
Random walks on Arakelov class groups
Boer, K. de

Citation
Boer, K. de. (2022, September 22). Random walks on Arakelov class groups.
Retrieved from https://hdl.handle.net/1887/3463719

Version: Publisher's Version

License:
Licence agreement concerning inclusion of doctoral
thesis in the Institutional Repository of the University
of Leiden

Downloaded from: https://hdl.handle.net/1887/3463719

Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/3463719

3. The Continuous Hidden Subgroup
Problem

3.1. Summary

This chapter is about a complexity analysis of a slightly modified algorithm
of Eisenträger et al. [Eis+14] that quantumly solves the continuous hidden
subgroup problem. This problem consists of finding a ‘hidden lattice’ Λ in
Rm given a (possibly) quantum function f : Rm → S that is periodic with
respect to this lattice Λ. This computational problem falls into the class of
the so-called ‘period finding problems’.

This quantum algorithm mimics the blueprint of Shor’s algorithm for finding
a hidden subgroup H in a discrete abelian group G, given an oracle function
on the group that is strictly periodic with respect to H. This blueprint
consists of consecutively sampling a uniform quantum superposition over
all group elements, applying an oracle call to the H-periodic function, and
computing a discrete quantum Fourier transform. Then, one measures to
obtain a character χ ∈ Ĝ that has H in its kernel. Assembling enough of
such characters allows to retrieve H itself.

The quantum algorithm solving the continuous hidden subgroup problem

The quantum algorithm of this chapter deviates from this blueprint in a
few ways. (1) Since the ambient group Rm is continuous, we need to cut-off
and discretize this space to get something finite and thus processable by a
quantum computer. This has as a consequence that the Fourier transform

81

3. The Continuous Hidden Subgroup Problem

becomes discretized as well, inducing errors with respect to the continuous
Fourier transform. (2) The initial state of this quantum algorithm does not
consist of a uniform quantum sample but of a Gaussian state instead. This
is done to ease the analysis, as both the Gaussian function and its Fourier
transform (which is also a Gaussian function) have tight tail bounds. (3)
The measurement output is, due to the cut-off and discretization, always
an approximation of a dual lattice vector ℓ∗ ∈ Λ∗ (which can be seen as a
character of Rm with Λ in its kernel). So, in the end, we cannot expect more
to gain from this algorithm than an approximate basis B̃ of the lattice Λ.
(4) Such an approximate basis is obtained as follows. By sampling many
approximate ℓ∗ ∈ Λ∗, LLL-reducing these samples to an approximate basis
D̃ of the dual lattice Λ∗, and inverting and transposing D̃, one retrieves an
approximate basis B̃ of Λ.

Analysis of the algorithm

Each deviation from the original ‘hidden subgroup problem blueprint’ causes
difficulties; mostly those difficulties take the shape of discretization errors. We
show how to solve these difficulties per deviation. Tackling these difficulties
was already partially done by Eisenträger et al. [Eis+14]; we revisit their
work to obtain a more explicit and precise complexity.

(1) The discrete Fourier transform and the continuous (real) Fourier trans-
form can be shown to differ not too much if their input function is continuous
enough. A large part of this chapter (Section 3.5) is devoted to show that
if the Λ-periodic oracle function is Lipschitz continuous, the induced error
by using a discrete Fourier transform instead of a continuous one can be
reasonably bounded.

(2) For the initial input to be Gaussian, one needs to know how to actually
assemble this state on a quantum computer. Such a Gaussian superposition
has already been shown to be computable in polynomial time by Kitaev and
Webb [KW08], but for completeness we included a more precise complexity
estimate in Appendix A.5.

82

3.1. Summary

(3) Due to the discrete nature of the quantum algorithm, the output dual
lattice point can only be approximated within a certain distance. The
maximum allowed distance (relative to the minimum distance λ1(Λ∗) of the
dual lattice Λ∗) will be a parameter in the algorithm, called δ > 0.

One of the problems that might occur is that the output dual lattice points
are not equidistributed enough on Λ∗, thus not giving enough information
to retrieve a basis of Λ. An extra assumption on the Λ-periodic function f
is needed to avoid such a situation; which we call separating. A separating
Λ-periodic function can be intuitively thought of as being not too constant.
Showing that such an oracle will yield equidistributed points in Λ∗ is the
object of Section 3.6.

(4) From many such δ-close dual lattice points one can compute an ap-
proximate basis of the dual lattice Λ∗ by means of LLL-reduction; from
this approximate dual basis one can obtain a basis of Λ by inversion and
transposition. These operations (LLL-reduction and inversion) are quite
numerical unstable, meaning that they make existing errors in the input
progressively larger. Using a result of Buchmann and Kessler [BK96] one
can reasonably bound the final error (see Section 3.7).

Relation with the Arakelov (ray) class group

The computation of the Arakelov (ray) class group can be phrased in terms
of a hidden lattice problem; a fact that can already be inferred from the
original applications of the hidden lattice problem, namely computing (S)-
unit groups and class groups [BS16; Eis+14] in works of Biasse, Song and
Eisenträger et al. By a slight modification in formulation of the ideas in
these papers one can construct an oracle on the Arakelov divisor group
that is periodic with respect to the principal divisors. In this modification,
a ‘reduced’ version of the Arakelov (ray) divisor group is used, one with
only finitely many prime ideals, that are required to generate the ideal class
group. Finding the periodicity of this oracle then allows to find explicit
relations that define the Arakelov (ray) class group.

83

3. The Continuous Hidden Subgroup Problem

At the time of writing, a precise complexity estimation (beyond polynomial
time) of the oracle function in this approach to quantumly compute Arakelov
(ray) class groups is still open.

3.2. Introduction

The Hidden Subgroup Problem

Among all quantum algorithms, Shor’s algorithm [Sho94] for factoring and
finding discrete logarithms is singular by its cryptanalytic implications. Due
to progress toward the realization of large quantum computers, this cele-
brated algorithm is now motivating the standardization of quantum-resistant
schemes [Nat17], in preparation of a global update of widely deployed en-
cryption and authentication protocols.

The core idea of quantum period finding [Sho94] is not limited to factoring
and discrete logarithm. The Hidden Subgroup Problem, formalized in [ME98],
serves as a convenient interface between the quantum-algorithmic techniques
for period finding, and applications to solve other computational problems,
in particular problems arising from number theory. We will here discuss only
the case of commutative groups. The cases of non-abelian groups such as
dihedral groups are very interesting as well and have fascinating connections
with lattice problems [Reg04b]; however, no polynomial time algorithm is
known for those cases, and the best known algorithm has sub-exponential
complexity [Kup05], using very different techniques.

The simplest version of the Hidden Subgroup Problem consists of finding
a hidden subgroup H in a finite abelian group G, when given access to a
strictly H-periodic function f : G→ S. Here, in the language of represen-
tation theory, the off-the-shelf period-finding quantum algorithm finds a
uniformly random character χ ∈ Ĝ that acts trivially on H. Shor’s origi-
nal algorithm [Sho94] for integer factoring finds a hidden subgroup H in
the ambient group Z. The infiniteness of Z induces some “cut-off” error;

84

3.2. Introduction

nevertheless, the distribution of the algorithm’s output is still concentrated
around the multiples of the inverse period.

A generalization to the real line H = R was given by Hallgren [Hal07] and
allows to solve Pell’s equation. The case of real vector space of constant
dimension H = Rc has also been studied [Hal05; SV05], and permits the
computation of unit groups of number fields of fixed finite degree.

The Continuous Hidden Subgroup Problem

The latest generalization of the HSP algorithm, given by Eisenträger, Hall-
gren, Kitaev and Song in an extended abstract [Eis+14], targets the ambient
group G = Rm (for a non-constant dimension m) with a hidden discrete sub-
group H = Λ, i.e. a lattice. Next to the ambient group Rm being continuous,
an additional special feature is that the Λ-periodic function f is assumed
to produce a “quantum output”. More formally, f : Rm → S, x 7→ |f(x)⟩,
where S is the state space of a quantum system, and the HSP algorithm is
given access to a unitary that maps |x⟩|0⟩ to |x⟩|f(x)⟩. A crucial observa-
tion here is that |f(x)⟩ and |f(y)⟩ are not necessarily orthogonal (or even
distinct) for distinct x and y modulo Λ. In other words, it is not assumed
that f is strictly periodic, but merely that |f(x)⟩ and |f(y)⟩ are “somewhat
orthogonal” for x and y that are “not too close” modulo Λ, and that f is
Lipschitz continuous.

More specifically, they consider a variation of the standard HSP algorithm
in order to tackle the Continuous Hidden Subgroup Problem (CHSP). In
order to deal with the continuous nature of the domain Rm of f , the given
HSP algorithm acts on a bounded “grid” of points within Rm. Additionally,
the algorithm is modified in the following ways: (1) The initial state is not a
uniform superposition (over the considered grid points in Rn) but follows a
trigonometric distribution, and (2) the quantum Fourier transform is done
“remotely”, i.e., rather than applying it to the actual register, the register is
entangled with an ancilla and the quantum Fourier transform is then applied
to the ancilla instead. According to Eisenträger et al. [Eis+14], applying the

85

3. The Continuous Hidden Subgroup Problem

quantum Fourier transform directly would make the resulting approximation
errors difficult to analyze.

As an application, Eisenträger et al. also gave a quantum polynomial time
algorithm for computing the unit group of a number field in their arti-
cle [Eis+14]. This was generalized by Biasse and Song [BS16] to the compu-
tation of S-unit groups, and therefore to the computation of class groups
and to finding a generator of a principal ideals. This led to solving the short-
est vector problem in certain ideal lattices for non-trivial approximation
factors [Cra+16; CDW17; PHS19]. While the cryptanalytic consequences for
ideal-lattice based cryptography seem limited so far [DPW19], these results
demonstrate a hardness gap between ideal lattices and general ones.

Our Contributions

The goal of this chapter is to provide a complete, modular, and quantitative
analysis of (a slightly modified version of) the Continuous HSP quantum
algorithm given by [Eis+14]. More concretely, we provide an explicit bound
on the number of qubits needed by the algorithm, clarifying the dependency
on the parameters of the Continuous HSP instance and on the required
precision and success probability. This shows explicitly in what parameters
the algorithm is polynomial time and with what exponent.

The algorithm that we consider and analyze differs from the one considered
in [Eis+14] in the following points:

• First, we specify the initial state of the algorithm to have Gaussian
amplitudes, while [Eis+14, Sec. 6.2] suggests to use a cropped trigono-
metric function; as far as we can see, our choice makes the analysis
simpler and tighter thanks to the well known tail-cut and smoothness
bounds of Banaszczyk [Ban93] and Micciancio and Regev [MR07].

• Secondly, we do not make use of a “remote” Fourier transform but
instead follow the blueprint of Shor’s original algorithm in that respect;
the claimed advantage of the “remote” Fourier transform is unclear to
us.

86

3.2. Introduction

These modifications simplify the algorithm and its analysis. Due to the lack
of details given in [Eis+14], we can not state a complexity comparison, but
we think this variation is at least as efficient as the original algorithm.

Our analysis is divided into four parts, each summarized by a formal state-
ment given in Sections 3.3.3 to 3.3.6, leading to the main theorem (Sec-
tion 3.3.2). We insist on this modular presentation, so as to enable future
work on optimization and specialization of this algorithm to instances of
interests; specific suggestions follow.

