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5. A Worst-case to Average-case
Reduction for Ideal Lattices

5.1. Summary

In this chapter we achieve a worst-case to average-case reduction for the
Hermite Shortest Vector Problem (SVP) on ideal lattices of a fixed number
field. Such a reduction allows to transform a fixed chosen instance of a
problem (the worst case) to a sample of a fixed distribution over all instances
of this problem (the average case). Slightly more formally said, a worst-case
to average-case reduction consists of two parts: the first one being a definition
of the average-case distribution and the second one being an algorithm that
reduces any input instance to a sample of that average-case distribution.

In the reduction of this chapter, which concerns Hermite-SVP on ideal
lattices of a fixed number field, this average-case distribution will be defined
as something closely related to the uniform distribution on the Arakelov class
group. This Arakelov class group is essentially the group of ideal lattices up
to isometry.

The reduction algorithm in this chapter transforms any fixed input ideal
lattice to a sample of the average-case distribution on the Arakelov class
group by means of a random walk, as introduced in the previous chapter.
This ‘random walk’ transformation of the input ideal lattice only slightly
changes its geometry and is therefore compatible with the Hermite Shortest
Vector Problem. More concretely, any short vector of the transformed ideal
lattice can be reasonably untransformed to yield a short vector of the input
lattice, with only a small loss in quality.
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5. A Worst-case to Average-case Reduction for Ideal Lattices

This particular approach for a worst-case to average-case reduction faces two
challenges. The first challenge consists of finding a suitable representation
of ideal lattices (or Arakelov classes), whereas the second one involves an
appropriate treatment of the inherently continuous ideal lattices on finite
precision machines.

Such a representation of ideal lattices suitable for the purposes of the
worst-case to average-case reduction turns out to be doable by means of
a distribution over the group of fractional ideals. More precisely, with any
fixed ideal lattice we associate an algorithm that efficiently samples from a
specific distribution, mainly consisting of fractional ideals that geometrically
resemble the input ideal lattice – i.e., whose Arakelov class is close to that of
the original ideal lattice. This specific distribution is then our representation
of that fixed ideal lattice.

The appropriate treatment of the inherently continuous objects on finite
machines happens by discretization. A considerable amount of this chapter
is devoted to showing that this discretization does not have a significant
effect on the overall worst-case to average-case reduction.

5.2. Introduction

The space of all ideal lattices (up to isometry) in a given number field
forms naturally an abelian group, called the Arakelov class group – a fact
well known to number theorists (e.g., [Sch08]). Yet this notion has never
appeared explicitly in the literature on lattice-based cryptography. The
relevance of this perspective is already illustrated by some previous work
which implicitly exploit Arakelov ideals [Eis+14; BS16] and even the Arakelov
class group [PHS19; Lee+19]. Beyond its direct result, this chapter aims at
highlighting this powerful Arakelov class group formalism for finer and more
rigorous analysis of computational problems in ideal lattices.
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5.2. Introduction

5.2.1. The Result

We exploit the random walk theorem of Chapter 4 to relate the average-case
and the worst-case of Ideal-SVP, due to the interpretation of the Arakelov
class group as the space of all ideal lattices up to isometry. Note that this
reduction does not directly impact the security of existing schemes: there
exists no modern cryptographic scheme based on the average-case version
of Ideal-SVP. The value of our result lies in the introduction of a new tool,
and an illustration of the cryptanalytic insights it offers.

As already mentioned, ideal lattices (up to isometry) of a given number
field K can be identified with the elements of the Arakelov class group, also
known as the degree zero part Pic0

K of the Picard group. There are two
ways to move within this group: given an ideal, one can obtain a new one by
‘distorting’ it, or by ‘sparsifying’ it. In both cases, finding a short vector in
the target ideal also allows to find a short vector in the source ideal, up to
a certain loss of shortness. So, the quality (i.e., the shortness) of the short
vector deteriorates with each extra step of the walk; therefore, we minimize
the length of the random walk subject to the requirement that the target
ideal is uniformly randomly distributed in the Arakelov class group.

This approach leads to a surprisingly tight reduction. In the case of cyclo-
tomic number fields of prime power conductor m = pk, under the Riemann
Hypothesis for Hecke L-functions (which we abbreviate ERH for the Ex-
tended Riemann Hypothesis), and a mild assumption on the structure of
the class groups, the loss of approximation factor is as small as Õ(

√
m). In

other words:

Main Theorem (informal). Let m = pk be a prime power. If there exists
a polynomial-time algorithm for solving Hermite-SVP with approximation
factor γ over random ideal lattices of Q(ζm), then there also exists a poly-
nomial time algorithm that solves Hermite-SVP in any ideal lattice with
approximation factor γ′ = γ ·

√
m · poly(logm).

In fact, this theorem generalizes to all number fields, but the loss in approxi-
mation factor needs to be expressed in more involved quantities. The precise
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5. A Worst-case to Average-case Reduction for Ideal Lattices

statement is the object of Theorem 5.9.

5.2.2. Overview

The Arakelov class group. Both the unit group [Cra+16] and the class
group [CDW17] have been shown to play a key role in the cryptanalysis of
ideal lattice problems. In these works of Cramer et al. [Cra+16; CDW17],
these groups are exploited independently, in ways that nevertheless share
strong similarities with each other. More recently, both groups have been
used in combination for cryptanalytic purposes [PHS19; Lee+19]. It therefore
seems natural to turn to a unifying theory.

The Arakelov class group (denoted Pic0
K) is a combination of the unit torus

T = LogK0
R/Log(O×K) and of the class group ClK . The exponent 0 in K0

R
refers to elements of algebraic norm 1 (i.e., modulo renormalization), while
the subscript R indicates that we are working in the topological completion
of K. By ‘a combination’ we do not exactly mean that Pic0

K is a direct
product; we mean that there is a short exact sequence

0 −→ T −→ Pic0
K −→ ClK −→ 0.

That is, T is (isomorphic to) a subgroup of Pic0
K , and ClK is (isomorphic

to) the quotient Pic0
K /T . The Arakelov class group is an abelian group

which combines an uncountable (yet compact) part T and a finite part ClK ;
topologically, it should be thought of as |ClK | many disconnected copies of
the torus T (see Figure 4.1).

A worst-case to average-case reduction for ideal-SVP. An important aspect
of the Arakelov class group for the present work is that this group has a
geometric interpretation: it can essentially be understood as the group of all
ideal lattices up to K-linear isometries. Furthermore, being equipped with a
metric, it naturally induces a notion of near-isometry. Such a notion gives a
new handle to elucidate the question of the hardness of ideal-SVP. Namely,
knowing a short vector in a, and a near-isometry from a to ã, one can
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5.2. Introduction

deduce a short vector of ã up to a small loss induced by the distortion of the
near-isometry. This suggests a strategy towards a worst-case to average-case
reduction for ideal lattices, namely by randomly distorting a worst-case ideal
to a random one (see Figure 5.2).

However, there are two issues with this strategy: first, this near-isometry
keeps staying in a fixed class of ClK ; i.e., one is stuck in one of the potentially
many separated copies of the torus that constitute the Arakelov class group.
Second, even if |ClK | = 1, the unit torus T might be too large, and to reach
the full torus from a given point, one may need near-isometry that are too
distorted for our purposes.

In the language of algebraic geometry, distortion of ideal lattices corresponds
to the ‘infinite places’ of the field K, while we can also exploit the ‘finite
places’, i.e., the prime ideals. Indeed, if c is an integral ideal of small norm
and ã = ca, then ã is a sublattice of a and a short vector of ã is also a
somewhat short vector of a, an idea already used in [CDW17; PHS19] (see
Figure 5.1).

Figure 5.1.: If c is an integral ideal of small norm and ã = ca, then ã is a sublattice of a
and a short vector of ã is also a somewhat short vector of a.

5.2.3. Related work

Relation to recent cryptanalytic works. The general approach to this result
was triggered by a heuristic observation made in [DPW19], suggesting that
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5. A Worst-case to Average-case Reduction for Ideal Lattices

the worst-case behavior of the quantum ideal-SVP algorithm built out
of [Eis+14; BS16; Cra+16; CDW17] could be made not that far of the
average-case behavior they studied experimentally. More specifically, we
do achieve the hoped generalization of the class group mixing theorem
of [JMV09; JW15] to Arakelov class groups.

Prior self-reduction via random walks. As already mentioned, our result
shares strong similarities with a technique introduced by Jao, Miller and
Venkatesan [JMV09] to study the discrete logarithm problem on elliptic
curves. Just as ideal lattices can be seen as elements of the Arakelov class
group, elliptic curves in certain families are in bijective correspondence
with elements of the class group of a quadratic imaginary number field.
In [JMV09], Jao et al. studied (discrete) random walks on class groups, and
showed that they have a rapid mixing property. They deduced that from
any elliptic curve, one can efficiently construct a random isogeny (a group
homomorphism) to a uniformly random elliptic curve, allowing to transfer
a worst case instance of the discrete logarithm problem to an average case
instance. Instead of the finite class group, we studied random walks on
the infinite Arakelov class group, which led to consequences in lattice-base
cryptography, an area seemingly unrelated to elliptic curve cryptography.

