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2. Preliminaries

2.1. General Notation

We denote by N,Z,Q,R,C the natural numbers, the integers, the rationals,
the real numbers and the complex numbers respectively. All logarithms
are in base e. For a rational number p/q ∈ Q with p and q coprime, we
let size(p/q) refer to log |p| + log |q|. We extend this definition to vectors
and matrices of rational numbers, by taking the sum of the sizes of all the
coefficients.

Vectors v ∈ V are denoted in boldface and are to be interpreted column-wise
unless stated otherwise. In the case of a vector in a (quantum) Hilbert space
H, we sometimes deviate from this notation and use the bra-ket notation
as well; |v⟩ for primal vectors and ⟨v| for dual vectors. An inner product of
⟨w| and |v⟩ is then denoted ⟨w|v⟩, and the notation for the tensor product
|w⟩ ⊗ |v⟩ of two vectors in a Hilbert space is generally suppressed, i.e., we
denote |w⟩|v⟩ instead.

2.2. Fourier Theory

We start with a brief introduction to Fourier analysis over arbitrary locally
compact abelian groups. This general treatment allows us to then apply
the general principles to the different groups that play a role in this thesis,
especially in Chapter 3. For the reader that is unfamiliar with such a general
treatment, it is useful — and almost sufficient — to think of R, of T = R/Z,
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2. Preliminaries

and a finite group. For more details and for the proofs we refer to Deitmar’s
book on this subject [DE16].

2.2.1. Groups

Here and below we consider a locally compact abelian group G. Such a group
admits a Haar measure µ that is unique up to a normalization factor. The
crucial property of such a Haar measure is that it is invariant under the
group action. Simple examples are G = R with µ the Lebesgue measure λ,
or a finite group G with µ the counting measure #.

The dual group Ĝ, consisting of the continuous1group homomorphisms χ
from G into S1, the multiplicative group of complex numbers of absolute
value 1, is again a locally compact abelian group. As we shall see soon, for a
fixed choice of the normalization factor of the Haar measure µ for G, there
is a natural choice for the normalization factor of the Haar measure µ̂ for
Ĝ.

Examples of locally compact abelian groups that play an important role in
this dissertation are: the m-dimensional real vector space Rm; the m-fold
torus Tm := Rm/Zm and more generally Rm/Λ for an arbitrary lattice Λ in
Rm; and the finite ‘discretized torus’ group Dm := 1

qZ
m/Zm ⊂ Tm (which is

isomorphic to Zm/qZm) for a positive integer q. Figure 2.1 below shows the
corresponding dual groups as well as the respective (dual) Haar measures as
used in Chapter 3 of this thesis.

In some cases it will be useful to identify the quotient groups Tm = Rm/Zm

and Dm = 1
qZ

m/Zm with the respective representing sets

Tmrep := [−1
2 ,

1
2)m ⊂ Rm and Dmrep := 1

qZ
m ∩ Tmrep ,

and similarly D̂m ≃ Zm/qZm with

D̂mrep := [q]mc := Zm ∩ [− q
2 ,

q
2)m .

1Discrete (and in particular, finite) groups have the discrete topology, implying that
the continuity constraint for characters on these groups is void.
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2.2. Fourier Theory

Group Dual group

G µ Ĝ µ̂

Rm λ R̂m ≃ Rm λ

Tm := Rm/Zm λ T̂m ≃ Zm #
Dm := 1

qZ
m/Zm 1

qm # D̂m ≃ Zm/qZm #
Rm/Λ 1

det(Λ)λ
̂(Rm/Λ) ≃ Λ∗ #

Figure 2.1.: Some groups G and their respective dual groups Ĝ, plus the considered (dual)
Haar measures µ and µ̂. Here, λ denotes the Lebesgue measure and # the
counting measure. Furthermore, Λ∗ is the dual lattice of Λ, see Section 2.5.1.

It will be useful to understand that if H ⊂ G is a closed subgroup then G/H
and H have dual groups that satisfy the following natural isomorphisms.

Ĝ/H ≃ H⊥ := {χ ∈ Ĝ | χ(h) = 1 for all h ∈ H} ⊂ Ĝ and Ĥ ≃ Ĝ/H⊥.

As we shall see soon, for any choice of the Haar measure µH for H there is
a natural choice for the Haar measure µG/H for G/H, and vice versa.

2.2.2. Norms and Fourier Transforms

Let G be as above with a fixed choice for the Haar measure µ. For any
p ∈ [1,∞], Lp(G) denotes the metric vector space of measurable functions
f : G→ C with finite norm ∥f∥p (modulo the functions with norm zero2),
where

∥f∥pp :=
∫
g∈G
|f(g)|pdµ for p <∞,

and
∥f∥∞ := ess sup

g∈G
|f(g)|,

2This in order to make ∥·∥p a metric: ∥f∥p = 0 implies f = 0 in that case.
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2. Preliminaries

the essential supremum of |f |. We write ∥f∥p,G if we want to make G explicit.
For any function f ∈ L1(G), the Fourier transform of f is the function

FG{f} : Ĝ→ C, χ 7→
∫
g∈G

f(g)χ̄(g)dµ ,

also denoted by f̂ when G is clear from the context. The Fourier transform
of f ∈ L1(G) is continuous, but not necessarily in L1(Ĝ).

For example, for the group Dm := 1
qZ

m/Zm with the Haar measure as fixed
in Figure 2.1, the L2-norm and the Fourier transform are respectively given
by

∥f∥22 = 1
qm

∑
x∈Dm

|f(x)|2 and F{f}(y) = 1
qm

∑
x∈Dm

f(x)e−2πi⟨x,y⟩ .

We note that we use a different convention on the scaling than what is
common in the context of the quantum Fourier transform. Namely, in most
literature (e.g., [NC11, §5.1]), the standard quantum Fourier transform uses
a scaling of q−m/2, for sake of preserving the L2-norm and symmetry; here,
we use the scaling q−m one way, and a unit scaling the other way.

Given the Haar measure µ for G, there exists a unique dual Haar measure
µ̂ for Ĝ with the property that, for any f ∈ L1(G), if f̂ = FG{f} ∈ L1(Ĝ),
then f = F−1

G {f̂}, where

F−1
G {f̂} : G→ C, g 7→

∫
χ∈Ĝ

f̂(χ)χ(g)dµ̂

is the inverse Fourier transform. From now on it is always understood that
the Haar measure of the dual group is chosen to be the dual of the Haar
measure of the primal group. With this choice, we also have the following
well known fact [DE16, Thm. 3.4.8].

Theorem 2.1 (Plancherel’s Identity). For all f ∈ L1(G) ∩ L2(G),

∥f∥2,G = ∥FG{f}∥2,Ĝ .
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2.2. Fourier Theory

Finally, we recall the convolution theorem, which states that f̂g = f̂ ⋆ ĝ =∫
x∈G f̂(x)ĝ(· − x)dµ(x) for all functions f, g ∈ L1(G) that have Fourier

transforms f̂ , ĝ ∈ L1(G). This extends to functions f ∈ L1(G/H) and
g ∈ L1(G), with f understood as an H-periodic function on G. Tailored to
G = Rm and H = Λ, where Rm/Λ has dual group Λ∗, it then states that,
for all y ∈ Rm,

FRm{fg}(y) = FRm/Λ{f} ⋆ FRm{g}(y)
=

∑
ℓ∗∈Λ∗

FRm/Λ{f}(ℓ∗)FRm{g}(y − ℓ∗). (2.4)

2.2.3. The Poisson Summation Formula

Poisson summation formula is well-known for the group G = R, where it
states that ∑k∈Z f̂(k) = ∑

x∈Z f(x). In the case G = Z/NZ, it reads

N/s∑
i=0

f̂(is) =
s∑
j=1

f(jNs )

for any integer s that divides N . In order to formulate the Poisson sum-
mation formula for an arbitrary locally compact abelian group G, we need
to introduce the notion of restriction and periodization of functions (see
Figures 2.2 and 2.3).

Definition 2.2 (Restriction). Let H ⊆ G be a subset or a subgroup. For
any continuous function f : G→ C we define f

∣∣
H

: H → C, h 7→ f(h).

Definition 2.3 (Periodization). Let H be a closed subgroup of G with Haar
measure µH . For any function f ∈ L1(G), we define

f |G/H : G/H → C, g +H 7→
∫
h∈H

f(g + h)dµH .
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2. Preliminaries

Figure 2.2.: A function on the real line and its restriction on the integers.

