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Appendix

A.1. Number-theoretic Computations

Lemma A.1. The volume of the simplex Sα = {x ∈ LogKR | xσ ≤
α ,
∑
σ xσ = 0} for some α > 0 is given by

Vol(Sα) = (nα)r ·
√
n√

2nC · r!
,

where r = nR + nC − 1.

Proof. Define S′α = {x ∈ Rr+1 |
∑
ν xν = 0, xν ≤ α for real places ν, xν ≤

2α for complex ν}. The map

A : Rr+1 → LogKR, eν 7→
{

eσν when ν is real
1
2(eσν + eσν ) when ν is complex

sends S′α to Sα bijectively. By applying on S′α ⊆ Rr+1 the translation
yσ = α−xσ or yσ = 2α−xσ depending on whether σ is real or complex, one
can see that it is a regular r-simplex with edge length

√
2 · nα. Therefore,

the volume of S′α equals (nα)r
√
r+1

r! [Rab89]. In order to compute the volume
of Sα, we need to estimate how the linear map A scales the subspace {x ∈
Rr+1 |

∑
ν xν = 0}. Therefore, we choose the basis B = (e1 − er+1, . . . , er −

er+1), and compute the scaling factor by means of taking the square root
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of the determinant of (AB)TAB and dividing it by the square root of the
determinant of BTB, i.e.,

Vol(Sα) =

√
det(BTATAB)√

det(BTB)
Vol(S′α).

By the Weinstein–Aronszajn identity, we obtain that det(BTB) = det(I +
1 · 1T ) = nR +nC = r+ 1, where 1 is the all-one column vector of dimension
r = nR + nC − 1. Note that ATA = diag(1, . . . , 1, 1/2, . . . , 1/2), where
the 1 is repeated nR times and the 1/2 is repeated nC times. Therefore,
BTATAB = J + 1

21 ·1T , where J = diag(1, . . . , 1︸ ︷︷ ︸
nR

, 1/2, . . . , 1/2︸ ︷︷ ︸
nC−1

). Again using

the Weinstein-Aronszajn identity, we obtain

det(BTATAB) = det(J + 1/2 · 1 · 1T ) = det(J)(1 + 1/2 · 1TJ−11)
= 2−nC+1(1 + 1/2(nR + 2nC − 2)) = 2−nC · n

So, we conclude the argument by spelling out all formula’s:

Vol(Sα) = 2−nC
√
n√

r + 1
Vol(S′α) = 2−nC

√
n√

r + 1
· (nα)r

√
r + 1

r! = (nα)r ·
√
n√

2nC · r!

Lemma A.2. Let LogO×K ⊆ H ⊆ logKR be the logarithmic unit lattice.
Then the covolume of this lattice in H equals

√
n · 2−nC/2 ·R.

Proof. In the literature, often one uses the embedding Log′O×K ⊆ H ′ ⊆
RnR+nC , where (Log′(η))σ equals log |σ(η)| or 2 log |σ(η)|, depending on
whether σ is real or complex. The space H ′ = {x ∈ RnR+nC |

∑
j xj = 0} is

the equivalent hyperplane. It is evident that the linear map

A : Rr+1 → LogKR, eν 7→
{

eσν when ν is real
1
2(eσν + eσν ) when ν is complex

maps Log′O×K ⊆ H ′ to LogO×K ⊆ H.
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Let U be a basis of Log′O×K , and denote U by the same basis, but the last
row removed; the determinant of U is called the regulator R of the number
field K. Define B : Rr → Rr+1, ej 7→ ej − enR+nC . By the fact that for any
element in Log′O×K holds that the sum of the entries equals zero, we have
BU = U . As A maps Log′O×K to LogO×K , we obtain that ABU is a basis
of LogO×K . The covolume of this basis equals

√
det(BTATAB) det(U) =√

det(BTATAB)R =
√
n2−nC/2R.

The last equality is proven by the computation of det(BTATAB) below.
Note that ATA = diag(1, . . . , 1, 1/2, . . . , 1/2), where the 1 is repeated nR
times and the 1/2 is repeated nC times. Therefore, BTATAB = J + 1

21 · 1T ,
where

J = diag(1, . . . , 1︸ ︷︷ ︸
nR

, 1/2, . . . , 1/2︸ ︷︷ ︸
nC−1

).

and 1 is the all-one vector of dimension r. Using the Weinstein-Aronszajn
identity, we obtain

det(BTATAB) = det(J + 1/2 · 1 · 1T ) = det(J)(1 + 1/2 · 1TJ−11)

= 2−nC+1(1 + 1
2(nR + 2nC − 2)) = 2−nC · n

Lemma A.3. Let H ⊆ Log(KR) be the hyperplane orthogonal to the all-one
vector, and let ρ(n)

s be the Gaussian function. Then∫
x∈H

s−rρ(n)
s (x)dx = 1

Proof. Use the matrices A and B from the previous lemma to apply inte-
gration by substitution, observing that H = ABRr.∫

x∈ABRr

s−rρ(n)
s (x)dx =

√
det(BTATAB)

∫
x∈Rr

s−rρ(n)
s (ABx)dx

=
√

det(DTD)
∫
x∈Rr

s−re−πx
TDTDx/s2

dx =
∫
x∈Rr

s−re−πx
T x/s2

dx = 1
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Where DTD = BTATABT is the r-dimensional Cholesky decomposition,
and the last equality follows then again by integration by substitution.

Theorem A.4 (Bhargava,Shankar,Taniguchi,Thorne,Tsimerman,Zhao). Let
K be any number field of degree n and let OK be its ring of integers. Let
OK ⊆ KR have the structure of a lattice via the Minkowski embedding (see
Section 2.3), and denote λ∞j (OK) for the j-th successive minimum with
respect to the infinity norm in KR. Then

λ∞n (OK) ≤ |∆K |1/n.

The following proof is a copy of [Bha+20, Thm. 3.1], with the difference that
it is applied to the infinity norm and has explicit constants everywhere.

Proof. Let αj ∈ OK attain the successive minima for the infinity norm
λ∞j (OK) for j ∈ {1, . . . , n}, with α1 = 1. For any element β ∈ OK , we
write β = ∑n

j=1[β]jαj , i.e., [β]j are the coordinates of β with respect to
(α1, . . . , αn).

For 2 ≤ k, ℓ ≤ n − 1 consider the (n − 2) × (n − 2)-matrix C = ([αkαℓ]n),
i.e., the matrix consisting of the coordinates of αkαℓ with respect to αn.
We will show at the end of this proof that this is a non-degenerate matrix,
implying that there are no zero rows or columns. In other words, there exists
a permutation π : {2, . . . , n− 1} → {2, . . . , n− 1} such that [αkαπ(k)]n ̸= 0
for all k ∈ {2, . . . , n− 1}.

So, the product αkαπ(k) ∈ OK extends {α1, . . . , αn−1} to a n-dimensional
lattice; therefore we have ∥αk∥∞∥απ(k)∥∞ ≥ ∥αkαπ(k)∥∞ ≥ λ∞n (OK). Taking
products over all k ∈ {2, . . . , n− 1} we obtain

n−1∏
k=2
∥αk∥2∞ =

n−1∏
k=2
∥αk∥∞∥απ(k)∥∞ ≥

(
λ∞n (OK)

)n−2
.

Multiplying above equation by ∥α1∥2∞ = 1 and ∥αn∥2∞ = λ∞n (OK)2, and
using Minkowski’s second inequality [Cas12, Ch. VIII]∏n

k=1 λ
∞
k (Λ) ≤ det(Λ),
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we obtain
|∆K | ≥

n∏
k=1
∥αk∥2∞ ≥

(
λ∞n (OK)

)n
.

