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CHAPTER

ONE

INTRODUCTION

In this thesis we study bistable reaction-diffusion equations on (multidimensional)
lattice domains. The power of reaction-diffusion equations is that they can successfully
model various natural and social phenomena with their intuitive and relatively simple
(mathematical) representation. In mathematical notation, a lattice reaction-diffusion
differential equation is any lattice differential equation (LDE) of the following form

u̇µ(t) = d [∆u(t)]µ︸ ︷︷ ︸
diffusion

+ g(uµ(t))︸ ︷︷ ︸
reaction

, µ ∈ Λ, (1.0.1)

where ∆ : ℓ∞(Λ) → ℓ∞(Λ) represents a diffusion operator on a lattice Λ ⊂ Zn and
d > 0 is a diffusion constant. We call g : R → R the reaction function. One example
of such a lattice differential equation on the integer lattice Z is given by

u̇i(t) = ui−1(t)− 2ui(t) + ui+1(t) + g(ui(t)),

with i ∈ Z and t ∈ R or t > 0. Lattice equations are closely related to their continuous
counterparts

ut(x, t) = d∆xu(x, t) + g(u(x, t)), (1.0.2)

where x belongs to some open subset of Rn and ∆x is the standard Laplace operator
on Rn. One of the main features of reaction-diffusion equations, both on discrete and
continuous domains, is that they admit special solutions, so-called ‘travelling waves’,
which we can describe as fixed profiles Φ : R → R that move in a particular direction
with some speed c. Depending on their shape, we can roughly divide waves into three
categories:

• pulses or solitons, which can be described as local perturbations
• periodic pulses (wave trains)

• monotone wave fronts that connect two constant states

In this thesis we focus on the latter type of wave and we study their existence,
propagation and long term behaviour on two type of discrete domains - the two-
dimensional lattice Z2, and infinite trees.
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6 Introduction

To guide the reader through the mechanism behind the formation of travelling
waves, we will first take a separate look into the phenomena of reaction and diffusion
to discover how they work together to form moving solutions. We will explain basic
concepts on continuous domains and gradually extend them to the lattice domains
treated in this thesis. By u̇ we always denote a time-derivative of the function u.

1.1 Reaction equation

In this section we explore various types of reaction equations and explain how do they
influence the long-term behaviour of solutions u(t) to (1.0.2) when d = 0 . In the
absence of diffusion, this PDE turns into a pure ODE and therefore we can drop the
variable x.

Exponential growth, g(u) = ru

One of the simplest reaction equations is given by

u̇ = ru, (1.1.1)

whose solution is given by u(t) = Cert, for any C ∈ R. For C = 0 we have an
equilibrium solution u = 0 that does not change in time.

For r < 0 we say that u = 0 is a stable equilibrium since the solution u(t) ap-
proaches u as t → ∞. For r > 0, u = 0 is an unstable equilibrium since the solution
u(t) diverges away from u as t → ∞.

Logistic growth, g(u) = ru(1− u)

The logistic growth equation was first proposed by Pierre-François Verhulst in [92] to
model the population growth of the species u. Namely, provided that the growth rate
and maximum capacity of the population are given by the positive constants r and
K respectively, we have

u̇ = ru(1− u

K
). (1.1.2)

In words, when the population u is very small, it grows exponentially with some rate
r > 0, i.e., u̇ ≈ ru. However, as it grows and reaches its maximum capacity K, its
growth rate is approaching 0 and we have u̇ ≈ 0. The explicit solution to this equation
is given by

u(t) =
K

1 + (K/C − 1)e−rt
(1.1.3)

where C > 0 is the initial population number at time t = 0. This equation has
two equilibrium points u = 0 and u = K, with the later being stable since the limit
limt→∞ u(t) = K holds.

The logistic growth equation has found numerous applications beyond population
growth models. One example is the SIS epidemiological model [59] that mod-
els diseases like common cold or influenza that do not provide long-term immunity.
Namely, individuals in a population are divided into two categories, I (infected) and S
(susceptible). We assume that the population size is constant in time and equal to N ,
i.e., I(t) + S(t) = N for all t ≥ 0. Moreover, by β > 0 we denote the average number
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of contacts between individuals, multiplied by the probability of a transmission in a
contact. The recovery rate of infected individuals is given by γ. These assumptions
lead to the following ODEs for I and S

İ =
βS

N
I − γI, Ṡ = −βS

N
I + γI.

Together with our assumption I + S = N , and setting R0 := β
γ we arrive at

İ = γ(R0 − 1)I(1− I

(1− 1/R0)N
),

which is of the same form as (1.1.2). If R0 > 1, then the number of infected people
will grow to

lim
t→∞

I(t) = (1− 1

R0
)N,

which one often refers to as the herd immunity threshold. For R0 < 1, the point I = 0
is a stable equilibrium since we have limt→∞ I(t) = 0 which implies that the disease
is eradicated.

Bistable reaction, g(u) = u(1− u)(u− a)

In many physical systems two stable equilibria compete for dominance. For example,
in contrast to the logistic growth equation in which the population size always grows
towards its carrying capacity, for some species undercrowding or a low density limits
its growth and leads to extinction. This principle is called the Allee effect.

