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Abstract

We consider a spatial version of the classical Moran model with seed-banks where the constituent
opulations have finite sizes. Individuals live in colonies labelled by Zd , d ≥ 1, playing the role
f a geographic space, carry one of two types, ♥ or ♠, and change type via resampling as long

as they are active. Each colony contains a seed-bank into which individuals can enter to become
dormant, suspending their resampling until they exit the seed-bank and become active again. Individuals
resample not only from their own colony, but also from other colonies according to a symmetric random
walk transition kernel. The latter is referred to as migration. The sizes of the active and the dormant
populations depend on the colony and remain constant throughout the evolution.

It was shown in den Hollander and Nandan (2021) that the spatial system is well-defined, admits
a family of equilibria parametrised by the initial density of type ♥, and exhibits a dichotomy

etween clustering (mono-type equilibrium) and coexistence (multi-type equilibrium). This dichotomy
is determined by a clustering criterion that is given in terms of the dual of the system, which consists
of a system of interacting coalescing random walks. In this paper we provide an alternative clustering
criterion, given in terms of an auxiliary dual that is simpler than the original dual, and identify a range
of parameters for which the criterion is met, which we refer to as the clustering regime. It turns out that
f the sizes of the active populations are non-clumping (i.e., do not take arbitrarily large values in finite
egions of the geographic space) and the relative strengths of the seed-banks (i.e., the ratio of the sizes
f the dormant and the active population in each colony) are bounded uniformly over the geographic
pace, then clustering prevails if and only if the symmetrised migration kernel is recurrent.

The spatial system is hard to analyse because of the interaction in the original dual and the
nhomogeneity of the colony sizes. By comparing the auxiliary dual with a non-interacting two-particle
ystem, we are able to control the correlations that are caused by the interactions. The work in den
ollander and Nandan (2021) and the present paper is part of a broader attempt to include dormancy

nto interacting particle systems.
2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license

http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

1.1. Background and targets

Seed-bank, as the name suggests, refers to a reservoir that can store genetic information of a
biological population for future evolutionary purposes. While this terminology naturally applies
to the population of plants, in the literature of population genetics it also relates to dormancy,

hich is a biological trait observed in many microbial communities. The trait provides an
rganism with the ability to enter a reversible state of low metabolic activity for an indefinite
eriod in unfavourable environmental conditions. In the dormant state an organism refrains
rom reproduction and other phenotypic developments, until it becomes metabolically active
gain under better ecological circumstances. Recent studies have revealed that the presence of
seed-bank (or dormancy) significantly changes the way in which a population behaves under

volutionary forces such as migration, selection, mutation or recombination (for references
ee [18]). Consequently, better understanding dormancy from a biological and a mathematical
erspective has attracted the attention of researchers in population genetics. Various attempts
ave been made to include seed-banks in already existing mathematical models describing
enetic evolution of populations.

In [3] and [4], the discrete-time Fisher–Wright model with seed-bank was introduced and
nalysed. Individuals live in a colony, are subject to resampling (i.e., they randomly adopt each
thers type), and move in and out of the seed-bank, where they suspend their resampling. The
eed-bank acts as a repository for the genetic information of the population. Individuals that
eside inside the seed-bank are called dormant, those that reside outside are called active. Both
he long-time scaling and the genealogy of the population were analysed in the limit as the size
f the colony tends to infinity. The continuous-time version of the model, called Moran model,
as the same behaviour. For a recent overview on seed-bank models in population genetics we
efer the reader to [5].

The demography of natural populations is in general structured, in the sense that they admit
carrying capacity that is usually imposed by the surrounding habitat. This motivated us in [7]

o extend existing models with a seed-bank to an inhomogeneous spatial setting. Our model is
ormally described via an interacting particle system, and a key characteristic is that no large-

colony-size limit is taken. In particular, the constituent populations have preassigned fixed sizes
that can be chosen arbitrarily, as long as their spatial growth is not too irregular. Individuals live
in multiple colonies, labelled by Zd , d ≥ 1, playing the role of a geographic space and carry

ne of the two genetic types: ♥ and ♠. Each colony has its own seed-bank, and individuals
esample not only from their own colony, but also from other colonies according to a random
alk transition kernel, which is referred to as migration. The sizes of the active and the dormant
opulation depend on the colony. It was shown that, under mild conditions on the sizes, the
ystem is well-defined, has a unique equilibrium that depends on the initial density of types, and
xhibits a dichotomy between clustering (mono-type equilibrium) and coexistence (multi-type
quilibrium). This dichotomy is determined by a clustering criterion that is given in terms of
he dual of the system, which consists of a system of interacting coalescing random walks in
n inhomogeneous environment.
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In the present paper, we identify a subdomain of the clustering regime (i.e., a range of
parameters for which the clustering criterion is met) that is natural and adequate from a
biological point of view. More precisely, we show that if the sizes of the active populations
are non-clumping, i.e., do not take arbitrarily large values in finite regions of the geographic
space, and the relative strengths of the seed-banks in the different colonies are bounded, then the
dichotomy between coexistence and clustering is the classical dichotomy between transience
and recurrence of the symmetrised migration kernel, a property that is known to hold for
colonies without seed-bank.

Three open problems for the future are:

(A) Identify the clustering regime when the relative strengths of the seed-banks in the different
colonies are unbounded. In that setting the clustering regime will be different, because it
will be driven by a delicate interplay between migration and seed-bank.

(B) In the coexistence regime, identify the domain of attraction of the equilibria.
(C) In the clustering regime, identify the growth rate of the mono-type clusters.

In [7] we only showed convergence to equilibrium starting from a family of initial states that
are labelled by the initial density of types and that are products of binomial distributions tuned
to the inhomogeneity of the relative strengths of the seed-banks.

In [11–13] a homogeneous spatial version of the Fisher–Wright model was considered
(i.e., the relative strengths of the seed-banks do not vary across different colonies), in the
large-colony-size limit. For three different choices of seed-bank, it was shown that the system is
well-defined, has a unique equilibrium that depends on the initial density of types, and exhibits
a dichotomy between clustering and coexistence. A full description of the clustering regime
was obtained. In addition, the finite-systems scheme was established (i.e., how a truncated
version of the system behaves on a properly tuned time scale as the truncation level tends to
infinity). Moreover, a multi-scale renormalisation analysis was carried out for the case where
the colonies are labelled by the hierarchical group. The respective duals for these models are
easier, because they are non-interacting and have no inhomogeneity in space. The dual of our
model is much harder, which is why our results are much more modest.

1.2. Outline

The paper is organised as follows. In Section 2 we give a quick definition of the model and
state our main theorems about the dichotomy of clustering versus coexistence by identifying
the clustering regime for both. In Section 3 we provide a different representation (namely,
given by a coordinate process) of the two-particle dual process associated to our system
introduced in [7], and define two auxiliary duals that serve as comparison objects. We relate
the coalescence probabilities of the different duals, which leads to a necessary and sufficient
criterion for clustering in our system. In Section 4 we prove our main results. In Section 5 we
discuss the main results and shed light on the motivation behind the strategy of the proofs. In the
Appendix we recall the original representation (given by a configuration process) of the two-

particle dual from [7], and briefly elaborate on its relation with the alternative representation
given in Section 3.

2. Main theorems

In Section 2.1 we give a quick definition of the multi-colony system. In Section 2.2 we state
our results about the dichotomy of clustering versus coexistence, which requires additional

conditions on the sizes of the active and the dormant population.
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2.1. Quick definition of the system

Individuals live in colonies labelled by Zd , d ≥ 1, which play the role of a geographic
pace. Each colony has an active population and a dormant population. For i ∈ Zd , we write
Ni , Mi ) ∈ N2 to denote the size of the active, respectively, dormant population at the colony
. Each individual carries one of two types: ♥ and ♠. Individuals are subject to:

(1) Active individuals in any colony resample with active individuals in any colony.
(2) Active individuals in any colony exchange with dormant individuals in the same colony.

or (1) we assume that each active individual at colony i at rate a(i, j) uniformly draws an
ctive individual at colony j and adopts its type. For (2) we assume that each active individual
t colony i at rate λ ∈ (0, ∞) uniformly draws a dormant individual at colony i and the two
ndividuals trade places while keeping their type (i.e., the active individual becomes dormant
nd the dormant individual becomes active). Although the exchange rate λ could be made to
ary across colonies, for the sake of simplicity we choose it to be constant, and we let the
igration kernel a(· , ·) be translation invariant and irreducible. Note that dormant individuals
o not resample.

ssumption 2.1 (Homogeneous Migration). The migration kernel a(· , ·) satisfies:

• a(· , ·) is irreducible in Zd .
• a(i, j) = a(0, j − i) for all i, j ∈ Zd .
• c :=

∑
i∈Zd\{0}

a(0, i) < ∞ and a(0, 0) =
1
2 .

The second part of the assumption ensures that the way genetic information moves between
olonies is homogeneous in space. The third part of the assumption ensures that the total rate
f resampling of a single individual is finite and that resampling is possible also at the same
olony.

emark 2.2. A detailed description of the multi-colony system can be found in [7, Section
3.2]. In what follows, the geographic space, which here is chosen to be Zd , can be any countable

belian group. Moreover, the choice of a(0, 0) =
1
2 in Assumption 2.1 has been made only

o make our model fit with the classical single-colony Moran model. The value of a(0, 0)
epresents the rate at which individuals resample from their own colony and in principle can
e set to any positive real number.

Furthermore, in order to avoid trivial statement we assume the following:

ssumption 2.3 (Non-Trivial Colony Sizes). In each colony, both the active and the dormant
population consist of at least two individuals, i.e., Ni ≥ 2 and Mi ≥ 2 for all i ∈ Zd .

For colony sizes where Assumption 2.3 fails, all the results stated below can be obtained
with minor technical modifications.

At each colony i we register the pair (X i (t), Yi (t)), representing the number of active,
respectively, dormant individuals of type ♥ at time t at colony i . The resulting Markov process
s denoted by
Z := (Z (t))t≥0, Z (t) = (X i (t), Yi (t))i∈Zd , (2.1)
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and lives on the state space

X =

∏
i∈Zd

[Ni ] × [Mi ], (2.2)

here [n] := {0, 1, . . . , n}, n ∈ N. In [7], it was shown that under mild assumptions on the
model parameters, the Markov process in (2.1) is well defined and has a dual (Z∗(t))t≥0 where
he process

Z∗
:= (Z∗(t))t≥0, Z∗(t) := (ni (t), mi (t))i∈Zd , (2.3)

ives on the state space

X ∗
:=

{
(ni , mi )i∈Zd ∈ X :

∑
i∈Zd

(ni + mi ) < ∞

}
. (2.4)

he dual process Z∗ consists of finite collections of particles that switch between an active state
nd a dormant state, and perform interacting coalescing random walks while in the active state,
ith rates that are controlled by the model parameters.
We recall below the results from [7] on the well-posedness of the process Z and the duality

elation between Z and Z∗. Interested readers can find the precise duality relation between Z
nd Z∗ in [7, Theorem 3.10].

heorem 2.4 (Well-Posedness And Duality, [7, Theorem 2.2 and Corollary 3.11]). Suppose
hat Assumption 2.1 is in force. Then the martingale problem associated with (2.1) is well-posed
nder either of the two following conditions:

(a) lim∥i∥→∞ ∥i∥−1 log Ni = 0 and
∑

i∈Zd eδ∥i∥a(0, i) < ∞ for some δ > 0.
(b) supi∈Zd\{0} ∥i∥−γ Ni < ∞ and

∑
i∈Zd ∥i∥d+γ+δa(0, i) < ∞ for some γ > 0 and some

δ > 0.

urthermore, the Markov process (Z (t))t≥0 has a factorial moment dual (Z∗(t))t≥0, living on
he state space X ∗

⊂ X and consisting of all configurations with finite mass.