Dual lattice sampling. In the first part, which is the technically more
involved one, we show that the appropriately discretized and finitized, but
otherwise (almost) standard HSP quantum algorithm produces sample
points in Rm that lie close to the dual lattice Λ∗ with high probability.
More precisely, and more technically speaking, we show that the algorithm’s
output is a sample point close to ℓ∗ ∈ Λ∗ with probability close to ⟨cℓ∗ |cℓ∗⟩,
where the vectors |cℓ∗⟩ are the Fourier coefficients of the function f . This is
in line with the general HSP approach, where for instance Shor’s algorithm
for period finding over Z produces a point that is close to a random multiple
of the inverse period, except with bounded probability.

In this first part (Section 3.4 and Section 3.5), we bound the complexity of
the core algorithm in terms of the error probability that we allow in the
above context of a sampling algorithm, and depending on the Lipschitz
constant of f . In particular, we show that the number of qubits grows as
mQ, where Q, the “number of qubits per dimension”, grows linearly in the
logarithm of the Lipschitz constant of f , the logarithm of the inverse of the
error probability and the logarithm of the inverse of the (absolute) precision,
and quasi-linearly in m. The running time of the algorithm is then bounded
by O(mQ log(mQ)), by using an approximate Fourier transform [HH00].

Full dual recovery. In the second part, Section 3.6, we then relate the
parameters of the Continuous HSP instance to the number of sample points,

87

3. The Continuous Hidden Subgroup Problem

and thus to how often the core algorithm needs to be repeated, necessary in
order to have an approximation of the entire dual lattice Λ∗.

Primal basis reconstruction. In the third part, Section 3.7, we study the nu-
merical stability of reconstructing an approximate basis of the primal lattice
Λ from a set of approximate generators of the dual lattice Λ∗. This is based
on the Buchmann-Pohst algorithm [BK96] already mentioned in [Eis+14].
The claim of [Eis+14] involves intricate quantities related to sublattices of Λ,
making the final complexity hard to derive; we provide a simpler statement
with a detailed proof.

Gaussian state preparation. Finally, in Appendix A.5, we revisit the quan-
tum polynomial-time algorithm for the preparation of the Gaussian initial
state [GR02; KW08] used as a black-box in our first part, and provide its
precise complexity.

Conclusion. These four parts lead to our formal and quantitative version
of the informal CHSP Theorem of Eisenträger et al. [Eis+14, Thm. 6.1],
stated as Theorem 3.3 in Section 3.3.2.

Conclusion and Research Directions

Our conclusion is that, in its generic form, the Continuous Hidden Subgroup
Problem is rather expensive to solve; not accounting for other parameters
than the dimension m, it already requires Õ(m3) qubits and Õ(m4) quantum
gates (using an approximate quantum Fourier transform). However, this
inefficiency seems to be a consequence of its genericity. In particular, the core
algorithm for Dual Lattice Sampling would only need Õ(m2) qubits, if it
wasn’t for accommodating for the terrible numerical stability of the Primal
Basis Reconstruction step. Similarly, we expect the number of samples
needed to generate the dual lattice to be significantly smaller for smoother
oracle functions.

88

3.2. Introduction

All in all, our modular analysis of the generic steps of the CHSP algorithm
sets the stage for analyzing and optimizing its specializations, in particular
to cryptanalytic applications [Cra+16; CDW17]. We propose as few research
directions towards this objective:

• Study the costs (qubits, quantum gates) and the parameters of the
oracle functions from [Eis+14; BS16; Son13] for solving the Unit Group
Problem, the Principal Ideal Problem (PIP), and for the computation
of the class group.

• Find stronger hypotheses satisfied by the above oracle functions (or
by variant thereof) that improve this generic analysis of the CHSP
algorithm; or resort to an ad-hoc analysis of the Full Dual Recovery
step by directly studying the spectrum of these oracle functions.

• Explore the possibility of a trade-off between the (classical) Primal
Basis Reconstruction step and the (quantum) Dual Lattice Sampling
step, possibly up to small sub-exponential classical complexity. More
specifically, does replacing LLL by BKZ with a medium block-size
substantially improve the numerical stability of Buchmann-Pohst al-
gorithm?

• Exploit prior knowledge of sublattices (potentially close to full-rank)
of the hidden lattice to accelerate or skip the Full Dual Recovery and
Primal Basis Reconstruction steps. This is for example the case when
solving PIP [BS16] while already knowing the unit group and the class
group of a given number field. This would be applicable in the context
of [Cra+16; CDW17].

• Exploit known symmetries of the hidden sublattice to improve the
Full Dual Recovery and Primal Basis Reconstruction steps. Such
symmetries are for example induced by the Galois action on the log-
unit lattice and the lattice of class relation, in particular in the case of
the cyclotomic number fields. This would again be applicable in the
context of [Cra+16; CDW17].

Remark 3.1. Recovering the exact hidden lattice is outside the scope of
this work, since this task is application-dependent. It is even true that one

89

3. The Continuous Hidden Subgroup Problem

cannot generally expect the quantum algorithm of this chapter to recover the
exact hidden lattice, without extra information about this hidden lattice.

For instance, when applying this algorithm to compute the unit group O×K
of a number field K, the hidden lattice will be the so-called logarithmic unit
lattice. Of this lattice it is known that any point is of the shape Log(η) =
(log |σ(η)|)σ ∈ LogK0

R with η ∈ O×K ⊆ OK ; its entries are logarithms of
integral elements in a given number field. This is the extra information that
is to be exploited in order to get the exact lattice. Namely, from a sufficiently
good approximation of the logarithm of a unit one can obtain the exact
underlying unit, simply by taking the exponential and rounding it to the
closest element in the ring of integers OK .

3.3. Problem Statements and Results

3.3.1. Notation and Set-up

Here and throughout this chapter, H is a complex Hilbert space of dimension
N = 2n, and S is the unit sphere in H; thus, a vector in S describes the state
of a system of n qubits. For an arbitrary positive integer m, we consider a
function

f : Rm → S ⊂ H , x 7→ |f(x)⟩

that is periodic with respect to a full rank lattice Λ ⊂ Rm; hence, f may
be understood as a function Rm/Λ→ S. The function f is assumed to be
Lipschitz continuous with Lipschitz constant

Lip(f) = inf
{
L > 0

∣∣ ∥∥|f(x)⟩ − |f(y)⟩
∥∥
H ≤ L∥x− y∥2,Tm

}
.

Later, we will also require f to be “sufficiently non-constant”. One should
think of f as an oracle that maps a classical input x to a quantum state
over n qubits, which is denoted |f(x)⟩.

We write Λ∗ for the dual lattice of Λ. By λ1(Λ) we denote the length of a
shortest non-zero vector of Λ, and correspondingly for λ1(Λ∗). Since Λ is

90

3.3. Problem Statements and Results

typically clear from the context, we may just write λ1 and λ∗1 instead of
λ1(Λ) and λ1(Λ∗).

We denote by Br(x) = {y ∈ Rm | ∥y− x∥ < r} the open Euclidean ball with
radius r around x. For the open ball around 0 we just denote Br, and for a
set X ⊂ Rm we write Br(X) = ⋃

x∈X Br(x).

Definition 3.2 (Definition 1.1 from [Eis+14]). A function f : Rm → S ⊂ H
is said to be an (a, r, ϵ)-HSP oracle of the full-rank lattice Λ ⊂ Rm if

• f is Λ-periodic,
• f is a-Lipschitz: Lip(f) ≤ a,
• f is (r, ϵ)-separating (see Figure 3.1): I.e., |⟨f(x)|f(y)⟩| ≤ ϵ for all
x, y ∈ Rm satisfying dRm/Λ(x, y) ≥ r.

where dRm/Λ(x, y) = minv∈Λ ∥x− y− v∥ denotes the distance induced by the
Euclidean distance of Rn modulo Λ.

Figure 3.1.: A picture of what an (r, ϵ)-separating function f should look like: outside of
the interval or length 2r around the origin, the inner product x 7→ ⟨f(x)|f(0)⟩
deviates from 0 by no more than ϵ.

3.3.2. Main Theorem: Continuous Hidden Subgroup Problem

Theorem 3.3. There exists a quantum algorithm that, given access to an
(a, r, ϵ)-HSP oracle with period lattice Λ, r < λ1(Λ)/6 and ϵ < 1/4, computes,
with constant success probability, an approximate basis B̃ = B + ∆B of this
lattice Λ, satisfying ∥∆B∥ < τ .

91

3. The Continuous Hidden Subgroup Problem

This algorithm makes k quantum oracle calls to the (a, r, ϵ)-HSP oracle, and
uses mQ + n qubits, O

(
kmQ · (log(kmQ))2) quantum gates and poly(m,

log a
λ∗

1
, log a

τ) classical bit operations, where

Q = O(mk) +O

(
log a

λ∗1

)
+O

(
log 1

λ∗1 · τ

)
, (3.24)

k = O
(
m · log

(√
m · a · (det Λ)1/m

))
(3.25)

Remark 3.4. Note that the quantities inside logarithms are homogeneous.
In particular, scaling the lattice Λ by a factor f , also scales τ , 1/a and 1/λ∗1
by the same factor f , leaving the complexity parameters Q and k unaffected.

Remark 3.5. The expert reader may expect the “distortion” parameter
λ1 · λ∗1 of the lattice Λ to have a bearing on the complexity of this algorithm.
It is indeed implicitly the case: the assumption the HSP definition implies
that ar ≥ Lip(f) · r ≥ 1 − ϵ (see Figure 3.2), and therefore the theorem’s
hypothesis requires a ≥ Lip(f) ≥ 9

4λ1
.

Figure 3.2.: Due to the (r, ϵ)-separating property of the oracle function f , its Lipschitz
constant cannot be too small.

The proof of Theorem 3.3 can be found in Section 3.3.7.

92

3.3. Problem Statements and Results

3.3.3. Dual Lattice Sampling Problem

Following our modular approach as outlined in the introduction, we first
consider the following Dual Lattice Sampling Problem. Informally, the task
is to sample points in Rm that are respectively close to points ℓ∗ ∈ Λ∗ that
follow the distribution Dideal(ℓ∗) = ⟨cℓ∗ |cℓ∗⟩, where |cℓ∗⟩ are the vectorial
Fourier coefficients of f : Rm/Λ→ S (see Section 2.2.4).

Problem 3.6 (Dual Lattice Sampling Problem). Given error parameter
η > 0 and a relative distance parameter 1

2 > δ > 0, and given oracle
access to an HSP oracle f as above, sample according to a (finite)
distribution D on Rm that satisfies, for any S ⊆ Λ∗,

pS := D
(
Bδλ∗

1
(S)

)
≥

∑
ℓ∗∈S
⟨cℓ∗ |cℓ∗⟩

− η . (3.26)

In the problem statement above, D
(
Bδλ∗

1
(S)
)

denotes the cumulative weight
of the set Bδλ∗

1
(S) = ⋃

s∈S Bδλ∗
1
(s) with respect to the distribution D. Here,

Bδλ∗
1
(s) = {y ∈ Rm | ∥s− y∥ < δλ∗1} is the open ball of radius δλ∗1 around

s ∈ S ⊆ Λ∗ ⊆ Rm.

