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1. Introduction

Main concepts

In this introduction, we will treat the main concepts of this thesis in a
slightly simplified and hopefully intuitive way. Though the first section
roughly covers the necessary knowledge to follow this introduction, a more
extensive treatment can be found in Neukirch’s Algebraic Number Theory
[NS13, Ch. 1] or Peikert’s A Decade of Lattice Cryptography [Pei16, Sec. 2,
Sec. 4]. The Arakelov class group formalism is treated nicely by Schoof
[Sch08].

1.1. Number Theory

Number fields and number rings

In this thesis, the concepts of a number field and a number ring play a large
role. A number field K is a finite-dimensional field extension of the rational
numbers Q, which is just a different way of saying that K ≃ Q[X]/(f(X))
for some irreducible polynomial f(X) ∈ Q[X]. The dimension of K as a
Q-vector space is called the degree of the number field.

Every element α ∈ K has a minimal polynomial, the unique monic, irre-
ducible polynomial m(X) ∈ Q[X] satisfying m(α) = 0. If, additionally, the
minimal polynomial of α lies in Z[X], we call α an integral element of K.
The integral elements in K together form a ring, denoted OK , and is named

1



1. Introduction

the ring of integers of K. Subrings of such a ring of integers of some number
field K are called number rings.

In this introduction, we will always take the number ring to be the ring of
integers OK of K, for the sake of simplicity; but the ideas of this introduction
apply to any other number ring R ⊆ OK as well.

The Minkowski embedding

Let K = Q[X]/(f(X)) be a number field defined by the irreducible poly-
nomial f(X) ∈ Q[X]. This polynomial f(X) has deg(f) distinct roots
in the complex numbers C. This yields deg(f) different field embeddings
K ↪→ C, respectively, by sending X̄ ∈ K = Q[X]/(f(X)) to any of the
roots of f in C. Those are all possible field embeddings of K into C.
By concatenating these field embeddings next to each other, one gets
the Minkowski embedding K →

⊕
σ:K→CC, α 7−→ (σ(α))σ. In most of

the literature, the codomain of this Minkowski embedding is restricted to
KR = {xσ ∈

⊕
σ:K→CC | xσ = xσ̄}, where σ̄ is the embedding σ̄ : K ↪→ C ob-

tained by applying first σ and then complex conjugation in C. By component-
wise addition and multiplication, KR is an R-algebra. We will see later that
the ring of integers OK forms a full-rank lattice in KR under the Minkowski
embedding.

Take as an example the number field K = Q[X]/(X2 − 2), which has two
embeddings into C, corresponding to the zeroes ±

√
2 of the polynomial

X2 − 2 in C. Due to the fact that each of those actually embeds K into
R ⊆ C, the (restricted) codomain KR of the Minkowski embedding equals
the real plane R2. The Minkowski embedding sends, in this case, X̄ ∈ K to
(
√

2,−
√

2) ∈ R2 and 1 ∈ K to (1, 1) ∈ R2 and is, by linear extension, totally
determined (see Figure 1.1). Such a number field K is, by abuse of notation,
often just denoted Q(

√
2), and its ring of integers Z[

√
2], where

√
2 is used

as a more understandable placeholder for X̄. Although the ring of integers
of K = Q(α) (with α an integral element of K) equals Z[α] in the specific
examples of this introduction, this is generally not the case for other number
fields.

2



1.1. Number Theory

Figure 1.1.: The number ring Z[
√

2] visualized on the real plane, using the Minkowski
embedding, sending

√
2 7→ (

√
2,−
√

2) and 1 7→ (1, 1).

A slightly more intricate example concerns the number field K = Q( 3√2) =
Q[X]/(X3 − 2), which has three embeddings into C, corresponding to the
zeroes ζj3 ·

3√2 of the polynomial X3−2 in C (where ζ3 is a third primitive root
of unity). The Minkowski embedding of K sends X̄ = 3√2 7→ ( 3√2, ζ3 · 3√2) ∈
R×C and 1 7→ (1, 1) ∈ R×C (see Figure 1.2). Both the introduction of the
reals and the absence of a third embedding is due to the restriction of the
codomain of the Minkowski embedding – this third component just follows
from conjugating the second component.

An appropriate metric on number fields

The Minkowski embedding K ↪→ KR yields, via the Euclidean metric on
the R-algebra KR, a metric on the number field K and its ring of integers
OK . More specifically, this metric is defined via the geometric norm ∥α∥ :=√∑

σ |σ(α)|2.

One of the advantages of this specific metric is its tight connection with the
algebraic norm on the field K, which can be defined on α ∈ K by taking
the products of the all embeddings: N (α) = ∏

σ σ(α). The algebraic and

3



1. Introduction

Figure 1.2.: This picture shows the Minkowski embedding of Z[ 3√2] into R× C.

geometric norm are related by the arithmetic-geometric mean inequality, a
fact that is classically used to show the finiteness of the class group.

1.2. Ideal Lattices

Ideals

Due to the canonical geometry of the number field K, the image of the ring
of integers OK under the Minkowski embedding is a discrete subgroup in
KR, if one only considers the additive structure of OK [NS13, Ch. 1, § 4].
In other words, the ring of integers OK forms a lattice under this embedding
(see Figures 1.1 and 1.2). In fact, the same holds for any non-zero ideal
of OK in K. Recall that an ideal is a subgroup I ⊆ OK of the additive
group of OK that is stable under multiplication with elements in OK , i.e.,
OK · I ⊆ I.
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Ideal lattices

The image of an ideal I under the Minkowski embedding is an example of
an ideal lattice; it has the additive structure of a lattice and the ring-like
structure of an ideal. An ideal lattice is defined as any non-zero lattice L ⊆ KR
that satisfies OK · L ⊆ L, where the action of OK happens component-wise
after the Minkowski embedding (see Figure 1.3). Equivalently, consideringKR
as an OK-algebra, ideal lattices are discrete OK-submodules of KR. Recall
that discrete subgroups of Euclidean vector spaces correspond precisely to
free Z-modules spanned by R-linearly independent vectors in this vector
space, both called (generic) lattices.

Figure 1.3.: The blue lattice is the ideal lattice 2·Z[
√
−5] in Q(

√
−5) consisting of multiples

of 2. The green lattice is an example of a lattice that is not an ideal lattice of
Q(
√
−5), because it is not stable under multiplication with elements of the ring

of integers Z[
√
−5] of Q(

√
−5). For example, (−1 +

√
−5) ·

√
−5 = −5−

√
−5,

which is the red point and does not lie in the green lattice.

It can be shown that ideal lattices L are always of the shape L = x · I,
where I ⊆ OK is a non-zero ideal and x ∈ K∗R (the invertible elements
of KR), where the multiplication comes from the OK-algebra structure of
KR, i.e., component-wise. In other words, ideal lattices are of the shape
L = {(xσ ·σ(ι))σ | ι ∈ I}, and can be considered as ideals with a deformation.
They can be stretched and squished in several coordinates by the factor
x ∈ K∗R, see Figure 1.4.
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1. Introduction

Figure 1.4.: In this two-dimensional example, the left ideal lattice is slightly stretched
in the x-direction and slightly squished in the y-direction, leading to the
perturbed ideal lattice on the right. The yellow circle functions as a visual
aid, making the precise deformation of the lattice more explicit.

The ideal lattices within KR form a group in which the multiplication is
inherited from KR and the group of (fractional) ideals; (x · I) · (y · J) :=
(x · y) · (I · J), and where the unit ideal lattice is OK ⊆ KR (under the
Minkowski embedding).

In the remainder of this introduction, we will consider the group of ideal
lattices up to scaling. This can be done by only considering ideal lattices of
fixed determinant, or by constructing the equivalence relation in which two
ideal lattices are equivalent if they only differ by scaling. From now on, we
will refer to this group as the group of ideal lattices of a number field K,
and we denote it by IdLat0

K .

‘Similar’ ideal lattices

Next to scaling, another equivalence of ideal lattices plays a large role,
one that we will call geometrically similar in this introductory text. Two
ideal lattices x · I, y · J ∈ IdLat0

K are called geometrically similar, denoted
x · I ∼ y · J , if there exists a κ = (κσ)σ ∈ KR with |κσ| = 1 for all σ, such
that κ · x · I = y · J .

The ideal lattices that are geometrically similar to the unit ideal lattice
OK form a subgroup called the trivial-class ideal lattice. In the left image

6



1.3. Arakelov Class Groups

of Figure 1.5 some examples of trivial-class ideal lattices are given, whose
geometric similarity with OK can be verified visually.

Figure 1.5.: On the left are three trivial-class ideal lattices, namely Z[
√
−5],

√
−5 · Z[

√
−5]

and (1 +
√
−5) · Z[

√
−5]. By observing the rectangular shapes enclosed by

the lattice points, one indeed observes that these three lattices are equal, up
to scaling and rotation, and thus geometrically similar. In the right image one
can see the blue ideal lattice, which is the smallest ideal lattice in Z[

√
−5]

containing both 2 and
√
−5. As the shape of this lattice is a diamond instead

of a rectangle, it cannot be a trivial-class ideal lattice.

1.3. Arakelov Class Groups

Looking again at the ideal lattices of Q(
√
−5) in Figure 1.5, we can distin-

guish two shapes of ideal lattices; a rectangle with proportion
√

5 : 1, and
a diamond with height

√
5 and width 2. A reasonable question to ask is:

do all ideal lattices in Q(
√
−5), up to scaling and geometric similarity, fall

into one of these two shapes? The answer turns out to be yes; this is closely
related to the fact that Q(

√
−5) is a complex quadratic number field with

class number two.

Summarizing, the ideal lattices in Q(
√
−5) fall into two classes, the ‘rectangle’

class and the ‘diamond’ class ♦. This categorization of the ideal lattices

7
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of Q(
√
−5) is described by the Arakelov class group of Q(

√
−5), which we

denote by Pic0
Q(
√
−5). In other words,

Pic0
Q[
√
−5] = { ,♦}.

This categorization of ideal lattices can be done for any number field; in
fact, we have the following definition of the Arakelov class group.

The Arakelov class group of a number field is the group of geometric
similarity classes of ideal lattices of that number field.
Symbolically,

Pic0
K := IdLat0

K /∼,

where ∼ is the equivalence relation of being geometrically similar.

The shapes of the ideal lattices of Q(
√
−5) fall into two classes, in other

words, |Pic0
Q(
√
−5) | = 2, a finite number. The Arakelov class group being

finite only happens in imaginary quadratic number fields and the rationals
Q, for which can be shown that it is canonically isomorphic to the ideal
class group.

In all other number fields the Arakelov class group is an infinite (but compact)
abelian group. A way of visualizing this is by imagining a spectrum of lattice
shapes; so, for example, not only diamond-shaped or rectangle-shaped, but
also everything in between, see Figure 1.6.

Figure 1.6.: In most number fields, the Arakelov class group is infinite. The ideal lattices
have an infinite variety of shapes. For example, one could imagine that these
shapes shift seamlessly from to ♦.

Infinite Arakelov class groups

We will now consider an example of a number field whose Arakelov class
group is infinite, namely that of Q(

√
3), with ring of integers Z[

√
3]. To show

8



1.3. Arakelov Class Groups

that there is a larger variety of ideal lattices here, we refer to Figure 1.7 for
three examples of shapes of ideal lattices in Z[

√
3].

Figure 1.7.: In this picture we examine three different shapes of ideal lattices of the number
field Q(

√
3). The variety of shapes suggests that there is a spectrum of different

ideal lattice shapes.

Indeed, a continuous spectrum of ideal lattice shapes happen to occur
in Q(

√
3), slightly similar to Figure 1.6. Furthermore, this spectrum of

ideal lattice shapes can be exactly found by stretching the shape in the
x-direction and shrinking the same amount in the y-direction (and vice versa,
see Figure 5.2). The deformation of ideal lattices in this way is possible
because the field Q(

√
3) has two independent (real) embeddings into C, as

opposed to Q(
√
−5), which has only one independent (complex) embedding1.

Note that the product of the deformations in the x and y-direction is required
to be 1, in order to keep the the determinant of the ideal lattice fixed.

Changing an ideal lattices shape this way, something peculiar occurs even-
tually: at a certain point of deforming the lattice shape, one arrives at a
different shape, but representing the same lattice; an example of this phe-
nomenon can be seen in Figure 1.8. As a result, the Arakelov class group of
Q(
√

3) has a circular nature, and is in fact isomorphic to the circle group
S1, see Figure 1.9.

More explicitly, the ideal lattice group has the following parametrization for

1Technically, imaginary quadratic number fields have two embeddings into the complex
space, but they are dependent in the way that one is the complex conjugate of the other.

9



1. Introduction

Figure 1.8.: We consider here ideal lattices of the number field Q(
√

3). By stretching
the red shape into the x-direction and shrinking the same amount in the
y-direction, one obtains a variety of shapes. Eventually, one arrives at the
blue shape, which represents the same ideal lattice as that of the red shape.
In fact, this full spectrum of ideal lattices in Q(

√
3) is precisely obtained by

multiplying Z[
√

3] by (et, e−t) for t ∈ [0, log(2 +
√

3)], where 2 +
√

3 is the
fundamental unit of Z[

√
3].

t ∈ R,
IdLat0

Q(
√

3) = {(et, e−t) · Z[
√

3] ⊆ KR | t ∈ R}.

The ring of integers Z[
√

3] has the element 2 +
√

3 = (2 −
√

3)−1 as a
fundamental unit, and therefore, taking t = log(2 +

√
3), we have

(et, e−t) · Z[
√

3] = (2 +
√

3, 2−
√

3) · Z[
√

3] = Z[
√

3] = (e0, e0) · Z[
√

3].

As a result, the Arakelov class group of Q(
√

3) is, via the above parametriza-
tion, isomorphic to R/ log(2 +

√
3) · Z, a circle group. So, the Arakelov class

group Pic0
K ≃ R/ log(2 +

√
3) ·Z of Q(

√
3), has volume (length) log(2 +

√
3),

which is exactly the regulator R of the number field Q(
√

3).

This is not a coincidence. In this specific case, because Q(
√

3) has class
number one, the Arakelov class group is canonically isomorphic to the
quotient group H/Log(O×K) of the hyperplane H = span(Log(O×K)) and the
logarithmic unit lattice Log(O×K) that arises in Dirichlet’s unit theorem.
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Figure 1.9.: By deforming an initial ideal lattice in Q(
√

3) appropriately, one eventually
arrives at the same ideal lattice. This yields a circular pattern; as a result,
the Arakelov class group of Q(

√
3) is isomorphic to the circle group S1.

General Arakelov class groups

In the previous text, we saw two examples of an Arakelov class group. One
of an imaginary quadratic number field Q(

√
−5), which was a finite group

isomorphic to the class group, and one of a real quadratic number field Q(
√

3)
which was isomorphic to a circle with the volume equal to the regulator.

So, in one case the Arakelov class group seems tightly related to the class
group, whereas in another case it seems related to the unit group. In reality,
it is related to both: it is a ‘combination’ of both the class group Cl(K)
and the logarithmic unit torus T = H/Log(O×K), the quotient group of the
hyperplane H = span(Log(O×K)) and the logarithmic unit lattice Log(O×K).
Here, Log(η) := (log |σ(η)|)σ for η ∈ O×K is the logarithmic map, defined by
taking the component-wise logarithm of the absolute values of the Minkowski
embedding. This turns the multiplicative group of units O×K into a lattice
Log(O×K), of which the hyperplane H is the linear span.

More precisely, the Arakelov class group fits in an exact sequence where
the outer groups are the class group Cl(K) and the logarithmic unit torus
T = H/Log(O×K).

0→ H/Log(O×K)→ Pic0
K → Cl(K)→ 0.
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Figure 1.10.: The Arakelov class group of a number field K consists of a union of finitely
many hypertori.

The specific cases of Q(
√
−5) and Q(

√
3) can now reasonably be explained.

In the imaginary quadratic case of Q(
√
−5) the logarithmic unit torus

T = H/Log(O×K) consists of a single point (due to the unit group being
finite), which makes the Arakelov class group isomorphic to the class group.
In the real quadratic case Q(

√
3), however, the class group is trivial instead,

so that the Arakelov class group is isomorphic to the logarithmic unit torus
T = H/Log(O×K) ≃ R/ log(2 +

√
3)Z, i.e., R quotiented out by the free

group generated by the logarithm of the fundamental unit of Q(
√

3); this is
a circle group.

In the most general case, the logarithmic unit torus T = H/Log(O×K) is a
hypertorus and the class group is a finite abelian group. This leads to the
following topological description of the Arakelov class group.

The Arakelov class group of a number field K consists of a union
of finitely many hypertori. The number of tori is equal to the class
number of K and all tori are isomorphic to the logarithmic unit torus
T = H/Log(O×K), thus having a volume equal to the regulator of K.

Summarizing, a point on a torus in the Arakelov class group corresponds to
an ideal lattice (more precisely, a class of same-shaped ideal lattices) in the
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1.4. Random Walks on the Arakelov Class Group

number field. Moving the point on the torus a little corresponds to slightly
disturbing the shape of the lattice, exactly like in the circle of Figure 1.9
(see also Figure 1.11).

If the corresponding points of two lattices lie on the same torus (in the
Arakelov class group), they can be transformed into each other by means of
stretching and shrinking appropriately. If, on the other hand, these points
lie on different tori of the Arakelov class group, they can not be transformed
in one another, see Figure 1.11.

Figure 1.11.: Any two lattices corresponding to points on the same torus, can be trans-
formed into each other (left). If two lattices correspond to points on different
tori, they cannot be transformed into each other (right).

1.4. Random Walks on the Arakelov Class Group

The main theorem of this thesis involves random walks on the Arakelov class
group, a specific algorithm that allows to move randomly.

What is a random walk?

An intuitive way of thinking about a random walk is by picturing an ant
on a plane, where the ant gets no external stimuli. This ant will move in
random directions with quite an irregular path, see the left-most picture of
Figure 1.12.
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Due to the random behavior of the ant, we do not know its precise future
movements. So, in order to predict the ant’s future position, we have to
resort to using stochastics. The probability distribution that describes the
possible end points of the ant after a certain given time is called the random
walk distribution, and will, on the real plane, take the shape of a Gaussian
distribution (see the right-most picture of Figure 1.12).

Figure 1.12.: An ant on a plane will, without external stimuli, follow an irregular path, as
in the left-most image. This is can be regarded as an intuitive interpretation
of a random walk. The probability distribution arising from this statistical
behavior is called a random walk distribution and is visualized in the right-
most image.

One can actually define a random walk on any reasonable surface (or even in
the three-dimensional or higher-dimensional space, by imagining a confused
fly). The most relevant surface for our purposes is the hypertorus, because
that is what an Arakelov class group consists of.

In random walks on hypertori, something peculiar occurs whenever the
deviation of the Gaussian gets large. Namely, at a certain deviation the
Gaussian distribution ‘folds round’ the entire hypertorus, and is evenly
spread out everywhere; this concept is known as smoothing in the theory
of lattices. So, this Gaussian random walk distribution on a torus, with
increasing deviation, tends to a uniform distribution, see Figure 1.13.

How to randomly walk on the Arakelov class group?

The Arakelov class group consists of finitely many hypertori. Each point
on one of these tori corresponds to a lattice geometric-similarity class, and
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1.4. Random Walks on the Arakelov Class Group

Figure 1.13.: As the deviation of the Gaussian distribution increases, the distribution
‘folds around’ the torus more and more. From a certain value of the deviation,
the distribution is very close to a uniform distribution.

deforming this lattice allows to move around on one torus, see Figure 1.11.
However, in order to obtain a reasonable covering random walk on an
Arakelov class group we need to be able to jump from one torus to the other
as well.

Before unveiling yet how we actually achieve such a jump in terms of lattices,
we define the two allowed moves in a random walk on the Arakelov class
group.

• ‘Crawling’, that is, (slowly) moving on one single torus.
• ‘Jumping’, that is, instantaneously teleport (as it were) to a certain

distant point either on a different torus, or on the same torus.

Because of these two movements, an ant is not anymore the appropriate
insect to keep in mind for intuition. Instead, we might want to think of a
grasshopper, see Figure 1.14.
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Figure 1.14.: Due to the disconnected nature of the Arakelov class group, as it consists
of several separated tori, we also need ‘jumps’ in our random walk, next to
‘crawls’. For intuition it is then more appropriate to have a grasshopper in
mind. The grasshopper does not need to land on a different torus per se, but
can also jump to a distant place on the same torus.
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‘Crawling’ by a Gaussian deformation

In terms of ideal lattices, ‘crawling’ happens by multiplying the input ideal
by a random log-normal deformation x ∈ KR satisfying ∏σ xσ = 1, in order
to keep the determinant of the ideal lattice the same.

More precisely, we pick a Gaussian vector (gσ)σ in which each entry is a zero-
centered Gaussian with deviation s, subject to the requirement ∑σ gσ = 0.
Putting xσ = egσ yields the correct log-normal distribution on KR.

‘Jumping’ by multiplying with prime ideals

In terms of ideal lattices, such a jump from one torus to another happens
by multiplying the initial ideal lattice by a (non-zero) prime ideal. More
specifically, denoting p ⊆ OK for a prime ideal of OK , the operation x ·a 7−→
x · (p · a) yields a jump in the Arakelov class group2.

Geometrically, multiplying an ideal lattice L = x · a by a prime ideal of OK
corresponds to taking a prime sub ideal lattice x · (p · a) ⊆ x · a, that is a sub
ideal lattice P ⊆ x · a for which no proper ideal lattice lies in between. In
other words, for a prime sub ideal lattice P ⊆ x · a there are no ideal lattices
L such that P ⊊ L ⊊ x · a (see Figure 1.15).

As we would like the jumps to other tori to be random, aimless like a
grasshopper, a probabilistic element is added. Starting from a certain initial
ideal lattice x · a (corresponding to a point on the Arakelov class group), we
uniformly random pick a prime ideal p ⊆ OK among all prime ideals with
norm bounded by some bound B, and switch to the lattice x · (p · a). This
procedure of multiplying by a random prime can be repeated as often as we
want; we denote with N the total number of these ‘jumps’. A toy example
with two jumps (so N = 2) is depicted in Figure 1.16.

2To be completely precise, it would be more correct to write x·a 7−→ (x·N (p)−1/n)·(p·a),
where the norm N (p) of p is involved in order to keep the determinant fixed.
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Figure 1.15.: The red, blue and green ideal lattices are all prime sub ideal lattices of the
gray (base) ideal lattice, because the shapes of the respective ideal lattices
are 2, 3 and 11 (prime numbers) times larger than the surface of the gray
ideal lattice.

Figure 1.16.: This picture shows two repetitions (N = 2) of a random jump. In more
realistic cases, both the number of primes and the number of jumps are
larger. Note that at each jump, the ideal lattice gets sparser, or, equivalently,
its shape gets larger.
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Description of the full random walk on the Arakelov class group

We now give the final description of our definition of a random walk on
the Arakelov class group, involving three parameters: N,B and s (see
Figure 1.18). Here N is the number of consecutive jumps on the Arakelov
group, as well as the number of prime ideals one multiplies the input ideal
with. The number B is the bound on the norms of these prime ideals and
equals (up to a logarithmic factor) the number of primes one can randomly
pick from in each jump. These two parameters N and B concern the ‘discrete
part’ of the random walk. The ‘continuous part’ of the random walk on the
other hand is determined by the deviation s of the log normal distribution
of the random deformation.

A random walk on the Arakelov class group, starting from an ideal lattice
x · a, consists of two separate parts. The first part involves N random
‘jumps’, carried out by multiplying the ideal lattice by N random primes
with bounded norm B, yielding the operation x · a 7−→ x · (∏N

j=1 pj)a.

The second part, that comes after, involves a random log-normally
distributed crawl y ∈ KR of deviation s, which is executed by slightly
deforming the lattice x · (∏N

j=1 pja) resulting from the jumps:

x · (
N∏
j=1

pja) 7−→ (y · x) · (
N∏
j=1

pja).

The random walk process is depicted in Figure 1.17.

1.5. The Random Walk Theorem for Arakelov Class
Groups

We are now almost ready to phrase the main result of this thesis. Recalling
the framework of the random walk: we tried before to predict the position
of an ant walking on a torus for a certain time, only knowing its initial
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Figure 1.17.: A concrete realization of the random walk procedure on an ideal lattice with
a single jump. The prime sub ideal lattice is chosen at random, as well as
the deformation (by sampling a Gaussian distribution).

Figure 1.18.: An explanation of the random walk’s parameters.
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position. The current situation is not much different; we now try to predict
the position of a grasshopper on multiple tori (the Arakelov class group),
only knowing its initial position, the number of jumps N , the number B of
primes3 to sample from, and the deviation s of the crawl.

As we saw in Figure 1.13, an ant’s crawl of a large enough deviation ‘folds
around the torus’ and therefore leads to a uniform distribution. Something
very similar happens with the grasshopper and the Arakelov class group
consisting of multiple tori. For appropriately many jumps N , appropriately
many primes B and an appropriately large deviation s, the random walk
distribution on the Arakelov class group is also close to the uniformly random
distribution.

Intuitively, the more jumps (i.e., larger N) happen in the random walk, the
less crawling (i.e., smaller s) is needed to cover4 the Arakelov class group.
The converse is also true; in the case of few jumps, more crawling is required
to cover all tori, see Figure 1.19.

In the following informal geometric volume-covering argument we show
a necessary condition on the parameters in order to cover the Arakelov
class group fully with a random walk. In fact, if one assumes the extended
Riemann hypothesis, we can show that that this necessary condition is also
almost sufficient – only a slightly more larger parameter choice is sufficient
to have a covering random walk.

Volume covering argument

Assume for the moment that the multiple Gaussians caused by the crawling
do not overlap at all. Then, the total volume covered by the random walk
distribution equals

(B
N

)
·sd, namely, each of the

(B
N

)
possible final jump points

3Formally, this was the bound B on the norms of the primes; the number of primes
with norm bounded by B equals B/ logB so it does not much harm to identify the number
of primes with B.

4‘Cover’, here, is used in an informal sense, and not in the (formal) topological sense.
In the informal geometric argument that follows, a point on the Arakelov class group is
‘covered’ if the random walk distribution has a non-negligible density value there.
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Figure 1.19.: The more jumps happen in the random walk, the less crawling is needed in
order to cover the entire Arakelov class group.

have a covering of about sd due to the crawling. Here, d is the dimension of
the Arakelov class group of K which is equal to the rank of the unit group
of K.

This means that for the random walk distribution to be uniform, i.e. covering
everything equally, it must cover the entire volume of the Arakelov class
group. In particular, the volume

(B
N

)
· sd covered by the random walk

distribution (assuming no overlap) must exceed the volume of the Arakelov
class group.
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For the random walk distribution on the Arakelov class group Pic0
K to

be uniform, the estimated volume coverage
(B
N

)
sd of the random walk

is required to exceed the volume vol(Pic0
K) of the Arakelov class group,

that is, (
B

N

)
· sd ≥ vol(Pic0

K). (1.1)

The assumption that the Gaussians of the random walk do not overlap
at all is not a realistic one, because there will always be some overlap,
especially whenever the covered volume almost exceeds vol(Pic0

K). The
volume argument still holds if the overlap is just not too severe, which
exactly happens if the end points of the jumps are reasonably equidistributed.
Such equidistribution of prime ideals is often tackled by assuming some
extended form of the Riemann hypothesis, on which we will elaborate later.

In fact, if we indeed assume this extended form of the Riemann hypothesis,
we can deduce that the number of jumps N , the number of jump directions
B (number of prime ideals) and the deviation s only need to be slightly
larger than required in Equation (1.1), in order for the random walk to be
uniform on the Arakelov class group. This means that the result is very near
what one optimally would expect. The precise, non-simplified analogue of
this statement, which is the main theorem of this thesis, is spelled out in
Theorem 4.3.

The extended Riemann hypothesis

The Riemann hypothesis is at its very essence an assumption on the regularity
or evenness of the prime numbers among the rest of the numbers. This
assumption is often used in mathematics, mostly to prove efficiency of
certain algorithms involving prime numbers.

In this thesis, we assume an extended form of this Riemann hypothesis,
because we are not dealing with prime numbers, but with prime ideals. The
formal statement of the Extended Riemann Hypothesis in this thesis is that
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Figure 1.20.: The circle-shaped Arakelov class group of Q(
√

3) with the positions of the
first few prime ideals p and their associated shapes. Already in this ‘small’
example, there is a reasonable equidistribution of these prime ideals on the
Arakelov class group.

it assumes that all zeroes in the critical strip of Hecke L-functions of number
fields lie on the ℜ(z) = 1/2 line, see Definition 2.10. The impact is that
prime ideals of a number ring lie quite equidistributed on the Arakelov class
group, see Figure 1.20. For the volume covering argument of this section
to be near-optimal, such equidistribution of prime ideals is of fundamental
importance, which suggests the necessity of this particular form of the
Riemann hypothesis. In the actual proof of the random walk theorem, this
Extended Riemann hypothesis indeed seems to be indispensable (see the
proof of Theorem 4.3 in Chapter 4).
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1.6. A Worst-case to Average-case Reduction

Introduction

A reason why random walks on Arakelov class groups are interesting, is
because of their applications. In this section we will explain one of these
applications, which concerns a worst-case to average-case connection for
finding short vectors in ideal lattices.

The shortest vector problem

A computational problem that plays are large role in cryptography, is called
the ‘shortest vector problem’. The associated computational question is to
find a short non-zero point (vector) in a given lattice. Short, here, means
that the lattice point needs to be close to the origin, but not the origin itself,
see Figure 1.21.

More precisely, for a given lattice L, the r-approximate shortest vector
problem (approx-SVP) is the problem of finding a non-zero lattice point
ℓ ∈ L that satisfies ∥ℓ∥ < r. When only lattices of fixed determinant
are considered, this is named the Hermite approximate shortest vector
problem.

Though this computational problem looks rather easy in two dimensions,
it becomes more and more hard with increasing dimension. It is believed
that this is true not only for classical computers, but also for quantum
computers.

This is one of the reasons why this particular computational problem lies at
the foundation of many post-quantum cryptographic protocols (which require
an underlying ‘hard’ problem). Such cryptographic protocols based on the
shortest vector problem derive their general security from the hardness of this
particular problem. Because of this reason, it is of fundamental importance
to analyze this hardness.
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Figure 1.21.: The shortest vector problem asks to find a short vector in the lattice, which
means that it is close to the origin, but not the origin point itself. The red
points are the shortest lattice elements. In most cases, though, just short
vectors, like the orange points, are also good. Concretely, whether a lattice
point is short or not is often decided by whether the lattice point lies in a
circle with predescribed radius r or not.
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The Shortest Vector Problem on ideal lattices

In this thesis, we focus on the hardness of the shortest vector problem in ideal
lattices. Ideal lattices are a special subclass of general lattices that arise from
number fields. Due to this fact, as we saw in an earlier section, ideal lattices
(of a fixed number field) can be assembled into geometrically equivalent
classes, yielding the Arakelov class group. Because for two geometrically
equivalent lattices it is believed to be precisely equally hard to find short
vectors in, this Arakelov class group is appropriate to consider.

In this thesis, we study the hardness of finding short vectors in ideal lattices,
in a relative sense. Concretely, one of the research questions of this thesis
can be phrased as follows: is finding short vectors about equally hard for all
classes of ideal lattices (case A), or are there ideal lattices in which short
vectors are significantly harder to find (case B)? By giving the ‘hard’ ideal
lattice classes a red color, and the ‘easy’ ideal lattice classes a green color on
the Arakelov class group, these two cases are portrayed in Figure 1.22.

Figure 1.22.: Is it for all ideal lattices on the Arakelov class group about equally hard to
find short vectors in (case A) or not (case B)? Note that we just pictured
one single torus for the Arakelov class group, for simplicity.

Though the full answer to this research question on relative hardness is
slightly more subtle, and will be elaborated on in the next section, the
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simplified answer is short.

In all ideal lattices associated with a fixed number field it is about
equally hard to find short vectors. In other words, Case A of Figure 1.22
is quite an accurate rendition of reality.

Argument for the evenness of this hardness on the Arakelov class
group, using random walks

To give an argument why all ideal lattice classes in the Arakelov class group
are about equally hard to find short vectors in, one can use the random walk
theorem on Arakelov class groups. This argument is based on the following
important observation, which is, for sake of brevity, specialized to the case
of cyclotomic fields.

For cyclotomic fields, considering ideal lattices of fixed determinant,
finding a lattice vector of length r in the lattice at the end of the random
walk allows to find a short element of length r·

√
n in the initial lattice, by

‘undoing’ the random walk on the found short element, see Figure 1.23.

This observation rules out the existence of an ideal lattice in which it is
(compared to other ideal lattices) extraordinarily hard to find short vectors
in (such a hard lattice would be an intense red point on the Arakelov class
group in Case B of Figure 1.22). Namely, by the above observation (and
Figure 1.23), finding short vectors in the end lattice and in the initial lattice
or a random walk is somehow very related. Therefore, finding a short vector
in the fixed initial lattice cannot be so much harder than finding short
vectors in a random ‘average’ lattice. Summarizing, there cannot be much
variation in hardness of finding short vectors in ideal lattices, as visualized
in Case A in Figure 1.22.

Note that the random walk on the Arakelov class group reduces the shortest
vector problem on an initial lattice to a shortest vector problem on the
end lattice with a harder approximation factor, since it is smaller. So, the
portrayal in Figure 1.22 is not completely accurate, since we leave out this
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1.6. A Worst-case to Average-case Reduction

Figure 1.23.: This infographic (note the unusual order of the panels) explains why finding
a short element in the lattice at the end of a random walk allows to find
a reasonably short element in the initial lattice as well. However, there is
some loss of shortness quality: the orange element is the shortest (non-zero)
element in the deformed lattice, but it is only a reasonably short element in
the initial lattice. Summarizing, the random walk does indeed relate the
shortest vector problem in two different lattices, but with a slight loss of
shortness quality, which is about

√
n in degree n cyclotomic fields.
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subtlety in this picture. Though, because the difference in parameters is
rather small in most fields5, we chose to phrase the simplified statement as
a comparison of the same shortest vector problem on the Arakelov class
group.

1.7. Ideal Sampling

Introduction

Another application of the random walk on Arakelov class groups allows for
efficient sampling of (almost) prime ideals. This efficient sampling can be
used to compute power residue symbols in polynomial time, assuming the
Riemann hypothesis for Hecke-L functions.

Density of prime ideals

The prime number theorem states that the number of primes below a given
bound X is roughly equal to X/ log(X). Something similar is true for prime
ideals in number fields: the number of prime ideals with norm below X

is also roughly equal to X/ log(X), a fact known as Landau’s prime ideal
theorem. Formally,

|{p prime ideal of OK | N (p) ≤ X}| ≈ X/ log(X). (1.2)

Note that this estimated number X/ log(X) of prime ideals with bounded
norm does not depend on the number field. It seems that all number fields
have about the same number of prime ideals with norm below some given
X. However, the number of all integral ideals with bounded norm does vary

5The loss in shortness quality in generic number fields K is O(n · |∆K |
1

2n ), where ∆K

is the discriminant of the field. For number fields relevant for cryptography (which have
discriminants that grow at most exponential in the degree) this is polynomially bounded
in the degree n.
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1.7. Ideal Sampling

among different number fields. We namely have the following asymptotic
estimate:

|{a integral ideal of OK | N (a) ≤ X}| ≈ ρK ·X. (1.3)

In other words, the number of integral ideals with norm bounded by X

grows linearly in X, with slope ρK = lims→1(s − 1)ζK(s), the residue at
s = 1 of the Dedekind zeta function of the concerned field.

By dividing Equation (1.2) by Equation (1.3), one obtains the average
number of prime ideals among all ideals. This quantity can be considered
as the density of prime ideals among all integral ideals, which then roughly
equals

1/(ρK · log(X)).

Figure 1.24.: In this image, all shapes of the prime ideal lattices of the number field Q(
√

3)
with norm (i.e., surface area) below 25 are portrayed, with their respective
surface area. There are nine such prime ideal lattices. One can see that 2
and 3 ramify, 11, 13 and 23 totally split and 5 is inert in this number field.
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Sampling primes

Intuitively, this density estimate gives an algorithm idea to obtain prime
ideals in number fields. Namely, sample a random ideal with norm below X,
and check whether it is prime or not. By this density estimate, the success
probability is about 1/(ρK · log(X)), which is inverse polynomial in the size
of X, if we ignore ρK for the moment.

