Absorption Probability

In this section we provide an explicit expression for the stationary microscopic density of
each type of particle. To this end, let μstat be the unique non-equilibrium stationary measure
of the process

{η(t) : t ≥ 0}, η(t) := {η0(x, t), η1(x, t)}x∈V ,

and let {θ0(x), θ1(x)}x∈V be the stationary microscopic profile, i.e., for x ∈ V and i ∈ I ,

θi (x) = Eμstat [ηi (x, t)]. (3.9)

Write Pξ (and Eξ ) to denote the law (and the expectation) of the dual Markov process

{ξ(t) : t ≥ 0}, ξ(t) := {ξ0(x, t), ξ1(x, t)}x∈V̂ ,

starting from ξ = {ξ0(x), ξ1(x)}x∈V̂ . For x ∈ V , set

�px := [
p̂(δ(x,0), δ(L,0)) p̂(δ(x,0), δ(L,1)) p̂(δ(x,0), δ(R,0)) p̂(δ(x,0), δ(R,1))

]T
,

�qx := [
p̂(δ(x,1), δ(L,0)) p̂(δ(x,1), δ(L,1)) p̂(δ(x,1), δ(R,0)) p̂(δ(x,1), δ(R,1))

]T
,

(3.10)

where

p̂(ξ, ξ̃ ) = lim
t→∞Pξ (ξ(t) = ξ̃ ),

ξ = δ(x,i) for some (x, i) ∈ V × I , ξ̃ ∈ {δ(L,0), δ(L,1), δ(R,0), δ(R,1)}, (3.11)

and let
�ρ := [

ρ(L,0) ρ(L,1) ρ(R,0) ρ(R,1)
]T

. (3.12)

Note that p̂(δ(x,i), ·) is the probability of the dual process, starting from a single particle at
site x at layer i ∈ I , of being absorbed at one of the four reservoirs. Using Proposition 3.1
and Theorem 3.3, we obtain the following.

Corollary 3.4 (Dual representation of stationary profile) For x ∈ V , the microscopic station-
ary profile is given by

θ0(x) = �px · �ρ,

θ1(x) = �qx · �ρ,
x ∈ {1, . . . , N }, (3.13)

where �px , �qx and �ρ are as in (3.10)–(3.12).

We next compute the absorption probabilities associated to the dual process in order to
obtain a more explicit expression for the stationary microscopic profile {θ0(x), θ1(x)}x∈V .
The absorption probabilities p̂(· , ·) of the dual process satisfy

(L̂ p̂)(·, ξ̃ )(ξ) = 0 ∀ ξ ∈ X̂ ,

where L̂ is the dual generator defined in (3.4), i.e., they are harmonic functions for the
generator L̂ .
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In matrix form, the above translates into the following systems of equations:

�p1 = 1

2 + γ
( �p0 + �p2) + γ

2 + γ
�q1,

�q1 = ε

(1 + ε) + γ
�q2 + 1

(1 + ε) + γ
�q0 + γ

(1 + ε) + γ
�p1,

�px = 1

2 + γ
( �px−1 + �px+1) + γ

2 + γ
�qx , x ∈ {2, . . . , N − 1},

�qx = ε

2ε + γ
(�qx−1 + �qx+1) + γ

2ε + γ
�px , x ∈ {2, . . . , N − 1},

�pN = 1

2 + γ
( �pN−1 + �pN+1) + γ

2 + γ
�qN ,

�qN = ε

(1 + ε) + γ
�qN−1 + 1

(1 + ε) + γ
�qN+1 + γ

(1 + ε) + γ
�pN ,

(3.14)
where

�p0 := [
1 0 0 0

]T
, �q0 := [

0 1 0 0
]T

,

�pN+1 := [
0 0 1 0

]T
, �qN+1 := [

0 0 0 1
]T

.

We divide the analysis of the absorption probabilities into two cases: ε = 0 and ε > 0.
Case ε = 0.

Proposition 3.5 (Absorption probability for ε = 0) Consider the dual process

{ξ(t) : t ≥ 0}, ξ(t) = {ξ0(x, t), ξ1(x, t)}x∈V ,

with generator L̂ε,γ,N (see (3.4)) with ε = 0. Then for the dual process, starting from a
single particle, the absorption probabilities p̂(·, ·) (see (3.11)) are given by

p̂(δ(x,0), δ(L,0)) = 1 + γ

1 + 2γ

(
(1 + N ) + (1 + 2N ) γ

1 + N + 2Nγ
− 1 + 2γ

1 + N + 2Nγ
x

)
,

p̂(δ(x,0), δ(L,1)) = γ

1 + 2γ

(
(1 + N ) + (1 + 2N ) γ

1 + N + 2Nγ
− 1 + 2γ

1 + N + 2Nγ
x

)
,

p̂(δ(x,0), δ(R,0)) = 1 + γ

1 + 2γ

( −γ

1 + N + 2Nγ
+ 1 + 2γ

1 + N + 2Nγ
x

)
,

p̂(δ(x,0), δ(R,1)) = γ

1 + 2γ

( −γ

1 + N + 2Nγ
+ 1 + 2γ

1 + N + 2Nγ
x

)
,

(3.15)

p̂(δ(1,1), δ(L,0)) = γ (N − γ + 2Nγ )

(1 + 2γ )(1 + N + 2Nγ )
,

p̂(δ(1,1), δ(L,1)) = 1 + N + (1 + 3N )γ − (1 − 2N )γ 2

(1 + 2γ )(1 + N + 2Nγ )
,

p̂(δ(1,1), δ(R,0)) = γ (1 + γ )

(1 + 2γ )(1 + N + 2Nγ )
,

p̂(δ(1,1), δ(R,1)) = γ 2

(1 + 2γ )(1 + N + 2Nγ )
,

(3.16)

and

p̂(δ(x,1), δ(β,i)) = p̂(δ(x,0), δ(β,i)), x ∈ {2, . . . , N − 1}, (β, i) ∈ {L, R} × I , (3.17)
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and

p̂(δ(N ,1), δ(L,0)) = p̂(δ(1,1), δ(R,0)), p̂(δ(N ,1), δ(L,1)) = p̂(δ(1,1), δ(R,1)),

p̂(δ(N ,1), δ(R,0)) = p̂(δ(1,1), δ(L,0)), p̂(δ(N ,1), δ(R,1)) = p̂(δ(1,1), δ(L,1)).
(3.18)

Proof Note that, for ε = 0, from the linear system in (3.14) we get

�px+1 − �px = �px − �px−1,

�qx = �px , x ∈ {2, . . . , N − 1}. (3.19)

Thus, if we set �c = �p2 − �p1, then it suffices to solve the following 4 linear equations with 4
unknowns �p1, �c, �q1, �qN :

�p1 = 1

2 + γ
( �p0 + �p1 + �c) + γ

2 + γ
�q1,

�q1 = 1

1 + γ
�q0 + γ

1 + γ
�p1,

�p1 + (N − 1)�c = 1

2 + γ
( �p1 + (N − 2)�c + �pN+1) + γ

2 + γ
�qN ,

�qN = 1

1 + γ
�qN+1 + γ

1 + γ
( �p1 + (N − 1)�c).

(3.20)

Solving the above equations we get the desired result. 	


As a consequence, we obtain the stationary microscopic profile for the original process
{η(t) : t ≥ 0}, η(t) = {η0(x, t), η1(x, t)}x∈V when ε = 0.