In view of the above, from here onwards, we implicitly assume that the model parameters
Ni )i∈Zd and a(· , ·) are such that one of the two conditions (a) and (b) is satisfied.

emark 2.5. Due to conditions (a) and (b) in Theorem 2.4, the migration kernel a(· , ·) always
dmits a (d + δ)-moment for some δ > 0.

e write â(· , ·) to denote the symmetrised migration kernel defined by

â(i, j) :=
1
2 [a(i, j) + a( j, i)], i, j ∈ Zd , (2.5)

nd write an(· , ·) to denote the n-step transition probability kernel of the embedded chain
ssociated to the continuous-time random walk on Zd with rates a(· , ·). Furthermore, we denote
y ât (· , ·) (respectively, at (· , ·)), the time-t transition probability kernel of the continuous-time
andom walk with migration rates â(· , ·) (respectively, a(· , ·)), and put

Ki :=
Ni

Mi
, i ∈ Zd , (2.6)

or the ratios of the sizes of the active and the dormant population in each colony. Note that
K −1 quantifies the relative strength of the seed-bank at colony i ∈ Zd .
i
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Let P be the set of probability distributions on X defined by

P :=
{
Pθ : θ ∈ [0, 1]

}
, Pθ := θ

∏
i∈Zd

δ(0,0) + (1 − θ )
∏
i∈Zd

δ(Ni ,Mi ). (2.7)

e say that (2.1) exhibits clustering if the limiting distribution of Z (t) (given that it exists) falls
n P . Otherwise we say that it exhibits coexistence. In the next section we state the clustering
riterion from [7], given in terms of the original dual process Z∗, and provide an alternative
quivalent criterion in terms of a simpler two-particle process that is absorbing.

.2. Clustering versus coexistence

In [7], it was shown that the system admits a mono-type equilibrium (clustering) if and only
f the following criterion is met:

heorem 2.6 (Clustering Condition, [7, Theorem 3.17]). The system clusters if and only if
n the dual process Z∗ two particles, starting from any locations in Zd and any states (active
r dormant), coalesce with probability 1.

Before we state our alternative criterion for clustering, we introduce an auxiliary two-particle
ual process. In Proposition 3.5, we will show the well-posedness of this process. Recall that
is the exchange rate between active and dormant individuals in each colony.

efinition 2.7 (Auxiliary Two-Particle System). The two-particle process ξ̂ := (ξ̂ (t))t≥0 is a
ontinuous-time Markov chain on the state space

S := (G × G) ∪ {⊛}, G := Zd
× {0, 1} (2.8)

ith transition rates
[(i, α), ( j, β)] →⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

⊛, at rate 2a(i, i) αβ

Ni
δi, j ,

[(i, 1 − α), ( j, β)], at rate λ[α + (1 − α)Ki ] −
λ

Mi
δi, j (1 − δα,β),

[(i, α), ( j, 1 − β)], at rate λ[β + (1 − β)K j ] −
λ

M j
δi, j (1 − δα,β),

[(k, α), ( j, β)], at rate α a(i, k) for k ̸= i ∈ Zd ,

[(i, α), (k, β)], at rate β a( j, k) for k ̸= j ∈ Zd ,

(2.9)

here [(i, α), ( j, β)] ∈ G × G and δ·,· denotes the Kronecker delta-function.

Here, ξ̂ (t) = [(i, α), ( j, β)] captures the location (i, j ∈ Zd ) and the state (α, β ∈ {0, 1}) of
he two particles at time t , where 0 stands for dormant and 1 stands for active, respectively.
ote that ⊛ is an absorbing state for the process ξ̂ , which is absorbed at a location-dependent

ate only when the two particles are on top of each other and in the active state. We will see in
ection 3.1 that this is different from what happens in the two-particle system obtained from

he original dual. The process ξ̂ is much simpler than the original two-particle system, because
he particles do not interact unless they are on top of each other with opposite states. Indeed,
ote that in the second and third lines of (2.9) the second term represents a repulsive interaction
etween the two particles that is non-zero only when i = j and α ̸= β. From here onwards, we
rite P̂η to denote the law of the process ξ̂ started from η ∈ S, and Êη to denote expectation
.r.t. P̂η.
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Remark 2.8. Note that, by virtue of Assumptions 2.1 and 2.3, all states in S are accessible
by ξ̂ .

Theorem 2.9 (Clustering Criterion). The system clusters if the process ξ̂ starting from an
arbitrary configuration in G × G is absorbed with probability 1. Furthermore, if the sizes of
the active populations are non-clumping, i.e.,

inf
i∈Zd

∑
∥ j−i∥≤R

1
N j

> 0 for some R < ∞, (2.10)

hen the converse is true as well.

emark 2.10. The condition in (2.10) is equivalent to requiring that, for some constant C < ∞

nd all i ∈ Zd , there exists a j with ∥ j − i∥ ≤ R such that N j ≤ C . This requirement can be
urther relaxed to

inf
i∈Zd

∑
j∈Zd

1
N j

∑
n∈N

m2n an(i, j)2 > 0, (2.11)

here m :=
c

2(c+λ)+1 . Although (2.10) arises in our context as a technical requirement, it has an
nteresting connection with the notion introduced in [20,23] of coalescent effective population
ize (CES) in a subdivided population. Roughly, N ∈ N is said to be the CES of a subdivided
opulation when, after measuring time in units of N generations and taking the large-colony-
ize-limit, the associated genealogy gives rise to Kingman’s coalescent (or a similar object).

hen migration is controlled by a transition matrix, the CES is often proportional to the
armonic mean of the constituent population sizes (see e.g., [24], and also [8, Section 4.4]).
he non-clumping criterion in (2.10) essentially says that if H (i, R) is the harmonic mean of

he active population sizes of the colonies within the R-neighbourhood of colony i , i.e.,

H (i, R) :=
|{ j ∈ Zd

: ∥ j − i∥ ≤ R}|∑
∥ j−i∥≤R

N−1
j

, i ∈ Zd , (2.12)

hen supi∈Zd H (i, R) < ∞ for some R < ∞. We believe that this connection of the
on-clumping criterion to the CES is not accidental, and merits further investigation.

To verify when the above clustering criterion is satisfied, we need to impose the following
egularity condition on the migration kernel.

ssumption 2.11 (Regularly Varying Migration Kernel). Assume that t ↦→ ât (0, 0) is
egularly varying at infinity, i.e., limt→∞

âpt (0,0)
ât (0,0) = p−σ for all p ∈ (0, ∞) and some

∈ [0, ∞), where −σ is the index of the regular variation and ât (·, ·) is the time-t symmetrised
igration kernel.

emark 2.12. Note that all genuinely d-dimensional continuous-time random walks satisfying
he LCLT (see e.g., [17, Chapter 2]) have a probability transition kernel with a regularly varying
ail of index −

d
2 .

When the relative strengths of the seed-banks are uniformly bounded, clustering is equivalent
o the symmetrised migration kernel being recurrent, a setting that is classical. The following
heorem provides a slightly weaker result.
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Theorem 2.13 (Clustering Regime). Suppose that Assumption 2.11 is in force. Assume that
he active population sizes are non-clumping, i.e., (2.10) is satisfied, and the relative strengths
f the seed-banks are uniformly bounded, i.e.,

sup
i∈Zd

K −1
i < ∞. (2.13)

f the system clusters, then it is necessary that the symmetrised kernel â(· , ·) is recurrent.
urthermore, if the migration kernel a(· , ·) is symmetric, then the converse holds as well.

It was shown in [11] that the above dichotomy is true when the seed-banks are homogeneous
i.e., (Ni , Mi ) = (N , M) for all i ∈ Zd ) and the large-colony-size limit is taken (i.e., N , M →

such that N/M → K ∈ (0, ∞)). In that case, the dual process is an independent particle
ystem with coalescence and without inhomogeneity, for which the proof is much simpler.
he result stated above extends the dichotomy to the inhomogeneous setting. It essentially
ays that if the inhomogeneities caused by the seed-banks are spatially uniform (reflected by
2.13)), then the dichotomy remains unchanged. The condition in (2.13) allows us to compare
he auxiliary dual process ξ̂ with a non-interacting two-particle process ξ ∗ living on the state
pace S that we introduce in Section 3.1 (see Section 4.1 for more details). As we will see
ater, ⊛ is an absorbing state for ξ ∗ too and, under the conditions given in Theorem 2.13, it
urns out that ξ̂ is absorbed with probability 1 if and only if ξ ∗ is. In ξ ∗ the two particles
volve independently until absorption. A single particle migrates in the active state at rates
(· , ·), becomes dormant from the active state at rate λ, and becomes active from the dormant
tate at rate λKi when it is at location i ∈ Zd . When the condition (2.13) is met, the average
ime spent in the dormant state by the particles in the various locations are of the same order,
nd hence the distance between the two particles is effectively controlled by the symmetrised
ernel â(· , ·). In particular, the recurrence of â(· , ·) forces the two particles to meet each other
nfinitely often with probability 1. As a result, ξ ∗ is eventually absorbed in ⊛. We exploit
hese facts along with the alternative clustering criterion to prove Theorem 2.13. We expect
he symmetry assumption to be redundant for the converse statement, but are unable to remove
t for technical reasons. The following result is an immediate corollary.

orollary 2.14 (Dimensional Dichotomy). Assume that all the conditions in Theorem 2.13
re in force. Then the following hold:

(a) Coexistence prevails when d > 2.
(b) Clustering prevails when d ≤ 2 and a(· , ·) is symmetric.