It remains to prove that C = ([αkαℓ]n) is non-degenerate. Suppose it is not,
and there exists dℓ for ℓ ∈ {2, . . . , n− 1} (not all zero) such that

[ n−1∑
ℓ=2

dℓαkαℓ
]
n

=
n−1∑
ℓ=2

dℓ[αkαℓ]n = 0 for all k ∈ {2, . . . , n− 1}

Writing β = ∑n−1
ℓ=2 dℓαℓ, this means that αkβ lies in the span of the elements

(α1, . . . , αn−1). In other words, L = Qα1 + . . .+Qαn−1 is Q(β)-invariant, i.e.,
a Q(β)-vector (strict) subspace of K. That is, dimQ(β)(L) ≤ dimQ(β)(K)− 1.
But then

n− 1 = dimQ(L) = dimQ(β)(L) · [Q(β) : Q]
≤ (dimQ(β)(K)− 1) · [Q(β) : Q] = n− [Q(β) : Q],

yielding [Q(β) : Q] = 1, i.e., β ∈ Q, which is impossible by the fact that
β = ∑n−1

ℓ=2 dℓαℓ is assumed to be non-zero and has no α1 = 1 part.

We conclude that C is non-degenerate, which finishes the proof.

A.2. Bound on the Residue of the Zeta Function for
Cyclotomic Fields

In the proof of Lemma 7.20, we used that for the cyclotomic field K = Q(ζm),
the residue ρK of the zeta function for cyclotomic fields is in O(m4). This
section is dedicated to the proof of this fact.

Theorem A.5 (ERH). Let K = Q(ζm) with m ≥ 3. Then, assuming the
Riemann Hypothesis for L-functions L(χ, s) for all Dirichlet characters
modulo m, we have

ρK ≤ e15 ·m4 = O(m4).
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Proof. The proof extends to the rest of this section, through the following
steps.
(Appendix A.2.1) Writing log(ρK) = RK +MK

We first split the computation of ρK into two parts, a ramified part RK
and a main part MK . This ramified part occurs because the characters
χ ∈ Ĝ\1 for G = Gal(K/Q) are defined modulo their conductor fχ | m. For
computations it is simpler to consider characters modulo m instead, denoted,
χ|m. The ramified term pops up as a correction factor, just being the sum
of L(χ, 1)− L(χ|m, 1) for the non-trivial characters χ.
(Appendix A.2.2) Bounding the ramified term RK ≤ 2 log(m)
By elementary methods one can show that RK ≤ 2 log(m) (see Proposi-
tion A.9).
(Appendix A.2.3) Splitting MK = M

(w)
K + limx→∞(M (x)

K −M (w)
K ).

The main part MK = ∑
q
aq

q can be seen as a sum where q ranges over all
prime powers. By defining the partial sum M

(w)
K = ∑

q<w
aq

q one obtains an
‘initial’ part M (w)

K and a ‘tail part’ limx→∞(M (x)
K −M (w)

K ) of MK .
(Appendix A.2.4) The initial part M

(w)
K ≤ 2 log(m) + 11 for w =

max(e5/4·m, 1010).
By applying partial summation to the Brun-Titchmarsh bound (see Lemma
A.13) one obtains the bound M

(w)
K ≤ 2 log logw + 7. It easy to show that

for w = max(e5/4·m, 1010) holds 2 log logw + 7 ≤ 2 log(m) + 11.
(Appendix A.2.5) The tail part limx→∞(M (x)

K −M (w)
K ) ≤ 4 for w =

max(e5/4·m, 1010).
This bound, proven in Proposition A.17, assumes the Riemann Hypothesis
for L-functions for Dirichlet characters modulo m, and follows from an
explicit result of Dusart [Dus98].
Combining the bounds yields log(ρK) ≤ 4 log(m) + 15.
We have the following bound, of which taking the exponent yields the final
claim.

log ρK ≤ RK +M
(w)
K + lim

x→∞
(M (x)

K −M
(w)
K ) ≤ 2 log(m) + (2 log(m) + 11) + 4.
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A.2.1. Splitting log(ρK) = RK + MK into a Ramified Term and a
Main Term

Notation A.6. In the following, every Dirichlet character χ is assumed to
be primitive, i.e., defined modulo its conductor fχ. If we, instead, want to
consider a Dirichlet character modulo a larger modulus m (with fχ | m), we
write χ|m (and we have χ|m(a) = 0 whenever gcd(a,m) > 1). We denote by
1 the trivial character that has value one everywhere.

Lemma A.7. Let K = Q(ζm) be a cyclotomic field extension with Galois
group G ≃ (Z/mZ)∗ and consider all characters Ĝ as Dirichlet characters.
Then we have log(ρK) = RK +MK , where

RK = −
∑

χ∈Ĝ\1

∑
p|m
p∤fχ

log(1− χ(p)/p) and MK =
∑

χ∈Ĝ\1

logL(χ|m, 1)

Proof. We have the following formula for the logarithm of the residue ρK ,
by considering the quotient of the Dedekind zeta function and the Riemann
zeta function [Nar04, Thm. 8.6].

log(ρK) =
∑

χ∈Ĝ\1

logL(χ, 1)

Concentrating on a fixed χ ∈ Ĝ\1, and applying the Euler product formula,
we obtain

logL(χ, 1) = −
∑
p∤fχ

log(1− χ(p)/p)

= −
∑
p∤m

log(1− χ(p)/p)−
∑
p|m
p∤fχ

log(1− χ(p)/p)

= logL(1, χ|m)−
∑
p|m
p∤fχ

log(1− χ(p)/p).
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Summing over all non-trivial χ ∈ Ĝ yields

log(ρK) = −
∑

χ∈Ĝ\1

∑
p|m
p∤fχ

log(1− χ(p)/p) +
∑

χ∈Ĝ\1

logL(1, χ|m) = RK +MK .

We call the terms RK and MK the ramified term and the main term
respectively.

A.2.2. Estimating the Ramified Term

Lemma A.8. For any prime-power cyclotomic number field K = Q(ζpk),
the ramified term RK equals zero.

Proof. For a prime-power cyclotomic field Q(ζpk), the conductor of every
non-trivial character χ ∈ Ĝ is divisible by p, since G = Gal(Q(ζpk)/Q) ≃
(Z/pkZ)∗. Therefore, RK = −∑χ∈Ĝ\1

∑
p|m
p∤fχ

log(1− χ(p)/p) = 0.

Proposition A.9. For any cyclotomic number field K = Q(ζm) with m ≥ 3,
we have

RK ≤ 2 log(m)

Proof. Denoting G ≃ (Z/mZ)∗ for the Galois group of K, swapping sums
and using the Taylor expansion of the logarithm, we obtain

RK =
∑
p|m

∑
χ∈Ĝ\1
p∤fχ

∑
j>0

χ(pj)
jpj

=
∑
p|m

∑
j>0

1
jpj

∑
χ∈Ĝ\1
p∤fχ

χ(pj)

=
∑
p|m

∑
j>0

1
jpj

−1 +
∑
χ∈Ĝp

χ(pj)

 .
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where Ĝp = {χ ∈ Ĝ | p ∤ fχ}. Note that Ĝp ≃ (Z/mpZ)∗ is isomorphic to
the Galois group of Q(ζmp), where mp is the p-free part of m. By character
orthogonality relations , we know that

∑
χ∈Ĝp

χ|mp(a) =
{
|Ĝp| = ϕ(mp) if a ≡ 1 mod mp

0 otherwise

Since p is coprime with mp, we know that for any character χ of Ĝp and
exponent j > 0, it holds that χ(pj) = χ|mp(pj). Denoting jp for the order of
p in (Z/mpZ)∗, we deduce that jp is the smallest non-zero exponent such
satisfying ∑χ∈Ĝp

χ(pjp) = ϕ(mp). Moreover, we have pjp = 1 + kmp > mp.
Using these properties, we obtain the following rather crude bound.