For any closed subgroup H of G with respective choices of Haar measures µ
and µH , there exists a unique Haar measure µG/H for G/H such that the
quotient integral formula∫

G/H

(∫
H
f(g + h)dµH(h)

)
dµG/H(g +H) =

∫
G
f(g)dµ(g)

holds for any continuous function f : G → C with compact support (see
[DE16, Sec. 1.5]).

With this choice of Haar measure for G/H, and with the dual measures
for the respective dual groups, we are ready to state the general form of
the Poisson summation formula (obtained from [DE16, Sec. 3.6], see also
Figure 2.5).

Theorem 2.4 (Poisson Summation Formula). For continuous f ∈ L1(G),

FH{f
∣∣
H
} = FG{f}|Ĥ and FG/H{f |G/H} = FG{f}

∣∣
Ĝ/H

.

Applied to G = Rm and H = Zm, so that G/H = Rm/Zm = Tm and
Ĝ/H ≃ Zm; and applied to G = Tm and H = Dm below, we obtain the
following.

Corollary 2.5. For continuous h ∈ L1(Rm), we have

FTm{h|T
m

} = FRm{h}
∣∣
Zm .
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2.2. Fourier Theory

Figure 2.3.: The periodization of a function is a consequence of folding the space of its
domain, i.e., taking the topological quotient space. In this example, the real
line R is folded into a circle.

Corollary 2.6. For continuous t ∈ L1(Tm), we have

FDm

{
t
∣∣
Dm

}
= FTm{t}|D̂

m

.

Remark 2.7. The Poisson summation formula can be used to show that
a ‘wide’ periodized Gaussian on the circle is close to a constant function,
see Figure 2.7. The wider a Gaussian function, the narrower the Gaussian
function of its Fourier transform is. Taking the restriction of such a ‘narrow’
Gaussian function to the integers Z results in a spectrum heavily concentrated
on zero, which corresponds to a constant function, as can be seen in the
bottom example of Figure 2.7. Also note that for the ‘narrower’ Gaussian
function on the circle, both the Gaussian on the circle as the restricted
Fourier transform on Z resemble much more a ‘real’ Gaussian function. In
short, the narrower the Gaussian on the circle, the more Gaussian properties
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2. Preliminaries

Figure 2.4.: An example of the periodization of a Gaussian on the real line, with respect
to the subgroup Z ⊆ R. This leads to a periodized Gaussian on the circle
R/Z ≃ S1.

is has; the wider the Gaussian on the circle, the more ‘constant’ properties
it has.

2.2.4. The Fourier Transform of Vector-valued Functions

The Fourier transform as discussed above generalizes to vector-valued func-
tions f : G → CN simply by applying F to the N coordinate functions,
resulting in a function F{f} : Ĝ→ CN . By fixing an orthonormal basis, this
extends to functions f : G→ H for an arbitrary finite-dimensional complex
Hilbert space, where, by linearity of the Fourier transform, F{f} : Ĝ→ H
is independent of the choice of the basis.
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2.2. Fourier Theory

L1(H) L1(G) L1(G/H)

L1(Ĝ/Ĝ/H) L1(Ĝ) L1(Ĝ/H)
FH

∣∣
H |G/H

FG FG/H

|Ĥ
∣∣
Ĝ/H

Figure 2.5.: Informal illustration of Theorem 2.4 by means of a diagram that commutes
whenever the maps are well defined.

The norm ∥·∥2,G on functions G→ C generalizes to vector-valued functions
f : G→ H, as well, by defining ∥f∥2,G to be the norm of the scalar function
x 7→ ∥f(x)∥H =

√
⟨f(x)|f(x)⟩. The vectorial Fourier transforms and norms

are compatible with each other, in the sense that Plancherel’s identity (see
Theorem 2.1) still holds; that is,

∥f∥2,G = ∥FG{f}∥2,Ĝ. (2.5)

Also the Poisson summation formula (see Theorem 2.4) is still valid, as well
as the convolution theorem whenever one of the functions in the product is
scalar:

FG{fg} = FG{f} ⋆ FG{g}. (2.6)

An important example is the case f : Rm/Λ→ H. Spelling out the above,
we get

FRm/Λ{f} :Λ∗ → H,

ℓ∗ 7→ |cℓ∗⟩ := 1
det Λ

∫
x∈Rm/Λ

|f(x)⟩e−2πi⟨x,ℓ∗⟩dx, (2.7)

where the vectors |cℓ∗⟩ are also referred to as the (vectorial) Fourier co-
efficients of f . The Parseval-Plancherel identity [DE16, Thm. 3.4.8] then
becomes ∑

ℓ∗∈Λ∗

⟨cℓ∗ |cℓ∗⟩ = ∥f∥2Rm/Λ := 1
det Λ

∫
x∈Rm/Λ

⟨f(x)|f(x)⟩dx. (2.8)
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2. Preliminaries

Figure 2.6.: A graphical depiction of the Poisson summation formula as described in
Theorem 2.4, applied to a Gaussian function. First periodizing a function and
then applying the Fourier transform gives the same result as first applying the
Fourier transform and then restricting the function. As a result, the Fourier
transform of a periodized Gaussian is a discrete Gaussian.
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2.2. Fourier Theory

Figure 2.7.: The narrower the Gaussian on the circle, the more it looks like a Gaussian;
the wider the Gaussian on the circle, the closer to constant it is.

The convolution theorem, as in Equation (2.6) and Equation (2.4), in this
case, becomes,

FRm{fg} = FRm/Λ{f} ⋆ FRm{g}

=
∑
ℓ∗∈Λ∗

FRm/Λ{f} · FRm{g}( · − ℓ∗). (2.9)

2.2.5. Trigonometric Approximation

As another application of the Poisson summation formula, we derive a
relation between the Lipschitz constant of a function on Tm = Rm/Zm and
the ‘error of discretization’ in the Fourier transform when restricting the
function to Dm.

Theorem 2.8. For any Lipschitz function h : Tm → H (where H is a
Hilbert space) with Lipschitz constant Lip(h), and any subset C ⊆ D̂m, we
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2. Preliminaries

have ∣∣∣∥1C · FDm {h}∥D̂m − ∥1C · FTm{h}∥Zm

∣∣∣ ≤ 4π
√
m · Lip(h)
q

.

Here and below, we slightly abuse notation and use 1C as indicator function
acting on D̂m and on Zm, justified by identifying D̂m with D̂mrep = [q]mc ⊂ Zm.
Also, we write FDm {h} instead of FDm {h|Dm}, taking it as understood that
h is restricted to Dm when applying FDm .

Proof. Using a result of Yudin ([Yud76, Example I after Thm. 2], see also3

Appendix A.4), there exists a trigonometric approximation t of h, i.e. a
function t : Tm → C with t̂(x) := FTm{t}(x) = 0 for all x ∈ Zm\[q]mc so
that ∥h − t∥∞ ≤ π

√
m · Lip(h)/q. Recalling that D̂m ≃ Zm/qZm, the fact

that t̂ : Zm → C vanishes outside of [q]mc implies for all x ∈ [q]mc that

t̂(x) =
∑

d∈qZm

t̂(x+ d) = t̂|D̂m(x) = FDm {t} (x),

where the last equality holds by Corollary 2.6 (and our convention of omitting
the restriction to Dm). In particular, we have ∥1C · FDm {t} ∥2,D̂m = ∥1C ·
FTm{t}∥2,Zm . Therefore, by the (reverse) triangle inequality and the linearity
of the Fourier transform, one obtains∣∣∣∥1C · FDm {h}∥D̂m − ∥1C · FTm{h}∥Zm

∣∣∣
≤ ∥1C · FDm {h− t}∥D̂m + ∥1C · FTm{h− t}∥Zm .

We now observe that

∥1C · FG{h− t}∥2,Ĝ ≤ ∥FG{h− t}∥2,Ĝ = ∥h− t∥2,G ≤
√
µ(G)∥h− t∥∞

≤
√
µ(G) · π

√
mLip(h)/q,

where µ(G) =
∫
G dµ denotes the total measure of G. We conclude by noting

that µ(G) = 1 for both groups at hand G = Dm and G = Tm.
3In Appendix A.4, we provide a slight generalization of Yudin’s paper [Yud76] to

functions with vectorial output. In principle the bound of Theorem 2.8 can also derived
without this generalization, but at the cost of an undesirable extra factor dimH = 2n.
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2.3. Number Theory

2.3. Number Theory

2.3.1. Algebraic Number Theory

In this thesis is assumed that the reader is somewhat familiar with the
main concepts of algebraic number theory. In this section, we very briefly
introduce definitions and notions required for this thesis. For a more elaborate
explanation, I would suggest Neukirch’s textbook [NS13].

