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7. The Power Residue Symbol is in
ZPP

7.1. Summary

In this chapter we show that, assuming the Riemann hypothesis for Hecke
L-functions on the cyclotomic fields Q(ζm), the problem of computing the
m-th power residue symbol in a field containing the m-th root of unity lies
in the complexity class ZPP. In other words, there exists an algorithm that
computes power residue symbols within probabilistic polynomial time in
the input size. Though this algorithm never outputs an incorrect output,
it might simply give no output with a certain constant probability. The
probability here is over, say, random coin flips, which allows the algorithm
to repeat until having a negligible error probability. Such algorithms are
also known as Las Vegas algorithms.

The proof of the polynomial running time consists of essentially two parts,
which are treated separately in Section 7.4 and Section 7.5. The former
part consists of an efficient reduction from general power residue symbols to
power residue symbols in cyclotomic fields; this reduction is due to Lenstra
[Len95] and Squirrel [Squ97]. The latter part is a new result and consists of
a proof that power residue symbols in cyclotomic fields can be computed
efficiently, assuming the Extended Riemann Hypothesis for Hecke L-functions
on cyclotomic fields. The key ingredient for this algorithm to be provable is
the sampling algorithm of the previous Chapter 6. By combining these two
parts, one obtains a conditional proof that power residue symbols can be
computed efficiently in any number field.
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7. The Power Residue Symbol is in ZPP

7.2. Introduction

The power residue symbol often plays a significant role in algorithms in
which residuosity is involved, which is about distinguishing m-th powers
from non-m-th powers modulo an ideal in a number field. In such case, the
m-th power residue symbol serves as a first check, as it should be equal to
one in the case of an m-th power.

Examples of cryptographic schemes involving residuosity and that need a
fast computation of power residue symbols include [SW95; GM84; Sch98;
Wil85], which mostly consider m being prime and below 12. It should be
noted that these cryptographic schemes (and actually, most residuosity-
based schemes) are not quantum secure, due to their susceptibility to Shor’s
efficient quantum algorithm for factoring [Sho94]. In fact, if one is allowed
to use a quantum computer, a very simple algorithm for the power residue
exists, by just factoring the bottom input ideal of

(
α
b

)
. So, to be clear, in

this chapter we will solely consider classical computing power.

Efficient algorithms for the m-th power residue symbol for specific small
cases of m ≤ 11 are studied extensively [CS10; DF05; Wei02; Wil85; SW95;
Lem00]. A first attempt to design an efficient algorithm for general m-
th power residue symbols (i.e., for all m) was done by Squirrel in his
undergraduate thesis [Squ97]. In that work, Squirrel derives an efficient
reduction from power residue symbols in general number fields to those in
cyclotomic fields based on an idea of Lenstra [Len95]. Squirrel also proposes
an algorithm for computing power residue symbols in cyclotomic fields, but it
relies on heavy precomputations and is therefore not polynomial for varying
m [Squ97, Ch. 5, §3]. On top of that, the algorithm also seems unfeasible
in terms of practical running time.

Later, an algorithm for m-th power residue symbols that seems practically
feasible and runs heuristically in polynomial time (for varying m) was given
by the author of this PhD thesis [Boe16; BP17]. In this chapter we prove that
a variant of this heuristic algorithm lies in the complexity class ZPP, assuming
the Extended Riemann Hypothesis for Hecke L-functions on cyclotomic fields.
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7.2. Introduction

It should be noted that the aforementioned algorithms tailored to specific
small m ≤ 11 are by far more efficient than this more general algorithm, are
mostly deterministic and also do not require any variant of the Riemann
hypothesis.

Difference between the power residue symbol algorithm of this
chapter and the heuristic algorithm in [Boe16; BP17]

The key difference between the power residue symbol algorithm of this
chapter and that of [Boe16; BP17] is their purpose. The algorithm described
in this chapter is namely specifically constructed in such a way that the
proof of its polynomial time complexity is as simple as possible. The heuris-
tic algorithm in [Boe16; BP17], however, is much more directed toward
implementation and a fast practical running time (for an implementation,
see [Boe17]). This distinction in purpose lead to the following key differences
between the two algorithms.

The provable algorithm does not use the Hilbert reciprocity law. As opposed
to the heuristic algorithm, the provable algorithm of this chapter does not
use Hilbert reciprocity. In other words, the following reciprocity law involving
Hilbert symbols does not play any role in the provable algorithm of this
chapter. (

α

β

)
m

(
β

α

)−1

m
=

∏
p|m∞

(α, β)p,

Here, (α, β)p are the m-th Hilbert symbols in the completion Q(ζm)p (e.g.,
[Neu85, Ch. III, §5 and Ch. IV, §9]). Avoiding the Hilbert reciprocity law
has as an advantage that there is no need to compute Hilbert symbols
in the provable algorithm. In the heuristic algorithm, the computation of
such Hilbert symbols relied on a efficient and provable algorithm of Bouw
[Bou21].
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7. The Power Residue Symbol is in ZPP

The provable algorithm uses the Artin reciprocity law. Instead, the provable
algorithm of this chapter uses a different reciprocity law, namely the Artin
reciprocity law (see Lemma 7.3), which states that for elements κ ∈ Km,1 in
a specific ray, the power residue symbol

(
α
κ

)
= 1 for all α ∈ K∗. This turned

out to be easier to use in a proof and has as an additional advantage that
no computation of Hilbert symbols is needed. In fact, one can even use this
provable algorithm to compute Hilbert symbols instead (see Section 7.6.1).

The provable algorithm does not use LLL-reduction. The heuristic algorithm
of [Boe16; BP17] uses LLL-reduction to minimize sizes of the input while this
is omitted in the provable algorithm for the sake of brevity and provability.

7.3. Preliminaries

In this chapter, K is a degree n = [K : Q] number field containing the m-th
cyclotomic number field, i.e., K ⊇ Q(ζm), where ζm is a primitive m-th root
of unity. The main subject of this chapter is the power residue symbol, a
map that partially captures m-th residuosity.

This power residue symbol takes as an input an ideal b in an order R of
K and an element α ∈ R, and outputs an m-th root of unity ζkm. The
symbol and its definition resembles that of the Jacobi symbol, for example
in the sense that it can be defined in terms of prime ideals first, and can
subsequently be multiplicatively extended to general ideals.

