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1. Introduction

Main concepts

In this introduction, we will treat the main concepts of this thesis in a
slightly simplified and hopefully intuitive way. Though the first section
roughly covers the necessary knowledge to follow this introduction, a more
extensive treatment can be found in Neukirch’s Algebraic Number Theory
[NS13, Ch. 1] or Peikert’s A Decade of Lattice Cryptography [Pei16, Sec. 2,
Sec. 4]. The Arakelov class group formalism is treated nicely by Schoof
[Sch08].

1.1. Number Theory

Number fields and number rings

In this thesis, the concepts of a number field and a number ring play a large
role. A number field K is a finite-dimensional field extension of the rational
numbers Q, which is just a different way of saying that K ≃ Q[X]/(f(X))
for some irreducible polynomial f(X) ∈ Q[X]. The dimension of K as a
Q-vector space is called the degree of the number field.

Every element α ∈ K has a minimal polynomial, the unique monic, irre-
ducible polynomial m(X) ∈ Q[X] satisfying m(α) = 0. If, additionally, the
minimal polynomial of α lies in Z[X], we call α an integral element of K.
The integral elements in K together form a ring, denoted OK , and is named
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1. Introduction

the ring of integers of K. Subrings of such a ring of integers of some number
field K are called number rings.

In this introduction, we will always take the number ring to be the ring of
integers OK of K, for the sake of simplicity; but the ideas of this introduction
apply to any other number ring R ⊆ OK as well.

The Minkowski embedding

Let K = Q[X]/(f(X)) be a number field defined by the irreducible poly-
nomial f(X) ∈ Q[X]. This polynomial f(X) has deg(f) distinct roots
in the complex numbers C. This yields deg(f) different field embeddings
K ↪→ C, respectively, by sending X̄ ∈ K = Q[X]/(f(X)) to any of the
roots of f in C. Those are all possible field embeddings of K into C.
By concatenating these field embeddings next to each other, one gets
the Minkowski embedding K →

⊕
σ:K→CC, α 7−→ (σ(α))σ. In most of

the literature, the codomain of this Minkowski embedding is restricted to
KR = {xσ ∈

⊕
σ:K→CC | xσ = xσ̄}, where σ̄ is the embedding σ̄ : K ↪→ C ob-

tained by applying first σ and then complex conjugation in C. By component-
wise addition and multiplication, KR is an R-algebra. We will see later that
the ring of integers OK forms a full-rank lattice in KR under the Minkowski
embedding.

Take as an example the number field K = Q[X]/(X2 − 2), which has two
embeddings into C, corresponding to the zeroes ±

√
2 of the polynomial

X2 − 2 in C. Due to the fact that each of those actually embeds K into
R ⊆ C, the (restricted) codomain KR of the Minkowski embedding equals
the real plane R2. The Minkowski embedding sends, in this case, X̄ ∈ K to
(
√

2,−
√

2) ∈ R2 and 1 ∈ K to (1, 1) ∈ R2 and is, by linear extension, totally
determined (see Figure 1.1). Such a number field K is, by abuse of notation,
often just denoted Q(

√
2), and its ring of integers Z[

√
2], where

√
2 is used

as a more understandable placeholder for X̄. Although the ring of integers
of K = Q(α) (with α an integral element of K) equals Z[α] in the specific
examples of this introduction, this is generally not the case for other number
fields.
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1.1. Number Theory

Figure 1.1.: The number ring Z[
√

2] visualized on the real plane, using the Minkowski
embedding, sending

√
2 7→ (

√
2,−
√

2) and 1 7→ (1, 1).

A slightly more intricate example concerns the number field K = Q( 3√2) =
Q[X]/(X3 − 2), which has three embeddings into C, corresponding to the
zeroes ζj3 ·

3√2 of the polynomial X3−2 in C (where ζ3 is a third primitive root
of unity). The Minkowski embedding of K sends X̄ = 3√2 7→ ( 3√2, ζ3 · 3√2) ∈
R×C and 1 7→ (1, 1) ∈ R×C (see Figure 1.2). Both the introduction of the
reals and the absence of a third embedding is due to the restriction of the
codomain of the Minkowski embedding – this third component just follows
from conjugating the second component.

An appropriate metric on number fields

The Minkowski embedding K ↪→ KR yields, via the Euclidean metric on
the R-algebra KR, a metric on the number field K and its ring of integers
OK . More specifically, this metric is defined via the geometric norm ∥α∥ :=√∑

σ |σ(α)|2.

One of the advantages of this specific metric is its tight connection with the
algebraic norm on the field K, which can be defined on α ∈ K by taking
the products of the all embeddings: N (α) = ∏

σ σ(α). The algebraic and

3



1. Introduction

Figure 1.2.: This picture shows the Minkowski embedding of Z[ 3√2] into R× C.

geometric norm are related by the arithmetic-geometric mean inequality, a
fact that is classically used to show the finiteness of the class group.

1.2. Ideal Lattices

Ideals

Due to the canonical geometry of the number field K, the image of the ring
of integers OK under the Minkowski embedding is a discrete subgroup in
KR, if one only considers the additive structure of OK [NS13, Ch. 1, § 4].
In other words, the ring of integers OK forms a lattice under this embedding
(see Figures 1.1 and 1.2). In fact, the same holds for any non-zero ideal
of OK in K. Recall that an ideal is a subgroup I ⊆ OK of the additive
group of OK that is stable under multiplication with elements in OK , i.e.,
OK · I ⊆ I.
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1.2. Ideal Lattices

Ideal lattices

The image of an ideal I under the Minkowski embedding is an example of
an ideal lattice; it has the additive structure of a lattice and the ring-like
structure of an ideal. An ideal lattice is defined as any non-zero lattice L ⊆ KR
that satisfies OK · L ⊆ L, where the action of OK happens component-wise
after the Minkowski embedding (see Figure 1.3). Equivalently, consideringKR
as an OK-algebra, ideal lattices are discrete OK-submodules of KR. Recall
that discrete subgroups of Euclidean vector spaces correspond precisely to
free Z-modules spanned by R-linearly independent vectors in this vector
space, both called (generic) lattices.