. Dual processes: comparison between different systems

In Section 3.1 we give a brief description of the dual process Z∗ of our original system
ntroduced in [7], and define two auxiliary duals that serve as comparison objects. The auxiliary
uals are simplified versions of the basic dual, started from two particles, where the coalesced
tate of the two particles is turned into an absorbing state. In Sections 3.2–3.3 we relate the
oalescence (absorption) probabilities of the auxiliary duals via a comparison technique that
s based on the Lyapunov function approach employed in [6]. In Section 3.4 we provide finer
onditions on the parameters of our original model under which the results derived in previous

ections hold.
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3.1. Two-particle dual and auxiliary duals

Recall that the dual process Z∗ is an interacting particle system describing the evolution of
nitely many particles such that (see [7, Section 3.2] for more details)

• particles can be in one of the two states: active and dormant,
• particles migrate while in the active state,
• a pair of particles in the active state can coalesce (even from different locations) with

each other to form a single active particle,
• the interaction between the particles is repulsive in nature, in the sense that a particle

discourages another particle to be at the same location with the same state (active or
dormant). To be more precise, the associated transition of a particle happens at a slower
rate due to the interaction with the other particles.

s stated earlier in Theorem 2.6, the dichotomy between clustering and coexistence is solely
etermined by the coalescence of two dual particles, and so we only need to analyse the dual
rocess starting from two particles. There are two ways in which we can describe the two-
article dual process, namely, as a configuration process that keeps track of the number of
ctive and dormant particles at each location of the geographic space, or as a coordinate process
hat gives only the location and the state (active or dormant) of the particles that are present in
he system. In [7], the dual process Z∗ was introduced via a configuration process. However, in
hat follows we describe the two-particle dual originating from the process Z∗ as a coordinate
rocess in order to keep computations and notations simple. To make our paper self-contained,
n the Appendix we include a short description of the configuration process associated to the
riginal two-particle dual. The transition rates for the two particles in the dual process are as
ollows:

• (Migration) An active particle at site i migrates to site j at rate a(i, j) if there is no
active particle at site j , otherwise at rate a(i, j)(1 −

1
N j

).

• (Active to Dormant) An active particle at site i becomes dormant at site i at rate λ if
there is no dormant particle at site i , otherwise at rate λ(1 −

1
Mi

).
• (Dormant to Active) A dormant particle at site i becomes active at site i at rate λKi if

there is no active particle at site i , otherwise at rate λ(Ki −
1

Mi
).

• (Coalescence) An active particle at site i coalesces with another active particle at site j
at rate a(i, j)

N j
.

n the process described above, once coalescence event of the two particles occurs, only a
ingle particle remains in the system for the rest of the time. Because of this, the coalesced
tate of the two particles, which we call ⊛, becomes absorbing for the corressponding process
topped at the time of coalescence. Since we are only interested in the coalescence probability,
t suffices to analyse the absorption time to ⊛ of the resulting absorbing process. Furthermore,
y virtue of the well-known Dynkin criterion for lumpability, the absorbing process remains
continuous-time Markov chain. Although this can be verified by standard computations, for

he convenience of the reader we include a brief proof in the Appendix. Below we provide a
ormal definition of the absorbing two-particle process as interacting RW1, which is basically
coordinate process living on the state space

d
S := (G × G) ∪ {⊛}, G := Z × {0, 1}. (3.1)
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Definition 3.1 (Interacting RW1). The interacting RW1 process

ξ := (ξ (t))t≥0 (3.2)

s the continuous-time Markov chain on the state space S with transition rates

[(i, α), ( j, β)] →⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

⊛, at rate αβ(1 − δi, j )
[

a(i, j)
N j

+
a( j,i)

Ni

]
+ 2a(i, i) αβ

Ni
δi, j ,

[(i, 1 − α), ( j, β)], at rate λ[α + (1 − α)Ki ] −
λ

Mi
δi, j (1 − δα,β),

[(i, α), ( j, 1 − β)], at rate λ[β + (1 − β)K j ] −
λ

M j
δi, j (1 − δα,β),

[(k, α), ( j, β)], at rate α a(i, k) − a(i, k) αβ

N j
δk, j for k ̸= i ∈ Zd ,

[(i, α), (k, β)], at rate β a( j, k) − a( j, k) αβ

Ni
δk,i for k ̸= j ∈ Zd ,

(3.3)

where δ·,· denotes the Kronecker delta-function.

Here, ξ (t) = [(i, α), ( j, β)] provides the location (i, j ∈ Zd ) and the state (α, β ∈ {0, 1}) of
he two particles in the process at time t , where 0 stands for dormant and 1 stands for active,
espectively.

emark 3.2. Note that the coalescence time of the original two-particle dual process becomes
he absorption time of ξ , and thus the original clustering criterion stated in Theorem 2.6 is
quivalent to asking whether or not ξ is absorbed in ⊛ with probability 1. However, the negative
econd terms in the last two transition rates of ξ (see (3.3)) imply that the two particles interact
epulsively with each other even when they migrate in the active state. As a consequence, the
ffective migration kernel of a single particle becomes inhomogeneous in space, and so ξ is
uch harder to analyse than the auxiliary two-particle dual ξ̂ defined in Definition 2.7. Another

key difference between ξ and ξ̂ is that ξ̂ has a positive rate of absorption only when both
particles are on the same location in the active state. Although it may seem natural that ξ has a
higher chance of absorption than ξ̂ , we will show later via a comparison argument that, under
the non-clumping criterion (see (2.10)) on (Ni )i∈Zd , if one process enters the absorbing state
⊛ with probability 1, then the other process does so too. This ultimately provides us with the
alternative criterion for clustering in Theorem 2.9.

From now onwards, we write Pη to denote the law of the process ξ started from η ∈ S, and
Eη to denote expectation w.r.t. Pη.

Remark 3.3. Note that, by virtue of Assumptions 2.1 and 2.3, all states in S are accessible
by ξ .

In addition to the auxiliary two-particle process ξ̂ defined in Definition 2.7, and the
interacting RW1 process ξ defined above, we introduce one more two-particle system, called
independent RW, on the same state space S. This will also serve as an intermediate comparison
object.

Definition 3.4 (Independent RW). The independent RW process

∗ ∗
ξ := (ξ (t))t≥0 (3.4)
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is the continuous-time Markov chain on the state space S with transition rates

[(i, α), ( j, β)] →⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

⊛, at rate 2a(i, i) αβ

Ni
δi, j ,

[(i, 1 − α), ( j, β)], at rate λ[α + (1 − α)Ki ],
[(i, α), ( j, 1 − β)], at rate λ[β + (1 − β)K j ],
[(k, α), ( j, β)], at rate α a(i, k) for k ̸= i ∈ Zd ,

[(i, α), (k, β)], at rate β a( j, k) for k ̸= j ∈ Zd .

(3.5)

In Section 4 we delve deeper into the independent RW process ξ ∗, in order to utilise the
omparison results derived in the next two sections and determine the clustering regime. We
rite P∗

η to denote the law of ξ ∗ started from η ∈ S, and E∗
η to denote expectation w.r.t. P∗

η.
In the following proposition, we establish the well-posedness of ξ̂ (see Definition 2.7), and

f ξ , ξ ∗ defined above.

roposition 3.5 (Stability). All three processes ξ , ξ̂ , ξ ∗ are non-explosive continuous-time
arkov chains on the countable state space S.

roof. We prove this claim by using the Foster–Lyapunov criterion (see [19]). Let B0 := {⊛},
nd for n ∈ N define Bn := {[(i, α), ( j, β)] ∈ S : max{∥i∥, ∥ j∥} < n} ∪ B0. Define

V (η) :=

{
∥i∥ + ∥ j∥, if η = [(i, α), ( j, β)],
0, otherwise,

η ∈ S. (3.6)

urthermore, let Q, Q̂, Q∗ be the infinitesimal generators of the processes ξ, ξ̂ , ξ ∗, respectively.
ote that, for η = [(i, α), ( j, β)] ∈ S,

QV (η) = α
∑
k ̸=i

a(i, k)(∥k∥ − ∥i∥) + β
∑
k ̸= j

a( j, k)(∥k∥ − ∥ j∥)

− 2αβ(1 − δi, j )
[

a(i, j)
N j

∥i∥ +
a( j,i)

Ni
∥ j∥

]
−

αβ

Ni
δi, j

≤ (α + β)µ1 + 2αβ(1 − δi, j )
[

a(i, j)
N j

∥i∥ +
a( j,i)

Ni
∥ j∥

]
≤ 2V (η) + (α + β)µ1

≤ 2V (η) + 2µ1 (since α + β ≤ 2),

(3.7)

where µ1 :=
∑

i∈Zd/{0}
∥i∥ a(0, i). Let V ′

: S → [0, ∞) be the function defined by η ↦→

V (η) + µ1. Note that Bn ↑ S as n → ∞ and infη∈Bc
n V ′(η) ≥ n. Thus, infη∈Bc

n V ′(η) ↑ ∞

as n → ∞ and, by (3.7), QV ′(η) ≤ 2 V ′(η). Hence the Foster–Lyapunov criterion is satisfied
by the generator Q, and so ξ is non-explosive. Similar arguments show that ξ̂ and ξ ∗ are
non-explosive as well. □

3.2. Comparison between interacting duals

In this section we show, via comparison between the infinitesimal generators of the two-
particle dual ξ and the auxiliary two-particle dual ξ̂ introduced in Definition 2.7, that the two
processes have in fact very similar behaviour when it comes to long-run survivability. This
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is not surprising given that there are only slight differences in the migration and absorption
mechanism (cf. the first and the last transition rate in Definitions 2.7 and 3.1) of the active
particles present in the two processes.

Proposition 3.6 (Stochastic Domination). Let f : S → R be bounded and such that
f (η) ≤ f (⊛) for all η ∈ S . Let (ξ (t))t≥0 and (ξ̂ (t))t≥0 be the interacting RW1 and the auxiliary
wo-particle system defined in Definition 3.1 and Definition 2.7, respectively. Then, for any
∈ S and t ≥ 0, Eη[ f (ξ (t))] ≥ Êη[ f (ξ̂ (t))].

roof. Let Q and Q̂ be the generators of the processes ξ, ξ̂ , respectively. Since ξ and ξ̂ are
non-explosive continuous-time Markov processes on a countable state space, Q and Q̂ generate
unique Markov semigroups (St )t≥0 and (Ŝt )t≥0, respectively, given by

(St g)(η) = Eη[g(ξ (t))], (Ŝt g)(η) = Êη[g(ξ̂ (t))], t ≥ 0, (3.8)

here g : S → R is bounded and η ∈ S . Since f is bounded, we can apply the variation of
onstants formula for semigroups, to obtain

(St f )(η) − (Ŝt f )(η) =

∫ t

0
(St−s(Q − Q̂)Ŝs f )(η) ds. (3.9)

he actions of Q and Q̂ on a bounded function g : S → R are given by

Qg(η) = α
∑
k ̸=i

a(i, k)
[
1 −

β

N j
δk, j

]
{g([(k, α), ( j, β)]) − g([(i, α), ( j, β)])}

+ β
∑
k ̸= j

a( j, k)
[
1 −

α
Ni

δk,i
]
{g([(i, α), (k, β)]) − g([(i, α), ( j, β)])}

+
[
λ(α + (1 − α)Ki ) −

λ
Mi

δi, j (1 − δα,β)
]

× {g([(i, 1 − α), ( j, β)]) − g([(i, α), ( j, β)])}

+
[
λ(β + (1 − β)K j ) −

λ
M j

δi, j (1 − δα,β)
]

× {g([(i, α), ( j, 1 − β)]) − g([(i, α), ( j, β)])}

+
[
αβ(1 − δi, j )

( a(i, j)
N j

+
a( j,i)