Throughout this thesis, we use a fixed number field K of degree n ≥ 3 over Q,
having ring of integers OK , discriminant ∆K , regulator RK , class number hK
and group of roots of unity µK . Elements of the number field K are generally
denoted by lowercase Greek letters, α, β, γ, etc. Minkowski’s theorem [Min67,
p. 261–264] states4 that log |∆K | ≥ log(2) · n. The number field K has n
field embeddings into C, which are divided in nR real embeddings and nC
conjugate pairs of complex embeddings, i.e., n = nR+2nC. These embeddings
combined yield the so-called Minkowski embedding K → KR ⊆

⊕
σ:K↪→CC,

α 7→ (σ(α))σ, where

KR =
{
x ∈

⊕
σ:K↪→C

C
∣∣∣∣ xσ = xσ

}
.

Here, σ equals the conjugate embedding of σ whenever σ is a complex
embedding and it is just σ itself whenever it is a real embedding. Note that
we index the components of the vectors in KR by the embeddings of K.
Embeddings up to conjugation are called infinite places, denoted by ν. With
any embedding σ we denote by νσ the associated place; and for any place ν
we choose a fixed embedding σν . There are also finite places ν, which are
in one-to-one correspondence with the prime ideals of OK . For finite places
ν ∤∞ we denote by pν ∈ IK their associated prime ideal, for infinite places
ν | ∞ we denote by σν their (chosen) associated embedding.

Composing the Minkowski embedding by the component-wise logarithm of

4By Minkowski’s theorem, we have |∆K |1/n ≥ π/4 · n2

(n!)2/n ≥ 2 for n ≥ 3.
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2. Preliminaries

the entries’ absolute values yields the logarithmic map, denoted by Log.

Log : K∗ → LogKR ⊆
⊕

σ:K↪→C
R, α 7→ (log |σ(α)|)σ.

The multiplicative group of integral units O×K under the logarithmic map
forms a lattice, namely the lattice ΛK = Log(O×K) ⊆ LogKR (see Sec-
tion 2.5.1 for the preliminaries on lattices). This so-called logarithmic unit
lattice has rank r = nR + nC − 1, is orthogonal to the all-one vector (1)σ,
and has covolume Vol(ΛK) =

√
n · 2−nC/2 · RK , where the 2−nC/2 factor

is due to the specific embedding we use (see Lemma A.2). We denote by
H = Span(ΛK) the hyperplane of dimension r, which can also be defined as
the subspace Log(K0

R) of LogKR, where

K0
R = {x ∈ KR |

∏
σ:K↪→C

|xσ| = 1}.

In other words, H = logK0
R is the subspace of LogKR orthogonal to the

all-one vector (1)σ. We denote by T = H/ΛK the hypertorus defined by the
logarithmic unit lattice ΛK . Note that KR ≃

∏
ν Kν , where ν ranges over all

infinite places of K, and Kν = C of R depending on whether ν is complex or
real respectively. In some cases it is more convenient to use this particular
viewpoint of KR. Note that K0

R can then be identified with

K0
R =

{
x ∈

∏
ν|∞

Kν

∣∣ ∏
ν|∞
|xν |[Kν :R]

C = 1
}
. (2.10)

Note that we take the usual complex absolute value here, which is raised to
the power two whenever Kν = C and to the power one otherwise.

Fractional ideals of the number field K are denoted by a, b, . . ., but the
symbols p, q are generally reserved for integral prime ideals of OK . Also, the
symbol m is reserved for the modulus ideal m ⊆ OK , a notion from class
field theory. One can think of the primes dividing m as the primes ‘to avoid’.
For a ∈ IK , we denote ordp(a) = max{k | pk divides a} for the p-valuation
of the ideal a; this can be generalized for elements α ∈ K∗ by considering
the principal ideal generated by that element. The group of fractional ideals
of K is denoted by IK ; the group of fractional ideals coprime with m is
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2.3. Number Theory

denoted by ImK . Principal ideals with generator α ∈ K∗ are usually denoted
by (α). We denote by Km,1 = ⟨α ∈ OK | α ≡ 1 mod m⟩ the ray modulo m,
i.e., the multiplicative subgroup of K∗ generated by elements in OK that are
one modulo m. In many texts the modulus can also include infinite primes
(i.e., embeddings into C); not in this thesis.

For any integral ideal a, we define the norm N (a) of a to be the number
|OK/a|; this norm then generalizes to fractional ideals and elements as well.
The class group of OK , denoted by ClK , is the quotient of the group IK by
the subgroup of principal ideals PrincK := {(α) ∈ IK | α ∈ K}. For any
fractional ideal a, we denote the ideal class of a in ClK by [a].

In some parts of this thesis we need the notion of the idèle group JK , which
is a topological group defined by the restricted topological product of the
completions of the number field K over all places ∏νK

∗
ν where the restriction

is with respect to the unit groups O×ν ⊆ K∗ν . For a modulus m, the idèle group
modulo m, JKm , is defined similarly, by just leaving out the completions
whose place are associated with a prime dividing m. For any modulus m,
the ray Km,1 embeds diagonally into JKm , by α 7−→ (αν)ν ∈ JKm . Each
component of this diagonal map is just the embedding of the completion
K → Kν . The quotient of the idèle group (modulo m) and the ray is called
the idèle class group CK , which can be shown to be the same for any modulus
m (see [Lan12, Ch. VII, §4]).

In this thesis, extra attention is paid to the cyclotomic number fields K =
Q(ζm), for which one can sometimes phrase sharper results due to the fact
thats these fields have more structure. The result in Chapter 5 tailored to
cyclotomic fields relies on the size of the class group h+

K = |ClK+ | of the
maximum real subfield K+ = Q(ζm + ζ̄m) of K, which is conjectured to be
rather small [Mil15; BPR04]. In Chapter 5, we make the mild assumption
that h+

K ≤ (logn)O(n), where n = [K : Q] = ϕ(m).

An important identity that will play a large role throughout this thesis is the
class number formula, which relates multiple number-theoretic quantities
with the residue at s = 1 of the Dedekind zeta function ζK(s) = ∑

a⊆OK

1
N (a)s .
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2. Preliminaries

ρK = lim
s→1

(s− 1)ζK(s)2nR · (2π)nC ·RK · hK
|µK | ·

√
|∆K |

. (2.11)

2.3.2. The Extended Riemann Hypothesis

Almost all results in this paper rely heavily on the Extended Riemann
Hypothesis (in the subsequent part of this paper abbreviated by ERH),
which refers to the Riemann Hypothesis extended to Hecke L-functions (see
[IKS04, §5.7]). All statements that mention (ERH), such as Theorem 4.3,
assume the Extended Riemann Hypothesis.

Definition 2.9 (Hecke L-function). Let K be a number field and let χ :
JKm/Km,1 → S1 be a Hecke character on the idèle class group CK =
JKm/Km,1 of K (see [NS13, Ch. VI and Ch. VII, §6] and Section 4.3.4)
defined modulo its conductor m. Then we define

L(χ, s) =
∑

a⊆OK
a+m=OK

χ(a)
N (a)s

to be the associated Hecke L-function, where the sum ranges over all integral
ideals of the maximal order OK of K, coprime with the modulus m (see, for
example [Neu85, Ch. V, Def. 3.1]).

Definition 2.10 (Extended Riemann Hypothesis). For all number fields
K and all Hecke characters χ, all zeroes of the Hecke L-functions that are
in the critical strip 0 < Re(s) < 1, satisfy Re(s) = 1/2. I.e., for all number
fields K, Hecke characters χ and all complex numbers s ∈ C,[

L(χ, s) = 0 and Re(s) ∈ (0, 1)
]

=⇒ Re(s) = 1/2.

Remark 2.11. Most of the results in this thesis are phrased in terms
of a fixed number field K. In such a case it is of course not needed to
assume the Extended Riemann Hypothesis for all number fields; it suffices

56



2.3. Number Theory

to assume the Extended Riemann Hypothesis for Hecke L-functions arising
from Hecke-characters for the fixed number field K.

So, if a theorem in this thesis regards only a single number field K, and it
assumes the Extended Riemann Hypothesis, one may weaken this hypothesis
to the Extended Riemann Hypothesis ‘tailored to K’.

2.3.3. Prime Densities

In multiple parts of this paper, we need an estimate on the number of
prime ideals with bounded norm. This is achieved in the following theorem,
obtained from Bach and Shallit’s book [BS96, Thm. 8.7.4].

Theorem 2.12 (ERH). Let πK(x) be the number of prime ideals of K of
norm ≤ x. Then, assuming the Extended Riemann Hypothesis, there exists
an absolute constant C (i.e., independent of K and x) such that, for all
x ≥ 2,

|πK(x)− li(x)| ≤ C ·
√
x (n log x+ log |∆K |) ,

where li(x) =
∫ x

2
dt
ln t ∼

x
lnx .