Prior self-reduction for ideal lattices. Our self-reducibility result is not the
first of its kind: in 2010, Gentry already proposed a self-reduction for an ideal
lattice problem [Gen10], as part of his effort of basing Fully-Homomorphic
Encryption on worst-case problems [Gen09]. Our result differs in several
points.

• Our reduction does not rely on a factoring oracle, and is therefore
classically efficient; this was already advertised as an open problem
in [Gen10].

• The reduction of Gentry considers the Bounded Distance Decoding
problem (BDD) in ideal lattices rather than a short vector problem.
Note that this distinction is not significant with respect to quantum
computers [Reg09].
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5.3. Representation of Ideal Lattices by Means of Distributions

• The definition of average case distribution is significantly different,
and we view the one of [Gen10] as being somewhat ad-hoc. Given that
the Arakelov class group captures exactly ideal lattices up to isometry,
we consider the uniform distribution in the Arakelov class group as a
much more natural and conceptually simpler choice.

• The worst case ideal input of [Gen10] has restrictions on the size of
the norm, whereas our worst case ideal input is unrestricted.

• The loss on the approximation factor of our reduction is much more
favorable than the one of Gentry [Gen10]. For example, in the case
of cyclotomic number fields with prime-power conductor, Gentry’s
reduction (on BDD) seems to loose a factor at least Θ(n4.5), while our
reduction (on Hermite-SVP) only loses a factor Õ(

√
n) making a mild

assumption on plus-part h+ of the class number.

Structure of this chapter

We start the remainder of this chapter by constructing an representation
of Arakelov class elements that is appropriate to use in a worst-case to
average-case reduction (Section 5.3).

After that, we describe a simplified version of the worst-case to average-case
reduction; we leave out the difficulties concerning finite machine precision
(Section 5.4). In the last part of this chapter, we will show by quite tech-
nical means that ignoring finite precision does not impact the reduction
significantly (Section 5.5).

5.3. Representation of Ideal Lattices by Means of
Distributions

Ideal lattices

Though the notion of ideal lattices is already given in this thesis (see
Definition 2.19), we will restate the definition here.
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5. A Worst-case to Average-case Reduction for Ideal Lattices

Definition 5.1 (Ideal lattices). Let K be a number field with ring of integers
OK . An ideal lattice of K is a OK-module I ⊆ KR, with the additional
requirement that there exists an x ∈ KR\{0} such that xI ⊆ OK . We denote
the group of ideal lattices by IdLatK .

In essence, the group of ideal lattices IdLatK can be considered as a sort-of
completion of the group of fractional ideals IK , in the same sense that the
reals R are a completion of Q. A straightforward way to imagine an ideal
lattice xa ⊆ KR is to think of an ideal a ⊆ OK that is ‘perturbed’ by a
vector x ∈ KR = {y ∈⊕σ:K→CC | yσ̄ = yσ} (see Figure 5.2).

Figure 5.2.: In this two-dimensional example, the left ideal lattice is slightly stretched in
the x-direction and slightly shrunk in the y-direction, leading to the perturbed
ideal lattice on the right. The yellow circle functions as a visual aid, making
the precise deformation of the lattice more explicit.

Representations

Above interpretation immediately gives a representation of the ideal lattice
xa by the pair (x, a) ∈ KR × IK . But that representation is by no means
unique; indeed, one can check that (xα−1, (α)a) ∈ KR × IK , for example,
generates the same ideal lattice for any α ∈ K∗. Here, α−1 ∈ K is seen as
an element in KR via the Minkowski embedding K ↪→ KR.
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5.3. Representation of Ideal Lattices by Means of Distributions

Why do we need an efficient and canonical representation of an ideal
lattice (or Arakelov class)?

As mentioned before, a worst-case to average-case distribution of a certain
set of problem instances consists of two parts: the definition of a distribution
on this set of instances, and an algorithm that reduces any fixed problem
instance to this distribution.

Given an Arakelov divisor a ∈ Div0
K , we know how to randomize it so that it

is uniformly random in the quotient group Pic0
K ; namely, by the random walk

procedure (see Chapter 4). So, for any a ∈ Div0
K we can efficiently compute

a distribution Da ∈ L1(Div0
K) that becomes an uniform distribution under

the canonical map L1(Div0
K)→ L1(Pic0

K),D 7→∑
k∈K∗/µK

D(·+ k).

To obtain a worst-case to average-case reduction we need a fixed (average-
case) distribution D0 on Div0

K and an efficient (reduction) map

ψ : L1(Div0
K)→ L1(Div0

K)

such that for all a ∈ Div0
K , ψ(Da) = D0. Also, this reduction map must be

preserving certain geometric properties (be Hermite-SVP compatible) to be
an actual useful reduction map.

Suppose for the moment that one has a canonical ‘lift’ L : Div0
K → Div0

K

for which holds [a] = [b] ⇒ L(a) = L(b); i.e., it ‘factors through’ Pic0
K .

And suppose that this map is compatible with Hermite-SVP, i.e., solving
Hermite-SVP in L(a) allows to solve Hermite-SVP in a. Then this lift L
serves as a reduction map, by sending the distribution Da ∈ L1(Div0

K) to
L(Da), with which we mean the distribution that samples L(b) with density
Da(b). By the fact that Da maps to the uniform distribution under the
canonical map L1(Div0

K)→ L1(Pic0
K), the distribution L(Da) = D0 is the

same for all a ∈ Div0
K . So, such an efficient and Hermite-SVP compatible

lift L, which then computes an efficient and canonical representation of ideal
lattices, is essentially what remains to construct to make the worst-case to
average-case reduction work.
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5. A Worst-case to Average-case Reduction for Ideal Lattices

Algorithm 3: Sampling from the distribution Dxa.
Require: A pair (x, a) ∈ KR × IK such that N (a)∏σ xσ = 1.
Ensure:

• A sample d−1 from the distribution Dxa
• A v ∈ xa such that d−1 = v−1xa.

1: Put ς = 2n+1 · n · |∆K | and M = 2
√
n · ς.

2: Sample a center c = (cσ)σ uniformly in
CM = {(yσ)σ | |yσ| = M for all embeddings σ}.

3: Sample from the discrete Gaussian Gxa,ς,c with respect to the ideal
lattice xa with center c = (cσ)σ and standard deviation ς, leading to
some v ∈ xa.

4: return the inverse integral ideal d−1 = v−1xa ∈ IK and v ∈ xa.

We could not find such an efficient map L that is also compatible with
Hermite-SVP – instead, we use a map L : Div0

K → L1(Div0
K) that is

sufficient for our needs. This is a canonical representation by means of a
distribution. The map we chose has even codomain L1(IK), i.e., involves a
discretization for efficiency. So the map L : Div0

K → L1(IK) we construct,
satisfies L(a) = L(b) for [a] = [b] and is compatible with Hermite-SVP.

Concretely, L(a) consists of sampling a ‘balanced’ element α ∈ a and
outputting the ideal α−1 · a ∈ IK . This ideal then quite resembles the
geometry of a and lies in the same ideal class; so this ideal (when reduced
to the Arakelov class group) must be close to [a].

Representation by means of a distribution

A representation that is both unique and (in some sense) classically efficiently
computable can be made by means of a distribution. We will define a
map IdLatK → L1(IK), xa 7→ Dxa having the property that Dxa is an
efficiently samplable distribution for any input ideal lattice xa ∈ IdLatK .
The computation of this map xa 7→ Dxa is described in Algorithm 3.
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5.3. Representation of Ideal Lattices by Means of Distributions

Remark 5.2. It follows from the description of Algorithm 3 that the distri-
bution Dxa indeed depends only on the ideal lattice xa and not so much on
the representation (x, a) ∈ KR×IK thereof. Hence the notation Dxa, instead
of, for example, D(x,a).

The output of the element v ∈ xa such that d−1 = v−1xa does not take any
part in the distribution Dxa. But it will have a major role in the worst-case
to average-case reduction (see Algorithm 4), because it relates d−1 to the
input ideal lattice xa.

Equivalently, the distributionDxa can be described by the following definition.

Definition 5.3 (Distribution representation of ideal lattices). Let (x, a) ∈
KR×IK . The distribution Dxa ∈ L1(IK) is supported only by inverse integral
ideals. For integral ideals d ∈ IK the probability is defined by the following
rule.

Dxa[d−1] = 1
Vol(CM )

∫
c∈CM

1
ρς(xa− c)

∑
v∈xa

(v)=xad

ρς(v − c)dc, (5.65)

where ς = 2n+1 · n · |∆K |, M = 2
√
n · ς and CM = {(xσ)σ ∈ KR | |xσ| = M},

the M -hypercircle in KR.