In this thesis, we give an ideal sampling algorithm that precisely allows this
sampling of random ideals, in such a way that indeed the probability of
sampling a prime ideal equals 1/(ρK · log(X)). This technique involves a
uniformly random distribution on the Arakelov group.

Let a be an ideal whose Arakelov class is uniformly random distributed,
and let α ∈ a ∩ [−r, r]n be uniformly sampled from those elements in a

that lie in the box [−r, r]n.

Then the probability that the ideal (α) · a−1 is a prime ideal is at least
1/(3 · ρK · log(rn)).

In this statement, there is a necessity for a to be randomly distributed on
the Arakelov class group, which is absolutely not the case for any fixed ideal
b. But by means of the random walk procedure on the Arakelov class group,
one can make any fixed ideal b ‘random’ by multiplying it by sufficiently
many random small prime ideals and apply a slight deformation, yielding
a = x ·

∏
j pj · b. This ideal is very close to randomly distributed on the

Arakelov class group.

In this way we can algorithmically make b randomly distributed, but some-
thing is lost as well. Omitting the deformation for the sake of simplicity,
sampling α ∈ a = ∏

j pj · b gives a guarantee for (α) · a−1 to be prime with
a certain probability. But the fraction (α) · b−1 can only be guaranteed to
be a prime ‘up to’ the small primes ∏j pj . For most applications, though,
this does not cause serious obstacles.
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1.7. Ideal Sampling

Applications

One of the applications of this prime sampling procedure is that it allows to
compute power residue symbols in cyclotomic fields Q(ζm).

The power residue symbol is a function
(
α
b

)
with input α ∈ Q(ζm) and

b ⊆ Z[ζm] that outputs a power ζjm of the m-th root of unity. It satisfies the
properties

(i)
(
α
β

)
= 1 for β ≡ 1 modulo mmα;

(ii)
(
α
bc

)
=
(
α
b

)
·
(
α
c

)
, that is, multiplicativity in the lower input;

(iii)
(
α
p

)
(with a prime ideal in the lower input) is efficiently computable.

One can make use of these three properties in the following way. To compute(
α
b

)
, apply a random walk on b, yielding b̃ = ∏

j pjb and sample β ∈ b̃

(omitting the deformation for simplicity). Then β · b̃−1 = p is a prime with
good probability. Slightly modifying the sampling procedure, one can assume
that β satisfies β ≡ 1 modulo mmα. By subsequently using properties (i), (ii)
and (iii) of the power residue symbol, one obtains an efficiently computable
expression for

(
α
b

)
.

1 =
(
α

β

)
=
(

α

p
∏

b̃

)
=
(
α

p

)
·
∏
j

(
α

pj

)
︸ ︷︷ ︸

efficiently computable
by property (iii)

·
(
α

b

)
,

The modification of the sampling procedure in order to have β ≡ 1 modulo
mmα is not entirely trivial and requires a generalization of the random walk
theorem over Arakelov ray class groups.

Sampling in other ideal sets

Though in this introduction only the set of prime ideals is considered,
any subset of the set of ideals of a number field can be taken in place,
accounting for the density of this specific set of ideals. For example, the set
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of smooth ideals, ideals that only have prime divisors with small norm, is
also an interesting case, as they play a role in class group and unit group
computations.

1.8. The Continuous Hidden Subgroup Problem

One particular subject in this thesis is quite separate from the others: the
continuous hidden subgroup problem. Though this computational problem
does concern (general) lattices, it does not have a very direct relation to
Arakelov class groups. The analysis of the continuous hidden subgroup in
this thesis is a refinement of that of Eistenträger et al. [Eis+14].

Period-finding

The continuous hidden subgroup problem is about recognizing periodicity in
a continuous signal. Such a continuous signal can be thought of as a sound
signal traveling through the air, and its periodicity is then the frequency or
pitch of this sound.

A computer solving this hidden subgroup problem, in this analogy, then
resembles a violinist with the ability of absolute pitch: given a sound signal,
this violinist directly recognizes it and utters ‘B-flat’, which is around 233
Hertz.

In reality, a sound signal, especially one from a rich-sounding instrument
like a violin, consists not just of one single sine tone. It has a certain timbre,
which is characterized by the harmonics of the tone. Those harmonics are
tones that are simultaneously heard and that have frequencies that are
exactly integer multiples of the ‘main tone’. In the case of the B-flat of 233
Hertz, for example, the harmonic tones have frequencies 233 · 2 = 466 Hertz,
233 · 3 = 699 Hertz, ad infinitum, see Figure 1.25.

34



1.8. The Continuous Hidden Subgroup Problem

Figure 1.25.: A violin tone has harmonics, simultaneously heard tones whose frequency is
an integer multiple of the main frequency (233 Hertz, in this example). The
variety in loudness of these harmonics defines the timbre.

Period-finding in higher dimensions

A sound signal can be considered one-dimensional, where the one dimension
comes from time. Though, the more complex periodicity arises in higher
dimensions, since periodicity is then encoded by a lattice, see Figure 1.26.

Figure 1.26.: An example of a two-dimensional periodic signal: on the left a 3d-view and
on the right a top view. The periodicity can be described by a lattice. The
task of the hidden subgroup problem is to retrieve this lattice from the
two-dimensional periodic signal.

The higher the dimension of the signal (for our purposes6, the dimension
6One application of the solution of the hidden subgroup problem is in number theory.

It can be used to compute unit groups and class groups of number fields [Eis+14]. Also it
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does not stop at three), the higher the dimension of the associated periodicity
lattice. The ‘harmonics’ of such multidimensional periodic signal must then
be seen as the points of the associated period lattice.

The Fourier transform

The procedure that extracts this periodicity from a signal, including its
‘harmonics’ (the lattice points), and thus solves the continuous hidden
subgroup problem, is called the Fourier transform, see Figure 1.27.

Figure 1.27.: The Fourier transform allows to find the frequencies occurring in a signal, as
well as their respective loudness or amplitude.

Though, computers cannot reasonably process a continuous signal as a whole;
instead, a computer can only take a finite number of points from the signal.
This process is called discretization. Due to this discretization, there is some
loss of information from the signal; the values ‘in between’ are not known
anymore. This particular loss causes the computed Fourier transform of the
(discretized) signal to have errors, see Figure 1.28.

Summarizing, by the fact that computers are unable to process infinite
continuous signals as a whole, intrinsic errors or ‘noise’ occurs. If this noise
is too large, the out of the computation is unusable.

Errors in the Fourier transform

Whenever the signal is in one dimension, these errors are not that severe. In
higher dimensions, though, these errors get exponentially worse. This can be
has applications in cryptography, as this solution to the hidden subgroup can also be used
to find reasonably short vectors in ideal lattices [Cra+16].
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1.8. The Continuous Hidden Subgroup Problem

Figure 1.28.: Due to taking only finitely many samples of the periodic signal, small errors
occur in the output of the (finite) Fourier transform. In this particular
example, the output still resembles the actual frequencies of the original
signal (see Figure 1.27), but if there were less sampling points, the output
would be so noisy that it would be unusable.

considered as an example of the curse of dimensionality, a general expression
for describing computational difficulties whenever spatial dimensions grow.

As a consequence, to counteract the explosion of the error size, the number
of samples of the signal need to grow exponentially as well. This causes
this solution for the continuous hidden subgroup problem using Fourier
transforms not to be feasible for a normal, classical computer. Instead, we
need to use a quantum computer.

The Quantum Fourier transform

Due to the special recursive nature of the Fourier transform, it can be
efficiently computed by a quantum computer, even when an exponential
number of samples is required7. In this thesis, in Chapter 3, a thorough
analysis is made of how many quantum resources are needed in order to
keep the exponentially growing error manageable, depending on properties
of the high-dimensional periodic signal. For example, the number of qubits

7In reality, these samples are queried in parallel, by using quantum parallelism, which
allows to sample an exponential number of samples in a parallel way, using only a
polynomial amount of classical and quantum resources (i.e., qubits and quantum gates).
Also, the output of a quantum Fourier transform yields a quantum state whose amplitudes
contain the values of the Fourier transform, whose are thus inaccessible due to the nature
of quantum phenomena. Fortunately, in this particular hidden subgroup problem, we are
only interested in the frequencies where those amplitudes are high; such frequencies can
then be obtained by measuring the quantum state.
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(quantum bits) depends logarithmically on how rapidly the signal oscillates
and how small one would like the error caused by the discretization to be.

The continuous hidden subgroup problem in higher dimensions, which
consists of finding the hidden period lattice of a periodic high-dimensional
signal, can be solved efficiently on a quantum computer. For an appro-
priate choice of quantum resources, the errors induced by discretization
(i.e., taking only finitely many samples of the signal) can be shown to
be feasibly small.

1.9. Outline and Contributions of this Thesis

After this introductory chapter, this dissertation proceeds with Chapter 2,
the preliminaries: it states and concisely covers knowledge that is expected
from the reader before continuing with the actual results of this thesis.

The next chapter, Chapter 3, is about the continuous hidden subgroup
problem, and more or less stands on its own. The contributions of this
chapter have been published in the following article, in a slightly different
form.

Koen de Boer, Léo Ducas, Serge Fehr. On the Quantum Complexity of
the Continuous Hidden Subgroup Problem. In Advances in Cryptology –
EUROCRYPT 2020 [BDF20].

The subsequent chapter, Chapter 4 is about random walks on the Arakelov
ray class group. The contributions of this chapter have been published in
Section 3 of the following paper, though only for Arakelov class groups with
a trivial modulus m = OK . The generalization to arbitrary moduli in this
dissertation is new.
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Koen de Boer, Léo Ducas, Alice Pellet-Mary, Benjamin Wesolowski.
Random Self-reducibility of Ideal-SVP via Arakelov Random Walks. In
Advances in Cryptology – CRYPTO 2020 [Boe+20].

Chapter 5 is about an application of the random walk theorem: a worst-case
to average-case reduction for Hermite-SVP on ideal lattices. The contri-
butions in this chapter have been published as well in the CRYPTO 2020
[Boe+20] paper above, with minor differences in some of the proofs concern-
ing discretization.

The last two chapters, Chapter 6 about ideal sampling and Chapter 7 about
provably computing the power residue symbol, contain results that have not
been published yet.

Chapter 2: Preliminaries

Chapter 3: The Continuous
Hidden Subgroup Problem

Chapter 4: Random Walks
in Arakelov Ray Class Groups

Chapter 5: A Worst-case to
Average-case Reduction for
Ideal Lattices

Chapter 6: Ideal Sampling

Chapter 7: The Power
Residue Symbol is in ZPP

Figure 1.29.: In this diagram is depicted how the chapters depend on each other content-
wise.
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2. Preliminaries

2.1. General Notation

We denote by N,Z,Q,R,C the natural numbers, the integers, the rationals,
the real numbers and the complex numbers respectively. All logarithms
are in base e. For a rational number p/q ∈ Q with p and q coprime, we
let size(p/q) refer to log |p| + log |q|. We extend this definition to vectors
and matrices of rational numbers, by taking the sum of the sizes of all the
coefficients.

Vectors v ∈ V are denoted in boldface and are to be interpreted column-wise
unless stated otherwise. In the case of a vector in a (quantum) Hilbert space
H, we sometimes deviate from this notation and use the bra-ket notation
as well; |v⟩ for primal vectors and ⟨v| for dual vectors. An inner product of
⟨w| and |v⟩ is then denoted ⟨w|v⟩, and the notation for the tensor product
|w⟩ ⊗ |v⟩ of two vectors in a Hilbert space is generally suppressed, i.e., we
denote |w⟩|v⟩ instead.

2.2. Fourier Theory

We start with a brief introduction to Fourier analysis over arbitrary locally
compact abelian groups. This general treatment allows us to then apply
the general principles to the different groups that play a role in this thesis,
especially in Chapter 3. For the reader that is unfamiliar with such a general
treatment, it is useful — and almost sufficient — to think of R, of T = R/Z,
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and a finite group. For more details and for the proofs we refer to Deitmar’s
book on this subject [DE16].

2.2.1. Groups

Here and below we consider a locally compact abelian group G. Such a group
admits a Haar measure µ that is unique up to a normalization factor. The
crucial property of such a Haar measure is that it is invariant under the
group action. Simple examples are G = R with µ the Lebesgue measure λ,
or a finite group G with µ the counting measure #.

The dual group Ĝ, consisting of the continuous1group homomorphisms χ
from G into S1, the multiplicative group of complex numbers of absolute
value 1, is again a locally compact abelian group. As we shall see soon, for a
fixed choice of the normalization factor of the Haar measure µ for G, there
is a natural choice for the normalization factor of the Haar measure µ̂ for
Ĝ.

Examples of locally compact abelian groups that play an important role in
this dissertation are: the m-dimensional real vector space Rm; the m-fold
torus Tm := Rm/Zm and more generally Rm/Λ for an arbitrary lattice Λ in
Rm; and the finite ‘discretized torus’ group Dm := 1

qZ
m/Zm ⊂ Tm (which is

isomorphic to Zm/qZm) for a positive integer q. Figure 2.1 below shows the
corresponding dual groups as well as the respective (dual) Haar measures as
used in Chapter 3 of this thesis.

In some cases it will be useful to identify the quotient groups Tm = Rm/Zm

and Dm = 1
qZ

m/Zm with the respective representing sets

Tmrep := [−1
2 ,

1
2)m ⊂ Rm and Dmrep := 1

qZ
m ∩ Tmrep ,

and similarly D̂m ≃ Zm/qZm with

D̂mrep := [q]mc := Zm ∩ [− q
2 ,

q
2)m .

1Discrete (and in particular, finite) groups have the discrete topology, implying that
the continuity constraint for characters on these groups is void.
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Group Dual group

G µ Ĝ µ̂

Rm λ R̂m ≃ Rm λ

Tm := Rm/Zm λ T̂m ≃ Zm #
Dm := 1

qZ
m/Zm 1

qm # D̂m ≃ Zm/qZm #
Rm/Λ 1

det(Λ)λ
̂(Rm/Λ) ≃ Λ∗ #

Figure 2.1.: Some groups G and their respective dual groups Ĝ, plus the considered (dual)
Haar measures µ and µ̂. Here, λ denotes the Lebesgue measure and # the
counting measure. Furthermore, Λ∗ is the dual lattice of Λ, see Section 2.5.1.

It will be useful to understand that if H ⊂ G is a closed subgroup then G/H
and H have dual groups that satisfy the following natural isomorphisms.

Ĝ/H ≃ H⊥ := {χ ∈ Ĝ | χ(h) = 1 for all h ∈ H} ⊂ Ĝ and Ĥ ≃ Ĝ/H⊥.

As we shall see soon, for any choice of the Haar measure µH for H there is
a natural choice for the Haar measure µG/H for G/H, and vice versa.

2.2.2. Norms and Fourier Transforms

Let G be as above with a fixed choice for the Haar measure µ. For any
p ∈ [1,∞], Lp(G) denotes the metric vector space of measurable functions
f : G→ C with finite norm ∥f∥p (modulo the functions with norm zero2),
where

∥f∥pp :=
∫
g∈G
|f(g)|pdµ for p <∞,

and
∥f∥∞ := ess sup

g∈G
|f(g)|,

2This in order to make ∥·∥p a metric: ∥f∥p = 0 implies f = 0 in that case.
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the essential supremum of |f |. We write ∥f∥p,G if we want to make G explicit.
For any function f ∈ L1(G), the Fourier transform of f is the function

FG{f} : Ĝ→ C, χ 7→
∫
g∈G

f(g)χ̄(g)dµ ,

also denoted by f̂ when G is clear from the context. The Fourier transform
of f ∈ L1(G) is continuous, but not necessarily in L1(Ĝ).

For example, for the group Dm := 1
qZ

m/Zm with the Haar measure as fixed
in Figure 2.1, the L2-norm and the Fourier transform are respectively given
by

∥f∥22 = 1
qm

∑
x∈Dm

|f(x)|2 and F{f}(y) = 1
qm

∑
x∈Dm

f(x)e−2πi⟨x,y⟩ .

We note that we use a different convention on the scaling than what is
common in the context of the quantum Fourier transform. Namely, in most
literature (e.g., [NC11, §5.1]), the standard quantum Fourier transform uses
a scaling of q−m/2, for sake of preserving the L2-norm and symmetry; here,
we use the scaling q−m one way, and a unit scaling the other way.

Given the Haar measure µ for G, there exists a unique dual Haar measure
µ̂ for Ĝ with the property that, for any f ∈ L1(G), if f̂ = FG{f} ∈ L1(Ĝ),
then f = F−1

G {f̂}, where

F−1
G {f̂} : G→ C, g 7→

∫
χ∈Ĝ

f̂(χ)χ(g)dµ̂

is the inverse Fourier transform. From now on it is always understood that
the Haar measure of the dual group is chosen to be the dual of the Haar
measure of the primal group. With this choice, we also have the following
well known fact [DE16, Thm. 3.4.8].

Theorem 2.1 (Plancherel’s Identity). For all f ∈ L1(G) ∩ L2(G),

∥f∥2,G = ∥FG{f}∥2,Ĝ .
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Finally, we recall the convolution theorem, which states that f̂g = f̂ ⋆ ĝ =∫
x∈G f̂(x)ĝ(· − x)dµ(x) for all functions f, g ∈ L1(G) that have Fourier

transforms f̂ , ĝ ∈ L1(G). This extends to functions f ∈ L1(G/H) and
g ∈ L1(G), with f understood as an H-periodic function on G. Tailored to
G = Rm and H = Λ, where Rm/Λ has dual group Λ∗, it then states that,
for all y ∈ Rm,

FRm{fg}(y) = FRm/Λ{f} ⋆ FRm{g}(y)
=

∑
ℓ∗∈Λ∗

FRm/Λ{f}(ℓ∗)FRm{g}(y − ℓ∗). (2.4)

2.2.3. The Poisson Summation Formula

Poisson summation formula is well-known for the group G = R, where it
states that ∑k∈Z f̂(k) = ∑

x∈Z f(x). In the case G = Z/NZ, it reads

N/s∑
i=0

f̂(is) =
s∑
j=1

f(jNs )

for any integer s that divides N . In order to formulate the Poisson sum-
mation formula for an arbitrary locally compact abelian group G, we need
to introduce the notion of restriction and periodization of functions (see
Figures 2.2 and 2.3).

Definition 2.2 (Restriction). Let H ⊆ G be a subset or a subgroup. For
any continuous function f : G→ C we define f

∣∣
H

: H → C, h 7→ f(h).

Definition 2.3 (Periodization). Let H be a closed subgroup of G with Haar
measure µH . For any function f ∈ L1(G), we define

f |G/H : G/H → C, g +H 7→
∫
h∈H

f(g + h)dµH .
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Figure 2.2.: A function on the real line and its restriction on the integers.

For any closed subgroup H of G with respective choices of Haar measures µ
and µH , there exists a unique Haar measure µG/H for G/H such that the
quotient integral formula∫

G/H

(∫
H
f(g + h)dµH(h)

)
dµG/H(g +H) =

∫
G
f(g)dµ(g)

holds for any continuous function f : G → C with compact support (see
[DE16, Sec. 1.5]).

With this choice of Haar measure for G/H, and with the dual measures
for the respective dual groups, we are ready to state the general form of
the Poisson summation formula (obtained from [DE16, Sec. 3.6], see also
Figure 2.5).

Theorem 2.4 (Poisson Summation Formula). For continuous f ∈ L1(G),

FH{f
∣∣
H
} = FG{f}|Ĥ and FG/H{f |G/H} = FG{f}

∣∣
Ĝ/H

.

Applied to G = Rm and H = Zm, so that G/H = Rm/Zm = Tm and
Ĝ/H ≃ Zm; and applied to G = Tm and H = Dm below, we obtain the
following.

Corollary 2.5. For continuous h ∈ L1(Rm), we have

FTm{h|T
m

} = FRm{h}
∣∣
Zm .
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Figure 2.3.: The periodization of a function is a consequence of folding the space of its
domain, i.e., taking the topological quotient space. In this example, the real
line R is folded into a circle.

Corollary 2.6. For continuous t ∈ L1(Tm), we have

FDm

{
t
∣∣
Dm

}
= FTm{t}|D̂

m

.

Remark 2.7. The Poisson summation formula can be used to show that
a ‘wide’ periodized Gaussian on the circle is close to a constant function,
see Figure 2.7. The wider a Gaussian function, the narrower the Gaussian
function of its Fourier transform is. Taking the restriction of such a ‘narrow’
Gaussian function to the integers Z results in a spectrum heavily concentrated
on zero, which corresponds to a constant function, as can be seen in the
bottom example of Figure 2.7. Also note that for the ‘narrower’ Gaussian
function on the circle, both the Gaussian on the circle as the restricted
Fourier transform on Z resemble much more a ‘real’ Gaussian function. In
short, the narrower the Gaussian on the circle, the more Gaussian properties
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Figure 2.4.: An example of the periodization of a Gaussian on the real line, with respect
to the subgroup Z ⊆ R. This leads to a periodized Gaussian on the circle
R/Z ≃ S1.

is has; the wider the Gaussian on the circle, the more ‘constant’ properties
it has.

2.2.4. The Fourier Transform of Vector-valued Functions

The Fourier transform as discussed above generalizes to vector-valued func-
tions f : G → CN simply by applying F to the N coordinate functions,
resulting in a function F{f} : Ĝ→ CN . By fixing an orthonormal basis, this
extends to functions f : G→ H for an arbitrary finite-dimensional complex
Hilbert space, where, by linearity of the Fourier transform, F{f} : Ĝ→ H
is independent of the choice of the basis.
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L1(H) L1(G) L1(G/H)

L1(Ĝ/Ĝ/H) L1(Ĝ) L1(Ĝ/H)
FH

∣∣
H |G/H

FG FG/H

|Ĥ
∣∣
Ĝ/H

Figure 2.5.: Informal illustration of Theorem 2.4 by means of a diagram that commutes
whenever the maps are well defined.

The norm ∥·∥2,G on functions G→ C generalizes to vector-valued functions
f : G→ H, as well, by defining ∥f∥2,G to be the norm of the scalar function
x 7→ ∥f(x)∥H =

√
⟨f(x)|f(x)⟩. The vectorial Fourier transforms and norms

are compatible with each other, in the sense that Plancherel’s identity (see
Theorem 2.1) still holds; that is,

∥f∥2,G = ∥FG{f}∥2,Ĝ. (2.5)

Also the Poisson summation formula (see Theorem 2.4) is still valid, as well
as the convolution theorem whenever one of the functions in the product is
scalar:

FG{fg} = FG{f} ⋆ FG{g}. (2.6)

An important example is the case f : Rm/Λ→ H. Spelling out the above,
we get

FRm/Λ{f} :Λ∗ → H,

ℓ∗ 7→ |cℓ∗⟩ := 1
det Λ

∫
x∈Rm/Λ

|f(x)⟩e−2πi⟨x,ℓ∗⟩dx, (2.7)

where the vectors |cℓ∗⟩ are also referred to as the (vectorial) Fourier co-
efficients of f . The Parseval-Plancherel identity [DE16, Thm. 3.4.8] then
becomes ∑

ℓ∗∈Λ∗

⟨cℓ∗ |cℓ∗⟩ = ∥f∥2Rm/Λ := 1
det Λ

∫
x∈Rm/Λ

⟨f(x)|f(x)⟩dx. (2.8)
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Figure 2.6.: A graphical depiction of the Poisson summation formula as described in
Theorem 2.4, applied to a Gaussian function. First periodizing a function and
then applying the Fourier transform gives the same result as first applying the
Fourier transform and then restricting the function. As a result, the Fourier
transform of a periodized Gaussian is a discrete Gaussian.
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Figure 2.7.: The narrower the Gaussian on the circle, the more it looks like a Gaussian;
the wider the Gaussian on the circle, the closer to constant it is.

The convolution theorem, as in Equation (2.6) and Equation (2.4), in this
case, becomes,

FRm{fg} = FRm/Λ{f} ⋆ FRm{g}

=
∑
ℓ∗∈Λ∗

FRm/Λ{f} · FRm{g}( · − ℓ∗). (2.9)

2.2.5. Trigonometric Approximation

As another application of the Poisson summation formula, we derive a
relation between the Lipschitz constant of a function on Tm = Rm/Zm and
the ‘error of discretization’ in the Fourier transform when restricting the
function to Dm.

Theorem 2.8. For any Lipschitz function h : Tm → H (where H is a
Hilbert space) with Lipschitz constant Lip(h), and any subset C ⊆ D̂m, we
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have ∣∣∣∥1C · FDm {h}∥D̂m − ∥1C · FTm{h}∥Zm

∣∣∣ ≤ 4π
√
m · Lip(h)
q

.

Here and below, we slightly abuse notation and use 1C as indicator function
acting on D̂m and on Zm, justified by identifying D̂m with D̂mrep = [q]mc ⊂ Zm.
Also, we write FDm {h} instead of FDm {h|Dm}, taking it as understood that
h is restricted to Dm when applying FDm .

Proof. Using a result of Yudin ([Yud76, Example I after Thm. 2], see also3

Appendix A.4), there exists a trigonometric approximation t of h, i.e. a
function t : Tm → C with t̂(x) := FTm{t}(x) = 0 for all x ∈ Zm\[q]mc so
that ∥h − t∥∞ ≤ π

√
m · Lip(h)/q. Recalling that D̂m ≃ Zm/qZm, the fact

that t̂ : Zm → C vanishes outside of [q]mc implies for all x ∈ [q]mc that

t̂(x) =
∑

d∈qZm

t̂(x+ d) = t̂|D̂m(x) = FDm {t} (x),

where the last equality holds by Corollary 2.6 (and our convention of omitting
the restriction to Dm). In particular, we have ∥1C · FDm {t} ∥2,D̂m = ∥1C ·
FTm{t}∥2,Zm . Therefore, by the (reverse) triangle inequality and the linearity
of the Fourier transform, one obtains∣∣∣∥1C · FDm {h}∥D̂m − ∥1C · FTm{h}∥Zm

∣∣∣
≤ ∥1C · FDm {h− t}∥D̂m + ∥1C · FTm{h− t}∥Zm .

We now observe that

∥1C · FG{h− t}∥2,Ĝ ≤ ∥FG{h− t}∥2,Ĝ = ∥h− t∥2,G ≤
√
µ(G)∥h− t∥∞

≤
√
µ(G) · π

√
mLip(h)/q,

where µ(G) =
∫
G dµ denotes the total measure of G. We conclude by noting

that µ(G) = 1 for both groups at hand G = Dm and G = Tm.
3In Appendix A.4, we provide a slight generalization of Yudin’s paper [Yud76] to

functions with vectorial output. In principle the bound of Theorem 2.8 can also derived
without this generalization, but at the cost of an undesirable extra factor dimH = 2n.
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2.3. Number Theory

2.3.1. Algebraic Number Theory

In this thesis is assumed that the reader is somewhat familiar with the
main concepts of algebraic number theory. In this section, we very briefly
introduce definitions and notions required for this thesis. For a more elaborate
explanation, I would suggest Neukirch’s textbook [NS13].

Throughout this thesis, we use a fixed number field K of degree n ≥ 3 over Q,
having ring of integers OK , discriminant ∆K , regulator RK , class number hK
and group of roots of unity µK . Elements of the number field K are generally
denoted by lowercase Greek letters, α, β, γ, etc. Minkowski’s theorem [Min67,
p. 261–264] states4 that log |∆K | ≥ log(2) · n. The number field K has n
field embeddings into C, which are divided in nR real embeddings and nC
conjugate pairs of complex embeddings, i.e., n = nR+2nC. These embeddings
combined yield the so-called Minkowski embedding K → KR ⊆

⊕
σ:K↪→CC,

α 7→ (σ(α))σ, where

KR =
{
x ∈

⊕
σ:K↪→C

C
∣∣∣∣ xσ = xσ

}
.

Here, σ equals the conjugate embedding of σ whenever σ is a complex
embedding and it is just σ itself whenever it is a real embedding. Note that
we index the components of the vectors in KR by the embeddings of K.
Embeddings up to conjugation are called infinite places, denoted by ν. With
any embedding σ we denote by νσ the associated place; and for any place ν
we choose a fixed embedding σν . There are also finite places ν, which are
in one-to-one correspondence with the prime ideals of OK . For finite places
ν ∤∞ we denote by pν ∈ IK their associated prime ideal, for infinite places
ν | ∞ we denote by σν their (chosen) associated embedding.

Composing the Minkowski embedding by the component-wise logarithm of

4By Minkowski’s theorem, we have |∆K |1/n ≥ π/4 · n2

(n!)2/n ≥ 2 for n ≥ 3.
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the entries’ absolute values yields the logarithmic map, denoted by Log.

Log : K∗ → LogKR ⊆
⊕

σ:K↪→C
R, α 7→ (log |σ(α)|)σ.

The multiplicative group of integral units O×K under the logarithmic map
forms a lattice, namely the lattice ΛK = Log(O×K) ⊆ LogKR (see Sec-
tion 2.5.1 for the preliminaries on lattices). This so-called logarithmic unit
lattice has rank r = nR + nC − 1, is orthogonal to the all-one vector (1)σ,
and has covolume Vol(ΛK) =

√
n · 2−nC/2 · RK , where the 2−nC/2 factor

is due to the specific embedding we use (see Lemma A.2). We denote by
H = Span(ΛK) the hyperplane of dimension r, which can also be defined as
the subspace Log(K0

R) of LogKR, where

K0
R = {x ∈ KR |

∏
σ:K↪→C

|xσ| = 1}.

In other words, H = logK0
R is the subspace of LogKR orthogonal to the

all-one vector (1)σ. We denote by T = H/ΛK the hypertorus defined by the
logarithmic unit lattice ΛK . Note that KR ≃

∏
ν Kν , where ν ranges over all

infinite places of K, and Kν = C of R depending on whether ν is complex or
real respectively. In some cases it is more convenient to use this particular
viewpoint of KR. Note that K0

R can then be identified with

K0
R =

{
x ∈

∏
ν|∞

Kν

∣∣ ∏
ν|∞
|xν |[Kν :R]

C = 1
}
. (2.10)

Note that we take the usual complex absolute value here, which is raised to
the power two whenever Kν = C and to the power one otherwise.

Fractional ideals of the number field K are denoted by a, b, . . ., but the
symbols p, q are generally reserved for integral prime ideals of OK . Also, the
symbol m is reserved for the modulus ideal m ⊆ OK , a notion from class
field theory. One can think of the primes dividing m as the primes ‘to avoid’.
For a ∈ IK , we denote ordp(a) = max{k | pk divides a} for the p-valuation
of the ideal a; this can be generalized for elements α ∈ K∗ by considering
the principal ideal generated by that element. The group of fractional ideals
of K is denoted by IK ; the group of fractional ideals coprime with m is
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denoted by ImK . Principal ideals with generator α ∈ K∗ are usually denoted
by (α). We denote by Km,1 = ⟨α ∈ OK | α ≡ 1 mod m⟩ the ray modulo m,
i.e., the multiplicative subgroup of K∗ generated by elements in OK that are
one modulo m. In many texts the modulus can also include infinite primes
(i.e., embeddings into C); not in this thesis.

For any integral ideal a, we define the norm N (a) of a to be the number
|OK/a|; this norm then generalizes to fractional ideals and elements as well.
The class group of OK , denoted by ClK , is the quotient of the group IK by
the subgroup of principal ideals PrincK := {(α) ∈ IK | α ∈ K}. For any
fractional ideal a, we denote the ideal class of a in ClK by [a].

In some parts of this thesis we need the notion of the idèle group JK , which
is a topological group defined by the restricted topological product of the
completions of the number field K over all places ∏νK

∗
ν where the restriction

is with respect to the unit groups O×ν ⊆ K∗ν . For a modulus m, the idèle group
modulo m, JKm , is defined similarly, by just leaving out the completions
whose place are associated with a prime dividing m. For any modulus m,
the ray Km,1 embeds diagonally into JKm , by α 7−→ (αν)ν ∈ JKm . Each
component of this diagonal map is just the embedding of the completion
K → Kν . The quotient of the idèle group (modulo m) and the ray is called
the idèle class group CK , which can be shown to be the same for any modulus
m (see [Lan12, Ch. VII, §4]).

In this thesis, extra attention is paid to the cyclotomic number fields K =
Q(ζm), for which one can sometimes phrase sharper results due to the fact
thats these fields have more structure. The result in Chapter 5 tailored to
cyclotomic fields relies on the size of the class group h+

K = |ClK+ | of the
maximum real subfield K+ = Q(ζm + ζ̄m) of K, which is conjectured to be
rather small [Mil15; BPR04]. In Chapter 5, we make the mild assumption
that h+

K ≤ (logn)O(n), where n = [K : Q] = ϕ(m).

An important identity that will play a large role throughout this thesis is the
class number formula, which relates multiple number-theoretic quantities
with the residue at s = 1 of the Dedekind zeta function ζK(s) = ∑

a⊆OK

1
N (a)s .
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ρK = lim
s→1

(s− 1)ζK(s)2nR · (2π)nC ·RK · hK
|µK | ·

√
|∆K |

. (2.11)

2.3.2. The Extended Riemann Hypothesis

Almost all results in this paper rely heavily on the Extended Riemann
Hypothesis (in the subsequent part of this paper abbreviated by ERH),
which refers to the Riemann Hypothesis extended to Hecke L-functions (see
[IKS04, §5.7]). All statements that mention (ERH), such as Theorem 4.3,
assume the Extended Riemann Hypothesis.

Definition 2.9 (Hecke L-function). Let K be a number field and let χ :
JKm/Km,1 → S1 be a Hecke character on the idèle class group CK =
JKm/Km,1 of K (see [NS13, Ch. VI and Ch. VII, §6] and Section 4.3.4)
defined modulo its conductor m. Then we define

L(χ, s) =
∑

a⊆OK
a+m=OK

χ(a)
N (a)s

to be the associated Hecke L-function, where the sum ranges over all integral
ideals of the maximal order OK of K, coprime with the modulus m (see, for
example [Neu85, Ch. V, Def. 3.1]).

Definition 2.10 (Extended Riemann Hypothesis). For all number fields
K and all Hecke characters χ, all zeroes of the Hecke L-functions that are
in the critical strip 0 < Re(s) < 1, satisfy Re(s) = 1/2. I.e., for all number
fields K, Hecke characters χ and all complex numbers s ∈ C,[

L(χ, s) = 0 and Re(s) ∈ (0, 1)
]

=⇒ Re(s) = 1/2.

Remark 2.11. Most of the results in this thesis are phrased in terms
of a fixed number field K. In such a case it is of course not needed to
assume the Extended Riemann Hypothesis for all number fields; it suffices
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to assume the Extended Riemann Hypothesis for Hecke L-functions arising
from Hecke-characters for the fixed number field K.

So, if a theorem in this thesis regards only a single number field K, and it
assumes the Extended Riemann Hypothesis, one may weaken this hypothesis
to the Extended Riemann Hypothesis ‘tailored to K’.

2.3.3. Prime Densities

In multiple parts of this paper, we need an estimate on the number of
prime ideals with bounded norm. This is achieved in the following theorem,
obtained from Bach and Shallit’s book [BS96, Thm. 8.7.4].

Theorem 2.12 (ERH). Let πK(x) be the number of prime ideals of K of
norm ≤ x. Then, assuming the Extended Riemann Hypothesis, there exists
an absolute constant C (i.e., independent of K and x) such that, for all
x ≥ 2,

|πK(x)− li(x)| ≤ C ·
√
x (n log x+ log |∆K |) ,

where li(x) =
∫ x

2
dt
ln t ∼

x
lnx .

In certain cases, we prefer a more explicit variant of this theorem that is
due to Grenié and Molteni [GM15, Cor. 1.4].

Lemma 2.13 (ERH). Let m ⊆ OK be an ideal modulus and denote

πmK(x) = |{p ∈ ImK | p prime and N (p) ≤ x}|

for the number of prime ideals not dividing m and having norm bounded by
x ∈ R. Let ω(m) denote the number of different prime ideal divisors of m.