Definition 7.1 (Power residue symbol). Let p ∤ m be a prime ideal in an
order R of K ∋ ζm and let α ∈ R be an element coprime with m and p. We
define

(
α
p

)
∈ ⟨ζm⟩ = {ζkm | k ∈ N} to be the m-th root of unity that satisfies

(
α

p

)
≡ α

N (p)−1
m mod p.
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7.3. Preliminaries

For general ideals b in R coprime with m we then use the prime ideal
factorization b = ∏

j p
ej

j to define the power residue symbol
(
α
b

)
.

(
α

b

)
:=
∏
j

(
α

pj

)ej

.

By the very definition of the power residue symbol ‘above’ prime ideals, they
can be computed efficiently and deterministically.

Lemma 7.2. Let p ⊆ Z[ζm] be a prime ideal not dividing m. Then the power
residue symbol

(
α
p

)
can be computed within poly

(
m, logN (p), log | N (α)|

)
time.

Proof. By the power residue symbol formula for prime ideals we have
(
α
p

)
≡

α(N (p)−1)/m modulo p. We compute the (modular) Hermite normal form
[SL96; HM91] [Coh93, §2.4.2] of the ideal p, which allows to have a unique
representative for each element in Z[ζm]/p. By modular exponentiation, can
compute α(N (p)−1)/m modulo p within time poly

(
m, logN (p), log | N (α)|

)
.

The following lemma shows that the power residue symbol is trivial for
certain values of the lower input. Specifically, considering a fixed upper input
for the power residue symbol, the map

(
α
·
)

: K → ⟨ζm⟩ has a kernel that
includes the ray Km,1 with m = mm · α. This particular fact forms one of
the very key ingredients of the efficient power residue symbol algorithm.

Lemma 7.3. For all α ∈ Z[ζm] coprime with m, and all κ ∈ Q(ζm)∗ with
ordp(κ) ≥ 0 for all p|αm, we have,(

α

1 + κ ·mm · α

)
= 1
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7. The Power Residue Symbol is in ZPP

Proof. Denote K = Q(ζm) and L = Q(ζm, m
√
α) for α ∈ Q(ζm). The power

residue symbol
(
α
b

)
∈ ⟨ζm⟩ in Q(ζm) has the following relation with the

Artin symbol [Lem00, §4.1] [Koc97, Ch. 2, §2.1](
α

b

)
· m
√
α =

(
b

L/K

)
[ m
√
α].

Denote fL/K for the conductor of the extension L/K. For any modulus
m satisfying fL/K | m, the kernel of the Artin symbol

(
·

L/K

)
: ImK → G

contains the ray Km,1, the multiplicative subgroup of K∗ generated by
elements κ ∈ Z[ζm] that are 1 modulo m. This is a consequence of the Artin
reciprocity law [Chi08, Thm. 2.1].

It remains to show that m = mmα satisfies fL/K | m, i.e., that fL/K | mmα.
If we can prove that fact, the result follows, since 1 + k ·mm · α ∈ Km,1 for
κ satisfying ordp(κ) ≥ 0 for all p | αm.

In the following, we prove that fL/K | (mmα). Since α is required to be
coprime with m, and the degree of the extension satisfies [L : K] | m, any
p | (α) is tamely ramified in the extension L/K, because p ∤ m. Therefore,
we have, [CG05, Ch. 2, Prop. 1.6.3] [CS08, Eq. (3.10) and Eq. (3.11)]

For all p | (α) : ordp(fL/K) = 1.

From the same results, or from the fact that fL/K | ∆L/K | mmαm−1 [CF10,
Lm. 5, Ch. 3] [NS13, Ch. VII, Prop. 11.9] follows that fL/K | (mmα).

The following result, namely, multiplicativity in the bottom input of the
power residue symbol, can be found in [Neu85, Ch. 4, Eq. (9.2)] or [Koc97,
Thm. 2.13].

Lemma 7.4. Let K be a number field containing Q(ζm). Let b, c ∈ IK be
coprime with m. For all α ∈ K coprime with b, c and m, we have(

α

bc

)
=
(
α

b

)(
α

c

)
.
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7.4. Reduction to Cyclotomic Fields

The last important lemma of this preliminaries concerns the local density of
the prime ideals coprime to m. It turns out that for large enough r and not
too large modulus m, the density δPm [rn] does not differ so much from the
density δP [rn] of all prime ideals in a number field. This density is known to
be close to 1

ρK ·log(rn) , where ρK is the residue of the Dedekind zeta function
ζK(s) at the pole at s = 1.

This density is important because it is tightly related to the success proba-
bility of the power residue symbol algorithm of this chapter. This is because
the power residue symbol algorithm involves prime ideal sampling, as in
Chapter 6.

Lemma 7.5. Let Pm = {p ∈ ImK | p prime } and let ω(m) denote the number
of different prime ideal divisors of m. Then, for all rn ≥ max((12 log |∆K |+
8n+ 28)4, 3 · 1011, 16 · ω(m)2), we have

δPm [rn] ≥ 1
4n · ρK · log r .

Recall that n = [K : Q], the degree of the number field K.

Proof. By Lemma 2.13, considering x ∈ [(r/e)n, rn] and Definition 6.6, we
have

δPm [rn] = min
x∈[(r/e)n,rn]

πmK(x)
ρKx

≥ x/ log x
4ρKx

≥ 1
4nρK log(r/e) ≥

1
4nρK log r .

7.4. Reduction to Cyclotomic Fields

7.4.1. Introduction

In this section, we will show that the computation of the m-th power residue
symbol in any order R (of a number field) containing Z[ζm] reduces to the
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7. The Power Residue Symbol is in ZPP

computation of (polynomially) many power residue symbols in Z[ζm], the
ring of integers of the m-th cyclotomic field.

The strategy of this proof is described in a paper of Lenstra [Len95], in
which the special case m = 2 is elaborately worked out. For general m > 2,
a full description of this reduction is given by Squirrel in his undergraduate
thesis [Squ97]. In this section we will follow closely the reasoning of Squirrel
and Lenstra, omitting precise complexity claims; any of the steps in this
reduction runs in time polynomial in the input size.

In the following section, we give an overview of the proof of this reduction,
postponing the definitions and proofs to a later moment.

7.4.2. Proof Strategy

Introduction. In this proof summary, we will consider number fields K
containing all m-th roots of unity, i.e. K ⊇ Q(ζm). Instead of the maximal
order OK , which might be very hard to compute, we will mainly consider
general orders R ⊆ OK of K.