The fact that Dxa is a distribution follows by the following computation.∑
d∈IK

Dxa[d−1] = 1
Vol(CM )

∫
c∈CM

1
ρς(xa− c)

∑
d∈IK

∑
v∈xa

(v)=xad

ρς(v − c)

︸ ︷︷ ︸
ρς(xa−c)

dc

= 1
Vol(CM )

∫
c∈CM

dc = 1.

Remark 5.4. The instantiation of ς ∈ R>0 in Definition 5.3 is chosen
this way because of the lower bound ς ≥ 2n+1√n · |∆K |1/(2n) · λn(OK) and
λn(OK) ≥ n

√
|∆K | (see Lemma 2.22). The first of these lower bounds arises
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from the size of an LLL-reduced basis of xa; and the standard deviation ς

needs to be larger than this basis size for an efficient computation of the
discrete Gaussian over xa by Klein’s algorithm [GPV08; Kle00].

The instantiation of M = 2
√
n · ς (or larger) is required in order to have a

balanced v ∈ KR in line 3 of Algorithm 3. A balanced v ∈ KR means that all
entries vσ of v are of roughly the same size, i.e., that maxσ |vσ |

minσ |vσ | is small. This
has as a consequence that d−1 ← Dxa and xa have a very similar geometry
(see Lemma 5.5 part (iii)).

Properties of the distribution representation

Because the distribution D(x,a) in Definition 5.3 depends on the ideal lattice
xa and not on the representing pair (x, a), we can see the domain of the
map D· as the group of ideal lattices IdLatK , i.e., D· : IdLatK → L1(IK),
xa→ Dxa. Even more is true – two isometric ideal lattices xa and yb also
have the same distribution Dxa and Dyb. Two ideal lattices being isometric
means that there exists an element ξ = (ξσ)σ ∈ C1 = {(yσ)σ | |yσ| = 1} such
that xa = ξyb (see Definition 2.20). So, this map can even be interpreted to
have domain Pic0

K .

Another two remarkable properties of the distribution Dxa are that d−1 ←
Dxa always lies in the ideal class [a] and has (with high probability) a
geometry very similar to xa. So, in some sense, we may see a sample
d−1 ← Dxa as a sort of ‘discrete approximation’ of the ideal lattice xa. These
important properties of the distribution representation are spelled out in
the following lemma.

Lemma 5.5 (Properties of the distribution representation). The map D :
IdLatK → L1(IK) has the following properties.

(i) (Isometric lattices have the same distribution) For all xa, yb ∈ IdLatK
which are isometric, i.e., xa ∼ yb, we have Dxa = Dyb.
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5.3. Representation of Ideal Lattices by Means of Distributions

(ii) (Supported by a single ideal class) For all xa ∈ IdLatK , the distribution
Dxa on IK is supported only by inverted integral ideals that lie in the
ideal class [a].

(iii) (Bounded size) For all xa ∈ IdLatK with N (a)∏σ xσ = 1, the weight
of the distribution Dxa is concentrated on inverted integral ideals d−1

for which holds N (d−1) ≥ (ς +M)−n. Concretely,

Pr
d−1←Dxa

[
N (d−1) < (ς +M)−n

]
≤ 2e−n.

(iv) (Similar geometry) For all xa ∈ IdLatK with N (a)∏σ xσ = 1, for
almost all d−1 ← Dxa, we have d−1 = v−1xa with ∥v∥∞∥v−1∥∞ ≤ 3,
i.e., v is balanced. Concretely,

Pr
d−1←Dxa

[
∃v ∈ KR : d−1 = v−1xa and ∥v∥∞∥v−1∥∞ ≤ 3

]
≥ 1− 2e−n

Proof. (i) Write xa = ξyb, use Definition 5.3 and use the fact that |ξσ| = 1
for all embeddings σ to deduce, for a fixed integral ideal d,

1
ρς(xa− c)

∑
v∈xa

(v)=xad

ρς(v − c) = 1
ρς(ξyb− c)

∑
v∈yb

(v)=ybd

ρς(ξv − c)

= 1
ρς(yb− ξ−1c)

∑
v∈yb

(v)=ybd

ρς(v − ξ−1c).

The map c 7→ ξ−1c is an isometric smooth bijection on the hypercircle
CM , so integrating with respect to the variable ξ−1c or c for c ∈ CM
doesn’t change the value of the integral. Therefore, D(x,a)[d−1] =
D(y,b)[d−1] for all d ∈ IK .

(ii) From Equation (5.65) we see that d = (v)/(xa) for v ∈ xa and therefore
d must be an integral ideal in the inverse class of a; so d−1 lies in the
ideal class [a].
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(iii) Use the fact that N (xa) = 1 and the fact that (v) = xad to derive

Pr
d←Dxa

[N (d) > (ς +M)n] = Pr
d←Dxa

[N (xad) > (ς +M)n]

≤ Pr
c←CM

v←Gxa,ς,c

[∥v∥2 >
√
n · ς +

√
n ·M ].

≤ max
c∈CM

Pr
v←Gxa,ς,c

[∥v − c∥2 >
√
n · ς].

Where the first inequality follows from norm inequalities; we have
n−1/2 · ∥v∥2 ≥ n−1 · ∥v∥1 ≥ N (v)1/n = N (xad)1/n ≥ (ς + M). The
second inequality follows from the triangle inequality and the fact that
∥c∥ =

√
n ·M . By Banaszczyk’s tail bound (see Lemma 2.25) and by

smoothing arguments (see Lemma 2.31), we conclude

Pr
v←Gxa,ς,c

[
∥v − c∥ ≥

√
n · ς

]
≤ e−n · ρς(xa)

ρς(xa− c)
≤ 2e−n.

For the smoothing argument we use the fact that ς = 2n+1 ·n · |∆K | ≥
nλn(OK) ≥ η1(xa) (see [MR07, Lm. 3.3 and 3.4]).

(iv) We have, by the norm inequalities, ∥v − c∥ ≥ ∥v − c∥∞, and therefore,
by part (iii) of this lemma,

Pr
v←Gxa,ς,c

[
∥v − c∥∞ ≥

√
n · ς

]
≤ Pr

v←Gxa,ς,c

[
∥v − c∥ ≥

√
n · ς

]
≤ 2e−n.

Since |cσ| = M for all embeddings σ, and since M = 2
√
nς, we have,

except with probability 2e−n,

∥v∥∞
∥∥∥v−1

∥∥∥
∞

= maxσ |vσ|
minσ |vσ|

≤ M +
√
nς

M −
√
nς

= 3.

Remark 5.6. The bound ∥v∥∞∥v−1∥ ≤ 3 w.h.p. in part (iv) of Lemma 5.5
can be tightened to ∥v∥∞∥v−1∥ ≤ 1 +O(e−n) by taking M = 2n · ς. Because
this would only remove a rather non-significant constant 3 in the quality
loss of the output in the worst-case to average-case reduction, we choose this
‘constant bound’ for simplicity.
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A consequence of Lemma 5.5 is that the map D· : IdLatK → L1(IK), that
sends ideal lattices to distributions on IK factors through the quotient group
IdLatK / ∼, where ‘∼’ stands for factoring out by isometries. As the group
of ideal lattices up to isometries is naturally isomorphic to the Arakelov
class group Pic0

K (see Lemma 2.21), we might as well consider Pic0
K as the

domain of the map D.

5.4. The Worst-case to Average-case Reduction

Introduction

A worst-case to average-case reduction consists of two main parts: the
definition of the average-case distribution and an algorithm that reduces a
fixed problem instance to a sample of the average-case distribution.

We start this section with the definition of the average-case distribution,
which is derived from the uniform distribution on the Arakelov class group.
After that, we will describe the reduction algorithm. In this description
of the worst-case to average-case reduction we temporarily ignore issues
regarding real numbers. In the last part of this section we will prove the
correctness of the reduction algorithm and examine the precise quality loss
that occurs in the reduction.

Discussing and solving the issues regarding real numbers and finite precision
in the distribution algorithm Algorithm 3 and the reduction algorithm
Algorithm 4 is deferred to Section 5.5. In that section we will prove that
both the distribution algorithm and the reduction algorithm can be run
efficiently on a finite machine by means of appropriate discretization.

Definition of the average-case distribution

Knowing in advance that the reduction algorithm will make use of the random
walk machinery of Chapter 4, which leads to a near-uniform distribution
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on the Arakelov class group, the average-case distribution must be strongly
tied to this distribution.

Indeed, we define the average-case distribution to be distribution on L1(IK)
defined by the following rule.

DU(Pic0
K)[d−1] = 1

|Pic0
K |

∫
a∈Pic0

K

Da[d−1]da. (5.66)

In essence this is just ‘taking the average’ of all distributions Da (as in
Section 5.3) where a is taken uniformly from the Arakelov class group.

Reduction algorithm

The reduction algorithm essentially consists of taking an input ideal lattice
xa, applying a specific random walk procedure on it as in Chapter 4, yielding
x̃ã, and sampling an ideal d−1 ← Dx̃ã. A rigorous, precise description of this
procedure is spelled out in Algorithm 4.