Theorem 3.6 (Stationary microscopic profile for ε = 0) The stationary microscopic
profile {θ0(x), θ1(x)}x∈V (see (3.9)) for the process {η(t) : t ≥ 0} with η(t) =
{η0(x, t), η1(x, t)}x∈V with generator Lε,γ,N (see (3.1)) and ε = 0 is given by

θ0(x) = 1 + γ

1 + 2γ

[(
(1+N )+(1+2N ) γ

1+N+2Nγ
− 1+2γ

1+N+2Nγ
x
)

ρL,0 +
( −γ
1+N+2Nγ

+ 1+2γ
1+N+2Nγ

x
)

ρR,0

]
+ γ

1 + 2γ

[(
(1+N )+(1+2N ) γ

1+N+2Nγ
− 1+2γ

1+N+2Nγ
x
)

ρ(L,1)

+
( −γ
1+N+2Nγ

+ 1+2γ
1+N+2Nγ

x
)

ρ(R,1)

]
(3.21)

and

θ1(1) = γ

1 + γ
θ0(1) + 1

1 + γ
ρ(L,1),

θ1(x) = θ0(x), x ∈ {2, . . . , N − 1},
θ1(N ) = γ

1 + γ
θ0(N ) + 1

1 + γ
ρ(R,1).

(3.22)

Proof The proof directly follows from Corollary 3.4 and Proposition 3.5. 	


Case ε > 0.
We next compute the absorption probabilities for the dual process and the stationary

microscopic profile for the original process when ε > 0.
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Proposition 3.7 (Absorption probability for ε > 0) Consider the dual process

{ξ(t) : t ≥ 0}, ξ(t) = {ξ0(x, t), ξ1(x, t)}x∈V ,

with generator L̂ε,γ (see (3.4)) with ε > 0. Let p̂(·, ·) (see (3.11)) be the absorption proba-
bilities of the dual process starting from a single particle, and let ( �px , �qx )x∈V be as defined
in (3.10). Then

�px = �c1 x + �c2 + ε(�c3 αx
1 + �c4 αx

2 ),

�qx = �c1 x + �c2 − (�c3 αx
1 + �c4 αx

2 ),
x ∈ V , (3.23)

where α1, α2 are the two roots of the equation

εα2 − (γ (1 + ε) + 2ε) α + ε = 0, (3.24)

and �c1, �c2, �c3, �c4 are vectors that depend on the parameters N , ε, α1, α2 (see (A.4) for explicit
expressions).

Proof Applying the transformation

�τx := �px + ε �qx , �sx := �px − �qx , (3.25)

we see that the system in (3.14) decouples in the bulk (i.e., the interior of V ), and

�τx = 1

2
(�τx+1 + �τx−1), �sx = ε

γ (1 + ε) + 2ε
(�sx+1 + �sx−1), x ∈ {2, . . . , N − 1}.

(3.26)
The solution of the above system of recursion equations takes the form

�τx = �A1x + �A2, �sx = �A3α
x
1 + �A4α

x
2 , (3.27)

where α1, α2 are the two roots of the equation

εα2 − (γ (1 + ε) + 2ε) α + ε = 0. (3.28)

Rewriting the four boundary conditions in (3.14) in terms of the new transformations, we get[ �A1 �A2 �A3 �A4
] = (1 + ε)(M−1

ε )T , (3.29)

where Mε is given by

Mε :=

⎡
⎢⎢⎣

0 1 ε ε

1 − ε 1 (ε − 1)α1 − ε (ε − 1)α2 − ε

N + 1 1 εαN+1
1 εαN+1

2
N + ε 1 −αN

1 (εα1 + (1 − ε)) −αN
2 (εα2 + (1 − ε))

⎤
⎥⎥⎦ . (3.30)

Since �px = 1
1+ε

(�τx + ε�sx ) and �qx = 1
1+ε

(�τx − �sx ), by setting

�ci = 1

1 + ε
�Ai , i ∈ {1, 2, 3, 4},

we get the desired identities. 	

Without loss of generality, from here onwards, we fix the choices of the roots α1 and α2

of the quadratic equation in (3.24) as

α1 = 1 + γ

2

(
1 + 1

ε

)
−
√[

1 + γ

2

(
1 + 1

ε

)]2
− 1,
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α2 = 1 + γ

2

(
1 + 1

ε

)
+
√[

1 + γ

2

(
1 + 1

ε

)]2
− 1. (3.31)

Note that, for any ε, γ > 0, we have
α1α2 = 1. (3.32)

As a corollary, we get the expression for the stationary microscopic profile of the original
process.

Theorem 3.8 (Stationary microscopic profile for ε > 0) The stationary microscopic
profile {θ0(x), θ1(x)}x∈V (see (3.9)) for the process {η(t) : t ≥ 0} and η(t) =
{η0(x, t), η1(x, t)}x∈V with generator Lε,γ,N (see (3.1)) with ε > 0 is given by

θ0(x) = (�c1 . �ρ)x + (�c2 . �ρ) + ε(�c3 . �ρ)αx
1 + ε(�c4 . �ρ)αx

2 ,

θ1(x) = (�c1 . �ρ)x + (�c2 . �ρ) − (�c3 . �ρ)αx
1 − (�c4 . �ρ)αx

2 ,
x ∈ V , (3.33)

where (�ci )1≤i≤4 are as in (A.4), and

�ρ := [
ρ(L,0) ρ(L,1) ρ(R,0) ρ(R,1)

]T
.

Proof The proof follows directly from Corollary 3.4 and Proposition 3.7. 	

Remark 3.9 (Symmetric layers) For ε = 1, the inverse of the matrix Mε in the proof of
Proposition 3.7 takes a simpler form. This is because for ε = 1 the system is fully symmetric.
In this case, the explicit expression of the stationary microscopic profile is given by

θ0(x) = 1

2

(
N + 1 − x

N + 1
+ αN+1−x

2 − αN+1−x
1

αN+1
2 − αN+1

1

)
ρL,0

+ 1

2

(
x

N + 1
+ αx

2 − αx
1

αN+1
2 − αN+1

1

)
ρR,0

+ 1

2

(
N + 1 − x

N + 1
− αN+1−x

2 − αN+1−x
1

αN+1
2 αN+1

1

)
ρ(L,1)

+ 1

2

(
x

N + 1
− αx

2 − αx
1

αN+1
2 − αN+1

1

)
ρ(R,1)

(3.34)

and

θ1(x) = 1

2

(
N + 1 − x

N + 1
− αN+1−x

2 − αN+1−x
1

αN+1
2 − αN+1

1

)
ρL,0

+ 1

2

(
x

N + 1
− αx

2 − αx
1

αN+1
2 − αN+1

1

)
ρR,0

+ 1

2

(
N + 1 − x

N + 1
+ αN+1−x

2 − αN+1−x
1

αN+1
2 − αN+1

1

)
ρ(L,1)

+ 1

2

(
x

N + 1
+ αx

2 − αx
1

αN+1
2 − αN+1

1

)
ρ(R,1).

(3.35)

However, note that

θ0(x) + θ1(x) = 2[(�c1. �ρ)x + (�c2. �ρ)] − (1 − ε)[(�c3 . �ρ)αx
1 − (�c4 . �ρ)αx

2 ],
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which is linear in x only when ε = 1, and

θ0(x) − θ1(x) = (1 + ε)[(�c3 . �ρ)αx
1 + (�c4 . �ρ)αx

2 ],
which is purely exponential in x . 	