Theorem 3.7. Algorithm 2 solves the Dual Lattice Sampling Problem with
parameters η and δ; it uses one call to the Gaussian superposition subroutine
(see Theorem 3.12), one quantum oracle call to f , mQ + n qubits, and
O(mQ log(mQ)) quantum gates, where

Q = O (m log (m)) +O

(
log

(
a

η · δλ∗1

))
. (3.27)

Remark 3.8. Note that this step only requires smoothness of the HSP
oracle (via the Lipschitz constant), but does not rely on the “separateness”
assumption (third item of Definition 3.2). Indeed this third assumption will
only play a role to ensure that those samples are actually non-trivial and
usable.

93

3. The Continuous Hidden Subgroup Problem

3.3.4. Full Dual Lattice Recovery

Recovering the full lattice (or, equivalently, its dual) requires an extra
assumption on the oracle function f , as captured by the third condition in
the following definition, reformatted from Definition 1.1 of [Eis+14].

According to Eisenträger et al. [Eis+14], for (some undetermined) adequate
parameters, Definition 3.2 ensures that the distribution on the dual lattice
Λ∗ is not concentrated on any proper sublattice, hence sufficiently many
samples will generate the lattice fully. We formalize and quantify this proof
strategy, and obtain the following quantitative conclusion. We note that the
constraints on r and ϵ are milder than one could think, for example ϵ does
not need to tend to 0 as a function of n or m. More precisely, a constant
ϵ < 1/4 and a constant r ≤ λ1(Λ)/6 would suffice.

Theorem 3.9. Let f : Rm → S be an (a, r, ϵ)-HSP oracle of the full-rank
lattice Λ ⊂ Rm, with r ≤ λ1(Λ)/6 and ϵ < 1/4. Let Df be the distribution
supported by Λ∗, with weight ⟨cℓ∗ |cℓ∗⟩ at ℓ∗ ∈ Λ∗, where |cℓ∗⟩ are the vectorial
Fourier coefficients of the function f .
Then, with overwhelming probability, we need at most

O
(
m log2

(
ma · det(Λ)1/m))

samples from Df to fully generate the lattice Λ∗.

The above theorem is obtained by combining Lemma 3.21 and proposi-
tion 3.24 from Section 3.6, instantiating the parameter R to R2 = ma2. This
choice is somewhat arbitrary and given for concreteness, however it does not
have a critical quantitative impact.

3.3.5. Primal Basis Reconstruction

Theorem 3.10. There exists a polynomial time algorithm, that, for any
matrix G ∈ Rk×m of k generators of a (dual) lattice Λ∗, and given an

94

3.3. Problem Statements and Results

approximation G̃ = G+∆G ∈ Qk×n, computes an approximation B̃ = B+∆B

of a basis B of the primal lattice Λ, such that

∥∆B∥∞ ≤
2O(mk) · ∥G̃∥m+1

∞
(λ∗1)3 · det(Λ∗) · ∥∆G∥∞,

under the assumption that ∥∆G∥∞ <
min(1,(λ∗

1)2)·det(Λ∗)
2O(km)·∥G̃∥m+1

∞
.

Remark 3.11. More specifically, the algorithm from Theorem 3.10 essen-
tially consists of the Buchmann-Pohst algorithm [BP89; BK96] and a matrix
inversion. Its complexity is dominated by two calls to LLL on matrices of
dimension (m+ k)× k and entry bit size O(k2 log(∥G̃∥/λ∗1)) (see the discus-
sion before [BK96, Cor. 4.1]). One can optimize the final running time by
choosing a fast variant of LLL, e.g., [NS16].

Our contribution on this step is merely a completed numerical analysis, with
the help of a theorem from [CSV12]. A claim with a similar purpose is given
in [Eis+14], yet involves more intricate lattice quantities.

3.3.6. Gaussian State Preparation

The main algorithm of this paper requires the preparation of a multidi-
mensional Gaussian initial state, which can be obtained by generating the
one-dimensional Gaussian state on m parallel quantum registers. This task
is known to be polynomial time [GR02; KW08], and we provide a quantita-
tive analysis in Appendix A.5. The precise running time of preparing this
Gaussian state is summarized below.

Theorem 3.12. For q = 2Q ∈ N, error parameter η ∈ (0, 1) and s >

2
√

log(m/η), there exists an quantum algorithm that prepares the higher-
dimensional Gaussian state

1√
ρ1/s(Dmrep)

∑
x∈Dm

rep

√
ρ1/s(x)|x⟩ =

m⊗
j=1

1√
ρ1/s(1

q [q]c)

∑
x∈ 1

q
[q]c

√
ρ1/s(x)|x⟩,

within trace distance η, using O
(
mQ + log(η−1)

)
qubits and using O(mQ

· log(mQη−1)2) quantum gates.

95

3. The Continuous Hidden Subgroup Problem

Remark 3.13. In Theorem 3.3, we chose η to be 1/k2. Therefore, one call
to the m-dimensional Gaussian state preparation with the parameters of The-
orem 3.3 takes O(mQ+log(k)) qubits and O(mQ log(kmQ)2) quantum gates.
As Theorem 3.3 requires k subsequent preparations of the m-dimensional
Gaussian state, the total costs of the Gaussian state preparation steps are
O(mQ+log(k)) qubits (by reusing qubits) and O(kmQ log(kmQ)2) quantum
gates.

This is slightly more than the costs of k times applying the Fourier trans-
form, and it explains the quantum gate complexity of O(kmQ log(kmQ)2)
in Theorem 3.3.

3.3.7. Proof of the Main Theorem

Proof of Theorem 3.3. The result is obtained by running Algorithm 1 and
instantiating Theorems 3.7, 3.9, 3.10 and 3.12.

Correctness of Algorithm 1. In step one, the dual sampling algorithm (Algo-
rithm 2) is applied k times with error probability η = 1/k2. The probability
that all measurements are actually δλ∗1-close to dual lattice points and are
of length less than

√
ma is then at least (1− η)k = (1− 1/k2)k ≥ 1− 1/k,

which is at least a constant success probability. We assume in the rest of
the proof that all measurements are indeed δλ∗1-close to dual lattice points
and of length less than

√
m · a.

In step two, these δλ∗1-close-to-Λ∗ samples are assembled into a matrix
k ×m-matrix G̃, on which is then applied the Buchmann-Pohst algorithm
[BK96; BP89] twice. Subsequently, the resulting square matrix is inverted
and transposed. By Theorem 3.10, this procedure runs in polynomial time
and has no error probability. Due to the choice of δ and the fact that
∥G̃∥∞ ≤

√
ma and ∥G̃−G∥ < δ · λ∗1, we can apply Theorem 3.10 to obtain

∥∆B∥∞ = ∥B − B̃∥ < τ , as required. Note that the size of δ is chosen in
such a way that the decline in precision (see Theorem 3.10) is taken care of.
By Theorem 3.3, the matrix G̃ indeed approximates a full generating set
of Λ∗ with overwhelming probability; implying that the output matrix B̃

96

3.3. Problem Statements and Results

Algorithm 1: Quantum algorithm that solves the continuous hidden
subgroup problem
Require:

• An (a, r, ϵ)-oracle f : Rm → H that is periodic with respect to
the full-rank hidden lattice Λ ⊆ Rm, whose dual lattice Λ∗ has
first minimum λ∗1 = λ1(Λ∗). We require the parameters ϵ and r

to satisfy ϵ < 1/4 and r ≤ λ1(Λ)/6.
• An error parameter τ quantifying the maximum allowed

deviation of the output basis B̃ from an actual basis B of Λ.

Ensure: With constant probability, an τ -approximated basis B̃ of the
lattice Λ. In other words, a matrix B̃ ∈ Matm×m(Q) satisfying
∥B̃ −B∥ < τ for some basis B ∈ Matm×m(R) of Λ, i.e., τ -close in the
maximum norm induced matrix norm.

1: Apply the dual sampling algorithm (Algorithm 2) k times, with
failure probability η = 1/k2, Gaussian deviation s = O(

√
m log(η−1))

and V = O
(m log(η−1)

δλ∗
1

)
, where k = O

(
m log[

√
m · a · det(Λ)1/m]

)
and

δ = 2−O(mk) · (
√
m · a)−(m+1) · det(Λ)−1 · (λ∗1)2 · τ .

2: Assemble the k samples from above algorithm into a matrix G̃, apply
the Buchmann-Pohst algorithm twice (see Section 3.7), and
invert and transpose the resulting basis, yielding a matrix B̃.

3: return B̃.

97

3. The Continuous Hidden Subgroup Problem

approximates a basis of Λ with overwhelming probability (and not a basis
of a strict sublattice of Λ).

Complexity estimate. We focus first on the less important complexity, the
classical complexity. This complexity is mainly driven by LLL-algorithm
and inversion in step (2) of Algorithm 1. This complexity can be bounded
polynomially in the dimensions and the entry sizes of the matrix involved.
The dimensions of G̃ are k×m, and can therefore by polynomially bounded
by m, log a and log(det Λ). The entry sizes (taking a precision of at least
δ into account) can be polynomially bounded by m, log(det Λ), log(τ) and
log(1/λ∗1). As log(det Λ) ≤ O(m log(1/λ∗1)) we can just omit log(det Λ).
Making all quantities homogeneous with respect to lattice scaling, we obtain
a classical complexity of poly(m, log a

λ∗
1
, log a

τ) bit operations.

The quantum complexity is driven by the Fourier transform in the dual lattice
sampling and the Gaussian preparation step. Repeating the dual lattice
sampling k times costs O(kmQ log(mQ)) quantum gates and O(mQ + n)
qubits, where n is the number qubits required to store the values |f(x)⟩ of the
quantum oracle in (see Theorem 3.7). Repeating k times the preparation of
the Gaussian initial quantum state (within total variation distance η = 1/k2)
requires O(kmQ log(kmQ)2) quantum gates and O(mQ+ log(k)) = O(mQ)
qubits (where we hide log(k) into O(mQ)), see Theorem 3.12. As discussed
in Remark 3.13, the quantum gate complexity is slightly dominated by that
of the Gaussian preparation step that occurs in Step 1 of Algorithm 2; it is
O(kmQ log(kmQ)2). The overall qubit complexity is O(mQ+ n).

For the estimation of the number of qubits Q needed ‘per dimension’, i.e.,
to prove Equation (3.24), we instantiate η = 1/k2 and δ = 2−O(mk) · (

√
m ·

a)−(m+1) · det(Λ)−1 · (λ∗1)2 · τ in Theorem 3.7 to obtain

log(1/δ) = (m+ 1) log(
√
ma) + log(det(Λ)) +O(mk)− log τ − 2 log(λ∗1).

Noting that m log(
√
ma) + log(det(Λ)) ∈ O(k) ⊆ O(mk), we see that

O

(
log a

η · δλ∗1

)
= O(mk) +O

(
log 1

λ∗1 · τ

)
+O(log(a/λ∗1))

98

3.4. Dual Lattice Sampling Algorithm

Putting O(m logm) into O(mk) in Equation (3.27) yields

Q = O(mk) +O

(
log a

λ∗1

)
+O

(
log 1

λ∗1 · τ

)
, (3.28)

3.4. Dual Lattice Sampling Algorithm

3.4.1. The Algorithm

Given a Λ-periodic function f : Rm → S as discussed in Section 3.3, which
maps a classical input x to a quantum state |f(x)⟩, we consider the following
quantum algorithm (see Algorithm 2, or more graphically, Figure 3.4). The
algorithm has oracle access to f , meaning that it has access to a unitary that
maps |x⟩|0⟩ to |x⟩|f(x)⟩. As a matter of fact, we may assume the algorithm
to have oracle access to a unitary that maps |x⟩|0⟩ to |x⟩|f(V x)⟩ for a
parameter V ∈ R chosen by the algorithm. Per se, x may be arbitrary in
Rm; for any concrete algorithm it is of course necessary to restrict x to some
finite subset of Rm.