To model this effect, we assume that the maximum capacity is rescaled to 1 and
that there exists a critical parameter a ∈ (0, 1) such that u < a implies that the
population is dying out and u > a implies that the population grows. Then the
equation for the density u(t) is given by

u̇ = u(1− u)(u− a). (1.1.4)

We have three equilibria u ∈ {0, a, 1}, with 0 and 1 being the stable points, in the
sense that u(0) < a implies limt→∞ u(t) = 0 and u(0) > a implies limt→∞ u(t) = 1.
To justify this conclusion, it is enough to observe that g(u) < 0 for u ∈ (0, a) and
g(u) > 0 for u ∈ (a, 1). Indeed, if u(0) < a, then we have u̇(t) < 0 for small t and the
population is decreasing towards 0. On the contrary, for u(0) > a, we have u̇(t) > 0,
which suggests that u is increasing towards 1.

We also point out that the cubic nonlinearity (1.1.4) is only one of the numerous
possibilities for modelling bistable reaction effects. As its name suggests, a bistable
reaction term can be any function that has two stable equilibria with one unstable
equilibrium point a in between. This is equivalent to the following basic assumptions
we use in all chapters of this thesis, namely

g(u) < 0, for u ∈ (0, a), g(u) > 0, for u ∈ (a, 1),

with
g′(0) < 0, g′(1) < 0, g′(a) > 0.

To emphasize this dependence of the nonlinearity g on the bistable parameter a in
the rest of this text we denote g = g(·; a).
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1.2 Diffusion equation

In this section we study the equation (1.0.2) in the absence of reaction. For simplicity
we take d = 1. The diffusion equation, more commonly known as the heat equation
is one of the most studied partial differential equations. It takes the form

ut(x, t) = ∆xu(x, t) (1.2.1)

where x ∈ Rn, t > 0 and ∆x is the standard Laplace operator on Rn, namely

∆xu(x, t) =

n∑
i=1

uxixi
(x, t).

Heat equation on R In the case of only one spatial variable, the heat equation is
simply

ut(x, t) = uxx(x, t), x ∈ R, t > 0. (1.2.2)

Provided that we have u(·, 0) = u0 ∈ L∞(R), an explicit formula for the solution
u(x, t) is readily available, namely

u(x, t) =
1√
4πt

∫
R
e−

(x−y)2

4t u0(y)dy

= [H(·, t) ∗ u0](x).

(1.2.3)

Here the function H : R× (0,∞) → (0,∞), defined by

H(x, t) =
1√
4πt

e−
x2

4t

is called the fundamental solution or the heat kernel. Taking derivatives in (1.2.3),
and evaluating them either on H or u0 results in the estimate

sup
x∈R

|ux(x, t)| ≤ Cmin{||u0||L∞ t−
1
2 , ||u0,x||L∞}. (1.2.4)

This formula shows that the heat equation on R averages solutions, in the sense that
their derivatives converge to 0 as t → ∞.

1.3 Travelling waves on R
Combining the bistable reaction function g(u; a) and the diffusion operator results in
an interplay between the harsh reaction jumps and the smoothening effect of diffusion.
As a result, we have a special solution of (1.0.2) that we call a travelling wave, see
Figure 1.1.

To find such a wave profile Φ, we assume that u(x, t) = Φ(x− ct) and we plug this
Ansatz into (1.0.2). Upon substituting ξ = x− ct we arrive at the second-order ODE

− cΦ′(ξ) = dΦ′′(ξ) + g(Φ(ξ); a), (1.3.1)
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Figure 1.1: Travelling wave on R. Under the influence of the bistable reaction term,
the initial small perturbations are first pushed to either 0 or 1.

which we couple to the boundary conditions

Φ(−∞) = 0, Φ(∞) = 1, (1.3.2)

since we want to connect two stable points of the nonlinearity g. The existence of a
(unique up to translation) solution (Φ, c) to (1.3.1)-(1.3.2) is shown in [33] via phase-
plane analysis. In particular, the authors introduce an additional function P = Φ′

that transforms the second-order ODE (1.3.1) into a system of two first-order ODEsΦ′(ξ) = P (ξ),

P ′(ξ) = − c

d
Φ′(ξ)− 1

d
g(Φ(ξ); a),

to which we add the boundary conditions P (−∞) = 0, P (∞) = 0. A short compu-
tation shows that (0, 0) and (1, 0) are two saddle equilibrium points of this system.
Therefore, the solution (Φ, P ) corresponds to an orbit lying in the intersection of the
unstable manifold of (0, 0) and the stable manifold of (1, 0). As Fife shows using a
geometric argument in [33], there exists a unique speed c such that these manifolds
intersect in the first quadrant of the (Φ, P ) plane. This result automatically shows
that the wave is monotonically increasing, i.e., Φ′ > 0.

In the case of the standard cubic nonlinearity

g(u; a) = u(1− u)(u− a) (1.3.3)

one can check that the explicit solution to (1.3.1) is given by

Φ(ξ) =
1

2
+

1

2
tanh

√
2ξ

4
, c =

√
2d(a− 1

2
). (1.3.4)

We can read off two important properties from the second formula.