Figure 1.3.: The blue lattice is the ideal lattice 2·Z[
√
−5] in Q(

√
−5) consisting of multiples

of 2. The green lattice is an example of a lattice that is not an ideal lattice of
Q(
√
−5), because it is not stable under multiplication with elements of the ring

of integers Z[
√
−5] of Q(

√
−5). For example, (−1 +

√
−5) ·

√
−5 = −5−

√
−5,

which is the red point and does not lie in the green lattice.

It can be shown that ideal lattices L are always of the shape L = x · I,
where I ⊆ OK is a non-zero ideal and x ∈ K∗R (the invertible elements
of KR), where the multiplication comes from the OK-algebra structure of
KR, i.e., component-wise. In other words, ideal lattices are of the shape
L = {(xσ ·σ(ι))σ | ι ∈ I}, and can be considered as ideals with a deformation.
They can be stretched and squished in several coordinates by the factor
x ∈ K∗R, see Figure 1.4.
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1. Introduction

Figure 1.4.: In this two-dimensional example, the left ideal lattice is slightly stretched
in the x-direction and slightly squished in the y-direction, leading to the
perturbed ideal lattice on the right. The yellow circle functions as a visual
aid, making the precise deformation of the lattice more explicit.

The ideal lattices within KR form a group in which the multiplication is
inherited from KR and the group of (fractional) ideals; (x · I) · (y · J) :=
(x · y) · (I · J), and where the unit ideal lattice is OK ⊆ KR (under the
Minkowski embedding).

In the remainder of this introduction, we will consider the group of ideal
lattices up to scaling. This can be done by only considering ideal lattices of
fixed determinant, or by constructing the equivalence relation in which two
ideal lattices are equivalent if they only differ by scaling. From now on, we
will refer to this group as the group of ideal lattices of a number field K,
and we denote it by IdLat0

K .

‘Similar’ ideal lattices

Next to scaling, another equivalence of ideal lattices plays a large role,
one that we will call geometrically similar in this introductory text. Two
ideal lattices x · I, y · J ∈ IdLat0

K are called geometrically similar, denoted
x · I ∼ y · J , if there exists a κ = (κσ)σ ∈ KR with |κσ| = 1 for all σ, such
that κ · x · I = y · J .

The ideal lattices that are geometrically similar to the unit ideal lattice
OK form a subgroup called the trivial-class ideal lattice. In the left image

6



1.3. Arakelov Class Groups

of Figure 1.5 some examples of trivial-class ideal lattices are given, whose
geometric similarity with OK can be verified visually.

Figure 1.5.: On the left are three trivial-class ideal lattices, namely Z[
√
−5],

√
−5 · Z[

√
−5]

and (1 +
√
−5) · Z[

√
−5]. By observing the rectangular shapes enclosed by

the lattice points, one indeed observes that these three lattices are equal, up
to scaling and rotation, and thus geometrically similar. In the right image one
can see the blue ideal lattice, which is the smallest ideal lattice in Z[

√
−5]

containing both 2 and
√
−5. As the shape of this lattice is a diamond instead

of a rectangle, it cannot be a trivial-class ideal lattice.

1.3. Arakelov Class Groups

Looking again at the ideal lattices of Q(
√
−5) in Figure 1.5, we can distin-

guish two shapes of ideal lattices; a rectangle with proportion
√

5 : 1, and
a diamond with height

√
5 and width 2. A reasonable question to ask is:

do all ideal lattices in Q(
√
−5), up to scaling and geometric similarity, fall

into one of these two shapes? The answer turns out to be yes; this is closely
related to the fact that Q(

√
−5) is a complex quadratic number field with

class number two.

Summarizing, the ideal lattices in Q(
√
−5) fall into two classes, the ‘rectangle’

class and the ‘diamond’ class ♦. This categorization of the ideal lattices
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of Q(
√
−5) is described by the Arakelov class group of Q(

√
−5), which we

denote by Pic0
Q(
√
−5). In other words,

Pic0
Q[
√
−5] = { ,♦}.

This categorization of ideal lattices can be done for any number field; in
fact, we have the following definition of the Arakelov class group.

The Arakelov class group of a number field is the group of geometric
similarity classes of ideal lattices of that number field.
Symbolically,

Pic0
K := IdLat0

K /∼,

where ∼ is the equivalence relation of being geometrically similar.

The shapes of the ideal lattices of Q(
√
−5) fall into two classes, in other

words, |Pic0
Q(
√
−5) | = 2, a finite number. The Arakelov class group being

finite only happens in imaginary quadratic number fields and the rationals
Q, for which can be shown that it is canonically isomorphic to the ideal
class group.

In all other number fields the Arakelov class group is an infinite (but compact)
abelian group. A way of visualizing this is by imagining a spectrum of lattice
shapes; so, for example, not only diamond-shaped or rectangle-shaped, but
also everything in between, see Figure 1.6.

Figure 1.6.: In most number fields, the Arakelov class group is infinite. The ideal lattices
have an infinite variety of shapes. For example, one could imagine that these
shapes shift seamlessly from to ♦.

Infinite Arakelov class groups

We will now consider an example of a number field whose Arakelov class
group is infinite, namely that of Q(

√
3), with ring of integers Z[

√
3]. To show
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that there is a larger variety of ideal lattices here, we refer to Figure 1.7 for
three examples of shapes of ideal lattices in Z[

√
3].

Figure 1.7.: In this picture we examine three different shapes of ideal lattices of the number
field Q(

√
3). The variety of shapes suggests that there is a spectrum of different

ideal lattice shapes.

Indeed, a continuous spectrum of ideal lattice shapes happen to occur
in Q(

√
3), slightly similar to Figure 1.6. Furthermore, this spectrum of

ideal lattice shapes can be exactly found by stretching the shape in the
x-direction and shrinking the same amount in the y-direction (and vice versa,
see Figure 5.2). The deformation of ideal lattices in this way is possible
because the field Q(

√
3) has two independent (real) embeddings into C, as

opposed to Q(
√
−5), which has only one independent (complex) embedding1.

