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6. Ideal sampling

6.1. Summary

Many algorithms in cryptography and algorithmic number theory rely on
finding elements α in an ideal a such that their quotient αa−1 is easy to
factor (e.g., prime, near-prime or B-smooth). Such algorithms are typically
analyzed only heuristically, by treating αa−1 as a uniform ideal, and applying
density results for the sets of prime ideals or smooth ideals. The result of this
chapter allows to adjust this strategy and make the reasoning rigorous.

The beginning of this chapter is devoted to showing that, for an ideal a
that is uniformly distributed in the Arakelov class group, one can rigorously
analyze the probability of αa−1 being in a certain ideal set (e.g., the prime
ideals or smooth ideals). This probability can be shown to be very much
related to the density of the ideal set involved, a notion from analytic number
theory.

In the later part of this chapter we invoke the random walk theorem from
Chapter 4, which allows to randomize any fixed ideal a into a randomly
distributed ideal ã in the Arakelov class group. This randomized ideal
can then be used to sample an α ∈ ã from, with a rigorous probability.
Sampling α from ã instead of a does not affect the usefulness of α, since the
randomization – apart from a small distortion – happens only by multiplying
a with small prime ideals. I.e., the quotient αa−1 only differs from αã−1 by
small prime factors, meaning that if the one is easy to factor, the other is as
well.
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6. Ideal sampling

6.2. Introduction

In this chapter, we apply the random walk theorem of Chapter 4 to tackle the
following problem that arises in multiple number-theoretic contexts [BF14;
BP17; Buc88]. Let K be a number field, of degree n and discriminant ∆K .
Given an ideal a ⊂ K, sample an element α ∈ a such that the ideal αa−1

is easy to factor. In some cases (e.g., [BF14; Buc88; LL+93]), the fraction
αa−1 is required to only have small prime factors, whereas in other cases
(e.g., [BP17]), the fraction αa−1 is required to be a near-prime (i.e., at most
one of its prime factors is allowed to be large).

In the literature and computer algebra systems (e.g., [CS08, §6.5] [BCP97;
PAR19]), this task is performed by computing a reasonably short basis of the
ideal a (by means of LLL, for example) and repeatedly randomly sampling
reasonably short elements α ∈ a using this basis, until αa−1 is of the desired
form. Assuming heuristically that the ideals αa−1 are more or less randomly
distributed among ideals of bounded norm, one can use specific density
results for subsets of ideals to obtain a heuristic estimate for the success
probability of this method.

Even though the above approach appears to work in many practical cases,
it is generally hard to prove anything in the direction of a rigorous lower
bound for the success probability. A first obstacle is that the ideal αa−1

is not ‘random enough’ as, for example, it always lies in the ideal class
[a]−1. Even for principal ideal domains, a second obstacle is that the number
of generators of (α) may vary unpredictably among sub-ideals (α) of a,
resulting in some sub-ideals of a to be sampled more often than others,
making the distribution of αa−1 skewed.

6.2.1. Our Technique

To resolve these issues, we slightly modify both the ideal a and the way
α ∈ a is sampled. More precisely, the ideal a is replaced by ã = a ·

∏
i pi,

where each pi is a small, random prime ideal. The element α is then sampled
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6.2. Introduction

uniformly in the ideal ã intersected with a ‘distorted box’ in the canonical
embedding space KR. More specifically, in the case of a totally real number
field, the box is chosen as N (ã)1/n ·Br,x = N (ã)1/n ·

∏
j [−rexj , rexj ] ⊆ KR

with large enough r > 0, where xj ∈ R satisfy ∑j xj = 0 and are distributed
according to a Gaussian distribution.

This procedure mimics a random walk in the Arakelov class group, where
multiplying by small primes accounts for the randomization at the finite
places, whereas the distortion of the sampling boxes accounts for the ran-
domization at the infinite places.

The idea behind this procedure is that, while it is hard to predict exactly
how many generators of the ideal (α) are in a ∩N (a)1/n ·Br,0, the average
number of such generators in ã ∩ N (ã)1/n · Br,x is accurately predictable
whenever ã and x are adequately randomized. Indeed, this quantity is given
by the number of points of a shifted Log-unit lattice, intersected with a
simplex; this number of points is hard to estimate for a given shift of the
Log-unit lattice, but it is predictable on average, according to the following
fact.

Lemma 6.1. Let S ⊂ Rn be a measurable set and Λ ⊂ Rn a full rank lattice.
Then, for a uniformly chosen c ∈ Rn/Λ it holds that E[|(Λ + c) ∩ S|] =
Vol(S)/Vol(Λ).

Algorithmically, sampling uniformly in a box N (a)1/n · Br,x and element
of an ideal a can be done in polynomial time with an LLL reduced basis,
whenever log r = poly(n, log |∆K |). One can also strengthen this reduction
as in [BF14; Buc88] for other time-quality trade-offs. Denoting SB the set of
B-smooth ideals, and δS [t] the density of ideals of norm ≤ t which belong to
a given set of ideals S, our (slightly simplified) main result is the following.

Main theorem. Let S be any set of integral ideals. Assuming the Riemann
hypothesis for Hecke L-functions, there exists some B = poly(log |∆K |), such
that Algorithm 7 outputs in time poly(log |∆K |, size(N (a))) an element α ∈ a

such that (α)/a ∈ S · SB with probability at least 1
3δS [rn]− 2−n.
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6. Ideal sampling

Since N ((α)/a) ≈ rn, we have therefore formalized the heuristic that element
sampling probability matches ideal density, up to a loss of 1/3 on the
probability, and up to an extra smooth ideal in SB. Moreover, the original
purpose, namely finding a α ∈ a such that αa−1 can be easily factored, is
not spoiled.

Including the modulus m

The non-simplified main result of this chapter (see Theorem 6.9) involves a
modulus m ⊆ OK , an ideal that is to be ‘avoided’ in the computations.

Specifically, the main theorem states the probability that (α)/a is in a given
ideal set, given the fact that α ≡ τ modulo m for some fixed given τ ∈ Km.
This particular generalization is included because of its usefulness for the
computation of the power residue symbol (see Chapter 7). One recovers the
main theorem, as described in this introduction, by putting m = OK .

6.2.2. Applications

As a direct application, one can prove that sampling α ∈ a such that αa−1 is
a near-prime can be done efficiently in cyclotomic fields. This proves that the
‘principalization step’ in the power residue symbol algorithm of the author
of this PhD thesis [BP17, §5.2] runs in polynomial time in the special case
of cyclotomic number fields, and more generally in any family of number
fields with small Dedekind zeta residue ρK .

The most general version of the result of this chapter (Theorem 6.9), involving
a modulus m has even farther consequences. It does not only allow to remove
one specific heuristic ([BP17, §5.2]), but can actually be applied in order
to prove that the entire (slightly modified) algorithm for the power residue
symbol is efficient (see Chapter 7).

We also hope that our technique could be helpful in proving other heuristic
algorithms such as the index calculus algorithms of [Buc88; BF14] (computing
class groups and unit groups), though other obstacles are expected. Not
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6.3. Preliminaries

only does it require universal bounds on the density of B-smooth ideal in
large-degree number field, one also needs to ensure sufficient independence
of the obtained multiplicative relations. For the second obstacle, further
randomization techniques could turn out useful.

6.2.3. Related Works

We note that the issues we mention above have been circumvented in special
cases. Building on a result of Seysen [Sey87], Hafner and McCurley [HM89]
gave a provable algorithm for computing class-group and unit group of
imaginary quadratic fields. This algorithm involves a random walk in the
class group, which is used to prove that one can find a B-smooth principal
ideal relatively efficiently. The idea of performing a random walk in the class
group was reused in the algorithms of Buchmann [Buc88] and Biasse and
Fieker [BF14], in a heuristic way. Finally, we note also that Schoof [Sch08]
rephrased Buchmann’s algorithm in the terms of Arakelov theory, and we
heavily borrowed from his formalism.