The main purpose of this proof overview is to show on a high level that
we can reduce the computation of the power residue symbol

(
α
b

)
m,K

for an
element α ∈ R and an ideal b ⊆ R to the computation of power residue
symbols in the cyclotomic field Q(ζm).

Signature identity. The power residue symbol
(
α
b

)
m,K

is equal to another
special quantity, (mα, R/b), which we will call the signature. This signature
captures certain behavior of the multiplication map mα : x 7→ α · x on the
finite Z[ζm]-module R/b. Because of this equality, we can shift our attention
to computing the signature (mα, R/b).

Invariant factor decomposition of R/b. A very important observation is
the fact that the signature (mα, R/b) only depends on the structure of R/b
as a Z[ζm]-module. Using an analogue of the invariant factor decomposition
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7.4. Reduction to Cyclotomic Fields

for finite modules over Dedekind domains (see [Coh99, Thm. 1.2.30]), we
can efficiently compute a decomposition of R/b of the following shape.

R/b = γ1Z[ζm]/d1 ⊕ · · · ⊕ γkZ[ζm]/dk, (7.107)

where γ ∈ R and dj are ideals of Z[ζm] that satisfy dj = ∏j
i=1 ci for ideals

ci of Z[ζm] that are neither the zero or the unit ideal. In other words,
dj+1/dj = cj+1 for j ∈ {1, . . . , k − 1} and d1 = c1. This computation
shows that we can shift our focus to modules of a form as described in
Equation (7.107).

The signature is compatible with short exact sequences. Let M ′,M,M ′′ be
Z[ζm]-modules with respective (Z[ζm]-module compatible) automorphisms
ϕ′, ϕ and ϕ′′, that fit into the following commuting diagram

0 M ′ M M ′′ 0

0 M ′ M M ′′ 0

ϕ′ ϕ ϕ′′

Then we have (ϕ,M) = (ϕ′,M ′) · (ϕ′′,M ′′), i.e., the signature of the ‘middle’
module can be computed with the signatures of the ‘outer’ modules.

The determinant formula. For Z[ζm]-modules isomorphic to (Z[ζm]/c)t for
some t ∈ Z>0 and integral ideal c of Z[ζm], we can compute the signature
by means of the determinant formula. Any automorphism ϕ of (Z[ζm]/c)t
can be described by a non-degenerate matrix with entries in Z[ζm]/c, which
makes det(ϕ) ∈ Z[ζm]/c a well-defined quantity. The determinant formula
then reads as follows.

(ϕ, (Z[ζm]/c)t) =
(det(ϕ)

c

)
m,Q(ζm)

. (7.108)

Note that this reduces the computation of this specific signature to a power
residue symbol in the cyclotomic field Q(ζm).
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7. The Power Residue Symbol is in ZPP

Applying induction on the components of the module. Denoting M = R/b,
we have the following exact sequence

0→M/(c1M)→M → c1M → 0,

where c1 is the first factor in the invariant factor decomposition (Equa-
tion (7.107)). Because of the compatibility of the signature with short
exact sequences, it is enough to compute the signatures (ϕα,M/(c1M)) and
(ϕα, c1M).

The first module, M/(c1M), can be shown to be isomorphic to (Z[ζm]/c1)k,
and therefore the determinant formula applies (see Equation (7.108)).

The last module, c1M , can be shown to have less ‘components’ than M

itself; k − 1 instead of k.

c1M =
k−1⊕
j=1

γjZ[ζm]/d̃j ,

where d̃j = dj/c1, and where dj are obtained from the invariant factor
decomposition of M = R/b.

Conclusion. By induction, we can therefore conclude that the compu-
tation of (ϕα, R/b) reduces to k power residue symbols

(
dj

cj

)
m,Q(ζm)

for
j ∈ {1, . . . , k} in the cyclotomic field Q(ζm). Here, cj are the invariant
factors of the module R/b as a Z[ζm]-module and dj ∈ Z[ζm]/cj are deter-
minants of associated automorphisms.

7.4.3. Signature Identity

Definition 7.6 (Admissible modules). We call a Z[ζm]-module M admissible
if |M | is finite and gcd(|M |,m) = 1.

Letting the group ⟨ζm⟩ = {ζjm | j ∈ Z/mZ} act on an admissible module M ,
we can directly deduce that this action must be free on M\0. Namely, suppose
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7.4. Reduction to Cyclotomic Fields

that there exists an x ∈ M with ζjmx = x. Then we have (ζjm − 1)x = 0,
which implies mx = 0 (as (ζjm − 1) | m). Since |M |x = 0, mx = 0 and
gcd(|M |,m) = 1, we have 1 · x = 0.

This means that M\0 can be written as a disjoint union of orbits ⟨ζm⟩ · x
(for some x ∈M), where the orbits have precisely m elements. This directly
implies |M | = tm+ 1, where t is the number of orbits in M\0. Summarizing,
any admissible module M satisfies |M | ≡ 1 modulo m.

Let M be an admissible Z[ζm]-module and let ϕ : M → M be a bijective
function satisfying ϕ(ζm ·x) = ζm ·ϕ(x) for all x ∈M . Then ϕ acts faithfully
on the ⟨ζm⟩-orbits of M , as ϕ(⟨ζm⟩ · x) = ⟨ζm⟩ · ϕ(x). In other words, ϕ
induces a permutation on the quotient set M/⟨ζm⟩, fixing 0 ∈M .

Example 7.7. Put K = Q(ζ6,
3√2), a degree 6 extension of Q. The subring

R = Z[ζ6,
3√2] is an order in K which has the following R-ideal p5 =

(5, 3 − 3√2). Then the Z[ζ6]-module R/p5 has 25 elements; one of them is
zero, and the others fall into four ⟨ζ6⟩-orbits of length six, see Figure 7.1.

Figure 7.1.: The multiplicative action of ⟨ζ⟩ on the 25 elements of R/p5 as in Example 7.7,
where ζ = ζ6, a 6-th primitive root of unity. It consist of one zero-orbit of
length one, and four orbits of length 6.

Let S ⊆M be a representative set for M/⟨ζm⟩, i.e., M = ⋃
s∈S⟨ζm⟩s (where

the union is disjoint). Then, the action of ϕ on M/⟨ζm⟩ induces a bijection
s 7→ sϕ on S. Here sϕ ∈ S is the unique representative in S satisfying
ϕ(⟨ζm⟩s) = ⟨ζm⟩sϕ. Note that this means that ϕ(s) ∈ ⟨ζm⟩sϕ, making the
fraction ϕ(s)

sϕ ∈ ⟨ζm⟩ well-defined for all s ∈ S\0. We then arrive at the
following definition.