Note that the product of the deformations in the x and y-direction is required
to be 1, in order to keep the the determinant of the ideal lattice fixed.

Changing an ideal lattices shape this way, something peculiar occurs even-
tually: at a certain point of deforming the lattice shape, one arrives at a
different shape, but representing the same lattice; an example of this phe-
nomenon can be seen in Figure 1.8. As a result, the Arakelov class group of
Q(
√

3) has a circular nature, and is in fact isomorphic to the circle group
S1, see Figure 1.9.

More explicitly, the ideal lattice group has the following parametrization for

1Technically, imaginary quadratic number fields have two embeddings into the complex
space, but they are dependent in the way that one is the complex conjugate of the other.
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Figure 1.8.: We consider here ideal lattices of the number field Q(
√

3). By stretching
the red shape into the x-direction and shrinking the same amount in the
y-direction, one obtains a variety of shapes. Eventually, one arrives at the
blue shape, which represents the same ideal lattice as that of the red shape.
In fact, this full spectrum of ideal lattices in Q(

√
3) is precisely obtained by

multiplying Z[
√

3] by (et, e−t) for t ∈ [0, log(2 +
√

3)], where 2 +
√

3 is the
fundamental unit of Z[

√
3].

t ∈ R,
IdLat0

Q(
√

3) = {(et, e−t) · Z[
√

3] ⊆ KR | t ∈ R}.

The ring of integers Z[
√

3] has the element 2 +
√

3 = (2 −
√

3)−1 as a
fundamental unit, and therefore, taking t = log(2 +

√
3), we have

(et, e−t) · Z[
√

3] = (2 +
√

3, 2−
√

3) · Z[
√

3] = Z[
√

3] = (e0, e0) · Z[
√

3].

As a result, the Arakelov class group of Q(
√

3) is, via the above parametriza-
tion, isomorphic to R/ log(2 +

√
3) · Z, a circle group. So, the Arakelov class

group Pic0
K ≃ R/ log(2 +

√
3) ·Z of Q(

√
3), has volume (length) log(2 +

√
3),

which is exactly the regulator R of the number field Q(
√

3).

This is not a coincidence. In this specific case, because Q(
√

3) has class
number one, the Arakelov class group is canonically isomorphic to the
quotient group H/Log(O×K) of the hyperplane H = span(Log(O×K)) and the
logarithmic unit lattice Log(O×K) that arises in Dirichlet’s unit theorem.
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1.3. Arakelov Class Groups

Figure 1.9.: By deforming an initial ideal lattice in Q(
√

3) appropriately, one eventually
arrives at the same ideal lattice. This yields a circular pattern; as a result,
the Arakelov class group of Q(

√
3) is isomorphic to the circle group S1.

General Arakelov class groups

In the previous text, we saw two examples of an Arakelov class group. One
of an imaginary quadratic number field Q(

√
−5), which was a finite group

isomorphic to the class group, and one of a real quadratic number field Q(
√

3)
which was isomorphic to a circle with the volume equal to the regulator.

So, in one case the Arakelov class group seems tightly related to the class
group, whereas in another case it seems related to the unit group. In reality,
it is related to both: it is a ‘combination’ of both the class group Cl(K)
and the logarithmic unit torus T = H/Log(O×K), the quotient group of the
hyperplane H = span(Log(O×K)) and the logarithmic unit lattice Log(O×K).
Here, Log(η) := (log |σ(η)|)σ for η ∈ O×K is the logarithmic map, defined by
taking the component-wise logarithm of the absolute values of the Minkowski
embedding. This turns the multiplicative group of units O×K into a lattice
Log(O×K), of which the hyperplane H is the linear span.

More precisely, the Arakelov class group fits in an exact sequence where
the outer groups are the class group Cl(K) and the logarithmic unit torus
T = H/Log(O×K).

0→ H/Log(O×K)→ Pic0
K → Cl(K)→ 0.
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Figure 1.10.: The Arakelov class group of a number field K consists of a union of finitely
many hypertori.

The specific cases of Q(
√
−5) and Q(

√
3) can now reasonably be explained.

In the imaginary quadratic case of Q(
√
−5) the logarithmic unit torus

T = H/Log(O×K) consists of a single point (due to the unit group being
finite), which makes the Arakelov class group isomorphic to the class group.
In the real quadratic case Q(

√
3), however, the class group is trivial instead,

so that the Arakelov class group is isomorphic to the logarithmic unit torus
T = H/Log(O×K) ≃ R/ log(2 +

√
3)Z, i.e., R quotiented out by the free

group generated by the logarithm of the fundamental unit of Q(
√

3); this is
a circle group.

In the most general case, the logarithmic unit torus T = H/Log(O×K) is a
hypertorus and the class group is a finite abelian group. This leads to the
following topological description of the Arakelov class group.

The Arakelov class group of a number field K consists of a union
of finitely many hypertori. The number of tori is equal to the class
number of K and all tori are isomorphic to the logarithmic unit torus
T = H/Log(O×K), thus having a volume equal to the regulator of K.

Summarizing, a point on a torus in the Arakelov class group corresponds to
an ideal lattice (more precisely, a class of same-shaped ideal lattices) in the
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1.4. Random Walks on the Arakelov Class Group

number field. Moving the point on the torus a little corresponds to slightly
disturbing the shape of the lattice, exactly like in the circle of Figure 1.9
(see also Figure 1.11).

If the corresponding points of two lattices lie on the same torus (in the
Arakelov class group), they can be transformed into each other by means of
stretching and shrinking appropriately. If, on the other hand, these points
lie on different tori of the Arakelov class group, they can not be transformed
in one another, see Figure 1.11.

Figure 1.11.: Any two lattices corresponding to points on the same torus, can be trans-
formed into each other (left). If two lattices correspond to points on different
tori, they cannot be transformed into each other (right).

1.4. Random Walks on the Arakelov Class Group

The main theorem of this thesis involves random walks on the Arakelov class
group, a specific algorithm that allows to move randomly.

What is a random walk?