6.3. Preliminaries

An important concept that plays a large role throughout the entire proof
of the main theorem is that of a generator of an Arakelov ray divisor. This
can be seen as a generalization of a generator of a principal ideal a ⊆ OK ,
which is an α ∈ OK satisfying (α) = a. Such a generator α of the ideal a
is called τ -equivalent (with respect to a modulus m) if α ≡ τ mod m (note
that this definition only makes sense if m and a are coprime).

The generalization to Arakelov ray divisors is very similar. As we can see
Arakelov ray divisors as ideal lattices xa, a generator of such divisor is just
an element in KR of the shape xα, where α is a generator of a. Of course,
if a is not a principal ideal, there are no such generators. The τ -equivalent
generators are just those xα ∈ KR for which α ≡ τ mod m. The precise
definition is as follows.
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6. Ideal sampling

Definition 6.2 (Generators of an Arakelov ray divisor). Let τ ∈ Km and let
a ∈ DivKm be an Arakelov ray divisor with an infinite part a∞ and a finite
part af (see Equation (2.13)). We define the set of τ -equivalent generators
Exp(a)×τ ⊆ KR of a by the following rule

Exp(a)×τ :=


Exp(a∞) · (κ · O×K ∩ τKm,1) ⊆ Exp(a) if Exp(af) = (κ)

for some κ ∈ Km

∅ otherwise

Equivalently, we can write

Exp(a)×τ = {α ∈ Exp(a) | (Exp(−a∞) · α) = Exp(af) and Exp(−a∞) · α ∈ τKm,1}.

The following specialization of the random walk theorem of Chapter 4 is
tailored to the purposes of this chapter. These purposes require both N

and B to be polynomially small, and s to be rather small as well, to ease
sampling in the log-normally distorted box. There is no specific reason we
chose this particular instantiation below, except for concreteness.

Theorem 6.3 (Random walks on the Arakelov ray class group, ERH). Let
n = [K : Q] ≥ 2, s = 1/(1000·n2) and let ε > 0 be an error parameter. There
exists a bound B = Õ

(
n4[log log(1/ε)]2 +n2[log(|∆K | N (m))]2

)
such that for

N = ⌊8n+ logN (m) + log |∆K |+ 2 log(1/ε)⌋ the random walk distribution
[W(B,N, s)] on Pic0

Km is ε-close to uniform in L1(Pic0
Km), i.e.,∥∥∥[W(B,N, s)]− U(Pic0

Km)
∥∥∥

1
≤ ε.

Proof. This formulation of the random walk theorem is obtained by instan-
tiating Theorem 4.3 of Chapter 4 with C = ΛKm,1 , s = 1/n2 and k = 1.

In that case, B = Õ
(
n4[log log(1/ε)]2+n2[log(|∆K | N (m))]2

)
, by simply sup-

pressing polylogarithmic factors. By using the bounds η1(Λ∗Km,1) ≤ η1(Λ∗K) ≤
2000 · (r + 1) · log(r)3 ≤ 1000 · n2 = s−1 (see the proof of Proposition 5.10),
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6.4. Probability-density Correspondence

log Vol(Pic0
Km)) ≤ log(N (m)) + log Vol(Pic0

Km) ≤ log(N (m)) + log |∆K | (see
Lemma 2.17) and r ≤ n one obtains that Theorem 4.3 applies, with

N = ⌊8n+ logN (m) + log |∆K |+ 2 log(1/ε)⌋

≥ 1
2 logn · (n log(1000n2) + logN (m) + log |∆K |+ 2 log(1/ε) + 2)

≥ 1
2k logn ·

(
r · log(1/s̃) + log|Pic0

Km |+ 2 log(1/ε) + 2
)
.

Remark 6.4. One can simplify the bounds on B and N in the theorem
above by putting ε = 2−n. In that case B = Õ(n2 · (log(|∆K | N (m)))2) and
N = ⌊12n+ logN (m) + log |∆K |⌋ is sufficient.

6.4. Probability-density Correspondence

6.4.1. Result

For an ideal set S ⊆ IK consisting of integral ideals, we denote by S(t)
the subset of S consisting of those integral ideals with norm bounded by
t ∈ R>0, which is made precise in the following lemma. With this notation
we will define the local density in Definition 6.6.

Definition 6.5. Let S be an set of integral ideals of OK . Then we define
S(t) := {b ∈ S | N (b) ≤ t} and we define the counting function |S(·)| :
R>0 → N of S by the following rule:

|S(t)| = |{b ∈ S | N (b) ≤ t}|.

Definition 6.6 (Local density of an ideal set). Let x > 0 a positive real
number, and let S be a set of integral ideals of K. We define the local density1

1Note that this quantity tends to the ‘natural density’ of the ideal set S when x goes
to infinity, since |{a | N (a) < t}| ∼ ρ · t [Ove14, §9.5].
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6. Ideal sampling

of S at x as

δS [x] = min
t∈[x/en,x]

|S(t)|
ρ · t

= min
t∈[x/en,x]

|{b ∈ S | N (b) ≤ t}|
ρ · t

.

Definition 6.7 (Infinity ball). Let r > 0 be a positive number, then we
denote

rB∞ = {(xσ)σ ∈ KR | |xσ| ≤ r, for all σ}.

Definition 6.8. For a distribution D on Div0
Km , we denote by [D] = D|K

m,1

the distribution on Pic0
Km obtained by periodizing D with respect to the

subgroup Km,1 ↪→ Div0
Km (see Definition 2.3).In other words,

[D] = D|K
m,1

=
∑

α∈Km,1

D(·+ LαM).

This distribution [D] describes exactly the distribution of the Arakelov ray
class [a], where a← D.

The main result of this section shows a close relationship between the local
density of an ideal set S and the probability that the integral ideal βa−1 lies
in S for β sampled appropriately from a. Here, a is a Arakelov ray divisor
whose Arakelov ray class is uniformly distributed.

Theorem 6.9. Let r ≥ 8 · n · |∆K |
3

2n · N (m)1/n, let τ ∈ (OK/m)∗ and let
Sm be a set of integral ideals coprime to m with local density δSm [rn] at rn.
Let D be a distribution on Div0

Km such that [D] is uniform in Pic0
Km. Then

E
a←D

[
Pr

α←Exp(a)∩rB∞

[
(α) · Exp(−a) ∈ Sm

∣∣∣ α · Exp(−a∞) ∈ τKm,1
]]
≥ 1

3 · δSm [rn].

(6.77)
where α is uniformly sampled from the finite set α← Exp(a) ∩ rB∞.

Remark 6.10. The 1/3 occurring in Equation (6.77) can be made arbitrarily
close to one by increasing the radius r ∈ R and slightly increasing the density
interval [x/en, x] in Definition 6.6. For sake of simplicity we just chose r ∈ R
and the length of the interval [x/en, x] to be minimal to achieve the optimal
lower bound up to an explicit constant (i.e., Equation (6.77)).
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6.4. Probability-density Correspondence

Remark 6.11. Theorem 6.9 involves a conditional probability. It is possible,
with essentially the same proof technique, to rephrase this theorem in such a
way that it concerns the intersection of the events (α) · Exp(−a) ∈ Sm and
α · Exp(−a∞) ∈ τKm,1. The probability then depends as well on the number
ϕ(m) = |(OK/m)∗| = |Km/Km,1| of elements in (OK/m)∗. More specifically,
for a given τ ∈ (OK/m)∗ one can prove that, under the same conditions as
in Theorem 6.9,

Pr
a←D

α←Exp(a)∩rB∞

[
(α) · Exp(−a) ∈ Sm and α · Exp(−a∞) ∈ τKm,1

]

= E
a←D

[
Pr

α←Exp(a)∩rB∞

[
(α) · Exp(−a) ∈ Sm and α · Exp(−a∞) ∈ τKm,1

]]

≥ 1
3 · ϕ(m) · δS

m [rn]. (6.78)

6.4.2. Proof Overview of Theorem 6.9

In the following text we prove Theorem 6.9, leaving out details. In the later
Section 6.5, which follows the exact same structure as this proof overview, a
full proof is given, including all required lemmas.