Definition 7.8 (Signature). Let M be an admissible Z[ζm]-module, let ϕ :
M →M be Z[ζm]-module homomorphism and let S ⊆M be a representative
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7. The Power Residue Symbol is in ZPP

set for M/⟨ζm⟩. Then we define the signature (ϕ,M) ∈ ⟨ζm⟩ as follows.

(ϕ,M) =
∏
s∈S\0

ϕ(s)
sϕ

(7.109)

Figure 7.2.: The signature of a map ϕ forgets about the permutation of the ⟨ζm⟩-orbits.
Instead, it captures the ‘compound deviation’ of the images of representatives
from the representative of the orbits that image lives in. For example, the
ϕ-image of the green dot deviates +1 from the yellow representative in its
orbit.

Remark 7.9. The definition above can be generalized to any bijective map
M →M that commutes with ζm [Squ97], but for our purposes it is enough
to consider Z[ζm]-module homomorphisms.

The very nature of the definition shows that (ϕ,M) does not depend on
the choice of the representative set S. Namely, changing a single s ∈ S

into s′ = ζjm · s causes a ζjm to appear once in the numerator of a factor in
Equation (7.109) and once in the denominator of a factor in Equation (7.109);
therefore it does not change the overall value.

Lemma 7.10. Let R be an order in a number field K with Z[ζm] ⊆ R. Let p
be a prime ideal in R, coprime with m. Let α ∈ R such that ᾱ = α mod p ∈
(R/p)∗ and denote ϕα : R/p→ R/p, x 7→ ᾱ · x. Then(

α

p

)
m

= (ϕα, R/p)
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7.4. Reduction to Cyclotomic Fields

Proof. Taking a representative set S for M = R/p (modulo ⟨ζm mod p⟩) we
write out the definition of (ϕα, R/p) (see Definition 7.8). In the following
chain of equalities we make use of the fact that M = R/p (next to a Z[ζm]-
module) is also a field, so that division and multiplication of elements there
make sense.

(ϕα, R/p) =
∏
s∈S\0

ϕα(s)
sϕα

=
∏
s∈S\0

ᾱ · s
sϕα

= ᾱ|S\0|
∏
s∈S\0 s∏
s∈S\0 s

ϕα
= ᾱ|S\0|.

The last inequality follows from the fact that s 7→ sϕα is a bijection on S\0. As
|S\0| = |M |−1

m = N (p)−1
m , we conclude that1(ϕα, R/p) = α(N (p)−1)/m mod p.

This coincides with the definition of the power residue symbol
(
α
p

)
m

.

Example 7.11. Put, again, K = Q(ζ6,
3√2) with order R = Z[ζ6,

3√2] and
the R-ideal p5 = (5, 3− 3√2), as in Example 7.7. Putting α = ζ6 + 1, we want
to verify that

(
ζ6+1
p5

)
6

= (ϕζ6+1, R/p5), as in Lemma 7.10. The computation

of
(
ζ6+1
p5

)
6

happens by observing that N (p5) = 25 and computing (using
Lemma 7.2)

(ζ6 + 1)
N (p5)−1

6 = (ζ6 + 1)4 = ζ4
6 + 4 · ζ3

6 + 6 · ζ2
6 + 4 · ζ6 + 1

≡ 9 · ζ6 + 9 ≡ −(ζ6 + 1) = ζ5
6 mod p5.

Therefore,
(
α
p5

)
6

= ζ5
6 . The computation of the signature gives the same

result, as can be seen in Figure 7.3. For the computation of the images in
that figure; ϕ1+ζ(ζ + 2) = (1 + ζ)(2 + ζ) = 4 · ζ + 1 ≡ −ζ + 1 = −ζ2 (mod
p5) and ϕζ+1(ζ − 2) = (1 + ζ)(ζ − 2) = −3 ≡ 2 (mod p5).

For later purposes, we will need the following lemma, which shows that the
signature map (·,M) : AutZ[ζm](M)→ ⟨ζm⟩ is a group homomorphism.

Lemma 7.12. For two automorphisms ϕ, ψ of an admissible module M , we
have

(ϕ ◦ ψ,M) = (ϕ,M) · (ψ,M)
1Note that this element ᾱ(N (p)−1)/m coincides with the action of multiplication x 7→

ζj
mx on R/p for some j ∈ Z/mZ.
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7. The Power Residue Symbol is in ZPP

Figure 7.3.: The computation of the signature (ϕ1+ζ , R/p5) of the map ϕ1+ζ(x), given by
the rule ϕ1+ζ(x) = (1 + ζ) · x, as in Example 7.11. By taking the sum of the
images’ displacements from the chosen representatives (the colored points),
we obtain −1 + 0 + 2− 2 = −1. Therefore, we conclude that (ϕ1+ζ , R/p5) =
ζ−1

6 = ζ5
6 .

Proof. Choose a representative system S of M/⟨ζm⟩. Then

(ϕψ,M) =
∏
s∈S

ϕ(ψ(s))
sϕψ

=
∏
s∈S

ϕ(ψ(s))
(sψ)ϕ =

∏
s∈S

ϕ(ψ(s))
ϕ(sψ)

ϕ(sψ)
(sψ)ϕ

= ϕ

(∏
s∈S

ψ(s)
sψ

)∏
s∈S

ϕ(s)
sϕ

= ϕ((ψ,M)) · (ϕ,M) = (ψ,M) · (ϕ,M).

7.4.4. Invariant Factor Decomposition of R/b

Computing the invariant factor decomposition of R/b as a module over
Z[ζm] happens by means of the Smith normal form in Dedekind domains
(see [Coh99, §1.7]).

This particular Smith normal form algorithm as described in Cohen’s book
[Coh99, §1.7], needs modules to be represented in terms of pseudobases.
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7.4. Reduction to Cyclotomic Fields

Usually, (in a computer algebra system) an R-ideal b is represented by
means of a basis over Z instead. We shortly describe here how to obtain
such a pseudobasis from a Z-basis. Let b = ∑t

j=1 Zβj . Then it is clear
that the same set (βj)j∈{1,...,t} is also a generating set over Z[ζm], that
is: b = ∑t

j=1 Z[ζm]βj . By using the Hermite normal form over Dedekind
domains [Coh99, §1.4] that removes linear dependencies, we arrive at a
pseudobasis of b over Z[ζm]. The exact same reasoning can be applied to
obtain a pseudobasis the ring R as a module over Z[ζm].