Then, for all x ≥ max((12 log |∆K |+ 8n+ 28)4, 3 · 1011, 16 · ω(m)2), we have

πmK(x) ≥ x

4 ln x.
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Proof. Denote πK(x) = |{p ∈ IK | p prime and N (p) ≤ x}|, i.e., whenever
m = OK . We will prove the statement for this specific case first. By simpli-
fying an explicit result of Grenié and Molteni [GM15, Cor. 1.4], we obtain,
under the Extended Riemann Hypothesis5,∣∣∣∣πK(x)− πK(3)−

∫ x

3

du

log u

∣∣∣∣ ≤ √x[6 log |∆K |+ 4n log x+ 14].

Therefore, we have

πK(x) ≥
∫ x

3

du

log u −
√
x[6 log |∆K |+ 4n log x+ 14]

≥ x

ln x −
√
x ln(x)[6 log |∆K |+ 4n+ 14]

= x

ln x

(
1− ln(x)2(6 log |∆K |+ 4n+ 14)√

x

)
≥ x

2 ln x

where the first inequality follows from omitting πK(3) and the second inequal-
ity from

∫ x
3

du
lnu ≥

x
lnx and from the assumption that x > 24 · (6 log |∆K |+

4n+14)4 and x > 3·1011. Note that with such x, we have ln(x)2/
√
x < x−1/4,

so that ln(x)2(6 log |∆K |+4n+14)√
x

< 1/2.

For the general case of m ≠ OK , we need to avoid m; so writing ω(m) for
the number of different prime ideals dividing m, we obtain

πmK(x) ≥ πK(x)− ω(m) ≥ x

2 ln x

(
1− 2 · ω(m) · ln x

x

)
≥ x

4 ln x.

Where the last inequality can be deduced as follows. Since x > 3 ·1011, surely
lnx
x ≤ x

−1/2 ≤ (4 · ω(m))−1 and therefore 2·ω(m)·lnx
x ≤ 1/2. This proves the

claim.

Lemma 2.14 (Sampling of prime ideals, ERH). Let a basis of OK be known
and let P = {p prime ideal of K | N (p) ≤ B} be the set of prime ideals of
norm bounded by B ≥ max((12 log |∆K |+ 8n+ 28)4, 3 · 1011). Then one can
sample uniformly from P in expected time O(n3 log2B).

5In the paper of Grenié and Molteni [GM15, Cor. 1.4], only the Dedekind zeta function
ζK(s) =

∑
a
N (a)−s needs to satisfy the condition that all of its non-trivial zeroes lie at

the vertical line ℜ(s) = 1/2.
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Proof. The sampling algorithm can be described as follows. Sample an
integer uniformly in [0, B] and check if it is a prime. If it is, factor the
obtained prime p in OK and list the different prime ideal factors {p1, . . . , pk}
that have norm bounded by B. Choose one pi uniformly as random in
{p1, . . . , pk} and output it with probability k/n. Otherwise, output ‘failure’.

Let q ∈ P be arbitrary, and let N (q) = qj with q prime. Then, the probability
of sampling q equals 1

nB , namely 1
n times the probability of sampling q.

Therefore, the probability of sampling successfully (i.e., no failure) equals
|P|
nB ≥

1
2n logB , since |P| ≥ B

2 logB , by Lemma 2.13.

The most costly part of the algorithm is the factorization of a rational
prime p ≤ B into prime ideals of OK . This can be performed using the
Kummer-Dedekind algorithm, which essentially amounts to factoring a
degree n polynomial modulo p. Using Shoup’s algorithm [Sho95] (which has
complexity O(n2 + n log p) [GP01, §4.1]) yields the complexity claim.

2.4. Arakelov Theory

2.4.1. The Arakelov Ray Divisor Group

The Arakelov ray divisor group with respect to a modulus m ⊆ OK is the
group

DivKm =
⊕
p∤m

Z×
⊕
ν

R

where p ranges over the set of all prime ideals of OK that do not divide
the modulus m, and ν over the set of infinite primes (embeddings into the
complex numbers up to possible conjugation). For readers that are not yet
familiar with Arakelov ray divisor groups is might be insightful to first
consider the ordinary Arakelov divisor group, which is obtained by putting
m = OK .

We write an arbitrary element in DivKm as

a =
∑
p∤m

np · LpM +
∑
ν

xν · LνM,
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with only finitely many non-zero np. We will consistently use the symbols
a,b, e, . . . for Arakelov ray divisors. Denoting ordp for the valuation at the
prime p, there is a canonical homomorphism

L·M : Km,1 → DivKm , α 7−→
∑
p∤m

ordp(α)LpM−
∑
ν

log |σν(α)| · LνM.

The divisors of the form LαM for α ∈ Km,1 are called principal ray divisors.
Here, Km,1 = ⟨α ∈ OK | α ≡ 1 mod m⟩ is the multiplicative subgroup
of K∗ generated by elements equivalent to one modulo m. We will also
make use of the notation Km = ⟨α ∈ OK | α mod m ∈ (OK/m)∗⟩, the
multiplicative subgroup of K∗ generated by elements coprime to m. Note
that Km,1 ⊆ Km.

Just as the ideal ray class group is the group of ideals coprime with m

quotiented by the ‘ray’ Km,1, the Picard ray group is the group of Arakelov
ray divisors quotiented by the group of principal ray Arakelov divisors. In
other words, the Picard ray group PicKm is defined by the following exact
sequence, where µKm,1 = µK ∩Km,1, the roots of unity in the ray.

0→ µKm,1 → Km,1 L·M−→ DivKm → PicKm → 0.

For any Arakelov ray divisor a = ∑
p∤m np · LpM + ∑

ν xν · LνM , we denote
its class in the Picard ray group PicKm by [a]; in the same fashion that [a]
denotes the ideal class of the ideal a.

2.4.2. The Arakelov Ray Class Group

Despite the Arakelov ray divisor group and Picard ray group being inter-
esting groups, it is for our purposes more useful to consider the degree-zero
subgroups of these groups. The degree map is defined as follows:

deg : DivKm → R,∑
p∤m

np · LpM +
∑
ν

xν · LνM 7→
∑
p∤m

np · log(N (p)) +
∑
ν real

xν +
∑

ν complex
2 · xν .

(2.12)
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The degree map sends principal ray divisors LαM for α ∈ Km,1 to zero;
therefore, the degree map is properly defined on PicKm , as well. We sub-
sequently define the degree-zero Arakelov ray divisor group Div0

Km = {a ∈
DivKm | deg(a) = 0} and the Arakelov ray class group Pic0

Km = {[a] ∈
PicKm | deg([a]) = 0}. In other words, the group consisting of the degree
zero Picard ray classes is called the Arakelov ray class group.

Any Arakelov ray divisor a ∈ Div0
Km can be decomposed in a finite and an

infinite part, a = af + a∞.

a =
∑
p∤m

np · LpM

︸ ︷︷ ︸
af

+
∑
ν

xν · LνM︸ ︷︷ ︸
a∞

(2.13)

The finite part af , that consists of a formal integer sum of prime ideals, can
be uniquely associated with an ideal in ImK , i.e., we have

Exp(·f) : Div0
Km → ImK , a 7→ Exp(af) =

∏
p∤m

pnp ,

where we use the exponential function Exp to denote the map sending∑
p|m npLpM to ∏p∤m pnp . This map Exp(·f) : Div0

Km → ImK has the hyperplane
H as kernel via the inclusion H ↪→ Div0

Km and admits a section d0 : ImK →
Div0

Km , defined by the following rule.

d0 : ImK → Div0
Km , a 7−→

∑
p∤m

ordp(a) · LpM− log(N (a))
n

∑
ν

LνM. (2.14)

Occasionally, we also use the non-normalized version of d0, called d : ImK →
DivKm , which maps into DivKm instead.

d : ImK → DivKm , a 7−→
∑
p∤m

ordp(a) · LpM.

The infinite part a∞ of a consists of a formal real sum of infinite places,
which can be mapped into KR,

Exp(·∞) : Div0
Km → KR, a 7→ Exp(a∞) = (exνσ )σ ∈ KR.
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2.4.3. Relation with Other Number-theoretic Groups

The groups and their relations treated above fit nicely in the diagram of
exact sequences given in Figure 2.8, where the middle row sequence splits
with the section d0. In this diagram we use the notations O×Km,1 = O×K∩Km,1,
µKm,1 = µK ∩Km,1 and PrincmK = {(α) | α ∈ Km,1} ⊆ ImK . The group ClmK
is called the ideal ray class group with respect to m and is defined by the
exact sequence involved; the group Tm = H/ΛKm,1 is the ‘logarithmic ray
unit torus’, with ΛKm,1 = Log(O×Km,1) = {(log |σ(η)|)σ | η ∈ O×Km,1}.

0 0 0

0 O×Km,1/µKm,1 Km,1/µKm,1 PrincmK 0

0 H Div0
Km ImK 0

0 Tm Pic0
Km ClmK 0

0 0 0

L·MLog

a 7→ Exp(af)

d0

Figure 2.8.: A commutative diagram of short exact sequences involving the Arakelov ray
class group.

The (ray) unit groups OK ,O×Km,1 , the (ray) class groups ClK ,ClmK , and the
ray groups Km,1 and Km are tightly related by an exact sequence. With this
exact sequence one can relate the (relative) cardinalities of these groups.

Lemma 2.15. Let K be a number field and let m ⊆ OK be any modulus.
Then we have the following exact sequence of groups

0→ O×Km,1 → O×K → Km/Km,1 → ClmK → ClK → 0.

In particular, |O×K/O
×
Km,1 | · |ClmK | = ϕ(m) · |ClK |, where ϕ(m) = |Km/Km,1|

= |(OK/m)∗|.
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Proof. By considering the kernel-cokernel exact sequence (see Figure A.1)
of the commutative triangle

Km

Km,1 ImK

one obtains the exact sequence

0→ O×Km,1 → O×K → Km/Km,1 → ClmK → ClK → 0,

where we use the fact that ImK/Km ≃ ClK by the approximation theorem
[Chi08, Ch. 3, Thm. 1.1]. In particular, one can ‘compress’ this sequence to
an exact sequence of finite groups

0→ O×K/O
×
Km,1 → Km/Km,1 → ClmK → ClK → 0,

yielding |O×K/O
×
Km,1 | · |ClmK | = |Km/Km,1| · |ClK |. The isomorphism be-

tween Km/Km,1 and (OK/m)∗ follows from the following short exact se-
quence, where the map Km → (OK/m)∗ sends κ/κ′ ∈ Km to (κ mod m) ·
(κ′ mod m)−1 ∈ (OK/m)∗.

0→ Km,1 → Km → (OK/m)∗ → 0

One would expect that the ray unit torus Tm = H/Log(O×Km,1) and the unit
torus T = H/Log(O×K) differ in volume by |O×K/O

×
Km,1 |. This is true, up to

a correction for whenever the modulus m causes Km,1 to have less roots of
unity. This happens whenever ζ ̸≡ 1 modulo m for some root of unity ζ ∈ K.

Lemma 2.16. Let K be a number field and let H = logK0
R be the hyperplane

where the log unit lattice ΛK = Log(O×K) and the log ray unit lattice ΛKm =
Log(O×Km,1) live in. Then we have the following exact sequence

0→ µKm,1 → µK → O×K/O
×
Km,1 → Tm → T → 0.

In particular, |µKm,1 | · |O×K/O
×
Km,1 | = |µK | ·Vol(Tm)/Vol(T ).
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Proof. Applying the kernel-cokernel exact sequence to the following diagram
yields the result.

O×K

O×Km,1 H

2.4.4. The Volume of the Arakelov Ray Class Group

It will be proven useful to show that the volume of the Arakelov ray class
group roughly follows the square root of the field discriminant times ϕ(m) =
|(OK/m)∗|.

Lemma 2.17 (Volume of Pic0
Km). For n = [K : Q] > 1, we have

|Pic0
Km | = |ClmK | ·Vol(Tm) = |µKm,1 |

|µK |
· ϕ(m) · hK ·Vol(T )

= |µKm,1 |
|µK |

· ϕ(m)hKRK
√
n2−nC/2, (2.15)

and

log|Pic0
Km | ≤ log ϕ(m) + n

(1
2 log(|∆K |1/n) + log log(|∆K |1/n) + 1

)
,

where ϕ(m) = |(OK/m)∗|. A simpler, derived bound is

log(Vol(Pic0
Km)) ≤ logN (m) + log |∆K |. (2.16)

Proof. The first identity involving the volume of the Arakelov ray class
group follows from the exact sequence in Figure 2.8. The second one can
be deduced from the identities |ClmK | · [OK : O×Km,1 ] = ϕ(m) · hK and
Vol(Tm) = Vol(T ) · [O×K : O×Km,1 ] · |µKm,1 |/|µK | (see Lemmas 2.15 and 2.16).
The third one follows from the volume computation of T in Lemma A.2.
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2.4. Arakelov Theory

The bound on the logarithm is obtained by using |µKm,1 |
|µK | ≤ 1, applying

the class number formula [NS13, VII.§5, Cor. 5.11] and Louboutin’s bound
[Lou00] on the residue ρK of the Dedekind zeta function at s = 1:

|Pic0
Km | ≤ ϕ(m)hKRK

√
n2−nC/2 = ϕ(m)ρK

√
|∆K | · |µK | ·

√
n

2nR(2
√

2π)nC

≤ ϕ(m) ·
√
|∆K | · ρK ≤ ϕ(m)

√
|∆K |

(
e log |∆K |
2(n− 1)

)n−1

≤ ϕ(m)
√
|∆K |

(
e log |∆K |

n

)n
,

For the bound on the logarithm, we write

n log(e log |∆K |/n) = n log log(|∆K |1/n) + n.

For the simpler bound in Equation (2.16) we use the fact that e log |x|
|x| ≤ 1

for all x ∈ R. Therefore,

e log
(
|∆K |

1
2(n−1)

)
|∆K |

1
2(n−1)

≤ 1,

and thus
(
e log |∆K |

2(n−1)

)n−1
≤
√
|∆K |.

We let U(Pic0
Km) = 1

|Pic0
Km |
· 1Pic0

Km
denote the uniform distribution over the

Arakelov ray class group.

Fourier theory over the Arakelov ray class group

As the Arakelov ray class group Pic0
Km is a compact abelian group, every

function in6 L2(Pic0
Km) = {f : Pic0

Km → C |
∫

Pic0
Km
|f |2 < ∞} can be

6The measure on the Arakelov class group is unique up to scaling – it is the Haar
measure. By fixing the volume of Pic0

Km as in Lemma 2.17, we fix this scaling as well. We
use then this particular scaling of the Haar measure for the integrals over the Arakelov
class group.
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uniquely decomposed into a character sum

f =
∑

χ∈P̂ic0
Km

aχ · χ,

with aχ ∈ C. In the proof of Theorem 4.3, we will make use of Parseval’s
identity [DE16, Thm. 3.4.8] (see also Theorem 2.1) in the following form.∫

Pic0
Km

|f |2 = ∥f∥22 = 1
|Pic0

Km |
∑

χ∈P̂ic0
Km

|aχ|2 (2.17)

2.4.5. An Example of an Arakelov Class Group

We compute the Arakelov class group of a totally real cubic field. Let
K = Q(α) where α ∈ C is defined by the polynomial

f(x) = x3 − x2 − 9x+ 10. (2.18)

Computing the ring of integers

The discriminant of this polynomial equals ∆(f) = 1957 = 19 · 103 > 0.
Because this is square free, the ring of integers of K equals OK = Z[α], and
∆K = 1957. Since the discriminant is positive, the cubic field must be totally
real, by Brill’s theorem. The Minkowski bound can then be computed as
MK =

√
|∆K | · 3!

33 ≈ 9.83.

Computations in the class group

The class group is therefore generated by the primes with norm at most
9.83, which are the four prime ideals p2, q2, p5, q5. This can be seen by
factoring the polynomial f(x) modulo Fp for p = 2, 3, 5, 7; noting that f
mod 3 and f mod 7 are irreducible, and f(x) ≡ x(x2 + x+ 1) mod 2 and
f(x) ≡ x(x2 + 4x+ 1) mod 5. We have (2) = p2q2 and (5) = p5q5, so, for
the class group it is enough to consider only p2 = (2, α) and p5 = (5, α).
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2.4. Arakelov Theory

Additionally, we have (α) = p2p5 and (α − 2) = p2
2 This can be seen by

computing the norms of α and α− 2, which equal f(0) = 10 and f(2) = −4
respectively. Since (α − 2) ⊆ (2, α) = p2 we must have (α − 2) = p2

2.
Combining these relations yields that the class group is generated by p2 and
is either trivial or of order 2. We will show that the latter is the case; for
that we need the fundamental units.

Computing units and (a multiple of) the regulator

The elements α− 1 and α− 3 are units in OK , since N (α− 1) = f(1) = 1
and N (α − 3) = f(3) = 1. Under the Minkowski embedding, the element
α sends to (−3.04096, 1.12946, 2.9115), and 1 to (1, 1, 1). Therefore, the
images under the Minkowski embedding of α − 1 and α − 3 are respec-
tively ≈ (−4.04096, 0.12946, 1.9115) and ≈ (−6.04096,−1.87054,−0.0885).
Taking the Logarithmic image of the absolute values yields Log(α − 1) =
(1.40,−2.04, 0.64) and Log(α−3) = (1.80, 0.63,−2.42). Putting these vectors
into a matrix, one obtains

B =
[
1.40 −2.04 0.64
1.80 0.63 −2.42

]
, (2.19)

of which the absolute determinant of any 2× 2 minor equals 4.554, which
must be an approximation of a multiple of the regulator RK . So surely,
RK ≤ 4.554.

Computing an approximation of the Dedekind residue

Computing an approximation of the residue of the Dedekind zeta function
ρK = lims→1(s− 1)ζK(s) by means of a truncated combined Euler product,
we obtain

ρK ≈
∏
p<100(1− 1/p)∏

N (p)<100(1− 1/N (p)) = 0.827.

By the class number formula (see Equation (2.11)), we have that

RKhK = ρK ·
√
|∆K | · |µK |

2nR · (2π)nC
≈ 0.827 · 44.24 · 2

23 · (2π)0 = 9.15
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Since hK ∈ {1, 2} and RK ≤ 4.554, we must have hK = 2 and RK ≈ 4.554.

Assembling the Arakelov class group from the unit group and the class
group

We have that H = {(x, y, z) ∈ R3 | x + y + z = 0} equals the hyperplane
where the logarithmic unit lattice lives in, and the log unit lattice equals
ΛK = L(B), where L(B) is the lattice generated by the rows of the matrix
in Equation (2.19). The log unit torus is then equal to T = H/L(B).

The Arakelov class group Pic0
K of the cubic field K then has two connected

components, one consisting of T , and one consisting of T + [d0(p2)] (see
Equation (2.14)). The maps of the exact sequence

0→ T → Pic0
K → ClK → 0

just consist of inclusion T ↪→ Pic0
K and projection Pic0

K → ClK , where T ⊆
Pic0

K sends to the trivial ideal class, and T + [d0(p2)] sends to [p2] ∈ ClK .

Computing elements in the Arakelov class group

We will compute the positions of [d0(p5)], [d0(q2)] and [d0(p17)] in the
Arakelov class group, where p5 = (5, α), q2 = (2, α2 + α + 1) and p17 =
(17, α+ 1). This accounts to computing the discrete logarithm in the ideal
class group and reducing modulo the logarithmic unit lattice.

As we have p5p2 = (α) and p2
2 = (α − 2), we compute p5 = (α)p−1

2 =
(α) · (α− 2)−1 · p2. In terms of divisors, we have

L
α

α− 2M = Lp5M− Lp2M− Log(α/(α− 2)),

where we use the abbreviation Log(β) = ∑
ν log |σν(β)| · LνM. So,

d0(p5) = Lp5M− 1
3 · Log(5) = Lp2M + L

α

α− 2M + Log( α

α− 2)− 1
3 · Log(5).

= d0(p2) + L
α

α− 2M + 1
3 · Log(2/5) + Log( α

α− 2).
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Taking Arakelov classes, thus letting vanish the part Lα/(α− 2)M (as it is a
principal divisor), we obtain that

[d0(p5)] = [d0(p2)] + 1
3 · Log(2/5) + Log(α/(α− 2))

≈ [d0(p2)] + (−0.81,−0.05, 0.86)
≈ [d0(p2)] + (2.39,−1.46,−0.92) ∈ [d0(p2)] + T

where the last computation just adds both rows of the logarithmic unit
matrix from Equation (2.19) (in order to get in a fixed fundamental domain).
A similar computation for q2, satisfying p2q2 = (2), gives L2/(α − 2)M =
Lq2M− Lp2M + Log(2/(α− 2)), and therefore

[d0(q2)] = [d0(p2)]− 1
3 Log(2) + Log(2/(α− 2))

≈ [d0(p2)] + (−1.15, 0.60, 0.55)
≈ [d0(p2)] + (2.05,−0.81,−1.23) ∈ [d0(p2)] + T.

where, again, the last computation adds both rows of the logarithmic unit
matrix from Equation (2.19). For p17 = (17, α+ 1), compute the norm of
α+ 1 to see that it equals 17, therefore, Lα+ 1M = Lp17M− Log(α+ 1). This
implies

[d0(p17)] = −1
3 Log(17) + Log(α+ 1) ≈ (−0.23,−0.19, 0.42)

≈ (1.57, 0.44,−2.00) ∈ T

where the last computation adds the last row of the logarithmic unit matrix
from Equation (2.19).

The Arakelov classes of the primes q2, p5 and p17 are portrayed in Figures 2.9
and 2.10, in which the full Arakelov class group of K = Q(α) is displayed.
In Figure 2.9, the primes are visualized in a two-dimensional fundamental
domain (a disjoint union of two parallelograms) whereas in Figure 2.10 the
toroidal nature of the Arakelov class group is exemplified.
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Figure 2.9.: In this picture, the Arakelov class group of K = Q(α) is portrayed, where
α ∈ C is defined by the polynomial f(x) = x3 − x2 − 9x + 10. Due to the
fact that the class group has order 2 and the unit group is free of rank 2, the
Arakelov class group can be portrayed as a disjoint union of two parallelograms,
serving as a fundamental domain. The connected component of the unit [OK ]
is the white parallelogram on the left-hand side; the gray parallelogram is
associated with the non-trivial ideal class group element. Prime ideals up to
norm 113 are displayed as points, where the color hue varies with the size
of the associated prime number, and the size of the point with the residue
class degree of the prime ideal. The prime ideal q2 = (2, α2 +α+ 1) of residue
class degree 2 can be seen in the gray parallelogram as the rather large dot
labeled with ‘2’. The prime ideal p5 = (5, α) is located at the right bottom of
the gray parallelogram, as a purple point. The prime ideal p17 = (17, α+ 1)
is principal and it is therefore located in the white parallelogram, at the top
right corner, as a blue point.
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2.4. Arakelov Theory

Figure 2.10.: This picture shows the Arakelov class group of the same number field K as
in Figure 2.9. One obtains this image by ‘gluing’ the gray parallelogram into
a gray torus and the white parallelogram into a white torus from Figure 2.9.
The prime ideals with norms up to 113 are displayed accordingly. Note that
the location of the smaller prime ideals seem to be skewed on the gray torus;
but as the norms increase, the division among the two tori, but also on the
tori seem to get more and more uniform. This phenomenon can be seen
as a manifestation of the random walk theorem, which states that from
a certain lower bound on the norms, prime ideals become more and more
uniformly located on these tori; assuming the extended Riemann hypothesis
(see Theorem 4.3).
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2.5. Lattices

2.5.1. General Lattices

A lattice Λ is a discrete subgroup of a real vector space. In the following, we
assume that this real vector space has dimension m and that the lattice is full-
rank, i.e., span(Λ) equals the whole real space. A lattice can be represented
by a basis B = (b1, · · · ,bm) such that Λ = {∑i xibi , xi ∈ Z}. Important
notions in lattice theory are the covolume Vol(Λ), which equals the volume of
the hypertorus span(Λ)/Λ (alternatively, Vol(Λ) is the absolute determinant
of any basis of Λ); the first minimum λ1(Λ) = minv∈Λ\{0} ∥v∥ ; and the
last minimum λm(Λ), which equals the minimal radius r > 0 such that
{v ∈ Λ | ∥v∥ ≤ r} is of full rank m. The equivalent notions with respect
to the maximum norm ∥ · ∥∞ instead of the Euclidean norm are denoted
by λ

(∞)
1 (Λ) and λ

(∞)
m (Λ). We will also use the following notation for the

covering radius; cov2(Λ) (and cov∞(Λ) for the maximum norm analogue),
which is the minimum r > 0 such that any element x ∈ span(Λ) is at most
r-close to a lattice point.

For any (full-rank) lattice Λ ⊆ Rm we denote by Λ∗ = {v ∈ Rm | ⟨v, ℓ⟩ ∈
Z for all ℓ ∈ Λ} the dual lattice of Λ. It is a lattice of full rank and, further-
more, for any basis B of Λ holds that D = (BT )−1 is a basis of Λ∗.

We will be interested into the following algorithmic problem over lattices.

Definition 2.18 (γ-Hermite Shortest Vector Problem). Given as input a
basis of a rank m lattice Λ, the problem γ-Hermite-SVP consists in computing
a non-zero vector v ∈ Λ such that

∥v∥ ≤ γ ·Vol(Λ)1/m.

2.5.2. Divisors and Ideal Lattices

It will be proven useful to view both ideals and Arakelov divisors as lattices
in the real vector space KR, where KR has its (Euclidean or maximum)
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norm inherited from the complex vector space it lives in. Explicitly, the
Euclidean and maximum norm of α ∈ K are respectively defined by the
rules ∥α∥22 = ∑

σ |σ(α)|2 and ∥α∥∞ = maxσ |σ(α)|, where σ ranges over all
embeddings K → C. By default, ∥α∥ refers to the Euclidean norm ∥α∥2.

For any ideal a of K, we define the associated lattice a ⊆ KR to be the
image of a ⊆ K under the Minkowski embedding, which is clearly a discrete
subgroup of KR. By slightly abusing the notation we both denote the ideal
and the associated lattice with the same symbol a. In particular, OK is
a lattice and we will always assume throughout this thesis (except stated
otherwise) that we know a Z-basis (b1, · · · ,bn) of OK . For Arakelov divisors
a = ∑

p np · LpM +∑
ν xν · LνM, the associated lattice is defined as follows.

Exp(a) =
{

(exνσ · σ(α))σ | α ∈
∏

pnp

}
= diag ((exνσ )σ) ·

∏
pnp ⊆ KR,

where diag denotes a diagonal matrix. We have Vol(a)=
√
|∆K | N (a) for

ideals a ∈ IK and, for Arakelov divisors a ∈ DivK ,

Vol(Exp(a))=
√
|∆K | ·

∏
σ

exνσ · N (
∏
p

pnp) =
√
|∆K | · edeg(a).

The associated lattice Exp(a) of a divisor is of a special kind, which we call
ideal lattices, as in the following definition.

Definition 2.19 (Ideal lattices). Let K be a number field with ring of
integers OK . An ideal lattice of K is a OK-module I ⊆ KR, with the
additional requirement that there exists an x ∈ KR\{0} such that xI ⊆ OK .
We denote the group of ideal lattices by IdLatK .

Note that the lattices a for a ∈ IK are special cases of ideal lattices, which we
will call fractional ideal lattices. Since the Minkowski embedding is injective,
the Minkowski embedding provides a bijection between the set of fractional
ideals and the set of fractional ideal lattices.

The set IdLatK of ideal lattices forms a group; the product of two ideal
lattices I = xa and J = yb is defined by the rule I ·J = xyab. It is clear that
OK ⊆ KR is the unit ideal lattice and x−1a−1 is the inverse ideal lattice of xa.
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The map Exp(·) : Div0
K → IdLatK ,a 7→ Exp(a) sends an Arakelov divisor

to an ideal lattice. The image under this map is the following subgroup of
IdLatK .

IdLat0
K =

{
xa | N (a)

∏
σ

xσ = 1 and xσ > 0 for all σ
}
.

Definition 2.20 (Isometry of ideal lattices). For two ideal lattices L,L′ ∈
IdLat0

K , we say that L and L′ are K-isometric, denoted by L ∼ L′, when
there exists (ξσ) ∈ KR with |ξσ| = 1 such that (ξσ)σ · L = L′.

In other words, we consider two ideal lattices to be K-isometric if they only
differ in component-wise complex phase. Being K-isometric is an equivalence
relation on IdLat0

K that is compatible with the group operation.

Relation between ideal lattices and Arakelov classes

Denoting IsoK for the subgroup {L ∈ IdLat0
K | L ∼ OK} ⊂ IdLat0

K , we
have the following result.

Lemma 2.21 (Arakelov classes are ideal lattices up to isometry). Denoting
P : IdLat0

K → Pic0
K for the map xa 7−→

∑
p ordp(a)[p] + ∑

ν log(xσν )[ν]
modulo principal divisors, we have the following exact sequence.

0→ IsoK → IdLat0
K

P−→ Pic0
K → 0.

Proof. This is a well-known fact (e.g., [Sch08]), but we give a proof for
completeness. It suffices to show that P is a well-defined surjective ho-
momorphism and its kernel is IsoK. In order to be well-defined, P must
satisfy P (xa) = P (x′a′) whenever xa = x′a′. Assuming the latter, we obtain
x−1x′OK = (a′)−1a = αOK , for some α ∈ K∗, as the module is a free OK-
module. This implies that (x−1x′)σ = σ(ηα) for all embeddings σ : K → C,
for some unit η ∈ O×K . Therefore, we have, P (xa)−P (x′a′) = ∑

p ordp(α)[p]+∑
ν log((xσν )−1x′σν

)[ν] = LηαM; i.e., their difference is a principal divisor,
meaning that their image in Pic0

K is the same.
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One can check that P is a homomorphism, and its surjectivity can be proven
by constructing an ideal lattice in the pre-image of a representative divisor
a = ∑

p np[p]+∑ν xν [ν] ∈ Div0
K of an Arakelov class [a], e.g., (exνσ )σ ·

∏
p p

np .

We finish the proof by showing that the kernel of P indeed equals IsoK.
Suppose xa ∈ ker(P ), i.e., P (xa) = ∑

p ordp(a)[p] + ∑
ν log(xσν )[ν] = LαM

is a principal divisor. This means that a = αOK and x = (|σ(α)|−1)σ,
i.e., xa = (|σ(α)|−1)σαOK =

(
σ(α)
|σ(α)|

)
σ
· OK , so xa ∼ OK , implying xa ∈

IsoK. This shows that kerP ⊆ IsoK. The reverse inclusion starts with the
observation that xa ∼ OK directly implies that a = αOK is principal, by the
fact that xa is a free OK-module. So, (xσσ(α))σ · OK = xαOK = (ξσ)σ · OK
for some (ξσ)σ ∈ KR with |ξσ| = 1. Therefore, |xσσ(ηα)| = |ξσ| = 1, i.e.,
|xσ| = |σ(ηα)|−1 for some unit η ∈ O×K . From here one can directly conclude
that P (xa) = P ((|σ(ηα)|−1)σαOK) = LηαM, a principal divisor.

Bounds on invariants of ideal lattices

Denote Γ(Λ) = λn(Λ)/λ1(Λ), and define, for a fixed number field K:

ΓK = sup
a∈DivK

Γ(Exp(a)) (2.20)

Recall the notion of the covering radius; cov2(Λ) (and cov∞(Λ) for the
maximum norm), which is the minimum r > 0 such that any element
x ∈ span(Λ) is at most r-close to a lattice point. For ideal lattices, we then
do have the following useful bounds, which are used often throughout this
thesis.

Lemma 2.22. For any modulus m ⊆ OK and any divisor a ∈ DivKm,

(i) ΓK ≤ λ(∞)
n (OK) ≤ |∆K |1/n;

(ii) For cyclotomic number fields K, ΓK = 1;
(iii) λn(Exp(a)) ≤

√
n · ΓK ·Vol(Exp(a))1/n;

(iv) cov∞(Exp(a)) ≤ cov2(Exp(a)) ≤ n/2 · ΓK ·Vol(Exp(a))1/n.
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Proof. The bound λ
(∞)
n (OK) ≤ |∆K |1/n can be proven by means of the

techniques of [Bha+20, Thm. 3.1], as is done in Theorem A.4 of Appendix A.1.
To obtain the bound ΓK ≤ λ(∞)

n (OK), pick an arbitrary divisor a ∈ DivKm

and choose a shortest element xα ∈ Exp(a) with x = Exp(a∞) and α ∈
Exp(af) ∈ ImK . That means ∥xα∥ = λ1(Exp(a)). Then Exp(a) ⊃ x · (α), and
therefore

λn(Exp(a)) ≤ λn(x · (α)) ≤ ∥xα∥2 · λ(∞)
n (OK) = λ1(Exp(a)) · λ(∞)

n (OK),

which proves part (i). Part (ii) follows from part (i) and the fact that
∥ζ∥ = ∥1∥ for roots of unity ζ ∈ K. Part (iii) is essentially Minkowski’s
bound λ1(Exp(a)) ≤

√
nVol(Exp(a))1/n combined with the definition of ΓK .

The last item follows from the fact that cov2(Λ) ≤
√
n/2 · λn(Λ) [Mic].

2.5.3. The Gaussian Function and Smoothing Errors

Let n be a fixed positive integer. For any parameter s > 0, we consider the
n-dimensional Gaussian function

ρ(n)
s : Rn → C , x 7→ e−

π∥x∥2

s2 ,

(where we drop the (n) whenever it is clear from the context), which is well
known to have the following basic properties.

Lemma 2.23. For all s > 0, n ∈ N and x, y ∈ Rn, we have
∫
z∈Rn ρs(z)dz =

sn, FRn{ρs} =
∫
y∈Rn ρs(y)e−2πi⟨y,·⟩dy = snρ1/s , ρs(x)2 = ρs/

√
2(x). and√

ρs(x)ρs(y) = ρ2s(x+ y)ρ2s(x− y).

Remark 2.24. From these properties it follows that the the L2-norm of
x 7→ sm/2 ·

√
ρ1/s(x) equals 1, i.e., ∥sm/2 ·

√
ρ1/s(x)∥2Rm = 1.

The following two results (and the variations we discuss below) will play an
important role and will be used several times in this paper: Banaszczyk’s
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bound, originating from [Ban93], and the smoothing parameter, as introduced
by Micciancio and Regev [MR07]. They allow us to control

ρs(X) :=
∑
x∈X

ρs(x) ,

for certain discrete subsets X ⊆ Rm. For ease of notation, we let

β(n)
z :=

(
2πez2

n

)n/2

e−πz
2
,

which decays super-exponentially in z (for fixed n). In particular, we have
β

(n)
t ≤ e−t2 for all t ≥

√
n. The following formulation of Banaszczyk’s lemma

is obtained from [MS18, Eq. (1.1)].

Lemma 2.25 (Banaszczyk’s Bound). Whenever r/s ≥
√

n
2π ,

ρs
(
(Λ + t) \ Br

)
≤ β(n)

r/s · ρs(Λ) ,

where Br = Br(0) = {x ∈ Rn
∣∣ ∥x∥2 < r}.

Definition 2.26 (Smoothing parameter). Given an ε > 0 and a lattice Λ,
the smoothing parameter ηε(Λ) is the smallest real number s > 0 such that
ρ1/s(Λ∗\{0}) ≤ ε. Here, Λ∗ is the dual lattice of Λ.

Lemma 2.27 (Smoothing Error). Let Λ ∈ Rn be a full rank lattice, and let
s ≥ ηε(Λ). Then, for any t ∈ Rn,

(1− ε) sn

det Λ ≤ ρs(Λ + t) ≤ (1 + ε) sn

det Λ . (2.21)

We have the following two useful upper bounds for full-rank n-dimensional
lattices Λ [MR07, Lm. 3.2 and 3.3]: ηε(Λ) ≤

√
log(2n(1 + 1/ε)) · λn(Λ) for

all ε > 0 and η1(Λ) ≤ η2−n(Λ) ≤
√
n/λ1(Λ∗) ≤

√
n · λn(Λ). The latter leads

to the following corollary.
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Corollary 2.28. Let L be an ideal lattice in IdLatK . Let t ∈ Rn be arbitrary
and s ≥ n · λn(OK) ·Vol(L)1/n. Then it holds that∣∣∣∣ρs(L− t) ·Vol(L)

sn
− 1

∣∣∣∣ ≤ 2−n, (2.22)

Proof. By the assumption on s and by Lemma 2.22, we have s ≥ n ·
λn(OK) · Vol(L)1/n ≥

√
n · λn(L) ≥ η2−n(Λ). The result follows then from

Lemma 2.31.