1. The speed satisfies c = 0 if and only if a = 1/2;
2. Up to the sign change, the speed c is symmetric around a = 1/2.

This symmetry result is expected since diffusion operator does not prefer neither of the
equilibrium points 0 and 1, which means that the propagation direction is in general
determined by the reaction function, or more precisely, by the sign of its integral
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Figure 1.2: The cubic nonlinearity g(u; a) = u(1 − u)(u − a) with its double-well
potential G(u; a). On the left we have a = 0.35, and we observe that G(0; a) >
G(1; a). On the right we have a = 0.5 and the system is in balance as the equality
G(0; a) = G(1; a) holds.

G(u; a) = −
∫ u

0
g(u; a)du. The function G is often called the double-well potential, see

Figure 1.2.
To give a visual interpretation, when a < 1/2, the equilibrium point 1 with the

lower potential energy invades the point 0 with the higher potential energy and the
wave moves to the left. If a > 1/2, the role of the stable states 0 and 1 is reversed,
and the wave propagates to the right with speed c > 0. For a = 1/2, the wave speed
c is equal to 0 as a consequence of both states being in balance due to the equality
G(0; a) = G(1; a).

1.4 Travelling waves on lattice domains

In what follows we transfer the familiar concepts from §1.2 and §1.3 to lattice domains.
In the absence of the diffusion operator, both equations (1.0.1) and (1.0.2) are systems
of decoupled first order ODEs that we have already covered in §1.1.

Therefore, the first obvious difference between these two type of equations comes
from the diffusion operator ∆. On the continuous domain Rn, the Laplace operator
∆x is a local operator, i.e., to evaluate ∆xu(x0) one needs to know the values of
the function u in an arbitrarily small neighborhood around some point x0. On the
contrary, the discrete diffusion operator is a nonlocal operator on the lattice Λ since it
couples multiple points on a lattice. Moreover, its definition differs per type of lattice
that we study. We explain these concepts further in the following subsection by
studying three kinds of lattice domains - the integers Z, the two-dimensional domain
Z2 and infinite k-ary trees Tk.
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1.5 Integer lattice Z
On the integer domain Z, one example of a discrete diffusion operator is given by

[∆u]i = ui+1 − 2ui + ui−1, (1.5.1)

which is considered as the standard discretization of the continuous Laplace operator.
The full bistable lattice reaction-diffusion equation on Z now reads

u̇i(t) = d(ui+1(t)− 2ui(t) + ui−1(t)) + g(ui(t); a), i ∈ Z, t > 0. (1.5.2)

1.5.1 Fundamental solution of the discrete heat equation
The main goal of this subsection is to draw parallels between the discrete heat equation
associated to (1.5.1), namely

u̇i(t) = ui+1(t)− 2ui(t) + ui−1(t), i ∈ Z, t > 0, (1.5.3)

and the continuous heat equation (1.2.2). We tackle (1.5.3) by applying the Fourier
transform which results in the simple ODE in the Fourier space

d

dt
û(ξ) = e2t(cosω−1)û(ξ),

whose solution is given by

û(ξ) = e2t(cosω−1)û0(ξ),

where u0 = u(0) ∈ ℓ2(Z). By applying the inverse Fourier transform we derive the
explicit formula for the solution

ui(t) =
1

2π

∑
k∈Z

u0
k

∫ π

−π

cos ((i− k)ω)e2t(cosω−1)dω. (1.5.4)

In this formula we recognize the integral representation

Ik(t) =
1

2π

∫ π

−π

cos (kω)et cosωdω,

of the modified Bessel functions of the first kind Ik(t) for t > 0 and k ∈ Z, see
Figure 1.5.1.

Setting Gk(t) := e−2tIk(2t), the solution (1.5.4) can hence be written as the
convolution between the sequence G and the initial condition u0, i.e.,

u(t) = G ∗ u0.

This is in line with the continuous heat equation where the solution is obtained by
convolving between the Gaussian kernel with the initial state, see equation (1.2.3).
Our analysis in §2.6 shows that the first differences of solutions decay as

sup
i∈Z

|ui+1(t)− ui(t)| = O(t−1/2).

Therefore, the discrete heat equation on Z averages out its solutions, in the sense
that their first differences converge to 0 as t → ∞, with the same decay rate as the
solutions of the continuous heat equation. We summarize the similarities between the
discrete and continuous heat kernels in Table 1.1.
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Figure 1.3: On the left we plot modified Bessel functions of the first kind for
k ∈ {1, 2, 3, 4, 5} and on the right we plot the corresponding fundamental solution
Gk(t) = e−tIk(t).

1.5.2 Wave-fronts on Z
Similarities between the fundamental solutions of the continuous and discrete heat
equation suggest that the discrete reaction-diffusion equation (1.5.2) also admits trav-
elling wave solutions. To find such solutions, we mimic the procedure from §1.3 and
we plug the Ansatz ui(t) = Φ(i − ct) into (1.5.2). Upon substituting ξ = i − ct, this
approach results in the following differential equation for Φ and c

− cΦ′(ξ) = d (Φ(ξ + 1)− 2Φ(ξ) + Φ(ξ − 1)) + g(Φ(ξ); a). (1.5.5)

As before, we couple it to the boundary conditions that connect two stable points of
the nonlinearity g, namely

Φ(−∞) = 0, Φ(∞) = 1. (1.5.6)