Simplify the Probability by Fixing a Single Ideal c ∈ Sm and a Single
Arakelov Divisor a ∈ Div0

Km

The statement Equation (6.77) of Theorem 6.9 involves two random processes:
first the random sampling of a← D, then the uniform sampling of an element
α ∈ Exp(a) ∩ rB∞. It is insightful to focus on the latter random process,
that of the element α, for a fixed a ∈ Div0

Km .

Also, the probability in Equation (6.77) concerns an entire ideal set Sm. In
this part of the proof, we focus instead on a single ideal c ∈ Sm. In other
words, we estimate the following probability, for a fixed a ∈ Div0

Km and a
single integral ideal c ∈ ImK ,

pa,c = Pr
α←Exp(a)∩rB∞

[
(α) · Exp(−a) = c

∣∣ α · Exp(−a∞) ∈ τKm,1
]

(6.79)
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6. Ideal sampling

where the sampling α ← Exp(a) ∩ rB∞ is uniform. In the notation above
we leave the dependency on r ∈ R, m ⊆ OK and τ ∈ (OK/m)∗ implicit.

By the law of conditional probability, we have that Equation (6.79) equals

pa,c =

Pr
α←Exp(a)∩rB∞

 (α) · Exp(−a) = c

and
α · Exp(−a∞) ∈ τKm,1


Pr

α←Exp(a)∩rB∞
[α · Exp(−a∞) ∈ τKm,1] (6.80)

Focusing on the numerator first, we will prove later, in Lemma 6.12, that

Pr
α←Exp(a)∩rB∞

 (α) · Exp(−a) = c

and
α · Exp(−a∞) ∈ τKm,1

 = |Exp(a + d(c))×τ ∩ rB∞|
|Exp(a) ∩ rB∞|

(6.81)

Here, |Exp(a + d(c))×τ ∩ rB∞| is the number of generators of the ideal lattice
Exp(a)c that are equivalent to τ modulo m (see Definition 6.2) lying in
the box rB∞. So, essentially, Equation (6.81) counts how many of the
|Exp(a) ∩ rB∞| elements in the sampling space rB∞ actually generate the
ideal lattice Exp(a)c and are equivalent to τ modulo m.

For the denominator we will prove (see Lemma 6.12) that there exists τ̃ ∈ KR
such that

Pr
α←Exp(a)∩rB∞

[
α · Exp(−a∞) ∈ τKm,1

]
= |(Exp(a)m + τ̃) ∩ rB∞|

|Exp(a) ∩ rB∞|
(6.82)

where the sampling α ← Exp(a) ∩ rB∞ is uniform. This equation can be
intuitively derived by ignoring the a∞-part. Any element α ∈ Exp(a) that
satisfies α ≡ τ modulo m must lie in Exp(a) ∩ (m + τ), which can indeed by
rewritten to Exp(a)m + τ̃ by choosing an τ̃ ∈ Exp(a) that satisfies τ̃ ≡ τ

modulo m.

By combining Equations (6.80) to (6.82) and scratching terms that occur
both in the numerator and denominator, one concludes that there exists
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6.4. Probability-density Correspondence

τ̃ ∈ Exp(a) such that

pa,c = Pr
α←Exp(a)∩rB∞

[
(α) · Exp(−a) = c

∣∣ α · Exp(−a∞) ∈ τKm,1
]

= |Exp(a + d(c))×τ ∩ rB∞|
|(Exp(a)m + τ̃) ∩ rB∞|

. (6.83)

Using the estimate
|(Exp(a) + τ̃) ∩ rB∞| ≈ rn · 2nR · (2π)nC/(edeg(a) ·

√
|∆K |)

When the radius r is quite large compared to the lattice Exp(a) ⊆ KR, one
can deduce that for a ∈ DivKm the number of points in (Exp(a)+ τ̃)∩rB∞ is
approximately Vol(rB∞)/edeg(a), where deg(·) is defined in Equation (2.12).
More specifically, in Lemma 6.13 we prove that for all a ∈ Div0

Km and
τ̃ ∈ KR,

|(Exp(a)m + τ̃) ∩ rB∞| ∈ [e−1/4, e1/4] · rn · 2nR · (2π)nC/(N (m) ·
√
|∆K |).

Applying this to the denominator of Equation (6.83), we directly deduce
that

pa,c = Pr
α←Exp(a)∩rB∞

[
(α) · Exp(−a) = c

∣∣ α · Exp(−a∞) ∈ τKm,1
]

∈ [e−1/4, e1/4] ·
√
|∆K | · N (m)

rn · 2nR · (2π)nC
· |Exp(a + d(c))×τ ∩ rB∞| (6.84)

Estimating the probability of sampling a single fixed ideal for a random
Arakelov divisor

As already mentioned, Equation (6.77) of Theorem 6.9 involves two random
processes, where the first process samples the Arakelov ray divisor a ← D
and the second process samples α ← Exp(a) ∩ rB∞ uniformly. Therefore,
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6. Ideal sampling

for a fixed integral ideal c ∈ ImK , using Equation (6.84), we have

E
a←D

[pa,c]

= E
a←D

[
Pr

α←Exp(a)∩rB∞

[
(α) · Exp(−a) = c

∣∣ α · Exp(−a∞) ∈ τKm,1
]]

∈[e−1/4, e1/4] ·
√
|∆K | · N (m)

rn · 2nR · (2π)nC
· E

a←D

[
|Exp(a + d(c))×τ ∩ rB∞|

]
. (6.85)

The number |Exp(a + d(c))×τ ∩ rB∞| only depends on the Arakelov ray
class of a ∈ Div0

Km

By quite a technical argument (see Lemma 6.14(iii)) one can show that
the number of ‘good’ α’s, |Exp(a + d(c))×τ ∩ rB∞|, only depends on the real
number r ∈ R>0, the Arakelov ray class of the divisor a and τ ∈ (OK/m)∗.

Since the distribution D is assumed to be uniform when projected to the
Arakelov ray class group Pic0

Km , we can deduce that, for any fundamental
domain F of Pic0

Km in Div0
Km ,

E
a←D

[|Exp(a + d(c))×τ ∩ rB∞|] = E
a←U(F )

[|Exp(a + d(c))×τ ∩ rB∞|] (6.86)

where U(F ) is the uniform distribution on the fundamental domain F .

By scaling, one can show that |Exp(a + d(c))×τ ∩ rB∞| = |Exp(a + d0(c))×τ ∩
rN (c)−1/nB∞|. By another technical argument (see Lemma 6.14(i)) one can
show that this quantity is non-zero only if [a + d0(c)] ∈ [Lτ−1M]Tm ⊆ Pic0

Km ,
i.e., if the Arakelov ray class of a + d0(c) lies in a specific coset of the ray
unit torus in Pic0

Km . We can then deduce that for any fundamental domain
FTm of Tm in H,

E
a←U(F )

[|Exp(a + d(c))×τ ∩ rB∞|]

= 1
|ClmK |

E
a←U(FTm )

[|Exp(a)×τ ∩ rN (c)−1/nB∞|]. (6.87)

where U(FTm) is the uniform distribution on the fundamental domain FTm .
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6.4. Probability-density Correspondence

Taking the logarithmic map into H = LogK0
R

Applying the logarithmic map on the set Exp(a)×τ ∩ r · N (c)−1/nB∞, sends
Exp(a)×τ to a shift of the logarithmic ray unit lattice ΛKm,1 = Log(O×Km,1)
and r ·N (c)−1/nB∞ to a simplex Sn log r−logN (c) of volume C(r,N (c)), where
Sx = Log(xB∞) ⊆ LogKR as in Lemma A.1.

The expected value as in Equation (6.87) then equals the average number of
points of a randomly shifted logarithmic ray unit lattice into this simplex,
which equals C(r,N (c))/Vol(Tm). The precise value is as follows.