In certain cases, we prefer a more explicit variant of this theorem that is
due to Grenié and Molteni [GM15, Cor. 1.4].

Lemma 2.13 (ERH). Let m ⊆ OK be an ideal modulus and denote

πmK(x) = |{p ∈ ImK | p prime and N (p) ≤ x}|

for the number of prime ideals not dividing m and having norm bounded by
x ∈ R. Let ω(m) denote the number of different prime ideal divisors of m.

Then, for all x ≥ max((12 log |∆K |+ 8n+ 28)4, 3 · 1011, 16 · ω(m)2), we have

πmK(x) ≥ x

4 ln x.
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Proof. Denote πK(x) = |{p ∈ IK | p prime and N (p) ≤ x}|, i.e., whenever
m = OK . We will prove the statement for this specific case first. By simpli-
fying an explicit result of Grenié and Molteni [GM15, Cor. 1.4], we obtain,
under the Extended Riemann Hypothesis5,∣∣∣∣πK(x)− πK(3)−

∫ x

3

du

log u

∣∣∣∣ ≤ √x[6 log |∆K |+ 4n log x+ 14].

Therefore, we have

πK(x) ≥
∫ x

3

du

log u −
√
x[6 log |∆K |+ 4n log x+ 14]

≥ x

ln x −
√
x ln(x)[6 log |∆K |+ 4n+ 14]

= x

ln x

(
1− ln(x)2(6 log |∆K |+ 4n+ 14)√

x

)
≥ x

2 ln x

where the first inequality follows from omitting πK(3) and the second inequal-
ity from

∫ x
3

du
lnu ≥

x
lnx and from the assumption that x > 24 · (6 log |∆K |+

4n+14)4 and x > 3·1011. Note that with such x, we have ln(x)2/
√
x < x−1/4,

so that ln(x)2(6 log |∆K |+4n+14)√
x

< 1/2.

For the general case of m ≠ OK , we need to avoid m; so writing ω(m) for
the number of different prime ideals dividing m, we obtain

πmK(x) ≥ πK(x)− ω(m) ≥ x

2 ln x

(
1− 2 · ω(m) · ln x

x

)
≥ x

4 ln x.

Where the last inequality can be deduced as follows. Since x > 3 ·1011, surely
lnx
x ≤ x

−1/2 ≤ (4 · ω(m))−1 and therefore 2·ω(m)·lnx
x ≤ 1/2. This proves the

claim.

Lemma 2.14 (Sampling of prime ideals, ERH). Let a basis of OK be known
and let P = {p prime ideal of K | N (p) ≤ B} be the set of prime ideals of
norm bounded by B ≥ max((12 log |∆K |+ 8n+ 28)4, 3 · 1011). Then one can
sample uniformly from P in expected time O(n3 log2B).

5In the paper of Grenié and Molteni [GM15, Cor. 1.4], only the Dedekind zeta function
ζK(s) =

∑
a
N (a)−s needs to satisfy the condition that all of its non-trivial zeroes lie at

the vertical line ℜ(s) = 1/2.
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Proof. The sampling algorithm can be described as follows. Sample an
integer uniformly in [0, B] and check if it is a prime. If it is, factor the
obtained prime p in OK and list the different prime ideal factors {p1, . . . , pk}
that have norm bounded by B. Choose one pi uniformly as random in
{p1, . . . , pk} and output it with probability k/n. Otherwise, output ‘failure’.

Let q ∈ P be arbitrary, and let N (q) = qj with q prime. Then, the probability
of sampling q equals 1

nB , namely 1
n times the probability of sampling q.

Therefore, the probability of sampling successfully (i.e., no failure) equals
|P|
nB ≥

1
2n logB , since |P| ≥ B

2 logB , by Lemma 2.13.

The most costly part of the algorithm is the factorization of a rational
prime p ≤ B into prime ideals of OK . This can be performed using the
Kummer-Dedekind algorithm, which essentially amounts to factoring a
degree n polynomial modulo p. Using Shoup’s algorithm [Sho95] (which has
complexity O(n2 + n log p) [GP01, §4.1]) yields the complexity claim.

2.4. Arakelov Theory

2.4.1. The Arakelov Ray Divisor Group

The Arakelov ray divisor group with respect to a modulus m ⊆ OK is the
group

DivKm =
⊕
p∤m

Z×
⊕
ν

R

where p ranges over the set of all prime ideals of OK that do not divide
the modulus m, and ν over the set of infinite primes (embeddings into the
complex numbers up to possible conjugation). For readers that are not yet
familiar with Arakelov ray divisor groups is might be insightful to first
consider the ordinary Arakelov divisor group, which is obtained by putting
m = OK .

We write an arbitrary element in DivKm as

a =
∑
p∤m

np · LpM +
∑
ν

xν · LνM,
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with only finitely many non-zero np. We will consistently use the symbols
a,b, e, . . . for Arakelov ray divisors. Denoting ordp for the valuation at the
prime p, there is a canonical homomorphism

L·M : Km,1 → DivKm , α 7−→
∑
p∤m

ordp(α)LpM−
∑
ν

log |σν(α)| · LνM.

The divisors of the form LαM for α ∈ Km,1 are called principal ray divisors.
Here, Km,1 = ⟨α ∈ OK | α ≡ 1 mod m⟩ is the multiplicative subgroup
of K∗ generated by elements equivalent to one modulo m. We will also
make use of the notation Km = ⟨α ∈ OK | α mod m ∈ (OK/m)∗⟩, the
multiplicative subgroup of K∗ generated by elements coprime to m. Note
that Km,1 ⊆ Km.

Just as the ideal ray class group is the group of ideals coprime with m

quotiented by the ‘ray’ Km,1, the Picard ray group is the group of Arakelov
ray divisors quotiented by the group of principal ray Arakelov divisors. In
other words, the Picard ray group PicKm is defined by the following exact
sequence, where µKm,1 = µK ∩Km,1, the roots of unity in the ray.

0→ µKm,1 → Km,1 L·M−→ DivKm → PicKm → 0.

For any Arakelov ray divisor a = ∑
p∤m np · LpM + ∑

ν xν · LνM , we denote
its class in the Picard ray group PicKm by [a]; in the same fashion that [a]
denotes the ideal class of the ideal a.

2.4.2. The Arakelov Ray Class Group

Despite the Arakelov ray divisor group and Picard ray group being inter-
esting groups, it is for our purposes more useful to consider the degree-zero
subgroups of these groups. The degree map is defined as follows:

deg : DivKm → R,∑
p∤m

np · LpM +
∑
ν

xν · LνM 7→
∑
p∤m

np · log(N (p)) +
∑
ν real

xν +
∑

ν complex
2 · xν .

(2.12)
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The degree map sends principal ray divisors LαM for α ∈ Km,1 to zero;
therefore, the degree map is properly defined on PicKm , as well. We sub-
sequently define the degree-zero Arakelov ray divisor group Div0

Km = {a ∈
DivKm | deg(a) = 0} and the Arakelov ray class group Pic0

Km = {[a] ∈
PicKm | deg([a]) = 0}. In other words, the group consisting of the degree
zero Picard ray classes is called the Arakelov ray class group.

Any Arakelov ray divisor a ∈ Div0
Km can be decomposed in a finite and an

infinite part, a = af + a∞.

a =
∑
p∤m

np · LpM

︸ ︷︷ ︸
af

+
∑
ν

xν · LνM︸ ︷︷ ︸
a∞

(2.13)

The finite part af , that consists of a formal integer sum of prime ideals, can
be uniquely associated with an ideal in ImK , i.e., we have

Exp(·f) : Div0
Km → ImK , a 7→ Exp(af) =

∏
p∤m

pnp ,

where we use the exponential function Exp to denote the map sending∑
p|m npLpM to ∏p∤m pnp . This map Exp(·f) : Div0

Km → ImK has the hyperplane
H as kernel via the inclusion H ↪→ Div0

Km and admits a section d0 : ImK →
Div0

Km , defined by the following rule.

d0 : ImK → Div0
Km , a 7−→

∑
p∤m

ordp(a) · LpM− log(N (a))
n

∑
ν

LνM. (2.14)

Occasionally, we also use the non-normalized version of d0, called d : ImK →
DivKm , which maps into DivKm instead.

d : ImK → DivKm , a 7−→
∑
p∤m

ordp(a) · LpM.