∑
p|m

∑
j>0

1
jpj

−1 +
∑
χ∈Ĝp

χ(pj)

 ≤∑
p|m

∑
k>0

ϕ(mp)− 1
(kjp)pkjp

≤ −
∑
p|m

(ϕ(mp)− 1) log(1− p−jp)

≤
∑
p|m

2 log(2) · (ϕ(mp)− 1)
pjp

≤ 2 log(2) · ω(m) ≤ 2 log(m)

The first inequality omits the pj ̸≡ 1 modulo mp, as they add negative
value anyway; the second inequality uses the equation ∑k>0(p−jp)k/k =
− log(1− p−jp) after disposing jp in the denominator. The third inequality
uses the fact that − log(1−x) ≤ 2 log(2) ·x for x < 1/2, the fourth inequality
uses the fact that pjp > mp. By Lemma A.8, we may assume, without loss
of generality, that m has at least 2 distinct prime divisors, i.e., ω(m) > 1.
Then the fifth inequality is just a trivial upper bound on the prime omega
function ω(m), the number of distinct prime divisors of m.
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A.2.3. Splitting the Main Term in an Initial Part and a Tail Part

Notation A.10. For a ∈ N with gcd(a,m) = 1, we put

Sa,x =
∑

p prime,j>0,
pj≡a mod m

pj≤x

1
jpj

Proposition A.11 (Estimating the main term). Let K = Q(ζm) be a
cyclotomic field. Then

MK = lim
x→∞

ϕ(m) · S1,x −
∑

a∈(Z/mZ)∗

Sa,x


Proof. We have

MK =
∑

χ∈Ĝ\1

logL(χ|m, 1) =
∑
p∤m

∑
j

1
jpj

∑
χ∈Ĝ\1

χ|m(pj)

For numbers a coprime with m we know that ∑χ∈Ĝ χ|m(a) equals ϕ(m) if
a ≡ 1 mod m and 0 otherwise.This yields:

MK = (ϕ(m)− 1)
∑

p prime,j>0
pj≡1 mod m

1
jpj
−

∑
p prime,j>0

p∤m,pj ̸≡1 mod m

1
jpj

.

Writing out the new notation and flipping summands corresponding to
pj ≡ 1 mod m from the left-hand to the right-hand side yields the result.

It will be proven useful to cut the main term into two parts:

MK = M
(w)
K + lim

x→∞

(
M

(x)
K −M (w)

K

)
.

That is, a finite initial part M (w)
K and a tail part limx→∞

(
M

(x)
K −M (w)

K

)
.

More precisely, for w > 1,

Notation A.12.

M
(w)
K = ϕ(m)S1,w −

∑
b∈(Z/mZ)∗

Sb,w
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A.2.4. Estimating the Initial Part of the Main Term

Lemma A.13. For w ≥ m4 we have

M
(w)
K ≤ 2 log logw + 7.

Proof. By omitting the negative terms in Notation A.12, we obtain

M
(w)
K ≤ ϕ(m)S1,w = ϕ(m)

∑
p prime,j>0
pj≡1 mod m

pj≤w

1
jpj
≤ 5 + ϕ(m)

∑
p prime

p≡1 mod m
p≤w

1
p
.

where the last inequality follows from Lemma A.14∑
p prime,j>1
pj≡1 mod m

1
jpj
≤ 5/m,

For a fixed m, we denote by π1(t) the number of primes p with p ≤ t that
satisfy p ≡ 1 mod m. For t > m, we have the Brun-Titchmarsh bound
π1(t) ≤ 2t

ϕ(m) log(t/m) [MV73]. Combining this bound with Abel partial sum-
mation, we obtain∑

p prime
p≡1 mod m

p≤w

1
p
≤ 1
m

+ 1
2m +

∑
p prime

p≡1 mod m
em≤p≤w

1
p

= 1
m

+ 1
2m + π1(w)

w
− π1(em)

em
+
∫ w

em

2dx
ϕ(m)x log(x/m)

≤ 3
2m + 1

ϕ(m) log(w/m) + 2/ϕ(m) · log log(w/m)

The first inequality just writes out the first two terms of the sum, the
subsequent equality is the Abel summation formula, using the facts that
t−1 has derivative −t−2 and π1 has the Brun-Titchmarsh bound. The last
inequality follows from evaluating the integral, combining the terms and
using again the Brun-Titchmarsh bound for π1(w). Concluding, one can
deduce that M (w)

K is bounded by 5 + 3/2 + 1/ log(w/m) + 2 log logw ≤
7 + 2 log logw.
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Lemma A.14. For all m ≥ 2 holds∑
p prime,j>1
pj≡1 mod m

1
jpj
≤ 5
m
,

Proof. Using the technique from Ankeny and Chowla [AC49, p. 532] we
split the sum into a part where p > m and a part where p < m.

For p > m we have
∑

p prime,j>1
pj≡1 mod m

p>m

1
jpj
≤
∑
k>m

1
k2 ≤

∫ ∞
m

1/x2 · dx = 1
m

(A.115)

The first inequality follows from the fact that for every fixed prime p > m

we have ∑
j>1

1
jpj
≤ 1

2p2

 ∞∑
j=0

p−j

 ≤ 1
2p2 ·

p

p− 1 ≤
1
p2 .

For p < m we use the fact that Xk ≡ 1 modulo m can have at most
k incongruent solutions [AC49, p. 532]. This implies, by considering all
numbers am+ 1 with a ∈ Z,

∑
p prime,j>1
pj≡1 mod m

p<m

1
jpj
≤
∞∑
j=2

1
j

 B(j)∑
a=A(j)

1
am+ 1

 ≤ ∞∑
j=2

1
( j2−j

2 + 1)m+ 1
,

where A(j) = j2−j
2 + 1 and B(j) = j2+j

2 . Dividing out 1
m , using j2 − j ≥

(j − 1)2 for j ≥ 2, and applying the Basel problem equality, we obtain

∑
p prime,j>1
pj≡1 mod m

p<m

1
jpj
≤
∞∑
j=2

1
( j2−j

2 + 1)m+ 1
≤ 2
m
·
∞∑
j=2

1
(j − 1)2 ≤

π2

3m. (A.116)

Combining Equation (A.115) and Equation (A.116), and simplifying π2/3 +
1 ≤ 5 we obtain the claim.
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A.2.5. Estimating the Tail Part of the Main Term

Defining Ma(k) =M(k) if k ≡ a mod m and zero otherwise, and putting
ψa(x) = ∑

k<xMa(k), we have the following explicit result, due to Dusart
[Dus98, Thm. 3.7, p. 114].

Theorem A.15 (ERH). For every x > max(e5/4·m, 1010), we have, assum-
ing the Riemann Hypothesis for L(χ, s) for all Dirichlet characters χ modulo
m,

|ψa(x)− x/ϕ(m)| ≤ 1
4π
√
x log2(x)

Lemma A.16 (ERH). Let m be a fixed modulus and let a be coprime with
m and let x ≥ w ≥ e5/4·m. Then there is a value Kx,w that does not depend
on a, and a value ηa with |ηa| ≤ 1, such that∣∣∣∣(Sa,x − Sa,w)−Kx,w −

2ηa
m

∣∣∣∣ = O(1/ log x).

Proof. We have
Sa,x − Sa,w =

∑
p prime,j>0,
pj≡a mod m
w<pj≤x

1
jpj

.

Applying Abel summation, using that the derivative of 1
t log t equals −(log(t)+1)

log(t)2t2 ,
we obtain

Sa,x − Sa,w =
∑

w<k≤x

Ma(k)
k log k = ψa(x)

x log x −
ψa(w)
w logw +

∫ x

w

ψa(t)(log(t) + 1)
log(t)2t2

dt.

Writing ψa(t) = t
ϕ(m) + 1/(4π) · η(t)

√
t log2(t) with |η(t)| ≤ 1, we obtain

that, for some η′ with |η′| ≤ 1,∫ x

w

ψa(t)(log(t) + 1)
log(t)2t2

dt

= O(1/ log(x)) + log log x+ log logw − 1/ logw + η′
2 log(w) + 3

4π
√
w︸ ︷︷ ︸

≤1/m

.
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Since w ≥ e5/4·m, we have 2 log(w)+3
4π
√
w
≤ 1

m . Also, for some η′′ with |η′′| ≤ 1,
we have

ψa(w)
w logw = 1

log(w)ϕ(m) + η(t) log2(w)
4πw1/2 = 1

log(w)ϕ(m) + η′′/m

Combining all equations and putting Kx,w = log log x+log logw−1/ logw+
1

log(w)ϕ(m) , we obtain
∣∣∣∣∣∣
∑

w<k≤x

Ma(k)
k log k −Kx,w − (η′ + η′′)/m

∣∣∣∣∣∣ = O(1/ log(x)).