Remark 7.13. In the undergraduate thesis of Squirrel [Squ97], this step is
partially done by computing Z[ζm]-annihilators of the module R/b [Squ97,
Ch. 4, §3].

By [Coh99, §1.7], using a modular Smith normal form, we can deduce that
we can find pseudobases for R and b of the following shape. R = ⊕t

j=1 sjωj ,
and b = ⊕t

j=1 djsjωj where sj are ideals of Z[ζm], dj are integral ideals
of Z[ζm] satisfying dj−1 ⊊ dj for j ≥ 2 and ωj ∈ R. This means that
R/b

∼−→
⊕t

j=1 Z[ζm]/dj .

7.4.5. The Signature is Compatible with Short Exact Sequences

Proposition 7.14. Let M ′,M,M ′′ be admissible Z[ζm]-modules and let
ϕ′, ϕ, ϕ′′ be Z[ζm]-module automorphisms of M ′,M,M ′′ such that the follow-
ing diagram commutes.

0 M ′ M M ′′ 0

0 M ′ M M ′′ 0

ι

ϕ′

π

ϕ ϕ′′

ι π

Then
(ϕ′,M ′)(ϕ′′,M ′′) = (ϕ,M).
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Proof. Let S′ be a representative set of M ′/⟨ζm⟩. Extend ι(S′) with a
(disjoint) set S′′ ⊆ M such that S = ι(S′) ∪ S′′ is a representative set of
M/⟨ζm⟩. Then

(ϕ,M) =
∏
s∈S

ϕ(s)
sϕ

=
∏
s′∈S′

ϕ(ι(s′))
ι(s′)ϕ ·

∏
s′′∈S′′

ϕ(s′′)
(s′′)ϕ = (ϕ′,M ′)(ϕ′′,M ′′), (7.110)

where the last equality is proven in two parts.

(i) As ϕι = ιϕ′, we have ι(s′)ϕ = ι((s′)ϕ′). Therefore,
∏
s′∈S′

ϕ(ι(s′))
ι(s′)ϕ = ι

( ∏
s′∈S′

ϕ′(s′)
(s′)ϕ′

)
= ι((ϕ′,M ′)) = (ϕ′,M ′).

(ii) Since S′′ is distinct from ι(S′), none of the s′′ ∈ S′′ send to zero under π.
Therefore, we can apply π to the rightmost factor in Equation (7.110).

π

 ∏
s′′∈S′′

ϕ(s′′)
(s′′)ϕ

 =
∏

s′′∈S′′

πϕ(s′′)
π((s′′)ϕ) =

∏
s′′∈S′′

ϕ(π(s′′))
π(s′′)ϕ′′ (7.111)

As S′′ covers all ⟨ζm⟩-orbits of M that do not send to zero under π,
the map S′′ → π(S′′), s′′ 7→ π(s′′) is a |M ′|-to-one map, i.e., |π(S′′)| =
|S′′|/|M ′|. Also, by surjectivity, π(S′′) is a representative set for the
set (M ′′\0)/⟨ζm⟩. Therefore, Equation (7.111) equals ∏

t∈π(S′′)

ϕ′′(t)
tϕ′′

|M ′|

=
(
(ϕ′′,M ′′)

)|M ′| = (ϕ′′,M ′′),

where the last equality holds because |M ′| ≡ 1 modulo m and (ϕ′′,M ′′)
∈ ⟨ζm⟩.

Lemma 7.15. Let R be an order in a number field K with Z[ζm] ⊆ R. Let b
be an ideal in R, coprime with m. Let α ∈ R such that ᾱ = α mod b ∈ (R/b)∗
and denote ϕα : R/b→ R/b, x 7→ ᾱ · x. Then(

α

b

)
m

= (ϕα, R/b)
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Proof. We proceed by induction on the number of different prime ideal
factors of b. The base case consists of b having only one prime divisor, i.e.,
b = pk being a prime power. If k = 1, we can apply Lemma 7.10. If k > 1,
we can construct the following exact sequence

0→ R/p→ R/pk → R/pk−1 → 0

where the injection map is defined (non-canonically) by multiplying by an
element γ ∈ pk−1\pk. Then, together with the multiplication-by-α map
(which we conveniently write ϕα for all rings involved), above exact sequence
satisfies the conditions of Proposition 7.14. Therefore, by induction,

(ϕα, R/pk) = (ϕα, R/pk−1) · (ϕα, R/p) =
(

α

pk−1

)
m

(
α

p

)
m

=
(
α

pk

)
m

.

The induction step consists of b being not a prime power. In that case, we
write b = pkc with p prime, k ≥ 1 and p ∤ a, and construct the following
exact sequence

0→ R/pk → R/b→ R/c→ 0,

where the injection R/pk → c/b is defined (non-canonically) by multiplying
by an element γ ∈ c that satisfies γ ≡ 1 modulo pk. Again denoting ϕα for
multiplication by α in all of the rings involved, this exact sequence satisfies
the conditions of Proposition 7.14. Therefore, by induction,

(ϕα, R/b) = (ϕα, R/pk) · (ϕα, R/c) =
(
α

pk

)
m

·
(
α

c

)
m

=
(
α

b

)
m
.

7.4.6. The Determinant Formula

Let M = (Z[ζm]/c)t for some ideal c of Z[ζm] and some t ∈ N>0. Then any
automorphism ϕ : M →M can be described as a non-degenerate t×t matrix
with coefficients in Z[ζm]/c, which we call Mϕ.
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Lemma 7.16. We have

(ϕ, (Z[ζm]/c)t) =
(det(Mϕ)

c

)
m,Q(ζm)

Proof. We prove the statement first for c = p a prime ideal. In that case the
matrix Mϕ has coefficients in the field Z[ζm]/p. Matrices over fields can be
decomposed into Mϕ = ULU ′, where U,U ′ are upper triangular and L is
lower triangular, by means of Gaussian elimination. We denote ϕU , ϕL, ϕ′U
for their associated maps on (Z[ζm]/p)t. We have the exact sequence

0→ Z[ζm]/p→ (Z[ζm]/p)t → (Z[ζm]/p)t−1 → 0

where the injection map is just x 7→ (x, 0, . . . , 0) and the projection map
projects on the last t− 1 coordinates. By the (upper/lower) triangular shape
of the matrix U of ϕU and by induction, one can deduce that

(ϕU ,M) =
(det(U)

p

)
,

and the same for U ′ and L. Therefore,

(ϕ,M) = (ϕUϕLϕU ′ ,M) = (ϕU ,M)(ϕL,M)(ϕU ′ ,M)

=
(det(U)

p

)(det(L)
p

)(det(U ′)
p

)
=
(det(ULU ′)

p

)
=
(
Mϕ

p

)
.