An intuitive way of thinking about a random walk is by picturing an ant
on a plane, where the ant gets no external stimuli. This ant will move in
random directions with quite an irregular path, see the left-most picture of
Figure 1.12.
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Due to the random behavior of the ant, we do not know its precise future
movements. So, in order to predict the ant’s future position, we have to
resort to using stochastics. The probability distribution that describes the
possible end points of the ant after a certain given time is called the random
walk distribution, and will, on the real plane, take the shape of a Gaussian
distribution (see the right-most picture of Figure 1.12).

Figure 1.12.: An ant on a plane will, without external stimuli, follow an irregular path, as
in the left-most image. This is can be regarded as an intuitive interpretation
of a random walk. The probability distribution arising from this statistical
behavior is called a random walk distribution and is visualized in the right-
most image.

One can actually define a random walk on any reasonable surface (or even in
the three-dimensional or higher-dimensional space, by imagining a confused
fly). The most relevant surface for our purposes is the hypertorus, because
that is what an Arakelov class group consists of.

In random walks on hypertori, something peculiar occurs whenever the
deviation of the Gaussian gets large. Namely, at a certain deviation the
Gaussian distribution ‘folds round’ the entire hypertorus, and is evenly
spread out everywhere; this concept is known as smoothing in the theory
of lattices. So, this Gaussian random walk distribution on a torus, with
increasing deviation, tends to a uniform distribution, see Figure 1.13.

How to randomly walk on the Arakelov class group?

The Arakelov class group consists of finitely many hypertori. Each point
on one of these tori corresponds to a lattice geometric-similarity class, and
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1.4. Random Walks on the Arakelov Class Group

Figure 1.13.: As the deviation of the Gaussian distribution increases, the distribution
‘folds around’ the torus more and more. From a certain value of the deviation,
the distribution is very close to a uniform distribution.

deforming this lattice allows to move around on one torus, see Figure 1.11.
However, in order to obtain a reasonable covering random walk on an
Arakelov class group we need to be able to jump from one torus to the other
as well.

Before unveiling yet how we actually achieve such a jump in terms of lattices,
we define the two allowed moves in a random walk on the Arakelov class
group.

• ‘Crawling’, that is, (slowly) moving on one single torus.
• ‘Jumping’, that is, instantaneously teleport (as it were) to a certain

distant point either on a different torus, or on the same torus.

Because of these two movements, an ant is not anymore the appropriate
insect to keep in mind for intuition. Instead, we might want to think of a
grasshopper, see Figure 1.14.
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Figure 1.14.: Due to the disconnected nature of the Arakelov class group, as it consists
of several separated tori, we also need ‘jumps’ in our random walk, next to
‘crawls’. For intuition it is then more appropriate to have a grasshopper in
mind. The grasshopper does not need to land on a different torus per se, but
can also jump to a distant place on the same torus.
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1.4. Random Walks on the Arakelov Class Group

‘Crawling’ by a Gaussian deformation

In terms of ideal lattices, ‘crawling’ happens by multiplying the input ideal
by a random log-normal deformation x ∈ KR satisfying ∏σ xσ = 1, in order
to keep the determinant of the ideal lattice the same.

More precisely, we pick a Gaussian vector (gσ)σ in which each entry is a zero-
centered Gaussian with deviation s, subject to the requirement ∑σ gσ = 0.
Putting xσ = egσ yields the correct log-normal distribution on KR.

‘Jumping’ by multiplying with prime ideals

In terms of ideal lattices, such a jump from one torus to another happens
by multiplying the initial ideal lattice by a (non-zero) prime ideal. More
specifically, denoting p ⊆ OK for a prime ideal of OK , the operation x ·a 7−→
x · (p · a) yields a jump in the Arakelov class group2.

Geometrically, multiplying an ideal lattice L = x · a by a prime ideal of OK
corresponds to taking a prime sub ideal lattice x · (p · a) ⊆ x · a, that is a sub
ideal lattice P ⊆ x · a for which no proper ideal lattice lies in between. In
other words, for a prime sub ideal lattice P ⊆ x · a there are no ideal lattices
L such that P ⊊ L ⊊ x · a (see Figure 1.15).

As we would like the jumps to other tori to be random, aimless like a
grasshopper, a probabilistic element is added. Starting from a certain initial
ideal lattice x · a (corresponding to a point on the Arakelov class group), we
uniformly random pick a prime ideal p ⊆ OK among all prime ideals with
norm bounded by some bound B, and switch to the lattice x · (p · a). This
procedure of multiplying by a random prime can be repeated as often as we
want; we denote with N the total number of these ‘jumps’. A toy example
with two jumps (so N = 2) is depicted in Figure 1.16.

2To be completely precise, it would be more correct to write x·a 7−→ (x·N (p)−1/n)·(p·a),
where the norm N (p) of p is involved in order to keep the determinant fixed.
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Figure 1.15.: The red, blue and green ideal lattices are all prime sub ideal lattices of the
gray (base) ideal lattice, because the shapes of the respective ideal lattices
are 2, 3 and 11 (prime numbers) times larger than the surface of the gray
ideal lattice.

Figure 1.16.: This picture shows two repetitions (N = 2) of a random jump. In more
realistic cases, both the number of primes and the number of jumps are
larger. Note that at each jump, the ideal lattice gets sparser, or, equivalently,
its shape gets larger.

18



1.5. The Random Walk Theorem for Arakelov Class Groups

Description of the full random walk on the Arakelov class group

We now give the final description of our definition of a random walk on
the Arakelov class group, involving three parameters: N,B and s (see
Figure 1.18). Here N is the number of consecutive jumps on the Arakelov
group, as well as the number of prime ideals one multiplies the input ideal
with. The number B is the bound on the norms of these prime ideals and
equals (up to a logarithmic factor) the number of primes one can randomly
pick from in each jump. These two parameters N and B concern the ‘discrete
part’ of the random walk. The ‘continuous part’ of the random walk on the
other hand is determined by the deviation s of the log normal distribution
of the random deformation.

A random walk on the Arakelov class group, starting from an ideal lattice
x · a, consists of two separate parts. The first part involves N random
‘jumps’, carried out by multiplying the ideal lattice by N random primes
with bounded norm B, yielding the operation x · a 7−→ x · (∏N

j=1 pj)a.