3.3.2 Stationary Macroscopic Profile and Boundary-Value Problem

In this section we rescale the finite-volume systemwith boundary reservoirs, in the same way
aswas done for the infinite-volume system in Sect. 2whenwe derived the hydrodynamic limit
(i.e., space is scaled by 1/N and the switching rate γN is scaled such that γN N 2 → ϒ > 0),
and study the validity of Fick’s law at stationarity on macroscopic scale. Before we do that,
we justify below that the current scaling of the parameters is indeed the proper choice, in
the sense that we obtain non-trivial pointwise limits (macroscopic stationary profiles) of the
microscopic stationary profiles found in previous sections, and that the resulting limits (when
ε > 0) satisfy the stationary boundary-value problem given in (2.2) with boundary conditions
ρstat
0 (0) = ρL,0, ρstat

0 (1) = ρR,0, ρstat
1 (0) = ρL,1 and ρstat

1 (1) = ρR,1.
We say that the macroscopic stationary profiles are given by functions ρstat

i : (0, 1) → R

for i ∈ I if, for any y ∈ (0, 1),

lim
N→∞ θ

(N )
0 (�yN�) = ρstat

0 (y), lim
N→∞ θ

(N )
1 (�yN�) = ρstat

1 (y). (3.36)

Theorem 3.10 (Stationary macroscopic profile) Let (θ(N )
0 (x), θ(N )

1 (x))x∈V be the stationary
microscopic profile (see (3.9)) for the process {η(t) : t ≥ 0}, η(t) = {η0(x, t), η1(x, t)}x∈V
with generator Lε,γN ,N (see (3.1)), where γN is such that γN N 2 → ϒ as N → ∞ for some
ϒ > 0. Then, for each y ∈ (0, 1), the pointwise limits (see Fig. 3)

ρstat
0 (y) := lim

N→∞ θ
(N )
0 (�yN�), ρstat

1 (y) := lim
N→∞ θ

(N )
1 (�yN�), (3.37)

exist and are given by

ρstat
0 (y) = ρL,0 + (ρR,0 − ρL,0)y, y ∈ (0, 1),

ρstat
1 (y) = ρstat

0 (y), y ∈ (0, 1),
(3.38)

when ε = 0, while

ρstat
0 (y) = ε

1 + ε

[
sinh

[
Bε,ϒ (1 − y)

]
sinh

[
Bε,ϒ

] (ρ(L,0) − ρ(L,1)) + sinh
[
Bε,ϒ y

]
sinh

[
Bε,ϒ

] (ρ(R,0) − ρ(R,1))

]

+ 1

1 + ε

[
ρ(R,0) y + ρ(L,0) (1 − y)

]+ ε

1 + ε

[
ρ(R,1) y + ρ(L,1) (1 − y)

]
,

(3.39)

ρstat
1 (y) = 1

1 + ε

[
sinh

[
Bε,ϒ (1 − y)

]
sinh

[
Bε,ϒ

] (ρ(L,1) − ρ(L,0)) + sinh
[
Bε,ϒ y

]
sinh

[
Bε,ϒ

] (ρ(R,1) − ρ(R,0))

]

+ 1

1 + ε

[
ρ(R,0) y + ρ(L,0) (1 − y)

]+ ε

1 + ε

[
ρ(R,1) y + ρ(L,1) (1 − y)

]
,

(3.40)

when ε > 0, where Bε,ϒ :=
√

ϒ(1 + 1
ε
). Moreover, when ε > 0, the two limits in (3.37) are

uniform in (0, 1).
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Proof For ε = 0, it easily follows from (3.21) plus the fact that γN N 2 → ϒ > 0 and
�yN�
N → y uniformly in (0, 1) as N → ∞, that

lim
N→∞ sup

y∈(0,1)

∣∣∣θ(N )
0 (�yN�) − [ρ(L,0) + (ρ(R,0) − ρ(L,0)) y]

∣∣∣ = 0,

and since θ1(x) = θ0(x) for all x ∈ {2, . . . , N − 1}, for fixed y ∈ (0, 1), we have

lim
N→∞ θ

(N )
1 (�yN�) = ρstat

0 (y).

When ε > 0, since γN N 2 → ϒ > 0 as N → ∞, we note the following:

γN
N→∞−→ 0,

lim
N→∞ α1 = lim

N→∞ α2 = 1,

lim
N→∞ αN

1 = e−Bε,ϒ , lim
N→∞ αN

2 = eBε,ϒ .

(3.41)

Consequently, from the expressions of (�ci )1≤i≤4 defined in (A.4), we also have

lim
N→∞ N �c1 = 1

1 + ε

[−1 −ε 1 ε
]T

, lim
N→∞ �c2 = 1

1 + ε

[
1 ε 0 0

]T
,

lim
N→∞ �c3 = 1

1 + ε

[ eBε,ϒ

eBε,ϒ −e−Bε,ϒ
− eBε,ϒ

eBε,ϒ −e−Bε,ϒ
− 1

eBε,ϒ −e−Bε,ϒ

1
eBε,ϒ −e−Bε,ϒ

]T
,

lim
N→∞ �c4 = 1

1 + ε

[− e−Bε,ϒ

eBε,ϒ −e−Bε,ϒ

e−Bε,ϒ

eBε,ϒ −e−Bε,ϒ

1
eBε,ϒ −e−Bε,ϒ

− 1
eBε,ϒ −e−Bε,ϒ

]T
.

(3.42)

Combining the above equations with (3.33), and the fact that �yN�
N → y uniformly in (0, 1)

as N → ∞, we get the desired result. 	

Remark 3.11 (Non-uniform convergence) Note that for ε > 0 both stationary macroscopic
profiles, when extended continuously to the closed interval [0, 1], match the prescribed
boundary conditions. This is different from what happens for ε = 0, where the continuous
extension of ρstat

1 to the closed interval [0, 1] equals ρstat
0 (y) = ρL,0 + (ρR,0 −ρL,0)y, which

does not necessarily match the prescribed boundary conditions unless ρ(L,1) = ρ(L,0) and
ρ(R,1) = ρ(R,0). Moreover, as can be seen from the proof above, for ε > 0, the convergence
of θi to ρi is uniform in [0, 1], i.e.,
lim

N→∞ sup
y∈[0,1]

∣∣∣ ρstat
0 (y) − θ

(N )
0 (�yN�)

∣∣∣ = 0, lim
N→∞ sup

y∈[0,1]

∣∣∣ ρstat
1 (y) − θ

(N )
1 (�yN�)

∣∣∣ = 0,

while for ε = 0, the convergence of θ1 toρ1 is not uniform in [0, 1]when eitherρ(L,0) �= ρ(L,1)
or ρ(R,0) �= ρ(R,1).

Also, if ρ
stat,ε
i (·) denotes the macroscopic profile defined in (3.39)-(3.40), then for ε > 0

and i ∈ {0, 1}, we have
lim
ε→0

ρ
stat,ε
i (y) → ρ

stat,0
i (y) (3.43)

for fixed y ∈ (0, 1) and i ∈ {0, 1}, where ρ
stat,0
i (·) is the corresponding macroscopic profile

in (3.38) for ε = 0. However, this convergence is also not uniform for i = 1 when ρ(L,0) �=
ρ(L,1) or ρ(R,0) �= ρ(R,1). 	


In view of the considerations in Remark 3.11, we next concentrate on the case ε > 0. The
following result tells us that for ε > 0 the stationary macroscopic profiles satisfy a stationary
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PDE with fixed boundary conditions and also admit a stochastic representation in terms of
an absorbing switching diffusion process.

Theorem 3.12 (Stationary boundary value problem) Consider the boundary value problem{
0 = �u0 + ϒ(u1 − u0),

0 = ε�u1 + ϒ(u0 − u1),
(3.44)

with boundary conditions {
u0(0) = ρL,0, u0(1) = ρR,0,

u1(0) = ρL,1, u1(1) = ρR,1,
(3.45)

where ε,ϒ > 0, and the four boundary parameters ρ(L,0), ρ(L,1), ρ(R,0), ρ(R,1) are also
positive. Then the PDE admits a unique strong solution given by

ui (y) = ρstat
i (y), y ∈ [0, 1], (3.46)

where (ρstat
0 (·), ρstat

1 (·)) are as defined in (3.37). Furthermore, (ρstat
0 (·), ρstat

1 (·)) has the
stochastic representation

ρstat
i (y) = E(y,i)[�iτ (Xτ )], (3.47)

where {it : t ≥ 0} is the pure jump process on state space I = {0, 1} that switches at rate ϒ ,
the functions �0,�1 : I → R+ are defined as

�0 = ρ(L,0) 1{0} + ρ(R,0) 1{1}, �1 = ρ(L,1) 1{0} + ρ(R,1) 1{1},

{Xt : t ≥ 0} is the stochastic process [0, 1] that satisfies the SDE
dXt = ψ(it ) dWt

with Wt = B2t and {Bt : t ≥ 0} standard Brownian motion, the switching diffusion process
{(Xt , it ) : t ≥ 0} is killed at the stopping time

τ := inf{t ≥ 0 : Xt ∈ I },
and ψ : I → {1, ε} is given by ψ := 1{0} + ε 1{1}.