This proves the statement for c being a prime ideal. For the general case,
write c = pa, and construct the exact sequence

0→ (Z[ζm]/a)t → (Z[ζm]/c)t → (Z[ζm]/p)t → 0 (7.112)

where the injection map is defined by scalar multiplication by ϖ ∈ p\p2 and
the projection map just takes the entries modulo p.

Let ϕ′ : (Z[ζm]/a)t → (Z[ζm]/a)t respectively ϕ′′ : (Z[ζm]/p)t → (Z[ζm]/p)t
be the map defined by reducing the entries of the matrix Mϕ ∈ (Z[ζm]/c)t×t
modulo a respectively p. Then Equation (7.112) satisfies the requirements
of Proposition 7.14, therefore

(ϕ, (Z[ζm]/c)t) = (ϕ′, (Z[ζm]/a)t) · (ϕ′′, (Z[ζm]/p)t)
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=
(det(Mϕ)

a

)(det(Mϕ)
p

)
=
(det(Mϕ)

c

)
.

Here, we used the induction hypothesis, the fact that

det(Mϕ′) = det(Mϕ mod a) = det(Mϕ) mod a,

and the similar statement for p.

7.4.7. Applying Induction on the Components of the Module

Lemma 7.17. Let R ⊆ K be a number ring containing a primitive m-th
root of unity ζm and let b ⊆ R be an ideal coprime with m. Let

R/b = γ1Z[ζm]/d1 ⊕ · · · ⊕ γkZ[ζm]/dk, (7.113)

be the invariant factor decomposition of R/b with dj = ∏
ℓ≤j cℓ. Then we

have, for all α ∈ R coprime with both b and m,

(
α

b

)
m,K

=
k∏
j=1

(
dj
cj

)
m,Q(ζm)

,

where dj ∈ Z[ζm]/cj are specific determinants of k−j+1×k−j+1 matrices
with coefficients in Z[ζm]/cj.

Proof. Denoting M = R/b, we have the following exact sequence

0→M/(c1M)→M → c1M → 0,

where c1 is the first factor in the invariant factor decomposition (Equa-
tion (7.107)). Because of the compatibility of the signature with short
exact sequences, it is enough to compute the signatures (mα,M/(c1M)) and
(mα, c1M).

The first module, M/(c1M), can be shown to be isomorphic to (Z[ζm]/c1)k,
and therefore the determinant formula applies (see Equation (7.108)).
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The last module, c1M , can be shown to have less ‘components’ than M

itself; k − 1 instead of k.

c1M =
k−1⊕
j=1

γjZ[ζm]/d̃j ,

where d̃j = dj/c1, and where dj are obtained from the invariant factor
decomposition of M = R/b.

7.4.8. Conclusion

By induction, we can therefore conclude that the computation of

(
α

b

)
m,R

= (ϕα, R/b)

reduces to the computation of k power residue symbols
(
dj

cj

)
m,Q(ζm)

(for
j ∈ {1, . . . , k}) in the cyclotomic field Q(ζm). Here, cj are the invariant
factors of the module R/b as a Z[ζm]-module as in Equation (7.113) and
dj ∈ Z[ζm]/cj are determinants of associated automorphisms. We thus proved
the following statement.

Theorem 7.18 (Lenstra, Squirrel). Let R ⊆ K be a number ring of a
number field containing the m-th root of unity ζm. Let b ⊆ R be an ideal
coprime with m and let α ∈ R be an element of coprime with b and m.
Then the computation of the power residue symbol

(
α
b

)
m,R

reduces to at most
log(N (b)) computations of the power residue symbols

(
dj

cj

)
in Q(ζm), where

the dj and cj are bounded in size by the size of b and α.
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7.5. Computing the Power Residue Symbol in Cyclotomic Fields

7.5. Computing the Power Residue Symbol in
Cyclotomic Fields

7.5.1. Main Idea

Before explaining an algorithm in full detail, it is often insightful to give a
simplified version first. The simplified version of the algorithm that computes
power residue symbols

(
α
b

)
with an element α ∈ Z[ζm] and an integral ideal b

of Z[ζm] essentially proceeds by two steps. An essential part of the algorithm
is the idea that prime ideals ‘occur quite often’ in cyclotomic fields. This is
a consequence of the density of primes of norm N being around 1

ρK logN and
the fact that the residue ρK of the Dedekind zeta function of cyclotomic
fields at s = 1 is polynomially bounded (see Appendix A.2).

Step 1: Reducing the symbol
(
α
b

)
to a ‘principal’ symbol

(
α
β

)
.

This happens by repeatedly sampling random β ∈ b until the ideal (β)/b
is equal to some prime ideal p of Z[ζm]. In that case, write (β) = pb

and use the multiplicative property of the power residue symbol to obtain(
α
β

)
=
(
α
b

)
·
(
α
p

)
. By the fact that there exists an efficiently computable

formula (see Lemma 7.2) for power residue symbols with a prime ideal as
the bottom input, the symbol

(
α
p

)
is efficiently computable.

Therefore, provided that such a suitable β ∈ b can be efficiently found,
the above procedure reduces the computation of the symbol

(
α
b

)
to the

computation of a power residue symbol
(
α
β

)
where the bottom input β is

an element in Z[ζm] instead of a generic ideal.

Step 2: Evaluating the symbol
(
α
β

)
by shifting β.

This happens by sampling random κ ∈ Z[ζm] until the shifted element
β + κmmα = ϖ is a prime element. As the power residue symbol

(
α
β

)
with
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α, β ∈ Z[ζm] satisfies the ‘shifting property’, (see Lemma 7.3) we have(
α

β

)
=
(

α

β + κmmα

)
=
(
α

ϖ

)
.

Because (ϖ) is a prime ideal, there exists an efficiently computable formula
for the symbol

(
α
ϖ

)
(see Lemma 7.2). Therefore,

(
α
β

)
can also be computed

efficiently, provided that one indeed can find a κ ∈ Z[ζm] such that β+κmmα

is a prime element in Z[ζm].