The algorithm we consider follows the blueprint of the standard hidden-
subgroup algorithm. Notable differences are that we need to discretize (and
finitize) the continuous domain Rm of the function, and the algorithm starts
off with a superposition that is not uniform but follows a (discretized and
finitized) Gaussian distribution. The reason for the latter choice is that
Gaussian distributions decay very fast and behave nicely under the Fourier
transform (as they are eigenfunctions of the Fourier transform).

The algorithm is given in Algorithm 2. It uses two quantum registers, each
one consisting of a certain number of qubits. Associated to the first register
are grid points: orthonormal bases {|x⟩Dm}x∈Dm and {|y⟩D̂m}y∈D̂m where the
basis vectors are labeled by x ∈ Dm and y ∈ D̂m, respectively, which we
identify with elements x ∈ Dmrep and y ∈ D̂mrep (see Section 2.2.1). The second

99

3. The Continuous Hidden Subgroup Problem

Figure 3.3.: Intuitively, it is easier to see the (quasi-)periodicity of the continuous signal
(left) than that of the discrete signal (right). It is exactly the loss of information
‘between the sampling points’ that causes this chapter’s quantum algorithm
to behave slightly erroneously or noisily. Of course, increasing the number of
sampling points should reduce this noise; but it also causes the algorithm to
need more expensive qubits. The analysis sought to keep the required qubits
as low as possible, while still maintaining an acceptable error probability.

register has state space H. The algorithm is parameterized by q ∈ N (which
determines Dm), s > 0 and V > 0.

Intuitively, the fraction s
V is tightly related to the absolute precision of the

output, whereas log q is connected with the number of qubits needed. In
Algorithm 2, all quantum states described are unnormalized (i.e., do not
have norm 1) but have all the same norm, due to the unitary operations
in each step. In the analysis later, we show that, for adequately chosen
parameters, the initial state |ψ◦⟩, and therefore all states, are actually very
close to normalized.

The description and analysis of Step 1 of Algorithm 2 is deferred to Ap-
pendix A.5. It will be shown (as summarized in Theorem 3.12) that its cost
is comparable to the main cost of Algorithm 2, while contributing an error
of at most o(η) in the trace distance.

100

3.4. Dual Lattice Sampling Algorithm

Algorithm 2: Quantum algorithm for the dual lattice sampling prob-
lem

1: Prepare the Gaussian state
|ψ◦⟩ := sm/2 ·

∑
x∈Dm

√
ρ1/s(x) · |x⟩Dm |0⟩ ;

2: Apply the f-oracle, yielding sm/2 ·
∑
x∈Dm

√
ρ1/s(x) · |x⟩Dm |f(V x)⟩ ;

3: Apply the quantum Fourier transform on the first register,
yielding the unnormalized state
sm/2 ·

∑
x∈Dm

∑
y∈D̂m

√
ρ1/s(x) · e−2πi⟨x,y⟩ · |y⟩D̂m |f(V x)⟩ ;

4: Measure the first register in the D̂mrep-basis yielding some
y ∈ D̂mrep, and output y

V ;

Figure 3.4.: A visual representation of Algorithm 2, if it would have been run on a ‘con-
tinuous’ quantum computer with infinitely many qubits. In reality, quantum
computers have only finitely many qubits, leading to discretization errors.
These errors are the main topic of this chapter. Note that the state after the
Fourier transform ‘peaks’ at the dual lattice points.

101

3. The Continuous Hidden Subgroup Problem

3.4.2. The Figure of Merit

Recall that N = dimH = 2n. Then the state after step (2) of Algorithm 2
equals, up to normalization,

|ψ⟩ := sm/2 ∑
x∈Dm

√
ρ1/s(x) |x⟩Dm |f(V x)⟩

which we can rewrite as

|ψ⟩ =
∑
x∈Dm

|x⟩Dm |h(x)⟩

where
|h(x)⟩ := sm/2

√
ρ1/s(x) · |f(V x)⟩ .

Applying the quantum Fourier transform in step (3) maps this to

|ψ̂⟩ = q−m/2 ∑
x∈Dm

∑
y∈D̂m

e−2πi⟨x,y⟩|y⟩D̂m |h(x)⟩

= qm/2 ∑
y∈D̂m

|y⟩D̂m |FDm {h} (y)⟩ ,

where the factor qm/2 comes from the fact that, by our convention, the
Fourier transform FDm is scaled with the factor q−m, while the quantum
Fourier transform comes with a scaling factor q−m/2.

Up to normalization, the probability to observe outcome y ∈ D̂m in step (4)
thus is

⟨ψ̂|(|y⟩⟨y| ⊗ I)|ψ̂⟩ = qm · ∥FDm {h} (y)∥2H ,

and so, for any “target” subset C ⊂ D̂m, the probability for the algorithm
to produce an outcome y ∈ C equals

D(C) =
∑
y∈C

⟨ψ̂|(|y⟩⟨y| ⊗ I)|ψ̂⟩
⟨ψ◦|ψ◦⟩

=
∥1C · FDm {h}∥2D̂m

sm

qm

∑
x∈Dm ρ1/s(x)

. (3.29)

This target set are the points that one would like to have as an outcome
after measuring. In our situation, this target set C consists of points close
to dual lattice points ℓ∗, as those are considered ‘good’ measurement (see
Figure 3.5).

102

3.4. Dual Lattice Sampling Algorithm

Figure 3.5.: The target set C consists of those grid points that are δ · λ∗
1-close to the dual

lattice Λ∗; these points give valuable information about the dual lattice Λ∗.
In this specific example, the target set consists of the green points and the
blue circles around the black dual lattice points have radius δ · λ∗

1.

The algorithm’s behavior in the limit

Intuitively, in the limit q →∞, the grid 1
qZ

m becomes Rm; thus, neglecting
constant factors, the function FDm {h} is expected to converge to

FRm{ρ√2/s · f(V ·)} = ρs/
√

2 ⋆ FRm{f(V ·)} .

Furthermore, when V is large enough compared to s, then, relative to the
dual lattice V Λ∗, the Gaussian function behaves as a Dirac delta function.
Thus, the above function is then supported by V Λ∗ and takes on the values
|cℓ∗⟩. Hence, by taking square norms, we get the claimed ⟨cℓ∗ |cℓ∗⟩.

Below, we prove that this intuition is indeed correct, and we work out the
actual “rate of convergence”.

103

3. The Continuous Hidden Subgroup Problem

3.5. Analysis

3.5.1. Proof Overview

In the following few paragraphs we give an overview of the proof of correctness
of Algorithm 2. The main idea boils down to showing that the finite Fourier
transform is close to the continuous Fourier transform on the function
h = f · ρ1/s. They are indeed close due to the smoothness of the Gaussian
and the Lipschitz-continuity of the oracle function f .

The unnormalized initial state |ψ◦⟩ has approximately norm one. By the
smoothing argument of Banaszczyk, we derive that the initial state’s norm
satisfies ⟨ψ◦|ψ◦⟩ = sm

qm

∑
x∈Dm ρ1/s(x) ≈ 1. So, the initial state might not be

perfectly normalized, but it is almost. Therefore,

D(C) =
∥1C · FDm {h}∥2D̂m

sm

qm

∑
x∈Dm ρ1/s(x)

≈ ∥1C · FDm {h}∥2D̂m

meaning that we can focus on the latter quantity, that consists just of the
norm of the Fourier transformed function h.

Replacing the function h by its Tm-periodization h|T
m

. The function h =
sm/2 · f · ρ√2/s is a product of the function f and a Gaussian that is narrow
enough to be contained within the centered unit cube. Therefore, peri-
odization of h with respect to the unit cube [−1

2 ,
1
2]m (i.e., the central

representative of the unit torus) doesn’t differ too much from restricting h
to the torus. Therefore,

∥1C · FDm {h}∥2D̂m ≈
∥∥1C · FDm{h|T

m

}∥2D̂m .

Replacing the finite Dm-Fourier transform by the Tm-Fourier transform.
Because the function h is Lipschitz-continuous, changing the finite Fourier
transform into a continuous one over the torus Tm gives us a error that

104

3.5. Analysis

depends mainly on the discretization parameter q and the Lipschitz constant
Lip(f).

∥1C · FDm{h|T
m

}∥2D̂m ≈ ∥1C · FTm{h|T
m

}∥2Zm .

Replacing the Tm-Fourier transform by the Rm-Fourier transform. Using
the Poisson summation formula, one can derive an equality between the
Fourier transform of h|T

m

over the torus Tm and the Fourier transform of h
over the reals Rm.

∥1C · FTm{h|T
m

}∥2Zm = ∥1C · FRm{h}∥2Zm .

Relating the Rm-Fourier transform with the Fourier coefficients |cℓ∗⟩ of |f⟩.
As h is essentially a product of f and a relatively wide Gaussian, one can
apply the convolution theorem to obtain the real Fourier transform of h.
This Fourier transform is then very much related with the Fourier coefficients
|cℓ∗⟩ of f .

∥1C · FRm{h}∥2Zm ≈
∑
ℓ∗∈Λ∗

⟨cℓ∗ |cℓ∗⟩ · ιC(ℓ∗)

The function ιC here acts as sort-of an indicator function; one can think
of ιC(ℓ∗) being close to one whenever ℓ∗ is in the ‘target set’ C and zero
otherwise. Recall that this target set are the ‘wanted’ points, i.e., the desired
outcomes after measuring the quantum state. In our situation, this target
set C consists of points close δλ∗1-close to dual lattice points ℓ∗, as those
are considered ‘good’ measurements; they namely give valuable information
about the dual lattice Λ∗.

Lower bounding the success probability by means of Fourier coefficients of f .
In particular, one can show that, up to a small error, the function ιC indeed
acts as an indicator function. Whenever a large enough ball around a dual
lattice point ℓ∗ is contained in C, the value of ιC(ℓ∗) approximates one.

D(C) ≈
∑
ℓ∗∈Λ∗

⟨cℓ∗ |cℓ∗⟩ · ιC(ℓ∗) ≥
∑
ℓ∗∈Λ∗

Bδλ∗
1

(ℓ∗)∩Zm⊆C

⟨cℓ∗ |cℓ∗⟩. (3.30)

105

3. The Continuous Hidden Subgroup Problem

Taking into account the bounded output of Algorithm 2 and finalizing the
analysis. The output distribution D of Algorithm 2 has support only in
[−q/2, q/2]m. So, for any S ⊆ Λ∗ the probability pS from Problem 3.6 applied
to the output distribution of Algorithm 2 satisfies

pS = D
(
Bδλ∗

1
(S)

)
= D

(
Bδλ∗

1
(S) ∩ [−q/2, q/2]m

)
⪆

∑
ℓ∗∈Λ∗

ℓ∗∈S∩[−q/2,q/2]m

⟨cℓ∗ |cℓ∗⟩ ⪆
∑
ℓ∗∈S
⟨cℓ∗ |cℓ∗⟩

where the first ‘approximate inequality’ (which is an inequality up to some
small error) is obtained from Equation (3.30) and the last ‘approximate
inequality’ holds by the fact that the ‘tail’ of the Fourier coefficients of f
has small weight, i.e., ∑|ℓ∗|>q/2⟨cℓ∗ |cℓ∗⟩ is small.