Already at this point we can observe the first difference between the lattice and
continuous equations. Namely, the differential equation (1.5.5) involves both past and
future values. We call this type of differential equation a mixed functional differential
equation (MFDE). Using Brouwer’s fixed point theorem, Zinner [97] was the first to
show that there exists a travelling wave solution provided that the diffusion parameter
d is big enough. In the seminal paper [67] Mallet-Paret gives detailed existence and
uniqueness results for a much more general class of MFDEs. In particular, for every
a ∈ (0, 1) and d > 0 there exists a speed c ∈ R and non-decreasing profile Φ : R → R
that satisfy (1.5.5)-(1.5.6). In case c ̸= 0 this wave-pair is unique upon fixing Φ(0) =
1/2. Moreover, in this case both the speed c and profile Φ ∈ C1(R) depend smoothly
on the parameters a and d, and the strict inequality Φ′ > 0 holds. When we want to
emphasize this dependence of the speed c on parameters a and d we write c(a, d).

Provided that the nonlinearity g is the standard cubic we have just as in (1.3.4)
the symmetry relation

c(1/2 + a, d) = −c(1/2− a, d),

for every a ∈ (0, 1/2) and d > 0. This relation shows that the speed c is, up to the
sign change, symmetrical around the axis a = 1/2. Moreover, we have c(1/2, d) = 0
for every d > 0.
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Heat equation on R and Z

Domain Continuous domain R Discrete domain Z

Fundamental
solution H(x, t) = 1√

4πt
e−

x2

4t Gk(t) = e−2tIk(2t)

Singularity
at t = 0

limt→0 H(0, t) = ∞ G0(0) = 0

Integral of
the kernel

1√
4πt

∫
R e−

x2

4t dx = 1
∑

k∈Z e
−2tIk(2t) = 1

Decay rate
of solutions supx∈R |ux(x, t)| ≤ Ct−1/2 supi∈Z |ui+1(t)− ui(t)| ≤ Ct−1/2

Table 1.1: In this table we draw some parallels between the (fundamental) solutions
of the continuous and discrete heat equations.

Before we delve into the further analysis of waves on lattices, we want to point out
some crucial differences between equation (1.5.5) and its counterpart on a continuous
domain.

1.5.3 Pinning on lattices

Turning back to lattice domains, we point out one of the key differences between the
MFDE (1.5.5) and ODE (1.3.1). In particular, setting c = 0 in (1.5.5) results in a
difference equation

0 = d(Φi+1 − 2Φi +Φi−1) + g(Φi; a), (1.5.7)

to which we add the boundary conditions

lim
i→−∞

Φi = 0, lim
i→∞

Φi = 1. (1.5.8)

This change from a differential to a difference equation is an underlying mechanism
that causes the pinning of waves. Namely, we say that pinning or propagation failure
occurs when the equality c = 0 holds for a range of bistable parameters a in some
nontrivial interval [a−, a+]. This is in stark contrast with the continuous reaction-
diffusion equation, in which we have c = 0 for only one value of the bistable parameter
a, see Figure 1.4. The first systematic study of this phenomenon was performed by
Keener in [55]. In this paper, Keener embeds the difference equation (1.5.7) into the
framework set up by Moser in [71] to show the existence of infinitely many chaotic
solutions that block the propagation of waves. Since we also employ this theory in
Chapter 4, we give this construction some attention here.
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Figure 1.4: Speed c as the function of a. In this example we take d = 0.025
and the standard cubic nonlinearity (1.3.3). On the left we plot numerical solutions
of the MFDE (1.5.5), and on the right we plot the analytical solution c(a) for the
ODE (1.3.1).

Spatial chaos The substitution Pi := Φi−1 transforms the difference equation (1.5.7)
into the two-dimensional recurrence relationΦi+1 = 2Φi − Pi −

1

d
g(Φi; a),

Pi+1 = Φi,
(1.5.9)

for i ∈ Z. We define a mapping ϕ : R2 → R2 by

ϕ(u, v) =

(
2u− v − 1

d
g(u; a), u

)
,

together with its inverse

ϕ−1(u, v) =

(
v, 2v − u− 1

d
g(v; a)

)
.

We can now take any (Φ0, P0) ∈ R2 to define a bi-infinite sequence (Φi, Pi)i∈Z by
setting

(Φi, Pi) := ϕi(Φ0, P0), i ∈ Z. (1.5.10)

By construction this sequence satisfies the system (1.5.9). However, taking for ex-
ample (Φ0, P0) = (0.5, 0.7) and the cubic nonlinearity (4.1.2) with a = 0.2 we soon
arrive at Φ12 = 4.89×1011. Due to its very large values, this sequence does not corre-
spond with the physical notion of a travelling wave. Therefore, at this point it is not
immediately clear that one can actually find a bounded sequence that satisfies (1.5.9).