Proof It is straightforward to verify that for ε > 0 the macroscopic profiles ρ0, ρ1 defined in
(3.39)−(3.40) are indeed uniformly continuous in (0, 1) and thus can be uniquely extended
continuously to [0, 1], namely, by defining ρstat

i (0) = ρ(L,i), ρstat
i (1) = ρ(R,i) for i ∈ I .

Also ρstat
i ∈ C∞([0, 1]) for i ∈ I and satisfy the stationary PDE (3.44), with the boundary

conditions specified in (3.45).
The stochastic representation of a solution of the system in (3.44) follows from [29, p385,

Eq.(4.7)]. For the sake of completeness, we give the proof of uniqueness of the solution of
(3.44). Let u = (u0, u1) and v = (v0, v1) be two solutions of the stationary reaction diffusion
equationwith the specifiedboundary conditions in (3.45). Then (w0, w1) := (u0−v0, u1−v1)

satisfies {
0 = �w0 + ϒ(w1 − w0),

0 = ε�w1 + ϒ(w0 − w1),
(3.48)

with boundary conditions

w0(0) = w0(1) = w1(0) = w1(1) = 0. (3.49)
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Multiplying the two equations in (3.48) with w0 and w1, respectively, and using the identity

wi�wi = ∇ · (wi∇wi ) − |∇wi |2, i ∈ I ,

we get {
0 = ∇ · (w0∇w0) − |∇w0|2 + ϒ(w1 − w0)w0,

0 = ε∇ · (w1∇w1) − ε|∇w1|2 + ϒ(w0 − w1)w1.
(3.50)

Integrating both equations by parts over [0, 1], we get

0 = −[w0(1)∇w0(1) − w0(0)∇w0(0)] −
∫ 1

0
dy |∇w0(y)|2

+ ϒ

∫ 1

0
dy (w1(y) − w0(y))w0(y),

0 = −ε[w1(1)∇w1(1) − w1(0)∇w1(0)] − ε

∫ 1

0
dy |∇w1(y)|2

+ ϒ

∫ 1

0
dy (w0(y) − w1(y))w1(y).

(3.51)

Adding the above two equations and using the zero boundary conditions in (3.49), we have∫ 1

0
dy |∇w0(y)|2 + ε

∫ 1

0
dy |∇w1(y)|2 + ϒ

∫ 1

0
dy [w1(y) − w0(y)]2 = 0. (3.52)

Since both w0 and w1 are continuous and ε > 0, ϒ > 0, it follows that

w0 = w1, ∇w0 = ∇w1 = 0, (3.53)

and so w0 = w1 ≡ 0. 	

Note that, as a result of Theorem 3.12, the four absorption probabilities of the switching

diffusion process {(Xt , it ) : t ≥ 0} starting from (y, i) ∈ [0, 1]× I are indeed the respective
coefficients of ρ(L,0), ρ(L,1), ρ(R,0), ρ(R,1) appearing in the expression of ρstat

i (y). Further-
more note that, as a consequence of Theorem 3.12 and the results in [33, Section 3], the
time-dependent boundary-value problem{

∂tρ0 = �ρ0 + ϒ(ρ1 − ρ0),

∂tρ1 = ε�ρ1 + ϒ(ρ0 − ρ1),
(3.54)

with initial conditions {
ρ0(x, 0) = ρ̄0(x),

ρ1(x, 0) = ρ̄1(x),
(3.55)

and boundary conditions {
ρ0(0, t) = ρL,0, ρ0(1, t) = ρR,0,

ρ1(0, t) = ρL,1, ρ1(1, t) = ρR,1,
(3.56)

admits a unique solution given by{
ρ0(x, t) = ρhom

0 (x, t) + ρstat
0 (x),

ρ1(x, t) = ρhom
1 (x, t) + ρstat

1 (x),
(3.57)
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where

ρhom
0 (x, t) = e−ϒ t h0(x, t) + ϒ

1 − ε
e−ϒ t

∫ t

εt
ds

((
s − εt

t − s

)1/2

I1(υ(s))h0(x, s)

+I0(υ(s))h1(x, s)) , (3.58)

ρhom
1 (x, t) = e−ϒ t h1(x, εt) + ϒ

1 − ε
e−ϒ t

∫ t

εt
ds

((
s − εt

t − s

)−1/2

I1(υ(s))h1(x, s)

+I0(υ(s))h0(x, s)) , (3.59)

υ(s) = 2ϒ
1−ε

((t − s)(s − εt))1/2, I0(·) and I1(·) are the modified Bessel functions, h0(x, t),
h1(x, t) are the solutions of⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂t h0 = �h0,

∂t h1 = �h1,

h0(x, 0) = ρ̄0(x) − ρstat
0 (x),

h1(x, 1) = ρ̄1(x) − ρstat
1 (x),

h0(0, t) = h0(1, t) = h1(0, t) = h1(1, t) = 0,

(3.60)

and ρstat
0 (x), ρstat

1 (x) are given in (3.40).
We conclude this section by proving that the solution of the time-dependent boundary-

value problem in (3.54) converges to the stationary profile in (3.40).

Proposition 3.13 (Convergence to stationary profile) Let ρhom
0 (x, t) and ρhom

1 (x, t) be as in
(3.58) and (3.59), respectively, i.e., the solutions of the boundary-value problem (3.54) with
zero boundary conditions and initial conditions given by ρhom

0 (x, 0) = ρ̄0(x) − ρstat
0 (x) and

ρhom
1 (x, 0) = ρ̄1(x) − ρstat

1 (x). Then, for any k ∈ N,

lim
t→∞

[
‖ρhom

0 (x, t)‖Ck (0,1) + ‖ρhom
1 (x, t)‖Ck (0,1)

]
= 0.

Proof We start by showing that

lim
t→∞

[
‖ρhom

0 (x, t)‖L2(0,1) + ‖ρhom
1 (x, t)‖L2(0,1)

]
= 0. (3.61)

Multiply the first equation of (3.54) by ρ0 and the second equation by ρ1. Integration by parts
yields ⎧⎨

⎩
∂t

(∫ 1
0 dx ρ2

0

)
= − ∫ 10 dx |∂xρ0|2 + ϒ

∫ 1
0 dx (ρ1ρ0 − ρ2

0 ),

∂t

(∫ 1
0 dx ρ2

1 (x, t)
)

= −ε
∫ 1
0 dx |∂xρ1|2 + ϒ

∫ 1
0 dx (ρ0ρ1 − ρ2

1 ).
(3.62)

Summing the two equations and defining E(t) := ∫ 1
0 dx (ρ0(x, t)2 + ρ1(x, t)2), we obtain

∂t E(t) = −
(∫ 1

0
dx |∂xρ0|2 + ε

∫ 1

0
dx |∂xρ1|2

)
− ϒ

∫ 1

0
dx (ρ0 − ρ1)

2. (3.63)

By the Poincaré inequality (i.e.,
∫ 1
0 dx |∂xρi (x, t)|2 ≥ Cp

∫ 1
0 dx |ρi (x, t)|2, with Cp > 0)

we have ∂t E(t) ≤ −εCpE(t), from which we obtain

E(t) ≤ e−Cpt E(0),

and hence (3.61).
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From [45, Theorem 2.1] it follows that

A :=
[

� − ϒ ϒ

ϒ ε� − ϒ

]
,

with domain D(A) = H2(0, 1) ∩ H1
0 (0, 1), generates a semigroup {St : t ≥ 0}. If we set

�ρ(t) = St ( �̄ρhom
), with �̄ρhom = �̄ρ − �ρstat, then by the semigroup property we have

�ρ(t) = St−1(S1/k)k( �̄ρhom
), t ≥ 1,

and hence Ak �ρ(t) = St−1(AS1/k)k( �̄ρhom
). If we set �p := (AS1/k)k( �̄ρhom

), then we obtain,
by [45, Theorem 5.2(d)],

‖Ak �ρ(t)‖L2(0,1) ≤ ‖St−1 �p‖L2(0,1),

where limt→∞ ‖St−1 �p‖L2(0,1) = 0 by the first part of the proof. The compact embedding

D(Ak) ↪→ H2k(0, 1) ↪→ Ck(0, 1), k ∈ N,

concludes the proof. 	