Remark 5.7. Algorithm 4, and also Algorithm 3, are strictly spoken not
algorithms that can be run on a finite computer, because of the continuous
distributions occurring in the algorithm descriptions. In Algorithm 3 it is
the uniform sampling from the hypercircle CM and in Algorithm 4 it is the
Gaussian sampling that is inherently continuous.

In Section 5.5 we will show that those continuous distributions can be effi-
ciently discretized without a significant impact on the final result. Therefore,
we just ignore these continuity issues for now, for the sake of clarity and
brevity.

Explanation of the reduction algorithm
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5.4. The Worst-case to Average-case Reduction

Algorithm 4: The worst-case to average-case reduction algorithm
Require:

• A pair (x, a) ∈ KR × IK satisfying N (a)∏σ xσ = 1.
• The values [ΛK : C] and η1(C∗) of a suitable sublattice C ⊆ ΛK

of the logarithmic unit lattice,
• An oracle A that solves γ-Hermite SVP in d−1 whenever

d−1 ← DU(Pic0
K).

Ensure: A vector α ∈ xa that is a solution to B1/n · γ-Hermite SVP in
the ideal lattice xa, i.e.,

∥α∥ ≤ γ ·B1/n · det(xa)1/n,

where B = Õ
(
4n · η1(C∗)r · [ΛK : C] · |Pic0

K | · (log |∆K |)2),
or, failure.

1: Put s = max(
√

2 · η1(C∗), (logn)2) and
B = Õ

(
4n · η1(C∗)r · [ΛK : C] · |Pic0

K | · (log |∆K |)2) as in
Corollary 5.8.

2: Multiply the ideal a by a prime ideal p uniformly sampled from the
set {p prime ideal of OK | N (p) ≤ B}, yielding ap.

3: Sample a Gaussian distributed y ← Gs,H , where H is the hyperplane
where the logarithmic unit lattice lives in.

4: Put p = N (p)1/n, so that eyxap/p has norm 1, where ey ∈ KR is the
component-wise exponentiation of y ∈ H.

5: Sample d−1 ← Dey ·x·ap/p using Algorithm 3, and let v ∈ eyxap/p be
the additional output of Algorithm 3 that satisfies d−1 = v−1eyxap/p.

6: Invoke the γ-Hermite SVP oracle A on DU(Pic0
K) to find a κ ∈ d−1 for

which holds ∥κ∥ ≤ γ · det(d−1)1/n

7: return p · e−y · v · κ ∈ xa.
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Randomize the input ideal lattice xa. The first four steps of Algorithm 4
actually applies a random walk on the input ideal lattice xa, resulting
in a randomized ideal lattice x̃ã. By the results of Chapter 4, this ideal
lattice is nearly uniformly distributed in the Arakelov class group. Therefore,
sampling from the distribution Dx̃ã ≈ DU(Pic0

K) associated with this random
ideal lattice x̃ã then yields an ideal d−1 that must be closely distributed as
DU(Pic0

K). So, that is an intuitive idea of why the output ideal d−1 is almost
distributed as the average-case distribution as in Equation (5.66).

Sample d−1 ← Dx̃ã and apply the Hermite-SVP oracle A on d−1. Because
d−1 ← Dx̃ã is so close to the average-case distribution, we can actually invoke
the oracle A to find a short vector in the ideal d−1 ← Dx̃ã. The sampling is
done in step 5 and calling the oracle in step 6 of Algorithm 4.

Transform the short vector γ ∈ d−1 into a short vector in the randomized ideal
lattice x̃ã. Recall that Algorithm 3 on input x̃ã outputs both d−1 ← Dx̃ã
and a v ∈ x̃ã such that d−1v = x̃ã.

So, any short vector κ ∈ d−1 can be transformed into a short vector vκ ∈ x̃ã.
Because this v ∈ x̃ã is balanced, this does not affect the shortness of the
vector κ much; in a way one might say that the ideal lattices x̃ã and d−1

geometrically very much resemble each other.

Transform a short vector in x̃ã to a short vector in the input ideal lattice
xa. By construction, x̃ã = ey/p · xap, i.e., the randomized ideal lattice is
just the input ideal lattice multiplied by a prime ideal, slightly disturbed a
renormalized. By undoing the disturbance (i.e., dividing by ey) and undoing
the renormalization (i.e., multiplying by p = N (p)1/n) on the short vector
vκ ∈ x̃ã, we obtain a short vector in xap ⊆ xa. More precisely: because
vκ ∈ x̃ã, we have that p · e−y · (vκ) ∈ xap ⊆ xa.

Reason for quality loss. Note that the reduction algorithm only ensures
to find a vector solving B1/n · γ-Hermite SVP, whereas the oracle A in
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5.4. The Worst-case to Average-case Reduction

Algorithm 4 is assumed to be able to find a vector satisfying γ-Hermite SVP
on an ‘average case’ ideal lattice (see Equation (5.66)).

This particular loss B1/n comes from the fact that we cannot not reasonably
‘undo’ the part of the random walk where we multiply the input ideal
lattice xa by a random prime ideal p. So, this reduction algorithm actually
finds a γ-Hermite short vector in xap, a slightly wider ideal than xa. As
xap ⊆ xa, and the root determinants of these ideal lattices differ with a
factor p = N (p)1/n, a γ-Hermite short vector in xap is a B1/n · γ-Hermite
short vector in xa, as N (p)1/n ≤ B1/n.

Proof of correctness and quantification of the quality loss

In order to prove the result of this chapter, we need the following specializa-
tion of the random walk theorem of Chapter 4, which is specifically tailored
to the worst-case to average-case reduction.

Corollary 5.8 (Random walk in the Arakelov class group, simplified). Let
K be a number field, and let C ⊆ ΛK be a sublattice of the logarithmic unit
lattice. Assuming the Extended Riemann Hypothesis, there exists a bound
B = Õ

(
4n ·η1(C∗)r ·[ΛK : C]·|Pic0

K |·(log |∆K |)2) such that the random walk
distribution with one step WPic0

K
(B, 1, s) is exponentially close to uniform

in L1(Pic0
K).

∥WPic0
K

(B, 1, s)− U(Pic0
K)∥1 ≤ 2−n

Proof. Apply Theorem 4.18 from Chapter 4 with

• k = 1
2 logn ·

(
r·log(1/s̃)+log(Vol(Pic0

K))+2 log(1/ε)+log[ΛK : C]+2
)
,so

that taking N = 1 satisfies the requirements of the theorem.
• s = 1/(

√
2 · η1(C∗)), so that s̃ = 1/η1(C∗);

• ε = 2−n.
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Appropriately substituting above instantiations in the formula for B in
Theorem 4.18, noting that n2k = O(η1(C∗)r · |Pic0

K | · 4n · [ΛK : C]), we
obtain

B = Õ
(
n2k[n2(log log(1/ε))2 + n2(log(1/s̃))2

+ n2 log([ΛK : C])2 + (log |∆K |)2]
)

= Õ
(
4n · η1(C∗)r · [ΛK : C] · |Pic0

K | · (log |∆K |)2).

Using above specialized random walk theorem, we can prove the main
theorem of this chapter.

Theorem 5.9. Let K be a number field with logarithmic unit lattice ΛK ,
let C ⊆ ΛK be any sublattice, and denote its dual lattice by C∗. Put 1/s =
max(

√
2 · η1(C∗), log(n)2).

Assume we have a (possibly randomized) algorithm A that solves γ-Hermite-
SVP within an approximation factor γ ≥ 1 and probability1at least q > 0
when given an input a with a← DU(Pic0

K).

Then there exists a randomized algorithm B solving
(
O(B1/n) · γ

)
-Hermite-

SVP in any ideal lattice xa ∈ IdLatK , with probability2 at least q − n−ω(1),
where B = Õ

(
4n · s−r · [ΛK : C] · |Pic0

K | · (log |∆K |)2). The algorithm B
runs within time polynomial in log |∆K |, log[ΛK : C], size(x) and size(Ma)
on input (x, a) ∈ KR × IK and needs one call to the algorithm A.

1Here, the probability q is taken over the random choice of a ← DU(Pic0
K

) and over
the possible internal randomness of the algorithm A

2Here, the probability is taken over the internal randomness of B
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5.4. The Worst-case to Average-case Reduction

Furthermore, the loss B1/n in the approximation factor of Hermite-SVP in
the reduction can be upper bounded as follows.

B1/n =



Õ(
√
n) if K = Q(ζpk), a prime power

cyclotomic field, assuming that
h+
K = log(n)O(n).

Õ(n1−nC/n · |∆K |1/(2n)) otherwise
(5.67)

Proof. Proof of the running time. The random walk process and the distri-
bution representation of the reduction have inherently continuous aspects,
that need to be discretized in order to be suitable for an actual computer.
The discretized version of the reduction is treated in Section 5.5, in which
also its running time and its discretization error is studied. In Theorem 5.11
we show that the reduction can be approximated within a negligible error
margin, using time polynomial in log |∆K |, log[ΛK : C], size(x); here we take
ε = 2−n to have exponentially small error.