To prove that such bounded sequences indeed exist, Keener applied results from
the field of Symbolic Dynamics, in particular the Moser theorem [71]. This result
implies that for every small diffusion d there exist a correspondence between sequences
in the set

S := {(. . . , s−1, s0, s1, . . . ) : si ∈ {0, 1}}
and bounded solutions to (1.5.9). Specifically, there exist x0 ∈ [0, a) and x1 ∈ (a, 1]
such that for each (si)i∈Z ⊂ S we can find a sequence (Φi, Pi)i∈Z ⊂ [0, 1]2 that
satisfies (1.5.9), together with

Φi ∈ [0, x0), if si = 0, Φi ∈ (x1, 1], if si = 1,
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Figure 1.5: Two possible stationary solutions of (1.5.5) and their corresponding
sequences (si)i∈Z.

see Figure 1.5. To conclude, for small d one can construct a rich variety of solutions in
[0, 1]2. Moreover, using the comparison principle, Keener shows that intervals [0, x0)
and (x1, 1] are invariant for (1.5.2) in the sense that for all i ∈ Z we have

ui(0) ∈ [0, x0) =⇒ ui(t) ∈ [0, x0) for all t > 0,

ui(0) ∈ (x1, 1] =⇒ ui(t) ∈ (x1, 1] for all t > 0.

Therefore, solutions to the LDE (1.5.3) are blocked from propagating in any direction.

Pinning in systems like (1.5.9) can also be studied from the Dynamical Systems
point of view. For example, in [47] the authors characterize pinned fronts as intersec-
tion points of stable and unstable manifold of saddle equilibrium points. We describe
this construction in the next paragraph.

Stable and unstable manifolds Equilibrium points (Φ, P ) of the system (1.5.9)
are defined as scalar solutions to

Φ = P , Φ = 2Φ− P − d−1g(Φ; a). (1.5.11)

One can verify that (0, 0) and (1, 1) are saddle equilibrium points to which we associate
the sets

Wu(0, 0) = {(u, v) : ϕ−n(u, v) → (0, 0), as n → ∞},
W s(1, 1) = {(u, v) : ϕn(u, v) → (1, 1), as n → ∞}.

These sets Wu(0, 0) and W s(1, 1) are called the stable and unstable manifold of points
(0, 0) and (1, 1), respectively. If a point (Φ0, P0) lies in the intersection of these two
sets then its associated sequence (1.5.10) also belongs to Wu(0, 0) ∩W s(1, 1) and it
satisfies the boundary conditions (1.5.8). We call such solutions pinned fronts since
they connect two stable points of the nonlinearity g. Provided that g is the cubic
function, a result by Qin and Xian from [76] implies that at least two sequences
lie the intersection Wu(0, 0) ∩W s(1, 1). If these manifolds intersect transversely for
some parameter a0, then these pinned waves persist as we vary a around a0, so we
obtain pinned fronts in some nonempty interval [a−, a+] around a0. At a = a− and
a = a+ the manifolds intersect tangentially, and finally, for a /∈ [a−, a+] the manifolds
are disjoint, which means that no pinned fronts exist. To visualize this process, we
implemented a numerical algorithm from [41] and we show our results in Figure 1.6.
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(a) Manifolds are disjoint, a
pinned front does not exist.

(b) Manifolds touch in a tan-
gential fashion, a = a−.

(c) Manifolds intersect trans-
versely, we have a pinned
front.

(d) Manifolds are intersect
transversely, we have a pinned
front.

(e) Manifolds touch in a tan-
gential fashion, a = a+.

(f) Manifolds are completely
separated, a pinned front does
not exist.

Figure 1.6: This sequence of panels shows the formation and disappearance of a
pinned front as we increase the bistable parameter a. We plot Wu(0, 0) and W s(1, 1)
in orange and blue, respectively. A pinned front exists if these two manifolds intersect.
Based on these numerical simulations, for d = 0.1 we can find pinned fronts for
a approximately in [0.455, 0.545]. At the end points of this interval the manifold
intersection is tangential.

To conclude this section, we summarize the similarities and some basic differences
between the waves on continuous and lattice domains in Table 1.2.

1.6 Infinite k-ary trees

Chapter 4 of this thesis is concerned with the propagation and pinning of waves
on infinite k-ary trees Tk. Infinite k-ary trees are undirected graphs in which the
neighbourhood of each node consists of one parent with coordinates (i− 1, j), and k
children

(i+ 1, kj), (i+ 1, kj + 1), . . . , (i+ 1, kj + k − 1),

see Figure 1.7. Assuming that the diffusion parameter d is equal between all nodes,
the bistable reaction-diffusion equation takes the form

u̇i,j = d
( k−1∑

l=0

ui+1,kj+l − ui,j

)
+ d(ui−1,j − ui,j) + g(ui,j ; a), (1.6.1)

for all (i, j) ∈ Z × N0. In this thesis we focus on so-called ‘layer’ solutions, i.e.,
solutions for which we have ui,j(t) = ui(t) for all (i, j) and t > 0. Such solutions
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Travelling waves on R and Z

Domain Continuous domain R Discrete domain Z

Type of the equation a second-order ODE for
all c ∈ R

MFDE for c ̸= 0 and a dif-
ference equation for c = 0.

Singular
perturbation

problem as c → 0

No, setting c = 0 does
not change the nature

of the equation.

Yes, since the MFDE
transforms into a differ-
ence equation.

Uniqueness of
solutions for

(a, d) ∈ (0, 1)× R>0

A solution pair (Φ, c) is
unique.

A solution pair (Φ, c) is
unique only when c ̸= 0.

Smoothness of
solutions

Both Φ and Φ′ are in
C(R)

The wave and its deriva-
tive are in C(R) provided
that c ̸= 0.

Pinning There is no pinning; c =
0 ⇐⇒ a = 1

2

Yes; analytical results for
d ≪ 1 and open problem
for large d.