Ni

)
+ 2a(i, i) αβ

Ni
δi, j

]
{g(⊛) − g([(i, α), ( j, β)])}

(3.10)

nd

Q̂g(η) = α
∑
k ̸=i

a(i, k){g([(k, α), ( j, β)]) − g([(i, α), ( j, β)])}

+ β
∑
k ̸= j

a( j, k){g([(i, α), (k, β)]) − g([(i, α), ( j, β)])}

+
[
λ(α + (1 − α)Ki ) −

λ
Mi

δi, j (1 − δα,β)
]

× {g([(i, 1 − α), ( j, β)]) − g([(i, α), ( j, β)])}

+
[
λ(β + (1 − β)K j ) −

λ
M j

δi, j (1 − δα,β)
]

× {g([(i, α), ( j, 1 − β)]) − g([(i, α), ( j, β)])}

+
[
2a(i, i) αβ

δ
]
{g(⊛) − g([(i, α), ( j, β)])},

(3.11)
Ni i, j
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where η = [(i, α), ( j, β)] ∈ S. Thus,

((Q − Q̂)g)(η) = −αβ
∑
k ̸=i

a(i,k)
N j

δk, j {g([(k, α), ( j, β)]) − g([(i, α), ( j, β)])}

− αβ
∑
k ̸= j

a( j,k)
Ni

δk,i {g([(i, α), (k, β)]) − g([(i, α), ( j, β)])}

+
[
αβ(1 − δi, j )

( a(i, j)
N j

+
a( j,i)

Ni

)]
{g(⊛) − g([(i, α), ( j, β)])}

= −αβ(1 − δi, j )
[ a(i, j)

N j
g([( j, α), ( j, β)]) +

a( j,i)
Ni

g([(i, α), (i, β)])
]

+ αβ(1 − δi, j )
[ a(i, j)

N j
+

a( j,i)
Ni

]
g(⊛),

(3.12)

nd so if g is such that supη∈S g(η) = g(⊛), then

((Q − Q̂)g)(η) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
αβ(1 − δi, j )

a(i, j)
N j

[
g(⊛) − g([( j, α), ( j, β)])

]
+αβ(1 − δi, j )

a( j,i)
Ni

[
g(⊛) − g([(i, α), (i, β)])

]
,

if η = [(i, α), ( j, β)] ̸= ⊛,

0, otherwise,

≥ 0.

(3.13)

ote that the semigroup (Ŝt )t≥0 also has the property supη∈S (Ŝs f )(η) = f (⊛) = (Ŝs f )(⊛) for
ny s ≥ 0, since f ≤ f (⊛) and ⊛ is absorbing. Thus, combining the above with (3.13), we
et that (Q − Q̂)Ŝs f is a non-negative function for any s ≥ 0. Therefore the right-hand side
f (3.9) is non-negative as well, which proves the desired result. □

orollary 3.7 (Stochastic Ordering of Absorption Times). Let τ and τ̂ denote the absorption
ime of the processes ξ and ξ̂ , respectively. Then, for any η ∈ S and t > 0,

Pη(τ ≤ t) ≥ P̂η(τ̂ ≤ t). (3.14)

roof. This follows by applying Proposition 3.6 to the function f = 1{⊛} and using that ⊛ is
bsorbing for both ξ and ξ̂ . □

The above result tells that the two particles in the process ξ have a higher chance of
bsorption than in the auxiliary process ξ̂ . This fits with intuition: two active particles in ξ can
oalesce even when sitting at different locations. In the next result we show that two particles in

ˆ have a higher probability of being on top of each other in the active state or being absorbed
han in ξ . This is essentially due to the extra repulsive interaction that takes place when an
ctive particle in ξ attempts to migrate, which is absent in ξ̂ .

roposition 3.8 (Stochastic Ordering of Hitting Times). Let B ⊂ S be defined as

B := {[(i, 1), (i, 1)] : i ∈ Zd
} ∪ {⊛}. (3.15)

et TB, T̂B denote the first hitting time of the set B for ξ and ξ̂ , respectively. Then, for all
y ∈ S,

ˆ y ˆ y
P (TB < ∞) ≥ P (TB < ∞). (3.16)
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Proof. Let g : S → [0, 1] and ĝ : S → [0, 1] be defined as

g(y) := Py(TB < ∞), ĝ(y) := P̂y(T̂B < ∞), y ∈ S. (3.17)

e are required to show that

ĝ(y) ≥ g(y) for any y ∈ S. (3.18)

o that end, let Q and Q̂ be the generators of the processes ξ and ξ̂ , respectively. Applying
Q − Q̂ to the function ĝ, we get from (3.13) that

(Qĝ)(y) − (Q̂ĝ)(y)

=

⎧⎪⎪⎨⎪⎪⎩
αβ(1 − δi, j )

a(i, j)
N j

{
ĝ(⊛) − ĝ([( j, α), ( j, β)])

}
+αβ(1 − δi, j )

a( j,i)
Ni

{
ĝ(⊛) − ĝ([(i, α), (i, β)])

}
, if y = [(i, α), ( j, β)] ̸= ⊛,

0, otherwise.

(3.19)

y a first-jump analysis of ξ̂ , we have (Q̂ĝ)(y) = 0 for any y /∈ B and ĝ ≡ 1 on B. Thus,
he right-hand side of (3.19) is always 0, and so (Qĝ)(y) = (Q̂ĝ)(y) = 0 for any y /∈ B. Let
y ∈ S be fixed, and let ξ be started from y. Since ĝ is bounded and ξ is non-explosive, the
rocess (Mt )t≥0 defined by Mt := ĝ(ξ (t)) −

∫ t
0 (Qĝ)(ξ (s)) ds is a martingale under the law Py

.r.t. the natural filtration associated to the process ξ . Hence the stopped process (Mt∧TB )t≥0

s also a martingale. Note that, since Qĝ = 0 outside B, we have
∫ t∧TB

0 (Qĝ)(ξ (s)) ds = 0 for
ny t ≥ 0. Hence Mt∧TB = ĝ(ξ (t ∧ TB)) for any t ≥ 0. By the martingale property, for any
> 0,

ĝ(y) = Ey[ĝ(ξ (0))] = Ey[ĝ(ξ (t ∧ TB))] ≥ Ey[ĝ(ξ (TB))1TB<t ] = Py(TB < t). (3.20)

etting t → ∞, we get ĝ(y) ≥ Py(TB < ∞) = g(y), which proves (3.16). □

With the help of the above proposition, we can compare the probability of absorption for ξ

nd ξ̂ . Corollary 3.7 implied that ξ is more likely to get absorbed at ⊛ than ξ̂ . The following
esult, however, tells that, under a certain condition, if ξ is absorbed with probability 1, then
o is ξ̂ .

heorem 3.9 (Comparison of Absorption Probabilities). Let ν : S → [0, 1] and ν̂ : S →

0, 1] be defined by

ν(η) := Pη(τ < ∞), ν̂(η) := P̂η(τ̂ < ∞), (3.21)

.e., ν(η) and ν̂(η) are the absorption probabilities of the processes ξ and ξ̂ , respectively, started
rom η. Assume that

inf{ν̂([(i, 1), (i, 1)]) : i ∈ Zd
} > 0. (3.22)

or all η ∈ S, if ν(η) = 1, then ν̂(η) = 1.

roof. The proof is by contradiction. If η = ⊛, then the claim is trivial. So assume that
ˆ(η) < 1 and ν(η) = 1 for some η ̸= ⊛. Note that, by the strong Markov property,

inf ν̂(y) = 0. (3.23)
y∈S
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Moreover, since by Remark 3.3 the process ξ started from η can visit any configuration y ∈ S
in finite time with positive probability, we have

ν(y) = 1 ∀ y ∈ S. (3.24)

We will show that (3.23) and (3.24) are contradictory.
For y ∈ S, set

g(y) := Py(TB < ∞), ĝ(y) := P̂y(T̂B < ∞), y ∈ S, (3.25)

where TB, T̂B are the hitting times of the set B := {[(i, 1), (i, 1)] : i ∈ Zd
} ∪ {⊛} for ξ and ξ̂ ,

respectively. Now, since TB ≤ τ a.s., we have g(y) ≥ ν(y) for any y ∈ S, and combined with
(3.24) this implies that g ≡ 1 on S. So by Proposition 3.8, we have

ĝ(y) = P̂y(T̂B < ∞) = 1 for all y ∈ S, (3.26)

i.e., the process ξ̂ started from any configuration y ∈ S enters B with probability 1. Let T̂ be
the hitting time of the set B̂ := B\{⊛} for the process ξ̂ , and let

ϵ := inf{ν̂(y) : y ∈ B̂}. (3.27)

By (3.22), we have ϵ > 0. Note that T̂ ≤ τ̂ a.s. for the process ξ̂ , since two particles coalesce
only when they are on top of each other and are both active, and so T̂B = T̂ ∧ τ̂ = T̂ a.s.
Therefore, by (3.26), P̂y(T̂ < ∞) = 1 for any y ∈ S. Therefore, for y ∈ S,

ν̂(y) = P̂y(τ̂ < ∞) = P̂y(T̂ ≤ τ̂ < ∞) =

∑
x∈B̂

P̂y(ξ̂ (T̂ ) = x, T̂ < ∞, τ̂ < ∞)

=

∑
x∈B̂

P̂y(τ̂ < ∞ | ξ̂ (T̂ ) = x, T̂ < ∞) P̂y(ξ̂ (T̂ ) = x, T̂ < ∞)

=

∑
x∈B̂

P̂x (τ̂ < ∞) P̂y(ξ̂ (T̂ ) = x, T̂ < ∞)

=

∑
x∈B̂

ν̂(x) P̂y(ξ̂ (T̂ ) = x, T̂ < ∞) ≥ ϵ P̂y(T̂ < ∞) ≥ ϵ,

(3.28)

which contradicts (3.23). □

Corollary 3.10 (Equivalence of Absorption Probabilities). For any η ∈ S, ν(η) = 1 if
ν̂(η) = 1. Furthermore, if (3.22) holds, then the converse is true as well.

Proof. The claim follows from Corollary 3.7 and Theorem 3.9. □

3.3. Comparison with non-interacting dual

The goal of this section is to reduce the absorption analysis of ξ and ξ̂ in the previous
section to equivalent statements involving the independent RW1 introduced in Definition 3.4.
We follow the same comparison method used earlier.