1
|ClmK |

E
a←U(FTm )

[|Exp(a)×τ ∩ rN (c)−1/nB∞|] = |µK | · C(r,N (c))
ϕ(m) · hK ·RK

(6.88)

Applying the Abel summation formula to get the probability for the
ideal set Sm

By combining Equations (6.85) to (6.88), using the class number formula (see
Equation (2.11)) and by the fact that N (m)

ϕ(m) = |OK/m|
|(OK/m)∗| ≥ 1, one obtains,

E
a←D

[pa,c]

= E
a←D

[
Pr

α←Exp(a)∩rB∞

[
(α) · Exp(−a) = c

∣∣ α · Exp(−a∞) ∈ τKm,1
]]

≥ e−1/4 ·
√
|∆K | · N (m)

rn · 2nR · (2π)nC
· |µK | · C(r,N (c))
ϕ(m) · hK ·RK

= e−1/4 · C(r,N (c))
rn · ρK

· N (m)
ϕ(m)

≥ e−1/4 · C(r,N (c))
rn · ρK

, (6.89)

By taking the sum over all c ∈ Sm, using linearity of the expected value
operator, one can achieve the following lower bound.

E
a←D

[
Pr

α←Exp(a)∩rB∞

[
(α) · Exp(−a) ∈ Sm

∣∣∣ α · Exp(−a∞) ∈ τKm,1
]]

= E
a←D

[∑
c∈Sm

pa,c

]
=
∑
c∈Sm

E
a←D

[pa,c] ≥ e−1/4 ∑
c∈Sm

C(r,N (c))
ρK · rn

(6.90)
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By an application of the Abel summation formula, one can relate the
sum ∑

c∈Sm C(r,N (c)) with an integral involving the counting function
|Sm(t)| = |{c ∈ Sm | N (a) ≤ t}| of the ideal set Sm. In fact, we will show
that, for some function f : R→ R,∑

c∈Sm

C(r,N (c))
ρK · rn

=
∫ rn

t=1

|Sm(t)|
ρK · t

· f(t)dt ≥ δSm [rn]/2 (6.91)

where the last inequality is due to the function f(t) having most of his weight
in the interval [rn/en, rn]; precisely the relevant interval for the local density
δSm [rn] (see Definition 6.6). By combining Equations (6.90) and (6.91), we
obtain

E
a←D

[
Pr

α←Exp(a)∩rB∞

[
(α) · Exp(−a) ∈ Sm

∣∣ α · Exp(−a∞) ∈ τKm,1]] ≥ δSm [rn]/3.

which finishes the proof.

6.5. Extended Proof of Theorem 6.9

6.5.1. Simplify the Probability by Fixing a Single Ideal c ∈ Sm and
a single Arakelov divisor a ∈ Div0

Km

In this part of the proof we focus on a fixed a ← Div0
Km in the proba-

bilistic process of Equation (6.77) in Theorem 6.9, leaving the remaining
randomness to be the uniform sampling of α ∈ Exp(a) ∩ rB∞. Furthermore,
we concentrate on a fixed ideal c ∈ Sm as well. By the law of conditional
probability, we have

pa,c = Pr
α←Exp(a)∩rB∞

[
(α) · Exp(−a) = c

∣∣ α · Exp(−a∞) ∈ τKm,1
]

=

Pr
α←Exp(a)∩rB∞

 (α) · Exp(−a) = c

and
α · Exp(−a∞) ∈ τKm,1


Pr

α←Exp(a)∩rB∞
[α · Exp(−a∞) ∈ τKm,1] . (6.92)

In the following lemma we compute the exact values of these probabilities.
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6.5. Extended Proof of Theorem 6.9

Lemma 6.12. Let m ⊆ OK be a modulus, let τ ∈ (OK/m)∗, let a ∈ Div0
Km

be a fixed Arakelov ray divisor, and let c ∈ ImK be an integral ideal. Then

Pr
α←Exp(a)∩rB∞

 (α) · Exp(−a) = c

and
α · Exp(−a∞) ∈ τKm,1

 = |Exp(a + d(c))×τ ∩ rB∞|
|Exp(a) ∩ rB∞|

,

(6.93)
and, there exists some τ̃ ∈ KR such that

Pr
α←Exp(a)∩rB∞

[
α · Exp(−a∞) ∈ τKm,1

]
= |(Exp(a)m + τ̃) ∩ rB∞|

|Exp(a) ∩ rB∞|
, (6.94)

where the sampling α← Exp(a) ∩ rB∞ is uniform in both expressions.

Proof. By examining Definition 6.2 closely, noting that Exp((a + d(c))f)
= Exp(af) · c ∈ ImK , we see that for all α ∈ Exp(a),

(α) · Exp(−a) = c and α · Exp(−a∞) ∈ τKm,1 ⇐⇒ α ∈ Exp(a + d(c))×τ .

As the number of choices for α ∈ Exp(a) ∩ rB∞ equals |Exp(a) ∩ rB∞|,
the number of good choices equals |Exp(a + d(c))×τ ∩ rB∞| and since the
sampling procedure is uniform, we arrive at the first probability claim. For
the second probability claim, write a = Exp(af) ∈ ImK , for conciseness. We
note that for α ∈ Exp(a), α · Exp(−a∞) ∈ τKm,1 is equivalent to

α · Exp(−a∞) ∈ Exp(af) ∩ τKm,1 = a ∩ τKm,1 = am + τ ′,

where τ ′ ∈ a is such that τ ′ ≡ τ modulo m (note that a and m are coprime).
This, in turn, is equivalent to

α ∈ Exp(a∞)(am + τ ′) = Exp(a)m + τ̃

where τ̃ = Exp(a∞)τ ′ ∈ KR, which proves the claim.

6.5.2. Estimating the Number of Shifted Lattice Points in a Box

Both Equations (6.93) and (6.94) involve the number of shifted lattice points
in the volume rB∞. For large enough radius r, we can reasonably estimate
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6. Ideal sampling

this quantity to be |(Exp(a) + τ̃)∩ rB∞| ≈ rn ·2nR · (2π)nC/(edeg(a) ·
√
|∆K |).

Lemma 6.13. Let x ≥ 1. For any Arakelov ray divisor a ∈ DivKm, any
r > x · n2 · |∆K |

3
2n · edeg(a)/n and any τ̃ ∈ KR, we have

|(Exp(a) + τ̃) ∩ rB∞| ∈ [e−1/x, e1/x] · r
n · 2nR · (2π)nC

edeg(a) ·
√
|∆K |

,

where we note that for a ∈ Div0
Km , i.e., degree-one Arakelov ray divisors, we

have deg(a) = 0.

Proof. Let us write V∞ for the Voronoi cell of Exp(a) around 0 with respect
to the infinity norm, i.e., V∞ = {x ∈ KR | ∥x∥∞ < ∥x − v∥∞ for all v ∈
Exp(a)}. This is well-known to be a fundamental domain for the lat-
tice Exp(a) (up to a set of ‘faces’ of measure zero), thus having vol-
ume det(Exp(a)) = edeg(a) ·

√
|∆K |. Denote cov∞ = cov∞(Exp(a)) =

max{∥x∥∞ | x ∈ V∞} for the covering radius of the lattice Exp(a) with
respect to the infinity norm. Furthermore, denote τ̃0 ∈ V∞ for the unique
representative of τ̃ + Exp(a) in V∞, implying Exp(a) + τ̃ = Exp(a) + τ̃0.

The sets v + V∞ for v ∈ (Exp(a) + τ̃0) ∩ rB∞ are disjoint and are in-
cluded in KR ∩ (r + 2 · cov∞)B∞. Hence, by computing the volume of
∪v∈(Exp(a)+τ̃0)∩rB∞(v + V∞) in KR, we obtain

|(Exp(a) + τ̃0) ∩ rB∞| · edeg(a) ·
√
|∆K | ≤ (r + 2 · cov∞)n ·Vol(KR ∩ B∞)

≤ (r + 2 · cov∞)n · 2nR · (2π)nC ,

where we used the fact that Vol(V∞) = det(Exp(a)) = edeg(a) ·
√
|∆K |.