Summarizing, this error mainly occurs because of the phrasing of the Prob-
lem 3.6. It makes the suggestion that the distribution D should have un-
bounded support and should be able to reach any dual lattice point, whereas
in reality (for the output distribution of Algorithm 2) this is very much
not the case. The error induced by this discrepancy is, as a consequence,
essentially the combined weight (i.e., the ‘lost probability’) of the lattice
points unreachable by the output distribution of Algorithm 2.

The velocity parameter V . In the formal analysis below, we sometimes
temporarily assume that the velocity parameter equals one, i.e., V = 1.
This is for sake of clarity and can be done without loss of generality, since
for arbitrary V the very same reasoning can be applied to the function
fV := f(V ·). This affects the quantities involved in the sense that Λ∗ becomes
V Λ∗, λ∗1 becomes V · λ∗1 and Lip(fV) becomes V Lip(f).

To be clear, the end results and errors involved are always stated for general
V . Moreover, whenever the assumption V = 1 occurs in a proof or a line of
reasoning, we will always explicitly say so, in order to avoid confusion.

106

3.5. Analysis

3.5.2. Formal Analysis

The unnormalized initial state |ψ◦⟩ has approximately norm one

By the smoothing lemma (see Lemma 2.31), we have, whenever q/s ≥
√
m,

⟨ψ◦|ψ◦⟩ = sm

qm

∑
x∈Dm

ρ1/s(x) ≤ sm

qm
· ρ1/s

(1
q
Zm
)
≤ 1 + 2βq/s

≤ 1 +O(e−q2/s2).

Therefore,∣∣∣∣∣∥1C · FDm {h}∥2D̂m

sm

qm

∑
x∈Dm ρ1/s(x)

− ∥1C · FDm {h}∥2D̂m

∣∣∣∣∣ ≤ O(e−q2/s2). (3.31)

By requiring that q/s ≥
√
m+ log(η−1), we can safely neglect this error.

Replacing the function h by its Tm-periodization h|T
m

By the linearity of the Fourier transform, by the fact that 1C is an indicator
function and by Parseval’s theorem, one can deduce

∥1C · FDm {h} − 1C · FDm{h|T
m

}∥D̂m ≤ ∥FDm{h− h|T
m

}∥D̂m

= ∥h|T
m

− h∥Dm .

Writing out the definition of the functions h = sm/2 · f · ρ√2/s and h|T
m

=∑
z∈Zm h(z + ·), we obtain

∥h|T
m

− h∥2Dm = 1
qm

∑
x∈Dm

∥∥∥ ∑
z∈Zm\0

h(x+ z)
∥∥∥2

H

≤ sm

qm

∑
x∈Dm

 ∑
z∈Zm\0

ρ√2/s(x+ z) · ∥f(V (x+ z))∥H

2

.

107

3. The Continuous Hidden Subgroup Problem

Since ∥f(x)∥H =
√
⟨f(x)|f(x)⟩ = 1, as |f(x)⟩ is a quantum state for any

x ∈ Rm, above expression is bounded by

sm

qm

∑
x∈Dm

(∑
z∈Zm\0

ρ√2/s(x+ z)

︸ ︷︷ ︸
≤2·β s

2
√

2

)2

≤ sm · |Dm|
qm

· (2 · β s

2
√

2
)2

≤ 4 · sm · (β s

2
√

2
)2,

as ρ√2/s
(
Zm\{0} + x

)
≤ 2 · β s

2
√

2
, from Banaszczyk’s tail bound in Corol-

lary 2.30. By the reverse triangle inequality, provided that s ≥
√

8m, we
conclude∣∣∣∥1C · FDm {h}∥2D̂m − ∥1C · FDm{h|T

m

}∥2D̂m

∣∣∣ ≤ O(sme−s2/8). (3.32)

By requiring that s ≥
√

8m log(m) + log(η−1), we can safely neglect this
error.

Replacing the finite Dm-Fourier transform by the Tm-Fourier transform

Using Theorem 2.8 with h|T
m

, one obtains

∣∣∣∥1C · FDm{h|T
m

}∥D̂m − ∥1C · FTm{h|T
m

}∥Zm

∣∣∣ ≤ 4π
√
mLip(h|T

m

)
q

(3.33)

≤ O
(√

msm/2(V Lip(f) + s2)
q

)
. (3.34)

Remark 3.14. In above inequality the indicator function 1C is used as a
function on both Dm and Zm. The function 1C on Zm must be interpreted
as having the same values on Dmrep ⊆ Zm as on Dm and having value zero
otherwise.

108

3.5. Analysis

Lemma 3.15. Assume that s ≥ 4
√
m. Then, for the Lipschitz constant

Lip(h|T
m

) of h|T
m

holds

Lip(h|T
m

) ≤ sm/2
(
2V Lip(f) + πs2

)
.

Proof. For the sake of clarity, we assume V = 1 throughout this proof;
at the end we will then have to replace Lip(f) by V Lip(f). Also, we will
temporarily omit the constant term sm/2 in the definition of h and use ρ
for ρ√2/s; thus calculating with h = f · ρ instead. In the final step, the
multiplicative term sm/2 will then be multiplied again to the end result.

By applying the triangle inequality multiple times, using the fact that
∥f(x)∥H = 1 for all x ∈ Rm and using the Lipschitz-continuity of f , one
obtains, for every x, y ∈ Rm,

∥h(x)− h(y)∥H ≤
∥∥f(x)

(
ρ(x)− ρ(y)

)∥∥
H +

∥∥(f(x)− f(y)
)
ρ(y)

∥∥
H

≤ |ρ(x)− ρ(y)|+ Lip(f) · ∥x− y∥Rm · ρ(y) (3.35)

By periodizing with respect to the unit torus Tm = Rm/Zm and applying
the triangle inequality, we obtain, for all x, y ∈ [−1/2, 1/2]m,

∥h|Tm(x)− h|Tm(y)∥H ≤
∑
z∈Zm

|ρ(x+ z)− ρ(y + z)|

+ Lip(f) · ∥x− y∥Tm ·
∑
z∈Zm

ρ(y + z) (3.36)

By smoothing arguments of Banaszczyk, one deduces that ρ√2/s(y+Zm) ≤ 2
(see Corollary 2.30), where we use the assumption s ≥ 4

√
m. By the reasoning

in Lemma A.33, we have that∑
z∈Zm

|ρ√2/s(x+ z)− ρ√2/s(y + z)|

≤πs2/2 · ∥x− y∥Tm

∑
z∈Zm

ρ√8/s(x+ y + 2z)∥x+ y + 2z∥︸ ︷︷ ︸
≤2

≤πs2 · ∥x− y∥Tm , (3.37)

109

3. The Continuous Hidden Subgroup Problem

where the last inequality can be obtained by absorbing ∥x+ y+ 2z∥ into the
Gaussian and applying smoothing arguments again; ρ1/s(x) · ∥x∥ ≤ ρ2/s(x)
for all x ∈ Rm and s ≥

√
m, and ρ√8/s(Zm) ≤ ρ√m(Zm) ≤ 1 + 2 · β√m ≤ 2,

for s ≥ 4
√
m (see Lemma 2.29). In other words,∑

z∈Zm

ρ√8/s(x+ y + 2z)∥x+ y + 2z∥ ≤
∑
z∈Zm

ρ√32/s(x+ y + 2z)

≤ ρ√32/s(2 · Z
m) = ρ√8/s(Z

m) ≤ 2.

By combing Equations (3.35) to (3.37), multiplying the factor sm/2 and
replacing Lip(f) by V · Lip(f) we obtain the final result.

Replacing the Tm-Fourier transform by the Rm-Fourier transform

Apply the Poisson summation formula (see Corollary 2.5) to conclude that

∥1C · FTm{h|T
m

}∥Zm = ∥1C · FRm{h}∥Zm ,

where FRm{h} is temporarily identified with its restriction to Zm.

Relating the Rm-Fourier transform with the Fourier coefficients |cℓ∗⟩ of
|f⟩

By applying the convolution theorem as outlined in Equation (2.9) of
Section 2.2.2, we see that

FRm{h}[y] = FRm/Λ{f(V ·)} ⋆ FRm{sm/2ρ√2/s(·)}(y)

=
(2
s

)m/2∑
ℓ∗∈Λ∗

|cℓ∗⟩ρs/√2(y − V ℓ∗),

where |cℓ∗⟩ are the vectorial Fourier coefficients of f . Therefore,

∥FRm{h}[y]∥2H

=
(2
s

)m ∑
k∗∈Λ∗

∑
ℓ∗∈Λ∗

⟨cℓ∗ |ck∗⟩ρs/√2(y − V ℓ∗)ρs/√2(y − V k∗)

=
(2
s

)m ∑
u∗∈ 1

2 Λ∗

∑
v∗∈u∗+Λ∗

⟨cv∗+u∗ |cv∗−u∗⟩ρs/2(V u∗)ρs/2(y − V v∗) , (3.38)

110

3.5. Analysis

where the latter is obtained by the variable substitution u∗ = ℓ∗−k∗

2 , v∗ =
ℓ∗+k∗

2 , and using the multiplicative properties of Gaussian functions (see
Lemma 2.23), like ρs/√2(x)ρs/√2(y) = ρs/2((x+ y)/2)ρs/2((x− y)/2) for all
x, y ∈ Rm.

Definition 3.16. For any subset C ⊆ Zm, any s > 0 and any ℓ∗ ∈ Λ∗, we
define ιC : Λ∗ → R>0 by the following rule,

ιC(ℓ∗) :=
(2
s

)m ∑
y∈C

ρs/2(y − V ℓ∗),

where leave out the dependence on s and V in the notation.

The above definition of ιC is mainly to make the notation in this analysis
more compact. But this function on Λ∗ also has an intuitive interpretation;
it is the cumulative Gaussian weight of all points in C around ℓ∗ (or, V · ℓ∗
in the case of scaling with V). So, if C contains many close points around ℓ∗
(see Figure 3.5 and Figure 3.6), this cumulative Gaussian weight approaches
1, whereas if there are no points in C around ℓ∗, this weight approaches zero.
Summarizing, the value ιC(ℓ∗) quantifies the number of close points around
ℓ∗; a value of 1 indicates many good close points in C, whereas a value near
0 indicates no good close points (see Figure 3.6).

Figure 3.6.: The function ιC(ℓ∗) equals the cumulative Gaussian weight of all points in C
around ℓ∗. In the left panel above, the set C contains many points around
the red lattice point ℓ∗, yielding a cumulative Gaussian weight approaching
one, i.e., ιC(ℓ∗) ≈ 1. In the right panel, set C only contains a few points close
to the lattice point, yielding a very low Gaussian weight, i.e., ιC(ℓ∗) ≈ 0.

111

3. The Continuous Hidden Subgroup Problem

Lemma 3.17. Let V, s > 0 satisfy the conditions V λ∗1/s ≥
√
m and s ≥

√
m.