Theorem 3.11 (Comparison of Absorption Probabilities). Let ν∗
: S → [0, 1] and ν̂ : S →

[0, 1] be defined by

ν∗(η) := P∗(τ ∗ < ∞), ν̂(η) := P̂η(τ̂ < ∞). (3.29)
η
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Assume that

inf{ν∗([(i, 1), (i, 1)]) : i ∈ Zd
} > 0. (3.30)

or all η ∈ S, if ν̂(η) = 1, then ν∗(η) = 1.

roof. The proof follows a similar argument as in the proof of Theorem 3.9. Suppose that
ˆ(η) = 1 and ν∗(η) < 1. By the strong Markov property,

inf
y∈S

ν∗(y) = 0. (3.31)

ince, by Remark 2.8, the process ξ̂ started from η can visit any configuration y ∈ S in finite
time with positive probability, we have

ν̂(y) = 1 ∀ y ∈ S. (3.32)

We will show that (3.31) and (3.32) are contradictory.
Let B̄ ⊂ S be defined as

B̄ :=

{
[(i, α), (i, β)] ∈ S : α ̸= β, ν∗([(i, 1), (i, 1)]) < ν∗([(i, 1), (i, 0)])

}
∪ {⊛}. (3.33)

y symmetry and a first-jump analysis, we have

ν∗([(i, 1), (i, 0)]) = ν∗([(i, 0), (i, 1)]) = ν∗([(i, 0), (i, 0)]) ∀ i ∈ Zd . (3.34)

Let T̂B̄ denote the first hitting time of the set B̄ for the process ξ̂ , and let

ϵ̄ := inf{ν∗(y) : y ∈ B̄}. (3.35)

By (3.30) and (3.34), ϵ̄ > 0. Note that if Q̂ and Q∗ are the generators of the processes ξ̂ and
ξ ∗, respectively, then

((Q̂ − Q∗)ν∗)(x)

=

{
λ

Mi
δi, j (1 − δα,β)[ν∗([(i, 1), (i, 0)]) − ν∗([(i, 1), (i, 1)])], x = [(i, α), ( j, β)] ̸= ⊛,

0, otherwise,

(3.36)

where (3.34) is used. Moreover, the right-hand side of the above equation is negative whenever
x /∈ B̄. Since Q∗ν∗

≡ 0, we have

(Q̂ν∗)(x) ≤ 0, x /∈ B̄. (3.37)

Let y ∈ S be fixed arbitrarily, and let the process ξ̂ be started from y. Since ν∗ is bounded and
ˆ is non-explosive, the process (Mt )t≥0 with Mt := ν∗(ξ̂ (t))−

∫ t
0 (Q̂ν∗)(ξ̂ (s)) ds is a martingale

nder the law P̂y w.r.t. the natural filtration associated to the process ξ̂ . Hence the stopped

rocess (Mt∧T̂B̄
)t≥0 is also a martingale. By (3.37), we have

∫ t∧T̂B̄
0 (Q̂ν∗)(ξ̂ (s)) ds ≤ 0 a.s. for

ny t ≥ 0. Hence Mt∧T̂B̄
≥ ν∗(ξ̂ (t ∧ T̂B̄)) for any t ≥ 0. By the martingale property, for any

> 0,

ν∗(y) = Êy[ν∗(ξ̂ (0))] = Êy[Mt∧T̂B̄
] ≥ Êy[ν∗(ξ̂ (t ∧ T̂B̄))]

≥ Êy[ν∗(ξ̂ (T̂B̄))1T̂B̄<t ] ≥ ϵ̄ P̂y(T̂B̄ < t) ≥ ϵ̄ P̂y(τ̂ < t),
(3.38)

here in the last inequality we use that T̂B̄ ≤ τ̂ a.s. Letting t → ∞, we find with the help of
3.32) that ν∗(y) ≥ ϵ̄ P̂y(τ̂ < ∞) = ϵ̄ ν̂(y) = ϵ̄, which contradicts (3.31). □
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Theorem 3.12 (Comparison of Absorption Probabilities). Let ν∗, ν, ν̂ be the absorption
robability of ξ ∗, ξ̂ , ξ , respectively, i.e.,

ν∗(η) := P∗

η(τ ∗ < ∞), ν̂(η) := P̂η(τ̂ < ∞), ν(η) := Pη(τ < ∞). (3.39)

ssume that

inf{ν̂([(i, 1), (i, 0)]) : i ∈ Zd
} > 0. (3.40)

or all η ∈ S, if ν∗(η) = 1, then ν̂(η) = 1, and hence ν(η) = 1 as well.

roof. By Corollary 3.7, it suffices to prove that ν̂(η) = 1. Suppose that this fails. Then, by
he strong Markov property,

inf
y∈S

ν̂(y) = 0. (3.41)

oreover, since the process ξ ∗ started from η can visit any configuration y ∈ S in finite time
ith positive probability, we have

ν∗(y) = 1 ∀ y ∈ S. (3.42)

e will show that (3.41) and (3.42) are contradictory.
Let B ′

⊂ S be defined as

B ′
:=

{
[(i, α), (i, β)] ∈ S : α ̸= β, ν̂([(i, 1), (i, 1)]) ≥ ν̂([(i, 1), (i, 0)])

}
∪ {⊛}. (3.43)

y symmetry and a first-jump analysis, we have

ν̂([(i, 1), (i, 0)]) = ν̂([(i, 0), (i, 1)]) = ν̂([(i, 0), (i, 0)]) ∀ i ∈ Zd . (3.44)

et T ∗

B′ denote the first hitting time of the set B ′ for the process ξ ∗, and let

ϵ′
:= inf{ν̂(y) : y ∈ B ′

}. (3.45)

y (3.40) and (3.44), we have ϵ′ > 0. Note that if Q̂ and Q∗ are the generators of the processes
ˆ and ξ ∗, respectively, then

((Q∗
− Q̂)ν̂)(x)

=

{
λ

Mi
δi, j (1 − δα,β)[ν̂([(i, 1), (i, 1)]) − ν̂([(i, 1), (i, 0)])], x = [(i, α), ( j, β)] ̸= ⊛,

0, otherwise,

(3.46)

here we use (3.44). Moreover, the right-hand side of the above equation is negative whenever
x /∈ B ′. Since Q̂ν̂ ≡ 0, we have

(Q∗ν̂)(x) ≤ 0, x /∈ B ′. (3.47)

et y ∈ S be fixed arbitrarily, and let the process ξ ∗ be started from y. Since ν̂ is bounded
nd ξ ∗ is non-explosive, the process (Mt )t≥0 with

Mt := ν̂(ξ ∗(t)) −

∫ t

0
(Q∗ν̂)(ξ ∗(s)) ds (3.48)

s a martingale under the law P∗
y w.r.t. the natural filtration associated to the process ξ ∗. Hence

he stopped process (M ∗ ) is also a martingale. By (3.47), we have
∫ t∧T ∗

B′ (Q∗ν̂)(ξ ∗(s)) ds
t∧T
B′ t≥0 0
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≤ 0 a.s. for any t ≥ 0. Hence Mt∧T ∗

B′
≥ ν̂(ξ ∗(t ∧ T ∗

B′ )) for any t ≥ 0. By the martingale
roperty, for any t > 0,

ν̂(y) = E∗

y[ν̂(ξ ∗(0))] = E∗

y[Mt∧T ∗

B′
] ≥ E∗

y[ν̂(ξ ∗(t ∧ T ∗

B′ ))]

≥ E∗

y[ν̂(ξ ∗(T ∗

B′ ))1T ∗

B′<t ] ≥ ϵ′ P∗

y(T ∗

B′ < t) ≥ ϵ′ P∗

y(τ ∗ < t),
(3.49)

here in the last inequality we use that T ∗

B′ ≤ τ ∗ a.s. Letting t → ∞, we find via (3.42) that
ˆ(y) ≥ ϵ′ P∗

y(τ ∗ < ∞) = ϵ′ ν∗(y) = ϵ′, which contradicts (3.41). □

emark 3.13. Theorem 3.12 tells us that coalescence of independent particles is sufficient
or coalescence of interacting particles. The condition in (3.40) is stronger, because it requires
ontrol on the growth of both Ni and Mi .

.4. Conclusion

heorem 3.14 (Equivalence of Absorption Probabilities). Let ν∗, ν and ν̂ be the functions
efined by

ν∗(η) := P∗

η(τ ∗ < ∞), ν̂(η) := P̂η(τ̂ < ∞), ν(η) := Pη(τ < ∞). (3.50)

f

(a) inf{ν̂([(i, 1), (i, 1)]) : i ∈ Zd
} > 0,

(b) inf{ν∗([(i, 1), (i, 1)]) : i ∈ Zd
} > 0,

hen ν∗(η) = 1 whenever ν(η) = 1 for some η ∈ S. If inf{ν̂([(i, 1), (i, 0)]) : i ∈ Zd
} > 0, then

he converse is true as well.

roof. The forward direction follows by combining Theorems 3.9 and 3.11. The reverse
irection is a direct consequence of Theorem 3.12 and Corollary 3.7. □

emark 3.15. Theorem 3.14 tells us that if the interacting particle system coalesces with
robability 1, then it is necessary that two independent particles coalesce with probability
. The first two conditions are trivially satisfied when supi∈Zd Ni < ∞. If, furthermore,
upi∈Zd Mi < ∞, then the third condition is satisfied as well.

We conclude this section by providing conditions on the sizes of the active and the dormant
opulations that are weaker than the ones mentioned in Remark 3.15, and under which the
ssumptions in Theorem 3.14 are satisfied.

heorem 3.16 (Lower Bound on Absorption Probabilities). Let ν̂ and ν∗ be the functions
efined by

ν̂(η) := P̂η(τ̂ < ∞), ν∗(η) := P∗

η(τ ∗ < ∞). (3.51)

f the sizes of the active populations (Ni )i∈Zd are non-clumping, i.e.,

inf
i∈Zd

∑
∥ j−i∥≤R

1
N j

> 0 for some R < ∞, (3.52)

hen

(a) inf{ν̂([(i, 1), (i, 1)]) : i ∈ Zd
} > 0.

(b) inf{ν∗([(i, 1), (i, 1)]) : i ∈ Zd
} > 0.
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Furthermore, if the relative strengths of the seed-banks are bounded, i.e.,

sup
i∈Zd

Mi

Ni
< ∞, (3.53)

hen

(i) inf{ν̂([(i, 1), (i, 0)]) : i ∈ Zd
} > 0.

(ii) inf{ν∗([(i, 1), (i, 0)]) : i ∈ Zd
} > 0.

Before we give the proof of Theorem 3.16 we derive a series representation of the absorption
probabilities ν∗ and ν̂ of the respective processes ξ ∗ and ξ̂ .

emma 3.17 (Series Representation). Let ν∗ and ν̂ be the functions defined by

ν∗(η) := P∗

η(τ ∗ < ∞), ν̂(η) := P̂η(τ̂ < ∞). (3.54)

or i ∈ Zd , let R∗

i (respectively, R̂i ) be the total number of visits to the state [(i, 1), (i, 1)] ∈ S
ade by the jump chain associated to the process ξ ∗ (respectively, ξ̂ ). Then, for η ∈ S\{⊛},

(a) ν∗(η) =

∑
i∈Zd

1
2(c+λ)Ni +1 E

∗

η[R∗

i ].

(b) ν̂(η) =

∑
i∈Zd

1
2(c+λ)Ni +1 Ê

η[R̂i ],

where c is the total migration rate defined in Assumption 2.1, and expectations are taken w.r.t.
the respective laws of the jump chains associated to the processes ξ ∗ and ξ̂ .