Alternative descriptions of the smoothing bound

Imitating techniques from Micciancio and Regev [MR07, Lm. 3.2], we have:

Lemma 2.29. Let s ≥
√
m

λ1(Λ∗) . Then ρ1/s(Λ∗\0) ≤ 2 · βsλ1(Λ∗).

As a direct corollary, we have the following result.

Corollary 2.30. Let s ≥ 2
√
m , and let x ∈ Rm with ∥x∥∞ ≤ 1/2. Then

ρ1/s
(
Zm\{0}+ x

)
≤ 2 · βs/2.

Proof. We have ρ1/s
(
Zm\{0} + x

)
≤ ρ1/s

(
(Zm+x)\B 1

2

)
≤ βs/2 · ρ1/s(Zm),

where the second inequality follows from Lemma 2.25. Using Lemma 2.29
to argue that ρ1/s(Zm) = 1 + ρ1/s(Zm\0) ≤ 1 + 2 · βs ≤ 2 then proves the
claim.

The following lemma, which combines [MR07, Lm. 4.1] and [MR07, Lm. 3.2],
controls the fluctuation of the sum ρs(Λ + t) for varying t ∈ Rm.

Lemma 2.31 (Smoothing Error). Let Λ ∈ Rm be a full rank lattice, and let
s ≥
√
m/λ1(Λ∗). Then, for any t ∈ Rm,

(1− 2 · βsλ1(Λ∗))
sm

det Λ ≤ ρs(Λ + t) ≤ (1 + 2 · βsλ1(Λ∗))
sm

det Λ . (2.23)
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Corollary 2.32. For s ≥
√
m

λ1(Λ∗) and for any t ∈ Rm, we have ρs(Λ + t) ≤
2 sm

det Λ .

Proof. Using Lemma 2.31 and noticing 2 · βsλ1(Λ∗) ≤ 2 · β√m ≤ 1 yields the
result.

2.5.4. Gaussian Distributions

In this work, both discrete and continuous Gaussian distributions play a
major role. We denote both of these distributions with GX,s,c, where the
subscript X is a metric space which supports the distribution and thus
indicates whether the Gaussian is discrete or continuous. More concretely,
for discrete spaces X like lattices, GX,s a discrete Gaussian, whereas for
continuous spaces it is a continuous Gaussian. For the cases of a vector space
and a lattice, the definition is spelled out below.

Continuous Gaussian distribution. For a real vector space H of dimension
n, a parameter s > 0 and a center c ∈ H, we write GH,s,c the continuous
Gaussian distribution over H with density function ρs(x − c)/sn for all
x ∈ H. When the center c is 0, we simplify the notation as GH,s.

Discrete Gaussian distributions. For any lattice L ⊂ Rn, we define the
discrete Gaussian distribution over L of standard deviation s > 0 and center
c ∈ Rn by

∀x ∈ L , GL,s,c = ρs(x− c)
ρs(L− c)

.

When the center c is 0, we simplify the notation as GL,s.

2.6. The Lipschitz Condition

Theorem 2.33 (Rademacher’s theorem). A Lipschitz function f : Rm/Λ→
H has weak partial derivatives ∂xj f : Rm/Λ → H lying in L2(Rm/Λ). In
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particular,
m∑
j=1
∥∂xj f ∥2Rm/Λ ≤ Lip(f)2.

Proof. Combining the proof of [Hei04, Thm. 4.1 and 4.9] and [Vil85, Thm. 2]
on measures of compact sets, we obtain this result.

Corollary 2.34. Let f : Rm/Λ → H be a Lipschitz-continuous function,
and denote by |cℓ∗⟩ the vectorial Fourier coefficients of f . Then,

∑
ℓ∗∈Λ∗

∥ℓ∗∥≥B

⟨cℓ∗ |cℓ∗⟩ ≤
Lip(f)2

4π2B2 .

Proof. Since f is Lipschitz, we can apply Theorem 2.33. Furthermore, the
identity |f(x)⟩ = ∑

ℓ∗∈Λ∗ |cℓ∗⟩e2πi⟨x,ℓ∗⟩ implies that

|∂xj f(x)⟩ = 2πi
∑
ℓ∗∈Λ∗

ℓ∗j |cℓ∗⟩e2πi⟨x,ℓ∗⟩

almost everywhere ([Wer07, Lm. V.2.11] or [RA08, Lm. 2.16]). Finally, given
that ∑m

j=1∥∂xj f∥2Rm/Λ ≤ Lip(f)2, Plancherel’s identity implies that

Lip(f)2 ≥
m∑
j=1
∥∂xj f∥2Rm/Λ = 4π2 ∑

ℓ∗∈Λ∗

∥ℓ∗∥22 · ⟨cℓ∗ |cℓ∗⟩

≥ 4π2 ∑
ℓ∗∈Λ∗

∥ℓ∗∥2≥B

∥ℓ∗∥22 · ⟨cℓ∗ |cℓ∗⟩ ≥ 4B2π2 ∑
ℓ∗∈Λ∗

∥ℓ∗∥2≥B

⟨cℓ∗ |cℓ∗⟩ ,

from which the claim follows.
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3. The Continuous Hidden Subgroup
Problem

3.1. Summary

This chapter is about a complexity analysis of a slightly modified algorithm
of Eisenträger et al. [Eis+14] that quantumly solves the continuous hidden
subgroup problem. This problem consists of finding a ‘hidden lattice’ Λ in
Rm given a (possibly) quantum function f : Rm → S that is periodic with
respect to this lattice Λ. This computational problem falls into the class of
the so-called ‘period finding problems’.

This quantum algorithm mimics the blueprint of Shor’s algorithm for finding
a hidden subgroup H in a discrete abelian group G, given an oracle function
on the group that is strictly periodic with respect to H. This blueprint
consists of consecutively sampling a uniform quantum superposition over
all group elements, applying an oracle call to the H-periodic function, and
computing a discrete quantum Fourier transform. Then, one measures to
obtain a character χ ∈ Ĝ that has H in its kernel. Assembling enough of
such characters allows to retrieve H itself.

The quantum algorithm solving the continuous hidden subgroup problem

The quantum algorithm of this chapter deviates from this blueprint in a
few ways. (1) Since the ambient group Rm is continuous, we need to cut-off
and discretize this space to get something finite and thus processable by a
quantum computer. This has as a consequence that the Fourier transform
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becomes discretized as well, inducing errors with respect to the continuous
Fourier transform. (2) The initial state of this quantum algorithm does not
consist of a uniform quantum sample but of a Gaussian state instead. This
is done to ease the analysis, as both the Gaussian function and its Fourier
transform (which is also a Gaussian function) have tight tail bounds. (3)
The measurement output is, due to the cut-off and discretization, always
an approximation of a dual lattice vector ℓ∗ ∈ Λ∗ (which can be seen as a
character of Rm with Λ in its kernel). So, in the end, we cannot expect more
to gain from this algorithm than an approximate basis B̃ of the lattice Λ.
(4) Such an approximate basis is obtained as follows. By sampling many
approximate ℓ∗ ∈ Λ∗, LLL-reducing these samples to an approximate basis
D̃ of the dual lattice Λ∗, and inverting and transposing D̃, one retrieves an
approximate basis B̃ of Λ.

Analysis of the algorithm

Each deviation from the original ‘hidden subgroup problem blueprint’ causes
difficulties; mostly those difficulties take the shape of discretization errors. We
show how to solve these difficulties per deviation. Tackling these difficulties
was already partially done by Eisenträger et al. [Eis+14]; we revisit their
work to obtain a more explicit and precise complexity.

(1) The discrete Fourier transform and the continuous (real) Fourier trans-
form can be shown to differ not too much if their input function is continuous
enough. A large part of this chapter (Section 3.5) is devoted to show that
if the Λ-periodic oracle function is Lipschitz continuous, the induced error
by using a discrete Fourier transform instead of a continuous one can be
reasonably bounded.

(2) For the initial input to be Gaussian, one needs to know how to actually
assemble this state on a quantum computer. Such a Gaussian superposition
has already been shown to be computable in polynomial time by Kitaev and
Webb [KW08], but for completeness we included a more precise complexity
estimate in Appendix A.5.
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(3) Due to the discrete nature of the quantum algorithm, the output dual
lattice point can only be approximated within a certain distance. The
maximum allowed distance (relative to the minimum distance λ1(Λ∗) of the
dual lattice Λ∗) will be a parameter in the algorithm, called δ > 0.

One of the problems that might occur is that the output dual lattice points
are not equidistributed enough on Λ∗, thus not giving enough information
to retrieve a basis of Λ. An extra assumption on the Λ-periodic function f
is needed to avoid such a situation; which we call separating. A separating
Λ-periodic function can be intuitively thought of as being not too constant.
Showing that such an oracle will yield equidistributed points in Λ∗ is the
object of Section 3.6.

(4) From many such δ-close dual lattice points one can compute an ap-
proximate basis of the dual lattice Λ∗ by means of LLL-reduction; from
this approximate dual basis one can obtain a basis of Λ by inversion and
transposition. These operations (LLL-reduction and inversion) are quite
numerical unstable, meaning that they make existing errors in the input
progressively larger. Using a result of Buchmann and Kessler [BK96] one
can reasonably bound the final error (see Section 3.7).

Relation with the Arakelov (ray) class group

The computation of the Arakelov (ray) class group can be phrased in terms
of a hidden lattice problem; a fact that can already be inferred from the
original applications of the hidden lattice problem, namely computing (S)-
unit groups and class groups [BS16; Eis+14] in works of Biasse, Song and
Eisenträger et al. By a slight modification in formulation of the ideas in
these papers one can construct an oracle on the Arakelov divisor group
that is periodic with respect to the principal divisors. In this modification,
a ‘reduced’ version of the Arakelov (ray) divisor group is used, one with
only finitely many prime ideals, that are required to generate the ideal class
group. Finding the periodicity of this oracle then allows to find explicit
relations that define the Arakelov (ray) class group.
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At the time of writing, a precise complexity estimation (beyond polynomial
time) of the oracle function in this approach to quantumly compute Arakelov
(ray) class groups is still open.

3.2. Introduction

The Hidden Subgroup Problem

Among all quantum algorithms, Shor’s algorithm [Sho94] for factoring and
finding discrete logarithms is singular by its cryptanalytic implications. Due
to progress toward the realization of large quantum computers, this cele-
brated algorithm is now motivating the standardization of quantum-resistant
schemes [Nat17], in preparation of a global update of widely deployed en-
cryption and authentication protocols.

The core idea of quantum period finding [Sho94] is not limited to factoring
and discrete logarithm. The Hidden Subgroup Problem, formalized in [ME98],
serves as a convenient interface between the quantum-algorithmic techniques
for period finding, and applications to solve other computational problems,
in particular problems arising from number theory. We will here discuss only
the case of commutative groups. The cases of non-abelian groups such as
dihedral groups are very interesting as well and have fascinating connections
with lattice problems [Reg04b]; however, no polynomial time algorithm is
known for those cases, and the best known algorithm has sub-exponential
complexity [Kup05], using very different techniques.

The simplest version of the Hidden Subgroup Problem consists of finding
a hidden subgroup H in a finite abelian group G, when given access to a
strictly H-periodic function f : G→ S. Here, in the language of represen-
tation theory, the off-the-shelf period-finding quantum algorithm finds a
uniformly random character χ ∈ Ĝ that acts trivially on H. Shor’s origi-
nal algorithm [Sho94] for integer factoring finds a hidden subgroup H in
the ambient group Z. The infiniteness of Z induces some “cut-off” error;
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nevertheless, the distribution of the algorithm’s output is still concentrated
around the multiples of the inverse period.

A generalization to the real line H = R was given by Hallgren [Hal07] and
allows to solve Pell’s equation. The case of real vector space of constant
dimension H = Rc has also been studied [Hal05; SV05], and permits the
computation of unit groups of number fields of fixed finite degree.

The Continuous Hidden Subgroup Problem

The latest generalization of the HSP algorithm, given by Eisenträger, Hall-
gren, Kitaev and Song in an extended abstract [Eis+14], targets the ambient
group G = Rm (for a non-constant dimension m) with a hidden discrete sub-
group H = Λ, i.e. a lattice. Next to the ambient group Rm being continuous,
an additional special feature is that the Λ-periodic function f is assumed
to produce a “quantum output”. More formally, f : Rm → S, x 7→ |f(x)⟩,
where S is the state space of a quantum system, and the HSP algorithm is
given access to a unitary that maps |x⟩|0⟩ to |x⟩|f(x)⟩. A crucial observa-
tion here is that |f(x)⟩ and |f(y)⟩ are not necessarily orthogonal (or even
distinct) for distinct x and y modulo Λ. In other words, it is not assumed
that f is strictly periodic, but merely that |f(x)⟩ and |f(y)⟩ are “somewhat
orthogonal” for x and y that are “not too close” modulo Λ, and that f is
Lipschitz continuous.

More specifically, they consider a variation of the standard HSP algorithm
in order to tackle the Continuous Hidden Subgroup Problem (CHSP). In
order to deal with the continuous nature of the domain Rm of f , the given
HSP algorithm acts on a bounded “grid” of points within Rm. Additionally,
the algorithm is modified in the following ways: (1) The initial state is not a
uniform superposition (over the considered grid points in Rn) but follows a
trigonometric distribution, and (2) the quantum Fourier transform is done
“remotely”, i.e., rather than applying it to the actual register, the register is
entangled with an ancilla and the quantum Fourier transform is then applied
to the ancilla instead. According to Eisenträger et al. [Eis+14], applying the
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quantum Fourier transform directly would make the resulting approximation
errors difficult to analyze.

As an application, Eisenträger et al. also gave a quantum polynomial time
algorithm for computing the unit group of a number field in their arti-
cle [Eis+14]. This was generalized by Biasse and Song [BS16] to the compu-
tation of S-unit groups, and therefore to the computation of class groups
and to finding a generator of a principal ideals. This led to solving the short-
est vector problem in certain ideal lattices for non-trivial approximation
factors [Cra+16; CDW17; PHS19]. While the cryptanalytic consequences for
ideal-lattice based cryptography seem limited so far [DPW19], these results
demonstrate a hardness gap between ideal lattices and general ones.

Our Contributions

The goal of this chapter is to provide a complete, modular, and quantitative
analysis of (a slightly modified version of) the Continuous HSP quantum
algorithm given by [Eis+14]. More concretely, we provide an explicit bound
on the number of qubits needed by the algorithm, clarifying the dependency
on the parameters of the Continuous HSP instance and on the required
precision and success probability. This shows explicitly in what parameters
the algorithm is polynomial time and with what exponent.

The algorithm that we consider and analyze differs from the one considered
in [Eis+14] in the following points:

• First, we specify the initial state of the algorithm to have Gaussian
amplitudes, while [Eis+14, Sec. 6.2] suggests to use a cropped trigono-
metric function; as far as we can see, our choice makes the analysis
simpler and tighter thanks to the well known tail-cut and smoothness
bounds of Banaszczyk [Ban93] and Micciancio and Regev [MR07].

• Secondly, we do not make use of a “remote” Fourier transform but
instead follow the blueprint of Shor’s original algorithm in that respect;
the claimed advantage of the “remote” Fourier transform is unclear to
us.
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These modifications simplify the algorithm and its analysis. Due to the lack
of details given in [Eis+14], we can not state a complexity comparison, but
we think this variation is at least as efficient as the original algorithm.

Our analysis is divided into four parts, each summarized by a formal state-
ment given in Sections 3.3.3 to 3.3.6, leading to the main theorem (Sec-
tion 3.3.2). We insist on this modular presentation, so as to enable future
work on optimization and specialization of this algorithm to instances of
interests; specific suggestions follow.

Dual lattice sampling. In the first part, which is the technically more
involved one, we show that the appropriately discretized and finitized, but
otherwise (almost) standard HSP quantum algorithm produces sample
points in Rm that lie close to the dual lattice Λ∗ with high probability.
More precisely, and more technically speaking, we show that the algorithm’s
output is a sample point close to ℓ∗ ∈ Λ∗ with probability close to ⟨cℓ∗ |cℓ∗⟩,
where the vectors |cℓ∗⟩ are the Fourier coefficients of the function f . This is
in line with the general HSP approach, where for instance Shor’s algorithm
for period finding over Z produces a point that is close to a random multiple
of the inverse period, except with bounded probability.

In this first part (Section 3.4 and Section 3.5), we bound the complexity of
the core algorithm in terms of the error probability that we allow in the
above context of a sampling algorithm, and depending on the Lipschitz
constant of f . In particular, we show that the number of qubits grows as
mQ, where Q, the “number of qubits per dimension”, grows linearly in the
logarithm of the Lipschitz constant of f , the logarithm of the inverse of the
error probability and the logarithm of the inverse of the (absolute) precision,
and quasi-linearly in m. The running time of the algorithm is then bounded
by O(mQ log(mQ)), by using an approximate Fourier transform [HH00].

Full dual recovery. In the second part, Section 3.6, we then relate the
parameters of the Continuous HSP instance to the number of sample points,
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and thus to how often the core algorithm needs to be repeated, necessary in
order to have an approximation of the entire dual lattice Λ∗.

Primal basis reconstruction. In the third part, Section 3.7, we study the nu-
merical stability of reconstructing an approximate basis of the primal lattice
Λ from a set of approximate generators of the dual lattice Λ∗. This is based
on the Buchmann-Pohst algorithm [BK96] already mentioned in [Eis+14].
The claim of [Eis+14] involves intricate quantities related to sublattices of Λ,
making the final complexity hard to derive; we provide a simpler statement
with a detailed proof.

Gaussian state preparation. Finally, in Appendix A.5, we revisit the quan-
tum polynomial-time algorithm for the preparation of the Gaussian initial
state [GR02; KW08] used as a black-box in our first part, and provide its
precise complexity.

Conclusion. These four parts lead to our formal and quantitative version
of the informal CHSP Theorem of Eisenträger et al. [Eis+14, Thm. 6.1],
stated as Theorem 3.3 in Section 3.3.2.

Conclusion and Research Directions

Our conclusion is that, in its generic form, the Continuous Hidden Subgroup
Problem is rather expensive to solve; not accounting for other parameters
than the dimension m, it already requires Õ(m3) qubits and Õ(m4) quantum
gates (using an approximate quantum Fourier transform). However, this
inefficiency seems to be a consequence of its genericity. In particular, the core
algorithm for Dual Lattice Sampling would only need Õ(m2) qubits, if it
wasn’t for accommodating for the terrible numerical stability of the Primal
Basis Reconstruction step. Similarly, we expect the number of samples
needed to generate the dual lattice to be significantly smaller for smoother
oracle functions.

88



3.2. Introduction

All in all, our modular analysis of the generic steps of the CHSP algorithm
sets the stage for analyzing and optimizing its specializations, in particular
to cryptanalytic applications [Cra+16; CDW17]. We propose as few research
directions towards this objective:

• Study the costs (qubits, quantum gates) and the parameters of the
oracle functions from [Eis+14; BS16; Son13] for solving the Unit Group
Problem, the Principal Ideal Problem (PIP), and for the computation
of the class group.

• Find stronger hypotheses satisfied by the above oracle functions (or
by variant thereof) that improve this generic analysis of the CHSP
algorithm; or resort to an ad-hoc analysis of the Full Dual Recovery
step by directly studying the spectrum of these oracle functions.

• Explore the possibility of a trade-off between the (classical) Primal
Basis Reconstruction step and the (quantum) Dual Lattice Sampling
step, possibly up to small sub-exponential classical complexity. More
specifically, does replacing LLL by BKZ with a medium block-size
substantially improve the numerical stability of Buchmann-Pohst al-
gorithm?

• Exploit prior knowledge of sublattices (potentially close to full-rank)
of the hidden lattice to accelerate or skip the Full Dual Recovery and
Primal Basis Reconstruction steps. This is for example the case when
solving PIP [BS16] while already knowing the unit group and the class
group of a given number field. This would be applicable in the context
of [Cra+16; CDW17].

• Exploit known symmetries of the hidden sublattice to improve the
Full Dual Recovery and Primal Basis Reconstruction steps. Such
symmetries are for example induced by the Galois action on the log-
unit lattice and the lattice of class relation, in particular in the case of
the cyclotomic number fields. This would again be applicable in the
context of [Cra+16; CDW17].

Remark 3.1. Recovering the exact hidden lattice is outside the scope of
this work, since this task is application-dependent. It is even true that one
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cannot generally expect the quantum algorithm of this chapter to recover the
exact hidden lattice, without extra information about this hidden lattice.

For instance, when applying this algorithm to compute the unit group O×K
of a number field K, the hidden lattice will be the so-called logarithmic unit
lattice. Of this lattice it is known that any point is of the shape Log(η) =
(log |σ(η)|)σ ∈ LogK0

R with η ∈ O×K ⊆ OK ; its entries are logarithms of
integral elements in a given number field. This is the extra information that
is to be exploited in order to get the exact lattice. Namely, from a sufficiently
good approximation of the logarithm of a unit one can obtain the exact
underlying unit, simply by taking the exponential and rounding it to the
closest element in the ring of integers OK .

3.3. Problem Statements and Results

3.3.1. Notation and Set-up

Here and throughout this chapter, H is a complex Hilbert space of dimension
N = 2n, and S is the unit sphere in H; thus, a vector in S describes the state
of a system of n qubits. For an arbitrary positive integer m, we consider a
function

f : Rm → S ⊂ H , x 7→ |f(x)⟩

that is periodic with respect to a full rank lattice Λ ⊂ Rm; hence, f may
be understood as a function Rm/Λ→ S. The function f is assumed to be
Lipschitz continuous with Lipschitz constant

Lip(f) = inf
{
L > 0

∣∣ ∥∥|f(x)⟩ − |f(y)⟩
∥∥
H ≤ L∥x− y∥2,Tm

}
.

Later, we will also require f to be “sufficiently non-constant”. One should
think of f as an oracle that maps a classical input x to a quantum state
over n qubits, which is denoted |f(x)⟩.

We write Λ∗ for the dual lattice of Λ. By λ1(Λ) we denote the length of a
shortest non-zero vector of Λ, and correspondingly for λ1(Λ∗). Since Λ is
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typically clear from the context, we may just write λ1 and λ∗1 instead of
λ1(Λ) and λ1(Λ∗).

We denote by Br(x) = {y ∈ Rm | ∥y− x∥ < r} the open Euclidean ball with
radius r around x. For the open ball around 0 we just denote Br, and for a
set X ⊂ Rm we write Br(X) = ⋃

x∈X Br(x).

Definition 3.2 (Definition 1.1 from [Eis+14]). A function f : Rm → S ⊂ H
is said to be an (a, r, ϵ)-HSP oracle of the full-rank lattice Λ ⊂ Rm if

• f is Λ-periodic,
• f is a-Lipschitz: Lip(f) ≤ a,
• f is (r, ϵ)-separating (see Figure 3.1): I.e., |⟨f(x)|f(y)⟩| ≤ ϵ for all
x, y ∈ Rm satisfying dRm/Λ(x, y) ≥ r.

where dRm/Λ(x, y) = minv∈Λ ∥x− y− v∥ denotes the distance induced by the
Euclidean distance of Rn modulo Λ.

Figure 3.1.: A picture of what an (r, ϵ)-separating function f should look like: outside of
the interval or length 2r around the origin, the inner product x 7→ ⟨f(x)|f(0)⟩
deviates from 0 by no more than ϵ.

3.3.2. Main Theorem: Continuous Hidden Subgroup Problem

Theorem 3.3. There exists a quantum algorithm that, given access to an
(a, r, ϵ)-HSP oracle with period lattice Λ, r < λ1(Λ)/6 and ϵ < 1/4, computes,
with constant success probability, an approximate basis B̃ = B + ∆B of this
lattice Λ, satisfying ∥∆B∥ < τ .

91



3. The Continuous Hidden Subgroup Problem

This algorithm makes k quantum oracle calls to the (a, r, ϵ)-HSP oracle, and
uses mQ + n qubits, O

(
kmQ · (log(kmQ))2) quantum gates and poly(m,

log a
λ∗

1
, log a

τ ) classical bit operations, where

Q = O(mk) +O

(
log a

λ∗1

)
+O

(
log 1

λ∗1 · τ

)
, (3.24)

k = O
(
m · log

(√
m · a · (det Λ)1/m

))
(3.25)

Remark 3.4. Note that the quantities inside logarithms are homogeneous.
In particular, scaling the lattice Λ by a factor f , also scales τ , 1/a and 1/λ∗1
by the same factor f , leaving the complexity parameters Q and k unaffected.

Remark 3.5. The expert reader may expect the “distortion” parameter
λ1 · λ∗1 of the lattice Λ to have a bearing on the complexity of this algorithm.
It is indeed implicitly the case: the assumption the HSP definition implies
that ar ≥ Lip(f) · r ≥ 1 − ϵ (see Figure 3.2), and therefore the theorem’s
hypothesis requires a ≥ Lip(f) ≥ 9

4λ1
.

Figure 3.2.: Due to the (r, ϵ)-separating property of the oracle function f , its Lipschitz
constant cannot be too small.

The proof of Theorem 3.3 can be found in Section 3.3.7.
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3.3.3. Dual Lattice Sampling Problem

Following our modular approach as outlined in the introduction, we first
consider the following Dual Lattice Sampling Problem. Informally, the task
is to sample points in Rm that are respectively close to points ℓ∗ ∈ Λ∗ that
follow the distribution Dideal(ℓ∗) = ⟨cℓ∗ |cℓ∗⟩, where |cℓ∗⟩ are the vectorial
Fourier coefficients of f : Rm/Λ→ S (see Section 2.2.4).

Problem 3.6 (Dual Lattice Sampling Problem). Given error parameter
η > 0 and a relative distance parameter 1

2 > δ > 0, and given oracle
access to an HSP oracle f as above, sample according to a (finite)
distribution D on Rm that satisfies, for any S ⊆ Λ∗,

pS := D
(
Bδλ∗

1
(S)

)
≥

∑
ℓ∗∈S
⟨cℓ∗ |cℓ∗⟩

− η . (3.26)

In the problem statement above, D
(
Bδλ∗

1
(S)
)

denotes the cumulative weight
of the set Bδλ∗

1
(S) = ⋃

s∈S Bδλ∗
1
(s) with respect to the distribution D. Here,

Bδλ∗
1
(s) = {y ∈ Rm | ∥s− y∥ < δλ∗1} is the open ball of radius δλ∗1 around

s ∈ S ⊆ Λ∗ ⊆ Rm.

Theorem 3.7. Algorithm 2 solves the Dual Lattice Sampling Problem with
parameters η and δ; it uses one call to the Gaussian superposition subroutine
(see Theorem 3.12), one quantum oracle call to f , mQ + n qubits, and
O(mQ log(mQ)) quantum gates, where

Q = O (m log (m)) +O

(
log

(
a

η · δλ∗1

))
. (3.27)

Remark 3.8. Note that this step only requires smoothness of the HSP
oracle (via the Lipschitz constant), but does not rely on the “separateness”
assumption (third item of Definition 3.2). Indeed this third assumption will
only play a role to ensure that those samples are actually non-trivial and
usable.
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3.3.4. Full Dual Lattice Recovery

Recovering the full lattice (or, equivalently, its dual) requires an extra
assumption on the oracle function f , as captured by the third condition in
the following definition, reformatted from Definition 1.1 of [Eis+14].

According to Eisenträger et al. [Eis+14], for (some undetermined) adequate
parameters, Definition 3.2 ensures that the distribution on the dual lattice
Λ∗ is not concentrated on any proper sublattice, hence sufficiently many
samples will generate the lattice fully. We formalize and quantify this proof
strategy, and obtain the following quantitative conclusion. We note that the
constraints on r and ϵ are milder than one could think, for example ϵ does
not need to tend to 0 as a function of n or m. More precisely, a constant
ϵ < 1/4 and a constant r ≤ λ1(Λ)/6 would suffice.

Theorem 3.9. Let f : Rm → S be an (a, r, ϵ)-HSP oracle of the full-rank
lattice Λ ⊂ Rm, with r ≤ λ1(Λ)/6 and ϵ < 1/4. Let Df be the distribution
supported by Λ∗, with weight ⟨cℓ∗ |cℓ∗⟩ at ℓ∗ ∈ Λ∗, where |cℓ∗⟩ are the vectorial
Fourier coefficients of the function f .
Then, with overwhelming probability, we need at most

O
(
m log2

(
ma · det(Λ)1/m))

samples from Df to fully generate the lattice Λ∗.

The above theorem is obtained by combining Lemma 3.21 and proposi-
tion 3.24 from Section 3.6, instantiating the parameter R to R2 = ma2. This
choice is somewhat arbitrary and given for concreteness, however it does not
have a critical quantitative impact.

3.3.5. Primal Basis Reconstruction

Theorem 3.10. There exists a polynomial time algorithm, that, for any
matrix G ∈ Rk×m of k generators of a (dual) lattice Λ∗, and given an
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approximation G̃ = G+∆G ∈ Qk×n, computes an approximation B̃ = B+∆B

of a basis B of the primal lattice Λ, such that

∥∆B∥∞ ≤
2O(mk) · ∥G̃∥m+1

∞
(λ∗1)3 · det(Λ∗) · ∥∆G∥∞,

under the assumption that ∥∆G∥∞ <
min(1,(λ∗

1)2)·det(Λ∗)
2O(km)·∥G̃∥m+1

∞
.

Remark 3.11. More specifically, the algorithm from Theorem 3.10 essen-
tially consists of the Buchmann-Pohst algorithm [BP89; BK96] and a matrix
inversion. Its complexity is dominated by two calls to LLL on matrices of
dimension (m+ k)× k and entry bit size O(k2 log(∥G̃∥/λ∗1)) (see the discus-
sion before [BK96, Cor. 4.1]). One can optimize the final running time by
choosing a fast variant of LLL, e.g., [NS16].

Our contribution on this step is merely a completed numerical analysis, with
the help of a theorem from [CSV12]. A claim with a similar purpose is given
in [Eis+14], yet involves more intricate lattice quantities.

3.3.6. Gaussian State Preparation

The main algorithm of this paper requires the preparation of a multidi-
mensional Gaussian initial state, which can be obtained by generating the
one-dimensional Gaussian state on m parallel quantum registers. This task
is known to be polynomial time [GR02; KW08], and we provide a quantita-
tive analysis in Appendix A.5. The precise running time of preparing this
Gaussian state is summarized below.

Theorem 3.12. For q = 2Q ∈ N, error parameter η ∈ (0, 1) and s >

2
√

log(m/η), there exists an quantum algorithm that prepares the higher-
dimensional Gaussian state

1√
ρ1/s(Dmrep)

∑
x∈Dm

rep

√
ρ1/s(x)|x⟩ =

m⊗
j=1

1√
ρ1/s(1

q [q]c)

∑
x∈ 1

q
[q]c

√
ρ1/s(x)|x⟩,

within trace distance η, using O
(
mQ + log(η−1)

)
qubits and using O(mQ

· log(mQη−1)2) quantum gates.
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Remark 3.13. In Theorem 3.3, we chose η to be 1/k2. Therefore, one call
to the m-dimensional Gaussian state preparation with the parameters of The-
orem 3.3 takes O(mQ+log(k)) qubits and O(mQ log(kmQ)2) quantum gates.
As Theorem 3.3 requires k subsequent preparations of the m-dimensional
Gaussian state, the total costs of the Gaussian state preparation steps are
O(mQ+log(k)) qubits (by reusing qubits) and O(kmQ log(kmQ)2) quantum
gates.

This is slightly more than the costs of k times applying the Fourier trans-
form, and it explains the quantum gate complexity of O(kmQ log(kmQ)2)
in Theorem 3.3.

3.3.7. Proof of the Main Theorem

Proof of Theorem 3.3. The result is obtained by running Algorithm 1 and
instantiating Theorems 3.7, 3.9, 3.10 and 3.12.

Correctness of Algorithm 1. In step one, the dual sampling algorithm (Algo-
rithm 2) is applied k times with error probability η = 1/k2. The probability
that all measurements are actually δλ∗1-close to dual lattice points and are
of length less than

√
ma is then at least (1− η)k = (1− 1/k2)k ≥ 1− 1/k,

which is at least a constant success probability. We assume in the rest of
the proof that all measurements are indeed δλ∗1-close to dual lattice points
and of length less than

√
m · a.

In step two, these δλ∗1-close-to-Λ∗ samples are assembled into a matrix
k ×m-matrix G̃, on which is then applied the Buchmann-Pohst algorithm
[BK96; BP89] twice. Subsequently, the resulting square matrix is inverted
and transposed. By Theorem 3.10, this procedure runs in polynomial time
and has no error probability. Due to the choice of δ and the fact that
∥G̃∥∞ ≤

√
ma and ∥G̃−G∥ < δ · λ∗1, we can apply Theorem 3.10 to obtain

∥∆B∥∞ = ∥B − B̃∥ < τ , as required. Note that the size of δ is chosen in
such a way that the decline in precision (see Theorem 3.10) is taken care of.
By Theorem 3.3, the matrix G̃ indeed approximates a full generating set
of Λ∗ with overwhelming probability; implying that the output matrix B̃
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Algorithm 1: Quantum algorithm that solves the continuous hidden
subgroup problem
Require:

• An (a, r, ϵ)-oracle f : Rm → H that is periodic with respect to
the full-rank hidden lattice Λ ⊆ Rm, whose dual lattice Λ∗ has
first minimum λ∗1 = λ1(Λ∗). We require the parameters ϵ and r

to satisfy ϵ < 1/4 and r ≤ λ1(Λ)/6.
• An error parameter τ quantifying the maximum allowed

deviation of the output basis B̃ from an actual basis B of Λ.

Ensure: With constant probability, an τ -approximated basis B̃ of the
lattice Λ. In other words, a matrix B̃ ∈ Matm×m(Q) satisfying
∥B̃ −B∥ < τ for some basis B ∈ Matm×m(R) of Λ, i.e., τ -close in the
maximum norm induced matrix norm.

1: Apply the dual sampling algorithm (Algorithm 2) k times, with
failure probability η = 1/k2, Gaussian deviation s = O(

√
m log(η−1))

and V = O
(m log(η−1)

δλ∗
1

)
, where k = O

(
m log[

√
m · a · det(Λ)1/m]

)
and

δ = 2−O(mk) · (
√
m · a)−(m+1) · det(Λ)−1 · (λ∗1)2 · τ .

2: Assemble the k samples from above algorithm into a matrix G̃, apply
the Buchmann-Pohst algorithm twice (see Section 3.7), and
invert and transpose the resulting basis, yielding a matrix B̃.

3: return B̃.
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approximates a basis of Λ with overwhelming probability (and not a basis
of a strict sublattice of Λ).

Complexity estimate. We focus first on the less important complexity, the
classical complexity. This complexity is mainly driven by LLL-algorithm
and inversion in step (2) of Algorithm 1. This complexity can be bounded
polynomially in the dimensions and the entry sizes of the matrix involved.
The dimensions of G̃ are k×m, and can therefore by polynomially bounded
by m, log a and log(det Λ). The entry sizes (taking a precision of at least
δ into account) can be polynomially bounded by m, log(det Λ), log(τ) and
log(1/λ∗1). As log(det Λ) ≤ O(m log(1/λ∗1)) we can just omit log(det Λ).
Making all quantities homogeneous with respect to lattice scaling, we obtain
a classical complexity of poly(m, log a

λ∗
1
, log a

τ ) bit operations.

The quantum complexity is driven by the Fourier transform in the dual lattice
sampling and the Gaussian preparation step. Repeating the dual lattice
sampling k times costs O(kmQ log(mQ)) quantum gates and O(mQ + n)
qubits, where n is the number qubits required to store the values |f(x)⟩ of the
quantum oracle in (see Theorem 3.7). Repeating k times the preparation of
the Gaussian initial quantum state (within total variation distance η = 1/k2)
requires O(kmQ log(kmQ)2) quantum gates and O(mQ+ log(k)) = O(mQ)
qubits (where we hide log(k) into O(mQ)), see Theorem 3.12. As discussed
in Remark 3.13, the quantum gate complexity is slightly dominated by that
of the Gaussian preparation step that occurs in Step 1 of Algorithm 2; it is
O(kmQ log(kmQ)2). The overall qubit complexity is O(mQ+ n).