3.4 The Stationary Current

In this section we compute the expected current in the non-equilibrium steady state that is
induced by different densities at the boundaries. We consider the microscopic and macro-
scopic systems, respectively.
Microscopic system

We start by defining the notion of current. The microscopic currents are associated with
the edges of the underlying two-layer graph. In our setting, we denote by J 0

x,x+1(t) and

J 1
x,x+1(t) the instantaneous current through the horizontal edge (x, x + 1), x ∈ V , of the

bottom layer, respectively, top layer at time t . Obviously,

J 0
x,x+1(t) = η0(x, t) − η0(x + 1, t), J 1

x,x+1(t) = ε[η1(x, t) − η1(x + 1, t)].

We are interested in the stationary currents J 0x,x+1, respectively, J
1
x,x+1, which are obtained

as

J 0x,x+1 = Estat [η0(x) − η0(x + 1)], J 1x,x+1 = εEstat [η1(x) − η1(x + 1)], (3.64)

where Estat denotes expectation w.r.t. the unique invariant probability measure of the micro-
scopic system {η(t) : t ≥ 0} with η(t) = {η0(x, t), η1(x, t)}x∈V . In other words, J 0x,x+1 and

J 1x,x+1 give the average flux of particles of type 0 and type 1 across the bond (x, x + 1) due
to diffusion.

Of course, the average number of particle at each site varies in time also as a consequence
of the reaction term:

d

dt
E[η0(x, t)] = E[J 0

x−1,x (t) − J 0
x,x+1(t)] + γ (E[η1(x, t)] − E[η0(x, t)]),

d

dt
E[η1(x, t)] = E[J 1

x−1,x (t) − J 1
x,x+1(t)] + γ (E[η0(x, t)] − E[η1(x, t)]).
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Summing these equations, we see that there is no contribution of the reaction part to the
variation of the average number of particles at site x :

d

dt
E[η0(x, t) + η1(x, t)] = E[Jx−1,x (t) − Jx,x+1(t)].

The sum
Jx,x+1 = J 0x,x+1 + J 1x,x+1, (3.65)

with J 0x,x+1 and J 1x,x+1 defined in (3.64), will be called the stationary current between sites
at x, x + 1, x ∈ V , which is responsible for the variation of the total average number of
particles at each site, regardless of their type.

Proposition 3.14 (Stationary microscopic current) For x ∈ {2, . . . , N − 1} the stationary
currents defined in (3.64) are given by

J 0x,x+1 = − 1+γ
1+N+2Nγ

[ρ(R,0) − ρ(L,0)] − γ
1+N+2Nγ

[ρ(R,1) − ρ(L,1)], J 1x,x+1 = 0, (3.66)

when ε = 0 and by

J 0x,x+1 = −�c1 · �ρ − ε[(�c3 · �ρ)αx
1 (α1 − 1) + (�c4 · �ρ)αx

2 (α2 − 1)],
J 1x,x+1 = −ε�c1 · �ρ + ε[(�c3 · �ρ)αx

1 (α1 − 1) + (�c4 · �ρ)αx
2 (α2 − 1)], (3.67)

when ε > 0, where �c1, �c3, �c4 are the vectors defined in (A.4) of Appendix A, and α1, α2 are
defined in (3.31). As a consequence, the current Jx,x+1 = J 0x,x+1 + J 1x,x+1 is independent of
x and is given by

Jx,x+1 = − 1+γ
1+N+2Nγ

[ρ(R,0) − ρ(L,0)] − γ
1+N+2Nγ

[ρ(R,1) − ρ(L,1)] (3.68)

when ε = 0 and

Jx,x+1 = −(1 + ε)
[
C1 (ρR,0 − ρL,0) + ε C2 (ρR,1 − ρL,1)

]
(3.69)

when ε > 0, where

C1 = [α1(1 − ε)(αN−1
1 − 1) + ε (αN+1

1 − 1)]
α1(1 − ε)(αN−1

1 − 1)(N + 1) + 2ε (αN+1
1 − 1)(N + ε)

,

C2 = (αN+1
1 − 1)

α1(1 − ε)(αN−1
1 − 1)(N + 1) + 2ε (αN+1

1 − 1)(N + ε)
.

(3.70)

Proof From (3.64) we have

J 0x,x+1 = θ0(x) − θ0(x + 1), J 1x,x+1 = ε[θ1(x) − θ1(x + 1)], (3.71)

where θ0(·), θ1(·) are the average microscopic profiles. Thus, when ε = 0, the expressions
of J 0x,x+1, J

1
x,x+1 and consequently Jx,x+1 follow directly from (3.21).

For ε > 0, using the expressions of θ0(·), θ1(·) in (3.33), we see that

J 0x,x+1 = θ0(x) − θ0(x + 1) = −�c1 · �ρ − ε[(�c3 · �ρ)αx
1 (α1 − 1) + (�c4 · �ρ)αx

2 (α2 − 1)],
J 1x,x+1 = ε[θ1(x) − θ1(x + 1)] = −ε�c1 · �ρ+ε[(�c3 · �ρ)αx

1 (α1 − 1)+(�c4 · �ρ)αx
2 (α2 − 1)],

(3.72)
where �c1, �c3, �c4 are the vectors defined in (A.4) of Appendix A, and α1, α2 are defined in
(3.31). Adding the two equations, we also have

Jx,x+1 = J 0x,x+1+ J 1x,x+1 = −(1+ε) �c1 · �ρ = (1+ε)
[
C1 (ρR,0 − ρL,0) + ε C2 (ρR,1 − ρL,1)

]
,

(3.73)
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where C1,C2 are as in (3.70). 	

Macroscopic system

The microscopic current scales like 1/N . Indeed, the currents associated to the two layers
in the macroscopic system can be obtained from the microscopic currents, respectively, by
defining

J 0(y) = lim
N→∞ N J 0�yN�,�yN�+1, J 1(y) = lim

N→∞ N J 1�yN�,�yN�+1. (3.74)

Below we justify the existence of the two limits and thereby provide explicit expressions for
the macroscopic currents.

Proposition 3.15 (Stationary macroscopic current) For y ∈ (0, 1) the stationary currents
defined in (3.74) are given by

J 0(y) = − [(ρR,0 − ρL,0)
]
, J 1(y) = 0, (3.75)

when ε = 0 and by

J 0(y) = εBε,ϒ

1 + ε

[
cosh

[
Bε,ϒ (1 − y)

]
sinh

[
Bε,ϒ

] (ρ(L,0) − ρ(L,1))− cosh
[
Bε,ϒ y

]
sinh

[
Bε,ϒ

] (ρ(R,0) − ρ(R,1))

]

− 1

1 + ε

[
(ρ(R,0) − ρ(L,0)) + ε(ρ(R,1) − ρ(L,1))

]
(3.76)

and

J 1(y) = − εBε,ϒ

1 + ε

[
cosh

[
Bε,ϒ (1 − y)

]
sinh

[
Bε,ϒ

] (ρ(L,0) − ρ(L,1)) − cosh
[
Bε,ϒ y

]
sinh

[
Bε,ϒ

] (ρ(R,0) − ρ(R,1))

]

− ε

1 + ε

[
(ρ(R,0) − ρ(L,0)) + ε(ρ(R,1) − ρ(L,1))

]
(3.77)

when ε > 0. As a consequence, the total current J (y) = J 0(y) + J 1(y) is constant and is
given by

J (y) = − [(ρR,0 − ρL,0) + ε (ρR,1 − ρL,1)
]
. (3.78)

Proof For ε = 0 the claim easily follows from the expressions of J 0x,x+1, J
1
x,x+1 given in

(3.66) and the fact that γN → 0 as N → ∞.
When ε > 0, we first note the following:

γN N
2 N→∞−→ ϒ > 0,

lim
N→∞ α1 = lim

N→∞ α2 = 1,

lim
N→∞ N (α1 − 1) = −Bε,ϒ , lim

N→∞ N (α2 − 1) = Bε,ϒ ,

lim
N→∞ αN

1 = e−Bε,ϒ , lim
N→∞ αN

2 = eBε,ϒ .