The infinite part a∞ of a consists of a formal real sum of infinite places,
which can be mapped into KR,

Exp(·∞) : Div0
Km → KR, a 7→ Exp(a∞) = (exνσ )σ ∈ KR.
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2.4.3. Relation with Other Number-theoretic Groups

The groups and their relations treated above fit nicely in the diagram of
exact sequences given in Figure 2.8, where the middle row sequence splits
with the section d0. In this diagram we use the notations O×Km,1 = O×K∩Km,1,
µKm,1 = µK ∩Km,1 and PrincmK = {(α) | α ∈ Km,1} ⊆ ImK . The group ClmK
is called the ideal ray class group with respect to m and is defined by the
exact sequence involved; the group Tm = H/ΛKm,1 is the ‘logarithmic ray
unit torus’, with ΛKm,1 = Log(O×Km,1) = {(log |σ(η)|)σ | η ∈ O×Km,1}.

0 0 0

0 O×Km,1/µKm,1 Km,1/µKm,1 PrincmK 0

0 H Div0
Km ImK 0

0 Tm Pic0
Km ClmK 0

0 0 0

L·MLog

a 7→ Exp(af)

d0

Figure 2.8.: A commutative diagram of short exact sequences involving the Arakelov ray
class group.

The (ray) unit groups OK ,O×Km,1 , the (ray) class groups ClK ,ClmK , and the
ray groups Km,1 and Km are tightly related by an exact sequence. With this
exact sequence one can relate the (relative) cardinalities of these groups.

Lemma 2.15. Let K be a number field and let m ⊆ OK be any modulus.
Then we have the following exact sequence of groups

0→ O×Km,1 → O×K → Km/Km,1 → ClmK → ClK → 0.

In particular, |O×K/O
×
Km,1 | · |ClmK | = ϕ(m) · |ClK |, where ϕ(m) = |Km/Km,1|

= |(OK/m)∗|.
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Proof. By considering the kernel-cokernel exact sequence (see Figure A.1)
of the commutative triangle

Km

Km,1 ImK

one obtains the exact sequence

0→ O×Km,1 → O×K → Km/Km,1 → ClmK → ClK → 0,

where we use the fact that ImK/Km ≃ ClK by the approximation theorem
[Chi08, Ch. 3, Thm. 1.1]. In particular, one can ‘compress’ this sequence to
an exact sequence of finite groups

0→ O×K/O
×
Km,1 → Km/Km,1 → ClmK → ClK → 0,

yielding |O×K/O
×
Km,1 | · |ClmK | = |Km/Km,1| · |ClK |. The isomorphism be-

tween Km/Km,1 and (OK/m)∗ follows from the following short exact se-
quence, where the map Km → (OK/m)∗ sends κ/κ′ ∈ Km to (κ mod m) ·
(κ′ mod m)−1 ∈ (OK/m)∗.

0→ Km,1 → Km → (OK/m)∗ → 0

One would expect that the ray unit torus Tm = H/Log(O×Km,1) and the unit
torus T = H/Log(O×K) differ in volume by |O×K/O

×
Km,1 |. This is true, up to

a correction for whenever the modulus m causes Km,1 to have less roots of
unity. This happens whenever ζ ̸≡ 1 modulo m for some root of unity ζ ∈ K.

Lemma 2.16. Let K be a number field and let H = logK0
R be the hyperplane

where the log unit lattice ΛK = Log(O×K) and the log ray unit lattice ΛKm =
Log(O×Km,1) live in. Then we have the following exact sequence

0→ µKm,1 → µK → O×K/O
×
Km,1 → Tm → T → 0.

In particular, |µKm,1 | · |O×K/O
×
Km,1 | = |µK | ·Vol(Tm)/Vol(T ).
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Proof. Applying the kernel-cokernel exact sequence to the following diagram
yields the result.

O×K

O×Km,1 H

2.4.4. The Volume of the Arakelov Ray Class Group

It will be proven useful to show that the volume of the Arakelov ray class
group roughly follows the square root of the field discriminant times ϕ(m) =
|(OK/m)∗|.

Lemma 2.17 (Volume of Pic0
Km). For n = [K : Q] > 1, we have

|Pic0
Km | = |ClmK | ·Vol(Tm) = |µKm,1 |

|µK |
· ϕ(m) · hK ·Vol(T )

= |µKm,1 |
|µK |

· ϕ(m)hKRK
√
n2−nC/2, (2.15)

and

log|Pic0
Km | ≤ log ϕ(m) + n

(1
2 log(|∆K |1/n) + log log(|∆K |1/n) + 1

)
,

where ϕ(m) = |(OK/m)∗|. A simpler, derived bound is

log(Vol(Pic0
Km)) ≤ logN (m) + log |∆K |. (2.16)

Proof. The first identity involving the volume of the Arakelov ray class
group follows from the exact sequence in Figure 2.8. The second one can
be deduced from the identities |ClmK | · [OK : O×Km,1 ] = ϕ(m) · hK and
Vol(Tm) = Vol(T ) · [O×K : O×Km,1 ] · |µKm,1 |/|µK | (see Lemmas 2.15 and 2.16).
The third one follows from the volume computation of T in Lemma A.2.
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The bound on the logarithm is obtained by using |µKm,1 |
|µK | ≤ 1, applying

the class number formula [NS13, VII.§5, Cor. 5.11] and Louboutin’s bound
[Lou00] on the residue ρK of the Dedekind zeta function at s = 1:

|Pic0
Km | ≤ ϕ(m)hKRK

√
n2−nC/2 = ϕ(m)ρK

√
|∆K | · |µK | ·

√
n

2nR(2
√

2π)nC

≤ ϕ(m) ·
√
|∆K | · ρK ≤ ϕ(m)

√
|∆K |

(
e log |∆K |
2(n− 1)

)n−1

≤ ϕ(m)
√
|∆K |

(
e log |∆K |

n

)n
,

For the bound on the logarithm, we write

n log(e log |∆K |/n) = n log log(|∆K |1/n) + n.

For the simpler bound in Equation (2.16) we use the fact that e log |x|
|x| ≤ 1

for all x ∈ R. Therefore,

e log
(
|∆K |

1
2(n−1)

)
|∆K |

1
2(n−1)

≤ 1,

and thus
(
e log |∆K |

2(n−1)

)n−1
≤
√
|∆K |.

We let U(Pic0
Km) = 1

|Pic0
Km |
· 1Pic0

Km
denote the uniform distribution over the

Arakelov ray class group.

Fourier theory over the Arakelov ray class group

As the Arakelov ray class group Pic0
Km is a compact abelian group, every

function in6 L2(Pic0
Km) = {f : Pic0

Km → C |
∫

Pic0
Km
|f |2 < ∞} can be

6The measure on the Arakelov class group is unique up to scaling – it is the Haar
measure. By fixing the volume of Pic0

Km as in Lemma 2.17, we fix this scaling as well. We
use then this particular scaling of the Haar measure for the integrals over the Arakelov
class group.
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uniquely decomposed into a character sum

f =
∑

χ∈P̂ic0
Km

aχ · χ,

with aχ ∈ C. In the proof of Theorem 4.3, we will make use of Parseval’s
identity [DE16, Thm. 3.4.8] (see also Theorem 2.1) in the following form.∫

Pic0
Km

|f |2 = ∥f∥22 = 1
|Pic0

Km |
∑

χ∈P̂ic0
Km

|aχ|2 (2.17)

2.4.5. An Example of an Arakelov Class Group

We compute the Arakelov class group of a totally real cubic field. Let
K = Q(α) where α ∈ C is defined by the polynomial

f(x) = x3 − x2 − 9x+ 10. (2.18)

Computing the ring of integers

The discriminant of this polynomial equals ∆(f) = 1957 = 19 · 103 > 0.
Because this is square free, the ring of integers of K equals OK = Z[α], and
∆K = 1957. Since the discriminant is positive, the cubic field must be totally
real, by Brill’s theorem. The Minkowski bound can then be computed as
MK =

√
|∆K | · 3!

33 ≈ 9.83.

Computations in the class group

The class group is therefore generated by the primes with norm at most
9.83, which are the four prime ideals p2, q2, p5, q5. This can be seen by
factoring the polynomial f(x) modulo Fp for p = 2, 3, 5, 7; noting that f
mod 3 and f mod 7 are irreducible, and f(x) ≡ x(x2 + x+ 1) mod 2 and
f(x) ≡ x(x2 + 4x+ 1) mod 5. We have (2) = p2q2 and (5) = p5q5, so, for
the class group it is enough to consider only p2 = (2, α) and p5 = (5, α).