For the estimation of the number of qubits Q needed ‘per dimension’, i.e.,
to prove Equation (3.24), we instantiate η = 1/k2 and δ = 2−O(mk) · (

√
m ·

a)−(m+1) · det(Λ)−1 · (λ∗1)2 · τ in Theorem 3.7 to obtain

log(1/δ) = (m+ 1) log(
√
ma) + log(det(Λ)) +O(mk)− log τ − 2 log(λ∗1).

Noting that m log(
√
ma) + log(det(Λ)) ∈ O(k) ⊆ O(mk), we see that

O

(
log a

η · δλ∗1

)
= O(mk) +O

(
log 1

λ∗1 · τ

)
+O(log(a/λ∗1))
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Putting O(m logm) into O(mk) in Equation (3.27) yields

Q = O(mk) +O

(
log a

λ∗1

)
+O

(
log 1

λ∗1 · τ

)
, (3.28)

3.4. Dual Lattice Sampling Algorithm

3.4.1. The Algorithm

Given a Λ-periodic function f : Rm → S as discussed in Section 3.3, which
maps a classical input x to a quantum state |f(x)⟩, we consider the following
quantum algorithm (see Algorithm 2, or more graphically, Figure 3.4). The
algorithm has oracle access to f , meaning that it has access to a unitary that
maps |x⟩|0⟩ to |x⟩|f(x)⟩. As a matter of fact, we may assume the algorithm
to have oracle access to a unitary that maps |x⟩|0⟩ to |x⟩|f(V x)⟩ for a
parameter V ∈ R chosen by the algorithm. Per se, x may be arbitrary in
Rm; for any concrete algorithm it is of course necessary to restrict x to some
finite subset of Rm.

The algorithm we consider follows the blueprint of the standard hidden-
subgroup algorithm. Notable differences are that we need to discretize (and
finitize) the continuous domain Rm of the function, and the algorithm starts
off with a superposition that is not uniform but follows a (discretized and
finitized) Gaussian distribution. The reason for the latter choice is that
Gaussian distributions decay very fast and behave nicely under the Fourier
transform (as they are eigenfunctions of the Fourier transform).

The algorithm is given in Algorithm 2. It uses two quantum registers, each
one consisting of a certain number of qubits. Associated to the first register
are grid points: orthonormal bases {|x⟩Dm}x∈Dm and {|y⟩D̂m}y∈D̂m where the
basis vectors are labeled by x ∈ Dm and y ∈ D̂m, respectively, which we
identify with elements x ∈ Dmrep and y ∈ D̂mrep (see Section 2.2.1). The second
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Figure 3.3.: Intuitively, it is easier to see the (quasi-)periodicity of the continuous signal
(left) than that of the discrete signal (right). It is exactly the loss of information
‘between the sampling points’ that causes this chapter’s quantum algorithm
to behave slightly erroneously or noisily. Of course, increasing the number of
sampling points should reduce this noise; but it also causes the algorithm to
need more expensive qubits. The analysis sought to keep the required qubits
as low as possible, while still maintaining an acceptable error probability.

register has state space H. The algorithm is parameterized by q ∈ N (which
determines Dm), s > 0 and V > 0.

Intuitively, the fraction s
V is tightly related to the absolute precision of the

output, whereas log q is connected with the number of qubits needed. In
Algorithm 2, all quantum states described are unnormalized (i.e., do not
have norm 1) but have all the same norm, due to the unitary operations
in each step. In the analysis later, we show that, for adequately chosen
parameters, the initial state |ψ◦⟩, and therefore all states, are actually very
close to normalized.

The description and analysis of Step 1 of Algorithm 2 is deferred to Ap-
pendix A.5. It will be shown (as summarized in Theorem 3.12) that its cost
is comparable to the main cost of Algorithm 2, while contributing an error
of at most o(η) in the trace distance.
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Algorithm 2: Quantum algorithm for the dual lattice sampling prob-
lem

1: Prepare the Gaussian state
|ψ◦⟩ := sm/2 ·

∑
x∈Dm

√
ρ1/s(x) · |x⟩Dm |0⟩ ;

2: Apply the f-oracle, yielding sm/2 ·
∑
x∈Dm

√
ρ1/s(x) · |x⟩Dm |f(V x)⟩ ;

3: Apply the quantum Fourier transform on the first register,
yielding the unnormalized state
sm/2 ·

∑
x∈Dm

∑
y∈D̂m

√
ρ1/s(x) · e−2πi⟨x,y⟩ · |y⟩D̂m |f(V x)⟩ ;

4: Measure the first register in the D̂mrep-basis yielding some
y ∈ D̂mrep, and output y

V ;

Figure 3.4.: A visual representation of Algorithm 2, if it would have been run on a ‘con-
tinuous’ quantum computer with infinitely many qubits. In reality, quantum
computers have only finitely many qubits, leading to discretization errors.
These errors are the main topic of this chapter. Note that the state after the
Fourier transform ‘peaks’ at the dual lattice points.
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3.4.2. The Figure of Merit

Recall that N = dimH = 2n. Then the state after step (2) of Algorithm 2
equals, up to normalization,

|ψ⟩ := sm/2 ∑
x∈Dm

√
ρ1/s(x) |x⟩Dm |f(V x)⟩

which we can rewrite as

|ψ⟩ =
∑
x∈Dm

|x⟩Dm |h(x)⟩

where
|h(x)⟩ := sm/2

√
ρ1/s(x) · |f(V x)⟩ .

Applying the quantum Fourier transform in step (3) maps this to

|ψ̂⟩ = q−m/2 ∑
x∈Dm

∑
y∈D̂m

e−2πi⟨x,y⟩|y⟩D̂m |h(x)⟩

= qm/2 ∑
y∈D̂m

|y⟩D̂m |FDm {h} (y)⟩ ,

where the factor qm/2 comes from the fact that, by our convention, the
Fourier transform FDm is scaled with the factor q−m, while the quantum
Fourier transform comes with a scaling factor q−m/2.

Up to normalization, the probability to observe outcome y ∈ D̂m in step (4)
thus is

⟨ψ̂|(|y⟩⟨y| ⊗ I)|ψ̂⟩ = qm · ∥FDm {h} (y)∥2H ,

and so, for any “target” subset C ⊂ D̂m, the probability for the algorithm
to produce an outcome y ∈ C equals

D(C) =
∑
y∈C

⟨ψ̂|(|y⟩⟨y| ⊗ I)|ψ̂⟩
⟨ψ◦|ψ◦⟩

=
∥1C · FDm {h}∥2D̂m

sm

qm

∑
x∈Dm ρ1/s(x)

. (3.29)

This target set are the points that one would like to have as an outcome
after measuring. In our situation, this target set C consists of points close
to dual lattice points ℓ∗, as those are considered ‘good’ measurement (see
Figure 3.5).
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Figure 3.5.: The target set C consists of those grid points that are δ · λ∗
1-close to the dual

lattice Λ∗; these points give valuable information about the dual lattice Λ∗.
In this specific example, the target set consists of the green points and the
blue circles around the black dual lattice points have radius δ · λ∗

1.

The algorithm’s behavior in the limit

Intuitively, in the limit q →∞, the grid 1
qZ

m becomes Rm; thus, neglecting
constant factors, the function FDm {h} is expected to converge to

FRm{ρ√2/s · f(V ·)} = ρs/
√

2 ⋆ FRm{f(V ·)} .

Furthermore, when V is large enough compared to s, then, relative to the
dual lattice V Λ∗, the Gaussian function behaves as a Dirac delta function.
Thus, the above function is then supported by V Λ∗ and takes on the values
|cℓ∗⟩. Hence, by taking square norms, we get the claimed ⟨cℓ∗ |cℓ∗⟩.

Below, we prove that this intuition is indeed correct, and we work out the
actual “rate of convergence”.

103



3. The Continuous Hidden Subgroup Problem

3.5. Analysis

3.5.1. Proof Overview

In the following few paragraphs we give an overview of the proof of correctness
of Algorithm 2. The main idea boils down to showing that the finite Fourier
transform is close to the continuous Fourier transform on the function
h = f · ρ1/s. They are indeed close due to the smoothness of the Gaussian
and the Lipschitz-continuity of the oracle function f .

The unnormalized initial state |ψ◦⟩ has approximately norm one. By the
smoothing argument of Banaszczyk, we derive that the initial state’s norm
satisfies ⟨ψ◦|ψ◦⟩ = sm

qm

∑
x∈Dm ρ1/s(x) ≈ 1. So, the initial state might not be

perfectly normalized, but it is almost. Therefore,

D(C) =
∥1C · FDm {h}∥2D̂m

sm

qm

∑
x∈Dm ρ1/s(x)

≈ ∥1C · FDm {h}∥2D̂m

meaning that we can focus on the latter quantity, that consists just of the
norm of the Fourier transformed function h.

Replacing the function h by its Tm-periodization h|T
m

. The function h =
sm/2 · f · ρ√2/s is a product of the function f and a Gaussian that is narrow
enough to be contained within the centered unit cube. Therefore, peri-
odization of h with respect to the unit cube [−1

2 ,
1
2 ]m (i.e., the central

representative of the unit torus) doesn’t differ too much from restricting h
to the torus. Therefore,

∥1C · FDm {h}∥2D̂m ≈
∥∥1C · FDm{h|T

m

}∥2D̂m .

Replacing the finite Dm-Fourier transform by the Tm-Fourier transform.
Because the function h is Lipschitz-continuous, changing the finite Fourier
transform into a continuous one over the torus Tm gives us a error that
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depends mainly on the discretization parameter q and the Lipschitz constant
Lip(f).

∥1C · FDm{h|T
m

}∥2D̂m ≈ ∥1C · FTm{h|T
m

}∥2Zm .

Replacing the Tm-Fourier transform by the Rm-Fourier transform. Using
the Poisson summation formula, one can derive an equality between the
Fourier transform of h|T

m

over the torus Tm and the Fourier transform of h
over the reals Rm.

∥1C · FTm{h|T
m

}∥2Zm = ∥1C · FRm{h}∥2Zm .

Relating the Rm-Fourier transform with the Fourier coefficients |cℓ∗⟩ of |f⟩.
As h is essentially a product of f and a relatively wide Gaussian, one can
apply the convolution theorem to obtain the real Fourier transform of h.
This Fourier transform is then very much related with the Fourier coefficients
|cℓ∗⟩ of f .

∥1C · FRm{h}∥2Zm ≈
∑
ℓ∗∈Λ∗

⟨cℓ∗ |cℓ∗⟩ · ιC(ℓ∗)

The function ιC here acts as sort-of an indicator function; one can think
of ιC(ℓ∗) being close to one whenever ℓ∗ is in the ‘target set’ C and zero
otherwise. Recall that this target set are the ‘wanted’ points, i.e., the desired
outcomes after measuring the quantum state. In our situation, this target
set C consists of points close δλ∗1-close to dual lattice points ℓ∗, as those
are considered ‘good’ measurements; they namely give valuable information
about the dual lattice Λ∗.

Lower bounding the success probability by means of Fourier coefficients of f .
In particular, one can show that, up to a small error, the function ιC indeed
acts as an indicator function. Whenever a large enough ball around a dual
lattice point ℓ∗ is contained in C, the value of ιC(ℓ∗) approximates one.

D(C) ≈
∑
ℓ∗∈Λ∗

⟨cℓ∗ |cℓ∗⟩ · ιC(ℓ∗) ≥
∑
ℓ∗∈Λ∗

Bδλ∗
1

(ℓ∗)∩Zm⊆C

⟨cℓ∗ |cℓ∗⟩. (3.30)
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Taking into account the bounded output of Algorithm 2 and finalizing the
analysis. The output distribution D of Algorithm 2 has support only in
[−q/2, q/2]m. So, for any S ⊆ Λ∗ the probability pS from Problem 3.6 applied
to the output distribution of Algorithm 2 satisfies

pS = D
(
Bδλ∗

1
(S)

)
= D

(
Bδλ∗

1
(S) ∩ [−q/2, q/2]m

)
⪆

∑
ℓ∗∈Λ∗

ℓ∗∈S∩[−q/2,q/2]m

⟨cℓ∗ |cℓ∗⟩ ⪆
∑
ℓ∗∈S
⟨cℓ∗ |cℓ∗⟩

where the first ‘approximate inequality’ (which is an inequality up to some
small error) is obtained from Equation (3.30) and the last ‘approximate
inequality’ holds by the fact that the ‘tail’ of the Fourier coefficients of f
has small weight, i.e., ∑|ℓ∗|>q/2⟨cℓ∗ |cℓ∗⟩ is small.

Summarizing, this error mainly occurs because of the phrasing of the Prob-
lem 3.6. It makes the suggestion that the distribution D should have un-
bounded support and should be able to reach any dual lattice point, whereas
in reality (for the output distribution of Algorithm 2) this is very much
not the case. The error induced by this discrepancy is, as a consequence,
essentially the combined weight (i.e., the ‘lost probability’) of the lattice
points unreachable by the output distribution of Algorithm 2.

The velocity parameter V . In the formal analysis below, we sometimes
temporarily assume that the velocity parameter equals one, i.e., V = 1.
This is for sake of clarity and can be done without loss of generality, since
for arbitrary V the very same reasoning can be applied to the function
fV := f(V ·). This affects the quantities involved in the sense that Λ∗ becomes
V Λ∗, λ∗1 becomes V · λ∗1 and Lip(fV ) becomes V Lip(f).

To be clear, the end results and errors involved are always stated for general
V . Moreover, whenever the assumption V = 1 occurs in a proof or a line of
reasoning, we will always explicitly say so, in order to avoid confusion.
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3.5.2. Formal Analysis

The unnormalized initial state |ψ◦⟩ has approximately norm one

By the smoothing lemma (see Lemma 2.31), we have, whenever q/s ≥
√
m,

⟨ψ◦|ψ◦⟩ = sm

qm

∑
x∈Dm

ρ1/s(x) ≤ sm

qm
· ρ1/s

(1
q
Zm
)
≤ 1 + 2βq/s

≤ 1 +O(e−q2/s2).

Therefore,∣∣∣∣∣∥1C · FDm {h}∥2D̂m

sm

qm

∑
x∈Dm ρ1/s(x)

− ∥1C · FDm {h}∥2D̂m

∣∣∣∣∣ ≤ O(e−q2/s2). (3.31)

By requiring that q/s ≥
√
m+ log(η−1), we can safely neglect this error.

Replacing the function h by its Tm-periodization h|T
m

By the linearity of the Fourier transform, by the fact that 1C is an indicator
function and by Parseval’s theorem, one can deduce

∥1C · FDm {h} − 1C · FDm{h|T
m

}∥D̂m ≤ ∥FDm{h− h|T
m

}∥D̂m

= ∥h|T
m

− h∥Dm .

Writing out the definition of the functions h = sm/2 · f · ρ√2/s and h|T
m

=∑
z∈Zm h(z + ·), we obtain

∥h|T
m

− h∥2Dm = 1
qm

∑
x∈Dm

∥∥∥ ∑
z∈Zm\0

h(x+ z)
∥∥∥2

H

≤ sm

qm

∑
x∈Dm

 ∑
z∈Zm\0

ρ√2/s(x+ z) · ∥f(V (x+ z))∥H

2

.
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3. The Continuous Hidden Subgroup Problem

Since ∥f(x)∥H =
√
⟨f(x)|f(x)⟩ = 1, as |f(x)⟩ is a quantum state for any

x ∈ Rm, above expression is bounded by

sm

qm

∑
x∈Dm

( ∑
z∈Zm\0

ρ√2/s(x+ z)

︸ ︷︷ ︸
≤2·β s

2
√

2

)2

≤ sm · |Dm|
qm

· (2 · β s

2
√

2
)2

≤ 4 · sm · (β s

2
√

2
)2,

as ρ√2/s
(
Zm\{0} + x

)
≤ 2 · β s

2
√

2
, from Banaszczyk’s tail bound in Corol-

lary 2.30. By the reverse triangle inequality, provided that s ≥
√

8m, we
conclude∣∣∣∥1C · FDm {h}∥2D̂m − ∥1C · FDm{h|T

m

}∥2D̂m

∣∣∣ ≤ O(sme−s2/8). (3.32)

By requiring that s ≥
√

8m log(m) + log(η−1), we can safely neglect this
error.

Replacing the finite Dm-Fourier transform by the Tm-Fourier transform

Using Theorem 2.8 with h|T
m

, one obtains

∣∣∣∥1C · FDm{h|T
m

}∥D̂m − ∥1C · FTm{h|T
m

}∥Zm

∣∣∣ ≤ 4π
√
mLip(h|T

m

)
q

(3.33)

≤ O
(√

msm/2(V Lip(f) + s2)
q

)
. (3.34)

Remark 3.14. In above inequality the indicator function 1C is used as a
function on both Dm and Zm. The function 1C on Zm must be interpreted
as having the same values on Dmrep ⊆ Zm as on Dm and having value zero
otherwise.
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3.5. Analysis

Lemma 3.15. Assume that s ≥ 4
√
m. Then, for the Lipschitz constant

Lip(h|T
m

) of h|T
m

holds

Lip(h|T
m

) ≤ sm/2
(
2V Lip(f) + πs2

)
.

Proof. For the sake of clarity, we assume V = 1 throughout this proof;
at the end we will then have to replace Lip(f) by V Lip(f). Also, we will
temporarily omit the constant term sm/2 in the definition of h and use ρ
for ρ√2/s; thus calculating with h = f · ρ instead. In the final step, the
multiplicative term sm/2 will then be multiplied again to the end result.

By applying the triangle inequality multiple times, using the fact that
∥f(x)∥H = 1 for all x ∈ Rm and using the Lipschitz-continuity of f , one
obtains, for every x, y ∈ Rm,

∥h(x)− h(y)∥H ≤
∥∥f(x)

(
ρ(x)− ρ(y)

)∥∥
H +

∥∥(f(x)− f(y)
)
ρ(y)

∥∥
H

≤ |ρ(x)− ρ(y)|+ Lip(f) · ∥x− y∥Rm · ρ(y) (3.35)

By periodizing with respect to the unit torus Tm = Rm/Zm and applying
the triangle inequality, we obtain, for all x, y ∈ [−1/2, 1/2]m,

∥h|Tm(x)− h|Tm(y)∥H ≤
∑
z∈Zm

|ρ(x+ z)− ρ(y + z)|

+ Lip(f) · ∥x− y∥Tm ·
∑
z∈Zm

ρ(y + z) (3.36)

By smoothing arguments of Banaszczyk, one deduces that ρ√2/s(y+Zm) ≤ 2
(see Corollary 2.30), where we use the assumption s ≥ 4

√
m. By the reasoning

in Lemma A.33, we have that∑
z∈Zm

|ρ√2/s(x+ z)− ρ√2/s(y + z)|

≤πs2/2 · ∥x− y∥Tm

∑
z∈Zm

ρ√8/s(x+ y + 2z)∥x+ y + 2z∥︸ ︷︷ ︸
≤2

≤πs2 · ∥x− y∥Tm , (3.37)
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3. The Continuous Hidden Subgroup Problem

where the last inequality can be obtained by absorbing ∥x+ y+ 2z∥ into the
Gaussian and applying smoothing arguments again; ρ1/s(x) · ∥x∥ ≤ ρ2/s(x)
for all x ∈ Rm and s ≥

√
m, and ρ√8/s(Zm) ≤ ρ√m(Zm) ≤ 1 + 2 · β√m ≤ 2,

for s ≥ 4
√
m (see Lemma 2.29). In other words,∑

z∈Zm

ρ√8/s(x+ y + 2z)∥x+ y + 2z∥ ≤
∑
z∈Zm

ρ√32/s(x+ y + 2z)

≤ ρ√32/s(2 · Z
m) = ρ√8/s(Z

m) ≤ 2.

By combing Equations (3.35) to (3.37), multiplying the factor sm/2 and
replacing Lip(f) by V · Lip(f) we obtain the final result.

Replacing the Tm-Fourier transform by the Rm-Fourier transform

Apply the Poisson summation formula (see Corollary 2.5) to conclude that

∥1C · FTm{h|T
m

}∥Zm = ∥1C · FRm{h}∥Zm ,

where FRm{h} is temporarily identified with its restriction to Zm.

Relating the Rm-Fourier transform with the Fourier coefficients |cℓ∗⟩ of
|f⟩

By applying the convolution theorem as outlined in Equation (2.9) of
Section 2.2.2, we see that

FRm{h}[y] = FRm/Λ{f(V ·)} ⋆ FRm{sm/2ρ√2/s(·)}(y)

=
(2
s

)m/2∑
ℓ∗∈Λ∗

|cℓ∗⟩ρs/√2(y − V ℓ∗),

where |cℓ∗⟩ are the vectorial Fourier coefficients of f . Therefore,

∥FRm{h}[y]∥2H

=
(2
s

)m ∑
k∗∈Λ∗

∑
ℓ∗∈Λ∗

⟨cℓ∗ |ck∗⟩ρs/√2(y − V ℓ∗)ρs/√2(y − V k∗)

=
(2
s

)m ∑
u∗∈ 1

2 Λ∗

∑
v∗∈u∗+Λ∗

⟨cv∗+u∗ |cv∗−u∗⟩ρs/2(V u∗)ρs/2(y − V v∗) , (3.38)
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where the latter is obtained by the variable substitution u∗ = ℓ∗−k∗

2 , v∗ =
ℓ∗+k∗

2 , and using the multiplicative properties of Gaussian functions (see
Lemma 2.23), like ρs/√2(x)ρs/√2(y) = ρs/2((x+ y)/2)ρs/2((x− y)/2) for all
x, y ∈ Rm.

Definition 3.16. For any subset C ⊆ Zm, any s > 0 and any ℓ∗ ∈ Λ∗, we
define ιC : Λ∗ → R>0 by the following rule,

ιC(ℓ∗) :=
(2
s

)m ∑
y∈C

ρs/2(y − V ℓ∗),

where leave out the dependence on s and V in the notation.

The above definition of ιC is mainly to make the notation in this analysis
more compact. But this function on Λ∗ also has an intuitive interpretation;
it is the cumulative Gaussian weight of all points in C around ℓ∗ (or, V · ℓ∗
in the case of scaling with V ). So, if C contains many close points around ℓ∗
(see Figure 3.5 and Figure 3.6), this cumulative Gaussian weight approaches
1, whereas if there are no points in C around ℓ∗, this weight approaches zero.
Summarizing, the value ιC(ℓ∗) quantifies the number of close points around
ℓ∗; a value of 1 indicates many good close points in C, whereas a value near
0 indicates no good close points (see Figure 3.6).

Figure 3.6.: The function ιC(ℓ∗) equals the cumulative Gaussian weight of all points in C
around ℓ∗. In the left panel above, the set C contains many points around
the red lattice point ℓ∗, yielding a cumulative Gaussian weight approaching
one, i.e., ιC(ℓ∗) ≈ 1. In the right panel, set C only contains a few points close
to the lattice point, yielding a very low Gaussian weight, i.e., ιC(ℓ∗) ≈ 0.
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Lemma 3.17. Let V, s > 0 satisfy the conditions V λ∗1/s ≥
√
m and s ≥

√
m.

Then, for any C ⊆ [q]mc , we have∣∣∣∣∣∣∥1CFRm{h}∥2Zm −
∑
ℓ∗∈Λ∗

⟨cℓ∗ |cℓ∗⟩ιC(ℓ∗)

∣∣∣∣∣∣ ≤ O(e−(V λ∗
1/s)2). (3.39)

Proof. Without loss of generality, we assume in the rest of the proof that
V = 1, as sketched in the last paragraph of Section 3.5.1. At the end of the
proof we will then replace λ∗1 by V · λ∗1.

By writing out the definition of the norm over Zm and using Equation (3.38),
we obtain

∥1CFRm{h}∥2Zm =
∑
y∈C
∥FRm{h}[y]∥2H

=
(2
s

)m ∑
y∈C

∑
u∗∈ 1

2 Λ∗

v∗∈u∗+Λ∗

⟨cv∗+u∗ |cv∗−u∗⟩ρs/2(u∗)ρs/2(y − v∗) .

By swapping the summation over C to the right, we deduce

∥1CFRm{h}∥2Zm =
∑

u∗∈ 1
2 Λ∗

v∗∈u∗+Λ∗

⟨cv∗+u∗ |cv∗−u∗⟩ρs/2(u∗)ιC(v∗) .

We split above sum into a part where u∗ = 0 and a part where u∗ ≠ 0.
Notice that for the case u∗ = 0, the inner product ⟨cv∗+u∗ |cv∗−u∗⟩ becomes
⟨cv∗ |cv∗⟩ and ρs/2(u∗) = 1. This yields

∥1CFRm{h}∥2Zm =
∑
ℓ∗∈Λ∗

⟨cℓ∗ |cℓ∗⟩ · ιC(ℓ∗)

+
∑

u∗∈ 1
2 Λ∗\0

ρs/2(u∗)
∑

v∗∈u∗+Λ∗

⟨cv∗+u∗ |cv∗−u∗⟩ · ιC(v∗). (3.40)

In order to achieve the claim of this lemma, it is enough to bound the second
term (where u∗ ̸= 0) in Equation (3.40). As we assumed that s ≥

√
m, we

can bound ιC(v∗) ≤
(

2
s

)m
ρs/2(Zm+ t) ≤ 2 for any v∗ ∈ Rm and C ⊆ Zm by

applying smoothing arguments (see Corollary 2.32). The sum of the ‘shifted
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inner products’ of the Fourier coefficients is bounded by one, as can be seen
by applying the Cauchy-Schwarz inequality and the inequality of arithmetic
and geometric means.

∣∣∣∣∣∣
∑

v∗∈u∗+Λ∗

⟨cv∗+u∗ |cv∗−u∗⟩

∣∣∣∣∣∣ ≤
∑
v∗∈Λ∗

√
⟨cv∗+2u∗ |cv∗+2u∗⟩⟨cv∗ |cv∗⟩

≤
∑
v∗∈Λ∗

⟨cv∗+2u∗ |cv∗+2u∗⟩+ ⟨cv∗ |cv∗⟩
2 = ∥f∥2Rm/Λ = 1.

Combining above reasoning with a tail bound of Banaszczyk (Lemma 2.29)
the u∗ ̸= 0 part in Equation (3.40) can be bounded as follows.

∑
u∗∈ 1

2 Λ∗\0

ρs/2(u∗)
∣∣∣ ∑
v∗∈u∗+Λ∗

⟨cv∗+u∗ |cv∗−u∗⟩ · ιC(v∗)︸ ︷︷ ︸
≤2

∣∣∣
≤ 2

∑
u∗∈ 1

2 Λ∗\0

ρs/2(u∗)
∣∣∣ ∑
v∗∈u∗+Λ∗

⟨cv∗+u∗ |cv∗−u∗⟩
∣∣∣

︸ ︷︷ ︸
≤1

≤ 2
∑

u∗∈ 1
2 Λ∗\0

ρs/2(u∗) ≤ 2 · ρs (Λ∗ \ 0) ≤ 4 · βλ∗
1/s
.

In order to drop the assumption that V = 1 from the start of the proof,
we need to replace λ∗1 by V · λ∗1 in above expression. Applying the bound
4 · βV λ∗

1/s
≤ O(e−(V λ∗

1/s)2) for V λ∗1/s ≥
√
m yields the final claim.

By requiring that V λ∗1/s ≥
√
m+ log(η−1), we can safely neglect the error

from Lemma 3.17.
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Lower bounding the success probability by means of Fourier coefficients
of f

Whenever Bδλ∗
1V

(V ℓ∗) ∩ Zm ⊆ C for an ℓ∗ ∈ Λ∗, it holds that

ιC(ℓ∗) =
(2
s

)m ∑
y∈C

ρs/2(y − V ℓ∗) ≥
(2
s

)m ∑
y∈BV δλ∗

1
(V ℓ∗)∩Zm

ρs/2(y − V ℓ∗)

≥
(2
s

)m
ρs/2(Zm)

(
1− β2V δλ∗

1/s

)
≥ (1− 2 · βs/2)(1− β2V δλ∗

1/s
) ,

where the second inequality follows from Banaszczyk’s tail bound (see
Lemma 2.25) and the last from the smoothing bound in Lemma 2.31. In
other words, ιC(ℓ∗) is close to one if C contains all vectors in D̂m that
are δλ∗1V -close to V ℓ∗. This coincides with the intuitive explanation after
Definition 3.16. Note that δλ∗1 is the maximum distance from a dual lattice
point ℓ∗ required to consider the output valuable.

It follows then that∣∣∣ ∑
ℓ∗∈Λ∗

⟨cℓ∗ |cℓ∗⟩ιC(ℓ∗)−
∑
ℓ∗∈Λ∗

BV δλ∗
1

(V ℓ∗)∩Zm⊆C

⟨cℓ∗ |cℓ∗⟩
∣∣∣

≤O(e−s2/4) +O(e−(2V δλ∗
1/s)2), (3.41)

where we use the fact that ∑ℓ∗∈Λ∗⟨cℓ∗ |cℓ∗⟩ = ∥f∥2Rm/Λ = 1. By requiring that
δV λ∗1/s ≥

√
m+ log(η−1) and s ≥ 4

√
m+ log(η−1), we can safely neglect

this error.

Taking into account the bounded output of Algorithm 2 and finalizing
the analysis

As the output distribution D of Algorithm 2 has support only in [−q/2, q/2]m,
we have, for any S ⊆ Λ∗,

D
(
Bδλ∗

1
(S)

)
= D

(
Bδλ∗

1
(S) ∩ [−q/2, q/2]m

)
.
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By simply splitting the set S ⊆ Λ∗ into an ‘tail part’ Stail = S\[−q/4, q/4]m
and a ‘bounded, finite part’ Sfin = S ∩ [−q/4, q/4]m, we obtain∑

ℓ∗∈S
⟨cℓ∗ |cℓ∗⟩−D

(
Bδλ∗

1
(S)

)
=

∑
ℓ∗∈Stail

⟨cℓ∗ |cℓ∗⟩︸ ︷︷ ︸
Small because of a tail bound

+
∑

ℓ∗∈Sfin

⟨cℓ∗ |cℓ∗⟩ − D
(
Bδλ∗

1
(S) ∩ [−q/2, q/2]m

)
︸ ︷︷ ︸

Small because of the error analysis

. (3.42)

By the fact that f is a Lipschitz continuous function, its Fourier coefficients
have a tail bound. By applying Corollary 2.34 with B = q/4, we obtain the
following bound

∑
ℓ∗∈Stail

⟨cℓ∗ |cℓ∗⟩ ≤
∑

ℓ∗∈Λ∗\[−q/4,q/4]m
⟨cℓ∗ |cℓ∗⟩ ≤

4 · Lip(f)2

π2q2 .

The summand in Equation (3.42) is, by the full error analysis, bounded by∑
Bδλ∗

1
(ℓ∗)⊆Bδλ∗

1
(S)∩[−q/2,q/2]m

⟨cℓ∗ |cℓ∗⟩ − D
(
Bδλ∗

1
(S) ∩ [−q/2, q/2]m

)

≤ O
(√

msm/2(V Lip(f) + s2)
q

)
+ o(η) (3.43)

As the only non-negligible error is caused by Equation (3.33), provided
that δV λ∗1/s ≥

√
m+ log(η−1), s ≥ 4

√
m logm+ log(η−1) and q/s ≥√

m+ log(η−1).

Remark 3.18. Note that we chose for Sfin = S ∩ [−q/4, q/4]m the box
[−q/4, q/4]m, whereas in the analysis we used the box [−q/2, q/2]m. This is
to crudely include also all points that are δλ∗1-close to dual lattice vectors.

Final theorem

Assembling all errors, we obtain the following theorem.
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Theorem 3.7. Algorithm 2 solves the Dual Lattice Sampling Problem with
parameters η and δ; it uses one call to the Gaussian superposition subroutine
(see Theorem 3.12), one quantum oracle call to f , mQ + n qubits, and
O(mQ log(mQ)) quantum gates, where

Q = O (m log (m)) +O

(
log

(
a

η · δλ∗1

))
. (3.27)

Proof. In Algorithm 2, two quantum registers are used: one to encode the
grid Dm and another one for the storage of the state of the continuous
hidden subgroup oracle |f(x)⟩. As the grid has qm points, we need m log q
qubits to encode it. For the oracle state it is assumed that it can be stored
in n qubits, thus arriving at a total of mQ + n qubits, where Q = log q.
Apart from constructing the initial Gaussian superposition, the only part of
Algorithm 2 that uses quantum gates is the quantum Fourier transform on
the grid register consisting of mQ qubits. Using a result of Hallgren et al., a
sufficient approximation of this quantum Fourier transform can be obtained
using only O(mQ log(mQ)) elementary quantum gates [HH00].

To compute the value of Q = log(q), we instantiate the parameters s =
4
√
m logm+ log(η−1) and V = 4

δλ∗
1
· (m logm + log(η−1)). This implies

s ≥ 4
√
m logm+ log(η−1) and δV λ∗1/s ≥

√
m+ log(η−1), making the errors

from Equations (3.31), (3.32), (3.39) and (3.41) all negligible compared to η.
To get the errors from Equation (3.33) and Equation (3.43) well below η,
we put

log q = Q = O

(
m log(s) + log

(V Lip(f)
η

))
.

Writing out the instantiations of s and V and grouping the resulting expres-
sions properly, we arrive at Equation (3.27). Here we use the fact that, for
all η > 0 and m ∈ N, m

(
log

(
m logm+ log(1/η)

))
∈ O(m logm+ log(1/η)).
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3.6. From Sampling to Full Dual Lattice Recovery

We have so far focused on approximate sampling dual lattice points with
probability weights ⟨cℓ∗ |cℓ∗⟩ for ℓ∗ ∈ Λ∗, regardless of how useful this distribu-
tion may be. Indeed, until now, it could be that the function f : Rm/Λ→ S
is constant, and therefore that all weight is concentrated on 0 ∈ Λ∗. We
would like now make sure we can reconstruct (approximately) Λ∗ from
such samples, i.e., that a sufficient number of sampled vectors from Λ∗ will
generate it. Informally, an equivalent condition is that the weight ⟨cℓ∗ |cℓ∗⟩ is
not concentrated on any proper sublattice M∗ ⊊ Λ∗. This is exactly what
happens if the oracle function f is separating, i.e., is not too constant.

More formally, we give the following sufficient conditions for a distribution
to be useful as a (approximate) lattice sampling distribution.

Definition 3.19. Let L ⊆ Rm be a full-rank lattice. A distribution D on L

is called p-evenly distributed whenever Prv←D[v ∈ L′] ≤ p for any proper
sublattice L′ ⊊ L.

Definition 3.20. Let L ⊆ Rm be a full-rank lattice. A distribution D on L

is called (R, q)-concentrated whenever Prv←D[∥v∥ ≥ R] ≤ q.

Figure 3.7.: An example of a (R, q)-concentrated distribution, where R is the radius of the
green circle and q = 0.05, i.e., less than 5 percent of the weight lies outside
the circle. Note that this Gaussian distribution is also 0.5-evenly distributed.

The following lemma states that an evenly distributed and well-concentrated
distribution on a lattice L should eventually output a full generating set of
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Figure 3.8.: Both these distributions are not p-evenly distributed for any p < 1, as the
strict sublattices indicated by the red points have all of the weight.

that lattice, and gives a precise probabilistic upper bound on the number of
samples needed.

Lemma 3.21. Let L ⊆ Rm be a full-rank lattice with a p-evenly distributed
and (R, q)-concentrated distribution D with R ≥ det(L)1/m. Denote by S the
random variable defined by the number of samples that needs to be drawn
from D such that the samples together generate L as a lattice. Then, for all
α > 0,

Pr
[
S > (2 + α) · (t+m)

1− p− q

]
≤ exp(−α(t+m)/2)

where t = m log2(R)− log2(det(L)) ≥ 0.

Proof. First, we define the following sublattices of L, for any v1, . . . , vj−1 ∈
L.

Lv1,...,vj−1 =

spanR(v1, . . . , vj−1) ∩ L if dim(spanR(v1, . . . , vj−1)) < m

Zv1 + · · ·+ Zvj−1 otherwise.

Consider a sequence of samples (vi)i>0 (from D). We call vj ‘good’ whenever
∥vj∥ ≤ R and vj /∈ Lv1,...,vj−1 . We argue that we need at most m+ t good
vectors to generate L.