Success probability. By the choice of parameters in reduction Algorithm 4,
the Arakelov class of xey/p · ap (where p and y ∈ H are randomly chosen
as in Algorithm 4) must be exponentially close to uniform in Pic0

K in total
variation distance (see Corollary 5.8). By the data processing inequality
[CT06, §2.8], Dxey/p·ap is exponentially close to DU(Pic0

K) as well. Therefore,
the algorithm A cannot distinguish reasonably between the two distributions
and outputs with probability at least q − 2−n a solution of γ-Hermite SVP
in d−1 ← Dxey/p·ap.

Quality of the output. Let us assume that algorithm A indeed found a solution
to γ-Hermite SVP, i.e., a vector κ ∈ d−1 which satisfies ∥κ∥ ≤ γ ·det(d−1)1/n,
where d−1 ← Dxey/p·ap.

As κ ∈ d−1 = v−1eyx/p · ap (see Algorithm 3), we must have that3 κ =
v−1ey/p · α for some α ∈ xap. This particular α ∈ xap ⊂ xa is a solution
for O(B1/n) · γ-Hermite SVP in xa, which can be seen by the following

3Note that p = N (p)1/n
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lines of reasoning. We have the following bound on ∥α∥, where we write out
p = N (p)1/n,

∥α∥ = ∥ve−yκ∥ · N (p)1/n ≤ ∥v∥∞∥e−y∥∞∥κ∥ · N (p)1/n

≤ ∥v∥∞∥e−y∥∞ · γ · det(d−1)1/n · N (p)1/n,

(5.68)

But also, by the fact that multiplication by ey doesn’t change the determinant
and det(x/p · ap) = det(xa) (by definition of p = N (p)1/n), we have

det(d−1) = det(v−1eyx/p · ap) ≤ ∥v−1∥n∞ · det(xa). (5.69)

Combining Equation (5.68) and Equation (5.69), using the fact that N (p) ≤
B, and ∥v−1∥∞∥v∥∞ ≤ 3 with high probability (see Lemma 5.5, ‘v is
balanced’), we obtain

∥α∥ ≤ ∥v∥∞ · ∥v−1∥∞︸ ︷︷ ︸
≤3 (w.h.p.)

· ∥e−y∥∞︸ ︷︷ ︸
≤3 (w.h.p.)

· N (p)1/n︸ ︷︷ ︸
≤B1/n

·γ · det(xa)1/n

≤ 9 ·B1/n · γ · det(xa)1/n.

Here, the bound on ∥ey∥∞ can be obtained by the fact that y ← GH,s is from
a Gaussian distribution, with4 s ≤ 1/ log(n)2. Namely, ∥y∥∞ ≤ (logn)2s ≤ 1
except with probability at most 2−Ω((logn)2) = n−ω(1). Therefore ∥ey∥∞ ≤
e∥y∥∞ ≤ 3 except with probability n−ω(1).

Conclusion. So, with probability q − n−ω(1), algorithm B solves 9 ·B1/n · γ-
Hermite SVP in the input ideal lattice xa ∈ IdLatK , within polynomial
time in log |∆K |, log[ΛK : C], size(x) and size(Ma), and using one call to the
algorithm A. The explicit bounds on B1/n in Equation (5.67) are proved in
Proposition 5.10.

4Note that s ≤ 1/(logn)2, by the instantiation 1/s = max(
√

2 · η1(C∗), log(n)2) in the
theorem.
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Proposition 5.10. The loss B1/n in the approximation factor of Hermite-
SVP in the reduction of Theorem 5.9 can be upper bounded as follows.

B1/n =



Õ(
√
n) if K = Q(ζpk), a prime power

cyclotomic field, assuming that
h+
K = log(n)O(n).

Õ(n1−nC/n · |∆K |1/(2n)) otherwise

Proof. The difference between the upper bounds of B1/n for different types
of number fields depends on the choice of the sublattice C ⊆ ΛK of the
logarithmic unit lattice. Because 1/s = max(

√
2η1(C∗), log(n)2), the product

s−r · [ΛK : C] is the only part of B that depends on the choice of this
sublattice.

For general number fields, we will choose C = ΛK , and use a general
upper bound η1(Λ∗K) ≤ O(n(logn)3) due to Kessler and Dobrowolski [Kes91;
Dob79] to obtain s−r · [ΛK : C] ≤ O(nr log(n)3r).

For cyclotomic number fields with prime power conductor, we choose C ⊆
ΛK to be the sublattice of ΛK consisting of the logarithmic image of the
cyclotomic units [Was12, Ch. 8]. For this sublattice it is known that [ΛK :
C] = h+

K , the class number of the maximal totally real subfield of K, and
η1(C∗) ≤ O(1), so that s−r · [ΛK : C] ≤ O(log(n)2r · h+

K) = log(n)O(n) for
these prime power cyclotomic number fields, under the assumption that
h+
K = log(n)O(n). The precise derivation of these bounds follow later in this

proof.

Plugging these bounds into the value of B in Theorem 5.9, using r = n−
nC − 1 ≤ n, |Pic0

K |1/n = Õ(|∆K |1/(2n)) (see Lemma 2.17), |∆K |1/(2n) ≤
√
n
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for cyclotomic fields, and suppressing polylogarithmic factors, we obtain

B1/n = Õ
(

=Õ(nr/n)
for general number fields︷ ︸︸ ︷
s−r/n · [ΛK : C]1/n︸ ︷︷ ︸

=log(n)O(1)

for prime power
cyclotomic fields

·

Õ
(
|∆K |1/(2n)

)︷ ︸︸ ︷
|Pic0

K |1/n ·

polylog. factor︷ ︸︸ ︷
(log |∆K |)2/n )

=


Õ(
√
n) for prime power cyclotomic fields,

assuming that h+
K = log(n)O(n)

Õ
(
n1−nC/n · |∆K |1/(2n)) for general number fields

General number fields. We take C = ΛK , so that [ΛK : C] = 1.
By the fact that η1(Λ∗K) ≤

√
r

λ1(ΛK) [MR07, Lm. 3.2] and by the gen-
eral upper bound 1/λ1(ΛK) ≤ 1000

√
r + 1 log(r)3 [Kes91; Dob79], we ob-

tain η1(Λ∗K) ≤
√
r/λ1(ΛK) ≤ 2000 · r · log(r)3. Therefore, since 1/s =

max(
√

2 · η1(C∗), (logn)2),

s−r · [ΛK : C] ≤ O(nr log(n)3r) for general number fields K

Prime power cyclotomic number fields. We take C to be the logarithmic
image of the group of cyclotomic units, which are units that have a specific
compact shape [Was12, Ch. 8] . For this logarithmic cyclotomic unit lattice
C ⊆ ΛK , holds [ΛK : C] = h+

K , the class number of the maximal real field in
the cyclotomic field K [Was12, Thm. 8.2]. Due to a result of Cramer et al.
[Cra+16, Thm. 3.1] we have an upper bound on the last successive minimum
λr(C∗) of the dual logarithmic cyclotomic unit lattice. Combined with a
general smoothing parameter bound for lattices [MR07, Lm. 3.3], this yields
the following bound on the smoothing parameter of the dual logarithmic
cyclotomic unit lattice: η1(C∗) ≤ log(4r)λr(C∗) ≤ O(log(r)5/2 · r−1/2) =
O(1). Therefore, with the instantiation 1/s = max(

√
2 · η1(C∗), (logn)2),

s−r · [ΛK : C] ≤ O(log(n)2r · h+
K) for prime power cyclotomic fields K.
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5.5. Discretizing the Reduction Algorithm

5.5.1. Introduction

In the reduction algorithm of Section 5.4 (see Algorithm 4), we saw that
the random walk procedure is inherently continuous, due to its continuous
Gaussian walk. On top of that, the computation of the distribution repre-
sentation D also has a continuous aspect, namely the sampling of a vector
on a large circle CM .

The purpose of this section is to show that the result of applying the
random walk procedure and the distribution representation using only finite
precision doesn’t differ too much from the result when one would use infinite
precision instead. In other words, actually computing the random walk and
the distribution on a finite machine (as in Algorithm 6 and Algorithm 5)
doesn’t spoil the end result. In particular, none of the operations in this
section involves real numbers; it is all floating point arithmetic.

Additionally, this section also provides an upper bound on the running time
of this discretized reduction algorithm.

We define DW(Pic0
K)+xa by the distribution of d−1 in step 5 of Algorithm 4,

and D̈Ẅ(Pic0
K)+xa by the distribution of d−1 in step 6 of Algorithm 6. A

precise description of these distributions for the case xa = OK can be found
in Definition 5.14 and Definition 5.16, respectively. These distributions are
only being described for the case xa = OK , as the general case is a mere
translation of this base case. Note the dots above D̈ and Ẅ to indicate
discreteness.