66



2.4. Arakelov Theory

Additionally, we have (α) = p2p5 and (α − 2) = p2
2 This can be seen by

computing the norms of α and α− 2, which equal f(0) = 10 and f(2) = −4
respectively. Since (α − 2) ⊆ (2, α) = p2 we must have (α − 2) = p2

2.
Combining these relations yields that the class group is generated by p2 and
is either trivial or of order 2. We will show that the latter is the case; for
that we need the fundamental units.

Computing units and (a multiple of) the regulator

The elements α− 1 and α− 3 are units in OK , since N (α− 1) = f(1) = 1
and N (α − 3) = f(3) = 1. Under the Minkowski embedding, the element
α sends to (−3.04096, 1.12946, 2.9115), and 1 to (1, 1, 1). Therefore, the
images under the Minkowski embedding of α − 1 and α − 3 are respec-
tively ≈ (−4.04096, 0.12946, 1.9115) and ≈ (−6.04096,−1.87054,−0.0885).
Taking the Logarithmic image of the absolute values yields Log(α − 1) =
(1.40,−2.04, 0.64) and Log(α−3) = (1.80, 0.63,−2.42). Putting these vectors
into a matrix, one obtains

B =
[
1.40 −2.04 0.64
1.80 0.63 −2.42

]
, (2.19)

of which the absolute determinant of any 2× 2 minor equals 4.554, which
must be an approximation of a multiple of the regulator RK . So surely,
RK ≤ 4.554.

Computing an approximation of the Dedekind residue

Computing an approximation of the residue of the Dedekind zeta function
ρK = lims→1(s− 1)ζK(s) by means of a truncated combined Euler product,
we obtain

ρK ≈
∏
p<100(1− 1/p)∏

N (p)<100(1− 1/N (p)) = 0.827.

By the class number formula (see Equation (2.11)), we have that

RKhK = ρK ·
√
|∆K | · |µK |

2nR · (2π)nC
≈ 0.827 · 44.24 · 2

23 · (2π)0 = 9.15
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Since hK ∈ {1, 2} and RK ≤ 4.554, we must have hK = 2 and RK ≈ 4.554.

Assembling the Arakelov class group from the unit group and the class
group

We have that H = {(x, y, z) ∈ R3 | x + y + z = 0} equals the hyperplane
where the logarithmic unit lattice lives in, and the log unit lattice equals
ΛK = L(B), where L(B) is the lattice generated by the rows of the matrix
in Equation (2.19). The log unit torus is then equal to T = H/L(B).

The Arakelov class group Pic0
K of the cubic field K then has two connected

components, one consisting of T , and one consisting of T + [d0(p2)] (see
Equation (2.14)). The maps of the exact sequence

0→ T → Pic0
K → ClK → 0

just consist of inclusion T ↪→ Pic0
K and projection Pic0

K → ClK , where T ⊆
Pic0

K sends to the trivial ideal class, and T + [d0(p2)] sends to [p2] ∈ ClK .

Computing elements in the Arakelov class group

We will compute the positions of [d0(p5)], [d0(q2)] and [d0(p17)] in the
Arakelov class group, where p5 = (5, α), q2 = (2, α2 + α + 1) and p17 =
(17, α+ 1). This accounts to computing the discrete logarithm in the ideal
class group and reducing modulo the logarithmic unit lattice.

As we have p5p2 = (α) and p2
2 = (α − 2), we compute p5 = (α)p−1

2 =
(α) · (α− 2)−1 · p2. In terms of divisors, we have

L
α

α− 2M = Lp5M− Lp2M− Log(α/(α− 2)),

where we use the abbreviation Log(β) = ∑
ν log |σν(β)| · LνM. So,

d0(p5) = Lp5M− 1
3 · Log(5) = Lp2M + L

α

α− 2M + Log( α

α− 2)− 1
3 · Log(5).

= d0(p2) + L
α

α− 2M + 1
3 · Log(2/5) + Log( α

α− 2).
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Taking Arakelov classes, thus letting vanish the part Lα/(α− 2)M (as it is a
principal divisor), we obtain that

[d0(p5)] = [d0(p2)] + 1
3 · Log(2/5) + Log(α/(α− 2))

≈ [d0(p2)] + (−0.81,−0.05, 0.86)
≈ [d0(p2)] + (2.39,−1.46,−0.92) ∈ [d0(p2)] + T

where the last computation just adds both rows of the logarithmic unit
matrix from Equation (2.19) (in order to get in a fixed fundamental domain).
A similar computation for q2, satisfying p2q2 = (2), gives L2/(α − 2)M =
Lq2M− Lp2M + Log(2/(α− 2)), and therefore

[d0(q2)] = [d0(p2)]− 1
3 Log(2) + Log(2/(α− 2))

≈ [d0(p2)] + (−1.15, 0.60, 0.55)
≈ [d0(p2)] + (2.05,−0.81,−1.23) ∈ [d0(p2)] + T.

where, again, the last computation adds both rows of the logarithmic unit
matrix from Equation (2.19). For p17 = (17, α+ 1), compute the norm of
α+ 1 to see that it equals 17, therefore, Lα+ 1M = Lp17M− Log(α+ 1). This
implies

[d0(p17)] = −1
3 Log(17) + Log(α+ 1) ≈ (−0.23,−0.19, 0.42)

≈ (1.57, 0.44,−2.00) ∈ T

where the last computation adds the last row of the logarithmic unit matrix
from Equation (2.19).

The Arakelov classes of the primes q2, p5 and p17 are portrayed in Figures 2.9
and 2.10, in which the full Arakelov class group of K = Q(α) is displayed.
In Figure 2.9, the primes are visualized in a two-dimensional fundamental
domain (a disjoint union of two parallelograms) whereas in Figure 2.10 the
toroidal nature of the Arakelov class group is exemplified.
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Figure 2.9.: In this picture, the Arakelov class group of K = Q(α) is portrayed, where
α ∈ C is defined by the polynomial f(x) = x3 − x2 − 9x + 10. Due to the
fact that the class group has order 2 and the unit group is free of rank 2, the
Arakelov class group can be portrayed as a disjoint union of two parallelograms,
serving as a fundamental domain. The connected component of the unit [OK ]
is the white parallelogram on the left-hand side; the gray parallelogram is
associated with the non-trivial ideal class group element. Prime ideals up to
norm 113 are displayed as points, where the color hue varies with the size
of the associated prime number, and the size of the point with the residue
class degree of the prime ideal. The prime ideal q2 = (2, α2 +α+ 1) of residue
class degree 2 can be seen in the gray parallelogram as the rather large dot
labeled with ‘2’. The prime ideal p5 = (5, α) is located at the right bottom of
the gray parallelogram, as a purple point. The prime ideal p17 = (17, α+ 1)
is principal and it is therefore located in the white parallelogram, at the top
right corner, as a blue point.
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Figure 2.10.: This picture shows the Arakelov class group of the same number field K as
in Figure 2.9. One obtains this image by ‘gluing’ the gray parallelogram into
a gray torus and the white parallelogram into a white torus from Figure 2.9.
The prime ideals with norms up to 113 are displayed accordingly. Note that
the location of the smaller prime ideals seem to be skewed on the gray torus;
but as the norms increase, the division among the two tori, but also on the
tori seem to get more and more uniform. This phenomenon can be seen
as a manifestation of the random walk theorem, which states that from
a certain lower bound on the norms, prime ideals become more and more
uniformly located on these tori; assuming the extended Riemann hypothesis
(see Theorem 4.3).
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2.5. Lattices

2.5.1. General Lattices

A lattice Λ is a discrete subgroup of a real vector space. In the following, we
assume that this real vector space has dimension m and that the lattice is full-
rank, i.e., span(Λ) equals the whole real space. A lattice can be represented
by a basis B = (b1, · · · ,bm) such that Λ = {∑i xibi , xi ∈ Z}. Important
notions in lattice theory are the covolume Vol(Λ), which equals the volume of
the hypertorus span(Λ)/Λ (alternatively, Vol(Λ) is the absolute determinant
of any basis of Λ); the first minimum λ1(Λ) = minv∈Λ\{0} ∥v∥ ; and the
last minimum λm(Λ), which equals the minimal radius r > 0 such that
{v ∈ Λ | ∥v∥ ≤ r} is of full rank m. The equivalent notions with respect
to the maximum norm ∥ · ∥∞ instead of the Euclidean norm are denoted
by λ

(∞)
1 (Λ) and λ

(∞)
m (Λ). We will also use the following notation for the

covering radius; cov2(Λ) (and cov∞(Λ) for the maximum norm analogue),
which is the minimum r > 0 such that any element x ∈ span(Λ) is at most
r-close to a lattice point.