Then, for any C ⊆ [q]mc , we have∣∣∣∣∣∣∥1CFRm{h}∥2Zm −
∑
ℓ∗∈Λ∗

⟨cℓ∗ |cℓ∗⟩ιC(ℓ∗)

∣∣∣∣∣∣ ≤ O(e−(V λ∗
1/s)2). (3.39)

Proof. Without loss of generality, we assume in the rest of the proof that
V = 1, as sketched in the last paragraph of Section 3.5.1. At the end of the
proof we will then replace λ∗1 by V · λ∗1.

By writing out the definition of the norm over Zm and using Equation (3.38),
we obtain

∥1CFRm{h}∥2Zm =
∑
y∈C
∥FRm{h}[y]∥2H

=
(2
s

)m ∑
y∈C

∑
u∗∈ 1

2 Λ∗

v∗∈u∗+Λ∗

⟨cv∗+u∗ |cv∗−u∗⟩ρs/2(u∗)ρs/2(y − v∗) .

By swapping the summation over C to the right, we deduce

∥1CFRm{h}∥2Zm =
∑

u∗∈ 1
2 Λ∗

v∗∈u∗+Λ∗

⟨cv∗+u∗ |cv∗−u∗⟩ρs/2(u∗)ιC(v∗) .

We split above sum into a part where u∗ = 0 and a part where u∗ ≠ 0.
Notice that for the case u∗ = 0, the inner product ⟨cv∗+u∗ |cv∗−u∗⟩ becomes
⟨cv∗ |cv∗⟩ and ρs/2(u∗) = 1. This yields

∥1CFRm{h}∥2Zm =
∑
ℓ∗∈Λ∗

⟨cℓ∗ |cℓ∗⟩ · ιC(ℓ∗)

+
∑

u∗∈ 1
2 Λ∗\0

ρs/2(u∗)
∑

v∗∈u∗+Λ∗

⟨cv∗+u∗ |cv∗−u∗⟩ · ιC(v∗). (3.40)

In order to achieve the claim of this lemma, it is enough to bound the second
term (where u∗ ̸= 0) in Equation (3.40). As we assumed that s ≥

√
m, we

can bound ιC(v∗) ≤
(

2
s

)m
ρs/2(Zm+ t) ≤ 2 for any v∗ ∈ Rm and C ⊆ Zm by

applying smoothing arguments (see Corollary 2.32). The sum of the ‘shifted

112

3.5. Analysis

inner products’ of the Fourier coefficients is bounded by one, as can be seen
by applying the Cauchy-Schwarz inequality and the inequality of arithmetic
and geometric means.

∣∣∣∣∣∣
∑

v∗∈u∗+Λ∗

⟨cv∗+u∗ |cv∗−u∗⟩

∣∣∣∣∣∣ ≤
∑
v∗∈Λ∗

√
⟨cv∗+2u∗ |cv∗+2u∗⟩⟨cv∗ |cv∗⟩

≤
∑
v∗∈Λ∗

⟨cv∗+2u∗ |cv∗+2u∗⟩+ ⟨cv∗ |cv∗⟩
2 = ∥f∥2Rm/Λ = 1.

Combining above reasoning with a tail bound of Banaszczyk (Lemma 2.29)
the u∗ ̸= 0 part in Equation (3.40) can be bounded as follows.

∑
u∗∈ 1

2 Λ∗\0

ρs/2(u∗)
∣∣∣ ∑
v∗∈u∗+Λ∗

⟨cv∗+u∗ |cv∗−u∗⟩ · ιC(v∗)︸ ︷︷ ︸
≤2

∣∣∣
≤ 2

∑
u∗∈ 1

2 Λ∗\0

ρs/2(u∗)
∣∣∣ ∑
v∗∈u∗+Λ∗

⟨cv∗+u∗ |cv∗−u∗⟩
∣∣∣

︸ ︷︷ ︸
≤1

≤ 2
∑

u∗∈ 1
2 Λ∗\0

ρs/2(u∗) ≤ 2 · ρs (Λ∗ \ 0) ≤ 4 · βλ∗
1/s
.

In order to drop the assumption that V = 1 from the start of the proof,
we need to replace λ∗1 by V · λ∗1 in above expression. Applying the bound
4 · βV λ∗

1/s
≤ O(e−(V λ∗

1/s)2) for V λ∗1/s ≥
√
m yields the final claim.

By requiring that V λ∗1/s ≥
√
m+ log(η−1), we can safely neglect the error

from Lemma 3.17.

113

3. The Continuous Hidden Subgroup Problem

Lower bounding the success probability by means of Fourier coefficients
of f

Whenever Bδλ∗
1V

(V ℓ∗) ∩ Zm ⊆ C for an ℓ∗ ∈ Λ∗, it holds that

ιC(ℓ∗) =
(2
s

)m ∑
y∈C

ρs/2(y − V ℓ∗) ≥
(2
s

)m ∑
y∈BV δλ∗

1
(V ℓ∗)∩Zm

ρs/2(y − V ℓ∗)

≥
(2
s

)m
ρs/2(Zm)

(
1− β2V δλ∗

1/s

)
≥ (1− 2 · βs/2)(1− β2V δλ∗

1/s
) ,

where the second inequality follows from Banaszczyk’s tail bound (see
Lemma 2.25) and the last from the smoothing bound in Lemma 2.31. In
other words, ιC(ℓ∗) is close to one if C contains all vectors in D̂m that
are δλ∗1V -close to V ℓ∗. This coincides with the intuitive explanation after
Definition 3.16. Note that δλ∗1 is the maximum distance from a dual lattice
point ℓ∗ required to consider the output valuable.

It follows then that∣∣∣ ∑
ℓ∗∈Λ∗

⟨cℓ∗ |cℓ∗⟩ιC(ℓ∗)−
∑
ℓ∗∈Λ∗

BV δλ∗
1

(V ℓ∗)∩Zm⊆C

⟨cℓ∗ |cℓ∗⟩
∣∣∣

≤O(e−s2/4) +O(e−(2V δλ∗
1/s)2), (3.41)

where we use the fact that ∑ℓ∗∈Λ∗⟨cℓ∗ |cℓ∗⟩ = ∥f∥2Rm/Λ = 1. By requiring that
δV λ∗1/s ≥

√
m+ log(η−1) and s ≥ 4

√
m+ log(η−1), we can safely neglect

this error.

Taking into account the bounded output of Algorithm 2 and finalizing
the analysis

As the output distribution D of Algorithm 2 has support only in [−q/2, q/2]m,
we have, for any S ⊆ Λ∗,

D
(
Bδλ∗

1
(S)

)
= D

(
Bδλ∗

1
(S) ∩ [−q/2, q/2]m

)
.

114

3.5. Analysis

By simply splitting the set S ⊆ Λ∗ into an ‘tail part’ Stail = S\[−q/4, q/4]m
and a ‘bounded, finite part’ Sfin = S ∩ [−q/4, q/4]m, we obtain∑

ℓ∗∈S
⟨cℓ∗ |cℓ∗⟩−D

(
Bδλ∗

1
(S)

)
=

∑
ℓ∗∈Stail

⟨cℓ∗ |cℓ∗⟩︸ ︷︷ ︸
Small because of a tail bound

+
∑

ℓ∗∈Sfin

⟨cℓ∗ |cℓ∗⟩ − D
(
Bδλ∗

1
(S) ∩ [−q/2, q/2]m

)
︸ ︷︷ ︸

Small because of the error analysis

. (3.42)

By the fact that f is a Lipschitz continuous function, its Fourier coefficients
have a tail bound. By applying Corollary 2.34 with B = q/4, we obtain the
following bound

∑
ℓ∗∈Stail

⟨cℓ∗ |cℓ∗⟩ ≤
∑

ℓ∗∈Λ∗\[−q/4,q/4]m
⟨cℓ∗ |cℓ∗⟩ ≤

4 · Lip(f)2

π2q2 .

The summand in Equation (3.42) is, by the full error analysis, bounded by∑
Bδλ∗

1
(ℓ∗)⊆Bδλ∗

1
(S)∩[−q/2,q/2]m

⟨cℓ∗ |cℓ∗⟩ − D
(
Bδλ∗

1
(S) ∩ [−q/2, q/2]m

)

≤ O
(√

msm/2(V Lip(f) + s2)
q

)
+ o(η) (3.43)

As the only non-negligible error is caused by Equation (3.33), provided
that δV λ∗1/s ≥

√
m+ log(η−1), s ≥ 4

√
m logm+ log(η−1) and q/s ≥√

m+ log(η−1).

Remark 3.18. Note that we chose for Sfin = S ∩ [−q/4, q/4]m the box
[−q/4, q/4]m, whereas in the analysis we used the box [−q/2, q/2]m. This is
to crudely include also all points that are δλ∗1-close to dual lattice vectors.

Final theorem

Assembling all errors, we obtain the following theorem.

115

3. The Continuous Hidden Subgroup Problem

Theorem 3.7. Algorithm 2 solves the Dual Lattice Sampling Problem with
parameters η and δ; it uses one call to the Gaussian superposition subroutine
(see Theorem 3.12), one quantum oracle call to f , mQ + n qubits, and
O(mQ log(mQ)) quantum gates, where

Q = O (m log (m)) +O

(
log

(
a

η · δλ∗1

))
. (3.27)

Proof. In Algorithm 2, two quantum registers are used: one to encode the
grid Dm and another one for the storage of the state of the continuous
hidden subgroup oracle |f(x)⟩. As the grid has qm points, we need m log q
qubits to encode it. For the oracle state it is assumed that it can be stored
in n qubits, thus arriving at a total of mQ + n qubits, where Q = log q.
Apart from constructing the initial Gaussian superposition, the only part of
Algorithm 2 that uses quantum gates is the quantum Fourier transform on
the grid register consisting of mQ qubits. Using a result of Hallgren et al., a
sufficient approximation of this quantum Fourier transform can be obtained
using only O(mQ log(mQ)) elementary quantum gates [HH00].

To compute the value of Q = log(q), we instantiate the parameters s =
4
√
m logm+ log(η−1) and V = 4

δλ∗
1
· (m logm + log(η−1)). This implies

s ≥ 4
√
m logm+ log(η−1) and δV λ∗1/s ≥

√
m+ log(η−1), making the errors

from Equations (3.31), (3.32), (3.39) and (3.41) all negligible compared to η.
To get the errors from Equation (3.33) and Equation (3.43) well below η,
we put

log q = Q = O

(
m log(s) + log

(V Lip(f)
η

))
.

Writing out the instantiations of s and V and grouping the resulting expres-
sions properly, we arrive at Equation (3.27). Here we use the fact that, for
all η > 0 and m ∈ N, m

(
log

(
m logm+ log(1/η)

))
∈ O(m logm+ log(1/η)).

116

3.6. From Sampling to Full Dual Lattice Recovery

3.6. From Sampling to Full Dual Lattice Recovery

We have so far focused on approximate sampling dual lattice points with
probability weights ⟨cℓ∗ |cℓ∗⟩ for ℓ∗ ∈ Λ∗, regardless of how useful this distribu-
tion may be. Indeed, until now, it could be that the function f : Rm/Λ→ S
is constant, and therefore that all weight is concentrated on 0 ∈ Λ∗. We
would like now make sure we can reconstruct (approximately) Λ∗ from
such samples, i.e., that a sufficient number of sampled vectors from Λ∗ will
generate it. Informally, an equivalent condition is that the weight ⟨cℓ∗ |cℓ∗⟩ is
not concentrated on any proper sublattice M∗ ⊊ Λ∗. This is exactly what
happens if the oracle function f is separating, i.e., is not too constant.