Theorem 5.11. Let xa ∈ IdLat0
K be a norm-one ideal lattice, where a is

represented by a finite-precision matrix Ma and x ∈ KR is represented by a
finite-precision vector. Then, Algorithm 6 approximates the distribution of
Algorithm 4 within a total variation distance of 23 · ε, i.e.,

∥DW(Pic0
K)+xa − D̈Ẅ(Pic0

K)+xa∥ ≤ 23 · ε,
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and runs within time polynomial in log |∆K |, size(x), size(Ma) (see Sec-
tion 2.1) and log(1/ε).

Roadmap of the proof

Introduction. In this proof, we show that the the random walk distribution
DW(Pic0

K)+xa from d−1 in line 5 of Algorithm 4 and the discretized random
walk distribution D̈Ẅ(Pic0

K)+xa from d−1 in line 5 of Algorithm 6 are close
to each other in the total variation distance.

In the proof we will, without loss of generality, assume that xa = OK . The
case of general xa consists of a mere translation of the distributions involved
and does not affect the proof structure. Therefore, we resort to proving
closeness of DW(Pic0

K) and D̈Ẅ(Pic0
K).

The proof of closeness in total variation distance proceeds by two steps;
the first step discretizes the continuous Gaussian sampling in the reduction
Algorithm 4, whereas the second step discretizes the uniform sampling on the
M -circle in the distribution Algorithm 3 which is used in the reduction.

Sampling the Gaussian walk in a discrete manner doesn’t spoil the resulting
distribution. In the random walk procedure, a Gaussian distribution is
sampled in the logarithmic unit lattice ambient vector space and subsequently
exponentiated component-wise to act on the processed input ideal lattice.
This part is referred to as the ‘continuous walk’ of the random walk procedure.
A finite computer cannot sample from continuous distributions, so in the
actual algorithmic implementation a discrete Gaussian is sampled on a
sufficiently fine grid – a lattice – on the ambient vector space.

The discrete random walk distribution resulting from sampling the Gaussian
walk in this discrete way, whereas keeping the rest of the random walk pro-
cedure the same, is what we will call Ẅ(Pic0

K). By a technical computation,
we will show that DW(Pic0

K) ≈ DẄ(Pic0
K).
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Sampling from a discrete circle doesn’t change the map D much. In the
beginning of the distribution representation D, a vector is uniformly sampled
from a M -circle CM in KR. In reality, on a finite computer, we need to
sample from this M -circle in a discrete manner, while keeping the rest
of the distribution computation the same. This particular map is called
D̈ : Pic0

K → L1(IK).

By showing that D̈ and D are close for any a ∈ Pic0
K , we draw the conclusion

that for any distribution P on Pic0
K , D̈P and DP are close as well. In

particular, D̈W(Pic0
K) ≈ DW(Pic0

K).

Finalizing. By using the above two parts, we can show that the following
three distributions are actually close.

DW(Pic0
K) ≈︸︷︷︸

First part
DẄ(Pic0

K) ≈︸︷︷︸
Second part

D̈Ẅ(Pic0
K)

By observing that the latter distribution can actually be computed by a
classical finite machine, we finish the proof.

5.5.2. Precise Definition of the Distributions DW(Pic0
K), DẄ(Pic0

K)

and D̈Ẅ(Pic0
K)

Before defining the three relevant distributions, we first need to define the
discretization of the Gaussian (in the random walk procedure) and of the
circle (in the distribution procedure). The discretization of the continuous
Gaussian happens by sampling a discrete Gaussian on a square grid of the
log-unit hyperplane and the discretization of the hypercircle happens by
taking equidistant points on this hypercircle.

Definition 5.12 (Orthogonal lattice in the log-unit hyperplane H). By
choosing an orthonormal basis (b1, . . . ,br) of the r-dimensional vector space
H = {(xσ)σ ∈ logKR |

∑
σ xσ = 0}, we define ZH = b1Z + . . .+ brZ.
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The actual choice of the orthonormal basis doesn’t matter in the proofs,
so we will just work with the lattice ZH ⊆ H and leaving the basis choice
implicit. For D ∈ N>0, we denote 1

DZH for the scaling of ZH by 1
D , i.e.,

1
DZH = 1

D ·(b1Z+ . . .+brZ). To make the random walk procedure efficiently
computable on a finite machine, we discretize the continuous Gaussian walk
over H by sampling from a discrete Gaussian over 1

DZH .

Definition 5.13 (Sampling in the finite set C̈M ⊆ CM ∈ KR). For a small
discretization parameter ε > 0, we put k =

√
n ·M · ⌈1/ε⌉,

C̈(ε)
M = {(xσ)σ ∈ CM | xσ = ±Me2πij/k for some j ∈ N }.

Recall that for real embeddings σ we have xσ = ±M , and for complex
embeddings xσ̄ = xσ, due to the fact that CM ⊆ KR. We often suppress the
notation of ε in C̈M .

For most purposes, the precise definition of C̈(ε)
M is not so important; what

matters more is the fact that any point in CM is ε-close to C̈(ε)
M (see Figure 5.3).

Figure 5.3.: Any point on the circle CM is ε-close to the red discretized circle C̈M .

Now we are ready to rigorously define the three distributions involved. We
start with the distribution involving a continuous Gaussian and a continuous
circle, Definition 5.14. The algorithm associated with this distribution is
Algorithm 4, with Algorithm 3 as a subroutine.
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Then we proceed by the definition of a intermediate distribution, which
has a discrete Gaussian sampling in the random walk procedure, but still
has a continuous sample from the circle in the distribution procedure, see
Definition 5.15. The difference between these two distributions is marked
with the color blue. The algorithm associated with this distribution is
Algorithm 6, still with Algorithm 3 as a subroutine. Also in this algorithm
description, the differences are marked in the color blue.

The last distribution is the one that can be run on a finite computer and
has both a discretized Gaussian and a discretized circle, see Definition 5.16.
The difference between this distribution and the intermediate distribution is
marked with the color green. The algorithm associated with this distribution
is Algorithm 6, with the discrete sampling on the circle Algorithm 5 as a
subroutine, where the differences with the original (Algorithm 3) is marked
with the color green as well.

Definition 5.14 (Continuous Gaussian, continuous circle). Denoting PB =
{p prime ideal of OK | N (p) ≤ B}, the output distribution DW(Pic0

K) of
Algorithm 4 can be described by the following rule, for any integral ideal
d ∈ IK .

DW(Pic0
K)[d−1] = 1

|PB |·Vol(CM )
∫
c∈CM

∑
p∈PB

∫
y∈H

∑
v∈p

(v)=pd

ρς(eyv/p−c)
ρς(eyp/p−c)s

−rρs(y)dy,

where p = N (p)−1/n.

Definition 5.15 (Discrete Gaussian, continuous circle). Denoting PB =
{p prime ideal of OK | N (p) ≤ B}, the output distribution DẄ(Pic0

K), where
the continuous Gaussian GH,s in Algorithm 4 is replaced by a discrete Gaus-
sian G 1

D
ZH ,s

, can be described by the following rule, for any integral ideal
d ∈ IK .

DẄ(Pic0
K)[d

−1] =

1
|PB| ·Vol(CM )

∫
c∈CM

∑
p∈PB

∑
ÿ∈ 1

D
ZH

∑
v∈p

(v)=pd

ρς(⌈eÿ⌋v/p− c)
ρς(⌈eÿ⌋p/p− c)

ρs(ÿ)
ρs( 1

DZH)
,
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where ⌈eÿ⌋ means that eÿ is computed with ⌈log2D⌉ bits of precision in all
coordinates, and where p = N (p)−1/n.

Definition 5.16 (Discrete Gaussian, discrete circle). Denoting PB =
{p prime ideal of OK | N (p) ≤ B}, the output distribution DẄ(Pic0

K), where
the continuous Gaussian GH,s in Algorithm 4 is replaced by a discrete Gaus-
sian G 1

D
ZH ,s

, and the continuous uniform distribution on CM in D : Pic0
K →

L1(IK) is replaced by a uniform distribution over the finite set C̈M can be
described by the following rule, for any integral ideal d ∈ IK .

D̈Ẅ(Pic0
K)[d

−1]= 1
|PB| · |C̈M |

∑
c̈∈C̈M

∑
p∈PB

∑
ÿ∈ 1

D
ZH

∑
v∈p

(v)=pd

ρς(⌈eÿ⌋v/p− c̈)
ρς(⌈eÿ⌋p/p− c̈)

ρs(ÿ)
ρs( 1

DZH)
,

where ⌈eÿ⌋ means that eÿ is computed with ⌈log2D⌉ bits of precision in all
coordinates, and where p = N (p)−1/n.

5.5.3. Discretized Algorithm Analogues

In the following text we treat the discrete analogues of Algorithm 4 and
Algorithm 3. We show that these discretized algorithms (Algorithm 6 and
Algorithm 5) run in polynomial time with respect to the input size and that
their output distribution does not differ significantly from their continuous
counterparts.