Table 1.2: In this table we summarize some similarities and basic differences be-
tween the travelling wave solutions of the continuous equation (1.3.1) and the lattice
equation (4.1.6).

satisfy the simplified version of (1.6.1), namely

u̇i = d (kui+1 − (k + 1)ui + ui−1) + g(ui; a). (1.6.2)

Searching for a travelling wave solution of the form ui(t) = Φ(i− ct) we arrive at the
MFDE

− cΦ′(ξ) = d (kΦ(ξ + 1)− (k + 1)Φ(ξ) + Φ(ξ − 1)) + g(Φ(ξ); a), (1.6.3)

coupled with the boundary conditions (1.5.8). Since this MFDE falls under the general
framework of Mallet-Paret, there exists a travelling wave solution (Φ, c) for every
k > 0. For k = 1 we recover the standard bistable reaction diffusion equation on
Z. We notice that the future and the past terms in MFDE (1.6.3) are asymmetrical
in the parameter k. Indeed, we can also rewrite this equation as a reaction-diffusion
equation with a convection term d(k − 1)(Φ(ξ + 1)− Φ(ξ)) on the lattice Z, namely

−cΦ′(ξ) = d (Φ(ξ + 1)− 2Φ(ξ) + Φ(ξ − 1)) + g(Φ(ξ); a)

+ d(k − 1)(Φ(ξ + 1)− Φ(ξ)).
(1.6.4)

For k ̸= 1, the convection term also contributes to the speed of the wave c and it is
expected that the speed c will not be symmetric anymore around the axis a = 1/2,
also in the case of the standard cubic nonlinearity.



18 Introduction

Figure 1.7: Infinite k-ary tree with k = 2 and indicated layers.

Motivation and main questions Our work is inspired by the study of Kouvaris,
Kori and Mikhailov [62], in which the authors perform a non-rigorous analysis of the
bistable reaction-diffusion equation on semi-finite k-ary trees. They discover that the
direction of wave propagation largely depends on the branch factor k.

Therefore, our main questions in this work are the following.

Q1 Do travelling waves on k-ary trees admit both positive and negative speeds?
Q2 Does the asymmetry in the equation cause a preferred direction for a travelling

wave?
Q3 What is the shape of the pinning region?
Q4 Can the increase in diffusion parameter d cause the wave to change its direction

of propagation for a fixed bistable parameter a and tree parameter k?

The initial numerical observations indeed suggest that the region in which c = 0 is
now finite and asymmetric, in contrary to the case k = 1, see Figure 1.8.

These numerical findings motivated us to perform a rigorous mathematical analysis
to answer the above-mentioned questions. Our methods rely on the construction of
two different types of sub-solutions that help us to detect the regions in which we
have c < 0. Moreover, exploiting certain parameter transformations we can also
detect regions in which c > 0. We sum up our results into the following answers to
our initial questions.

A1 Yes, for every bistable nonlinearity and every k ̸= 1, there exists a parameter
regime (a, d) close to a = 0 for which we have c < 0. Similarly, c > 0 holds for
some parameter regime (a, d) close to a = 1.

A2 For k > 1, the wave prefers to retreat on the k-ary tree. In particular, for
each bistable parameter a ∈ (0, 1) there exists a parameter d∗(a) such that the
travelling wave solution of (1.6.3) for d > d∗(a) travels with the strictly negative
speed c < 0 [Theorem 4.2.5 in Chapter 4].

A3 We show that the pinning region exists for d ≪ 1. The previous answer implies
that the pinning region is finite.

A4 Yes. For each k > 1 and parameter a close to one the wave experiences at least
once the following changes as we increase d from 0 to +∞:

pinning (c = 0) → spreading (c > 0) → pinning (c = 0) → retreating (c < 0).
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on

Figure 1.8: Initial numerical observations for the wave propagation on k-ary trees
for the standard cubic nonlinearity (1.3.3). For k = 1(left) we have the standard
LDE on Z whose wave solution has no preferred direction. In other words, the speed
c is, up to the sign change, symmetrical around the axis a = 1

2
. On the right we show

the direction of the wave propagation on the k-ary tree with k = 3.

In addition, our methods provide more than abstract existence results. For in-
stance, our results include an analytical description of regions where we surely have
c < 0, c = 0 and c > 0 for the standard cubic nonlinearity.

1.7 Two-dimensional lattice Z2

In Chapters 2 and 3 of this thesis we study the bistable reaction-diffusion equation
on the two-dimensional lattice Z2. For the discrete diffusion operator we take the
plus-shaped Laplacian operator that takes into account the four closest neighbours of
each point (i, j) ∈ Z2, i.e.,

[∆ui,j ] = ui+1,j + ui−1,j + ui,j+1 + ui,j−1 − 4ui,j , (1.7.1)

and set the diffusion coefficient to 1, i.e., d = 1. Therefore, the central object of our
study in these chapters is the LDE

u̇i,j = ui+1,j + ui−1,j + ui,j+1 + ui,j−1 − 4ui,j + g(ui,j ; a), (1.7.2)

with (i, j) ∈ Z2. The function g : R → R is a bistable reaction function. We couple
this LDE with an initial condition

u(0) = u0 ∈ ℓ∞(Z2). (1.7.3)