More formally, we give the following sufficient conditions for a distribution
to be useful as a (approximate) lattice sampling distribution.

Definition 3.19. Let L ⊆ Rm be a full-rank lattice. A distribution D on L

is called p-evenly distributed whenever Prv←D[v ∈ L′] ≤ p for any proper
sublattice L′ ⊊ L.

Definition 3.20. Let L ⊆ Rm be a full-rank lattice. A distribution D on L

is called (R, q)-concentrated whenever Prv←D[∥v∥ ≥ R] ≤ q.

Figure 3.7.: An example of a (R, q)-concentrated distribution, where R is the radius of the
green circle and q = 0.05, i.e., less than 5 percent of the weight lies outside
the circle. Note that this Gaussian distribution is also 0.5-evenly distributed.

The following lemma states that an evenly distributed and well-concentrated
distribution on a lattice L should eventually output a full generating set of

117

3. The Continuous Hidden Subgroup Problem

Figure 3.8.: Both these distributions are not p-evenly distributed for any p < 1, as the
strict sublattices indicated by the red points have all of the weight.

that lattice, and gives a precise probabilistic upper bound on the number of
samples needed.

Lemma 3.21. Let L ⊆ Rm be a full-rank lattice with a p-evenly distributed
and (R, q)-concentrated distribution D with R ≥ det(L)1/m. Denote by S the
random variable defined by the number of samples that needs to be drawn
from D such that the samples together generate L as a lattice. Then, for all
α > 0,

Pr
[
S > (2 + α) · (t+m)

1− p− q

]
≤ exp(−α(t+m)/2)

where t = m log2(R)− log2(det(L)) ≥ 0.

Proof. First, we define the following sublattices of L, for any v1, . . . , vj−1 ∈
L.

Lv1,...,vj−1 =

spanR(v1, . . . , vj−1) ∩ L if dim(spanR(v1, . . . , vj−1)) < m

Zv1 + · · ·+ Zvj−1 otherwise.

Consider a sequence of samples (vi)i>0 (from D). We call vj ‘good’ whenever
∥vj∥ ≤ R and vj /∈ Lv1,...,vj−1 . We argue that we need at most m+ t good
vectors to generate L.

Denote L′ for the lattice generated by the m + t good vectors. Then the
first m good vectors ensure that L′ is of rank m, whereas the last t good
vectors will reduce the index of the L′ lattice in L. Calculating determinants,

118

3.6. From Sampling to Full Dual Lattice Recovery

using the fact that all good vectors are bounded by R, we have det(L′) ≤
Rm/2t ≤ det(L). This yields L′ = L.

Denote by X the random variable having the negative binomial distribution
with success probability p+ q and number of ‘failures’ m+ t. That is, X is
the number of independent samples from a (p + q)-Bernoulli distribution
until m+ t ‘failures’1 are obtained. We argue that the random variable S is
dominated by the random variable X, i.e., Pr[S > x] ≤ Pr[X > x] for every
x ∈ N.

Again, consider a sequence of samples (vi)i>0 (from D). The probability
of vj being a ‘good’ vector is at least 1 − p − q, by the fact that D is
(R, q)-concentrated and p-evenly distributed. Because at most m+ t ‘good’
vectors are needed to generate the whole lattice, S is indeed dominated by
X. Therefore, for any k ∈ N,

Pr
[
S >

t+m+ k

1− p− q

]
≤ Pr

[
X >

t+m+ k

1− p− q

]
≤ Pr [B < m+ t]

≤ exp
(
−1

2
k2

t+m+ k

)
(3.44)

where B is binomially distributed with ⌊ t+m+k
1−p−q ⌋ trials and success probability

1− p− q. The first inequality follows from the fact that S is upper bounded
by X. The second inequality comes from the close relationship between the
negative binomial distribution and the binomial distribution [GKP94, Ch. 8,
Example 17]. The last inequality follows from the Chernoff bound. Putting
k = (1 + α)(t+m) into Equation (3.44) yields the claim.

We conclude this section by relating the parameters (a, r, ϵ) of the HSP
oracle (Definition 3.2) f : Rm/Λ → S to how equally-distributed and
well-concentrated the distribution Dideal on Λ∗ is, arising from the Fourier
coefficients of the oracle function f . The exact relation is stated in Proposi-
tion 3.24, but we first need two technical lemmas to help us proving this
relation.

1In our case, the failures are the ‘good’ vectors. We nonetheless chose the word ‘failure’
because it is standard nomenclature for the negative binomial distribution.

119

3. The Continuous Hidden Subgroup Problem

Lemma 3.22. Let Λ be a lattice, and let M ⊋ Λ a proper super-lattice of
Λ. Then there exists a v ∈M such that d(v,Λ) ≥ λ1(Λ)/3.

Proof. Let w ∈ M be the shortest non-zero vector in M and write ∥w∥ =
αλ1(Λ) for α ≤ 1. We consider two cases depending on the value of α ∈ (0, 1].
If α ≥ 1/3, choose an element v ∈ M\Λ arbitrarily. This element satisfies
d(v,Λ) ≥ λ1(Λ)/3, since

d(v,Λ) = d(v + Λ, 0) = d
(
(v + Λ)\0, 0

)
≥ d(M\0, 0) = α · λ1(Λ) ≥ λ1(Λ)/3.

If, on the other hand, α < 1/3, then v = ⌈ 1
3α⌉ · w ∈ M satisfies d(v,Λ) ≥

λ1(Λ)/3. One can deduce this by observing that

∥v∥ = ⌈ 1
3α⌉ · α · λ1(Λ) ∈ [1

3 · λ1(Λ), 2
3 · λ1(Λ)],

which in particular implies that ∥v − ℓ∥ ≥
∣∣∥ℓ∥ − ∥v∥∣∣ ≥ 1

3 · λ1(Λ), for all
ℓ ∈ Λ, i.e., d(v,Λ) ≥ 1

3λ1(Λ).

Figure 3.9.: The two cases of Lemma 3.22 are depicted here, where the smaller lattice
Λ consists of the points inside the red circles. The blue super lattice M satisfies
λ1(M) = αλ1(Λ) for some α > 1/3 in the left picture and for some α < 1/3
in the right picture. In both cases, an element v ∈ M for which holds
d(v,Λ) > 1

3 · λ1(Λ) can be reasonably found. Examples of such v ∈ M

are marked with a green circle.

120

3.6. From Sampling to Full Dual Lattice Recovery

Lemma 3.23. Let Λ be a lattice and M ⊋ Λ a proper super-lattice of Λ.
Then the number N =

∣∣∣{c ∈M/Λ | d(c,Λ) < 1
6λ1(Λ)

}∣∣∣ of close cosets is at
most 1

2 · |M/Λ|.

Proof. By Lemma 3.22 there exists a v ∈ M such that d(v,Λ) ≥ 1
3λ1(Λ).

Denoting T =
{
c ∈M/Λ | d(c,Λ) < 1

6λ1(Λ)
}

, we can deduce that T ∪(T+v)
is a disjoint union in M/Λ. Indeed, elements c ∈ T satisfy d(c,Λ) < 1

6λ1(Λ),
whereas c′ ∈ T + v satisfy d(c′,Λ) ≥ d(v,Λ)− 1

6λ1(Λ) ≥ 1
6λ1(Λ). Therefore

N = |T | ≤ 1
2 |M/Λ|.

Proposition 3.24. Let f : Rm → S be an (a, r, ϵ)-HSP oracle of the full-
rank lattice Λ ⊂ Rm, with r ≤ λ1(Λ)/6. Let Df be the distribution supported
by Λ∗, with weight ⟨cℓ∗ |cℓ∗⟩ at ℓ∗ ∈ Λ∗, where |cℓ∗⟩ are the vectorial Fourier
coefficients of the function f . Then Df is both (1

2 + ϵ)-evenly distributed and
(R, ma2

4π2R2)-concentrated for any R > 0.

Proof. The distribution Df being (R, ma2

4π2R2)-concentrated for any R > 0 is a
direct consequence of Corollary 2.34. For the (1

2 + ϵ)-evenly distributed
part, we argue as follows. Let M∗ be any strict sublattice of Λ∗, and
let M be its dual, which is then a superlattice of Λ. Put f |R

m/M (x) =
1

|M/Λ|
∑
v∈M/Λ f(x + v), the periodization of f with respect to Rm/M (c.f.

Definition 2.3). We have the following sequence of equalities, of which the
second follows from the Poisson summation formula (see Theorem 2.4) and

121

3. The Continuous Hidden Subgroup Problem

the third from Parseval’s theorem (see Equation (2.5)).∑
v∗∈M∗

⟨cv∗ |cv∗⟩

=
∥∥∥FRm/Λ{f}

∣∣∣
M∗

∥∥∥2

M∗
=
∥∥∥FRm/M{f |R

m/M}
∥∥∥2

M∗

= ∥f |R
m/M∥Rm/M = 1

detM

∫
x∈Rm/M

〈
f |R

m/M ∣∣f |Rm/M〉dx,
= 1
|M/Λ|2

∑
v,w∈M/Λ

1
detM

∫
x∈Rm/M

⟨f(x+ v)| f(x+ w)⟩ dx︸ ︷︷ ︸
Iv,w

= 1
|M/Λ|2

∑
v,w∈M/Λ

dRm/Λ(v,w)<r

Iv,w + 1
|M/Λ|2

∑
v,w∈M/Λ

dRm/Λ(v,w)≥r

Iv,w. (3.45)

By the definition of an (a, r, ϵ)-oracle, we have that |Iv,w| ≤ ϵ whenever
dRm/Λ(v, w) ≥ r. In the rest of the cases we have |Iv,w| ≤ 1, because f maps
to the unit sphere. Equation (3.45) is therefore bounded by |M/Λ ∩ Br|

|M/Λ| + ϵ,
where Br is the open unit ball around zero with radius r. By Lemma 3.23,
we have |M/Λ ∩ rB|

|M/Λ| ≤ 1
2 for r ≤ λ1(Λ)/6. Summarizing, we derive

∑
v∗∈M∗

⟨cv∗ |cv∗⟩ ≤ 1
2 + ϵ.

Since M∗ was chosen arbitrarily, we can conclude that Df is (1
2 + ϵ)-evenly

distributed.

Remark 3.25. A similar reasoning happens in [Reg04a, Lecture 12], though
it specifically targets the discrete Gaussian distribution on lattices. Despite be-
ing not general enough for our purposes, it may well be helpful for optimizing
a future specialization.

Theorem 3.9. Let f : Rm → S be an (a, r, ϵ)-HSP oracle of the full-rank
lattice Λ ⊂ Rm, with r ≤ λ1(Λ)/6 and ϵ < 1/4. Let Df be the distribution
supported by Λ∗, with weight ⟨cℓ∗ |cℓ∗⟩ at ℓ∗ ∈ Λ∗, where |cℓ∗⟩ are the vectorial

122

3.7. Recovering a Basis of the Primal Lattice

Fourier coefficients of the function f .
Then, with overwhelming probability, we need at most

O
(
m log2

(
ma · det(Λ)1/m))

samples from Df to fully generate the lattice Λ∗.