Observe also that KR ∩ B∞ contains some coordinates that are real and
other that are complex. Hence, its volume is 2nR · (2π)nC and not 2n (the
2-dimensional volume of {(x, x) ∈ C2| |x| ≤ 1} is 2π).

In a similar fashion, we can deduce that the set KR ∩ (r − 2 · cov∞)B∞ is
included in ∪v∈(Exp(a)+τ̃0)∩rB∞(v+V∞), where V∞ is the topological closure
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of V∞. The sets v + V∞ for v ∈ (Exp(a) + τ̃0) ∩ rB∞ are disjoint up to sets
of measure zero, and therefore, by computing volumes, we obtain

(r − 2 · cov∞)n · 2nR · (2π)nC = (r − 2 · cov∞)n ·Vol(KR ∩ B∞)

≤ |(Exp(a) + τ̃0) ∩ rB∞| · edeg(a) ·
√
|∆K |

Combining the two bounds, one obtains(
1− 2 · cov∞

r

)n
· r

n · 2nR · (2π)nC

edeg(a) ·
√
|∆K |

≤ |(Exp(a) + τ̃0) ∩ rB∞|

≤
(

1 + 2 · cov∞
r

)n
· r

n · 2nR · (2π)nC

edeg(a) ·
√
|∆K |

.

From Lemma 2.22, we know that cov∞(Exp(a)) ≤ n/2 · |∆K |
3

2n ·edeg(a)/n; so,
by assumption, r ≥ 2 · x ·n · cov∞. We obtain the final claim by substituting
r and using the inequality (1 + y/n)n ≤ ey for all y ∈ (−1, 1).

Figure 6.1.: The number of lattice points in the red box is clearly sandwiched by the
number of green cells and the number of green and yellow cells together.

Applying above lemma with x = 4 and thus r = 4 · n2 · |∆K |
3

2n · N (m)1/n,
to Equations (6.93) and (6.94) and substituting them into Equation (6.92),
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6. Ideal sampling

one obtains,

pa,c = Pr
α←Exp(a)∩rB∞

[
(α) · Exp(−a) = c

∣∣ α · Exp(−a∞) ∈ τKm,1
]

= |Exp(a + d(c))×τ ∩ rB∞|
|(Exp(a)m + τ̃) ∩ rB∞|

∈ [e−1/4, e1/4] ·
√
|∆K | · N (m)

rn · 2nR · (2π)nC
· |Exp(a + d(c))×τ ∩ rB∞| (6.95)

Here, we use that det(Exp(a)m) = edeg(a) ·
√
|∆K | = N (m) ·

√
|∆K |, and

thus |(Exp(a)m + τ̃) ∩ rB∞| ∈ [e−1/4, e1/4] · r
n·2nR ·(2π)nC√
|∆K |·N (m)

.

6.5.3. Estimating the Probability of Sampling a Single Fixed Ideal
for a Random Arakelov Divisor

To obtain the probability of sampling a fixed ideal for a random Arakelov
divisor, one needs to take the weighted sum over the probabilities of sampling
a fixed ideal for a fixed Arakelov divisor, where the weights are given by the
density D on Div0

Km . In other words, one needs to take the expected value.
So, for a fixed integral ideal c ∈ ImK , we have

E
a←D

[pa,c]

= E
a←D

[
Pr

α←Exp(a)∩rB∞

[
(α) · Exp(−a) = c

∣∣ α · Exp(−a∞) ∈ τKm,1
]]

∈ [e−1/4, e1/4] ·
√
|∆K | · N (m)

rn · 2nR · (2π)nC
· E

a←D

[
|Exp(a + d(c))×τ ∩ rB∞|

]
. (6.96)

where the last approximate equality follows from the linearity of the expec-
tation and Equation (6.95).

6.5.4. The Number |Exp(a + d(c))×τ ∩ rB∞| Only Depends on the
Arakelov Ray Class of a ∈ Div0

Km

It thus remains to focus on the expected value

E
a←D

[
|Exp(a + d(c))×τ ∩ rB∞|

]
. (6.97)
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In the following rather technical lemma we will – among other things –
prove that the number of elements in Exp(a + d(c))×τ ∩ rB∞ only depends
on the Arakelov ray class of a, meaning that we might take the expected
value over the uniform distribution over a fundamental domain of Pic0

Km

in Div0
Km in Equation (6.97), as [D] is uniform over Pic0

Km , per assumption
(see Definition 6.8).

Lemma 6.14. For all ray divisors a ∈ Div0
Km, elements τ, τ ′ ∈ Km, ideals

c ∈ ImK and real numbers r > 0 we have the following list of facts.

(i) |Exp(a)×τ ∩ rB∞| = |Exp(a + Lτ ′M)×ττ ′ ∩ rB∞|, i.e., the number of τ -
equivalent ray generators of a in a fixed box of radius r is equal to the
number of ττ ′-equivalent ray generators of a + Lτ ′M in the same box.

(ii) |Exp(a + d(c))×τ ∩ rB∞| = |Exp(a + d0(c))×τ ∩ r
N (c)1/nB∞|, so the only

difference between the maps d0 and d is just some appropriate scaling.
(iii) Writing a∞ = ∑

ν aν · LνM ∈ H ⊆ Div0
Km, we have

|Exp(a∞)×1 ∩ rB∞| = |µKm,1 | · |(ΛKm,1 + (aνσ )σ) ∩ Slog(r)|, (6.98)

where Slog r = {x ∈ LogKR | xσ ≤ log(r) , ∑σ xσ = 0} is a simplex as
in Lemma A.1.

Proof. For part (i), observe that multiplying by
(
σ(τ ′)
|σ(τ ′)|

)
σ
∈ KR yields a bijec-

tion from Exp(a) to Exp(a+Lτ ′M), preserving the maximum norm. It remains
to show that this bijection sends Exp(a)×τ to Exp(a + Lτ ′M)×τ ′τ . Using Defi-
nition 6.2 and assuming Exp(af) = κOK (and therefore Exp([a + Lτ ′M]f) =
τ ′κOK), we have(

σ(τ ′)
|σ(τ ′)|

)
σ

· Exp(a)×τ =
( 1
|σ(τ ′)|

)
σ

· (τ ′) · Exp(a∞) · (κO×K ∩ τK
m,1)︸ ︷︷ ︸

Exp(a)×
τ

=
( 1
|σ(τ ′)|

)
σ

· Exp(a∞)︸ ︷︷ ︸
Exp((a+Lτ ′M)∞)

·(τ ′κO×K ∩ τ
′τKm,1) = Exp(a + LτM)×τ ′τ

221



6. Ideal sampling

For part (ii), recall that multiplying the ideal lattice Exp(d(c)) = c ⊆ KR
by the scalar N (c)−1/n results in the ideal lattice Exp(d0(c)). Applying
this scalar multiplication to the set Exp(a + d(c)) ∩ rB∞ yields a bijective
correspondence with Exp(a + d0(c)) ∩ r

N (c)1/nB∞.

In part (iii) it is enough to show that the logarithm Log : KR → Log(KR)
takes Exp(a∞)×1 to the shifted lattice Log(O×Km,1) + (aνσ )σ ⊂ H and takes
rB∞ to the simplex Slog(r) ⊂ H. This logarithmic map is |µKm,1 |-to-one on
Exp(a∞)×1 , as it sends roots of unity to the all-one vector in KR, yielding
the extra factor |µKm,1 | in Equation (6.98). Here, µKm,1 = µK ∩Km,1, i.e.,
the roots of unity in Km,1.