We start with defining the algorithms and showing that they run in poly-
nomial time. The remainder of this chapter, Section 5.5.4, is devoted to
showing that the discretized and non-discretized algorithms indeed yield
almost the same distribution.

Lemma 5.17. Algorithm 5 is correct and runs within time polynomial in
log |∆K |, size(Ma), log(1/ε) and size(x).

Proof. The input of this algorithm is given by the vector x ∈ KR (given
in a finite precision representation) and a basis matrix Ba of the ideal a.
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Algorithm 5: Sampling efficiently from a distribution very close to
Dxa, discretized
Require: A pair (x, a) ∈ KR × IK such that N (a)∏σ xσ = 1.
Ensure: An sample from a distribution (14ε)-close to the distribution
Dxa in the total variation distance.

1: Put ς = 2n+1 · n · |∆K | and M = 2
√
n · ς.

2: Sample a center c̈ = (c̈σ)σ uniformly in the finite subset
C̈M := C̈(ε/n)

M ⊆ CM = {(yσ)σ | |yσ| = M for all embeddings σ}.
Where C̈M is such that any point in CM is ε/n-close to C̈M (see
Definition 5.13)

3: Sample from the discrete Gaussian Gxa,ς,c̈ with respect to the ideal
lattice xa with center c̈ = (c̈σ)σ and standard deviation ς, leading to
some v ∈ xa.

4: return the inverse integral ideal d−1 = v−1xa ∈ IK

We denote with size(x) the number of bits needed to represent x ∈ KR
and with size(Ba) the number of bits needed to represent the basis Ba (see
Section 2.1).

We go through the lines of Algorithm 5 to examine the running time. Line
1 can clearly be done in linear time in log(|∆K |) and n. Line 2 samples
from in set C̈(ε)

M , which are essentially at most5 n/2 independent samples of
the discretized circle {Me2πij/D | j ∈ N}, with D =

√
nM⌈1/ε⌉. One such

sample takes time linear in logM = O(log |∆K |) and log(1/ε), so a sample
from C̈(ε)

M costs O(n(log |∆K | + log(1/ε))). Line 3 uses Klein’s algorithm
[GPV08; Kle00] to sample from the discrete Gaussian Gxa,ς,c̈, which runs
in time polynomial in size(Ba) and size(x), by an adaptation of [GPV08,
Thm. 4.1] for an exponentially small statistical distance. An additional
property of Klein’s algorithm is that the output v ← Gxa,ς,c̈ is actually
polynomially bounded by size(x) and size(Ba). The last line, line 4, uses
ideal division and multiplication, which (naively) takes the time to solve a
system of equations involving a n2 × n2 matrix (see [Coh99, §4.8.4]) having

5At most half of n, because of the complex conjugate embeddings
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entry sizes comparable to that of size(Ba) and size(x); therefore this can be
done within polynomial time in log |∆K |, size(Ba) and size(x). As all lines
can be computed in polynomial time of size(Ba), size(x) and log |∆K |, the
result follows.

The correctness is proven later, in Lemma 5.20.

Lemma 5.18. Algorithm 6 is correct and runs within time polynomial in
log |∆K |, size(Ma), log[ΛK : C] and size(x), and uses one call to a γ-Hermite
SVP oracle.

Proof. The input of this algorithm is given by the vector x ∈ KR (given in
a finite precision representation) and a basis matrix Ba of the ideal a. We
denote with size(x) the number of bits needed to represent x ∈ KR and with
size(Ba) the number of bits needed to represent the basis Ba.

Since log |Pic0
K | = O(log |∆K |) (see Lemma 2.17), n = O(log |∆K |) and

η1(C∗) ≤ η1(Λ∗K) ≤ Õ(n) (see the proof of Proposition 5.10) the quantity
logB is polynomially bounded in log |∆K | and log[ΛK : C]. Similarly, logD,
the logarithm of the discretization parameter of the Gaussian, is polynomially
bounded by log |∆K | and log(ε−1).

We go through all steps of Algorithm 6 to estimate the running time. Step
1 of Algorithm 6 runs within time quasi-linear in logB. Step 2 involves
the sampling a random prime ideal p and the multiplication of ideals a

and p. The random sampling can be done within polynomial time (see
Lemma 2.14). The product pa can be computed by reducing the n2 × n
matrix consisting of the products of the respective Z-generators of a and
p which runs in time polynomial in n, size(a) and logB (where B is the
maximum norm of p). Step 3 consists of discrete Gaussian sampling in the
lattice 1

DZH with standard deviation s satisfying Õ(n) ≤ 1/s ≤ log(n)2.
An adaptation of [GPV08, Thm. 4.1] shows that this can be done in time
polynomially bounded by logD and n, i.e. bounded by log |∆K | and log(ε−1).
An additional property of this sampling is that the output is polynomially
bounded as well. Step 4 is just rescaling, which has no serious impact on
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Algorithm 6: The worst-case to average-case reduction algorithm,
discretized
Require:

• A pair (x, a) ∈ KR × IK satisfying N (a)∏σ xσ = 1.
• The values [ΛK : C] and η1(C∗) of a suitable sublattice C ⊆ ΛK

of the logarithmic unit lattice,
• An oracle A that solves γ-Hermite SVP in d−1 whenever

d−1 ← DU(Pic0
K).

• An error parameter ε > 0
Ensure: A vector α ∈ xa that is a solution to B1/n · γ-Hermite SVP in

the ideal lattice xa, i.e.,
∥α∥ ≤ γ ·B1/n · det(xa)1/n,

where B = Õ
(
4n · η1(C∗)r · [ΛK : C] · |Pic0

K | · (log |∆K |)2), or, failure.
1: Put s = max(

√
2 · η1(C∗), (logn)2) and

B = Õ
(
4n · η1(C∗)r · [ΛK : C] · |Pic0

K | · (log |∆K |)2) as in
Corollary 5.8.

2: Multiply the ideal a by a prime ideal p uniformly sampled from the
set {p prime ideal of OK | N (p) ≤ B}, yielding ap.

3: Sample ÿ ← Gs, 1
D
ZH

, where D = 2n+2 · n4 · ⌈|∆K | · ε−1⌉ and ZH is an
orthonormal basis of the hyperplane H where the logarithmic unit
lattice lives in (see Definition 5.12).

4: Put p = N (p)1/n, so that eyxap/p has norm 1, where ey ∈ KR is the
component-wise exponentiation of y ∈ H.

5: Sample d−1 ← D(⌊eÿ⌉·x/p,ap) using Algorithm 5, where ⌊eÿ⌉ ∈ KR is the
component-wise exponentiation of ÿ ∈ H, computed with ⌈log2D⌉ bits
of precision in all coordinates. Furthermore, let v ∈ eyxap/p be the
additional output of Algorithm 5 that satisfies d−1 = v−1⌊eÿ⌉xap/p.

6: Invoke the γ-Hermite SVP oracle A on DU(Pic0
K) to find a κ ∈ d−1 for

which holds ∥κ∥ ≤ γ · det(d−1)1/n

7: return p · (⌊eÿ⌉)−1 · v · κ ∈ xa.
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the running time. Step 5 uses Algorithm 5, which runs in time polynomially
bounded by size(⌊eÿ⌉ · x/p), size(Ma) and logB. As size(⌊eÿ⌉ · x/p) can be
linearly bounded by logB, size(x) and logD (because ⌊eÿ⌉ is computed with
relative bit precision log2D), this step is polynomially bounded as well in
log |∆K |, log ε−1 and size(x). Step 6 invokes the γ-Hermite SVP oracle once.
Step 7 just rescales the element κ ∈ d−1 without a serious impact on the
running time.

Later in this section we prove two closeness lemmas, namely Lemma 5.19 and
Lemma 5.20. From those two lemmas, one obtains the desired closeness of
distributions of the sampling mechanism of d−1; this proves the correctness.

5.5.4. Closeness Proofs

Sampling the Gaussian walk in a discrete manner doesn’t spoil the
resulting distribution

Lemma 5.19. Let K be a number field and let 1 > s > 0 be a given
Gaussian spread parameter for the continuous part of the random walk, let
ε > 0 be a given error parameter and let M = 2 · n3/2 · 2n+1 · |∆K | as in
Algorithm 5. Let 1

DZH ⊆ H be the discretization of the Log-unit space to
compute the discrete Gaussian analogue of the continuous part of the random
walk, with D ∈ N such that D ≥ ⌈(4 · s−2√n+ 100 · n2M) · 1/ε⌉.