Proposition A.17 (ERH). Let x ≥ w ≥ e5/4·m. Then

M
(x)
K −M (w)

K ≤ O(m/ log(x)) + 4,

where the implied constant is absolute (and does not depend on m).

Proof. We have, using Lemma A.16,

M
(x)
K −M (w)

K = ϕ(m)(S1,x − S1,w)−
∑

a∈(Z/mZ)∗

(Sa,x − Sa,w)

= (ϕ(m)− ϕ(m))(O(1/ log x) +Kx,w) + ϕ(m) · 2η1/m+
∑

a∈(Z/mZ)∗

2ηa/m.

By using the fact that |ηa| ≤ 1 for all a ∈ (Z/mZ)∗, we obtain the result.

A.3. Exact Sequences

Lemma A.18 (Kernel-cokernel exact sequence). Let A,B,C be abelian
groups and let f : A→ B and g : B → C be group homomorphisms, fitting
in the following commutative diagram.
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B

A C

f g

gf

Then, denoting ‘ker’ for the kernel of a map and ‘coker’ for the cokernel of
a map, we have the following exact sequence.

0→ ker f → ker gf → ker g → coker f → coker gf → coker g → 0.

This sequence can be obtained mnemonically by observing the outer, blue
arrows in Figure A.1.

Proof. Apply the snake lemma twice to obtain the result.

0 ker f ker gf

0 A A 0

0 ker g B C

ker g coker f coker gf

id

f gf
g

∂

ker gf ker g coker f

A B coker f 0

0 C C 0

coker gf coker g 0

f

gf g
id

∂
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ker g coker f

B

ker gf A C coker gf

ker f 0 coker g

f g

gf

Figure A.1.: The kernel-cokernel exact sequence in the outer, blue arrows.

A.4. The Yudin-Jackson Theorem

In the chapter about the Continuous Hidden Subgroup Problem (Chapter 3),
the main issue is the impact of discretization on the success probability of
the quantum algorithm. This impact turns out to be largely influenced by
how well a complex vector-valued function on the torus Tm = Rm/Zm can
be approximated by trigonometric functions with bounded frequencies.

This problem of finding the best trigonometric approximation has already
been solved in the specific case of scalar complex functions on the torus by
Yudin [Yud76], using Fourier analysis. We show here that Yudin’s reasoning
applies straightforwardly to vector-valued functions as well. To be clear, the
following text contains the same proof as in Yudin’s work [Yud76] and it is
restated here for the sake of self-containedness.
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Generalized result of Yudin

Recall that the Lp-norm for p ∈ [1,∞] for a vector-valued function f : Tm →
CN is defined as follows1.

∥f∥p,Tm :=
(∫

x∈Tm
∥f(x)∥pCNdx

)1/p
,

where ∥·∥CN is the Euclidean norm on CN . Any function for which the value
∥f∥p,Tm is well-defined is called an Lp-function. For a function f : Tm → CN

we define its Lipschitz constant to be

Lip(f) = inf{L | ∥f(x)− f(y)∥CN ≤ L∥x− y∥Tm for all x, y ∈ Tm}.

For f we also define a related constant, the modulus of smoothness [Yud76]:

ω2(f , δ)p := sup
|y|≤δ
∥f(· − y)− 2f(·) + f(·+ y)∥p,Tm .

It is evident that ω2(f , δ)p ≤ ω2(f , δ)∞ ≤ 2 Lip(f)δ for functions f for which
both quantities are defined.

Theorem A.19 (Yudin-Jackson). Let f : Tm → CN be an Lp-function.
Then there exists a function t : Tm → CN with FTm{t} having support in
[−r/2, r/2]m such that

∥f − t∥p,Tm ≤ 2ω2(f ,
√
m/r)p ≤ 2

√
mLip(f)/r.

In essence, above theorem just states that the best trigonometric approxi-
mation of a function mainly depends on the smoothness of that function (in
terms of the Lipschitz constant, for example) and how high the frequencies
of the trigonometric functions are allowed to be, which is measured by r.

1For p =∞, we let ∥f∥∞,Tm to be the essential supremum of the function x 7→ ∥f∥CN .
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Proof

First we prove a basic result about the modulus of smoothness; it satisfies
the following ‘scaling’ property.

Lemma A.20 (Scaling property of the modulus of smoothness). For any
Lp function f : Tm → CN and for any ρ, δ > 0, we have ω2(f , ρδ)p ≤
2(1 + ρ2)ω2(f , δ)p.

Proof. Note that we have the following ‘telescopic’ finite sum

f(x− nt)− 2f(x) + f(x+ nt)

=
n−1∑

j=−n+1
(n− |j|)

[
f(x+ (j − 1)t)− 2f(x+ jt) + f(x+ (j + 1)t)

]
.

So, for |t| ≤ δ, we have, by the triangle inequality,

∥f(· − nt)− 2f(·) + f(·+ nt)∥p,Tm ≤
n−1∑

j=−n+1
(n− |j|)ω2(f , δ)p

= n2ω2(f , δ)p.

Therefore, for any ρ > 0, ω(f , ρδ)p ≤ ω(f , ⌈ρ⌉δ)p ≤ ⌈ρ⌉2ω(f , δ)p ≤ (1 +
ρ)2ω(f , δ)p. Using the fact that (1+ρ)2 ≤ 2(1+ρ2), we obtain the result.

Next, we try to approximate the function f by the function f ⋆ K, a convo-
lution of f with a suitable kernel K. The closeness of this approximation
largely depends on the smoothness of f and the value of of a certain integral
involving the kernel K.

Lemma A.21. Let K : Tm → [0,∞) be a L1-function satisfying
∫
t∈TmK(t)dt

= 1 and K(−t) = t for all t ∈ Tm. Denote t = f ⋆K =
∫
t∈Tm f( ·− t)K(t)dt.

Then, for all r > 0,

∥f − t∥p,Tm ≤ ω2(f ,
√
m/r)p

(
1 + r2

m

∫
t∈[−1/2,1/2]m

|t|2 ·K(t)dt
)
, (A.117)
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Proof. By the fact that K is even,

t(x) = f ⋆ K(x) =
∫
t∈Tm

f(x− t)K(t)dt =
∫
t∈Tm

f(x+ t)K(t)dt

= 1
2

∫
t∈Tm

f(x− t) + f(x+ t)K(t)dt.

We can write f(x) =
∫
t∈Tm f(x)K(t)dt, since

∫
t∈Tm K(t)dt = 1. Therefore,

t(x)− f(x) = 1
2

∫
t∈Tm

(f(x− t)− 2f(x) + f(x+ t))K(t)dt.

Taking Lp-norms, using the integral-triangle inequality, integrating over the
set [−1/2, 1/2]m, using the fact that K(t) is a positive scalar and applying
Lemma A.20 with δ =

√
m/r and ρ = r|t|/

√
m, we obtain

∥f − t∥p,Tm ≤ 1
2

∫
t∈[−1/2,1/2]m

ω2(f , |t|)pK(t)dt

≤
∫
t∈[−1/2,1/2]m

(
1 + |t|

2r2

m

)
ω2(f ,

√
m/r)pK(t)dt.

Rewriting the integral, using
∫
t∈Tm K(t)dt = 1, we arrive at Equation (A.117).

In the next step, we will instantiate the kernel K = Kr in such a way that
its Fourier coefficients have support in [−r/2, r/2]m. This means, by the
convolution formula, that t = f ⋆Kr also has Fourier coefficients with support
only in [−r/2, r/2]m. Furthermore, Kr is chosen in such a way that

r2

m
·
∫
t∈[−1/2,1/2]m

|t|2Kr(t)dt ≤ 1.