As a corollary of Lemma 6.14(i) we deduce that

|Exp(a)×τ ∩ rB∞| = |Exp(a + LκM)×τ ∩ rB∞|

for κ ∈ Km,1, i.e., the number of elements |Exp(a)×τ ∩ rB∞| only depends
on the Arakelov ray class of a (next to r ∈ R, m and τ ∈ Km). Choose
a (measurable) fundamental domain F ⊆ Div0

Km of the quotient group
Pic0

Km , and put FTm = {a ∈ F | [a] ∈ Tm}, a fundamental domain of Tm in
Pic0

Km . Then, by the assumption that [D] is uniform on Pic0
Km , and writing

r̃ = rN (c)−1/n we deduce

E
a←D

[
|Exp(a + d(c))×τ ∩ rB∞|

]
= E

a←D

[
|Exp(a + d0(c))×τ ∩ r̃B∞|

]
= E

a←U(F )

[
|Exp(a + d0(c))×τ ∩ r̃B∞|

]
= E

a←U(F )

[
|Exp(a + LτM)×τ ∩ r̃B∞|

]
= E

a←U(F )

[
|Exp(a)×1 ∩ r̃B∞|

]
= 1
|ClmK |

E
a←U(FTm )

[
|Exp(a)×1 ∩ r̃B∞|

]
(6.99)

where the first equality follows from scaling (Lemma 6.14(ii)) and the second
one by the fact that the random variable is an Arakelov ray class invariant
(Lemma 6.14(i)) and that [D] is uniform on Pic0

Km . The third equality holds
because F + d0(c)− LτM is a fundamental domain of Pic0

Km in Div0
Km if F

is. The fourth equality follows directly from Lemma 6.14(i), and the last
equality follows from Definition 6.2. Namely, an Arakelov divisor a can only
have generators if the ideal class of Exp(af) is trivial, i.e., if [a] ∈ Tm. So,
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instead, a can be chosen uniformly from a fundamental domain FTm of Tm

in Div0
Km , with a correction factor of 1

|ClmK |
in the expected value.

6.5.5. Taking the Logarithmic Map into H = Log K0
R

By taking the Logarithmic image, we find, by Lemma 6.14(iii), that Equa-
tion (6.99) equals

|µKm,1 |
|ClmK |

· E
a←U(FTm )

[
|ΛKm,1 + (aνσ )σ ∩ Slog(r)−logN (c)/n|

]
(6.100)

= |µKm,1 |
|ClmK |

Vol(Slog(r)−logN (c)/n)
Vol(FTm) (6.101)

= |µK | · C(r,N (c))
|ClmK | · [O×K : O×Km,1 ] ·RK

= |µK | · C(r,N (c))
ϕ(m) · hK ·RK

. (6.102)

where C(r,N (c)) = Vol(Slog(r)−logN (c)/n) = (n log r−logN (c))r/r! whenever
N (c) ≤ rn and zero otherwise; and where ϕ(m) = |(OK/m)∗|. The first
inequality of Equation (6.101) follows from Lemma 6.1, the second equality
follows from Lemmas A.1 and A.2 and the fact that Vol(FTm) = Vol(Tm) =
[O×K : O×Km,1 ] · |µKm,1 | · |µK |−1 ·Vol(T ) (see Lemma 2.16). The third inequality
(Equation (6.102)) uses the fact that |ClmK | · [O×K : O×Km,1 ] = ϕ(m) · hK (see
Lemma 2.15).

Remark 6.15. Note that all number-theoretic quantities in Equation (6.102)
make sense intuitively: one out of hK random ideal lattices is expected to
be principal, the density of units (including roots of unity) is |µK |/RK and
one out of ϕ(m) random elements coprime to m equals τ mod m

Combining Equations (6.96), (6.99) and (6.100) and the class number formula
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(see Equation (2.11)), we have

E
a←D

[pa,c]

E
a←D

[
Pr

α←Exp(a)∩rB∞

[
(α) · Exp(−a) = c

∣∣ α · Exp(−a∞) ∈ τKm,1
]]

∈ [e−1/4, e1/4] ·
√
|∆K | · N (m)

rn · 2nR · (2π)nC
E

a←D

[
|Exp(a + d(c))×τ ∩ rB∞|

]
= [e−1/4, e1/4] ·

√
|∆K | · N (m)

rn · 2nR · (2π)nC
· |µK | · C(r,N (c))
ϕ(m) · hK ·RK

= [e−1/4, e1/4] · C(r,N (c))
rn · ρK

· N (m)
ϕ(m) ≥ e

−1/4 · C(r,N (c))
rn · ρK

. (6.103)

where C(r,N (c)) = (n log r − logN (c))r/r! whenever N (c) ≤ rn and zero
otherwise.

6.5.6. Applying the Abel Summation Formula

We have, by Equation (6.103),

E
a←D

[
Pr

α←Exp(a)∩rB∞

[
(α) Exp(−a) ∈ Sm

∣∣ αExp(a∞) ∈ τKm,1
]]

= E
a←D

[∑
c∈Sm

pa,c

]
=
∑
c∈Sm

E
a←D

[pa,c] ≥
e−1/4

rn · ρK

∑
c∈Sm
N (c)≤rn

C(r,N (c)). (6.104)

Lemma 6.16. Let Sm ⊆ ImK a set of integral ideals, let r > e, and denote
C(r,N (c)) = (n log r−logN (c))r

r! . Then

1
rn · ρK

∑
c∈Sm
N (c)≤rn

C(r,N (c)) ≥ 1
2 · δSm [rn]

Proof. We apply the Abel partial summation formula with aN,Sm := |{c ∈
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Sm | N (c) = N}| and C(r,N) := (n log r−logN)r
r! , whose derivative equals

d
dNC(r,N)

∣∣∣
t

= −(n log r − log t)r−1

t · (r− 1)!

= −rn

t · (r− 1)! ·
[
d
dNΓ

(
r, n log r − logN

)]∣∣∣
t
,

where Γ(r, x) =
∫∞
x ur−1e−udu is the upper incomplete Gamma function. Re-

call that |Sm(t)| = ∑
N≤t aN,Sm . A typical application of the Abel summation

formula yields
1

rn · ρK

∑
c∈Sm
N (c)≤rn

C(r,N (c))

= 1
rn · ρK

∑
1≤N≤rn

aN,Sm · C(r,N)

= −
∫ rn

t=1

|Sm(t)|
ρK · rn

·
[
d
dNC(r,N)

∣∣∣
N=t

]
dt

= 1
(r− 1)!

∫ rn

t=1

|Sm(t)|
ρK · t

·
[
d
dNΓ

(
r, n log r − logN

)∣∣∣
N=t

]
dt, (6.105)

Using Definition 6.6 about ideal density and the fact that the integrand is
positive, Equation (6.105) is lower bounded by

1
(r− 1)!

∫ rn

t=(r/e)n

|Sm(t)|
ρK · t

·
[
d
dNΓ

(
r, n log r − logN

)∣∣∣
N=t

]
dt

≥ δSm [rn]
(r− 1)!

∫ rn

t=(r/e)n

[
d
dN Γ

(
r, n log r − logN

)∣∣∣
N=t

]
dt ≥ 1

2 · δSm [rn], (6.106)

where the last inequality (Equation (6.106)) follows from the definition of
the upper incomplete Gamma function,

1
(r− 1)!

∫ rn

t=(r/e)n

(
d

dt
Γ(r, n log r − logN)

∣∣
N=t

)
dt

= 1
(r− 1)! · (Γ(r, 0)− Γ(r, n)) = 1− e−n

r−1∑
k=0

nk

k! ≥ 1/2,

where we used the fact that e−n∑r−1
k=0

nk

k! equals the probability that a Poisson
distribution with parameter n yields at most r − 1 ≤ n − 1 occurrences,
which is bounded by a half.
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We conclude that

E
a←D

[pa,c]

= E
a←D

[
Pr

α←Exp(a)∩rB∞

[
(α) Exp(−a) ∈ Sm

∣∣ αExp(−a∞) ∈ τKm,1
]]

≥ e−1/4

rn · ρK

∑
c∈Sm
N (c)≤rn

C(r,N (c)) ≥ δSm [rn]/3.

This concludes the proof of Theorem 6.9.

Remark 6.17. As already mentioned, the fraction 1
3 before δSm [rn] can be

made arbitrarily close to 1. In order to achieve that, we need to enlarge the
‘ideal density’ interval in Definition 6.6 to [x/e2n, x] and we need to increase
the radius r ∈ R>0 in Lemma 6.13.