Proof. We only prove part (a), because the proof of part (b) is the same. Let η ∈ S\{⊛} be
xed, and let X∗

:= (X∗
n)n∈N0 be the embedded jump chain associated to the process ξ ∗ started

at state η. Since X∗ is absorbed to ⊛ if and only if ξ ∗ is absorbed, it suffices to analyse X∗.
Let T := inf{n ∈ N0 : X∗

n = ⊛} be the absorption time of X∗. Note that, because the absorbing
state ⊛ can be reached in one step only from the states {[(i, 1), (i, 1)] : i ∈ Zd

} ⊂ S, for all
n ∈ N we have

P∗

η(T = n) =

∑
i∈Zd

P∗

η(X∗

n−1 = [(i, 1), (i, 1)], T = n)

=

∑
i∈Zd

P∗

η(X∗

n = ⊛ | X∗

n−1 = [(i, 1), (i, 1)])P∗

η(X∗

n−1 = [(i, 1), (i, 1)])

=

∑
i∈Zd

1
2(c+λ)Ni +1 P

∗

η(X∗

n−1 = [(i, 1), (i, 1)]),

(3.55)

here in the last equality we use that, by the Markov property,

P∗

η(X∗

n = ⊛ | X∗

n−1 = [(i, 1), (i, 1)]) = P∗

[(i,1),(i,1)](X∗

1 = ⊛) =
1

. (3.56)

2(c + λ)Ni + 1
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Using that η ̸= ⊛, we get

ν∗(η) = P∗

η(T < ∞) =

∑
n∈N

P∗

η(T = n)

=

∑
n∈N

∑
i∈Zd

1
2(c+λ)Ni +1 P

∗

η(X∗

n−1 = [(i, 1), (i, 1)])

=

∑
i∈Zd

1
2(c+λ)Ni +1

∑
n∈N

P∗

η(X∗

n−1 = [(i, 1), (i, 1)]) =

∑
i∈Zd

1
2(c+λ)Ni +1 E

∗

η[R∗

i ],

(3.57)

here in the fourth equality we interchange the two sums using Fubini’s theorem, and in the
ast equality we use

E∗

η[R∗

i ] =

∑
n∈N0

P∗

η(X∗

n = [(i, 1), (i, 1)]), i ∈ Zd . □ (3.58)

roof of Theorem 3.16. We only prove parts (a) and (i), because the proof of parts (b) and
ii) is the same. Let X̂ := (X̂n)n∈N0 be the embedded jump chain associated to the process ξ̂ .
or j ∈ Zd , let R̂ j be the total number of visits made by X̂ to the state [( j, 1), ( j, 1)]. We first
how that, for any i, j ∈ Zd ,

Ê[(i,1),(i,1)][R̂ j ] ≥

∑
n∈N

m2nan(i, j)2, (3.59)

here m :=
c

2(c+λ)+1 . Note that, in the process ξ̂ , each of the two particles moves from i to j
at rate a(i, j) while in the active state, and becomes dormant at rate λ when the two particles
are not on top of each other with one active and the other dormant. Thus, for i, j, k ∈ Zd and
n ∈ N,

P̂[(k,1),(i,1)](X̂n = [(k, 1), ( j, 1)])

≥

∑
l ̸=i

P̂[(k,1),(i,1)](X̂1 = [(k, 1), (l, 1)]) P̂[(k,1),(l,1)](X̂n−1 = [(k, 1), ( j, 1)])

=

∑
l ̸=i

c
2(c+λ)+(1/Ni )δk,i

a(i,l)
c P̂[(k,1),(l,1)](X̂n−1 = [(k, 1), ( j, 1)])

≥ m
∑
l ̸=i

a1(i, l) P̂[(k,1),(l,1)](X̂n−1 = [(k, 1), ( j, 1)]),

(3.60)

here a1(· , ·) :=
a(· , ·)

c is the transition kernel of the embedded chain associated to the
ontinuous-time random walk on Zd with rates a(· , ·). Using the above recursively, we obtain
hat, for any i, j, k ∈ Zd and n ∈ N,

P̂[(k,1),(i,1)](X̂n = [(k, 1), ( j, 1)]) ≥ mn an(i, j). (3.61)

herefore, applying the above twice, for i, j ∈ Zd we have

P̂[(i,1),(i,1)](X̂2n = [( j, 1), ( j, 1)]) ≥ P̂[(i,1),(i,1)](X̂n = [(i, 1), ( j, 1)])

× P̂[(i,1),( j,1)](X̂n = [( j, 1), ( j, 1)])

≥ mnan(i, j) P̂[( j,1),(i,1)](X̂n = [( j, 1), ( j, 1)])
2n 2

(3.62)
≥ m an(i, j) .
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Hence, for i, j ∈ Zd ,

Ê[(i,1),(i,1)][R̂ j ] =

∑
n∈N0

P̂[(i,1),(i,1)](X̂n = [( j, 1), ( j, 1)])

≥

∑
n∈N0

P̂[(i,1),(i,1)](X̂2n = [( j, 1), ( j, 1)]) ≥

∑
n∈N

m2nan(i, j)2.
(3.63)

inally, substituting the above into the series representation of ν̂ in part (b) of Lemma 3.17,
e obtain that, for i ∈ Zd ,

ν̂([(i, 1), (i, 1)]) =

∑
j∈Zd

1
2(c+λ)N j +1 Ê

[(i,1),(i,1)][R̂ j ]

≥

∑
j∈Zd

1
2(c+λ)N j +1

∑
n∈N

m2nan(i, j)2

≥
1

2(c+λ)+1

∑
j∈BR (i)

1
N j

∑
n∈N

m2nan(0, j − i)2
≥ ϵR

∑
j∈BR (i)

1
N j

,

(3.64)

here BR(i) := { j ∈ Zd
: ∥ j − i∥ ≤ R} and

ϵR := min
{

1
2(c+λ)+1

∑
n∈N

m2nan(0, l)2
: l ∈ BR(0)

}
> 0. (3.65)

ince, by assumption, (Ni )i∈Zd are non-clumping, the right-hand side of (3.64) is bounded away
rom zero irrespective of the choice i ∈ Zd , and so part (a) is proved.

To prove part (i), by doing a first-jump analysis of the process X̂ we get that, for i ∈ Zd ,

ν̂([(i, 1), (i, 0)]) ≥ P̂[(i,1),(i,0)](X̂1 = [(i, 1), (i, 1)]) ν̂([(i, 1), (i, 1)])

=
λKi

c+λ+λKi
ν̂([(i, 1), (i, 1)]), (3.66)

here Ki =
Ni
Mi

. Thus, if (Ni )i∈Zd are non-clumping and supi∈Zd K −1
i < ∞, then

ν̂([(i, 1), (i, 0)]) ≥
λ

λ + (c + λ)(supi∈Zd K −1
i )

inf{ν̂([( j, 1), ( j, 1)]) : j ∈ Zd
}, (3.67)

hich is bounded away from zero uniformly in i ∈ Zd , and so part (i) follows. □

. Proofs: clustering criterion and clustering regime

In this section we prove our two main theorems, namely, Theorems 2.9 and 2.13 with the
elp of the results that were obtained in Section 3 by comparing various auxiliary duals.

roof of Theorem 2.9. Note (see Remark 3.2) that the system clusters if and only if the
wo-particle process ξ defined in Definition 3.1 is absorbed to ⊛ with probability 1. Let ξ̂ be
he auxiliary two-particle process defined in Definition 2.7, and ν̂(η) (respectively, ν(η)) be the
bsorption probability of the process ξ̂ (respectively, ξ ) started from state η ∈ G × G. The
ystem Z clusters if and only if ν(η) = 1 for any state η ∈ G × G. By the forward direction of
orollary 3.10, we have that ν(η) = 1 whenever ν̂(η) = 1, and hence the forward direction of
heorem 2.9 follows. To prove the converse we note that, under the non-clumping assumption
f the active populations sizes (Ni )i∈Zd in (2.10), (3.22) in Corollary 3.10 holds by part (a)
f Theorem 3.16, and hence ν̂(η) = 1 whenever ν(η) = 1, so that the converse follows as

well. □
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Fig. 1. Evolution of a single particle started at location i0 in the active state. Red and blue lines denote the dormant
nd the active phases of the particle. Each dot represents a migration step. (For interpretation of the references to
olour in this figure legend, the reader is referred to the web version of this article.)

.1. Independent particle system and clustering regime

In order to prove Theorem 2.13, we need to take a closer look at the non-interacting two-
article process ξ ∗ introduced in Definition 3.4. In what follows we briefly describe the process
∗ and derive conditions under which the process ξ ∗ is absorbed with probability 1.

We recall from Definition 3.4 that the process ξ ∗
= (ξ ∗(t))t≥0 is a continuous-time Markov

rocess on the state space S = (G×G)∪{⊛} with G = Zd
×{0, 1}. Here, ξ ∗(t) = [(i, α), ( j, β)]

aptures the location (i, j ∈ Zd ) and the state (α, β ∈ {0, 1}) of two independent particles at
ime t , where 0 stands for dormant state and 1 stands for active state, respectively. The evolution
f the two independent particles is governed by the following transitions (see Fig. 1):

• (Migration) Each particle migrates from location i to j at rate a(i, j) while being active.
• (Active to Dormant) An active particle becomes dormant (without changing location) at

rate λ.
• (Dormant to Active) A dormant particle at location i becomes active (without changing

location) at rate λKi .
• (Coalescence) The two particles coalesce with each other, and are absorbed to the state
⊛, at rate 1

Ni
when they are both at location i and both active.

The following lemma tells that if the mean wake-up time of a dormant particle is uniformly
ounded over all the locations in Zd , then the accumulated activity time of a single particle
ncreases linearly in time.

emma 4.1 (Linear Activity Time). Let S(t) be the total accumulated time spent in the active
state during the time interval [0, t] by a single particle that evolves according to the first three
ransitions described above. If supi∈Zd K −1

i < ∞, then

lim inf
t→∞

S(t)
t

≥
1

1 + K −1 a.s., (4.1)

here K −1
:= supi∈Zd K −1

i .

roof. We prove the claim with the help of coupling in combination with a renewal argument.
et (Tn)n∈N and (Dn)n∈N be the successive time periods during which the particle is in the active
nd the dormant state, respectively (see Fig. 1). Note that (Tn)n∈N are i.i.d. exponential random
ariables with mean 1

λ
. Also note that Dn is exponentially distributed with E[Dn] ≤ (λK )−1,

because the particle wakes up from the dormant state at rate λKi ≥ λK when it is at location i .
Hence, using monotone coupling of exponential random variables, we can construct a sequence
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(Un)n∈N of i.i.d. exponential random variables on the same probability space with mean (λK )−1

such that Dn ≤ Un a.s. for all n ∈ N. Consider the alternating renewal process (Rt )t≥0 that
takes value 0 (respectively, 1) during the time intervals (Tn)n∈N (respectively, (Un)n∈N), and
et D(t) := t − S(t) be the total accumulated time spent in the dormant state during the time
nterval [0, t]. Note that, because Dn ≤ Un a.s. for n ∈ N, we have

D(t) ≤

∫ t

0
1{Rs=1} ds. (4.2)

y applying the renewal reward theorem (see e.g. [1, Section 2b, Chapter VI] or [15, Theorem
, Section 10.5]) to the process (Rt )t≥0, we see that

lim sup
t→∞

D(t)
t

≤ lim
t→∞

1
t

∫ t

0
1{Rs=1} ds =

E[Un]
E[Tn] + E[Un]

=

1
λK

1
λ

+
1

λK

=
1

1 + K
a.s.