Denote L′ for the lattice generated by the m + t good vectors. Then the
first m good vectors ensure that L′ is of rank m, whereas the last t good
vectors will reduce the index of the L′ lattice in L. Calculating determinants,
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using the fact that all good vectors are bounded by R, we have det(L′) ≤
Rm/2t ≤ det(L). This yields L′ = L.

Denote by X the random variable having the negative binomial distribution
with success probability p+ q and number of ‘failures’ m+ t. That is, X is
the number of independent samples from a (p + q)-Bernoulli distribution
until m+ t ‘failures’1 are obtained. We argue that the random variable S is
dominated by the random variable X, i.e., Pr[S > x] ≤ Pr[X > x] for every
x ∈ N.

Again, consider a sequence of samples (vi)i>0 (from D). The probability
of vj being a ‘good’ vector is at least 1 − p − q, by the fact that D is
(R, q)-concentrated and p-evenly distributed. Because at most m+ t ‘good’
vectors are needed to generate the whole lattice, S is indeed dominated by
X. Therefore, for any k ∈ N,

Pr
[
S >

t+m+ k

1− p− q

]
≤ Pr

[
X >

t+m+ k

1− p− q

]
≤ Pr [B < m+ t]

≤ exp
(
−1

2
k2

t+m+ k

)
(3.44)

where B is binomially distributed with ⌊ t+m+k
1−p−q ⌋ trials and success probability

1− p− q. The first inequality follows from the fact that S is upper bounded
by X. The second inequality comes from the close relationship between the
negative binomial distribution and the binomial distribution [GKP94, Ch. 8,
Example 17]. The last inequality follows from the Chernoff bound. Putting
k = (1 + α)(t+m) into Equation (3.44) yields the claim.

We conclude this section by relating the parameters (a, r, ϵ) of the HSP
oracle (Definition 3.2) f : Rm/Λ → S to how equally-distributed and
well-concentrated the distribution Dideal on Λ∗ is, arising from the Fourier
coefficients of the oracle function f . The exact relation is stated in Proposi-
tion 3.24, but we first need two technical lemmas to help us proving this
relation.

1In our case, the failures are the ‘good’ vectors. We nonetheless chose the word ‘failure’
because it is standard nomenclature for the negative binomial distribution.
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3. The Continuous Hidden Subgroup Problem

Lemma 3.22. Let Λ be a lattice, and let M ⊋ Λ a proper super-lattice of
Λ. Then there exists a v ∈M such that d(v,Λ) ≥ λ1(Λ)/3.

Proof. Let w ∈ M be the shortest non-zero vector in M and write ∥w∥ =
αλ1(Λ) for α ≤ 1. We consider two cases depending on the value of α ∈ (0, 1].
If α ≥ 1/3, choose an element v ∈ M\Λ arbitrarily. This element satisfies
d(v,Λ) ≥ λ1(Λ)/3, since

d(v,Λ) = d(v + Λ, 0) = d
(
(v + Λ)\0, 0

)
≥ d(M\0, 0) = α · λ1(Λ) ≥ λ1(Λ)/3.

If, on the other hand, α < 1/3, then v = ⌈ 1
3α⌉ · w ∈ M satisfies d(v,Λ) ≥

λ1(Λ)/3. One can deduce this by observing that

∥v∥ = ⌈ 1
3α⌉ · α · λ1(Λ) ∈ [1

3 · λ1(Λ), 2
3 · λ1(Λ)],

which in particular implies that ∥v − ℓ∥ ≥
∣∣∥ℓ∥ − ∥v∥∣∣ ≥ 1

3 · λ1(Λ), for all
ℓ ∈ Λ, i.e., d(v,Λ) ≥ 1

3λ1(Λ).

Figure 3.9.: The two cases of Lemma 3.22 are depicted here, where the smaller lattice
Λ consists of the points inside the red circles. The blue super lattice M satisfies
λ1(M) = αλ1(Λ) for some α > 1/3 in the left picture and for some α < 1/3
in the right picture. In both cases, an element v ∈ M for which holds
d(v,Λ) > 1

3 · λ1(Λ) can be reasonably found. Examples of such v ∈ M

are marked with a green circle.
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3.6. From Sampling to Full Dual Lattice Recovery

Lemma 3.23. Let Λ be a lattice and M ⊋ Λ a proper super-lattice of Λ.
Then the number N =

∣∣∣{c ∈M/Λ | d(c,Λ) < 1
6λ1(Λ)

}∣∣∣ of close cosets is at
most 1

2 · |M/Λ|.

Proof. By Lemma 3.22 there exists a v ∈ M such that d(v,Λ) ≥ 1
3λ1(Λ).

Denoting T =
{
c ∈M/Λ | d(c,Λ) < 1

6λ1(Λ)
}

, we can deduce that T ∪(T+v)
is a disjoint union in M/Λ. Indeed, elements c ∈ T satisfy d(c,Λ) < 1

6λ1(Λ),
whereas c′ ∈ T + v satisfy d(c′,Λ) ≥ d(v,Λ)− 1

6λ1(Λ) ≥ 1
6λ1(Λ). Therefore

N = |T | ≤ 1
2 |M/Λ|.

Proposition 3.24. Let f : Rm → S be an (a, r, ϵ)-HSP oracle of the full-
rank lattice Λ ⊂ Rm, with r ≤ λ1(Λ)/6. Let Df be the distribution supported
by Λ∗, with weight ⟨cℓ∗ |cℓ∗⟩ at ℓ∗ ∈ Λ∗, where |cℓ∗⟩ are the vectorial Fourier
coefficients of the function f . Then Df is both (1

2 + ϵ)-evenly distributed and
(R, ma2

4π2R2 )-concentrated for any R > 0.

Proof. The distribution Df being (R, ma2

4π2R2 )-concentrated for any R > 0 is a
direct consequence of Corollary 2.34. For the (1

2 + ϵ)-evenly distributed
part, we argue as follows. Let M∗ be any strict sublattice of Λ∗, and
let M be its dual, which is then a superlattice of Λ. Put f |R

m/M (x) =
1

|M/Λ|
∑
v∈M/Λ f(x + v), the periodization of f with respect to Rm/M (c.f.

Definition 2.3). We have the following sequence of equalities, of which the
second follows from the Poisson summation formula (see Theorem 2.4) and
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3. The Continuous Hidden Subgroup Problem

the third from Parseval’s theorem (see Equation (2.5)).∑
v∗∈M∗

⟨cv∗ |cv∗⟩

=
∥∥∥FRm/Λ{f}

∣∣∣
M∗

∥∥∥2

M∗
=
∥∥∥FRm/M{f |R

m/M}
∥∥∥2

M∗

= ∥f |R
m/M∥Rm/M = 1

detM

∫
x∈Rm/M

〈
f |R

m/M ∣∣f |Rm/M〉dx,
= 1
|M/Λ|2

∑
v,w∈M/Λ

1
detM

∫
x∈Rm/M

⟨f(x+ v)| f(x+ w)⟩ dx︸ ︷︷ ︸
Iv,w

= 1
|M/Λ|2

∑
v,w∈M/Λ

dRm/Λ(v,w)<r

Iv,w + 1
|M/Λ|2

∑
v,w∈M/Λ

dRm/Λ(v,w)≥r

Iv,w. (3.45)

By the definition of an (a, r, ϵ)-oracle, we have that |Iv,w| ≤ ϵ whenever
dRm/Λ(v, w) ≥ r. In the rest of the cases we have |Iv,w| ≤ 1, because f maps
to the unit sphere. Equation (3.45) is therefore bounded by |M/Λ ∩ Br|

|M/Λ| + ϵ,
where Br is the open unit ball around zero with radius r. By Lemma 3.23,
we have |M/Λ ∩ rB|

|M/Λ| ≤ 1
2 for r ≤ λ1(Λ)/6. Summarizing, we derive

∑
v∗∈M∗

⟨cv∗ |cv∗⟩ ≤ 1
2 + ϵ.

Since M∗ was chosen arbitrarily, we can conclude that Df is (1
2 + ϵ)-evenly

distributed.

Remark 3.25. A similar reasoning happens in [Reg04a, Lecture 12], though
it specifically targets the discrete Gaussian distribution on lattices. Despite be-
ing not general enough for our purposes, it may well be helpful for optimizing
a future specialization.

Theorem 3.9. Let f : Rm → S be an (a, r, ϵ)-HSP oracle of the full-rank
lattice Λ ⊂ Rm, with r ≤ λ1(Λ)/6 and ϵ < 1/4. Let Df be the distribution
supported by Λ∗, with weight ⟨cℓ∗ |cℓ∗⟩ at ℓ∗ ∈ Λ∗, where |cℓ∗⟩ are the vectorial
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3.7. Recovering a Basis of the Primal Lattice

Fourier coefficients of the function f .
Then, with overwhelming probability, we need at most

O
(
m log2

(
ma · det(Λ)1/m))

samples from Df to fully generate the lattice Λ∗.

Proof. Apply Proposition 3.24 with R =
√
m · Lip(f) to deduce that Df is

3/4-evenly distributed and (
√
mLip(f), 1/(4π2))-concentrated. Subsequently,

we apply Lemma 3.21 with2 p = 3/4, q = 1/(4π2), R =
√
m · Lip(f) and

t = m log2(
√
mLip(f))− log2(det(Λ∗)), to obtain

Pr [S > (2 + α) · 5 · (t+m)] ≤ exp(−α(t+m)/2).

Writing out t (which is larger than 0), noticing that Lip(f) ≤ a, and
absorbing m into the big-O, we obtain the result with exponentially small
error probability.

3.7. Recovering a Basis of the Primal Lattice

The last problem that needs to be resolved is how to obtain an approximate
basis B̃ of the primal lattice Λ, given a set of approximate generators G̃
of the dual lattice Λ∗. Also, we would like to know how the approximation
errors of G̃ and B̃ are related.

Recovering the approximate basis B̃ proceeds by two steps. The first step
consists of applying the Buchmann-Pohst algorithm [BP89] twice to the
set of generators G̃, yielding an approximate basis D̃ of the dual lattice
Λ∗ whose errors are relatively easy to analyze. The second step consists of
inverting and transposing the square matrix D̃. This yields an approximate
basis B̃ for the primal lattice Λ.

2In order to apply Lemma 3.21, we need to verify that R =
√
mLip(f) ≥ det(Λ∗)1/m.

By Remark 3.5, we have
√
mLip(f) ≥

√
m(1−ϵ)

r
≥ 3

√
m

λ1(Λ) ≥ 3 det(Λ)−1/m = 3 det(Λ∗)1/m,
where we use r ≤ λ1(Λ)/6 and Minkowski’s inequality.
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3. The Continuous Hidden Subgroup Problem

The next two subsections follow above summary, and consist of theorems
that indicate the decline in precision after each step.

In this particular section, we use row notation for matrices, i.e., any row
represents a vector. The matrix of generators G̃ is an k ×m matrix, thus
consisting of k generators. We assume that the lattice Λ (and thus Λ∗ as
well) is of full rank m, meaning that k ≥ m and that the resulting bases D̃
and B̃ must be m ×m square matrices. We denote by ∥M∥∞ the matrix
norm induced by the infinity norm, explicitly defined as

∥M∥∞ := max
1≤i≤m

n∑
j=1
|mij |.

3.7.1. An Approximate Well-conditioned Basis of the Dual

Obtaining an approximate and well-conditioned basis of the dual proceeds
by means of the Buchmann-Pohst algorithm, which is rigorously analyzed by
Buchmann and Kessler [BK96, Sec. 4]. This algorithm consists of concatenat-
ing the generating matrix by a scaled identity matrix and applying the LLL
lattice reduction algorithm. As described after the proof of [BK96, Thm. 4],
this particular algorithm is actually applied twice, once on the matrix of
generators G̃ and once again on the resulting intermediate approximate
basis D̃ to achieve a new basis whose errors are easier to analyze. From now
on, we will refer to applying this procedure twice as the Buchmann-Pohst
algorithm. From [BK96] we can extract the following result.

Theorem 3.26. Let G̃ = G+ ∆G be an approximation of a k×m matrix of
generators G of the full-rank lattice Λ∗ , with ∥∆G∥∞ < γ <

λ∗
1·det(Λ∗)

2O(km)·∥G̃∗∥m
∞

.
Then, on input3 [G̃ | γ · I], the Buchmann-Pohst algorithm outputs an LLL-
reduced matrix [D̃| γ ·M ], with D̃ = D + ∆D being an approximate basis of
Λ∗, where both ∥∆D∥∞ and ∥γ ·M∥∞ are upper bounded by

2O(km)∥G̃∗∥m+1
∞

λ∗1 · det(Λ∗) · γ

3Here, the I is the k × k identity matrix.
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3.7. Recovering a Basis of the Primal Lattice

Proof. As already mentioned, applying the Buchmann-Pohst algorithm on
G̃ takes two reduction steps. The first reduction step is applied on [G̃| γ · I]
and yields an intermediate basis D̃0 = M0G̃ and the second step is applied
on [D̃0 | γI] and yields the final basis D̃ = MD̃0 = MM0G̃. Here, M and
M0 are unimodular matrices.

The fact that the matrix [D̃|γ ·M ] is the output of the second step, proves
that this must be an LLL-reduced basis (note that γ ·M is just the matrix M
scaled by the scalar γ). From [BK96, Cor. 4.1], we deduce that both ∥M∥∞
and ∥MM0∥∞ are bounded by 2k−1(

√
mk+2) ·λ′α′/λ1(Λ∗), given that4 γ <

λ1(Λ∗) det(Λ∗)

(
√
mk+2)·λ′·2

k−3
2

. Putting in the actual values of α′ = (
√
mk+ 2)2 k−1

2 · ∥G̃∥∞
and

λ′ = λ(
√
mk + 2)m2

k−1
2 m = (k

√
m/2 +

√
k)(
√
mk + 2)m2

k−1
2 m ∥G̃∥m∞

det(Λ∗)

yields the bound on ∥γM∥∞ and the assumption on γ. For the bound on ∆D,
notice that ∥∆D∥∞ = ∥MM0∆G∥∞ ≤ ∥MM0∥∞∥∆G∥∞ and by assumption
∥∆G∥∞ ≤ γ.

For small enough γ, the LLL-reduced basis [D̃ | γ ·M ] is very close to [D | 0].
One of the main results of Chang, Stehlé and Villard [CSV12, Cor. 5.7] states
that the close matrix [D | 0] must then also be ‘weakly LLL-reduced’. This
knowledge can then be used to show that this basis D is well-conditioned.

Lemma 3.27. Let [D̃ | γM ] = [D | 0] + [∆D | γM ] be an LLL-reduced
basis with ∥[∆D | γM ]∥∞ ≤ µ · (3/

√
2)−3m∥D̃∥∞ for some µ < 1. Then D is

(d, η′, θ′)-weakly LLL-reduced as in [CSV12, Def. 5.1], with d = 3
4 +O(2−mµ),

η = 1
2 +O(2−mµ) and θ = O(2−mµ).

Corollary 3.28. Let [D̃ | γM ] = [D | 0] + [∆D | γM ] be an LLL-reduced
basis with ∥[∆D | γM ]∥∞ ≤ µ · (3/

√
2)−3m∥D̃∥∞ for some µ < 1 (i.e.,

4See [BK96, Thm. 4.1], where λ needs to be replaced by λ′, as described in the text
after the proof of [BK96, Thm. 4.2]). These variables λ and λ′ are from [BK96, Prop. 3.2],
and not directly related to the minima of the lattices involved.
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3. The Continuous Hidden Subgroup Problem

satisfies the same assumptions as in Lemma 3.27). Then

∥D−1∥∞ ≤
8m

λ1(Λ∗) .

Proof. We can decompose D = RV Q, with Q orthonormal, V diagonal with
diagonal entries ∥d∗i ∥ and R lower triangular with ones on the diagonal.
Here, d∗i are the Gram-Schmidt orthogonalized basis vectors of D.

By the fact that the matrix norm is submultiplicative, we have

∥D−1∥∞ ≤ ∥R−1∥∞∥V −1∥∞∥Q−1∥∞ = ∥R−1∥∞∥V −1∥∞ ≤
∥R−1∥∞
mini∥d∗i ∥

.

By Lemma 3.27, D is weakly (d, η, θ)-LLL-reduced with d = 3
4 +O(2−mµ),

η = 1
2 +O(2−mµ) and θ = O(2−mµ). Therefore, by [CSV12, Thm. 5.4], taking

α = 2 >
√

2 for simplicity, we know that λ1(Λ∗) ≤ ∥d1∥ ≤ 2m mini∥d∗i ∥, so
that 1/mini∥d∗i ∥ ≤ 2mλ1(Λ∗)−1. In the end of the proof of [CSV12, Lm. 5.5],
we see5 that

∥R−1∥∞ ≤
(1 + α)(1 + η + θ)mαm

(1 + η + θ)α− 1 ≤ 4m,

by taking α = 2, η = 1/2 + O(2−mµ) and θ = O(2−mµ). This yields the
claim.

3.7.2. Inverting the Dual Approximate Basis

As the basis D̃ constructed in the previous subsection is a basis of the
dual lattice Λ∗, we need to invert and transpose it to get an approximate
basis of the primal lattice Λ. In other words, the basis that we would like
to approximate is B = D−⊤, by means of computing B̃ = D̃−⊤. Though,
inverting an approximate matrix induces errors closely related with the
matrix norm of the inverse of the exact basis. More precisely, we have the
following result [BKK17, Cor. 7.2, Eq. (7.46)]

5In [CSV12, Lm. 5.5], the unit-diagonal lower triangular matrix is denoted R̄, and the
bound is about R̄−1
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3.7. Recovering a Basis of the Primal Lattice

Theorem 3.29. Let D̃ = D + ∆D with ∥∆D∥∞ · ∥D−1∥∞ < 1
2 , and denote

B = D−⊤ and B̃ = D̃−⊤ (where D−⊤ is the inverse transpose of D). Then
we have

∥B − B̃∥∞ ≤ 2∥D−1∥2∥∆D∥∞.

3.7.3. Combining the Errors and Tuning the Parameters

Theorem 3.10. There exists a polynomial time algorithm, that, for any
matrix G ∈ Rk×m of k generators of a (dual) lattice Λ∗, and given an
approximation G̃ = G+∆G ∈ Qk×n, computes an approximation B̃ = B+∆B

of a basis B of the primal lattice Λ, such that

∥∆B∥∞ ≤
2O(mk) · ∥G̃∥m+1

∞
(λ∗1)3 · det(Λ∗) · ∥∆G∥∞,

under the assumption that ∥∆G∥∞ <
min(1,(λ∗

1)2)·det(Λ∗)
2O(km)·∥G̃∥m+1

∞
.

Proof. For the moment, assume that the full output6 [D̃ | γM ] = [D | 0] +
[∆D | γM ] of the Buchmann-Pohst algorithm satisfies ∥[∆D | γM ]∥∞ ≤
µ(3/

√
2)−3m∥D̃∥∞ for some µ < 1 and ∥∆D∥∞∥D−1∥∞ < 1/2. Then, by

applying Theorem 3.29, Corollary 3.28 and Theorem 3.26 subsequently, we
obtain

∥∆B∥∞ ≤ 2∥D−1∥2∞∥∆D∥∞ ≤
26m+1

(λ∗1)2 ∥∆D∥∞ ≤
2O(mk) · ∥G̃∥m+1

∞
(λ∗1)3 · det(Λ∗) · γ.

It remains to prove that assumptions in the beginning of this proof are
indeed fulfilled. By Theorem 3.26, we have

∥[∆D | γM ]∥∞ ≤
2O(mk) · ∥G̃∥m+1

∞
λ∗1 · det(Λ∗) · γ < O(1),

6In reality, the Buchmann-Pohst algorithm is applied with the largest precision such
that all required assumptions hold. So the costs of applying the LLL-algorithm does not
involve the precision ∥∆G∥∞.
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and by Theorem 3.29, we have

∥∆D∥∞∥D−1∥∞ ≤ ∥∆D∥∞
23m

λ∗1
≤ 2O(mk) · ∥G̃∥m+1

∞
(λ∗1)2 · det(Λ∗) · γ < O(1).

So choosing γ appropriately small, the assumptions of Theorem 3.29, Corol-
lary 3.28 and Theorem 3.26 are all fulfilled.
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4. Random Walks on Arakelov Ray
Class Groups

4.1. Summary

The Arakelov class group.

The Arakelov class group (denoted Pic0
K) is a combination of the unit torus

T = LogK0
R/Log(O×K) and the class group ClK . The exponent 0 in K0

R
refers to elements of algebraic norm 1 (i.e., modulo renormalization), while
the subscript R indicates that we are working in the tensor product of K
with R over Q. By ‘a combination’ we mean that there is a short exact
sequence

0 −→ T −→ Pic0
K −→ ClK −→ 0.

That is, T is (isomorphic to) a subgroup of Pic0
K , and ClK is isomorphic to

the quotient Pic0
K /T . Summarizing, the Arakelov class group is an abelian

group which combines an uncountable but compact part T and a finite
part ClK ; topologically, it should be thought of as |ClK | many disconnected
copies of the torus T .

The Arakelov ray class group.

In this chapter we actually consider a more general group, an Arakelov
analogue of the finite ideal ray class group ClmK = ImK/PrincmK ; which is the

129



4. Random Walks on Arakelov Ray Class Groups

Figure 4.1.: The Arakelov class group can be thought of as |ClK | copies of the logarithmic
unit torus.

reason why it is named the Arakelov ray class group. It is defined likewise
via an exact sequence,

0 −→ Tm −→ Pic0
Km −→ ClmK −→ 0,

where Tm = LogK0
R/Log(O×K ∩Km,1). Here, Km,1 is called the ray of m,

the multiplicative subgroup of K∗ generated by elements that are congruent
to 1 modulo m. This Arakelov ray class group has essentially the same
structure as the ‘normal’ Arakelov class group (which can be recovered by
taking m = OK), in the sense that it can also be thought of as |ClmK | many
disconnected copies of the (larger) torus Tm.

Random walks on the Arakelov ray class group.

In this chapter we study the process of a random walk on this Arakelov
ray class group, which can be described best by using the correspondence
with Arakelov ray class group elements with ideal lattices. This random walk
process consists of multiplying the input ideal lattice by a certain number of
random prime ideals of bounded norm, followed by a slight disturbance of
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the geometry of the ideal lattice. The end distribution over Pic0
Km is called

the random walk distribution.

The main question to be solved is for which choice of parameters this random
walk distribution is close to the uniform distribution. These parameters
involve the maximum norm of the prime ideals, the number of prime ideals
to multiply with and the magnitude of the geometrical disturbance.

Fourier analysis on the Arakelov ray class group.

Because the Arakelov ray class group is abelian and compact, this question
is tackled by resorting to Fourier analysis: uniformity is demonstrated by
showing that all the Fourier coefficients of the distribution resulting from
the random walk tend to 0 except for the coefficient associated with the
trivial character.

This argument can be roughly described as follows. The act of multiplying
by random prime ideals can be described by a so-called Hecke operator, a
linear Hermitian operator that has the characters of Pic0

Km as eigenfunc-
tions. Assuming the Extended Riemann Hypothesis, one can show that all
eigenvalues of the non-trivial eigenfunctions are bounded sufficiently below
one, except for specific ‘high-frequency eigenfunctions’. Choosing an initial
distribution (the ‘geometrical disturbance’) that lacks those high-frequency
eigenfunctions, e.g., a Gaussian, applying the Hecke operator sufficiently
many times yields a near-uniform distribution (see Figure 4.7).

The preciseness of this argument allows us to very tightly estimate bounds
for all parameters involved in order to achieve a nearly uniformly random
final distribution.

4.2. Introduction

One of the more important concepts that occurs in complexity theory,
number theory and modern cryptography is that of a structured lattice. The
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most elementary examples of such structured lattices are ideal lattices, which
are derived from ideals of a number field. It is a well-known fact among
number theorists that the set of all ideal lattices up to K-linear isometry (or,
equivalently, Hermitian line bundles) associated with a fixed number field K
forms a compact abelian group, the Arakelov class group Pic0

K (e.g. [Sch08]).
The motivation for studying this particular Arakelov class group in this
thesis came from two directions.

The first direction relates to number theory and involves a computational
problem related to the density of prime ideals. Namely: for a given ideal
a of OK , find an element α ∈ a with a predescribed bounded length such
that (α)/a is a prime ideal. The most straightforward way to obtain such
an element without class group computations is by randomly sampling an
element α in the intersection of the ideal a with a large box, and just simply
hope that the ideal (α)/a is prime. For a fixed ideal a we cannot prove that
this approach is efficient, but for an ideal lattice a that is uniformly randomly
distributed in the Arakelov class group Pic0

K we can actually reasonably
lower bound the success probability of this approach (see Chapter 6). The
remaining question is: can we efficiently transform a fixed ideal a into a
random ideal in the Arakelov class group without changing too much of its
properties?

The second direction relates more to complexity theory and cryptography,
and involves the computational hardness of the Hermite Shortest Vector
Problem on ideal lattices of a fixed number field. An interesting question
here is, for a fixed number field K, whether there are ideal lattices that are
significantly harder to solve Hermite-SVP in than for other ideal lattices.
A natural way to approach this question is by comparing the hardness of
Hermite-SVP on a fixed ideal lattice with the hardness of Hermite-SVP on
an average ideal lattice, i.e., an ideal lattice uniformly distributed on the
Arakelov class group. In Chapter 5 the random walk theorem of the current
chapter will be applied in order to ‘randomize’ a fixed ideal lattice to a
uniformly random ideal lattice without disturbing its geometrical structure
too much.

These two research directions both have an underlying question that regards
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randomization of ideal lattices in the Arakelov class group, but in such a
way that it does not change the nature of these ideal lattices too much. In
this chapter we propose an approach to do so by means of a random walk, a
technique that has already been deployed in various areas of mathematics.
In the field of algebraic geometry, for example, one can show by a random
walk technique via isogenies on elliptic curves [JMV09] (and more general
abelian varieties [JW15]) that the discrete logarithm problem in a randomly
chosen elliptic curve is as hard as in any other in the same isogeny class.
The random walk approach on the Arakelov class group, as treated in this
chapter, is heavily inspired by these results.

Related work

We note that recent works [PHS19; Lee+19] were already implicitly relying
on Arakelov theory. More specifically, the lattice given in Section 3.1 of
[PHS19] is precisely the lattice of slightly more general Arakelov class
relations between the appropriate set of degree-zero Arakelov divisors. In
fact, by extending our theorem to Arakelov divisors that include (complex)
phases in the infinite places, one can obtain upper bounds for the covering
radius of the relation lattices, at least for sufficiently large factor bases.
With more effort one may be able to eliminate Heuristic 4 from [PHS19] or
Heuristic 1 of [Lee+19].

Applications

One application of the random walk theorem concerns a worst-case to
average-case reduction, as treated in Chapter 5. By uniformizing over the
Arakelov class group, one can ‘randomize’ an input lattice to a uniformly
random lattice, without changing the geometry of the initial lattice too much.
By using the efficient machinery of random walks, one can then obtain a
worst-case to average-case reduction for Hermite-SVP with only a small loss
in the quality of the output.
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Another direct application of the random walk theorem concerns ideal
sampling and is the the object of Chapter 6. Namely, we note that many
algorithms [BF14; Bia+17; BP17] rely on finding elements α in an ideal a
such that αa−1 is easy to factor (e.g. prime, near-prime, or B-smooth). Such
algorithms are analyzed only heuristically, by treating αa−1 as a uniformly
sampled ideal, and applying know results on the density of prime or smooth
ideals. The random walk theorem of this chapter allows to adjust this strategy
and make the reasoning rigorous, see Chapter 6. This particular application
allows to develop an efficient algorithm that computes the power residue
symbol, which is the object of Chapter 7.

The result

In this chapter we show a new versatile tool: we prove that, subject to the
Riemann Hypothesis for Hecke L-functions, certain random walks on the
Arakelov class group have a rapid mixing property.

The random walk used in the result of this chapter can be seen as a combina-
tion of two different random walks, namely a discrete one and a continuous
one. This is due to the fact that the Arakelov class group is topologically
a disjoint union of (hyper)tori; the discrete walk ‘jumps’ from one torus
to the other (see Figure 4.2), whereas the continuous walk crawls on the
surface of one torus. These two different shapes of the random walk have an
intuitive interpretation for ideal lattices associated with the Arakelov class
group. Namely, the discrete walk corresponds to taking a random sub-ideal
lattice of a given ideal lattice, also known as sparsification, whereas the
continuous walk corresponds to disturbing the ideal lattice by multiplying
each coordinate by a scalar.

Both the continuous and the discrete part of the random walk change the
original nature of an input ideal lattice; the longer the random walk on
an ideal lattice, the more disturbed this ideal lattice becomes. In the two
research directions sketched earlier in this introduction, it was of fundamen-
tal importance that the final randomized ideal lattice does not differ too
much from the input ideal lattice, but is nevertheless uniformly randomly
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4.2. Introduction

Figure 4.2.: The discrete walk on the Arakelov class group mostly jumps from one torus
to another – but it is also possible that it jumps to another distant place on
the same torus.

Figure 4.3.: The continuous walk on the Arakelov class group stays within the same torus
and within a short distance of the initial point
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4. Random Walks on Arakelov Ray Class Groups

distributed in the Arakelov class group. In other words, one would like to
have an as short as possible random walk that still achieves uniformity in
the Arakelov class group. Therefore, the study in this chapter boils down to
the following succinct question.

How fast does a random walk in the Arakelov class group converge to the
uniform distribution?

Concretely, the discrete walk involves so-called finite places and happens
by multiplying the input Arakelov class by N random prime ideals the set
P of all prime ideals with norm bounded by B. Contrarily, the continuous
walk involves the infinite places and happens by applying a Gaussian noise
of deviation s to the input Arakelov class. Noting that the Gaussian noise
of deviation s roughly covers a surface of sr (where r is the rank of the
unit group of K) and assuming that the |P|N discrete jumps are sufficiently
equidistributed, we can heuristically expect the random walk to yield a
uniform distribution whenever sr · |P|N ≈ |Pic0

K |, where |Pic0
K | is the total

surface of the Arakelov class group Pic0
K (see Figure 4.4). In fact, one can

argue that this is the best situation that one can expect, due to the absence of
overlapping Gaussians. This intuitive reasoning therefore can be considered
as a combined lower bound on the parameters s,N and |P|.

Figure 4.4.: To cover the entire Arakelov class group Pic0
K with Gaussians of surface area

roughly sr, we need around |Pic0
K |/sr equidistributed copies of that Gaussian

distribution.
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4.2. Introduction

In this work we show that the reality does not deviate much from this optimal
intuitive combined lower bound on these parameters (see Theorem 4.3),
assuming the Riemann Hypothesis for Hecke L-functions. The need for
this specific hypothesis is not surprising: the heuristic argument assumes
a reasonably controllable equidistribution of prime ideals in the Arakelov
class group. For such an equidistribution of prime ideals to be within useful
bounds, one often needs some form of the Riemann Hypothesis.

The actual proof that a random walk procedure yields a uniform distribution
on the Arakelov class group happens by means of harmonic analysis; due
to the fact that the Arakelov class group is compact and abelian, one can
apply Fourier theory.

For an intuition for this proof it is convenient to consider the continuous
walk before the discrete walk, i.e., we assume that we start with a reasonably
narrow Gaussian distribution on one connected component of the Arakelov
class group. The discrete walk, i.e., act of multiplying by a random bounded
prime ideal, can be seen as a Hermitian operator on distributions on the
Arakelov class group, called the Hecke operator. One can show that the
eigenfunctions of this operator are precisely the characters on the Arakelov
class group. Furthermore, all low-frequency characters have eigenvalues whose
absolute value is sufficiently below one, except the unit character, which is
kept intact under this Hecke operator. As Gaussian distributions only have
a negligible contribution from high-frequency characters, applying the Hecke
operator sufficiently often on this Gaussian suppresses all characters except
the unit character, thus yielding an almost uniform distribution.

In this chapter we consider a slight generalization of the Arakelov class
group, called the Arakelov ray class group with respect to a modulus ideal
m ⊆ OK . This Arakelov ray class group is essentially an Arakelov class group
where we ‘leave out’ the primes dividing the ideal m and where the principal
divisors must equal 1 modulo m. This generalization is needed in Chapter 7,
in which we show that the power residue symbol can be computed within
zero-error probabilistic polynomial time. To recover the ordinary Arakelov
class group, one just puts m = OK .
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4. Random Walks on Arakelov Ray Class Groups

4.3. Random Walk Theorem for the Arakelov Ray
Class Group

In this section, we prove Theorem 4.3, on random walks on the Arakelov ray
class group. Starting with a point in the hyperplane H ⊆ Div0

Km , sampled
according to a Gaussian distribution, we prove that multiplying this point
sufficiently often by small random prime ideals yields a random ray divisor
that is very close to uniformly distributed in the Arakelov ray class group (i.e.,
modulo principal ray divisors). The proof of Theorem 4.3 requires various
techniques, extensively treated in Sections 4.3.2 to 4.3.7, and summarized in
the following.

Hecke operators. The most important tool for proving Theorem 4.3 is
that of a Hecke operator, whose definition and properties are covered in
Section 4.3.2. This specific kind of operator acts on the space of probability
distributions on Pic0

Km , and has the virtue of having the characters of Pic0
Km

as eigenfunctions.

Figure 4.5.: On distributions on the Arakelov class group (here portrayed as a single circle)
the Hecke operator has the effect of taking multiple shifts of the distribution
and taking the average of those. In the pictured example, the Hecke operator
maps the input Gaussian distribution on the circle to a distribution consisting
of the average of three shifts of this Gaussian distribution.
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4.3. Random Walk Theorem for the Arakelov Ray Class Group

Eigenvalues of Hecke operators. The aim of the proof is showing that ap-
plying this Hecke operator repeatedly on an appropriate initial distribution
yields the uniform distribution on Pic0

Km . The impact of consecutive applica-
tions of the Hecke operator can be studied by considering the eigenvalues of
its eigenfunctions (which are the characters of Pic0

Km). Classical results from
analytic number theory show that the eigenvalues of these characters are (in
absolute value) sufficiently smaller than 1, whenever the so-called analytic
conductor of the corresponding character is not too large. An exception is
the unit character, which is fixed under each Hecke operation. This classical
result and how to apply it in our specific setting is covered in Section 4.3.3.

The analytic conductor. The Hecke operator thus quickly ‘damps out’ all
characters with small analytic conductor (except the unit character). In
Section 4.3.4, we examine which quantities of a character of Pic0

Km define the
analytic conductor. It turns out that this analytic conductor is closely related
to how the character acts on the hypertorus Tm defined by the log ray unit
lattice. The higher the frequency of this character on the hypertorus, the
larger the analytic conductor. This frequency can be measured by the norm
of the uniquely associated dual log ray unit lattice point of the character. In
fact, we establish a bound on the analytic conductor of a character in terms
of the norm of its associated dual lattice point.

Fourier analysis on the hypertorus Tm. To summarize, low-frequency (non-
trivial) characters on Pic0

Km (i.e., with small analytic conductor) are quickly
damped out by the action of the Hecke character, whereas for high-frequency
characters we do not have good guarantees on the speed at which they damp
out. To resolve this issue, we choose an initial distribution whose character
decomposition has only a negligible portion of high-frequency oscillatory
characters. An initial distribution that nicely satisfies this condition is the
Gaussian distribution (on the hypertorus). To examine the exact amplitudes
of the occurring characters of this Gaussian distribution, we need Fourier
analysis on this hypertorus, as covered in Section 4.3.5.
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4. Random Walks on Arakelov Ray Class Groups

Figure 4.6.: On the left, a character with a low frequency on the hypertorus Tm is pictured.
Contrarily, on the right one can see a character that has a rather high frequency
on the hypertorus. As a result, the character of the left image has a lower
analytic conductor than the character on the right image.

Splitting up the character decomposition. In this part of the proof, which is
covered in Section 4.3.6, we write the Gaussian distribution into its character
decomposition, where we separate the high-frequency characters, the low-
frequency character and the unit character. Applying the Hecke operator
often enough, damps out the low-frequency ones, and as the high-frequency
characters were only negligibly present anyway, one is left with (almost only)
the unit character. This corresponds to a uniform distribution.

Conclusion. By assembling all technical results and choosing appropriate
parameters, we arrive at the main theorem, which is stated and proved in
Section 4.3.7.

4.3.1. Main result

Definition 4.1 (Random Walk Distribution in Div0
Km). For a number field

K, we denote by WDiv0
Km

(B,N, s) the distribution on Div0
Km that is obtained

by the following random walk procedure.