(3.79)

Consequently, from the expressions for (�ci )1≤i≤4 defined in (A.4), we also have

lim
N→∞ N �c1 = 1

1 + ε

[−1 −ε 1 ε
]T

,

lim
N→∞ �c3 = 1

1 + ε

[ eBε,ϒ

eBε,ϒ −e−Bε,ϒ
− eBε,ϒ

eBε,ϒ −e−Bε,ϒ
− 1

eBε,ϒ −e−Bε,ϒ

1
eBε,ϒ −e−Bε,ϒ

]T
,

lim
N→∞ �c4 = 1

1 + ε

[− e−Bε,ϒ

eBε,ϒ −e−Bε,ϒ

e−Bε,ϒ

eBε,ϒ −e−Bε,ϒ

1
eBε,ϒ −e−Bε,ϒ

− 1
eBε,ϒ −e−Bε,ϒ

]T
.

(3.80)
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Combining the above equations with (3.67), we have

J 0(y) = lim
N→∞ N J 0�yN�,�yN�+1

= −εBε,ϒ

[(
lim

N→∞ �c4 · �ρ
)
eBε,ϒ y −

(
lim

N→∞ �c3 · �ρ
)
e−Bε,ϒ y

]
−
(

lim
N→∞ N �c1 · �ρ

)

= εBε,ϒ

1 + ε

[
cosh

[
Bε,ϒ (1 − y)

]
sinh

[
Bε,ϒ

] (ρ(L,0) − ρ(L,1))− cosh
[
Bε,ϒ y

]
sinh

[
Bε,ϒ

] (ρ(R,0) − ρ(R,1))

]

− 1

1 + ε

[
(ρ(R,0) − ρ(L,0)) + ε(ρ(R,1) − ρ(L,1))

]
(3.81)

and, similarly,

J 1(y) = lim
N→∞ N J 1�yN�,�yN�+1

= εBε,ϒ

[(
lim

N→∞ �c4 · �ρ
)
eBε,ϒ y −

(
lim

N→∞ �c3 · �ρ
)
e−Bε,ϒ y

]
− ε

(
lim

N→∞ N �c1 · �ρ
)

= − εBε,ϒ

1 + ε

[
cosh

[
Bε,ϒ (1 − y)

]
sinh

[
Bε,ϒ

] (ρ(L,0) − ρ(L,1)) − cosh
[
Bε,ϒ y

]
sinh

[
Bε,ϒ

] (ρ(R,0) − ρ(R,1))

]

− ε

1 + ε

[
(ρ(R,0) − ρ(L,0)) + ε(ρ(R,1) − ρ(L,1))

]
.

(3.82)
Adding J 0(y) and J 1(y), we obtain the total current

J (y) = J 0(y) + J 1(y) = − [(ρR,0 − ρL,0) + ε (ρR,1 − ρL,1)
]
, (3.83)

which is indeed independent of y. 	

Remark 3.16 (Currents) Combining the expressions for the density profiles and the current,
we see that

J 0(y) = −dρ0

dy
(y), J 1(y) = −ε

dρ1

dy
(y).

	


3.5 Discussion: Fick’s Law and Uphill Diffusion

In this section we discuss the behaviour of the boundary-driven system as the parameter ε is
varied. For simplicity we restrict our discussion to the macroscopic setting, although similar
comments hold for the microscopic system as well.

In view of the previous results, we can rewrite the equations for the densities
ρ0(y, t), ρ1(y, t) as ⎧⎪⎪⎪⎨

⎪⎪⎪⎩
∂tρ0 = −∇ J 0 + ϒ(ρ1 − ρ0),

∂tρ1 = −∇ J 1 + ϒ(ρ0 − ρ1),

J0 = −∇ρ0,

J1 = −ε∇ρ1,

which are complemented with the boundary values (for ε > 0){
ρ0(0, t) = ρL,0, ρ0(1, t) = ρR,0,

ρ1(0, t) = ρL,1, ρ1(1, t) = ρR,1.
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We will be concerned with the total density ρ = ρ0 +ρ1, whose evolution equation does not
contain the reaction part, and is given by

{
∂tρ = −∇ J ,

J = −∇(ρ0 + ερ1),
(3.84)

with boundary values {
ρ(0, t) = ρL = ρL,0 + ρR,0,

ρ(1, t) = ρR = ρR,0 + ρR,1.
(3.85)

Non-validity of Fick’s law From (3.84) we immediately see that Fick’s law ofmass transport
is satisfied if and only if ε = 1. When we allow diffusion and reaction of slow and fast
particles, i.e., 0 ≤ ε < 1, Fick’s law breaks down, since the current associated to the total
mass is not proportional to the gradient of the total mass. Rather, the current J is the sum of
a contribution J 0 due to the diffusion of fast particles of type 0 (at rate 1) and a contribution
J 1 due to the diffusion of slow particles of type 1 (at rate ε). Interestingly, the violation of
Fick’s law opens up the possibility of several interesting phenomena that we discuss in what
follows.
Equal boundary densities with non-zero current In a system with diffusion and reaction
of slow and fast particles we may observe a non-zero current when the total density has
the same value at the two boundaries. This is different from what is observed in standard
diffusive systems driven by boundary reservoirs, where in order to have a stationary current
it is necessary that the reservoirs have different chemical potentials, and therefore different
densities, at the boundaries.

Let us, for instance, consider the specific case when ρL,0 = ρR,1 = 2 and ρL,1 = ρR,0 =
4, which indeed implies equal densities at the boundaries given by ρL = ρR = 6. The density
profiles and currents are displayed in Fig. 3 for two values of ε, which shows the comparison
between the Fick-regime ε = 1 (left panels) and the non-Fick-regimewith very slow particles
ε = 0.001 (right panels).

On the one hand, in the Fick-regime the profile of both types of particles interpolates
between the boundary values, with a slightly non-linear shape that has been quantified pre-
cisely in (3.39)–(3.40). Furthermore, in the same regime ε = 1, the total density profile is
flat and the total current J vanishes because J 0(y) = −J 1(y) for all y ∈ [0, 1].