The second part, that comes after, involves a random log-normally
distributed crawl y ∈ KR of deviation s, which is executed by slightly
deforming the lattice x · (∏N

j=1 pja) resulting from the jumps:

x · (
N∏
j=1

pja) 7−→ (y · x) · (
N∏
j=1

pja).

The random walk process is depicted in Figure 1.17.

1.5. The Random Walk Theorem for Arakelov Class
Groups

We are now almost ready to phrase the main result of this thesis. Recalling
the framework of the random walk: we tried before to predict the position
of an ant walking on a torus for a certain time, only knowing its initial

19



1. Introduction

Figure 1.17.: A concrete realization of the random walk procedure on an ideal lattice with
a single jump. The prime sub ideal lattice is chosen at random, as well as
the deformation (by sampling a Gaussian distribution).

Figure 1.18.: An explanation of the random walk’s parameters.

20



1.5. The Random Walk Theorem for Arakelov Class Groups

position. The current situation is not much different; we now try to predict
the position of a grasshopper on multiple tori (the Arakelov class group),
only knowing its initial position, the number of jumps N , the number B of
primes3 to sample from, and the deviation s of the crawl.

As we saw in Figure 1.13, an ant’s crawl of a large enough deviation ‘folds
around the torus’ and therefore leads to a uniform distribution. Something
very similar happens with the grasshopper and the Arakelov class group
consisting of multiple tori. For appropriately many jumps N , appropriately
many primes B and an appropriately large deviation s, the random walk
distribution on the Arakelov class group is also close to the uniformly random
distribution.

Intuitively, the more jumps (i.e., larger N) happen in the random walk, the
less crawling (i.e., smaller s) is needed to cover4 the Arakelov class group.
The converse is also true; in the case of few jumps, more crawling is required
to cover all tori, see Figure 1.19.

In the following informal geometric volume-covering argument we show
a necessary condition on the parameters in order to cover the Arakelov
class group fully with a random walk. In fact, if one assumes the extended
Riemann hypothesis, we can show that that this necessary condition is also
almost sufficient – only a slightly more larger parameter choice is sufficient
to have a covering random walk.

Volume covering argument

Assume for the moment that the multiple Gaussians caused by the crawling
do not overlap at all. Then, the total volume covered by the random walk
distribution equals

(B
N

)
·sd, namely, each of the

(B
N

)
possible final jump points

3Formally, this was the bound B on the norms of the primes; the number of primes
with norm bounded by B equals B/ logB so it does not much harm to identify the number
of primes with B.

4‘Cover’, here, is used in an informal sense, and not in the (formal) topological sense.
In the informal geometric argument that follows, a point on the Arakelov class group is
‘covered’ if the random walk distribution has a non-negligible density value there.

21



1. Introduction

Figure 1.19.: The more jumps happen in the random walk, the less crawling is needed in
order to cover the entire Arakelov class group.

have a covering of about sd due to the crawling. Here, d is the dimension of
the Arakelov class group of K which is equal to the rank of the unit group
of K.

This means that for the random walk distribution to be uniform, i.e. covering
everything equally, it must cover the entire volume of the Arakelov class
group. In particular, the volume

(B
N

)
· sd covered by the random walk

distribution (assuming no overlap) must exceed the volume of the Arakelov
class group.
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1.5. The Random Walk Theorem for Arakelov Class Groups

For the random walk distribution on the Arakelov class group Pic0
K to

be uniform, the estimated volume coverage
(B
N

)
sd of the random walk

is required to exceed the volume vol(Pic0
K) of the Arakelov class group,

that is, (
B

N

)
· sd ≥ vol(Pic0

K). (1.1)

The assumption that the Gaussians of the random walk do not overlap
at all is not a realistic one, because there will always be some overlap,
especially whenever the covered volume almost exceeds vol(Pic0

K). The
volume argument still holds if the overlap is just not too severe, which
exactly happens if the end points of the jumps are reasonably equidistributed.
Such equidistribution of prime ideals is often tackled by assuming some
extended form of the Riemann hypothesis, on which we will elaborate later.

In fact, if we indeed assume this extended form of the Riemann hypothesis,
we can deduce that the number of jumps N , the number of jump directions
B (number of prime ideals) and the deviation s only need to be slightly
larger than required in Equation (1.1), in order for the random walk to be
uniform on the Arakelov class group. This means that the result is very near
what one optimally would expect. The precise, non-simplified analogue of
this statement, which is the main theorem of this thesis, is spelled out in
Theorem 4.3.

The extended Riemann hypothesis

The Riemann hypothesis is at its very essence an assumption on the regularity
or evenness of the prime numbers among the rest of the numbers. This
assumption is often used in mathematics, mostly to prove efficiency of
certain algorithms involving prime numbers.

In this thesis, we assume an extended form of this Riemann hypothesis,
because we are not dealing with prime numbers, but with prime ideals. The
formal statement of the Extended Riemann Hypothesis in this thesis is that
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1. Introduction

Figure 1.20.: The circle-shaped Arakelov class group of Q(
√

3) with the positions of the
first few prime ideals p and their associated shapes. Already in this ‘small’
example, there is a reasonable equidistribution of these prime ideals on the
Arakelov class group.

it assumes that all zeroes in the critical strip of Hecke L-functions of number
fields lie on the ℜ(z) = 1/2 line, see Definition 2.10. The impact is that
prime ideals of a number ring lie quite equidistributed on the Arakelov class
group, see Figure 1.20. For the volume covering argument of this section
to be near-optimal, such equidistribution of prime ideals is of fundamental
importance, which suggests the necessity of this particular form of the
Riemann hypothesis. In the actual proof of the random walk theorem, this
Extended Riemann hypothesis indeed seems to be indispensable (see the
proof of Theorem 4.3 in Chapter 4).
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1.6. A Worst-case to Average-case Reduction

1.6. A Worst-case to Average-case Reduction

Introduction

A reason why random walks on Arakelov class groups are interesting, is
because of their applications. In this section we will explain one of these
applications, which concerns a worst-case to average-case connection for
finding short vectors in ideal lattices.