Discussion

It is clear that the first step only works whenever sampling a random β ∈ b

results sufficiently often in an ideal (β)/b that is prime. In other words, the
probability that (β)/b is prime should be high enough. Likewise, the second
step only works whenever sampling random κ ∈ Z[ζm] results sufficiently
often in an element β + κmmα that is prime.

It turns out to be notoriously hard to estimate these probabilities whenever
b and β are fixed. However, if both b and β are appropriately random instead,
one can actually lower bound these probabilities by means of Landau’s prime
ideal theorem. This theorem can be informally expressed by saying that there
are many prime ideals among the ideals in Z[ζm]. In other words, if one
takes a ‘random ideal’ in Z[ζm], there is a reasonable probability that it is a
prime ideal.

So, in order to be fully able to estimate the success probability of the
algorithm, we will need to appropriately randomize the lower input of the
power residue symbol. With this adequate randomization, which will be done
by means of a random walk as in Chapter 4 (thus relying on the Extended
Riemann Hypothesis), one obtains the provable, full algorithm.

Remark 7.19. In an actual implementation, one should not use this chap-
ter’s provable algorithm. Instead, one should use the heuristic variant of it
described in [BP17; Boe16]. A specific blend between the provable and the
heuristic variant that uses Artin reciprocity (see Lemma 7.3) might also be
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Algorithm 8: PowerResidueSymbol(α, b,m), the computation of
the symbol

(
α
b

)
Require:

• An integer m > 1 defining the cyclotomic field Q(ζm) of degree
n.

• An integral element α ∈ Z[ζm] coprime with m.
• An integral ideal b ⊆ Z[ζm] coprime with α and m,

Ensure:
(
α
b

)
∈ ⟨ζm⟩, or failure.

1: Put m = mm · (α) as the modulus.
2: Apply the sampling Algorithm 7 with b, m, τ = 1 and

1/ε = max(2n, n5+1(n+ log | N (α)|)) to sample an element
β ∈ b̃ ∩ (1 + m), where b̃ = b

∏
j pj comes from the sampling

algorithm.
3: return

(
α
p

)−1
·
∏
j

(
α
pj

)−1
if β/b̃ = p is prime, using the formula

for the power residue symbol above prime ideals (Lemma 7.2).
4: return failure otherwise.

interesting to implement, because it avoids the need for the computation of
Hilbert symbols. Such an implementation (that relies on Artin reciprocity
and not Hilbert reciprocity) might therefore even be used to compute Hilbert
symbol due to a ‘global-to-local’ principle (see also Section 7.6.1).

7.5.2. The Full Algorithm

Lemma 7.20 (ERH). Assuming the Riemann Hypothesis for Hecke L-
functions on cyclotomic fields, Algorithm 8 is correct and runs in time
polynomial in m, log | N (α)| and logN (b). Furthermore, Algorithm 8 has
success probability at least

Ω
( 1
n5 · (n2 logn+ log | N (α)|)

)
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Proof. We start with proving the correctness of Algorithm 8, i.e., that the
algorithm computes the symbol

(
α
b

)
if it does not fail. This is proven by

the sequence of equalities in Equation (7.114), which uses the multiplicative
property of the power residue symbol (see Lemma 7.4) and the fact that
the power residue symbol is trivial on the ray Km,1 with m = mm(α) (see
Lemma 7.3). So, since β ∈ Km,1 (i.e.,

(
α
β

)
= 1) and (β) = pb̃ = pb

∏
j pj ,

one obtains

1 =
(
α

β

)
=
(
α

p

)
·
(
α

b̃

)
=
(
α

p

)
·
(
α

b

)
·
∏
j

(
α

pj

)
. (7.114)

The correctness of the algorithm follows by rearranging terms to get an
expression for

(
α
b

)
.

For the success probability, we need to estimate the probability that (β)/b̃ is a
prime ideal in step 3. By the correspondence theorem between sampling prob-
ability and ideal density (see Theorem 6.21) we know that the probability of
(β)/b̃ being prime equals at least δSm [rn]−ε, where Sm = {p ∈ ImK | p prime }.
By Lemma 7.5, the fact that rn ≥ N (m) ≥ 16 · ω(m)2, Writing out the
instantiation for r in Algorithm 7, using |∆K |3/(2n) ≤ n3/2 for cyclotomic
fields K, we have

r = 4 · 2n · n3/2 · |∆K |
3

2n · N (m)1/n ≤ 4 · 2n · n3 · N (m)1/n

≤ 2n+2 · n3 · N (m) · N (α)1/n,

I.e., log(rn) ≤ n(n+2) log(2)+3n log(n)+n2 logn+log | N (α)| = O(n2 logn+
log | N (α)|). Then, we have that the success probability is lower bounded
(see Theorem 6.21) by

δSm [rn]− ε ≥ 1
3 · ρK · n · log r − ε ≥

1
ρK · n · (n2 logn+ log | N (α)|) − ε

We show in Appendix A.2 that ρK = O(n4) (the hidden constant is e15 ≈
3.3 · 106). By the instantiation 1/ε = max(2n, n5+1(n2 logn+ log | N (α)|))
we then have,

δSm [rn]− ε = Ω
( 1
n5 · (n2 logn+ log | N (α)|)

)
− ε

= Ω
( 1
n5 · (n2 logn+ log | N (α)|)

)
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As Algorithm 7 is polynomial in its input size and in log(1/ε), it is enough
to show that logN (p), logN (pj) and log(1/ε) are polynomially bounded
in m, log | N (α)| and logN (b), in order to prove that Algorithm 8 runs in
polynomial time.

Note that m = mm(α), therefore log(N (m)) = poly(n, log | N (α)|) is poly-
nomially bounded. The logarithm of the inverse error log(1/ε) is easily
shown to be polynomially bounded as well. Also N, logB and log r from
Algorithm 7 with the instantiation of ε are polynomially bounded by
m, log |∆K | = O(m), log(1/ε) and logN (d)). So logN (pj) ≤ logB are poly-
nomially bounded.

The largest prime, p, satisfies logN (p) ≤ log(| N (β)|/N (b)) ≤ N logB +
n log r, by Algorithm 7. Therefore, all relevant quantities are polynomially
bounded, thus the entire algorithm runs within polynomial time.