Due to the anisotropy of the lattice, wavefront solutions to this LDE experience
yet another feature that is uncharacteristic for waves on continuous domains, namely,
the wave-pair (Φ, c) depends on the direction of propagation. To elaborate, as we
have a two-dimensional lattice, it is natural to search for travelling wave solutions
that move in the specific direction (σh, σv) ∈ R2, with the normalization condition
σ2
h + σ2

v = 1. In particular, we plug the Ansatz

ui,j(t) = Φ(iσh + jσv − ct)
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Figure 1.9: These plots depict the directional dependence of speed c on the angle
θ = arctanσv/σh of the wave-propagation for three different values of parameter
a. The first image shows the smoothness of the graph θ 7→ c(θ) when far from the
pinning region. On the second and third image we see the situation in which the
waves propagate in some directions but are pinned in other.

into (1.7.2), which results in the MFDE

−cΦ′(ξ) = Φ(ξ + σh) + Φ(ξ − σh) + Φ(ξ + σv) + Φ(ξ − σv)− 4Φ(ξ)

+ g(Φ(ξ); a),
(1.7.4)

coupled with the boundary conditions

lim
ξ→−∞

Φ(ξ) = 0, lim
ξ→+∞

Φ(ξ) = 1.

The novelty compared to the previous sections is that the wave-pair solution (c,Φ)
now depends also on the chosen direction (σh, σv), see Figure 1.9. This phenomenon
does not occur for the standard waves on continuous domain Rn, as the analogous
wave Ansatz u(x, y, t) = Φ(xσh + yσv − ct) would again result in the second-order
ODE (1.3.1).

1.7.1 Stability of travelling waves on Z2

In this work we are interested in the stability and long-term behaviour of the moving
waves, far from the pinning regime. For that reason we are not interested in small d ≈
0, but we fix d = 1. In general, the main stability question (SQ) can be paraphrased
as following.

SQ Given an initial condition u0 ∈ X, where X is a normed space, under which
assumptions on u0 does the solution u(t) of the initial value problem (1.7.2)-
(1.7.3) converge in X to the travelling wave solution Φ as t → ∞ ?

This question has already been the main topic of two prequel papers [44] and [43]. To
demonstrate their results, we assume that (σh, σv) = (1, 0) and consider the initial
perturbations of the form

u0
i,j = Φ(i) + v0i,j . (1.7.5)

In [44] the authors assume that v0 is an arbitrarily big, but localized sequence, i.e.,

lim
|i|+|j|→∞

v0i,j = 0.
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They show that this assumption is sufficient to guarantee that

sup
(i,j)∈Z2

|ui,j(t)− Φ(i− ct)| → 0, as t → ∞.

In their companion paper [43] the authors consider initial perturbations v0 as elements
of the space ℓp(ℓ1(Z);R), for any p ∈ [1,∞]. They prove that there exists δ > 0 such
that ∣∣∣∣v0∣∣∣∣

ℓp(Z;ℓ1(Z)) ≤ δ

implies the algebraic convergence of the solution u(t) to the travelling wave solution
in ℓp(ℓ1(Z);R). Taking p = ∞, we see that the absolute value of the initial pertur-
bation necessarily needs to be bounded by a constant δ, and localized only in the
j-direction. However, due to technical obstacles, this result is shown exclusively for
rational directions, that is, for (σh, σv) ∈ Z2, whereas [44] handles both rational and
irrational directions.

Chapters 2 and 3 of this thesis concern with the stability question of the travelling
waves, but now with arbitrarily large perturbations in ℓ∞(Z2). Adapting the frame-
work and methods developed by Matano and Nara in [69] for the bistable reaction-
diffusion equation on Rn, we extend stability results to bounded perturbations that
need not to be small or localized. However, to compromise for this generality, we
assume that v0 is a localized perturbation from a sequence that is periodic in the
variable j, i.e., the initial perturbation u0 satisfies the following two conditions (C):

(C1) We have the spatially uniform bounds when i → ±∞

lim sup
i→−∞

sup
(i,j)∈Z2

u0
i,j < a lim inf

i→+∞
inf

(i,j)∈Z2
u0
i,j > a. (1.7.6)

(C2) There exists P ∈ Z such that

lim
|i|+|j|→∞

|u0
i,j+P − u0

i,j | = 0, (1.7.7)

see Figure 2.3 in Chapter 2. We show that these two conditions are enough to guar-
antee the orbital stability of the travelling wave.

1.8 Graphs and lattices

To conclude this introduction, we provide some insight to shed light on our choices
of discrete diffusion operators. For lattices Z and Z2, these choices can be considered
as merely standard discretizations of the continuous Laplace operator. On the other
hand, discrete structures such as k-ary trees Tk have no continuous analogue, and it
is not immediately clear how to derive a diffusion operator on such a structure.

1.8.1 Graph Laplacian
To explain the process of a discrete diffusion, let us first consider an undirected graph
G = (V,E) with vertices V , edges E and adjacency matrix A, i.e., AI,J = 1 if the
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nodes I and J are connected and AI,J = 0 otherwise. We denote the neighbourhood
of the node I by N (I), i.e., N (I) = {J ∈ G : AI,J = 1}. Moreover, to each node
I ∈ G we assign a function uI(t). Provided that the rate of diffusion along the edge
of two connected nodes is equal to d > 0, the rate of change in time of the substance
u at the node I is given by

u̇I(t) = d
∑

J∈N (I)

(uJ(t)− uI(t)).