The shortest vector problem

A computational problem that plays are large role in cryptography, is called
the ‘shortest vector problem’. The associated computational question is to
find a short non-zero point (vector) in a given lattice. Short, here, means
that the lattice point needs to be close to the origin, but not the origin itself,
see Figure 1.21.

More precisely, for a given lattice L, the r-approximate shortest vector
problem (approx-SVP) is the problem of finding a non-zero lattice point
ℓ ∈ L that satisfies ∥ℓ∥ < r. When only lattices of fixed determinant
are considered, this is named the Hermite approximate shortest vector
problem.

Though this computational problem looks rather easy in two dimensions,
it becomes more and more hard with increasing dimension. It is believed
that this is true not only for classical computers, but also for quantum
computers.

This is one of the reasons why this particular computational problem lies at
the foundation of many post-quantum cryptographic protocols (which require
an underlying ‘hard’ problem). Such cryptographic protocols based on the
shortest vector problem derive their general security from the hardness of this
particular problem. Because of this reason, it is of fundamental importance
to analyze this hardness.
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Figure 1.21.: The shortest vector problem asks to find a short vector in the lattice, which
means that it is close to the origin, but not the origin point itself. The red
points are the shortest lattice elements. In most cases, though, just short
vectors, like the orange points, are also good. Concretely, whether a lattice
point is short or not is often decided by whether the lattice point lies in a
circle with predescribed radius r or not.
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1.6. A Worst-case to Average-case Reduction

The Shortest Vector Problem on ideal lattices

In this thesis, we focus on the hardness of the shortest vector problem in ideal
lattices. Ideal lattices are a special subclass of general lattices that arise from
number fields. Due to this fact, as we saw in an earlier section, ideal lattices
(of a fixed number field) can be assembled into geometrically equivalent
classes, yielding the Arakelov class group. Because for two geometrically
equivalent lattices it is believed to be precisely equally hard to find short
vectors in, this Arakelov class group is appropriate to consider.

In this thesis, we study the hardness of finding short vectors in ideal lattices,
in a relative sense. Concretely, one of the research questions of this thesis
can be phrased as follows: is finding short vectors about equally hard for all
classes of ideal lattices (case A), or are there ideal lattices in which short
vectors are significantly harder to find (case B)? By giving the ‘hard’ ideal
lattice classes a red color, and the ‘easy’ ideal lattice classes a green color on
the Arakelov class group, these two cases are portrayed in Figure 1.22.

Figure 1.22.: Is it for all ideal lattices on the Arakelov class group about equally hard to
find short vectors in (case A) or not (case B)? Note that we just pictured
one single torus for the Arakelov class group, for simplicity.

Though the full answer to this research question on relative hardness is
slightly more subtle, and will be elaborated on in the next section, the
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simplified answer is short.

In all ideal lattices associated with a fixed number field it is about
equally hard to find short vectors. In other words, Case A of Figure 1.22
is quite an accurate rendition of reality.

Argument for the evenness of this hardness on the Arakelov class
group, using random walks

To give an argument why all ideal lattice classes in the Arakelov class group
are about equally hard to find short vectors in, one can use the random walk
theorem on Arakelov class groups. This argument is based on the following
important observation, which is, for sake of brevity, specialized to the case
of cyclotomic fields.

For cyclotomic fields, considering ideal lattices of fixed determinant,
finding a lattice vector of length r in the lattice at the end of the random
walk allows to find a short element of length r·

√
n in the initial lattice, by

‘undoing’ the random walk on the found short element, see Figure 1.23.

This observation rules out the existence of an ideal lattice in which it is
(compared to other ideal lattices) extraordinarily hard to find short vectors
in (such a hard lattice would be an intense red point on the Arakelov class
group in Case B of Figure 1.22). Namely, by the above observation (and
Figure 1.23), finding short vectors in the end lattice and in the initial lattice
or a random walk is somehow very related. Therefore, finding a short vector
in the fixed initial lattice cannot be so much harder than finding short
vectors in a random ‘average’ lattice. Summarizing, there cannot be much
variation in hardness of finding short vectors in ideal lattices, as visualized
in Case A in Figure 1.22.

Note that the random walk on the Arakelov class group reduces the shortest
vector problem on an initial lattice to a shortest vector problem on the
end lattice with a harder approximation factor, since it is smaller. So, the
portrayal in Figure 1.22 is not completely accurate, since we leave out this
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1.6. A Worst-case to Average-case Reduction

Figure 1.23.: This infographic (note the unusual order of the panels) explains why finding
a short element in the lattice at the end of a random walk allows to find
a reasonably short element in the initial lattice as well. However, there is
some loss of shortness quality: the orange element is the shortest (non-zero)
element in the deformed lattice, but it is only a reasonably short element in
the initial lattice. Summarizing, the random walk does indeed relate the
shortest vector problem in two different lattices, but with a slight loss of
shortness quality, which is about

√
n in degree n cyclotomic fields.
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subtlety in this picture. Though, because the difference in parameters is
rather small in most fields5, we chose to phrase the simplified statement as
a comparison of the same shortest vector problem on the Arakelov class
group.

1.7. Ideal Sampling

Introduction

Another application of the random walk on Arakelov class groups allows for
efficient sampling of (almost) prime ideals. This efficient sampling can be
used to compute power residue symbols in polynomial time, assuming the
Riemann hypothesis for Hecke-L functions.

Density of prime ideals

The prime number theorem states that the number of primes below a given
bound X is roughly equal to X/ log(X). Something similar is true for prime
ideals in number fields: the number of prime ideals with norm below X

is also roughly equal to X/ log(X), a fact known as Landau’s prime ideal
theorem. Formally,

|{p prime ideal of OK | N (p) ≤ X}| ≈ X/ log(X). (1.2)

Note that this estimated number X/ log(X) of prime ideals with bounded
norm does not depend on the number field. It seems that all number fields
have about the same number of prime ideals with norm below some given
X. However, the number of all integral ideals with bounded norm does vary

5The loss in shortness quality in generic number fields K is O(n · |∆K |
1

2n ), where ∆K

is the discriminant of the field. For number fields relevant for cryptography (which have
discriminants that grow at most exponential in the degree) this is polynomially bounded
in the degree n.
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1.7. Ideal Sampling

among different number fields. We namely have the following asymptotic
estimate:

|{a integral ideal of OK | N (a) ≤ X}| ≈ ρK ·X. (1.3)

In other words, the number of integral ideals with norm bounded by X

grows linearly in X, with slope ρK = lims→1(s − 1)ζK(s), the residue at
s = 1 of the Dedekind zeta function of the concerned field.