In the case of this larger density interval, the Poisson distribution in above
proof changes into a Poisson distribution with parameter 2n, but with the
same bound (r− 1 ≤ n− 1) on the occurrences. This yields an exponential
instead of a constant bound. Increasing the radius r by an exponential factor
2n also yields an exponential bound on the error. So, by implementing these
changes, one can obtain a lower bound on the probability in Theorem 6.9 of
(1−O(e−n)) · δSm [rn], which is exponentially close to optimal.

6.6. Ideal Sampling

6.6.1. Sampling in a Box

In this section, we explain how one can efficiently sample in a (distorted)
infinity box, provided that all the dimensions of the box are sufficiently large.
More precisely, let (rσ)σ ∈ KR be such that rσ > 0 for all coordinates. We
let (rσ)σB∞ denote the distorted box

(rσ)σB∞ := {(xσ)σ ∈ KR | |xσ| ≤ rσ, ∀σ}.
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Proposition 6.18. Let a ⊂ OK be an ideal represented by a basis Ma, let
β ∈ OK be a shift and let (rσ)σ ∈ KR be such that rσ > 0 for all σ. Assume
that for all embeddings σ, it holds that rσ ≥ 4 · 2n ·n3/2 · |∆K |3/(2n) ·N (a)1/n.
Then, there exists an algorithm sampling uniformly in (a + β) ∩ (rσ)σB∞
using time O

(
n6 log(|Ma|)3), where |Ma| denotes the length of the longest

basis vector of Ma.

Remark 6.19. This lemma can be seen as the ‘algorithmization’ of the
ideas in the very similar Lemma 6.13. In that particular lemma (see also
Figure 6.1), an estimation is made of the number of lattice points in a box,
where Voronoi cells are used as the fundamental domain.

In the proof of this lemma, we sample a random element in the ambient
vector space of the lattice that also lies in the predescribed box (rσ)σB∞.
Then, we use a ‘rounding algorithm’ to round this real vector to an actual
lattice point in a. Such a rounding algorithm needs a fundamental domain
of the lattice a, which can be computed by means of the LLL-algorithm. This
might yield quite a skewed fundamental domain, hence the slightly worse
requirements on the parameters, compared to Lemma 6.13.

Proof. The algorithm first computes (in polynomial time) an LLL reduced
basis (a1, · · · , an) of a from Ma. This basis satisfies ∥ai∥ ≤ 2nλn(a) ≤
2n ·
√
n · |∆K |3/(2n) ·N (a)1/n (using Lemma 2.22). After that, reduce β ∈ OK

modulo this LLL reduced basis (a1, · · · , an) of a, yielding β̃ ∈ β + a. That
is, write β = ∑

i tiai and put β̃ = ∑
i(ti − ⌊ti⌉)ai.

Denoting D := ∑
i ∥ai∥∞ ≤ 2n ·

√
n · |∆K |3/(2n) · N (a)1/n for the sum of

the infinity norms of the basis vectors ai, we have ∥β̃∥∞ ≤ D. Also, by
assumption on (rσ)σ, it holds that rσ ≥ 4nD for every embedding σ.

To sample a uniform element v ∈ a∩(rσ)σB∞, the algorithm goes through the
following steps. It first samples a uniform element t = (tσ)σ ∈ (rσ +2D)σB∞.
This can be done in time poly(n, log(maxσ rσ + 2D)), by sampling every
first rR + rC coordinates of t ∈ KR independently, and defining the last
rC ones appropriately in order to have t ∈ KR. The algorithm then writes
t = ∑

i tiai with ti ∈ R (the vector t lies in the real span of a) and puts
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v = ∑
i⌊ti⌉ai + β̃, which lies in β + a. Finally, the algorithm outputs v if

v ∈ (rσ)σB∞, otherwise it restarts.

Let us first show that the distribution of v is indeed uniform in (a + β) ∩
(rσ)σB∞. Let us define P = {∑i xiai , xi ∈ [−1/2, 1/2]} the fundamental
parallelepiped associated to the basis (a1, · · · , an). It holds that for all x ∈ P ,
we have ∥x∥∞ ≤ D.

The probability of sampling v = α+ β̃ ∈ (rσ)σB∞ for α ∈ a via the above
procedure is equal to the probability of sampling t ∈ α+P ⊆ (rσ + 2D)σB∞.
This probability is equal to Vol(P)/Vol((rσ + 2D)σB∞ ∩KR), which does
not depend on α ∈ a. We conclude that above sampling procedure yields
v = α+ β̃ that are uniformly distributed in (a+ β)∩ (rσ)σB∞. The running
time of the algorithm is dominated by the LLL-reduction of Ma, which takes
time O

(
n6 log(|Ma|)3), where |Ma| denotes the length of the longest basis

vector of Ma.

To conclude the proof, we show that the success probability of the algorithm
is constant. Indeed, observe that whenever t = ∑

i tiai ∈ (rσ−2D)σB∞, then
we have v = ∑

i⌊ti⌉ai + β̃ ∈ (rσ)σB∞ (since ∥t − v∥∞ ≤ D and ∥β̃∥ ≤ D),
and so the algorithm succeeds. The success probability of the algorithm is
then at least

Vol((rσ − 2D)σB∞ ∩KR)
Vol((rσ + 2D)σB∞ ∩KR) =

∏
σ

(1− 2D/rσ
1 + 2D/rσ

)
≥
(

1− 1
2n

1 + 1
2n

)n
≥ 1/3,

where we used the fact that 2nD/rσ ≤ 1/(2n) for any σ. This concludes the
proof.

6.6.2. The Sampling Algorithm

Definition 6.20. We denote by SB the set of B-smooth ideals, i.e.,

SB = {a ideal of OK
∣∣ for any prime ideal p | a holds N (p) ≤ B}
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Algorithm 7: Sampling of β ∈ b such that β ≡ τ modulo m

Require:

• A modulus m ⊆ OK .
• An ideal b ⊆ OK coprime with m,
• An element τ ∈ OK coprime with m,
• An error parameter ε > 0.

Ensure: An element β ∈ b such that

• β ≡ τ modulo m,
• | N (β)| ≤ N (b) ·BN · rn, where r = 4 · 2n ·n3/2 · |∆K |

3
2n ·N (m) 1

n ,
where B = Õ

(
n4[log log(1/ε)]2 + n2[log(|∆K | N (m))]2

)
and

N = ⌊8n+ logN (m) + log |∆K |+ 2 log(1/ε)⌋ as in Theorem 6.3.

1: Multiply b by N random prime ideals coprime with m and that have a
norm bounded by B, obtaining b̃ = b ·

∏
j pj .

2: Sample a Gaussian distortion (xσ)σ ∈ H ⊆ logKR with parameter
s = 1/n2 and define the (exσ )σ-distorted box
B̃ = (exσ · r · N (b̃)1/n)σB∞.

3: Compute τ̃ ∈ b̃ such that τ̃ ≡ τ modulo m.
4: Sample an element β ∈ (b̃m + τ̃) ∩ B̃ = b̃ ∩ (m + τ) ∩ B̃ uniformly

random following the algorithm from Proposition 6.18.
5: return β.

Theorem 6.21 (ERH). Let S be any set of integral ideals, let m ⊆ OK
be any ideal modulus, let b ⊆ OK be an integral ideal coprime with m and
let τ ∈ (OK/m)∗ be any invertible element modulo m. Let, furthermore,
r ≥ 4 · 2n · n3/2 · |∆K |

3
2n · N (m) 1

n and let ε > 0 be an error parameter.
Then, assuming the Extended Riemann Hypothesis, Algorithm 7 outputs in
time T = poly(log |∆K |, size(N (b)), log(1/ε), log(N (m))) an element β ∈ b

such that

• (β)/b ∈ (S · SB) ∩ ImK ,
• β ≡ τ mod m
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with probability at least 1
3δS [rn]− ε.

Here, B = Õ
(
n2 ·

[
n2 · (log log(1/ε))2 + (log(|∆K | N (m)))2]).

Proof. We split the proof into two parts. We start with the proof of correct-
ness and the success probability and finish with the proof of the polynomial
running time.