For any (full-rank) lattice Λ ⊆ Rm we denote by Λ∗ = {v ∈ Rm | ⟨v, ℓ⟩ ∈
Z for all ℓ ∈ Λ} the dual lattice of Λ. It is a lattice of full rank and, further-
more, for any basis B of Λ holds that D = (BT )−1 is a basis of Λ∗.

We will be interested into the following algorithmic problem over lattices.

Definition 2.18 (γ-Hermite Shortest Vector Problem). Given as input a
basis of a rank m lattice Λ, the problem γ-Hermite-SVP consists in computing
a non-zero vector v ∈ Λ such that

∥v∥ ≤ γ ·Vol(Λ)1/m.

2.5.2. Divisors and Ideal Lattices

It will be proven useful to view both ideals and Arakelov divisors as lattices
in the real vector space KR, where KR has its (Euclidean or maximum)
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norm inherited from the complex vector space it lives in. Explicitly, the
Euclidean and maximum norm of α ∈ K are respectively defined by the
rules ∥α∥22 = ∑

σ |σ(α)|2 and ∥α∥∞ = maxσ |σ(α)|, where σ ranges over all
embeddings K → C. By default, ∥α∥ refers to the Euclidean norm ∥α∥2.

For any ideal a of K, we define the associated lattice a ⊆ KR to be the
image of a ⊆ K under the Minkowski embedding, which is clearly a discrete
subgroup of KR. By slightly abusing the notation we both denote the ideal
and the associated lattice with the same symbol a. In particular, OK is
a lattice and we will always assume throughout this thesis (except stated
otherwise) that we know a Z-basis (b1, · · · ,bn) of OK . For Arakelov divisors
a = ∑

p np · LpM +∑
ν xν · LνM, the associated lattice is defined as follows.

Exp(a) =
{

(exνσ · σ(α))σ | α ∈
∏

pnp

}
= diag ((exνσ )σ) ·

∏
pnp ⊆ KR,

where diag denotes a diagonal matrix. We have Vol(a)=
√
|∆K | N (a) for

ideals a ∈ IK and, for Arakelov divisors a ∈ DivK ,

Vol(Exp(a))=
√
|∆K | ·

∏
σ

exνσ · N (
∏
p

pnp) =
√
|∆K | · edeg(a).

The associated lattice Exp(a) of a divisor is of a special kind, which we call
ideal lattices, as in the following definition.

Definition 2.19 (Ideal lattices). Let K be a number field with ring of
integers OK . An ideal lattice of K is a OK-module I ⊆ KR, with the
additional requirement that there exists an x ∈ KR\{0} such that xI ⊆ OK .
We denote the group of ideal lattices by IdLatK .

Note that the lattices a for a ∈ IK are special cases of ideal lattices, which we
will call fractional ideal lattices. Since the Minkowski embedding is injective,
the Minkowski embedding provides a bijection between the set of fractional
ideals and the set of fractional ideal lattices.

The set IdLatK of ideal lattices forms a group; the product of two ideal
lattices I = xa and J = yb is defined by the rule I ·J = xyab. It is clear that
OK ⊆ KR is the unit ideal lattice and x−1a−1 is the inverse ideal lattice of xa.
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The map Exp(·) : Div0
K → IdLatK ,a 7→ Exp(a) sends an Arakelov divisor

to an ideal lattice. The image under this map is the following subgroup of
IdLatK .

IdLat0
K =

{
xa | N (a)

∏
σ

xσ = 1 and xσ > 0 for all σ
}
.

Definition 2.20 (Isometry of ideal lattices). For two ideal lattices L,L′ ∈
IdLat0

K , we say that L and L′ are K-isometric, denoted by L ∼ L′, when
there exists (ξσ) ∈ KR with |ξσ| = 1 such that (ξσ)σ · L = L′.

In other words, we consider two ideal lattices to be K-isometric if they only
differ in component-wise complex phase. Being K-isometric is an equivalence
relation on IdLat0

K that is compatible with the group operation.

Relation between ideal lattices and Arakelov classes

Denoting IsoK for the subgroup {L ∈ IdLat0
K | L ∼ OK} ⊂ IdLat0

K , we
have the following result.

Lemma 2.21 (Arakelov classes are ideal lattices up to isometry). Denoting
P : IdLat0

K → Pic0
K for the map xa 7−→

∑
p ordp(a)[p] + ∑

ν log(xσν )[ν]
modulo principal divisors, we have the following exact sequence.

0→ IsoK → IdLat0
K

P−→ Pic0
K → 0.

Proof. This is a well-known fact (e.g., [Sch08]), but we give a proof for
completeness. It suffices to show that P is a well-defined surjective ho-
momorphism and its kernel is IsoK. In order to be well-defined, P must
satisfy P (xa) = P (x′a′) whenever xa = x′a′. Assuming the latter, we obtain
x−1x′OK = (a′)−1a = αOK , for some α ∈ K∗, as the module is a free OK-
module. This implies that (x−1x′)σ = σ(ηα) for all embeddings σ : K → C,
for some unit η ∈ O×K . Therefore, we have, P (xa)−P (x′a′) = ∑

p ordp(α)[p]+∑
ν log((xσν )−1x′σν

)[ν] = LηαM; i.e., their difference is a principal divisor,
meaning that their image in Pic0

K is the same.
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One can check that P is a homomorphism, and its surjectivity can be proven
by constructing an ideal lattice in the pre-image of a representative divisor
a = ∑

p np[p]+∑ν xν [ν] ∈ Div0
K of an Arakelov class [a], e.g., (exνσ )σ ·

∏
p p

np .

We finish the proof by showing that the kernel of P indeed equals IsoK.
Suppose xa ∈ ker(P ), i.e., P (xa) = ∑

p ordp(a)[p] + ∑
ν log(xσν )[ν] = LαM

is a principal divisor. This means that a = αOK and x = (|σ(α)|−1)σ,
i.e., xa = (|σ(α)|−1)σαOK =

(
σ(α)
|σ(α)|

)
σ
· OK , so xa ∼ OK , implying xa ∈

IsoK. This shows that kerP ⊆ IsoK. The reverse inclusion starts with the
observation that xa ∼ OK directly implies that a = αOK is principal, by the
fact that xa is a free OK-module. So, (xσσ(α))σ · OK = xαOK = (ξσ)σ · OK
for some (ξσ)σ ∈ KR with |ξσ| = 1. Therefore, |xσσ(ηα)| = |ξσ| = 1, i.e.,
|xσ| = |σ(ηα)|−1 for some unit η ∈ O×K . From here one can directly conclude
that P (xa) = P ((|σ(ηα)|−1)σαOK) = LηαM, a principal divisor.

Bounds on invariants of ideal lattices

Denote Γ(Λ) = λn(Λ)/λ1(Λ), and define, for a fixed number field K:

ΓK = sup
a∈DivK

Γ(Exp(a)) (2.20)

Recall the notion of the covering radius; cov2(Λ) (and cov∞(Λ) for the
maximum norm), which is the minimum r > 0 such that any element
x ∈ span(Λ) is at most r-close to a lattice point. For ideal lattices, we then
do have the following useful bounds, which are used often throughout this
thesis.

Lemma 2.22. For any modulus m ⊆ OK and any divisor a ∈ DivKm,

(i) ΓK ≤ λ(∞)
n (OK) ≤ |∆K |1/n;

(ii) For cyclotomic number fields K, ΓK = 1;
(iii) λn(Exp(a)) ≤

√
n · ΓK ·Vol(Exp(a))1/n;

(iv) cov∞(Exp(a)) ≤ cov2(Exp(a)) ≤ n/2 · ΓK ·Vol(Exp(a))1/n.
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Proof. The bound λ
(∞)
n (OK) ≤ |∆K |1/n can be proven by means of the

techniques of [Bha+20, Thm. 3.1], as is done in Theorem A.4 of Appendix A.1.
To obtain the bound ΓK ≤ λ(∞)

n (OK), pick an arbitrary divisor a ∈ DivKm

and choose a shortest element xα ∈ Exp(a) with x = Exp(a∞) and α ∈
Exp(af) ∈ ImK . That means ∥xα∥ = λ1(Exp(a)). Then Exp(a) ⊃ x · (α), and
therefore

λn(Exp(a)) ≤ λn(x · (α)) ≤ ∥xα∥2 · λ(∞)
n (OK) = λ1(Exp(a)) · λ(∞)

n (OK),

which proves part (i). Part (ii) follows from part (i) and the fact that
∥ζ∥ = ∥1∥ for roots of unity ζ ∈ K. Part (iii) is essentially Minkowski’s
bound λ1(Exp(a)) ≤

√
nVol(Exp(a))1/n combined with the definition of ΓK .

The last item follows from the fact that cov2(Λ) ≤
√
n/2 · λn(Λ) [Mic].