Sample x ∈ H ⊆ logKR according to a centered Gaussian distribution with
standard deviation s. Subsequently, sample N ideals pj uniformly from the
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4.3. Random Walk Theorem for the Arakelov Ray Class Group

Figure 4.7.: The main theorem of this chapter is proven by resorting to Fourier analysis.
The initial distribution (a Gaussian distribution in this example) on the
Arakelov ray class group can be decomposed into a sum of characters. The
Hecke operator H has a diminishing effect on non-unit characters. Therefore,
applying it sufficiently many times results in a distribution that is almost
uniform.

set of all prime ideals coprime with m with norm bounded by B. Finally,
output x + ∑N

j=1 d
0(pj), where x ∈ Div0

Km is understood via the injection
H ↪→ Div0

Km.

Definition 4.2 (Random Walk Distribution in Pic0
Km). ByWPic0

Km
(B,N, s),

we denote the distribution on the Arakelov class group obtained by sampling
a from WDiv0

Km
(B,N, s) and taking the Arakelov ray class [a] ∈ Pic0

Km.

Theorem 4.3 (Random Walks on the Arakelov Ray Class Group, ERH).
Let ε > 0 and s > 0 be any positive real numbers and let k ∈ R>0 be a positive
real number as well. Putting s̃ = min(

√
2 · s, 1/η1(Λ∗Km,1)), there exists a
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4. Random Walks on Arakelov Ray Class Groups

bound B = Õ(n2k[n2(log log(1/ε))2 + n2(log(1/s̃))2 + (log(|∆K | N (m)))2])
such that for any integer

N ≥
⌈ 1

2k logn ·
(
r · log(1/s̃) + log|Pic0

Km |+ 2 log(1/ε) + 2
)⌉
, (4.46)

the random walk distribution WPic0
Km

(B,N, s) is ε-close to uniform in
L1(Pic0

Km), i.e., ∥∥∥WPic0
Km

(B,N, s)− U(Pic0
Km)

∥∥∥
1
≤ ε.

4.3.2. Hecke Operators

A key tool to analyze random walks on Pic0
Km are Hecke operators, which

allow to transform a given distribution into a new distribution obtained by
adding one random step. This particular Hecke operator, though mainly
interpreted as an operator on distributions, can in fact be applied on any
function on Pic0

Km .

Definition 4.4 (The Hecke operator). Let P be a finite subset of prime
ideals of the number field K not dividing the modulus m, and let Pic0

Km be
the Arakelov ray class group with respect to this modulus m ⊆ OK . Then we
define the Hecke operator HP : L2(Pic0

Km) → L2(Pic0
Km) by the following

rule:
HP(f)(x) := 1

|P|
∑
p∈P

f(x− [d0(p)])

Concretely, the Hecke operator on the Arakelov ray class group Pic0
Km sends

a distribution over Pic0
Km to an average of shifts of this distribution, see

Figure 4.5.

Lemma 4.5 (Eigenfunctions of the Hecke operator). The Hecke operator
HP : L2(Pic0

Km)→ L2(Pic0
Km) has the characters χ ∈ P̂ic0

Km as eigenfunc-
tions, with eigenvalues λχ = 1

|P|
∑

p∈P χ([d0(p)]), i.e.,

HP(χ) = λχχ.
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4.3. Random Walk Theorem for the Arakelov Ray Class Group

Proof. Let χ ∈ P̂ic0
Km be a character on Pic0

Km . We have

HP(χ)(x) = 1
|P|

∑
p∈P

χ(x− [d0(p)])

= 1
|P|

∑
p∈P

χ(x)χ([d0(p)]) =

 1
|P|

∑
p∈P

χ([d0(p)])

 · χ(x).

So HP(χ) = λχχ with λχ = 1
|P|
∑

p∈P χ([d0(p)]).

Note that HP(1) = 1, for the trivial character 1 ∈ P̂ic0
Km , so λ1 = 1. For

any other character χ it is evident from the above that |λχ| ≤ 1.

Figure 4.8.: Taking the average of shifted complex exponential functions yields a ‘flat-
tened’ complex exponential function. Hence those complex exponentials (i.e.,
characters) are eigenfunctions of the Hecke operator, having eigen values in
absolute value bounded by one.

4.3.3. Bounds on Eigenvalues of Hecke Operators

In the remaining part of this chapter we consider the Hecke operator whose
prime set P consists of all primes with norm bounded by B that are not
dividing the modulus m. Assuming the Extended Riemann Hypothesis for
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Hecke L-functions (see Definition 2.10) and using classical results from an-
alytic number theory, one can show that the eigenvalues of these specific
Hecke operators tend to zero if B grows to infinity for non-trivial characters.
More specifically, omitting quantities like the conductor and the discrimi-
nant for the moment, one can show that the eigenvalues of the non-trivial
characters of these Hecke operators are essentially bounded by O(B−1/2) in
a non-uniform way.

Proposition 4.6 (Bound on the eigenvalues of the Hecke operator, ERH).
Let P be the set of all primes of K not dividing m and with norm bounded by
B ∈ N. Then, assuming the extended Riemann hypothesis (Definition 2.10),
the eigenvalue λχ of any non-constant eigenfunction χ ∈ P̂ic0

Km,1 of the
Hecke operator satisfies

λχ = O

( log(B) log(Bn · |∆K | · N (m) · q∞(χ))
B1/2

)
,

provided that B ≥ max((12 log |∆K |+ 8n+ 28)4, 3 · 1011, 16 · ω(m)2), where
q∞(χ) is the infinite part of the analytic conductor of the character χ, as in
Definition 4.12 (cf. [IKS04, Eq. (5.6)]) and ω(m) is the number of different
prime ideal divisors of m.

Notation 4.7. We denote by M : IK → R>0 the von Mangoldt function
for number fields K. The value M(a) equals log(N (p)) whenever a is a
power of a prime ideal p and zero otherwise. We also define the function
M̃ : IK → R>0, for which M̃(a) = log(N (a)) whenever N (a) is prime and
zero otherwise.

In order to apply analytic number-theoretic results, we need to eliminate
the non-split primes of the number field from the character sums arising in
the eigenvalues of the Hecke operator. This happens in the following lemma,
whose proof follows exactly the outline of [Wes18, Cor. 2.3.5].

Lemma 4.8. For any character χ : ImK → C, we have∑
N (a)≤B
a+m=OK

χ(a)M(a)−
∑

N (a)≤B
a+m=OK

χ(a)M̃(a) = O(n
√
B) (4.47)
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where the sums are over all integral ideals coprime to the modulus m and
with norm bounded by B.

Proof. Any nonzero entry χ(a)[M(a)− M̃(a)] arises from an ideal a that is
a power of a prime ideal and that does not have prime norm. As there are
at most n = [K : Q] prime ideals above each prime number, we see that the
left side of Equation (4.47) must be bounded by

n
∑
pℓ≤B
ℓ≥2

ln(p) ≤ n
∑
p≤
√
B

2≤ℓ≤ ln B
ln p

ln(p)

≤ n
∑
p≤
√
B

ln p lnB
ln p = n · π(B1/2) · lnB = O(n ·B1/2),

where π is the prime counting function over Z and where the last bound is
obtained by the prime number theorem (see Theorem 2.12).

Proof of Proposition 4.6. Assuming the Extended Riemann Hypothesis, we
have the following classical analytic result1 [IKS04, Thm. 5.15] for any
non-trivial character χ ∈ P̂ic0

Km .
1Any character on the Arakelov ray class group can be seen as a Hecke character, by

projecting the idèle class group to the Arakelov ray class group. Since characters χ on
the Arakelov ray class group are defined on ImK , the conductor fχ divides m. The analytic
conductor q(χ) is then equal to |∆K | · N (fχ) · q∞(χ) ≤ |∆K | · N (m) · q∞(χ), where ∆K

is the discriminant of the number field K and q∞(χ) is the infinite part of the analytic
conductor; see, for example, [IKS04, p. 129 & Eq. (5.7)].

The phrasing of the theorem in Iwaniec & Kowalski [IKS04, Thm. 5.15] involves the
function ψ(f, x) =

∑
n≤x

Λf (n), defined in [IKS04, Eq. (5.46), p. 110], where Λf (n) is
supported only on prime powers and arises from −L′(f, s)/L(f, s) =

∑
n≥1 Λf (n)n−s

[IKS04, Eq. (5.25), p. 102]. In our case, f = χ is a Hecke character with conductor m,
which means that the associated L-function avoids m: L(s, χ) =

∏
p∤m(1− χ(p)N (p)−s)−1

(see [Lan12, Ch. XIV, §8, p. 299]). By taking the logarithmic derivative of L(χ, s) one
obtains that Λχ(n) =

∑
N (a)=n
a+m=OK

χ(a)M(a), where M is the van Mangoldt function as in

Notation 4.7. The same theorem [IKS04, Thm. 5.15] involves a number r indicating the
order of the pole of zero at s = 1 of the respective L-function. In the case of non-trivial
Hecke characters χ this order r is zero, see [IKS04, Ch. 5, p. 94 and p. 129] or [Lan12,
Ch. XV, §4, Thm. 2].
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∑
N (a)≤B
a+m=OK

M(a)χ(a) = O(B1/2 log(B) log(Bn · |∆K | · N (m) · q∞(χ))),

where q∞(χ) is the infinite part of the analytic conductor of χ, and whereM
is the von Mangoldt function for the number fieldK (see Notation 4.7). In this
expression, and in all subsequent expressions in this proof, the summation
is over integral ideals a coprime with the modulus m, as indicated by the
phrase ‘a + m = OK ’.

According to Lemma 4.8, the sums∑
N (a)≤B
a+m=OK

χ(a)M̃(a) and
∑

N (a)≤B
a+m=OK

χ(a)M(a)

(over integral ideals coprime with m) differ by at most O(nB1/2), and
therefore

A(B) :=
∑

2≤j≤B
aj =

∑
N (a)≤B
a+m=OK

χ(a)M̃(a)

= O(B1/2 log(B) log(Bn · |∆K | · N (m) · q∞(χ))),

where an = ∑
N (a)=n
a+m=OK

χ(a)M̃(n) and where M̃(n) = logn whenever n is

prime and zero otherwise. Using the Abel partial summation formula, and
temporarily denoting C = |∆K | · N (m) · q∞(χ) for the sake of brevity, we
deduce ∑

N (a)≤B
a+m=OK

χ(p) =
∑
n≤B

an
1

logn = A(B)
logB +

∫ B

2
A(t) dt

t log2(t)

= O(B1/2 log(Bn · C)) +O

(∫ B

2

log(tn · C)
log(t)t1/2 dt

)
= O(B1/2 log(Bn · |∆K | · N (m) · q∞(χ)︸ ︷︷ ︸

C

)) (4.48)
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where the last equality uses the fact that∫ B

2

log(tn · C)
log(t)t1/2 dt ≤ log(Bn · C)/ log(2)

∫ B

2
t−1/2dt = O

(
B1/2 · log(Bn · C)

)
.

As the composition χ◦[d0(·)] : ImK → C is a Hecke character on ideals coprime
to m, and |P| = Θ(B/ log(B)) (see2 Lemma 2.13), we apply Equation (4.48)
to obtain

λχ = 1
|P|

∑
p∈P

χ(d0(p)) = 1
|P|

O(B1/2 log(Bn · |∆K | · N (m) · q∞(χ)))

= O
(
B−1/2 log(B) log(Bn · |∆K | · N (m) · q∞(χ))

)
which finishes the proof.

4.3.4. The Infinite Analytic Conductor

In the bounds of Section 4.3.3, the infinite analytic conductor q∞(χ) of a
character χ : Pic0

Km → C plays a large role. In this section, we show that this
infinite analytic conductor q∞(χ) is closely related to the dual logarithmic
ray unit lattice point ℓ∗ ∈ Λ∗Km,1 = Log(O×Km,1)∗ that is uniquely associated
with the character χ|Tm : Tm → C. We analyze the infinite analytic conductor
of a character χ : Pic0

Km → C using the following facts:

• Any Arakelov ray class group Pic0
Km is a quotient group of the degree-

zero idèle class group C0
K . We will prove that there is a canonical

projection C0
K → Pic0

Km for all integral moduli m ∈ IK . This imme-
diately has as a consequence that any character Pic0

Km → C yields
an induced character on the idèle class group C0

K by precomposition
with this projection. Summarizing: Any character on Pic0

Km is a Hecke
character.

• There is a canonical map K0
R → C0

K , so any Hecke character χ : C0
K →

C induces a derived character K0
R → C0

K
χ−→ C. Characters on the group

K0
R are known to have a very specific shape, which can be described

2For this to be true, the lower bound on B ≥ max((12 log |∆K |+ 8n+ 28)4, 3 ·1011, 16 ·
ω(m)2) is needed, see Lemma 2.13.
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in terms of an 2(nC + nR)-dimensional real vector. The entries of this
specific vector are called the local parameters at infinity of the Hecke
character χ.

• Hecke characters derived from a character on the Arakelov ray class
group Pic0

Km have local parameters at infinity that are closely re-
lated to the dual lattice of the logarithmic ray unit lattice ΛKm,1 =
Log(O×Km,1) = Log(O×K ∩Km,1). It turns out that a character on the
Arakelov ray class group Pic0

Km induces a character on K0
R that does

not depend on the phases of the complex numbers involved, i.e., it
solely depends on the absolute values of the entries in K0

R. This means
that the induced character on K0

R factors through the logarithmic
image of the absolute values of K0

R/O
×
K , which equals H/ΛKm,1 = Tm.

Characters on this ray unit torus Tm are uniquely described by a dual
logarithmic unit lattice point ℓ∗ ∈ Λ∗Km,1 .

• The infinite analytic conductor q∞ is just a specific product of the local
parameters of χ over all infinite places ν. More specifically, we have

q∞(χ) =
∏

ν real
(3 + ||nν |+ iϕν |) ·

∏
ν complex

(3 + |nν + iϕν |)(3 + ||nν |+ iϕν + 1|).

Via this formula, one can relate the size of the infinite analytic con-
ductor q∞(χ) with the length of the dual logarithmic ray unit lattice.

In the following text we will elaborate on these four facts, for each fact a
paragraph.

The Arakelov ray class group Pic0
Km is a quotient group of C0

K

Let JKm ⊆ JK be the subgroup of idèles that satisfy aν ≡ 1 modulo p
ordν(m)
ν

for any place ν with pν | m. More precisely,

JKm = {(aν)ν ∈ JK | aν ∈ 1 + pordpν (m)
ν for all places ν with pν | m}

Via the inclusion JKm ⊆ JK , we have the isomorphism JKm/Km,1 ∼−→
JK/K∗ [Lan12, Ch. VII, §3]. The following map is surjective and has Km,1
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in its kernel, which proves that the group PicKm is a quotient group of
JKm/Km,1 and therefore of JK/K∗ as well.

JKm → PicKm , (aν)ν 7−→
∑
ν∤∞

ordpν (aν) · LpνM +
∑
ν|∞

[Kν : R] · log |aν | · LνM.

Here, we mean by ν|∞ that ν is a infinite place (i.e., associated with an
embedding K ↪→ C) and by ν ∤ ∞ that ν is a finite place (i.e., associated
with a prime ideal p). The degree maps deg : JK → R>0, (aν)ν 7→

∏
ν |aν |ν

and deg : PicKm → R>0,
∑

p∤m npLpM +∑
ν|∞ xνLνM 7−→

∏
p∤mN (p)np

∏
ν e
−xν

are compatible with each other, which implies an induced surjective map
C0
K → Pic0

Km , proving that the Arakelov class group is a quotient of the
degree zero idèle class group.

Any Hecke character χ : C0
K → C induces a derived character on K0

R.

Let χ : C0
K → C be a Hecke character. Recall that K0

R ≃ {(xν)ν ∈
KR |

∏
ν |xν |ν = 1} (see Equation (2.10)), which embeds canonically into

J 0
K ; we have the injection

K0
R ↪→ J 0

K , (xσ)σ 7−→ (aν)νσ where aν =

xν for ν | ∞
1 for ν ∤∞

.

So any character χ : C0
K → C induces a character on K0

R by precomposition
with K0

R → J 0
K → C0

K = J 0
K/K

∗, which will be denoted by χ|K0
R
. It is a

well-known fact that any character on K0
R is of the following shape, and is

uniquely determined in that way (see [NS13, Ch. XII, Prop. 6.7]):

χ : K0
R → S1, (xν)ν 7−→

∏
ν|∞

(
xν
|xν |

)nν

ei·[Kν :R]·ϕν ·log |xν |, (4.49)

with nν ∈ Z if ν is complex, and nν ∈ {0, 1} if ν is real and ϕν ∈ R. Note
that [Kν : R] = 1 if ν is real and [Kν : R] = 2 if ν is a complex embedding.

Definition 4.9. Let χ : C0
K → C be a Hecke character and let χ|K0

R
: K0

R → C
be the induced character by precomposing with the map K0

R → C0
K . Then
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4. Random Walks on Arakelov Ray Class Groups

(nν)ν ∈ ZnC×{0, 1}nR and (ϕν)ν ∈ RnC+nR for ν | ∞ that occur when writing
χ|K0

R
in the shape of Equation (4.49), are called the local parameters at

infinity of χ.

The local parameters at infinity of a Hecke character on the Arakelov
ray class group Pic0

Km can be seen as a scaled point on the dual
logarithmic ray unit lattice Λ∗Km,1

For any character χ : Pic0
Km → C, we thus have an derived character χ|K0

R
on K0

R as follows.
K0

R → C0
K → Pic0

Km
χ−→ C.

Of this derived character χ|K0
R

we would like to study the local parameters as
in Equation (4.49). The combined map K0

R → C0
K → Pic0

Km can be described
by the following rule:

K0
R → Pic0

Km , (xν)ν 7−→
∑
ν|∞

[Kν : R] · log |xν | · LνM mod Km,1

So the derived character χ|K0
R

: K0
R → Pic0

Km → C cannot depend on the
phases of (xν)ν ∈ K0

R, which means that nν = 0 in Equation (4.49) for all
ν | ∞ for such χ ∈ Pic0

Km . Also, by the fact that Pic0
Km = Div0

Km /Km,1, we
have that O×K ∩Km,1 = O×Km,1 ⊆ K0

R must lie in the kernel of χ|K0
R
.

Summarizing, for characters χ : Pic0
Km → C, we have

χ|K0
R
((xν)ν) =

∏
ν|∞

ei·[Kν :R]·ϕν ·log |xν | = exp
(
i
∑

σ:K→C
ϕνσ · log |σ(x)|

)

and χ|K0
R
(O×Km,1) = 1. In above expression, the sum is over all embeddings

σ : K → C, and νσ is the place ν uniquely associated with the embedding σ.
This means that the following inner product satisfies〈 1

2π (ϕνσ )σ, (log |σ(η)|)σ
〉

= 1
2π

∑
σ:K→C

ϕνσ · log |σ(η)| ∈ Z for all η ∈ O×Km,1 .

Recalling that ΛKm,1 = Log(O×Km,1) = Log(O×K ∩Km,1), this is equivalent to
(ϕνσ )σ ∈ 2πΛ∗Km,1 ; i.e., the local parameters (ϕνσ )σ are equal to 2π times

150



4.3. Random Walk Theorem for the Arakelov Ray Class Group

a dual logarithmic ray unit lattice point in Λ∗Km,1 . Thus we proved the
following lemma.

Lemma 4.10 (Local parameters of a Hecke character on the Arakelov ray
class group Pic0

Km). Let χ : Pic0
Km → C be a character on the Arakelov ray

class group. Then the local parameters at infinity of χ as in Definition 4.9,
satisfy

• nν = 0 for all ν | ∞.
• There exists a dual logarithmic ray unit lattice point ℓ∗ ∈ Λ∗Km,1 such

that ϕν = ℓ∗σν
.

Corollary 4.11. Let χ : Pic0
Km → C be a character on the Arakelov ray

class group. Then, there exists a ℓ∗ ∈ Λ∗Km,1 ⊆ H such that

χ|K0
R
((xν)ν) = exp

(
2πi ·

〈
ℓ∗, (xνσ )σ

〉)
.

The converse is also true. For every ℓ∗ ∈ Λ∗Km,1 there exists a character
χ : Pic0

Km → C such that

χ|K0
R
((xν)ν) = exp

(
2πi ·

〈
ℓ∗, (xνσ )σ

〉)
. (4.50)

Proof. The first claim directly follows from Lemma 4.10. The second claim
can be verified by the fact that one can construct a character χ : Pic0

Km →
Tm → C that factors through the ray unit torus by the canonical quotient
map Pic0

Km → Tm of Figure 2.8. On this ray unit torus Tm it has the values
induced by Equation (4.50). In fact, by multiplying this character by other
characters χ′ ∈ Pic0

Km for which χ′|Tm is trivial, one obtains all characters
on Pic0

Km satisfying Equation (4.50).

The infinite analytic conductor is a product of local parameters

Definition 4.12 (Infinite analytic conductor of a Hecke character). Let
χ ∈ P̂ic0

Km be a character with local parameters at infinity nν and ϕν as in
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Definition 4.9, where ν ranges over the infinite places of K. Then, we define
the infinite part of the analytic conductor to be

q∞(χ) =
∏

ν real
(3 + ||nν |+ iϕν |)

∏
ν complex

(3 + |nν + iϕν |)
(
3 +

∣∣|nν |+ iϕν + 1
∣∣)

(4.51)

Remark 4.13. The above definition of the infinite analytic conductor is
obtained from [IKS04, p. 95, Eq. (5.6) with s = 0], where it is described in a
slightly different form. In [IKS04], the functional equation lacks the complex
L-functions LC. Instead, those are replaced by LR(s)LR(s+ 1) = LC(s) (see
[NS13, Ch. 7, Prop. 4.3(iv)]. This means that the local parameters κσ, κσ̄ as
in [IKS04, p. 93, Eq. (5.3)] must equal kν , kν + 1 for the embeddings {σ, σ̄}
associated with the complex place ν (cf. [IKS04, p. 125]).

Lemma 4.14. Let q∞(χ) be the infinite part of the analytic conductor of
the character χ ∈ P̂ic0

Km , and let ℓ∗ ∈ Λ∗Km,1 be such that χ|Tm = χℓ∗ , where
Λ∗Km,1 is the dual lattice of the logarithmic ray unit lattice. Then we have

q∞(χ) ≤
(
4 + 2π ∥ℓ∗∥ /

√
n
)n

Proof. Let |ℓ∗| denote the vector ℓ∗ where all entries are replaced by their
absolute value. Then, by applying subsequently the triangle inequality, the
norm inequality between ∥·∥1 and ∥·∥2 and the arithmetic-geometric mean
inequality, one obtains

4
√
n+ 2π ∥ℓ∗∥2 ≥

∥∥4 + 2π|ℓ∗|
∥∥

2 ≥
1√
n

∥∥4 + 2π|ℓ∗|
∥∥

1

≥
√
n

(∏
σ

(4 + 2π|ℓ∗σ|)
)1/n

≥
√
n · q∞(χ)1/n.

Dividing by
√
n and raising to the power n yields the claim. The last

inequality follows just from Equation (4.51), in which nν = 0 for all infinite
ν.
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4.3. Random Walk Theorem for the Arakelov Ray Class Group

4.3.5. Fourier Analysis on the Ray Unit Torus

Definition 4.15. Let H ⊆ LogKR be the ambient vector space of the log
ray unit lattice ΛKm,1 = Log(O×Km,1), where O×Km,1 = O×K ∩Km,1. Recall the
Gaussian function ρs : H → R, x 7→ e−π∥x∥

2/s2. Denoting Tm = H/ΛKm,1,
we put ρs|T

m : Tm → R, x 7→
∑
ℓ∈ΛKm,1 ρs(x+ ℓ).

As we have (see Lemma A.3) ∥s−rρs∥H,1 =
∫
H s
−rρs(x)dx = 1, and∥∥∥s−rρs|Tm

∥∥∥
Tm,1

=
∫
Tm

s−rρs|T
m(x)dx = 1,

both functions s−rρs and s−rρs|T
m can be seen as probability distributions

on their respective domains Rm and Tm.

Lemma 4.16 (Fourier coefficients of the periodized Gaussian). The peri-
odized Gaussian function s−rρs|T

m ∈ L2(Tm) satisfies

s−rρs|T
m =

∑
ℓ∗∈Λ∗

Km,1

aℓ∗χℓ∗ (4.52)

where aℓ∗ = 1
Vol(Tm)ρ1/s(ℓ∗), where Λ∗Km,1 is the dual lattice of the log unit

lattice ΛKm,1, and where χℓ∗(x) = e−2πi⟨x,ℓ∗⟩.

Proof. We have
〈
χℓ∗1 , χℓ∗2

〉
= Vol(Tm) · δℓ∗1,ℓ∗2 , where δ is the Kronecker delta

function, i.e., δℓ∗1,ℓ∗2 equals one if ℓ∗1 = ℓ∗2 and zero otherwise. Identifying T̂m

and Λ∗Km,1 via the map χℓ∗ 7→ ℓ∗, taking a fundamental domain F of ΛKm,1

and spelling out the definition of ρs|T
m

, we obtain, for all ℓ∗ ∈ Λ∗Km,1 ,

aℓ∗ = 1
Vol(Tm)

〈
s−rρs|T

m
, χℓ∗

〉
= 1

Vol(Tm)

∫
x∈F

∑
ℓ∈ΛKm,1

s−rρs(x+ ℓ)χℓ∗(x)dx

= 1
Vol(Tm)

∫
x∈H

s−rρs(x)χℓ∗(x)dx = 1
Vol(Tm)FH{s

−rρs}(ℓ∗)

= 1
Vol(Tm)ρ1/s(ℓ∗).
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4. Random Walks on Arakelov Ray Class Groups

The last equality can be derived from the properties of the Gaussian function
in Lemma 2.23.

Figure 4.9.: In this picture three examples of characters (‘eigenfunctions’) on the ray unit
torus are portrayed, together with their associated lattice points in the dual
ray unit lattice at the bottom. In this particular example, one can see that
characters that only depend on one rotational axis (the left two examples)
have an associated dual lattice point on the x-axis or the y-axis. The ‘mixed’
character is associated with a dual lattice point that has both a non-zero x
and y component.

4.3.6. Splitting up the Character Decomposition

Decomposing into characters on Pic0
Km

In Equation (4.52), the distribution s−rρs|T
m

is decomposed into characters
on the unit torus Tm. In order to apply the analytic bound on the eigenvalues
of the Hecke operator as in Proposition 4.6, we need to decompose this
distribution into characters on the Arakelov ray class group Pic0

Km instead.
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4.3. Random Walk Theorem for the Arakelov Ray Class Group

To do so, we use the identity

χℓ∗ = 1
|ClmK |

∑
χ′∈P̂ic

0
Km

χ′|Tm=χℓ∗

χ′, (4.53)

which holds for any ℓ∗ ∈ Λ∗Km,1 , where |ClmK | is the cardinality of the ray
class group. Equation (4.53) is an identity of functions on the Arakelov ray
class group Pic0

Km , where χℓ∗ is defined to be zero everywhere, except on the
torus Tm ⊆ Pic0

Km , the original domain of the function χℓ∗ . In this identity,
χ′ ranges over all characters χ′ ∈ P̂ic0

Km which are identical to χℓ∗ when
restricted to the unit group torus Tm. These characters χ′ are called the
extensions of the character χℓ∗ with respect to Pic0

Km , and it can be shown
that for each ℓ∗ ∈ Λ∗Km,1 there are exactly |ClmK | such extensions (see [DE16,
Cor. 3.6.2]).

The identity in Equation (4.53) follows essentially from the same argument
that is used to prove general character orthogonality properties (see [Ser77,
§2.3]).

Splitting up the character decomposition in a low-frequency and a
high-frequency part

By above reasoning, we can rewrite Equation (4.52) in Lemma 4.16 into

s−rρs|T
m = 1

|Pic0
Km |

∑
χℓ∗∈T̂m

ρ1/s(ℓ∗)
∑

χ′|Tm=χℓ∗

χ′, (4.54)

where we used the identity |ClmK |Vol(Tm) = |Pic0
Km |. We will now split up this

character decomposition into three parts: the ‘trivial part’, a ‘low-frequency
part’ and a ‘high-frequency part’.

The trivial part consists just of the unit character 1 = 1Pic0
Km

. The low-

frequency part consists of those (non-unit) characters χ′ ∈ P̂ic0
Km that are

extensions of a character χℓ∗ ∈ T̂m where ℓ∗ ∈ ΛKm,1 has a small norm, say,
∥ℓ∗∥ < r. Oppositely, the high-frequency part consists of those characters
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4. Random Walks on Arakelov Ray Class Groups

that are extensions of some χℓ∗ ∈ T̂ for which ∥ℓ∗∥ ≥ r. Here, r ∈ R>0 can
in principle be chosen arbitrarily.

Figure 4.10.: Under assumption of the Extended Riemann Hypothesis, low-frequency
characters diminish under the Hecke operator, whereas for high-frequency
characters no such guarantee exists. By taking an initial distribution that has
already almost no high-frequency content, like the Gaussian distribution, one
can show that applying repeatedly the Hecke operator to such distribution
yields an almost-uniform distribution.

|Pic0
Km |·s−r · ρs|T

m = 1Pic0
Km︸ ︷︷ ︸

Unit character

+
∑

χℓ∗∈T̂m

∥ℓ∗∥<r

ρ1/s(ℓ∗)
∑

χ′|Tm=χℓ∗
χ′ ̸=1

χ′

︸ ︷︷ ︸
Low frequency characters

+
∑

χℓ∗∈T̂m

∥ℓ∗∥≥r

ρ1/s(ℓ∗)
∑

χ′|Tm=χℓ∗

χ′

︸ ︷︷ ︸
High frequency characters

, (4.55)

Bounding the parts of the character decomposition

Theorem 4.17 (ERH). Let P be the set of all prime ideals of a number
field K coprime with m and with norm at most B, and let H = HP the
Hecke operator (see Definition 4.4) for this set of primes. Then, assuming
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the Extended Riemann Hypothesis (see Definition 2.10), and for all r, s > 0
with rs >

√
r

4π , we have

∥∥∥∥∥HN (s−nρs|T
m)− 1

|Pic0
Km |

1Pic0
Km

∥∥∥∥∥
2

≤
ρ 1√

2s

(Λ∗Km,1)

Vol(Tm)
(
c2N + β

(r)√
2rs

)
(4.56)

with c = O
(

log(B) log(Bn·|∆K |·N (m)·(4+2πr/
√
n)n)

B1/2

)
.

Proof. The Hecke operator H = HP is a linear operator satisfying H(1Pic0
Km

)
= 1Pic0

Km
and H(χ′) = λχ′χ′. Therefore, by applying the Hecke operator N

times on Equation (4.55), we obtain

|Pic0
Km | · HN

(
s−rρs|T

m) = 1Pic0
Km

+
∑

χℓ∗∈T̂m

∥ℓ∗∥<r

ρ1/s(ℓ∗)
∑

χ′|Tm=χℓ∗
χ′ ̸=1

λNχ′χ′

+
∑

χℓ∗∈T̂m

∥ℓ∗∥≥r

ρ1/s(ℓ∗)
∑

χ′|Tm=χℓ∗

λNχ′χ′, (4.57)

Therefore, by Parseval’s theorem (see Equation (2.17)),∥∥∥|Pic0
Km | · HN (s−rρs|T

m)− 1Pic0
Km

∥∥∥2
=

∑
χℓ∗∈T̂m

∥ℓ∗∥<r

ρ2
1/s(ℓ∗)

∑
χ′|Tm=χℓ∗

χ′ ̸=1

|λχ′ |2N

︸ ︷︷ ︸
Low frequency

(4.58)
+

∑
χℓ∗∈T̂m

∥ℓ∗∥≥r

ρ2
1/s(ℓ∗)

∑
χ′|Tm=χℓ∗

|λχ′ |2N

︸ ︷︷ ︸
High frequency

.

(4.59)

We will bound the parts Equation (4.58) and Equation (4.59) separately,
starting with the share of the latter, the high-frequency characters. By
construction, |λχ′ | ≤ 1 for all χ′ ∈ Pic0

Km (see Lemma 4.5). Combining this
with the identity ρ2

1/s = ρ 1√
2s

and the fact that there are exactly |ClmK |
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character extensions to Pic0
Km for each χℓ∗ ∈ T̂m (see [DE16, Cor. 3.6.2]),

we have∑
χℓ∗∈T̂m

∥ℓ∗∥≥r

ρ2
1/s(ℓ∗)

∑
χ′|Tm=χℓ∗

|λχ′ |2N ≤ |ClmK |
∑

ℓ∗∈Λ∗
Km,1

∥ℓ∗∥≥r

ρ 1√
2s

(ℓ∗)

≤ |ClmK | · β
(r)√

2rs · ρ 1√
2s

(Λ∗Km,1), (4.60)

where the last inequality follows from Banaszczyk’s tail bound (Lemma 2.25)
and the assumption that rs >

√
r/(4π).

To bound the share of the low-frequency characters, we need to bound
the absolute value of the eigenvalues λχ′ of the low-frequency charac-
ters. Invoking the results from analytic number theory in Proposition 4.6
(thus assuming the Extended Riemann Hypothesis) we obtain |λχ′ | ≤
O
(

log(B) log(Bn·|∆K |·N (m)·q∞(χ′))
B1/2

)
. But since these characters have a ‘low

frequency’, their analytic conductor q∞(χ′) is bounded. More precisely, we
have, by Lemma 4.14, that q∞(χ′) ≤ (4 + 2πr/

√
n)n for any χ′ ∈ Pic0

Km

such that χ′|Tm = χℓ∗ for some ℓ∗ ∈ Λ∗Km,1 with ∥ℓ∗∥ < r. Therefore,
|λχ′ | ≤ c = O

(
log(B) log(Bn·|∆K |·N (m)·(4+2πr/

√
n)n)

B1/2

)
. So, using again the iden-

tity ρ2
1/s = ρ 1√

2s

, and the fact that each χℓ∗ has |ClmK | character extensions
to Pic0

Km , we have∑
∥ℓ∗∥≤r

ρ2
1/s(ℓ∗)

∑
χ′|Tm=χℓ∗

|λχ′ |2N

︸ ︷︷ ︸
≤|ClmK |·c2N

≤ |ClmK | · c2N · ρ 1√
2s

(Λ∗Km,1) (4.61)

We obtain the result by combining Equations (4.60) and (4.61), dividing by
|Pic0

Km | and using the identity |Pic0
Km | = |ClmK |Vol(Tm).

4.3.7. Conclusion

Theorem 4.18. Let ε > 0 and s > 0 be any positive real numbers and
let k ∈ R>0 be a positive real number as well. Let C ⊆ ΛKm,1 a sub-
lattice of the logarithmic ray unit lattice of the number field K. Putting
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s̃ = min(
√

2·s, 1/η1(C∗)), there exists a bound B = Õ(n2k[n2(log log(1/ε))2+
n2(log(1/s̃))2 +n2 log([ΛKm,1 : C])2 + (log(|∆K | N (m)))2]) such that for any
integer

N ≥
⌈

1
2k logn ·

(
r · log(1/s̃) + log|Pic0

Km |+ 2 log(1/ε) + log[ΛKm,1 : C] + 2
)⌉
, (4.62)

the random walk distribution WPic0
Km

(B,N, s) is ε-close to uniform in
L1(Pic0

Km), i.e., ∥∥∥WPic0
Km

(B,N, s)− U(Pic0
Km)

∥∥∥
1
≤ ε.