On the other hand, in the non-Fick-regime with ε = 0.001, the stationary macroscopic
profile for the fast particles interpolates between the boundary values almost linearly (see
(3.43)), whereas the profile for the slow particles is non-monotone: it has two bumps at the
boundaries and in the bulk closely follows the other profile. This non-monotonicity in the
profile of the slow particles is due to the non-uniform convergence in the limit ε ↓ 0, as
pointed out in the last part of Remark 3.11. As a consequence, the total density profile is not
flat and has two bumps at the boundaries. Most strikingly, the total current is J = −2, since
now the current of the bottom layer J 0 is dominating, while the current of the bottom layer
J 1 is small (order ε).
Unequal boundary densities with uphill diffusion As argued earlier, since the system does
not always obey Fick’s law, by tuning the parameters ρ(L,0), ρ(L,1), ρ(R,0), ρ(R,1) and ε, we
can push the system into a regime where the total current is such that J < 0 and the total
densities are such that ρR < ρL , where ρR = ρ(R,0) + ρ(R,1) and ρL = ρ(L,0) + ρ(L,1). In
this regime, the current goes uphill, since the total density of particles at the right is lower
than at the left, yet the average current is negative.
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Fig. 3 Macroscopic profiles of the densities for slow and fast particles (top panels), macroscopic profile of the
total density (central panels), and the currents (bottom panels). Here, ρ(L,0) = 2, ρ(L,1) = 4, ρ(R,0) = 4 and
ρ(R,1) = 2, ϒ = 1. For the panels in the left column, ε = 1 and for the panels in the right column, ε = 0.001

For an illustration, consider the case when ρL,1 = 6, ρR,0 = 4 and ρL,0 = ρR,1 = 2,
which implies ρL = 8 and ρR = 6 and thus ρR < ρL . The density profiles and currents are
shown in Fig. 4 for two values of ε, in particular, a comparison between the Fick-regime ε = 1
(left panels) and the non-Fick-regime with very slow particles ε = 0.001 (right panels). As
can be seen in the figure, when ε = 1, the system obeys Fick’s law: the total density linearly
interpolates between the two total boundary densities 8 and 6, respectively. The average total
stationary current is positive as predicted by Fick’s law. However, in the uphill regime, the
total density is non-linear and the gradient of the total density is not proportional to the total
current, violating Fick’s law. The total current is negative and is effectively dominated by the
current of the fast particles. It will be shown later that the transition into the uphill regime
happens at the critical value ε = |ρ(R,0)−ρ(L,0)|

|ρ(R,1)−ρ(L,1)| = 1
2 . In the limit ε ↓ 0 the total density profile

and the current always get dominated in the bulk by the profile and the current of the fast
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Fig. 4 Macroscopic profiles of the densities for slow and fast particles (top panels), macroscopic profile of the
total density (central panels), and the currents (bottom panels). Here, ρ(L,0) = 2, ρ(L,1) = 6, ρ(R,0) = 4 and
ρ(R,1) = 2, ϒ = 1. For the panels in the left column, ε = 1 and for the panels in the right column, ε = 0.001

particles, respectively. When ε < 1
2 , even though the density of the slow particles makes

the total density near the boundaries such that ρR < ρL , it is not strong enough to help the
system overcome the domination of the fast particles in the bulk, and so the effective total
current goes in the same direction as the current of the fast particles, producing an uphill
current.
The transition between downhill and uphill We observe that for the choice of reservoir
parameters ρL,1 = 6, ρR,0 = 4 and ρL,0 = ρR,1 = 2, the change from downhill to uphill

diffusion occurs at ε = |ρ(R,0)−ρ(L,0)|
|ρ(R,1)−ρ(L,1)| = 1

2 . The density profiles and currents are shown in
Fig. 5 for two additional values of ε, one in the “mild” downhill regime J > 0 for ε = 0.75
(left panels), the other in the “mild” uphill regime J < 0 for ε = 0.25 (right panels). In the
uphill regime (right panel), i.e., when ε = 0.75, the “mild" non-linearity of the total density
profile is already visible, indicating the violation of Fick’s law.
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Fig. 5 Macroscopic profiles of the densities for slow and fast particles (top panels), macroscopic profile of the
total density (central panels), and the currents (bottom panels) in the “mild" downhill and the “mild" uphill
regime. Here, ρ(L,0) = 2, ρ(L,1) = 6, ρ(R,0) = 4 and ρ(R,1) = 2, ϒ = 1. For the panels in the left column,
ε = 0.75 and for the panels in the right column, ε = 0.25

Identification of the uphill regime We define the notion of uphill current below and identify
the parameter ranges for which uphill diffusion occurs.

Definition 3.17 (Uphill diffusion) For parameters ρ(L,0), ρ(L,1), ρ(R,0), ρ(R,1) and ε > 0,we
say the system has an uphill current in stationarity if the total current J and the difference
between the total density of particles in the right and the left side of the systemgivenbyρR−ρL

have the same sign, where it is understood that ρR = ρ(R,0)+ρ(R,1) and ρL = ρ(L,0)+ρ(L,1).
	


Proposition 3.18 (Uphill regime) Let a0 := ρ(R,0) − ρ(L,0) and a1 := ρ(R,1) − ρ(L,1). Then
the macroscopic system admits an uphill current in stationarity if and only if

a20 + (1 + ε) a0a1 + εa21 < 0. (3.86)
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If, furthermore, ε ∈ [0, 1], then
(i) either

a0 + a1 > 0 with a0 < 0, a1 > 0

or

a0 + a1 < 0 with a0 > 0, a1 < 0,

(ii) ε ∈ [0,− a0
a1

]
.

Proof Note that, by (3.78), there is an uphill current if and only if a0 + a1 and a0 + εa1 have
opposite signs. In other words, this happens if and only if

(a0 + a1)(a0 + ε a1) = a20 + (1 + ε) a0a1 + εa21 < 0.

The above constraint forces a0a1 < 0. Further simplification reduces the parameter regime
to the following four cases:

• a0 + a1 > 0 with a0 < 0, a1 > 0 and ε < − a0
a1
,

• a0 + a1 < 0 with a0 > 0, a1 < 0 and ε < − a0
a1
,

• a0 + a1 > 0 with a0 > 0, a1 < 0 and ε > − a0
a1
,

• a0 + a1 < 0 with a0 < 0, a1 > 0 and ε > − a0
a1
.

Under the assumption ε ∈ [0, 1], only the first two of the above four cases survive. 	


3.6 TheWidth of the Boundary Layer

We have seen that for ε = 0 the microscopic density profile of the fast particles θ0(x)
linearly interpolates between ρL,0 and ρR,0, whereas the density profile of the slow particles
satisfies θ1(x) = θ0(x) for all x ∈ {2, . . . , N −1}. In the macroscopic setting this produces a
continuous macroscopic profile ρstat

0 (y) = ρL,0 + (ρR,0 −ρL,0)y for the bottom-layer, while
the top-layer profile develops two discontinuities at the boundaries when either ρ(L,0) �=
ρ(L,1) or ρ(R,0) �= ρ(R,1). In particular,

ρstat
1 (y) → [

ρL,0 + (ρR,0 − ρL,0)y
]

1(0,1)(y) + ρL,11{1}(y) + ρR,11{0}(y), ε ↓ 0,

for y ∈ [0, 1]. For small but positive ε, the curve is smooth and the discontinuity is turned into
a boundary layer. In this section we investigate the width of the left and the right boundary
layers as ε ↓ 0. To this end, let us define

WL := |ρ(L,0) − ρ(L,1)|, WR := |ρ(R,0) − ρ(R,1)|. (3.87)

Note that, the profile ρ1 develops a left boundary layer if and only if WL > 0 and, similarly,
a right boundary layer if and only if WR > 0.

Definition 3.19 We say that the left boundary layer is of size fL(ε) if there exists C > 0
such that, for any c > 0,

lim
ε↓0

RL(ε, c)

fL(ε)
= C,

where RL(ε, c) = sup
{
y ∈ (0, 1

2

) :
∣∣∣ d2dy2

ρstat
1 (y)

∣∣∣ ≥ c
}
. Analogously, we say that the right

boundary layer is of size fR(ε) if there exists C > 0 such that, for any c > 0,

lim
ε↓0

1 − RR(ε, c)

fR(ε)
= C,

123



Switching Interacting Particle Systems: Scaling... Page 41 of 45 33

where RR(ε, c) = inf
{
y ∈ ( 12 , 1) :

∣∣∣ d2dy2
ρstat
1 (y)

∣∣∣ ≥ c
}
.

The widths of the two boundary layers essentially measure the deviation of the top-layer
density profile (and therefore also the total density profile) from the bulk linear profile cor-
responding to the case ε = 0. In the following proposition we estimate the sizes of the two
boundary layers.