Lemma A.22. Let λ = ϕ ⋆ ϕ =
∫
t∈Rm ϕ(· − t)ϕ(t)dt, where

ϕ(x1, . . . , xm) =
{

2m∏m
j=1 cos(2πxj) if (x1, . . . , xm) ∈ [−1/4, 1/4]m

0 otherwise

Furthermore, define Kr : Tm → C by the rule Kr(t) := F−1
Tm{λ(·/r)

∣∣
Zm}(t) =∑

z∈Zm λ(z/r)e2πi⟨t,z⟩. Then
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(i) Kr(t) ≥ 0 and Kr(t) = Kr(−t) for all t ∈ Tm,
(ii)

∫
t∈Tm Kr(t)dt = 1,

(iii) FTm{Kr} has support only in [−r/2, r/2]m,
(iv)

∫
t∈Tm |t|2Kr(t)dt ≤ m/r2.

Proof. For (i), note that Kr is even because λ is. For positivity, we apply
the Poisson summation formula.

Kr = F−1
Tm{λ(·/r)

∣∣
Zm} = F−1

Rm{λ(·/r)}
∣∣∣Zm

= rmλ̂(r·)
∣∣∣Zm

≥ 0.

The last inequality follows from the convolution formula: λ̂ = ϕ̂ ⋆ ϕ = ϕ̂ · ϕ̂ ≥
0. For (ii), note that

∫
t∈Tm Kr(t)dt = FTm{Kr}[0] = λ(0) =

∫
t∈Rm ϕ(t)2dt =

1. Part (iii) is can be shown by combining the following facts: FTm{Kr} =
λ(·/r)

∣∣
Zm and λ(x) = 0 if |x|∞ > 1/2. Part (iv) is the most technical; since

Kr = rmλ̂(r·)
∣∣∣Zm

and |t|2 ≤ |t+ v|2 for any v ∈ Zm and t ∈ [− 1/2, 1/2]m,
we have∫

t∈[− 1
2 ,

1
2 ]m
|t|2K(t)dt =

∫
t∈[− 1

2 ,
1
2 ]m
|t|2rm

∑
z∈Zm

λ̂(r(t+ z))dt

≤
∫
Rm
|t|2λ̂(rt)rmdt = r−2

∫
Rm
|y|2λ̂(y)dy, (A.118)

where the last equality holds by the substitution rule. By the definition of λ,
Plancherel’s theorem and the fact that 2πiyϕ̂ = FRm{∇ϕ}, we obtain that
the right side of Equation (A.118) equals

r−2
∫
y∈Rm
|y|2ϕ̂(y)ϕ̂(y)dy = r−2∥yϕ̂(y)∥22,Rm = r−2∥(2π)−1∇ϕ∥22,Rm = m/r2.

where the last equation follows from integrating the following function over
Rm, which proves (iv).

|(2π)−1∇ϕ(x)|2 =
{

22m∑m
j=1 sin2(2πxj)

∏
k ̸=jcos2(2πxk) if x ∈ [−1

4 ,
1
4 ]m

0 otherwise

Combining Lemma A.22 and Lemma A.21 we arrive at a proof for Theo-
rem A.19.
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Proof of Theorem A.19. Put t = f ⋆ Kr =
∫
t∈Tm f(t)Kr(· − t)dt with Kr as

in Lemma A.22. As Kr satisfies the requirements of Lemma A.21 and

r2

m

∫
t∈[−1/2,1/2]m

|t|2Kr(t)dt ≤ 1,

by Lemma A.22(iv), we have ∥f − t∥p,Tm ≤ 2ω2(f ,
√
m/r) ≤ 2

√
mLip(f)/r.

By Lemma A.22(iii) and the convolution formula, we have FTm{t} =
FTm{f} · FTm{Kr} = FTm{f} · λ(·/r)

∣∣
Zm . Since λ(·/r) only has support

in [−r/2, r/2]m, the Fourier transform of t has also only support there.

A.5. The Gaussian State

A.5.1. Reducing to the One-dimensional Case

In this section, we estimate the exact quantum complexity of obtaining an
approximation, in the trace distance, of the state

1√
ρ1/s(Dmrep)

∑
x∈Dm

rep

√
ρ1/s(x)|x⟩, (A.119)

where Dmrep = 1
qZ

m ∩ [−1/2, 1/2)m, and where ρ1/s(·) = e−πs
2∥·∥2 is the

Gaussian function (see Section 2.5.3).

An element |x⟩ with x = (x1, . . . , xm) ∈ Dmrep is represented as a tensor
product |x1⟩ ⊗ . . . ⊗ |xm⟩. As the function

√
ρ1/s(x) = ρ√2/s(x) can be

written as a product of functions with separated variables as well, we obtain
that Equation (A.119) equals

m⊗
j=1

1√
ρ1/s(1

q [q]c)

∑
x∈ 1

q
[q]c

√
ρ1/s(x)|x⟩,

where 1
q [q]c = 1

qZ ∩ [−1/2, 1/2). Therefore, the problem of approximating
the state as in Equation (A.119) reduces to the one-dimensional case. By
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rescaling the variable x ∈ 1
q [q]c, the computation of this one-dimensional

state boils down to calculating the following quantum state, with ς = q/s.

|ρς,q⟩ := 1√
ρς([q]c)

∑
x∈[q]c

√
ρς(x) · |x⟩.

Here, [q]c = {− q
2 +1, . . . , 0, . . . , q2}, and q = 2Q is a 2-power, for simplicity.

A.5.2. The Periodic and Non-periodic Discrete Gaussian

To obtain a Gaussian superposition in one dimension, we follow a method
of Kitaev and Webb [KW08]. Their algorithm is an improvement of that of
Grover and Rudolph [GR02].

Kitaev and Webb’s algorithm actually does not compute a discrete Gaussian
quantum state, but something very close; a periodized discrete Gaussian
quantum state. This periodized state has the advantage of having a more
natural normalization and, more importantly, having a specific sum decom-
position. These advantages lead to a slightly more efficient algorithm [KW08]
computing the discrete Gaussian superposition, compared to the algorithm
of Grover and Rudolph.

Definition A.23 (Discrete Periodized Gaussian function). For ς ∈ R>0
and q = 2Q a power of two, we denote by ξς,q : Z/qZ → R>0 the function
defined by the following rule

ξς,q(x) =
√∑
z∈Z

ρς(x+ qz).

The associated quantum state is defined as follows

|ξς,q⟩ = 1√
ρς(Z)

∑
x∈[q]c

ξς,q(x)|x⟩

Lemma A.24. Let ς ∈ R>0 and q = 2Q ∈ N, with q ≥ ς. Then

D (|ξς,q⟩, |ρς,q⟩) ≤ exp
(
− q2

2ς2

)
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where D is the trace distance [NC11, §9.2.1].

Proof. Since ξς,q(x) ≥
√
ρς(x), we have, writing out the definitions,

⟨ξς,q|ρς,q⟩ =
∑
x∈[q]c ξς,q(x)

√
ρς(x)√

ρς(Z)ρς([q]c)

≥
∑
x∈[q]c ρς(x)√
ρς(Z)ρς([q]c)

=
√
ρς([q]c)/ρς(Z) .

Since the trace distance between the pure states |ξς,q⟩ and |ρς,q⟩ is equal to√
1− |⟨ξς,q|ρς,q⟩|2 [NC11, §9.2], we obtain

D (|ξς,q⟩, |ρς,q⟩) ≤
√

1− ρς([q]c)/ρς(Z) =
√
ρς(Z \ [q]c)

≤
√
β

(1)
q/ς ≤ exp

(
− q2

2ς2

)
,

where we applied Banaszczyk’s tail bound (see Lemma 2.25).

Above lemma essentially states that whenever q is relatively large, and ς is
not too large, then the periodic discrete Gaussian and the (non-periodic)
discrete Gaussian are very close in trace distance. That has as a consequence
that the associated measurement probability distributions are close in total
variation distance [NC11, Thm. 9.1].

A.5.3. Computing the Periodic Gaussian State

According to the previous subsection, we can resort to computing the
state |ξς,q⟩ instead of |ρς,q⟩, as they are close to each other for a suitable
choice of parameters. As already mentioned, the quantum state |ξς,q⟩ can be
decomposed into a superposition that can be exploited algorithmically. In
order to phrase this decomposition we first introduce the following notation
of a quantum state ‘translated’ by t ∈ R.