(4.3)

ence

lim inf
t→∞

S(t)
t

= 1 − lim sup
t→∞

D(t)
t

≥
1

1 + K −1 > 0 a.s. □ (4.4)

Before we proceed with the proof of Theorem 2.13, we need the following lemma, which
roughly tells that under the same assumption as in Lemma 4.1 and under Assumption 2.11, the
presence of dormancy does not affect the recurrence behaviour of a single particle evolving
according to the symmetrised migration kernel.

Lemma 4.2 (Recurrence). Let S(t) be the total accumulated time spent in the active state
uring the time interval [0, t] by a single particle that evolves according to the first three
ransitions of the independent particle system described earlier, with migration controlled by
he symmetrised kernel â(· , ·). If K −1 < ∞ and Assumption 2.11 holds, then

E
[∫

∞

0
âS(t)(0, 0) dt

]
= ∞ if and only if

∫
∞

0
ât (0, 0) dt = ∞, (4.5)

here the expectation is taken w.r.t. the law of the process describing the evolution of the
article.

roof. We prove the stronger statement that, for some constants C1, C2 > 0,

C1 ≤ lim inf
t→∞

âS(t)(0, 0)
ât (0, 0)

≤ lim sup
t→∞

âS(t)(0, 0)
ât (0, 0)

≤ C2 a.s., (4.6)

rom which the claim follows. Let δ :=
1

1+K −1 ∈ (0, 1). By Assumption 2.11, we have

lim
t→∞

âpt (0, 0)
ât (0, 0)

=
1
pσ

, (4.7)

here the convergence is uniform in p ∈ [ δ
2 , 1] (see e.g., [2, Theorem 1.5.2, Section 1.5]).

Thus, we can find a T > 0 such that, for all t ≥ T ,

sup
δ

⏐⏐⏐⏐ âpt (0, 0)
ât (0, 0)

− p−σ

⏐⏐⏐⏐ <
1
2
. (4.8)
p∈[ 2 ,1]
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In particular, for all t ≥ T and p ∈ [ δ
2 , 1],

1
2

≤
âpt (0, 0)
ât (0, 0)

≤

(2
δ

)σ

+
1
2
. (4.9)

ince, by Lemma 4.1, lim inft→∞
S(t)

t ≥ δ a.s., we have that S(t)
t ∈ [ δ

2 , 1] eventually a.s. as
→ ∞. Combining this with (4.9), we obtain

lim inf
t→∞

âS(t)(0, 0)
ât (0, 0)

= lim inf
t→∞

â(S(t)/t) t (0, 0)
ât (0, 0)

≥
1
2
, a.s., (4.10)

and similarly lim supt→∞

âS(t)(0,0)
ât (0,0) ≤

( 2
δ

)σ
+

1
2 a.s. □

Remark 4.3. The proof of the above lemma only uses the regular variation of ât (0, 0) at infinity
nd the fact that lim inft→∞

S(t)
t > δ a.s. for some δ ∈ (0, 1). Thus, if S′(·) is an independent

opy of S(·), then we also have that

E
[∫

∞

0
âS(t)+S′(t)(0, 0) dt

]
= ∞ if and only if

∫
∞

0
â2t (0, 0) dt = ∞, (4.11)

which is again equivalent to â(· , ·) being recurrent.

The following result provides a necessary and sufficient condition for the absorption of the
process ξ ∗.

Theorem 4.4 (Clustering Regime). Suppose that K −1
= supi∈Zd K −1

i < ∞ and
Assumption 2.11 holds. If the process ξ ∗ is absorbed to ⊛ with probability 1, then it is necessary
that the symmetrised kernel â(· , ·) is recurrent, i.e.,∫

∞

0
ât (0, 0) dt = ∞. (4.12)

Furthermore, if (Ni )i∈Zd satisfies the non-clumping condition in (2.10) and a(· , ·) is symmetric,
hen (4.12) is also sufficient.

roof. Without loss of generality we may assume that the process starts at the state η :=

(0, 1), (0, 1)], i.e., both particles are initially at the origin 0 ∈ Zd and in the active state. Since
he process ξ ∗ has a positive rate of absorption only when the two independent particles are on
op of each other and active, for the absorption probability to be equal to 1 it is necessary that,
n the process where coalescence is switched off, the two independent particles meet infinitely
ften on the same location with probability 1. Let S(t) and S′(t) denote the total accumulated
ime spent in the active state by the two independent particles (where coalescence is switched
ff) during the time interval [0, t]. Since the two particles move according to a(· , ·) only when
hey are active, the total average time during which the two particles are on top of each other
s given by

I :=

∫
∞

0
f (t) dt, (4.13)

here f (t) is the probability that the two particles are on the same location at time t , which
s given by

f (t) := E∗

η

[∑
i∈Zd

aS(t)(0, i)aS′(t)(0, i)
]
. (4.14)

∗
hus, for the process ξ to be absorbed with probability 1, it is necessary that I = ∞.
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Let us define

M(t) := S(t) ∧ S′(t), L(t) := [S(t) ∨ S′(t)] − [S(t) ∧ S′(t)] = |S(t) − S′(t)|. (4.15)

ote that∑
i∈Zd

aS(t)(0, i)aS′(t)(0, i) =

∑
i∈Zd

â2M(t)(0, i)aL(t)(i, 0), (4.16)

ecause the difference of two continuous-time random walks started at the origin that move
ndependently in Zd with rates a(· , ·) has distribution â2M(t)(0, ·) at time M(t) (because a(· , ·)
s translation-invariant), and in order for the particle with the largest activity time to meet the
ther particle at the activity time S(t) ∨ S′(t) = M(t) + L(t), it must bridge the difference in
he remaining time L(t). We use the Fourier representation of the transition probability kernel
(· , ·), defined by

b(i, j) :=
a(i, j)

c
1i ̸= j , i, j ∈ Zd , (4.17)

o further simplify the expression in (4.16). To this end, for θ ∈ Td
:= [−π, π]d , define

F(θ ) :=

∑
j∈Zd

ei(θ, j) b(0, j), F̂(θ ) := Re(F(θ )), F̃(θ ) := Im(F(θ )). (4.18)

hen, for j ∈ Zd and t > 0,

ât (0, j) =
1

(2π )d

∫
Td

e−i(θ, j) e−ct[1−F̂(θ )] dθ,

at (0, j) =
1

(2π )d

∫
Td

e−i(θ, j) e−ct[1−F̂(θ )−iF̃(θ )] dθ.

(4.19)

Using that a(i, 0) = a(0, −i), i ∈ Zd , and inserting the above into (4.16), we obtain∑
i∈Zd

aS(t)(0, i)aS′(t)(0, i) =
1

(2π )d

∫
Td

e−c[2M(t)+L(t)][1−F̂(θ )] cos(L(t)F̃(θ )) dθ

=
1

(2π )d

∫
Td

e−c[S(t)+S′(t)][1−F̂(θ)] cos(L(t)F̃(θ )) dθ

≤
1

(2π )d

∫
Td

e−c[S(t)+S′(t)][1−F̂(θ)] dθ

= âS(t)+S′(t)(0, 0),

(4.20)

here we use that 1
(2π )d

∑
j∈Zd ei(θ−θ ′, j)

= δ(θ − θ ′), with δ(·) the Dirac distribution (see e.g.
9, Chapter 7]). Finally, combining the above with (4.13)–(4.14), we see that

I ≤

∫
∞

0
E∗

η

[
âS(t)+S′(t)(0, 0)

]
dt (4.21)

nd therefore it is necessary that∫
∞

0
E∗

η

[
âS(t)+S′(t)(0, 0)

]
dt = E∗

η

[∫ ∞

0
âS(t)+S′(t)(0, 0) dt

]
= ∞, (4.22)

hich by Remark 4.3 is equivalent to∫
∞

0
ât (0, 0) dt = ∞. (4.23)

This proves the forward direction.
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To prove the converse, we first note that, because all the rates of absorption given by ( 1
Ni

)i∈Zd

re such that (2.10) holds and supi∈Zd K −1
i < ∞, whenever the two particles are on the same

ocation, there is a positive probability of absorption that is uniformly bounded away from
ero. Indeed, if ν∗(η) denote the absorption probability of ξ ∗ when started from state η, by
heorem 3.16 we have that

inf
i∈Zd

ν∗([(i, 1), (i, 1)]) > 0,

inf
i∈Zd

ν∗([(i, 0), (i, 1)]) = inf
i∈Zd

ν∗([(i, 0), (i, 0)]) = inf
i∈Zd

ν∗([(i, 1), (i, 0)]) > 0,
(4.24)

here the last two equalities follow from a first-jump analysis of the process ξ ∗ when started at
he state [(i, 0), (i, 0)], i ∈ Zd . As a consequence, ξ ∗ is absorbed with probability 1 if and only
f, in the corresponding process where coalescence is switched off, the two particles infinitely
ften meet each other with probability 1. In other words, ν∗

≡ 1 if and only if I = ∞, where
I is as in (4.13), the average accumulated time spent by the two particles at the same location.

owever, by the symmetry of the kernel a(· , ·) and using Fubini’s theorem, we have

I =

∫
∞

0
E∗

η

[
aS(t)+S′(t)(0, 0)

]
dt =

∫
∞

0
E∗

η

[
âS(t)+S′(t)(0, 0)

]
dt

= E∗

η

[∫ ∞

0
âS(t)+S′(t)(0, 0) dt

]
(4.25)

nd thus, by Remark 4.3, if
∫

∞

0 ât (0, 0) dt = ∞, then I = ∞. This proves the backward
irection. □

Now we are ready to prove Theorem 2.13 with the help of Theorem 4.4 and the results in
ection 3.4.

roof of Theorem 2.13. Let ν(η) denote the absorption probability of the process ξ (see
efinition 3.1) started at state η ∈ G × G. Recall from Theorem 2.6 and Remark 3.2 that the

ystem clusters if and only if ν ≡ 1. By the irreducibility of the process ξ , we have ν ≡ 1
f and only if ν([(0, 0), (0, 0)]) = 1. Now, since supi∈Zd K −1

i < ∞ and (2.10) holds, we see
hat all the conditions of Theorem 3.14 are satisfied by virtue of Theorem 3.16, and hence
([(0, 0), (0, 0)]) = 1 if and only if ν∗([(0, 0), (0, 0)]) = 1, where ν∗(η) denotes the absorption
robability of the non-interacting two-particle process ξ ∗ (see Definition 3.4) started at state
∈ G × G. However, by the forward direction of Theorem 4.4, if ν∗([(0, 0), (0, 0)]) = 1, then

t is necessary that the symmetrised kernel â(· , ·) is recurrent, and hence the forward direction
s proved. Similarly, under the assumption of symmetry of the migration kernel, we can apply
he converse direction of Theorem 3.14, to conclude that if the transition kernel a(· , ·) (which
s the same as the symmetrised transition kernel) is recurrent, then ν∗([(0, 0), (0, 0)]) = 1, and
o the backward direction follows as well. □

roof of Corollary 2.14. Recall from Remark 2.5 that the migration kernel a(· , ·) admits at
east a dth moment and is translation-invariant by assumption. Thus if d > 2, then the kernel
ˆ(· , ·), being symmetric by definition, is transient (by Polya’s theorem), and hence clustering
annot take place by virtue of the forward direction of Theorem 2.13. Similarly, if d ≤ 2
nd a(· , ·) is symmetric, then a(· , ·) is recurrent, and so the claim follows from the backward
irection of Theorem 2.13. □
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5. Discussion

Stochastic models describing genetic evolution of finite populations under various evolu-
ionary forces remain a challenge in population genetics. The presence of a seed-bank can
omplicate the analysis even further. In recent years, stochastic duality has proven to be a very
seful mathematical tool, particularly in the field of interacting particle system, for tackling
echnical complications and doing explicit computations. On the one hand, we aim to create a
ridge between interacting particle system and mathematical population genetics by including
ormancy into existing well-known particle systems. On the other hand, we hope to combine
his approach with the recently developed theory of duality to reveal delicate structures and
elated interesting properties of the interacting particle system that lie hidden and are often
ost in the process of taking the large-colony-size limit.