Theorem 7.21. Let K ⊇ Q(ζm) be a number field and let R ⊆ K be an
order in that number field. Assume the Extended Riemann Hypothesis for
Hecke-L functions of the cyclotomic number field Q(ζm).

Then, there exists an algorithm that computes the power residue symbol
(
α
b

)
for all elements α ∈ R and ideals b ⊆ R, within time polynomial in log |∆K |,
[K : Q], size(α) and size(b).

Proof. Follows immediately from Lemma 7.20 and the reduction from Lenstra
and Squirrel (Theorem 7.18).

7.6. Discussion

7.6.1. Computing Hilbert Symbols Using Power Residue Symbols

Because the algorithm in this chapter does not use the computation of
Hilbert symbols (as opposed to the heuristic algorithm in [BP17; Boe16]),
one can reverse the roles and use the computation of power residue symbols
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to derive information about the associated Hilbert symbols in a number field
K containing Q(ζm) in the following way [Neu85, Ch. IV, §9].

∏
p|m∞

(α, β)p =
(
α

β

)
m

(
β

α

)−1

m
.

To compute (α, β)q for a fixed chosen q | m, one picks, using the Chinese
remainder theorem, an element γ ∈ OK that satisfies γ ≡ 1 modulo pd

2 for
p | m and p ̸= q, and γ ≡ β modulo qd

2 , where d = [K : Q] is the degree of
the number field K. In that case, (α, γ)p = 1 for p ̸= q and (α, γ)q = (α, β)q,
and therefore

(α, β)q = (α, γ)q =
∏

p|m∞
(α, γ)p =

(
α

γ

)
m

(
γ

α

)−1

m
.

In above reasoning, we use the following lemma.

Lemma 7.22. Let Kp be the completion of a number field K ⊇ Q(ζm)
of degree d = [K : Q] with respect to the finite prime p | m, and let
(·, ·)p : K∗p ×K∗p → ⟨ζm⟩ denote the Hilbert symbol on this completion. Then

(α, 1 + πd
2)p = 1 for all π ∈ p.

Proof. As (α, ·)p : Kp → ⟨ζm⟩ equals the Artin symbol (or norm residue
symbol) of the extension Kp( m

√
α) : Kp [Neu85, Ch. 3, Prop. 5.1], it suffices

to show that 1 + πdm ∈ NKp( m√α)/Kp
(Kp( m

√
α)) for all π ∈ p [Neu85, Ch. 3,

Prop. 5.2iii]. In other words, we need to show that the conductor fKp( m√α)/Kp

of this local Kummer extension divides pd
2 . By using local computations

and Hensel’s lemma [CS08, Eq. (3.11)], we know that

ordp(fKp( m√α)/Kp
) ≤ d(1 + log(d/m)) + 1 ≤ d2.

This leads to the following corollary.
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Corollary 7.23. Assuming the Extended Riemann Hypothesis for Hecke-L
functions on cyclotomic fields, Hilbert symbols can be computed within time
polynomial in the input size.

This corollary is quite weak compared to the much stronger results of Bouw
[Bou21]; his algorithm is unconditional (i.e., does not require any variant
of the Riemann Hypothesis), deterministic, and his algorithm’s studied
complexity is way more explicit. Though no real-life comparison has been
made yet, I suspect Bouw’s algorithm to run significantly faster than the
method described above.

7.6.2. Computing Artin Symbols in the Same Fashion

A very similar algorithm as Algorithm 8 could in principle be used to compute
Artin symbols

(
·

L/K

)
for abelian extensions L/K. The main caveat is that

the residue ρK of the Dedekind zeta function ζK(s) of K at s = 1 might be
too large, i.e., not polynomially bounded. Such a large residue would make
such an algorithm not feasible, as the success probability depends inversely
on this residue ρK .

For the sake of completeness, we do spell out a proposal for an algorithm
computing Artin symbols in Algorithm 9. We would like to stress that
no guarantee on the running time is given, except maybe whenever the
residue ρK is polynomially bounded. In that case, the proof resembles that
of Lemma 7.20.

Remark 7.24. To compute the Frobenius element
(

p
L/K

)
∈ G = Gal(L/K)

for a prime p as in Line 3 of Algorithm 9, one goes through the following
lines.

• Compute P ⊆ OL, any prime ideal above p ⊆ OK .
• Compute a primitive element α ∈ L, i.e., an α ∈ L such that L = K(α),

by means of linear algebra.
• Compute αq mod P, where q = |OK/p|.
• Output a g ∈ G = Gal(L/K) for which holds αq ≡ g(α) mod P.
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Algorithm 9: ArtinSymbol(b, L,K), the computation of the Artin
symbol

(
b

L/K

)
∈ Gal(L/K)

Require:

• A number field extension L/K, where both L and K are defined
by a defining polynomial over Q.

• An integral ideal b ⊆ OK coprime with ∆L.
• For all g ∈ G = Gal(L/K) and α ∈ L, an efficient algorithm

that computes g(α) ∈ L.

Ensure:
(
α
b

)
∈ ⟨ζm⟩, or failure.

1: Put m = ∆L/K the relative discriminant of the extension L/K as the
modulus.

2: Apply the sampling Algorithm 7 with b, m, τ = 1 and
1/ε = max(2n, ρK · n · (n2 logn+ n logN (m))) to sample an element
β ∈ b̃∩ (1 +m), where b̃ = b

∏
j pj comes from the sampling algorithm.

3: return
(

p
L/K

)−1
·
∏
j

(
pj

L/K

)−1
if β/b̃ = p is prime, using the

formula for the Artin symbol for prime ideals (‘Frobenius element’, see
[Neu85, Ch. IV, §8]).

4: return failure otherwise.
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Remark 7.25. The approach of Algorithm 9 is not expected to work for
number fields with large Dedekind residue ρK . Though, we might enlarge
the set of ‘good’ ideals S by also including ‘near primes’, which are ideals
that are a product of a large prime ideal and several smaller prime ideals; in
other words, a large prime ideal times a smooth ideal.

This might increase the local density of S significantly in some cases, maybe
even to the point that the Algorithm 9 succeeds within polynomial time even
though ρK is not small.

An open question arising here is: What exactly does a large residue ρK mean?
If it just implies more frequent small primes or more (higher) prime powers,
it does not affect the Artin symbol algorithm. If it, on the other hand, implies
a scarcity of easy-to-factor ideals, it does affect the Artin symbol algorithm.
Are there means to distinguish these two cases?
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