Then
∥DẄ(Pic0

K) −DW(Pic0
K)∥1 ≤ 18 · ε

Proof. Examining the definitions of the distributions DW(Pic0
K) and DẄ(Pic0

K)
(see Definitions 5.14 and 5.15), we can apply the triangle inequality and a
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norm inequality, to directly deduce

∥DW(Pic0
K) −DẄ(Pic0

K)∥1 (5.70)

≤ maxc∈CM
p∈PB

∑
d

∑
v∈p

(v)=pd

∣∣∣∣∣∣∣
∫
y∈H

ρς(eyv/p− c)
ρς(eyp/p− c)

s−rρs(y)dy −
∑

ÿ∈ 1
D
ZH

ρς(⌊eÿ⌉v/p− c)
ρς(⌊eÿ⌉p/p− c)

ρs(ÿ)
ρs( 1

DZH)

∣∣∣∣∣∣∣︸ ︷︷ ︸
.

Therefore, we can focus on the quantity in the bracket of Equation (5.70)
for a fixed prime ideal p ∈ PB and a fixed center c ∈ CM from the M -circle.
We rewrite the term within the absolute value signs by using a block tiling
of the orthonormal lattice 1

DZH ⊆ H (see Definition 5.12) with fundamental
domain FH satisfying Vol(FH) = D−r. Observing that we can collapse the
summation ∑d

∑
v∈p

(v)=pd
to ∑v∈p (as the sum with d is over integral ideals),

we obtain that the quantity in the bracket of Equation (5.70) is at most

∑
v∈p

∣∣∣∣∣∣∣∣∣∣
∑

ÿ∈ 1
D
ZH

∫
y∈ÿ+FH

ρς(eyv/p− c)
ρς(eyp/p− c)︸ ︷︷ ︸

A

s−rρs(y)︸ ︷︷ ︸
B

− ρς(⌊e
ÿ⌉v/p− c)

ρς(⌊eÿ⌉p/p− c)︸ ︷︷ ︸
A′

Drρs(ÿ)
ρs( 1

DZH)︸ ︷︷ ︸
B′

dy

∣∣∣∣∣∣∣∣∣∣
Applying the triangle inequality, switching integrals and sums, and using
the identity AB − A′B′ = B(A − A′) + (B − B′)A′, above equation is at
most

∑
ÿ∈ 1

D
ZH

∫
y∈ÿ+FH

s−rρs(y)
∑
v∈p

∣∣∣∣∣ρς(eyv/p− c)ρς(eyp/p− c)
− ρς(⌊eÿ⌉v/p− c)
ρς(⌊eÿ⌉p/p− c)

∣∣∣∣∣︸ ︷︷ ︸
∥Gp/p,ς/ey,c−Gp/p,ς/⌊eÿ⌉,c∥

dy (5.71)

+
∑

ÿ∈ 1
D
ZH

∫
y∈ÿ+FH

∣∣∣∣∣s−rρs(y)− Drρs(ÿ)
ρs( 1

DZH)

∣∣∣∣∣∑
v∈p

ρς(eÿv/p− c)
ρς(eÿp/p− c)︸ ︷︷ ︸

=1

dy (5.72)

First part of the sum, Equation (5.71). Apply Lemma A.39 to show
that the two Gaussians are reasonably close to each other. Writing eỹ = ⌊eÿ⌉,
we have ∥ỹ − ÿ∥ ≤ ∥eỹ−ÿ − 1∥ ≤

√
n
D because eỹ is the log2(D)-bit precision
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relative approximation of eÿ. By construction, we have ∥y− ÿ∥ ≤
√
n
D as well,

because y ∈ ÿ + FH , therefore,

∥y − ỹ∥ ≤ 2
√
n

D
.

Because ς > ηε(xa) for all ideal lattices xa ∈ IdLatK , we can apply
Lemma A.39 with δ = 2

√
n

D . Since M > ς > 1, ∥c∥ =
√
n ·M (because

c ∈ CM ) and D ≥ 100 ·M · n2/ε, we obtain

∥Gp,ς/ey ,c − Gp,ς/⌊eÿ⌉,c∥ ≤ 8ε+ 4π
( 1
ς2 + n+ 2n∥c∥

)
· ∥y − ỹ∥

≤ 8ε+ 100 ·M · n2

D
= 9 · ε. (5.73)

Since this bound is independent of y ∈ H and ÿ ∈ 1
DZH , and since∑

ÿ∈ 1
D
ZH

∫
y∈ÿ+FH

s−rρs(y)dy = 1,

we deduce that Equation (5.71) must also be bounded by 9 · ε.
Second part of the sum, Equation (5.72). One can apply smoothing
arguments; since s < 1, we have s ≥ s2 ≥

√
n·ε−1

D ≥ log(2n(1+ε−1))
D ≥

log(2n(1 + ε−1))λr( 1
DZH) ≥ ηε( 1

DZH) (see [MR07, Lm. 3.3]). Therefore,

s−r ∈ (1− 2ε, 1 + 2ε) · Dr

ρs( 1
DZH + y)

for all y ∈ H.

Putting this into Equation (5.72), we obtain, using Lemma A.37, using the
lower bound on D and Vol(FH) = D−r,∑

ÿ∈ 1
D
ZH

∫
y∈FH

∣∣∣∣∣s−rρs(ÿ + y)− Drρs(ÿ)
ρs( 1

DZH)

∣∣∣∣∣ dy
≤ 4ε+ max

y∈FH

∑
ÿ∈ 1

D
ZH

∣∣∣∣∣ ρs(ÿ + y)
ρs( 1

DZH + y)
− ρs(ÿ)
ρs( 1

DZH)

∣∣∣∣∣︸ ︷︷ ︸
∥D 1

D
ZH ,s,y

−D 1
D

ZH ,s,0∥

≤ 8ε+ ( π
s2 + 2πn) max

y∈FH

∥y∥ ≤ 8ε+ ( π
s2 + 2πn)

√
n

D
≤ 9 · ε (5.74)

Combining the upper bound on the first and the second part of the sum
(see Equations (5.73) and (5.74)), we obtain the result.
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The difference between DP(Pic0
K) and D̈P(Pic0

K), the one with a
discretized circle, is negligible for all distributions P

Lemma 5.20. Let K be a number field and let 1 > ε > 0 be a given
error parameter. Let C̈M ⊆ CM be a discretization of CM as in Defini-
tion 5.13. Let furthermore P ∈ L1(Pic0

K) be any distribution on Pic0
K (i.e.,∫

a∈Pic0
K
P(a)da = 1). Then we have

∥DP(Pic0
K) − D̈P(Pic0

K)∥ ≤ 14ε

Proof. The definitions of the two distributions read as follows, for integral
ideals d ∈ IK .

DP(Pic0
K)[d−1] =

∫
c∈CM

∫
a∈Pic0

K

P(a)
∑
v∈a

(v)=ad

ρς(v − c)
ρς(a − c)

dadc

D̈P(Pic0
K)[d−1] = 1

|C̈M |
∑
c̈∈C̈M

∫
a∈Pic0

K

P(a)
∑
v∈a

(v)=ad

ρς(v − c̈)
ρς(a − c̈)

da

By grouping integrals and summation signs, and splitting up the integral
over CM over multiple ‘arcs’ Ac̈ for c̈ ∈ C̈M (that satisfy ∥c− c̈∥ < ε/n for
all c ∈ Ac̈), we obtain

∥DP(Pic0
K) − D̈P(Pic0

K)∥

=
∑
d∈IK

∣∣∣∣∣∣∣∣
∫

a∈Pic0
K

P(a)
∑
v∈a

(v)=ad

∫
c∈CM

ρς(v − c)
ρς(a − c)

dc− 1
|C̈M |

∑
c̈∈C̈M

ρς(v − c̈)
ρς(a − c̈)

 da

∣∣∣∣∣∣∣∣
=
∑
d∈IK

∣∣∣∣∣∣∣∣
∫

a∈Pic0
K

P(a)
∑
v∈a

(v)=ad

 ∑
c̈∈C̈M

∫
c∈Ac̈

(
ρς(v − c)
ρς(a − c)

− ρς(v − c̈)
ρς(a − c̈)

)
dc

 da

∣∣∣∣∣∣∣∣ .
(5.75)

Applying the triangle inequality, switching integral and summation signs
appropriately, collapsing the summation∑d∈IK

∑
v∈a

(v)=ad
to∑v∈a (as d ranges
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over integral ideals) and replacing the integral over Pic0
K by the maximum,

we obtain that Equation (5.75) must be bounded by

max
a∈Pic0

K


∑
c̈∈C̈M

∫
c∈Ac̈

∑
v∈a

∣∣∣∣ρς(v − c)ρς(a − c)
− ρς(v − c̈)
ρς(a − c̈)

∣∣∣∣︸ ︷︷ ︸
∥Da,ς,c−Da,ς,c̈∥

dc

 ≤ (4 + π
ς2 + 2πn)ε/n

≤ 14ε. (5.76)

This holds by the fact that ∥c − c̈∥ < ε/n and ς > 1, together with
Lemma A.37, which bounds the total variation distance between two discrete
Gaussians with different centers.

Conclusion

Applying Lemma 5.19 and Lemma 5.20 with P(Pic0
K) = Ẅ(Pic0

K), and
using Algorithm 6 for the running time, we obtain Theorem 5.11.
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