∣∣ξς,q(·+ t)
〉

= 1√
ρς(Z + t)

∑
x∈[q]c

ξς,q(x+ t)|x⟩
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Likewise, we denote∣∣ρς,q(·+ t)
〉

:= 1√
ρς([q]c + t)

∑
x∈[q]c

√
ρς(x+ t) · |x⟩

Now we are ready to state the decomposition lemma.

Lemma A.25 ([KW08, Eq. (11)]). Let ς ∈ R>0, t ∈ R and let q ∈ N be
even. Then∣∣ξς,q(·+ 2t)

〉
=
∣∣ξ ς

2 ,
q
2
(·+ t)

〉
⊗ cosα|0⟩+

∣∣ξ ς
2 ,

q
2
(·+ t+ 1

2)
〉
⊗ sinα|1⟩,

with α = arccos
(√

ρ ς
2
(Z + t)

/
ρς(Z + 2t)

)
.

Proof. Splitting the sum into a part with even numbers and a part with odd
numbers, we obtain√

ρς(Z + 2t) ·
∣∣ξς,q(·+ 2t)

〉
=

∑
x∈[q]c

ξς,q(x+ 2t)|j⟩

=
∑
x∈[ q

2 ]c

ξς,q(2x+ 2t)|x⟩|0⟩+
∑
x∈[ q

2 ]c

ξς,q(2x+ 1 + 2t)|x⟩|1⟩. (A.120)

We now focus the computation on the sum over the odd numbers, as the
computation for the even numbers is similar. By writing out the definition
of ξς,q(x) and putting the scalar 2 into the standard deviation ς, we obtain

ξς,q(2x+ 1 + 2t)2 = ρς(2x+ 1 + 2t+ qZ)
= ρ ς

2
(x+ t+ 1

2 + q
2 · Z) = ξ ς

2 ,
q
2
(x+ 1

2 + t)2.

Using a similar computation for the even case and writing out the definitions,
we obtain√

ρς(Z + 2t) ·
∣∣ξς,q(·+ 2t)

〉
=
√
ρ ς

2
(Z + t) ·

∣∣ξ ς
2 ,

q
2
(·+ t)

〉
⊗|0⟩+

√
ρ ς

2
(Z + t+ 1

2) ·
∣∣ξ ς

2 ,
q
2
(·+ t+ 1

2)
〉
⊗|1⟩.

Dividing above expression by
√
ρς(Z + 2t) we obtain Equation (A.120),

where we use the fact that ρς/2(Z + t) + ρς/2(Z + t+ 1
2) = ρς(Z + 2t).
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This lemma directly leads to an algorithm for computing (an approximation
of) the state

∣∣ξς,q〉, which is spelled out in Algorithm 10.

Algorithm 10: Recursive algorithm preparing the periodic Gaussian
state
Require: The parameters ς ∈ R>0, t ∈ R, k ∈ N and q = 2Q ∈ N.
Ensure: An approximation of the state |ξς,q(·+ t)⟩

1: Initial state: |t, ς, q⟩|0Q⟩ ;
2: Compute the α-rotation by on the last qubit: Compute α with

bit-precision k and store it in a k-qubit ancilla register. Apply the
α-rotation on the last qubit and uncompute α again, which yields the
state |t, ς, q⟩|0Q−1⟩ (cosα|0⟩+ sinα|1⟩) ;

3: Apply a parameter change, controlled by the last qubit
yielding cosα| t2 ,

ς
2 ,

q
2⟩|0Q−1⟩|0⟩+ sinα| t+1

2 , ς2 ,
q
2⟩|0Q−1⟩|1⟩ ;

4: Apply quantum recursion (step 2 and 3) on all qubits except
the last, whenever q > 1, yielding
cosα| t2 ,

ς
2 ,

q
2⟩
∣∣ξ ς

2 ,
q
2
(·+ t

2)
〉
|0⟩+ sinα| t+1

2 , ς2 ,
q
2⟩
∣∣ξ ς

2 ,
q
2
(·+ t+1

2 )
〉
|0⟩ ;

5: Un-apply the controlled parameter change, yielding
|t, ς, q⟩

(
cosα

∣∣ξ ς
2 ,

q
2
(·+ t

2)
〉
|0⟩+ sinα

∣∣ξ ς
2 ,

q
2
(·+ t+1

2 )
〉
|1⟩
)

=
|t, ς, q⟩|ξς,q(·+ t)⟩ ;

A.5.4. Estimating the Complexity and Fidelity of Algorithm 10

We will discuss now how well Algorithm 10 approximates the state |ξς,q⟩.
For ease of analysis, we will assume (without loss of generality) that the
operations on the parameters ς (in step 3 of Algorithm 10) are exact. Then it
turns out that the approximation error is primarily caused by the fact that
the angle α in the algorithm is computed up to bit precision k (meaning,
with error at most 2−k). This is made precise in the following lemma.
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Lemma A.26. Let |ξ̃ς,q(· + t)⟩ be the output of Algorithm 10 with input
parameters ς ∈ R>0, k ∈ N, q = 2Q ∈ N and t ∈ (−1, 1), then we have

T
(∣∣ξ̃ς,q(·+ t)

〉
,
∣∣ξς,q(·+ t)

〉)
≤ 2−kQ

where T denotes the trace distance.

Proof. The proof proceeds by induction on Q, where q = 2Q. We use the the
identity D(|ψ⟩, |ϕ⟩)2 + |⟨ψ|ϕ⟩|2 = 1 multiple times throughout the proof (see
[NC11, §9.2]). Let α̃ be a k-bit approximation of α, i.e., |α− α̃| < 2−k, and
denote |ξ̃ς,q(· + t)⟩ = cos α̃|ξ̃ ς

2 ,
q
2
(· + t

2)⟩|0⟩ + sin α̃|ξ̃ ς
2 ,

q
2
(· + t+1

2 )⟩|1⟩ for the
output of Algorithm 10 with input parameters ς, k, q = 2Q and t ∈ (−1, 1).
Without loss of generality, we assume that t = 0 for sake of clarity; for
arbitrary t ∈ (−1, 1) the calculation is similar.

⟨ξ̃ς,q|ξς,q⟩=cos(α) cos(α̃)⟨ξ̃ ς
2 ,

q
2
|ξ ς

2 ,
q
2
⟩+ sin(α) sin(α̃)⟨ξ̃ ς

2 ,
q
2
(·+ 1

2)|ξ ς
2 ,

q
2
(·+ 1

2)⟩.

By the induction hypothesis, we have

|⟨ξ̃ ς
2 ,

q
2
(·+ t)|ξ ς

2 ,
q
2
(·+ t)⟩| ≥

√
1− (Q− 1)22−2k

for t ∈ (−1, 1). Using the trigonometric identity cos(α) cos(α̃) +sin(α) sin(α̃)
= cos(α− α̃) and the fact that the periodic Gaussian state only has positive
amplitudes, we obtain

|⟨ξ̃ς,q|ξς,q⟩| ≥ cos(α− α̃)
√

1− (Q− 1)22−2k

Therefore D(|ξς,q⟩, |ξ̃ς,q⟩) =
√

1− |⟨ξς,q|ξ̃ς,q⟩|2 ≤ sin(α− α̃) + (Q− 1)2−k ≤
Q2−k. Note that we omitted the base case, which can be done by a very
similar computation using the same trigonometric identity.

Lemma A.27. Computing α with k-bits of precision in step 2 of Algo-
rithm 10 can be done within O(k3/2 · polylog(k)) operations.

Proof. Can be found in Appendix A.5.5.
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Proposition A.28. Algorithm 10 with input ς ∈ R>0, k ∈ N, q = 2Q ∈ N
and t ∈ (−1, 1) uses O(Q+ k) qubits and O(Q · k3/2 · polylog(k)) quantum
gates.

Proof. The number of qubits used in Algorithm 10 equals O(Q+k), because
α is stored in k ancilla qubits during step 2 with bit precision k. The variable
ς ∈ R can be stored with similar precision.