Proposition 3.20 (Width of boundary layers) Thewidths of the two boundary layers are given
by

fL(ε) = fR(ε) = √
ε log(1/ε), (3.88)

where fL(ε), fR(ε) are defined as in Definition 3.19.

Proof Note that, to compute fL(ε), it suffices to keepWL > 0 fixed and putWR = 0, where
WL ,WR are as in (3.87). Let y(ε, c) ∈ (0, 1

2 ) be such that, for some constant c > 0,∣∣∣∣ d2dy2
ρstat
1 (y)

∣∣∣∣ ≥ c, (3.89)

or equivalently, since ε�ρ1 = ϒ(ρ1 − ρ0),

|ρstat
1 (y) − ρstat

0 (y)| ≥ cε

ϒ
. (3.90)

Recalling the expressions of ρstat
0 (·) and ρstat

1 (·) for positive ε given in (3.39)−(3.40), we get∣∣∣∣∣∣
sinh

[√
ϒ(1 + 1

ε
)(1 − y)

]
sinh

[√
ϒ(1 + 1

ε
)
] (ρ(L,0)−ρ(L,1))+

sinh
[√

ϒ(1 + 1
ε
) y
]

sinh
[√

ϒ(1 + 1
ε
)
] (ρ(R,0)−ρ(R,1))

∣∣∣∣∣∣≥
cε

ϒ
.

(3.91)

Using (3.87) plus the fact that WR = 0, and setting Bε,ϒ :=
√

ϒ
(
1 + 1

ε

)
, we see that

sinh
[
Bε,ϒ (1 − y)

] ≥ cε

ϒWL
sinh

[
Bε,ϒ

]
. (3.92)

Because sinh(·) is strictly increasing, (3.92) holds if and only if

y(ε, c) ≤ 1 − 1

Bε,ϒ

sinh−1
[

cε

ϒWL
sinh

(
Bε,ϒ

2

)]
. (3.93)

Thus, for small ε > 0 we have

RL(ε, c) = 1 − 1

Bε,ϒ

sinh−1
[

cε

ϒWL
sinh

(
Bε,ϒ

2

)]
, (3.94)

where RL(ε, c) is defined as in Definition 3.19. Since sinh−1 x = log(x + √
x2 + 1) for

x ∈ R, we obtain

RL(ε, c) =
√

ε√
ϒ(1 + ε)

log

⎡
⎣ Nε,ϒ +

√
N 2

ε,ϒ + 1

εCNε,ϒ +√
(εCNε,ϒ )2 + 1

⎤
⎦

=
√

ε√
ϒ(1 + ε)

log(1/ε) +
√

ε√
ϒ(1 + ε)

log

[
1 +√

1 + (1/Nε,ϒ )2

C +√
C2 + (1/(εNε,ϒ ))2

]

=
√

ε√
ϒ(1 + ε)

log(1/ε) + Rε,ϒ,WL ,

(3.95)
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where Nε,ϒ := sinh
(
Bε,ϒ

2

)
,C := c

ϒWL
, and the error term is

Rε,ϒ,WL :=
√

ε√
ϒ(1 + ε)

log

[
1 +√

1 + (1/Nε,ϒ )2

C +√
C2 + (1/(εNε,ϒ ))2

]
.

Note that, since εNε,ϒ → ∞ as ε ↓ 0, we have

lim
ε↓0

Rε,ϒ,WL√
ε

= 1√
ϒ

log(1/C) < ∞. (3.96)

Hence, combining (3.95)−(3.96), we get

lim
ε↓0

RL(ε, c)√
ε log(1/ε)

= lim
ε↓0

1√
ϒ(1 + ε)

+ lim
ε↓0

Rε,ϒ,WL√
ε log(1/ε)

= 1√
ϒ

(3.97)

and so, by Definition 3.19, fL(ε) = √
ε log(1/ε).

Similarly, to compute fR(ε), we first fix WL = 0,WR > 0 and note that, for some c > 0,
we have, by using (3.91),

|∂2ρstat
1 (y)| ≥ c if and only if sinh

[
Bε,ϒ y

] ≥ cε
ϒWR

sinh
[
Bε,ϒ

]
. (3.98)

Hence, by appealing to the strict monotonicity of sinh(·), we obtain

RR(ε, c) = inf

{
y ∈ ( 12 , 1) :

∣∣∣∣ d2dy2
ρstat
1 (y)

∣∣∣∣ ≥ c

}
= 1

Bε,ϒ

sinh−1
[

cε

ϒWR
sinh

(
Bε,ϒ

2

)]
.

(3.99)
Finally, by similar computations as in (3.95)–(3.97), we see that

lim
ε↓0

1 − RR(ε, c)√
ε log(1/ε)

= 1√
ϒ

(3.100)

and hence fR(ε) = √
ε log(1/ε). 	
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A Inverse of the Boundary-Layer Matrix

The inverse of the matrix Mε defined in (3.30) is given by (α1 and α2 are as in (3.31))

M−1
ε := 1

Z

⎡
⎢⎢⎣

−m13 −m14 m13 m14

m21 m22 m23 m24

m31(α2) m32(α2) m33(α2) m34(α2)

−m31(α1) −m32(α1) −m33(α1) −m34(α1)

⎤
⎥⎥⎦ , (A.1)
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where

Z := αN+1
1 [α2(1 − ε)(αN−1

2 + 1) + 2ε(αN+1
2 + 1)] [α2(1 + N )(1 − ε)(αN−1

2 − 1)

+ 2ε(N + ε)(α1+N
2 − 1)],

m13 := αN+1
1 [α2(1−ε)(αN−1

2 +1)+2ε(αN+1
2 +1)] [α2(1−ε)(αN−1

2 − 1)+ε(αN+1
2 − 1)],

m14 := ε αN+1
1 [α2(1 − ε)(αN−1

2 + 1) + 2ε(αN+1
2 + 1)] (αN+1

2 − 1),

m21 := (1 + N )(1 − ε)2(αN−1
2 − αN−1

1 ) − ε(1 − ε)2(α2 − α1)

+ ε2(1 + 2N + ε)(αN+1
2 − αN+1

1 ) + ε(1 − ε)(2 + 3N + ε)(αN
2 − αN

1 ),

m22 := ε [(1 − ε)(1 + N )(αN
2 − αN

1 ) + ε(1 + 2N + ε)(αN+1
2 − αN+1

1 )],
m23 := ε (1 − ε)[(N + ε)(α2 − α1) − (1 − ε)(αN

2 − αN
1 ) − ε(αN+1

2 − αN+1
1 )],

m24 := −ε(1 − ε)[(1 + N )(α2 − α1) + ε (αN+1
2 − αN+1

1 )],
(A.2)

and the polynomials m31(z),m32(z),m33(z),m34(z) are defined as

m31(z) := −(1 − ε)2 z − ε (1 − ε) + (1 − ε)(N + ε) zN − ε(1 − 2N − 3ε) zN+1,

m32(z) := −(1 − ε)(1 + N )zN − ε (1 − ε) − ε(1 + 2N + ε) zN+1,

m33(z) := (1 − ε)2 zN + ε (1 − ε) zN+1 − (1 − ε)(N + ε) z + ε(1 − 2N − 3ε),

m34(z) := (1 + N )(1 − ε) z + ε (1 − ε) zN+1 + ε(1 + 2N + ε).

(A.3)
We remark that most of the terms appearing in the inverse simplify because of (3.32). We
define the four vectors �c1, �c2, �c3, �c4 as the respective rows of M−1

ε , i.e.,

�c1 := (M−1
ε )T �e1, �c2 := (M−1

ε )T �e2,
�c3 := (M−1

ε )T �e3, �c4 := (M−1
ε )T �e4,

(A.4)

where

�e1 := [
1 0 0 0

]T
, �e2 := [

0 1 0 0
]T

,

�e3 := [
0 0 1 0

]T
, �e4 := [

0 0 0 1
]T

.
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