2.5.3. The Gaussian Function and Smoothing Errors

Let n be a fixed positive integer. For any parameter s > 0, we consider the
n-dimensional Gaussian function

ρ(n)
s : Rn → C , x 7→ e−

π∥x∥2

s2 ,

(where we drop the (n) whenever it is clear from the context), which is well
known to have the following basic properties.

Lemma 2.23. For all s > 0, n ∈ N and x, y ∈ Rn, we have
∫
z∈Rn ρs(z)dz =

sn, FRn{ρs} =
∫
y∈Rn ρs(y)e−2πi⟨y,·⟩dy = snρ1/s , ρs(x)2 = ρs/

√
2(x). and√

ρs(x)ρs(y) = ρ2s(x+ y)ρ2s(x− y).

Remark 2.24. From these properties it follows that the the L2-norm of
x 7→ sm/2 ·

√
ρ1/s(x) equals 1, i.e., ∥sm/2 ·

√
ρ1/s(x)∥2Rm = 1.

The following two results (and the variations we discuss below) will play an
important role and will be used several times in this paper: Banaszczyk’s
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bound, originating from [Ban93], and the smoothing parameter, as introduced
by Micciancio and Regev [MR07]. They allow us to control

ρs(X) :=
∑
x∈X

ρs(x) ,

for certain discrete subsets X ⊆ Rm. For ease of notation, we let

β(n)
z :=

(
2πez2

n

)n/2

e−πz
2
,

which decays super-exponentially in z (for fixed n). In particular, we have
β

(n)
t ≤ e−t2 for all t ≥

√
n. The following formulation of Banaszczyk’s lemma

is obtained from [MS18, Eq. (1.1)].

Lemma 2.25 (Banaszczyk’s Bound). Whenever r/s ≥
√

n
2π ,

ρs
(
(Λ + t) \ Br

)
≤ β(n)

r/s · ρs(Λ) ,

where Br = Br(0) = {x ∈ Rn
∣∣ ∥x∥2 < r}.

Definition 2.26 (Smoothing parameter). Given an ε > 0 and a lattice Λ,
the smoothing parameter ηε(Λ) is the smallest real number s > 0 such that
ρ1/s(Λ∗\{0}) ≤ ε. Here, Λ∗ is the dual lattice of Λ.

Lemma 2.27 (Smoothing Error). Let Λ ∈ Rn be a full rank lattice, and let
s ≥ ηε(Λ). Then, for any t ∈ Rn,

(1− ε) sn

det Λ ≤ ρs(Λ + t) ≤ (1 + ε) sn

det Λ . (2.21)

We have the following two useful upper bounds for full-rank n-dimensional
lattices Λ [MR07, Lm. 3.2 and 3.3]: ηε(Λ) ≤

√
log(2n(1 + 1/ε)) · λn(Λ) for

all ε > 0 and η1(Λ) ≤ η2−n(Λ) ≤
√
n/λ1(Λ∗) ≤

√
n · λn(Λ). The latter leads

to the following corollary.
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Corollary 2.28. Let L be an ideal lattice in IdLatK . Let t ∈ Rn be arbitrary
and s ≥ n · λn(OK) ·Vol(L)1/n. Then it holds that∣∣∣∣ρs(L− t) ·Vol(L)

sn
− 1

∣∣∣∣ ≤ 2−n, (2.22)

Proof. By the assumption on s and by Lemma 2.22, we have s ≥ n ·
λn(OK) · Vol(L)1/n ≥

√
n · λn(L) ≥ η2−n(Λ). The result follows then from

Lemma 2.31.

Alternative descriptions of the smoothing bound

Imitating techniques from Micciancio and Regev [MR07, Lm. 3.2], we have:

Lemma 2.29. Let s ≥
√
m

λ1(Λ∗) . Then ρ1/s(Λ∗\0) ≤ 2 · βsλ1(Λ∗).

As a direct corollary, we have the following result.

Corollary 2.30. Let s ≥ 2
√
m , and let x ∈ Rm with ∥x∥∞ ≤ 1/2. Then

ρ1/s
(
Zm\{0}+ x

)
≤ 2 · βs/2.

Proof. We have ρ1/s
(
Zm\{0} + x

)
≤ ρ1/s

(
(Zm+x)\B 1

2

)
≤ βs/2 · ρ1/s(Zm),

where the second inequality follows from Lemma 2.25. Using Lemma 2.29
to argue that ρ1/s(Zm) = 1 + ρ1/s(Zm\0) ≤ 1 + 2 · βs ≤ 2 then proves the
claim.

The following lemma, which combines [MR07, Lm. 4.1] and [MR07, Lm. 3.2],
controls the fluctuation of the sum ρs(Λ + t) for varying t ∈ Rm.

Lemma 2.31 (Smoothing Error). Let Λ ∈ Rm be a full rank lattice, and let
s ≥
√
m/λ1(Λ∗). Then, for any t ∈ Rm,

(1− 2 · βsλ1(Λ∗))
sm

det Λ ≤ ρs(Λ + t) ≤ (1 + 2 · βsλ1(Λ∗))
sm

det Λ . (2.23)
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Corollary 2.32. For s ≥
√
m

λ1(Λ∗) and for any t ∈ Rm, we have ρs(Λ + t) ≤
2 sm

det Λ .

Proof. Using Lemma 2.31 and noticing 2 · βsλ1(Λ∗) ≤ 2 · β√m ≤ 1 yields the
result.

2.5.4. Gaussian Distributions

In this work, both discrete and continuous Gaussian distributions play a
major role. We denote both of these distributions with GX,s,c, where the
subscript X is a metric space which supports the distribution and thus
indicates whether the Gaussian is discrete or continuous. More concretely,
for discrete spaces X like lattices, GX,s a discrete Gaussian, whereas for
continuous spaces it is a continuous Gaussian. For the cases of a vector space
and a lattice, the definition is spelled out below.

Continuous Gaussian distribution. For a real vector space H of dimension
n, a parameter s > 0 and a center c ∈ H, we write GH,s,c the continuous
Gaussian distribution over H with density function ρs(x − c)/sn for all
x ∈ H. When the center c is 0, we simplify the notation as GH,s.

Discrete Gaussian distributions. For any lattice L ⊂ Rn, we define the
discrete Gaussian distribution over L of standard deviation s > 0 and center
c ∈ Rn by

∀x ∈ L , GL,s,c = ρs(x− c)
ρs(L− c)

.

When the center c is 0, we simplify the notation as GL,s.

2.6. The Lipschitz Condition

Theorem 2.33 (Rademacher’s theorem). A Lipschitz function f : Rm/Λ→
H has weak partial derivatives ∂xj f : Rm/Λ → H lying in L2(Rm/Λ). In
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particular,
m∑
j=1
∥∂xj f ∥2Rm/Λ ≤ Lip(f)2.

Proof. Combining the proof of [Hei04, Thm. 4.1 and 4.9] and [Vil85, Thm. 2]
on measures of compact sets, we obtain this result.

Corollary 2.34. Let f : Rm/Λ → H be a Lipschitz-continuous function,
and denote by |cℓ∗⟩ the vectorial Fourier coefficients of f . Then,

∑
ℓ∗∈Λ∗

∥ℓ∗∥≥B

⟨cℓ∗ |cℓ∗⟩ ≤
Lip(f)2

4π2B2 .

Proof. Since f is Lipschitz, we can apply Theorem 2.33. Furthermore, the
identity |f(x)⟩ = ∑

ℓ∗∈Λ∗ |cℓ∗⟩e2πi⟨x,ℓ∗⟩ implies that

|∂xj f(x)⟩ = 2πi
∑
ℓ∗∈Λ∗

ℓ∗j |cℓ∗⟩e2πi⟨x,ℓ∗⟩

almost everywhere ([Wer07, Lm. V.2.11] or [RA08, Lm. 2.16]). Finally, given
that ∑m

j=1∥∂xj f∥2Rm/Λ ≤ Lip(f)2, Plancherel’s identity implies that

Lip(f)2 ≥
m∑
j=1
∥∂xj f∥2Rm/Λ = 4π2 ∑

ℓ∗∈Λ∗

∥ℓ∗∥22 · ⟨cℓ∗ |cℓ∗⟩

≥ 4π2 ∑
ℓ∗∈Λ∗

∥ℓ∗∥2≥B

∥ℓ∗∥22 · ⟨cℓ∗ |cℓ∗⟩ ≥ 4B2π2 ∑
ℓ∗∈Λ∗

∥ℓ∗∥2≥B

⟨cℓ∗ |cℓ∗⟩ ,

from which the claim follows.
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