(Correctness and success probability). By Lemma 6.22, which we will treat
later, the ideal-element pair

(
(β)/b̃, β

)
∈ ImK × OK from Algorithm 7 is

distributed as
(
(α) Exp(−a), αExp(−a∞)

)
with a ← W = W(N,B, s) +

d0(b) and α ← Exp(a) ∩ rB∞ uniformly. Here W = W(N,B, s) + d0(b)
is the random walk distribution starting on the point d0(b) ∈ Div0

Km (see
Definition 4.1).

For the random walk distribution W =W(N,B, s) + d0(b) on Div0
Km with

these parameters holds that [W ] on Pic0
Km is ε-close to uniform in the total

variation distance. So, allowing an error of ε we may as well assume that a
instead comes from a distribution D on Div0

Km that satisfies [D] = U(Pic0
Km)

(see Lemma 6.23).

By applying Theorem 6.9, one then obtains that the expected probability
(over the randomness of a ∈ Div0

Km) that (β)/b̃ = (α) Exp(−a) ∈ S ∩ ImK
given that β = αExp(−a∞) ≡ τ mod m is at least 1

3δS [rn] − 2−n. From
the fact that b̃ = b ·

∏
j pj with pj ∤ m and N (pj) ≤ B, we have that

(β)/b ∈ (S · SB) ∩ ImK in that case, and the result follows.

(Running time). Note that logB and N are poly(log |∆K |, size(N (b)),
log(1/ε), log(N (m))), so any complexity polynomially involving logB and
N must be polynomial in the size of the input as well. In the following
complexity analysis, any complexity that is within poly(log |∆K |, size(N (b)),
log(1/ε), log(N (m))) we will call ‘polynomial in the size of the input’.

For the running time, we go through steps 1 to 4 of Algorithm 7. Step
1 involves the sampling of N primes, which, by Lemma 2.14 takes O(N ·
n2 log2B) time, clearly polynomial in the size of the input; the fact that
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the primes need to be coprime with m does not give a significant overhead2.
Multiplication of two ideals can be done by LLL-reducing the n2 × n matrix
involving all products of the Z-generators of the respective ideals, taking
time at most Õ(n8+η log(M)1+η) [NS16] for any η > 0, where M is the
maximum entry of the matrix involved3. This multiplication is done with
N ideals, which means that the total time of this ideal multiplication is
polynomial in the size of the input. An alternative way to see this is by
using the two-element representation of ideals (e.g., [CS08, §4.7]).

Step 2 requires to sample a Gaussian in H = LogK0
R, which can be done

by inverse transform sampling, without a significant running time. The
estimation of the time required for sampling in the box (exσ ·r ·N (b̃)1/n)σB∞
is deferred to step 4.

In step 3 one only needs to compute β ∈ b̃ and µ ∈ m such that β + µ = 1.
In that case τ̃ = βτ suffices. Such a pair (β, µ) ∈ b̃ × m can be found by
applying the Hermite normal form to the concatenated basis matrices of b̃
and m [Coh99, Prop. 1.3.1]. This requires Õ(n5 log(M)2) time [SL96], where
M is the maximum entry occurring in the basis matrices.

Step 4 requires the sampling-in-a-box algorithm described in Proposition 6.18
which requires O(n6 log(|∆K | N (mb̃))3) = O(n6 log(|∆K | N (m)BN )3) time.

Clearly all steps require time at most polynomial in the size of the input,
which proves the time complexity claim.

Above proof needs the results of Lemma 6.22 and Lemma 6.23. The first
proves the fact that Algorithm 7 mimics a random walk, and the second
shows that the random walk distribution on Div0

Km is close to a distribution
D for which [D] is uniform on Pic0

Km . After these two lemmas, the proof is
completed.

2In the sampling procedure in Lemma 2.14, the first step is sampling a random integer
p in [0, B]. In this particular step one can avoid primes dividing m by simply compute
the greatest common divisor of p and N (m). This only gives a non-significant overhead
compared to the full algorithm in Lemma 2.14.

3This time estimate is from Neumaier and Stehlé [NS16], instantiated with β =
log maxi ∥bi∥ ≤ log(nM) and lattice dimension n2.
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Lemma 6.22 (Algorithm 7 mimicks a random walk). Let m ⊆ OK a
modulus, let N,B, s and r as in Algorithm 7 and let W = W(N,B, s) be
the random walk distribution on Div0

Km (see Definition 4.1). Let Wr be the
distribution on KR ×Div0

Km obtained by sampling a ←W(N,B, s) + d0(b)
and subsequently sampling α ∈ Exp(a) ∩ rB∞ uniformly.

Then the pair
(
(β)/b̃, β

)
∈ ImK × OK obtained by running Algorithm 7

follows the exact same distribution as
(
(α) Exp(−a), αExp(−a∞)

)
with

(α,a)←Wr.

Proof. The difference in the sampling procedure consists of where the dis-
turbance of the ‘infinite places’ happens. In the case of the random walk,
the disturbance happens on the the divisor, whereas in Algorithm 7 the
disturbance happens on the box to be sampled in. We will show that this
does not matter for the end distribution.

Both the distribution W and Algorithm 7 involve the following two random
processes: picking N uniformly random primes from

{p ∈ ImK prime | N (p) ≤ B}

and sampling a Gaussian (xσ)σ ∈ H; both with the exact same parameters.
Without loss of generality, we can therefore focus on one fixed sample
{pj | 1 ≤ j ≤ N} of primes and one fixed vector (xσ)σ ∈ H.

This means that we consider the fixed a = ∑N
j=1LpjM +∑

ν xσν LνM + d0(b) ∈
Div0

Km for the procedure involving Wr and the fixed ideal b̃ = b
∏N
j=1 pj and

distortion (e−xσ )σ for the procedure involving Algorithm 7. Then, writing
b̃ = N (b̃)1/n,

Exp(a) = (exσ )σb̃/b̃, Exp(af) = b̃ and Exp(a∞) = (exσ )σ/b̃

Thus, αExp(−a∞) for uniformly random α ∈ Exp(a) ∩ rB∞ is distributed
as

Exp(−a∞) · U
(

Exp(a) ∩ rB∞
)

= (e−xσ )σ · b̃ · U
(
(exσ )σb̃/b̃ ∩ rB∞

)
= U

(
b̃ ∩ (e−xσ )σ · b̃ · rB∞

)
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which is exactly the distribution of β ∈ b̃ in Algorithm 7 for fixed b̃. It
follows that (α) Exp(−a) = (α) Exp(−a∞) Exp(−af) = (α) Exp(−a∞)/b̃ is
distributed as (β)/b, which finishes the proof.

Lemma 6.23 (Lifting property of distributions). Suppose that a distribution
D : Div0

Km → R satisfies ∥[D]− U(Pic0
Km)∥1 < ε (see Definition 6.8). Then

there exists a ‘lifted’ distribution DU : Div0
K → R+ such that [DU ] =

U(Pic0
Km) and ∥D − DU∥1 < ε.

Proof. Put

DU (a) =


1

Vol(Pic0
Km ) ·

D(a)
[D]([a]) if [D]([a]) ̸= 0

u otherwise
,

for some u : Div0
Km → R+ that satisfies [u] = 1

Vol(Pic0
Km ) . Then, one can

check that [DU ] = 1
Vol(Pic0

Km ) is uniform on Pic0
Km . Furthermore, writing F

for a fundamental domain in Div0
Km for Pic0

Km , we have

∥D − DU∥1 =
∫

a∈F

∫
α∈K∗/µK

|D(a + LαM)−DU (a + LαM)|dαda

=
∫

[a]∈Pic0
Km

∣∣∣∣∣[D]([a])− 1
Vol(Pic0

Km)

∣∣∣∣∣ d([a])

= ∥[D]− U(Pic0
Km)∥1 ≤ ε.

The first equation holds by definition, the second equation by the fact that
the sign of (D(a + LαM)−DU (a + LαM)) depends per construction solely on
the coset [a].

233