By dividing Equation (1.2) by Equation (1.3), one obtains the average
number of prime ideals among all ideals. This quantity can be considered
as the density of prime ideals among all integral ideals, which then roughly
equals

1/(ρK · log(X)).

Figure 1.24.: In this image, all shapes of the prime ideal lattices of the number field Q(
√

3)
with norm (i.e., surface area) below 25 are portrayed, with their respective
surface area. There are nine such prime ideal lattices. One can see that 2
and 3 ramify, 11, 13 and 23 totally split and 5 is inert in this number field.
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Sampling primes

Intuitively, this density estimate gives an algorithm idea to obtain prime
ideals in number fields. Namely, sample a random ideal with norm below X,
and check whether it is prime or not. By this density estimate, the success
probability is about 1/(ρK · log(X)), which is inverse polynomial in the size
of X, if we ignore ρK for the moment.

In this thesis, we give an ideal sampling algorithm that precisely allows this
sampling of random ideals, in such a way that indeed the probability of
sampling a prime ideal equals 1/(ρK · log(X)). This technique involves a
uniformly random distribution on the Arakelov group.

Let a be an ideal whose Arakelov class is uniformly random distributed,
and let α ∈ a ∩ [−r, r]n be uniformly sampled from those elements in a

that lie in the box [−r, r]n.

Then the probability that the ideal (α) · a−1 is a prime ideal is at least
1/(3 · ρK · log(rn)).

In this statement, there is a necessity for a to be randomly distributed on
the Arakelov class group, which is absolutely not the case for any fixed ideal
b. But by means of the random walk procedure on the Arakelov class group,
one can make any fixed ideal b ‘random’ by multiplying it by sufficiently
many random small prime ideals and apply a slight deformation, yielding
a = x ·

∏
j pj · b. This ideal is very close to randomly distributed on the

Arakelov class group.

In this way we can algorithmically make b randomly distributed, but some-
thing is lost as well. Omitting the deformation for the sake of simplicity,
sampling α ∈ a = ∏

j pj · b gives a guarantee for (α) · a−1 to be prime with
a certain probability. But the fraction (α) · b−1 can only be guaranteed to
be a prime ‘up to’ the small primes ∏j pj . For most applications, though,
this does not cause serious obstacles.
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1.7. Ideal Sampling

Applications

One of the applications of this prime sampling procedure is that it allows to
compute power residue symbols in cyclotomic fields Q(ζm).

The power residue symbol is a function
(
α
b

)
with input α ∈ Q(ζm) and

b ⊆ Z[ζm] that outputs a power ζjm of the m-th root of unity. It satisfies the
properties

(i)
(
α
β

)
= 1 for β ≡ 1 modulo mmα;

(ii)
(
α
bc

)
=
(
α
b

)
·
(
α
c

)
, that is, multiplicativity in the lower input;

(iii)
(
α
p

)
(with a prime ideal in the lower input) is efficiently computable.

One can make use of these three properties in the following way. To compute(
α
b

)
, apply a random walk on b, yielding b̃ = ∏

j pjb and sample β ∈ b̃

(omitting the deformation for simplicity). Then β · b̃−1 = p is a prime with
good probability. Slightly modifying the sampling procedure, one can assume
that β satisfies β ≡ 1 modulo mmα. By subsequently using properties (i), (ii)
and (iii) of the power residue symbol, one obtains an efficiently computable
expression for

(
α
b

)
.

1 =
(
α

β

)
=
(

α

p
∏

b̃

)
=
(
α

p

)
·
∏
j

(
α

pj

)
︸ ︷︷ ︸

efficiently computable
by property (iii)

·
(
α

b

)
,

The modification of the sampling procedure in order to have β ≡ 1 modulo
mmα is not entirely trivial and requires a generalization of the random walk
theorem over Arakelov ray class groups.

Sampling in other ideal sets

Though in this introduction only the set of prime ideals is considered,
any subset of the set of ideals of a number field can be taken in place,
accounting for the density of this specific set of ideals. For example, the set
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of smooth ideals, ideals that only have prime divisors with small norm, is
also an interesting case, as they play a role in class group and unit group
computations.

1.8. The Continuous Hidden Subgroup Problem

One particular subject in this thesis is quite separate from the others: the
continuous hidden subgroup problem. Though this computational problem
does concern (general) lattices, it does not have a very direct relation to
Arakelov class groups. The analysis of the continuous hidden subgroup in
this thesis is a refinement of that of Eistenträger et al. [Eis+14].

Period-finding

The continuous hidden subgroup problem is about recognizing periodicity in
a continuous signal. Such a continuous signal can be thought of as a sound
signal traveling through the air, and its periodicity is then the frequency or
pitch of this sound.

A computer solving this hidden subgroup problem, in this analogy, then
resembles a violinist with the ability of absolute pitch: given a sound signal,
this violinist directly recognizes it and utters ‘B-flat’, which is around 233
Hertz.

In reality, a sound signal, especially one from a rich-sounding instrument
like a violin, consists not just of one single sine tone. It has a certain timbre,
which is characterized by the harmonics of the tone. Those harmonics are
tones that are simultaneously heard and that have frequencies that are
exactly integer multiples of the ‘main tone’. In the case of the B-flat of 233
Hertz, for example, the harmonic tones have frequencies 233 · 2 = 466 Hertz,
233 · 3 = 699 Hertz, ad infinitum, see Figure 1.25.
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1.8. The Continuous Hidden Subgroup Problem

Figure 1.25.: A violin tone has harmonics, simultaneously heard tones whose frequency is
an integer multiple of the main frequency (233 Hertz, in this example). The
variety in loudness of these harmonics defines the timbre.