In [7], we heavily rely on duality to prove our results on the process Z . In a subdivided
opulation, the ancestral dual process in the presence of resampling and migration is generally
escribed by the structured coalescent process. This process, which is by now well-understood,

was originally derived as the genealogical process in the context of geographically structured
large populations under Wright-type reproduction and migration (see e.g., [16,24] and [22]).
Even though lineages move independently in the structured coalescent, the genealogies of a
sample taken from subdivided and finite populations with constant size are correlated [16,21].
These correlations arise due to the imposition of finite and constant (in time) population sizes,
and vanish when the large-population-size limit is taken.

As can be seen in [7, Definition 3.7], the ancestral dual process Z∗ is no exception, and
lineages in the dual indeed show a repulsive interaction. Due to the incorporation of dormancy,
lineages can also adopt one of two states: active and dormant. The presence of these correlations
and of dormant periods in the lineages make the dual process Z∗ interesting but tricky to
nalyse. Consequently, in the present paper we take a different route to address the dichotomy
f coexistence versus clustering. More precisely, instead of directly exploiting the clustering
riterion given in terms of the original two-particle dual process (equivalently, the process
in Definition 3.1), we find an alternative clustering criterion that is relatively easy to deal
ith. We achieve this by comparing the original two-particle dual ξ with two auxiliary two-
article duals processes ξ̂ and ξ ∗ (see Definitions 2.7 and 3.4), which are simplified versions
f ξ . In particular, we obtain ξ̂ from ξ by switching off the repulsive interaction present
n the migration mechanism of an active particle and removing the coalescence of active
articles from different locations, while ξ̂ is further simplified to ξ ∗, the independent RW
rocess, by turning off the only interaction that takes place between an active and a dormant
article located at the same position. The comparison technique employed in Section 3 to
stimate the absorption probabilities for ξ, ξ̂ , ξ ∗ is similar to that in [14], where a connection is
ade between infinitesimal generators of the Wright–Fisher diffusion and the Λ-Fleming–Viot

rocess, based on methods involving Lyapunov functions to characterise fixation probabilities.
imilar techniques are used in the literature of interacting particle systems to derive correlation

nequalities and related properties (see e.g., [10]). It is worth emphasising that our results are
alid for any choice of the sizes (Ni )i∈Zd and (Mi )i∈Zd of active and dormant populations,
ubject to the mild criteria we imposed. Such generalities are rare and suggest that other
roblems can perhaps be approached in a similar way.
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ppendix. Two-particle dual and alternative representation

In this appendix, we give a short description of the original dual process Z̃ started with
wo particles, which was introduced in full generality as a configuration process Z∗ in
7, Section 3.2]. Further, we briefly outline the derivation of the interacting RW1 process ξ

efined in Definition 3.1 from the configuration process Z̃ , and show that the absorption of ξ

nd coalescence of the two particles in Z̃ are basically equivalent.

efinition A.1 (Two-Particle Dual). The two-particle dual process

Z̃ := (Z̃ (t))t≥0, Z̃ (t) := (ñi (t), m̃i (t))i∈Zd , (A.1)

is the continuous-time Markov chain with state space

X̃ :=

{
(ñi , m̃i )i∈Zd ∈

∏
i∈Zd

[Ni ] × [Mi ] :
∑
i∈Zd

(ñi + m̃i ) ≤ 2
}

(A.2)

and with transition rates

(nk , mk )k∈Zd →⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(nk , mk )k∈Zd − δ⃗i,A, at rate 2a(i,i)
Ni

(
ni
2

)
1{ni ≥2} +

∑
j∈Zd\{i}

ni a(i, j)n j
N j

for i ∈ Zd ,

(nk , mk )k∈Zd − δ⃗i,A + δ⃗i,D, at rate λni (Mi −mi )
Mi

for i ∈ Zd ,

(nk , mk )k∈Zd + δ⃗i,A − δ⃗i,D, at rate λ(Ni −ni )mi
Mi

for i ∈ Zd ,

(nk , mk )k∈Zd − δ⃗i,A + δ⃗ j,A, at rate ni a(i, j)(N j −n j )
N j

for i ̸= j ∈ Zd ,

(A.3)

here for i ∈ Zd the configurations δ⃗i,A, δ⃗i,D are defined as

δ⃗i,A := (1{n=i}, 0)n∈Zd , δ⃗i,D := (0, 1{n=i})n∈Zd , (A.4)

and for two configurations η1 = (X̄ i , Ȳi )i∈Zd and η2 = (X̂ i , Ŷi )i∈Zd , η1 ± η2 := (X i , Yi )i∈Zd is
defined componentwise by

X i = X̄ i ± X̂ i , Yi = Ȳi ± Ŷi . (A.5)

The support of the distribution of Z̃ (0) is contained in

X̃0 :=

{
(ñi , m̃i )i∈Zd ∈

∏
[Ni ] × [Mi ] :

∑
(ñi + m̃i ) = 2

}
. (A.6)
i∈Zd i∈Zd
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Here, ñi (t) and m̃i (t) are the number of active and dormant particles at site i ∈ Zd at time t .
he first transition describes the coalescence of an active particle at site i with active particles
t other sites. The second and third transitions describe the switching between the active and
he dormant state of the particles at site i . The fourth transition describes the migration of an
ctive particle from site i to site j .

Let X̃1 be the set of configurations containing a single particle, i.e.,

X̃1 :=

{
(ñi , m̃i )i∈Zd ∈ X̃ :

∑
i∈Zd

(ñi + m̃i ) = 1
}
, (A.7)

and let τ̃ be the first time at which coalescence has occurred, i.e.,

τ̃ = inf{t ≥ 0 : (ñi (t), m̃i (t))i∈Zd ∈ X̃1}. (A.8)

As indicated earlier in Section 3.1, we are only required to analyse the coalescence probability
of two dual particles and thus, it boils down to lumping all the configurations in X̃1 into a single
state ⊛ and consider the resulting lumped process. Note that, on the event {τ̃ < s}, the process
(Z̃ (t))t≥s a.s. stays in X̃1. Therefore the lumped process is a well-defined continuous-time
Markov chain with state space X̃0 ∪ {⊛}, where ⊛ is an absorbing state.

With a little abuse of notation, from here onwards we denote the lumped process by
(Z̃ (t))t≥0. We give the formal description of this process in a definition.

Definition A.2 (Lumped Two-Particle Dual). The lumped two-particle dual process

Z̃ := (Z̃ (t))t≥0 (A.9)

is the continuous-time Markov chain with state space

X̃ :=

{
(ni , mi )i∈Zd ∈

∏
i∈Zd

[Ni ] × [Mi ] :
∑
i∈Zd

(ni + mi ) = 2
} ⋃{

⊛
}

(A.10)

and with transition rates

(nk, mk)k∈Zd →⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⊛, at rate
∑
i∈Zd

[
2a(0,0)

Ni

(
ni

2

)
1{ni ≥2}

+
∑

j∈Zd\{i}
ni a(i, j)n j

N j

]
for i ∈ Zd ,

(nk, mk)k∈Zd − δ⃗i,A + δ⃗i,D, at rate λni (Mi −mi )
Mi

for i ∈ Zd ,

(nk, mk)k∈Zd + δ⃗i,A − δ⃗i,D, at rate λ(Ni −ni )mi
Mi

for i ∈ Zd ,

(nk, mk)k∈Zd − δ⃗i,A + δ⃗ j,A, at rate ni a(i, j)(N j −n j )
N j

for i ̸= j ∈ Zd ,

(A.11)

here, for i ∈ Zd , δ⃗i,A and δ⃗i,D are as in (A.4).

We write P̃η to denote the law of the process Z̃ started from η ∈ X . Note that, by
construction, the coalescence time τ̃ is now same as the absorption time of the process Z̃ . In the
following proposition, we show that the configuration process Z̃ is an alternative representation
of the coordinate process ξ defined in Definition 3.1.
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Proposition A.3 (Equivalence Between Z̃ And ξ ). Let ξ = (ξ (t))t≥0 be the process defined
n Definition 3.1 with initial distribution µ. Let φ : S → X̃ be the map defined by

φ(η) :=

{
(αδk,i + βδk, j , (1 − α)δk,i + (1 − β)δk, j )k∈Zd , if η = [(i, α), ( j, β)] ̸= ⊛,

⊛, otherwise.

(A.12)
For t ≥ 0, let Z̃ (t) := φ(ξ (t)). Then the process (Z̃ (t))t≥0 is the lumped dual process

efined in Definition A.2, and its initial distribution is the push-forward of µ under the map
. Furthermore, Z̃ is absorbed to ⊛ if and only if ξ is.

roof. Due to Assumption 2.3, we see that φ(η) ∈ X̃ , and so Z̃ (t) ∈ X for all t ≥ 0, and φ

s onto. For η ∈ S, define

η̄ :=

{
[( j, β), (i, α)], if η = [(i, α), ( j, β)] ̸= ⊛,

⊛, otherwise.
(A.13)

ote that φ−1(φ(η)) = {η, η̄}. Let Q(η1, η2) denote the transition rate from η1 to η2 for the
rocess ξ , where η1 ̸= η2 ∈ S. Furthermore, let z1 ̸= z2 ∈ X̃ be fixed and η1 ∈ S be such that
(η1) = z1. Since Q(η1, η2) = Q(η̄1, η̄2) for any η1 ̸= η2 ∈ S, we have∑

η∈φ−1(z2)

Q(η1, η) =

∑
η∈φ−1(z2)

Q(η̄1, η). (A.14)

ence the Dynkin criterion for lumpability is satisfied, and φ preserves the Markov property.
o Z̃ is a Markov process on X̃ . We can easily verify that the sum in (A.14) is indeed the

ransition rate from z1 to z2 defined in (A.11). Thus, Z̃ is the lumped dual process defined in
efinition A.2. Clearly, the distribution of Z̃ (0) is µ ◦φ−1. The second claim trivially follows,

ince φ(η) = ⊛ if and only if η = ⊛. □
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