Proof. Apply Proposition 3.24 with R =
√
m · Lip(f) to deduce that Df is

3/4-evenly distributed and (
√
mLip(f), 1/(4π2))-concentrated. Subsequently,

we apply Lemma 3.21 with2 p = 3/4, q = 1/(4π2), R =
√
m · Lip(f) and

t = m log2(
√
mLip(f))− log2(det(Λ∗)), to obtain

Pr [S > (2 + α) · 5 · (t+m)] ≤ exp(−α(t+m)/2).

Writing out t (which is larger than 0), noticing that Lip(f) ≤ a, and
absorbing m into the big-O, we obtain the result with exponentially small
error probability.

3.7. Recovering a Basis of the Primal Lattice

The last problem that needs to be resolved is how to obtain an approximate
basis B̃ of the primal lattice Λ, given a set of approximate generators G̃
of the dual lattice Λ∗. Also, we would like to know how the approximation
errors of G̃ and B̃ are related.

Recovering the approximate basis B̃ proceeds by two steps. The first step
consists of applying the Buchmann-Pohst algorithm [BP89] twice to the
set of generators G̃, yielding an approximate basis D̃ of the dual lattice
Λ∗ whose errors are relatively easy to analyze. The second step consists of
inverting and transposing the square matrix D̃. This yields an approximate
basis B̃ for the primal lattice Λ.

2In order to apply Lemma 3.21, we need to verify that R =
√
mLip(f) ≥ det(Λ∗)1/m.

By Remark 3.5, we have
√
mLip(f) ≥

√
m(1−ϵ)

r
≥ 3

√
m

λ1(Λ) ≥ 3 det(Λ)−1/m = 3 det(Λ∗)1/m,
where we use r ≤ λ1(Λ)/6 and Minkowski’s inequality.

123

3. The Continuous Hidden Subgroup Problem

The next two subsections follow above summary, and consist of theorems
that indicate the decline in precision after each step.

In this particular section, we use row notation for matrices, i.e., any row
represents a vector. The matrix of generators G̃ is an k ×m matrix, thus
consisting of k generators. We assume that the lattice Λ (and thus Λ∗ as
well) is of full rank m, meaning that k ≥ m and that the resulting bases D̃
and B̃ must be m ×m square matrices. We denote by ∥M∥∞ the matrix
norm induced by the infinity norm, explicitly defined as

∥M∥∞ := max
1≤i≤m

n∑
j=1
|mij |.

3.7.1. An Approximate Well-conditioned Basis of the Dual

Obtaining an approximate and well-conditioned basis of the dual proceeds
by means of the Buchmann-Pohst algorithm, which is rigorously analyzed by
Buchmann and Kessler [BK96, Sec. 4]. This algorithm consists of concatenat-
ing the generating matrix by a scaled identity matrix and applying the LLL
lattice reduction algorithm. As described after the proof of [BK96, Thm. 4],
this particular algorithm is actually applied twice, once on the matrix of
generators G̃ and once again on the resulting intermediate approximate
basis D̃ to achieve a new basis whose errors are easier to analyze. From now
on, we will refer to applying this procedure twice as the Buchmann-Pohst
algorithm. From [BK96] we can extract the following result.

Theorem 3.26. Let G̃ = G+ ∆G be an approximation of a k×m matrix of
generators G of the full-rank lattice Λ∗ , with ∥∆G∥∞ < γ <

λ∗
1·det(Λ∗)

2O(km)·∥G̃∗∥m
∞

.
Then, on input3 [G̃ | γ · I], the Buchmann-Pohst algorithm outputs an LLL-
reduced matrix [D̃| γ ·M], with D̃ = D + ∆D being an approximate basis of
Λ∗, where both ∥∆D∥∞ and ∥γ ·M∥∞ are upper bounded by

2O(km)∥G̃∗∥m+1
∞

λ∗1 · det(Λ∗) · γ

3Here, the I is the k × k identity matrix.

124

3.7. Recovering a Basis of the Primal Lattice

Proof. As already mentioned, applying the Buchmann-Pohst algorithm on
G̃ takes two reduction steps. The first reduction step is applied on [G̃| γ · I]
and yields an intermediate basis D̃0 = M0G̃ and the second step is applied
on [D̃0 | γI] and yields the final basis D̃ = MD̃0 = MM0G̃. Here, M and
M0 are unimodular matrices.

The fact that the matrix [D̃|γ ·M] is the output of the second step, proves
that this must be an LLL-reduced basis (note that γ ·M is just the matrix M
scaled by the scalar γ). From [BK96, Cor. 4.1], we deduce that both ∥M∥∞
and ∥MM0∥∞ are bounded by 2k−1(

√
mk+2) ·λ′α′/λ1(Λ∗), given that4 γ <

λ1(Λ∗) det(Λ∗)

(
√
mk+2)·λ′·2

k−3
2

. Putting in the actual values of α′ = (
√
mk+ 2)2 k−1

2 · ∥G̃∥∞
and

λ′ = λ(
√
mk + 2)m2

k−1
2 m = (k

√
m/2 +

√
k)(
√
mk + 2)m2

k−1
2 m ∥G̃∥m∞

det(Λ∗)

yields the bound on ∥γM∥∞ and the assumption on γ. For the bound on ∆D,
notice that ∥∆D∥∞ = ∥MM0∆G∥∞ ≤ ∥MM0∥∞∥∆G∥∞ and by assumption
∥∆G∥∞ ≤ γ.

For small enough γ, the LLL-reduced basis [D̃ | γ ·M] is very close to [D | 0].
One of the main results of Chang, Stehlé and Villard [CSV12, Cor. 5.7] states
that the close matrix [D | 0] must then also be ‘weakly LLL-reduced’. This
knowledge can then be used to show that this basis D is well-conditioned.

Lemma 3.27. Let [D̃ | γM] = [D | 0] + [∆D | γM] be an LLL-reduced
basis with ∥[∆D | γM]∥∞ ≤ µ · (3/

√
2)−3m∥D̃∥∞ for some µ < 1. Then D is

(d, η′, θ′)-weakly LLL-reduced as in [CSV12, Def. 5.1], with d = 3
4 +O(2−mµ),

η = 1
2 +O(2−mµ) and θ = O(2−mµ).

Corollary 3.28. Let [D̃ | γM] = [D | 0] + [∆D | γM] be an LLL-reduced
basis with ∥[∆D | γM]∥∞ ≤ µ · (3/

√
2)−3m∥D̃∥∞ for some µ < 1 (i.e.,

4See [BK96, Thm. 4.1], where λ needs to be replaced by λ′, as described in the text
after the proof of [BK96, Thm. 4.2]). These variables λ and λ′ are from [BK96, Prop. 3.2],
and not directly related to the minima of the lattices involved.

125

3. The Continuous Hidden Subgroup Problem

satisfies the same assumptions as in Lemma 3.27). Then

∥D−1∥∞ ≤
8m

λ1(Λ∗) .

Proof. We can decompose D = RV Q, with Q orthonormal, V diagonal with
diagonal entries ∥d∗i ∥ and R lower triangular with ones on the diagonal.
Here, d∗i are the Gram-Schmidt orthogonalized basis vectors of D.

By the fact that the matrix norm is submultiplicative, we have

∥D−1∥∞ ≤ ∥R−1∥∞∥V −1∥∞∥Q−1∥∞ = ∥R−1∥∞∥V −1∥∞ ≤
∥R−1∥∞
mini∥d∗i ∥

.

By Lemma 3.27, D is weakly (d, η, θ)-LLL-reduced with d = 3
4 +O(2−mµ),

η = 1
2 +O(2−mµ) and θ = O(2−mµ). Therefore, by [CSV12, Thm. 5.4], taking

α = 2 >
√

2 for simplicity, we know that λ1(Λ∗) ≤ ∥d1∥ ≤ 2m mini∥d∗i ∥, so
that 1/mini∥d∗i ∥ ≤ 2mλ1(Λ∗)−1. In the end of the proof of [CSV12, Lm. 5.5],
we see5 that

∥R−1∥∞ ≤
(1 + α)(1 + η + θ)mαm

(1 + η + θ)α− 1 ≤ 4m,

by taking α = 2, η = 1/2 + O(2−mµ) and θ = O(2−mµ). This yields the
claim.

3.7.2. Inverting the Dual Approximate Basis

As the basis D̃ constructed in the previous subsection is a basis of the
dual lattice Λ∗, we need to invert and transpose it to get an approximate
basis of the primal lattice Λ. In other words, the basis that we would like
to approximate is B = D−⊤, by means of computing B̃ = D̃−⊤. Though,
inverting an approximate matrix induces errors closely related with the
matrix norm of the inverse of the exact basis. More precisely, we have the
following result [BKK17, Cor. 7.2, Eq. (7.46)]

5In [CSV12, Lm. 5.5], the unit-diagonal lower triangular matrix is denoted R̄, and the
bound is about R̄−1

126

3.7. Recovering a Basis of the Primal Lattice

Theorem 3.29. Let D̃ = D + ∆D with ∥∆D∥∞ · ∥D−1∥∞ < 1
2 , and denote

B = D−⊤ and B̃ = D̃−⊤ (where D−⊤ is the inverse transpose of D). Then
we have

∥B − B̃∥∞ ≤ 2∥D−1∥2∥∆D∥∞.

3.7.3. Combining the Errors and Tuning the Parameters

Theorem 3.10. There exists a polynomial time algorithm, that, for any
matrix G ∈ Rk×m of k generators of a (dual) lattice Λ∗, and given an
approximation G̃ = G+∆G ∈ Qk×n, computes an approximation B̃ = B+∆B

of a basis B of the primal lattice Λ, such that

∥∆B∥∞ ≤
2O(mk) · ∥G̃∥m+1

∞
(λ∗1)3 · det(Λ∗) · ∥∆G∥∞,

under the assumption that ∥∆G∥∞ <
min(1,(λ∗

1)2)·det(Λ∗)
2O(km)·∥G̃∥m+1

∞
.

Proof. For the moment, assume that the full output6 [D̃ | γM] = [D | 0] +
[∆D | γM] of the Buchmann-Pohst algorithm satisfies ∥[∆D | γM]∥∞ ≤
µ(3/

√
2)−3m∥D̃∥∞ for some µ < 1 and ∥∆D∥∞∥D−1∥∞ < 1/2. Then, by

applying Theorem 3.29, Corollary 3.28 and Theorem 3.26 subsequently, we
obtain

∥∆B∥∞ ≤ 2∥D−1∥2∞∥∆D∥∞ ≤
26m+1

(λ∗1)2 ∥∆D∥∞ ≤
2O(mk) · ∥G̃∥m+1

∞
(λ∗1)3 · det(Λ∗) · γ.

It remains to prove that assumptions in the beginning of this proof are
indeed fulfilled. By Theorem 3.26, we have

∥[∆D | γM]∥∞ ≤
2O(mk) · ∥G̃∥m+1

∞
λ∗1 · det(Λ∗) · γ < O(1),

6In reality, the Buchmann-Pohst algorithm is applied with the largest precision such
that all required assumptions hold. So the costs of applying the LLL-algorithm does not
involve the precision ∥∆G∥∞.

127

3. The Continuous Hidden Subgroup Problem

and by Theorem 3.29, we have

∥∆D∥∞∥D−1∥∞ ≤ ∥∆D∥∞
23m

λ∗1
≤ 2O(mk) · ∥G̃∥m+1

∞
(λ∗1)2 · det(Λ∗) · γ < O(1).

So choosing γ appropriately small, the assumptions of Theorem 3.29, Corol-
lary 3.28 and Theorem 3.26 are all fulfilled.

128