For the number of gates, we go through the relevant steps of Algorithm 10.
Step 2 computes (and uncomputes) α with precision 2−k. By Lemma A.27,
this costs at most O(k3/2 polylog(k)) quantum gates. The α-rotation in this
step costs k quantum gates, as a sequence of controlled Rπ/2j -gates.

Step 3 (and step 5) is a parameter change, which costs a mere constant
number of gates. Step 6 applies recursion, which, by induction, costs O((Q−
1) ·k3/2 ·polylog(k)) gates. Adding all together gives a number of O(Q ·k3/2 ·
polylog(k)) gates.

Theorem A.29. For q = 2Q ∈ N, k ∈ N and ς > 1, there exists an quantum
algorithm that prepares the one-dimensional Gaussian state

|ρς,q⟩ = 1√
ρς([q]c)

·
∑
x∈[q]c

√
ρς(x)|x⟩ (A.121)

within trace distance exp(− q2

2ς2 ) + log(q)2−k, using O(log(q) + k) qubits and
O(log(q) ·k3/2 ·polylog(k)) quantum gates. Here, [q]c denotes {− q

2 , . . . ,
q−1

2 }.

Proof. The state in Equation (A.121) can be approximated by running Al-
gorithm 10 with parameters ς, q = 2Q, t = 0 and k. Combining Lemma A.24
and Lemma A.26 and using the fact that we can add trace distances [NC11,
Ch. 9], this approximation is within trace distance exp(− q2

2ς2 ) +Q2−k.

For the running time, use Proposition A.28 to conclude that Algorithm 10
with the mentioned parameters uses O(Q+k) qubits and O(Q·k3/2) quantum
gates, which proves the claim.
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Theorem 3.12. For q = 2Q ∈ N, error parameter η ∈ (0, 1) and s >

2
√

log(m/η), there exists an quantum algorithm that prepares the higher-
dimensional Gaussian state

1√
ρ1/s(Dmrep)

∑
x∈Dm

rep

√
ρ1/s(x)|x⟩ =

m⊗
j=1

1√
ρ1/s(1

q [q]c)

∑
x∈ 1

q
[q]c

√
ρ1/s(x)|x⟩,

within trace distance η, using O
(
mQ + log(η−1)

)
qubits and using O(mQ

· log(mQη−1)2) quantum gates.

Proof. Instantiating Theorem A.29 with ς = q/s and k = ⌈log(2mQη−1)⌉
and rescaling the states x by q, gives the desired quantum state.

Note that the trace distance needs to be multiplied by m, due to the m-fold
tensor product. This yields a trace distance of m exp(−s2/2) +mQ2−k ≤
1
2η + 1

2η ≤ η. Regarding qubits, we need O(mQ) qubits for storing the
m-dimensional Gaussian state and O(k) = O(log(η−1) + log(mQ)) ancilla
qubits, for computing and uncomputing the rotation angle α. Together this
is at most O(mQ+ log(η−1)) qubits.

For the number of quantum gates we just multiply the number of gates used
in Theorem A.29 by m, instantiating k = ⌊log(2mQη−1)⌉ and simplifying
the expressions using the big-O notation:

O(m · log(q) · k3/2 · polylog(k)) ≤ O(mQ · k2) = O(mQ · log(mQη−1)2).

A.5.5. Proof of Lemma A.27

Lemma A.30. The value ρµ
2 ,

ς

2
√

2
(Z) can be computed with relative precision

2−k within time O(k3/2 polylog(k)).

Proof. We distinguish two cases.
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• ς <
√

2. Then, by Lemma 2.25,∣∣∣ρµ, ς√
2
(Z)− ρ⌊µ⌉, ς√

2
({−h, . . . , 0, . . . h})

∣∣∣ ≤ β(1)√
2h/ς · ρµ, ς√

2
(Z).

• ς >
√

2. Applying the Poisson summation formula, we obtain

ρµ, ς√
2
(Z) = ς√

2
∑
t∈Z

ρ0,
√

2
ς

(t)e−2πitµ.

Therefore∣∣∣∣∣∣ρµ, ς√
2
(Z)− ς√

2
∑

t∈{−h,...,0,...h}
ρ√

2
ς

(t)e−2πitµ

∣∣∣∣∣∣ ≤ ς√
2
β

(1)
ςh/
√

2 · ρ0,
√

2/ς(Z)

which is bounded by β
(1)
ςh/
√

2 · ρ0,ς/
√

2(Z) ≤ 2β(1)
ςh/
√

2 · ρµ, ς√
2
(Z), by

the Poisson summation formula and by smoothing arguments (see
Lemma 2.31), as ρµ,ς/√2(Z) ≥ (1− 2β(1)

s/
√

2)ρ0,ς/
√

2 ≥
1
2ρ0,ς/

√
2.

So the relative error is at most 2β(1)
h ≤ e−(h−1)2 for h > 2. Therefore,

choosing h = k1/2 + 1 is enough to compute ρµ
2 ,

ς

2
√

2
(Z) with relative error

2−k. Because evaluating an exponential function takes O(k ·polylog(k)) time
[Bre10], we arrive at the claim.

Lemma A.31. The fraction ρµ
2 ,

ς

2
√

2
(Z)
/
ρµ, ς√

2
(Z) can be computed with

precision 2−k within time O(k3/2 · polylog(k)).

Proof. Denote a = ρµ
2 ,

ς

2
√

2
(Z) and b = ρµ, ς√

2
(Z). Suppose we have relative

errors |ã − a| ≤ 2−ka/2 ≤ 2−kb/2, |b̃ − b| ≤ 2−kb/2 and ã/b̃ < 1, then∣∣∣ ã
b̃
− a

b

∣∣∣ ≤ |b̃(a−ã)−ã(b−b̃)|
bb̃

≤ |a−ã|
b + |b−b̃|

b ≤ 2−k. By Lemma A.30, we see
that both a and b can be computed within relative precision 2−k/2 within
time O(k3/2 polylog(k)). Therefore, the fraction a/b can be computed with
absolute precision 2−k within time O(k3/2 polylog(k)).

Lemma A.32. For x ∈ [0, 1− ε] and ε < 3
4 , we have

| arccos(
√
x+ ε)− arccos(

√
x)| ≤ 8

√
ε
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Proof. The derivative of arccos(
√
t) equals w(t) = − 2√

(1−t)t
. Therefore

| arccos(
√
x+ ε)− arccos(

√
x)| ≤

∣∣∣∣∫ x+ε

x
w(t)dt

∣∣∣∣
≤
∫ x+ε

x
|w(t)|dt ≤

∫ ε

0
|w(t)|dt.

The last inequality follows from the fact that w(t) is both strictly decreasing
on [0, 1/2] and symmetric around t = 1/2. The claim then follows from the
bound

∫ ε
0 |w(t)|dt =

∫ ε
0

2√
(1−x)x

≤ 4
∫ ε

0
dt√
t

= 8
√
ε.

By combining Lemma A.31 and Lemma A.32, we obtain that the expression
arccos

√
ρµ

2 ,
ς

2
√

2
(Z)
/
ρµ, ς√

2
(Z) can be approximated with k bits of precision

within O(k3/2 · polylog(k)) time, which proves Lemma A.27.

A.6. Discrete Gaussians

Recall, for n ∈ N>0 and any parameter s > 0, we consider the n-dimensional
Gaussian function

ρ(n)
s : Rn → C , x 7→ e−

π∥x∥2

s2 ,

where we drop the (n) whenever it is clear from the context.

Lemma A.33. We have

|ρs(x)− ρs(y)| ≤ π
s2 · ∥x− y∥∥x+ y∥ · ρ2s(x− y)ρ2s(x+ y).

Proof. We have, using the inequality |1 − x| ≤ | ln(x)| (for all x > 0) and
the reverse triangle inequality,

|ρs(x)− ρs(y)| ≤ ρs(x)
∣∣1− ρs(x)/ρs(y)

∣∣ ≤ π
s2 · ρs(x)

∣∣∥x∥2 − ∥y∥2∣∣
≤ π

s2 · ρs(x) · ∥x− y∥∥x+ y∥.