This equation is called the graph heat equation and the operator

[∆u]I =
∑

J∈N (I)

(uJ − uI)

is called the discrete Laplace operator or the graph Laplacian.
Lattice domains can be considered as special cases of undirected graphs. For

example, we can see the integer lattice Z as a graph with vertices V = Z. Provided
that E = {{i, i± 1} : i ∈ Z}, the discrete Laplace operator reads

[∆u]i = (ui+1 − ui) + (ui−1 − ui) = ui+1 − 2ui + ui−1. (1.8.1)

It is also possible to consider infinite range-interactions on Z. For example, in [8], the
authors take the discrete Laplacian operator on Z to be

[∆u]i =
∑
k∈Z

αk(ui+k − ui) (1.8.2)

where the coefficients (αk)k∈Z satisfy some symmetry and localization conditions,
such as

∑
k∈Z |αk|k2 < ∞ and αk = α−k for k ≥ 0. We can see these coefficients as

diffusion weights between each edge {ui, ui+k}.
For Λ = Z2, the set V is naturally V = Z2. However, there are many possibilities

for the set E, which result in different representations of discrete Laplace operators.
For instance, if we take

E :=
{
{(i, j), (i± 1, j)}, {(i, j), (i, j ± 1)} : (i, j) ∈ Z2

}
,

then we obtain the plus-shaped discrete Laplacian (1.7.1). On the other hand, one
could also consider the set

E =
{
{(i, j), (i± 1, j ± 1)}, {(i, j), (i∓ 1, j ∓ 1)} : (i, j) ∈ Z2

}
that gives us the cross-shaped discrete Laplacian ∆×, namely

[∆×u]i,j = ui+1,j+1 + ui−1,j+1 + ui−1,j−1 + ui+1,j−1 − 4ui,j .

For the infinite k-ary tree Tk, the graph structure is already ingrained in its defi-
nition. By assuming that the weights between the nodes are equal, we arrive at the
discrete diffusion operator from (1.6.1). However, it would still be interesting to see
what happens should the weights between the node and its parent be different than
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the weight between the node and its child and how that would change the dynamics
between the retreating, pinned and spreading waves.

This freedom of choice of the diffusion operator results in infinite possibilities to
model various phenomena with underlying discrete structures using graphs and lat-
tices. As we have seen during the examples of the spatial chaos, pinning, directional-
dependency, diffusion-induced propagation-reversal, and many more that we did not
even tackle in this introduction, this variety makes lattices an interesting and rich
field of research.

1.9 Overview of the thesis

Here we present the content of the chapters in this thesis. Chapters 2 and 3 can be
regarded as companion chapters as they both study the bistable LDE on Z2, whereas
Chapter 4 concerns the bistable LDE on the infinite k-ary tree Tk.

Chapter 2 In this chapter we consider the bistable reaction-diffusion equation on
the lattice Z2. This equation is also often called the Allen-Cahn equation. Our basic
assumption is that the initial condition u0 is a perturbation from the wave that moves
in the horizontal direction. In the first part of this work, we do not assume that u0 is a
localized or ‘small’ perturbation from the wave, but that it only satisfies the condition
(C1); see (1.7.6). Already this assumption is enough to guarantee that there exists a
one-dimensional differential equation which governs the flow of the zero-level surface
γ(t) of our solution u(t). We call this governing equation a discrete mean curvature
flow with a drift term. Using the Cole-Hopf transformation, we are able to transform
this equation to the discrete heat equation on Z to show that the zero-level surface
γ(t) smoothens out over time and that the long-term behaviour of our solution is
determined by the travelling wave Φ(· − γ(t)). In the second part of this work, by
adding the assumption (C2) from (1.7.7) we show that γ(t) → ct+µ, for some µ ∈ R,
which ensures the orbital stability of the horizontal travelling wave.

Chapter 3 This chapter is a generalization of our work from Chapter 2 to ratio-
nal directions on Z2, i.e., now we assume that u0 is a perturbation of the wave that
moves in some direction (σh, σv) ∈ Z2. The framework is similar to the one in Chap-
ter 2; however, due to the fact that our wave is not aligned with the lattice anymore,
we encounter more technical difficulties. One of these difficulties is that the gov-
erning equation for the zero-level surface γ(t) does not transform via the Cole-Hopf
transformation to the discrete heat equation but to a linear lattice equation that has
both negative and asymmetrical coefficients. We treat this equation and its decay
estimates in detail in Section §3.5 , which can also be seen as a section independent
of this chapter.

Chapter 4 In this chapter we step away from the travelling waves on the two -
dimensional lattice to study a wave-propagation and pinning on infinite k-ary trees.
To show the existence of the pinning region that comprises chaotic solutions, we use
the Moser Theorem from the field of Symbolic Dynamics. On the other hand, we are
also interested in which parameter regimes the moving waves retreat (c < 0) or spread
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(c > 0). Therefore, we employ the comparison principle to two types of sub-solutions:
steep, step-like profiles that approximate the waves closer to the pinning region, and
wide-profiles which show that for d ≫ 0 the wave always retreats, irrespective of the
value of the bistable parameter a.