Period-finding in higher dimensions

A sound signal can be considered one-dimensional, where the one dimension
comes from time. Though, the more complex periodicity arises in higher
dimensions, since periodicity is then encoded by a lattice, see Figure 1.26.

Figure 1.26.: An example of a two-dimensional periodic signal: on the left a 3d-view and
on the right a top view. The periodicity can be described by a lattice. The
task of the hidden subgroup problem is to retrieve this lattice from the
two-dimensional periodic signal.

The higher the dimension of the signal (for our purposes6, the dimension
6One application of the solution of the hidden subgroup problem is in number theory.

It can be used to compute unit groups and class groups of number fields [Eis+14]. Also it
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does not stop at three), the higher the dimension of the associated periodicity
lattice. The ‘harmonics’ of such multidimensional periodic signal must then
be seen as the points of the associated period lattice.

The Fourier transform

The procedure that extracts this periodicity from a signal, including its
‘harmonics’ (the lattice points), and thus solves the continuous hidden
subgroup problem, is called the Fourier transform, see Figure 1.27.

Figure 1.27.: The Fourier transform allows to find the frequencies occurring in a signal, as
well as their respective loudness or amplitude.

Though, computers cannot reasonably process a continuous signal as a whole;
instead, a computer can only take a finite number of points from the signal.
This process is called discretization. Due to this discretization, there is some
loss of information from the signal; the values ‘in between’ are not known
anymore. This particular loss causes the computed Fourier transform of the
(discretized) signal to have errors, see Figure 1.28.

Summarizing, by the fact that computers are unable to process infinite
continuous signals as a whole, intrinsic errors or ‘noise’ occurs. If this noise
is too large, the out of the computation is unusable.

Errors in the Fourier transform

Whenever the signal is in one dimension, these errors are not that severe. In
higher dimensions, though, these errors get exponentially worse. This can be
has applications in cryptography, as this solution to the hidden subgroup can also be used
to find reasonably short vectors in ideal lattices [Cra+16].
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Figure 1.28.: Due to taking only finitely many samples of the periodic signal, small errors
occur in the output of the (finite) Fourier transform. In this particular
example, the output still resembles the actual frequencies of the original
signal (see Figure 1.27), but if there were less sampling points, the output
would be so noisy that it would be unusable.

considered as an example of the curse of dimensionality, a general expression
for describing computational difficulties whenever spatial dimensions grow.

As a consequence, to counteract the explosion of the error size, the number
of samples of the signal need to grow exponentially as well. This causes
this solution for the continuous hidden subgroup problem using Fourier
transforms not to be feasible for a normal, classical computer. Instead, we
need to use a quantum computer.

The Quantum Fourier transform

Due to the special recursive nature of the Fourier transform, it can be
efficiently computed by a quantum computer, even when an exponential
number of samples is required7. In this thesis, in Chapter 3, a thorough
analysis is made of how many quantum resources are needed in order to
keep the exponentially growing error manageable, depending on properties
of the high-dimensional periodic signal. For example, the number of qubits

7In reality, these samples are queried in parallel, by using quantum parallelism, which
allows to sample an exponential number of samples in a parallel way, using only a
polynomial amount of classical and quantum resources (i.e., qubits and quantum gates).
Also, the output of a quantum Fourier transform yields a quantum state whose amplitudes
contain the values of the Fourier transform, whose are thus inaccessible due to the nature
of quantum phenomena. Fortunately, in this particular hidden subgroup problem, we are
only interested in the frequencies where those amplitudes are high; such frequencies can
then be obtained by measuring the quantum state.
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(quantum bits) depends logarithmically on how rapidly the signal oscillates
and how small one would like the error caused by the discretization to be.

The continuous hidden subgroup problem in higher dimensions, which
consists of finding the hidden period lattice of a periodic high-dimensional
signal, can be solved efficiently on a quantum computer. For an appro-
priate choice of quantum resources, the errors induced by discretization
(i.e., taking only finitely many samples of the signal) can be shown to
be feasibly small.

1.9. Outline and Contributions of this Thesis

After this introductory chapter, this dissertation proceeds with Chapter 2,
the preliminaries: it states and concisely covers knowledge that is expected
from the reader before continuing with the actual results of this thesis.

The next chapter, Chapter 3, is about the continuous hidden subgroup
problem, and more or less stands on its own. The contributions of this
chapter have been published in the following article, in a slightly different
form.

Koen de Boer, Léo Ducas, Serge Fehr. On the Quantum Complexity of
the Continuous Hidden Subgroup Problem. In Advances in Cryptology –
EUROCRYPT 2020 [BDF20].

The subsequent chapter, Chapter 4 is about random walks on the Arakelov
ray class group. The contributions of this chapter have been published in
Section 3 of the following paper, though only for Arakelov class groups with
a trivial modulus m = OK . The generalization to arbitrary moduli in this
dissertation is new.
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Koen de Boer, Léo Ducas, Alice Pellet-Mary, Benjamin Wesolowski.
Random Self-reducibility of Ideal-SVP via Arakelov Random Walks. In
Advances in Cryptology – CRYPTO 2020 [Boe+20].

Chapter 5 is about an application of the random walk theorem: a worst-case
to average-case reduction for Hermite-SVP on ideal lattices. The contri-
butions in this chapter have been published as well in the CRYPTO 2020
[Boe+20] paper above, with minor differences in some of the proofs concern-
ing discretization.

The last two chapters, Chapter 6 about ideal sampling and Chapter 7 about
provably computing the power residue symbol, contain results that have not
been published yet.

Chapter 2: Preliminaries

Chapter 3: The Continuous
Hidden Subgroup Problem

Chapter 4: Random Walks
in Arakelov Ray Class Groups

Chapter 5: A Worst-case to
Average-case Reduction for
Ideal Lattices

Chapter 6: Ideal Sampling

Chapter 7: The Power
Residue Symbol is in ZPP

Figure 1.29.: In this diagram is depicted how the chapters depend on each other content-
wise.
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