Since the bound above is symmetric in x and y, we might as well replace
ρs(x) by ρs(y) in the rightmost expression, or even by their harmonic
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mean
√
ρs(x)ρs(y). Rewriting this harmonic mean

√
ρs(x)ρs(y) = ρ2s(x+

y)ρ2s(x− y) using multiplicative properties of the Gaussian function (see
Lemma 2.23), we obtain the result.

Lemma A.34 (Bounds on the first and second moment of the discrete
Gaussian). Let Λ ⊆ Rn be a full-rank lattice and let c ∈ Rn and let s >
4
√
n · λn(Λ). Then, we have

1
ρs(Λ− c)

∑
ℓ∈Λ

ρs(ℓ− c)∥ℓ− c∥2 ≤ 2ns2

1
ρs(Λ− c)

∑
ℓ∈Λ

ρs(ℓ− c)∥ℓ− c∥ ≤ 1 + 2ns2.

Proof. Using a result from Micciancio and Regev [MR07, Lm. 4.3] and the
fact that s > 4

√
nλn(Λ) > 2η1/2(Λ), we directly obtain

1
ρs(Λ− c)

∑
ℓ∈Λ

ρs(ℓ− c)∥ℓ− c∥2 ≤
( 1

2π + 1
)
ns2 ≤ 2ns2.

For the second bound, split up the sum in a part where ∥ℓ − c∥ ≤ 1 and
∥ℓ − c∥ > 1. It is clear that the former must be bounded by 1, whereas
the latter is bounded by 2ns2, by the fact that ∥ℓ− c∥ ≤ ∥ℓ− c∥2 in that
case.

Definition A.35. Let t ∈ SLm(R) be a diagonal matrix and let Λ ⊆ Rm be
a full rank lattice. Then we define the distribution GΛ,s/t,c by the rule

GΛ,s/t,c(ℓ) = ρs(t(ℓ− c))
ρs(t(Λ− c))

Remark A.36. Note that this definition coincides reasonably with the
definition of the Gaussian distribution with a ‘variance matrix’ [Gut09,
Ch. 5].
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Lemma A.37. Let Λ ⊆ Rm be a full-rank lattice, ε ∈ (0, 1
2), c, c̃ ∈ Rm, and

s ≥ ηε(Λ). Then

∥GΛ,s,c − GΛ,s,c̃∥ ≤ 4ε+ (2π
s2 + 4πn)∥c− c̃∥

Proof. By smoothing properties, we have ρs(Λ− c), ρs(Λ− c̃) ∈ (1− ε, 1 +
ε)ρs(Λ). Allowing an extra error of 4ε, we can therefore replace the denomi-
nator in the definitions of GΛ,s,c and GΛ,s,c̃ by ρs(Λ).

∥GΛ,s,c − GΛ,s,c̃∥ ≤ 4ε+ 1
ρs(Λ)

∑
ℓ∈Λ
|ρs(ℓ− c)− ρs(ℓ− c̃)|.

By Lemma A.33 (using the fact that ρs/2(c − c̃) ≤ 1) and subsequently
Lemma A.34, we have∑
ℓ∈Λ
|ρs(ℓ− c)− ρs(ℓ− c̃)| ≤ π

s2 ∥c− c̃∥
∑
ℓ∈Λ

ρ2s
(
2ℓ− (c+ c̃)

)∥∥2ℓ− (c+ c̃)
∥∥

≤ π
s2 (1 + 2ns2)∥c− c̃∥ρs(Λ− c+c̃

2 )
≤ 2π

s2 (1 + 2ns2)∥c− c̃∥ρs(Λ).

Combining the two bounds yields the result.

Lemma A.38. Let Λ ⊆ Rm be a full-rank lattice, c ∈ Rm, ε, δ ∈ (0, 1
2),

t ∈ SLm(R) be a diagonal matrix with2 |t − 1| ≤ δ. Additionally, assume
that s ≥ max

(
ηε(Λ), ηε(tΛ)

)
. Then

∥GΛ,s/t,c − GΛ,s,c∥ ≤ 4ε+ 2πnδ

Proof. Since det(tΛ) = det(Λ)∏i tii = det(Λ), we have ρs(Λ− c), ρs(t(Λ−
c)) ∈ (1− ε, 1 + ε)ρs(Λ), by smoothing properties of the Gaussian function.
Allowing an extra error of 4ε, we can therefore replace the denominator in
the definitions of GΛ,s,c and GΛ,s/t,c by ρs(Λ).

∥GΛ,s/t,c − GΛ,s,c∥ ≤ 4ε+ 1
ρs(Λ)

∑
v∈Λ−c

|ρs(tv)− ρs(v)|. (A.122)

2Here, we mean that the vector v consisting of the diagonal elements of t satisfies
|v− 1| ≤ δ in the Euclidean norm.
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By Lemma A.33, using the fact that ρ2s((t−1)v) ≤ 1 and ∥(t−1)v∥ ≤ δ∥v∥,
we have

|ρs(tv)− ρs(v)| ≤ δπ
s2 · ρ2s((1 + t)v) · ∥v∥ · ∥(1 + t)v∥

≤ δπ
s2 · ρs((1 + t)v) · ∥(1 + t)v∥2. (A.123)

Where the last inequality follows from ∥v∥ ≤ ∥(1 + t)v∥, which can be
deduced by applying the triangle inequality on ∥v∥ in the following way.

∥v∥ ≤ 1
2∥(1 + t)v∥+ 1

2∥(1− t)v∥ ≤ 1
2∥(1 + t)v∥+ δ

2∥v∥
≤ 1

2∥(1 + t)v∥+ 1
2∥v∥.

Plugging Equation (A.123) into Equation (A.122), and applying Lemma A.34,
we obtain

∥GΛ,s/t,c − GΛ,s,c∥ ≤ 4ε+ δπ

s2 (2ns2) = 4ε+ 2πnδ.

Lemma A.39. Let t0, t1 ∈ SLm(R) be diagonal matrices satisfying3 |t0/t1−
1| ≤ δ < 1/2, let ε ∈ (0, 1/2), let c ∈ Rm and let Λ ⊆ Rm be a full rank
lattice. Let furthermore s > max(ηε(t0Λ), ηε(t1Λ)).

Then,

∥GΛ0,s,c − GΛ0,s/t,c/t∥ ≤ 8ε+ (2πn+ (2π
s2 + 4πn)∥c∥) · δ.

Proof. We have, writing Λ0 = t0Λ and t = t1t−1
0 ,

∑
ℓ∈Λ

∣∣∣∣ ρs(t0ℓ− c)
ρs(t0Λ− c) −

ρs(t1ℓ− c)
ρs(t1Λ− c)

∣∣∣∣ ≤ ∑
ℓ0∈Λ0

∣∣∣∣ ρs(ℓ0 − c)ρs(Λ0 − c)
− ρs(tℓ0 − c)
ρs(tΛ0 − c)

∣∣∣∣
= ∥GΛ0,s,c − GΛ0,s/t,c/t∥ ≤ ∥GΛ0,s,c − GΛ0,s,c/t∥+ ∥GΛ0,s,c/t − GΛ0,s/t,c/t∥.

(A.124)

3By this we mean that the vector v = t0/t1 consisting of the diagonal elements of the
matrix t0/t1 satisfies |v− 1| ≤ δ in the Euclidean norm.
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Since s ≥ ηε(Λ0), by assumption, we have, by Lemma A.37,

∥GΛ0,s,c − GΛ0,s,c/t∥ ≤ 4ε+ (2π
s2 + 4πn)∥c− c/t∥ ≤ 4ε+ (2π

s2 + 4πn)∥c∥ · δ,

since ∥1− 1/t∥ ≤ ∥1− t0/t1∥ ≤ δ by assumption. Also, since s ≥ ηε(tΛ0)
(note that tΛ0 = t1Λ), we have, by Lemma A.38,

∥GΛ0,s,c/t − GΛ0,s/t,c/t∥ ≤ 4ε+ 2πnδ.

Combining the bounds into Equation (A.124), we obtain the final claim.
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