Proof. Let 1 > ε > 0, s > 0 and k ∈ R>0 be given. Let C ⊆ ΛKm,1 =
Log(O×K ∩Km,1) be a sublattice of the logarithmic ray unit lattice of index
[ΛKm,1 : C]. Since, by construction, 1/s̃ ≥ η1(C∗) and 1/s̃ ≥ 1/(

√
2s), and

since Λ∗Km,1 ⊆ C∗, we have

ρ 1√
2s

(Λ∗Km,1) ≤ ρ 1√
2s

(C∗) ≤ ρ1/s̃(C∗) ≤ 2 · det(C)/s̃r

≤ 2 · [ΛKm,1 : C] ·Vol(Tm)/s̃r (4.63)

Using this inequality and Hölder’s inequality (i.e., ∥f · 1∥1 ≤ ∥f∥2∥1∥2),
noting that ∥1Pic0

Km
∥22 = |Pic0

Km | and applying Theorem 4.17 and Equa-
tion (4.63), we obtain, for each r >

√
r/(
√

2s),∥∥∥WPic0
Km

(B,N, s)− U(Pic0
Km)

∥∥∥2

1

≤ |Pic0
Km | ·

∥∥∥∥∥HN (s−rρs|T
m)− 1

|Pic0
Km |

1Pic0
Km

∥∥∥∥∥
2

2

≤ |ClmK | · ρ 1√
2s

(Λ∗Km,1) · (c2N + β
(r)√

2rs)

≤ |ClmK | · 2 ·Vol(Tm) · [ΛKm,1 : C] · s̃−r · (c2N + β
(r)√

2rs)

≤ 2 · |Pic0
Km | · [ΛKm,1 : C] · s̃−r · (c2N + β

(r)√
2rs). (4.64)

Here, c = O
(

log(B) log(Bn·|∆K |·N (m)·(4+2πr/
√
n)n)

B1/2

)
, as in Theorem 4.17. We

proceed by bounding the two summands in Equation (4.64) separately.
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• By putting3 r equal to the maximum of
√
r/(
√

2s) and

1√
2s
·
√

2 + r log(1/s̃) + 2 log(1/ε) + log|Pic0
Km |+ log[ΛKm,1 : C]

we deduce that 2 · |Pic0
Km | · [ΛKm,1 : C] · s̃−r · β(r)√

2rs ≤ ε
2/2.

• Subsequently, choose4 a B = Õ(n2k[log(|∆K | N (m))2 + n2 log(r)2]),
i.e.,

B = Õ
(
n2k ·

[
log(|∆K | N (m))2 + n2 log(1/s̃)2

+ n2 log(log(1/ε))2 + n2 log([ΛKm,1 : C])2])
such that c ≤ 1/nk, where c = O

(
log(B) log(Bn·|∆K |·N (m)·(4+2πr/

√
n)n)

B1/2

)
as in Theorem 4.17. Finally, taking any integer N ≥ 1

k logn · (
r

2 ·
log(1/s̃)+2 log(1/ε)+ 1

2 log|Pic0
Km |+log[ΛKm,1 : C]+1) and noting that

c
1

k log n ≤ 1/e, we deduce that 2 · |Pic0
Km | · [ΛKm,1 : C] · s̃−r · c2N ≤ ε2/2.

Combining, we can bound the right-hand side of Equation (4.64) by ε2.
Taking square roots gives the final result.

Remark 4.19. Consider the base case m = OK . The occurrence of the
sublattice C ⊆ ΛK of the log unit lattice in Theorem 4.18 might appear
strange at first sight — indeed, just taking C = ΛK would make the result
less complex and seemingly about equally powerful.

We chose to phrase Theorem 4.18 in this way, because, in some number
fields, certain subgroups of the unit group are better understood than the full
unit group itself. For cyclotomic number fields, for example, the structure
of the subgroup of the cyclotomic units is simpler than that of the full unit
group. Due to this simpler structure, we can achieve a tighter bound on
η1(C∗)r · [ΛK : C] than we have on η1(ΛK) (where C is here chosen to be
the logarithmic image of the cyclotomic units).

3We use the bound β
(r)
α ≤ e−α2

for α ≥
√
r

4In this bound on B one would expect an additional log log|Pic0
Km |. But as it is bounded

by log(log(|∆K | N (m))) (see Lemma 2.17), it can be put in the hidden polylogarithmic
factors.
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Such a tight upper bound on the product η1(C∗)r · [ΛK : C] is important. This
product does namely not only have a large influence on the complexity, but
also has a significant leverage on BN/n, the quality loss in the shortest-vector
problem of the reduction in Chapter 5.

By taking C = ΛKm in Theorem 4.18, we obtain the main theorem.

Theorem 4.3 (Random Walks on the Arakelov Ray Class Group, ERH).
Let ε > 0 and s > 0 be any positive real numbers and let k ∈ R>0 be a positive
real number as well. Putting s̃ = min(

√
2 · s, 1/η1(Λ∗Km,1)), there exists a

bound B = Õ(n2k[n2(log log(1/ε))2 + n2(log(1/s̃))2 + (log(|∆K | N (m)))2])
such that for any integer

N ≥
⌈ 1

2k logn ·
(
r · log(1/s̃) + log|Pic0

Km |+ 2 log(1/ε) + 2
)⌉
, (4.46)

the random walk distribution WPic0
Km

(B,N, s) is ε-close to uniform in
L1(Pic0

Km), i.e., ∥∥∥WPic0
Km

(B,N, s)− U(Pic0
Km)

∥∥∥
1
≤ ε.

Remark 4.20. Consider again the base case m = OK . The running time of
the random walk as in Theorem 4.18 depends on quite a subtle way on the
Gaussian spread s of the continuous walk. Roughly said, one can distinguish
three regions; s < 1/η1(Λ∗K), 1/η1(Λ∗K) ≤ s < η1(ΛK) and η1(ΛK) ≤ s, see
also Figure 4.11.

(i) If s < 1/η1(Λ∗K), the Gaussian is narrow compared to the unit group
torus T . Each Gaussian covers a volume of around sr in the Arakelov
class group, which has volume |Pic0

K |. It is then intuitively clear
that around O(|Pic0

K |/sr) reasonably equidistributed duplicates of that
Gaussian spot are needed to cover the entire Arakelov class group,
i.e., to get a nearly uniform distribution. As the duplicates grow ex-
ponentially per random walk step, one expects to need O(log |Pic0

K |+
r log(s−1)) random walk steps. So in this particular case, the inverse
1/s of the Gaussian spread s has a significant influence on the running
time.
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4. Random Walks on Arakelov Ray Class Groups

(ii) If 1/η1(Λ∗K) ≤ s < η1(ΛK), the Gaussian spread is already so large
that it has already some overlap on the unit torus. So it is then to be
expected that the running time of the random walk does not so much
depend on this Gaussian spread per se, but rather on the structure of
the log unit lattice. If there is a significant gap between 1/η1(Λ∗K) ≈
1/λr(Λ∗K) ≈ λ1(ΛK) and η1(ΛK) ≈ λr(ΛK), one can deduce that this
log unit lattice must be quite ‘distorted’.

(iii) If η1(ΛK) ≤ s, the Gaussian is already so wide that it covers the entire
unit group torus (the connected component of the unit in Pic0

K). Then
neither the Gaussian spread s nor the log unit lattice ΛK have then any
influence on the running time: For such large s one can simply replace
log(1/s̃) by 0 and Vol(Pic0

K) by hK in Theorem 4.18. Not surprisingly,
one then recovers the ‘rapid mixing theorem’ for ideal class groups by
Jetchev and Wesolowski [JW15]. Additionally, by letting k tend to zero
(i.e., allowing for an infinite number of steps N) one obtains that the
prime ideals of norm below B = Õ(log(|∆K |)2) generate the ideal class
group, a fact better known as Bach’s bound [Bac90].

For the case m ̸= OK , the same reasoning applies, but with the ray unit
torus Tm instead.

Applications of the Random Walk theorem in the subsequent chapters

The genericness of the random walk theorem (Theorem 4.18) allows it to be
used for many applications. In this thesis, we specialize the parameters for
two cases.

The first case concerns the worst-case to average-case reduction for Hermite-
SVP on ideal lattices, the topic of Chapter 5. In that chapter we apply
Theorem 4.18 for general number fields and cyclotomic fields separately (see
Proposition 5.10). In this specialization of the random walk theorem we
aim at an as low as possible value for BN/n, as this is the loss in shortness
quality in the worst-case to average-case reduction. The cyclotomic field
gets a special treatment because one can obtain sharper bounds in that case,
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4.3. Random Walk Theorem for the Arakelov Ray Class Group

Figure 4.11.: The larger the Gaussian deviation s is, the less influence it has on the running
time of the random walk.

assuming that the class number of the maximal totally real subfield of the
cyclotomic field remains reasonably small, asymptotically. This is due to the
occurrence of the cyclotomic units in cyclotomic fields, a subgroup of the
unit group with particularly nice properties.

The second case concerns ideal sampling, the main topic of Chapter 6. In
that chapter we show that a specific way of sampling in an ideal resembles
sampling in a ideal that is a result of a random walk on the Arakelov class
group. It applies Theorem 4.18 to show that this latter result of a random
walk is close to uniformly distributed. In those cases one can apply ideal
density results to lower bound the probability that the relative ideal (the
sampled element divided by the input ideal) lies in a certain ideal set. In
this application there is not really a restriction on any parameter, apart that
those need to be small enough for the sampling algorithm to be efficient. In
Theorem 6.3 of Chapter 6 we made some parameter choices (e.g., s ≈ 1/n2)
to make the computation less involved and making the sampling in the
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4. Random Walks on Arakelov Ray Class Groups

distorted box feasible; also the specialized theorem in this chapter is slightly
aimed at a small B, the bound on the norm of the prime ideals. For the
ideal sampling result this is not required; one can append these parameters
as one wishes, provided that the sampling in the distorted box can still be
done efficiently (or is at least non-vacuous) and taking care that the prime
ideals involved (this depends on the parameter B) do not get too large to
be feasible.
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5. A Worst-case to Average-case
Reduction for Ideal Lattices

5.1. Summary

In this chapter we achieve a worst-case to average-case reduction for the
Hermite Shortest Vector Problem (SVP) on ideal lattices of a fixed number
field. Such a reduction allows to transform a fixed chosen instance of a
problem (the worst case) to a sample of a fixed distribution over all instances
of this problem (the average case). Slightly more formally said, a worst-case
to average-case reduction consists of two parts: the first one being a definition
of the average-case distribution and the second one being an algorithm that
reduces any input instance to a sample of that average-case distribution.

In the reduction of this chapter, which concerns Hermite-SVP on ideal
lattices of a fixed number field, this average-case distribution will be defined
as something closely related to the uniform distribution on the Arakelov class
group. This Arakelov class group is essentially the group of ideal lattices up
to isometry.

The reduction algorithm in this chapter transforms any fixed input ideal
lattice to a sample of the average-case distribution on the Arakelov class
group by means of a random walk, as introduced in the previous chapter.
This ‘random walk’ transformation of the input ideal lattice only slightly
changes its geometry and is therefore compatible with the Hermite Shortest
Vector Problem. More concretely, any short vector of the transformed ideal
lattice can be reasonably untransformed to yield a short vector of the input
lattice, with only a small loss in quality.
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5. A Worst-case to Average-case Reduction for Ideal Lattices

This particular approach for a worst-case to average-case reduction faces two
challenges. The first challenge consists of finding a suitable representation
of ideal lattices (or Arakelov classes), whereas the second one involves an
appropriate treatment of the inherently continuous ideal lattices on finite
precision machines.

Such a representation of ideal lattices suitable for the purposes of the
worst-case to average-case reduction turns out to be doable by means of
a distribution over the group of fractional ideals. More precisely, with any
fixed ideal lattice we associate an algorithm that efficiently samples from a
specific distribution, mainly consisting of fractional ideals that geometrically
resemble the input ideal lattice – i.e., whose Arakelov class is close to that of
the original ideal lattice. This specific distribution is then our representation
of that fixed ideal lattice.

The appropriate treatment of the inherently continuous objects on finite
machines happens by discretization. A considerable amount of this chapter
is devoted to showing that this discretization does not have a significant
effect on the overall worst-case to average-case reduction.

5.2. Introduction

The space of all ideal lattices (up to isometry) in a given number field
forms naturally an abelian group, called the Arakelov class group – a fact
well known to number theorists (e.g., [Sch08]). Yet this notion has never
appeared explicitly in the literature on lattice-based cryptography. The
relevance of this perspective is already illustrated by some previous work
which implicitly exploit Arakelov ideals [Eis+14; BS16] and even the Arakelov
class group [PHS19; Lee+19]. Beyond its direct result, this chapter aims at
highlighting this powerful Arakelov class group formalism for finer and more
rigorous analysis of computational problems in ideal lattices.
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5.2.1. The Result

We exploit the random walk theorem of Chapter 4 to relate the average-case
and the worst-case of Ideal-SVP, due to the interpretation of the Arakelov
class group as the space of all ideal lattices up to isometry. Note that this
reduction does not directly impact the security of existing schemes: there
exists no modern cryptographic scheme based on the average-case version
of Ideal-SVP. The value of our result lies in the introduction of a new tool,
and an illustration of the cryptanalytic insights it offers.

As already mentioned, ideal lattices (up to isometry) of a given number
field K can be identified with the elements of the Arakelov class group, also
known as the degree zero part Pic0

K of the Picard group. There are two
ways to move within this group: given an ideal, one can obtain a new one by
‘distorting’ it, or by ‘sparsifying’ it. In both cases, finding a short vector in
the target ideal also allows to find a short vector in the source ideal, up to
a certain loss of shortness. So, the quality (i.e., the shortness) of the short
vector deteriorates with each extra step of the walk; therefore, we minimize
the length of the random walk subject to the requirement that the target
ideal is uniformly randomly distributed in the Arakelov class group.

This approach leads to a surprisingly tight reduction. In the case of cyclo-
tomic number fields of prime power conductor m = pk, under the Riemann
Hypothesis for Hecke L-functions (which we abbreviate ERH for the Ex-
tended Riemann Hypothesis), and a mild assumption on the structure of
the class groups, the loss of approximation factor is as small as Õ(

√
m). In

other words:

Main Theorem (informal). Let m = pk be a prime power. If there exists
a polynomial-time algorithm for solving Hermite-SVP with approximation
factor γ over random ideal lattices of Q(ζm), then there also exists a poly-
nomial time algorithm that solves Hermite-SVP in any ideal lattice with
approximation factor γ′ = γ ·

√
m · poly(logm).

In fact, this theorem generalizes to all number fields, but the loss in approxi-
mation factor needs to be expressed in more involved quantities. The precise
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statement is the object of Theorem 5.9.

5.2.2. Overview

The Arakelov class group. Both the unit group [Cra+16] and the class
group [CDW17] have been shown to play a key role in the cryptanalysis of
ideal lattice problems. In these works of Cramer et al. [Cra+16; CDW17],
these groups are exploited independently, in ways that nevertheless share
strong similarities with each other. More recently, both groups have been
used in combination for cryptanalytic purposes [PHS19; Lee+19]. It therefore
seems natural to turn to a unifying theory.

The Arakelov class group (denoted Pic0
K) is a combination of the unit torus

T = LogK0
R/Log(O×K) and of the class group ClK . The exponent 0 in K0

R
refers to elements of algebraic norm 1 (i.e., modulo renormalization), while
the subscript R indicates that we are working in the topological completion
of K. By ‘a combination’ we do not exactly mean that Pic0

K is a direct
product; we mean that there is a short exact sequence

0 −→ T −→ Pic0
K −→ ClK −→ 0.

That is, T is (isomorphic to) a subgroup of Pic0
K , and ClK is (isomorphic

to) the quotient Pic0
K /T . The Arakelov class group is an abelian group

which combines an uncountable (yet compact) part T and a finite part ClK ;
topologically, it should be thought of as |ClK | many disconnected copies of
the torus T (see Figure 4.1).

A worst-case to average-case reduction for ideal-SVP. An important aspect
of the Arakelov class group for the present work is that this group has a
geometric interpretation: it can essentially be understood as the group of all
ideal lattices up to K-linear isometries. Furthermore, being equipped with a
metric, it naturally induces a notion of near-isometry. Such a notion gives a
new handle to elucidate the question of the hardness of ideal-SVP. Namely,
knowing a short vector in a, and a near-isometry from a to ã, one can
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deduce a short vector of ã up to a small loss induced by the distortion of the
near-isometry. This suggests a strategy towards a worst-case to average-case
reduction for ideal lattices, namely by randomly distorting a worst-case ideal
to a random one (see Figure 5.2).

However, there are two issues with this strategy: first, this near-isometry
keeps staying in a fixed class of ClK ; i.e., one is stuck in one of the potentially
many separated copies of the torus that constitute the Arakelov class group.
Second, even if |ClK | = 1, the unit torus T might be too large, and to reach
the full torus from a given point, one may need near-isometry that are too
distorted for our purposes.

In the language of algebraic geometry, distortion of ideal lattices corresponds
to the ‘infinite places’ of the field K, while we can also exploit the ‘finite
places’, i.e., the prime ideals. Indeed, if c is an integral ideal of small norm
and ã = ca, then ã is a sublattice of a and a short vector of ã is also a
somewhat short vector of a, an idea already used in [CDW17; PHS19] (see
Figure 5.1).

Figure 5.1.: If c is an integral ideal of small norm and ã = ca, then ã is a sublattice of a
and a short vector of ã is also a somewhat short vector of a.

5.2.3. Related work

Relation to recent cryptanalytic works. The general approach to this result
was triggered by a heuristic observation made in [DPW19], suggesting that
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the worst-case behavior of the quantum ideal-SVP algorithm built out
of [Eis+14; BS16; Cra+16; CDW17] could be made not that far of the
average-case behavior they studied experimentally. More specifically, we
do achieve the hoped generalization of the class group mixing theorem
of [JMV09; JW15] to Arakelov class groups.

Prior self-reduction via random walks. As already mentioned, our result
shares strong similarities with a technique introduced by Jao, Miller and
Venkatesan [JMV09] to study the discrete logarithm problem on elliptic
curves. Just as ideal lattices can be seen as elements of the Arakelov class
group, elliptic curves in certain families are in bijective correspondence
with elements of the class group of a quadratic imaginary number field.
In [JMV09], Jao et al. studied (discrete) random walks on class groups, and
showed that they have a rapid mixing property. They deduced that from
any elliptic curve, one can efficiently construct a random isogeny (a group
homomorphism) to a uniformly random elliptic curve, allowing to transfer
a worst case instance of the discrete logarithm problem to an average case
instance. Instead of the finite class group, we studied random walks on
the infinite Arakelov class group, which led to consequences in lattice-base
cryptography, an area seemingly unrelated to elliptic curve cryptography.

Prior self-reduction for ideal lattices. Our self-reducibility result is not the
first of its kind: in 2010, Gentry already proposed a self-reduction for an ideal
lattice problem [Gen10], as part of his effort of basing Fully-Homomorphic
Encryption on worst-case problems [Gen09]. Our result differs in several
points.

• Our reduction does not rely on a factoring oracle, and is therefore
classically efficient; this was already advertised as an open problem
in [Gen10].

• The reduction of Gentry considers the Bounded Distance Decoding
problem (BDD) in ideal lattices rather than a short vector problem.
Note that this distinction is not significant with respect to quantum
computers [Reg09].
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• The definition of average case distribution is significantly different,
and we view the one of [Gen10] as being somewhat ad-hoc. Given that
the Arakelov class group captures exactly ideal lattices up to isometry,
we consider the uniform distribution in the Arakelov class group as a
much more natural and conceptually simpler choice.

• The worst case ideal input of [Gen10] has restrictions on the size of
the norm, whereas our worst case ideal input is unrestricted.

• The loss on the approximation factor of our reduction is much more
favorable than the one of Gentry [Gen10]. For example, in the case
of cyclotomic number fields with prime-power conductor, Gentry’s
reduction (on BDD) seems to loose a factor at least Θ(n4.5), while our
reduction (on Hermite-SVP) only loses a factor Õ(

√
n) making a mild

assumption on plus-part h+ of the class number.

Structure of this chapter

We start the remainder of this chapter by constructing an representation
of Arakelov class elements that is appropriate to use in a worst-case to
average-case reduction (Section 5.3).

After that, we describe a simplified version of the worst-case to average-case
reduction; we leave out the difficulties concerning finite machine precision
(Section 5.4). In the last part of this chapter, we will show by quite tech-
nical means that ignoring finite precision does not impact the reduction
significantly (Section 5.5).

5.3. Representation of Ideal Lattices by Means of
Distributions

Ideal lattices

Though the notion of ideal lattices is already given in this thesis (see
Definition 2.19), we will restate the definition here.
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Definition 5.1 (Ideal lattices). Let K be a number field with ring of integers
OK . An ideal lattice of K is a OK-module I ⊆ KR, with the additional
requirement that there exists an x ∈ KR\{0} such that xI ⊆ OK . We denote
the group of ideal lattices by IdLatK .

In essence, the group of ideal lattices IdLatK can be considered as a sort-of
completion of the group of fractional ideals IK , in the same sense that the
reals R are a completion of Q. A straightforward way to imagine an ideal
lattice xa ⊆ KR is to think of an ideal a ⊆ OK that is ‘perturbed’ by a
vector x ∈ KR = {y ∈⊕σ:K→CC | yσ̄ = yσ} (see Figure 5.2).

Figure 5.2.: In this two-dimensional example, the left ideal lattice is slightly stretched in
the x-direction and slightly shrunk in the y-direction, leading to the perturbed
ideal lattice on the right. The yellow circle functions as a visual aid, making
the precise deformation of the lattice more explicit.

Representations

Above interpretation immediately gives a representation of the ideal lattice
xa by the pair (x, a) ∈ KR × IK . But that representation is by no means
unique; indeed, one can check that (xα−1, (α)a) ∈ KR × IK , for example,
generates the same ideal lattice for any α ∈ K∗. Here, α−1 ∈ K is seen as
an element in KR via the Minkowski embedding K ↪→ KR.
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Why do we need an efficient and canonical representation of an ideal
lattice (or Arakelov class)?

As mentioned before, a worst-case to average-case distribution of a certain
set of problem instances consists of two parts: the definition of a distribution
on this set of instances, and an algorithm that reduces any fixed problem
instance to this distribution.

Given an Arakelov divisor a ∈ Div0
K , we know how to randomize it so that it

is uniformly random in the quotient group Pic0
K ; namely, by the random walk

procedure (see Chapter 4). So, for any a ∈ Div0
K we can efficiently compute

a distribution Da ∈ L1(Div0
K) that becomes an uniform distribution under

the canonical map L1(Div0
K)→ L1(Pic0

K),D 7→∑
k∈K∗/µK

D(·+ k).

To obtain a worst-case to average-case reduction we need a fixed (average-
case) distribution D0 on Div0

K and an efficient (reduction) map

ψ : L1(Div0
K)→ L1(Div0

K)

such that for all a ∈ Div0
K , ψ(Da) = D0. Also, this reduction map must be

preserving certain geometric properties (be Hermite-SVP compatible) to be
an actual useful reduction map.

Suppose for the moment that one has a canonical ‘lift’ L : Div0
K → Div0

K

for which holds [a] = [b] ⇒ L(a) = L(b); i.e., it ‘factors through’ Pic0
K .

And suppose that this map is compatible with Hermite-SVP, i.e., solving
Hermite-SVP in L(a) allows to solve Hermite-SVP in a. Then this lift L
serves as a reduction map, by sending the distribution Da ∈ L1(Div0

K) to
L(Da), with which we mean the distribution that samples L(b) with density
Da(b). By the fact that Da maps to the uniform distribution under the
canonical map L1(Div0

K)→ L1(Pic0
K), the distribution L(Da) = D0 is the

same for all a ∈ Div0
K . So, such an efficient and Hermite-SVP compatible

lift L, which then computes an efficient and canonical representation of ideal
lattices, is essentially what remains to construct to make the worst-case to
average-case reduction work.
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Algorithm 3: Sampling from the distribution Dxa.
Require: A pair (x, a) ∈ KR × IK such that N (a)∏σ xσ = 1.
Ensure:

• A sample d−1 from the distribution Dxa
• A v ∈ xa such that d−1 = v−1xa.

1: Put ς = 2n+1 · n · |∆K | and M = 2
√
n · ς.

2: Sample a center c = (cσ)σ uniformly in
CM = {(yσ)σ | |yσ| = M for all embeddings σ}.

3: Sample from the discrete Gaussian Gxa,ς,c with respect to the ideal
lattice xa with center c = (cσ)σ and standard deviation ς, leading to
some v ∈ xa.

4: return the inverse integral ideal d−1 = v−1xa ∈ IK and v ∈ xa.

We could not find such an efficient map L that is also compatible with
Hermite-SVP – instead, we use a map L : Div0

K → L1(Div0
K) that is

sufficient for our needs. This is a canonical representation by means of a
distribution. The map we chose has even codomain L1(IK), i.e., involves a
discretization for efficiency. So the map L : Div0

K → L1(IK) we construct,
satisfies L(a) = L(b) for [a] = [b] and is compatible with Hermite-SVP.

Concretely, L(a) consists of sampling a ‘balanced’ element α ∈ a and
outputting the ideal α−1 · a ∈ IK . This ideal then quite resembles the
geometry of a and lies in the same ideal class; so this ideal (when reduced
to the Arakelov class group) must be close to [a].

Representation by means of a distribution

A representation that is both unique and (in some sense) classically efficiently
computable can be made by means of a distribution. We will define a
map IdLatK → L1(IK), xa 7→ Dxa having the property that Dxa is an
efficiently samplable distribution for any input ideal lattice xa ∈ IdLatK .
The computation of this map xa 7→ Dxa is described in Algorithm 3.

174



5.3. Representation of Ideal Lattices by Means of Distributions

Remark 5.2. It follows from the description of Algorithm 3 that the distri-
bution Dxa indeed depends only on the ideal lattice xa and not so much on
the representation (x, a) ∈ KR×IK thereof. Hence the notation Dxa, instead
of, for example, D(x,a).

The output of the element v ∈ xa such that d−1 = v−1xa does not take any
part in the distribution Dxa. But it will have a major role in the worst-case
to average-case reduction (see Algorithm 4), because it relates d−1 to the
input ideal lattice xa.

Equivalently, the distributionDxa can be described by the following definition.

Definition 5.3 (Distribution representation of ideal lattices). Let (x, a) ∈
KR×IK . The distribution Dxa ∈ L1(IK) is supported only by inverse integral
ideals. For integral ideals d ∈ IK the probability is defined by the following
rule.

Dxa[d−1] = 1
Vol(CM )

∫
c∈CM

1
ρς(xa− c)

∑
v∈xa

(v)=xad

ρς(v − c)dc, (5.65)

where ς = 2n+1 · n · |∆K |, M = 2
√
n · ς and CM = {(xσ)σ ∈ KR | |xσ| = M},

the M -hypercircle in KR.

The fact that Dxa is a distribution follows by the following computation.∑
d∈IK

Dxa[d−1] = 1
Vol(CM )

∫
c∈CM

1
ρς(xa− c)

∑
d∈IK

∑
v∈xa

(v)=xad

ρς(v − c)

︸ ︷︷ ︸
ρς(xa−c)

dc

= 1
Vol(CM )

∫
c∈CM

dc = 1.

Remark 5.4. The instantiation of ς ∈ R>0 in Definition 5.3 is chosen
this way because of the lower bound ς ≥ 2n+1√n · |∆K |1/(2n) · λn(OK) and
λn(OK) ≥ n

√
|∆K | (see Lemma 2.22). The first of these lower bounds arises
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from the size of an LLL-reduced basis of xa; and the standard deviation ς

needs to be larger than this basis size for an efficient computation of the
discrete Gaussian over xa by Klein’s algorithm [GPV08; Kle00].

The instantiation of M = 2
√
n · ς (or larger) is required in order to have a

balanced v ∈ KR in line 3 of Algorithm 3. A balanced v ∈ KR means that all
entries vσ of v are of roughly the same size, i.e., that maxσ |vσ |

minσ |vσ | is small. This
has as a consequence that d−1 ← Dxa and xa have a very similar geometry
(see Lemma 5.5 part (iii)).

Properties of the distribution representation

Because the distribution D(x,a) in Definition 5.3 depends on the ideal lattice
xa and not on the representing pair (x, a), we can see the domain of the
map D· as the group of ideal lattices IdLatK , i.e., D· : IdLatK → L1(IK),
xa→ Dxa. Even more is true – two isometric ideal lattices xa and yb also
have the same distribution Dxa and Dyb. Two ideal lattices being isometric
means that there exists an element ξ = (ξσ)σ ∈ C1 = {(yσ)σ | |yσ| = 1} such
that xa = ξyb (see Definition 2.20). So, this map can even be interpreted to
have domain Pic0

K .

Another two remarkable properties of the distribution Dxa are that d−1 ←
Dxa always lies in the ideal class [a] and has (with high probability) a
geometry very similar to xa. So, in some sense, we may see a sample
d−1 ← Dxa as a sort of ‘discrete approximation’ of the ideal lattice xa. These
important properties of the distribution representation are spelled out in
the following lemma.

Lemma 5.5 (Properties of the distribution representation). The map D :
IdLatK → L1(IK) has the following properties.

(i) (Isometric lattices have the same distribution) For all xa, yb ∈ IdLatK
which are isometric, i.e., xa ∼ yb, we have Dxa = Dyb.
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(ii) (Supported by a single ideal class) For all xa ∈ IdLatK , the distribution
Dxa on IK is supported only by inverted integral ideals that lie in the
ideal class [a].

(iii) (Bounded size) For all xa ∈ IdLatK with N (a)∏σ xσ = 1, the weight
of the distribution Dxa is concentrated on inverted integral ideals d−1

for which holds N (d−1) ≥ (ς +M)−n. Concretely,

Pr
d−1←Dxa

[
N (d−1) < (ς +M)−n

]
≤ 2e−n.

(iv) (Similar geometry) For all xa ∈ IdLatK with N (a)∏σ xσ = 1, for
almost all d−1 ← Dxa, we have d−1 = v−1xa with ∥v∥∞∥v−1∥∞ ≤ 3,
i.e., v is balanced. Concretely,

Pr
d−1←Dxa

[
∃v ∈ KR : d−1 = v−1xa and ∥v∥∞∥v−1∥∞ ≤ 3

]
≥ 1− 2e−n

Proof. (i) Write xa = ξyb, use Definition 5.3 and use the fact that |ξσ| = 1
for all embeddings σ to deduce, for a fixed integral ideal d,

1
ρς(xa− c)

∑
v∈xa

(v)=xad

ρς(v − c) = 1
ρς(ξyb− c)

∑
v∈yb

(v)=ybd

ρς(ξv − c)

= 1
ρς(yb− ξ−1c)

∑
v∈yb

(v)=ybd

ρς(v − ξ−1c).

The map c 7→ ξ−1c is an isometric smooth bijection on the hypercircle
CM , so integrating with respect to the variable ξ−1c or c for c ∈ CM
doesn’t change the value of the integral. Therefore, D(x,a)[d−1] =
D(y,b)[d−1] for all d ∈ IK .

(ii) From Equation (5.65) we see that d = (v)/(xa) for v ∈ xa and therefore
d must be an integral ideal in the inverse class of a; so d−1 lies in the
ideal class [a].
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(iii) Use the fact that N (xa) = 1 and the fact that (v) = xad to derive

Pr
d←Dxa

[N (d) > (ς +M)n] = Pr
d←Dxa

[N (xad) > (ς +M)n]

≤ Pr
c←CM

v←Gxa,ς,c

[∥v∥2 >
√
n · ς +

√
n ·M ].

≤ max
c∈CM

Pr
v←Gxa,ς,c

[∥v − c∥2 >
√
n · ς].

Where the first inequality follows from norm inequalities; we have
n−1/2 · ∥v∥2 ≥ n−1 · ∥v∥1 ≥ N (v)1/n = N (xad)1/n ≥ (ς + M). The
second inequality follows from the triangle inequality and the fact that
∥c∥ =

√
n ·M . By Banaszczyk’s tail bound (see Lemma 2.25) and by

smoothing arguments (see Lemma 2.31), we conclude

Pr
v←Gxa,ς,c

[
∥v − c∥ ≥

√
n · ς

]
≤ e−n · ρς(xa)

ρς(xa− c)
≤ 2e−n.

For the smoothing argument we use the fact that ς = 2n+1 ·n · |∆K | ≥
nλn(OK) ≥ η1(xa) (see [MR07, Lm. 3.3 and 3.4]).

(iv) We have, by the norm inequalities, ∥v − c∥ ≥ ∥v − c∥∞, and therefore,
by part (iii) of this lemma,

Pr
v←Gxa,ς,c

[
∥v − c∥∞ ≥

√
n · ς

]
≤ Pr

v←Gxa,ς,c

[
∥v − c∥ ≥

√
n · ς

]
≤ 2e−n.

Since |cσ| = M for all embeddings σ, and since M = 2
√
nς, we have,

except with probability 2e−n,

∥v∥∞
∥∥∥v−1

∥∥∥
∞

= maxσ |vσ|
minσ |vσ|

≤ M +
√
nς

M −
√
nς

= 3.

Remark 5.6. The bound ∥v∥∞∥v−1∥ ≤ 3 w.h.p. in part (iv) of Lemma 5.5
can be tightened to ∥v∥∞∥v−1∥ ≤ 1 +O(e−n) by taking M = 2n · ς. Because
this would only remove a rather non-significant constant 3 in the quality
loss of the output in the worst-case to average-case reduction, we choose this
‘constant bound’ for simplicity.
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A consequence of Lemma 5.5 is that the map D· : IdLatK → L1(IK), that
sends ideal lattices to distributions on IK factors through the quotient group
IdLatK / ∼, where ‘∼’ stands for factoring out by isometries. As the group
of ideal lattices up to isometries is naturally isomorphic to the Arakelov
class group Pic0

K (see Lemma 2.21), we might as well consider Pic0
K as the

domain of the map D.

5.4. The Worst-case to Average-case Reduction

Introduction

A worst-case to average-case reduction consists of two main parts: the
definition of the average-case distribution and an algorithm that reduces a
fixed problem instance to a sample of the average-case distribution.

We start this section with the definition of the average-case distribution,
which is derived from the uniform distribution on the Arakelov class group.
After that, we will describe the reduction algorithm. In this description
of the worst-case to average-case reduction we temporarily ignore issues
regarding real numbers. In the last part of this section we will prove the
correctness of the reduction algorithm and examine the precise quality loss
that occurs in the reduction.

Discussing and solving the issues regarding real numbers and finite precision
in the distribution algorithm Algorithm 3 and the reduction algorithm
Algorithm 4 is deferred to Section 5.5. In that section we will prove that
both the distribution algorithm and the reduction algorithm can be run
efficiently on a finite machine by means of appropriate discretization.

Definition of the average-case distribution

Knowing in advance that the reduction algorithm will make use of the random
walk machinery of Chapter 4, which leads to a near-uniform distribution
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5. A Worst-case to Average-case Reduction for Ideal Lattices

on the Arakelov class group, the average-case distribution must be strongly
tied to this distribution.

Indeed, we define the average-case distribution to be distribution on L1(IK)
defined by the following rule.

DU(Pic0
K)[d−1] = 1

|Pic0
K |

∫
a∈Pic0

K

Da[d−1]da. (5.66)

In essence this is just ‘taking the average’ of all distributions Da (as in
Section 5.3) where a is taken uniformly from the Arakelov class group.

Reduction algorithm

The reduction algorithm essentially consists of taking an input ideal lattice
xa, applying a specific random walk procedure on it as in Chapter 4, yielding
x̃ã, and sampling an ideal d−1 ← Dx̃ã. A rigorous, precise description of this
procedure is spelled out in Algorithm 4.

Remark 5.7. Algorithm 4, and also Algorithm 3, are strictly spoken not
algorithms that can be run on a finite computer, because of the continuous
distributions occurring in the algorithm descriptions. In Algorithm 3 it is
the uniform sampling from the hypercircle CM and in Algorithm 4 it is the
Gaussian sampling that is inherently continuous.

In Section 5.5 we will show that those continuous distributions can be effi-
ciently discretized without a significant impact on the final result. Therefore,
we just ignore these continuity issues for now, for the sake of clarity and
brevity.

Explanation of the reduction algorithm
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5.4. The Worst-case to Average-case Reduction

Algorithm 4: The worst-case to average-case reduction algorithm
Require:

• A pair (x, a) ∈ KR × IK satisfying N (a)∏σ xσ = 1.
• The values [ΛK : C] and η1(C∗) of a suitable sublattice C ⊆ ΛK

of the logarithmic unit lattice,
• An oracle A that solves γ-Hermite SVP in d−1 whenever

d−1 ← DU(Pic0
K).

Ensure: A vector α ∈ xa that is a solution to B1/n · γ-Hermite SVP in
the ideal lattice xa, i.e.,

∥α∥ ≤ γ ·B1/n · det(xa)1/n,

where B = Õ
(
4n · η1(C∗)r · [ΛK : C] · |Pic0

K | · (log |∆K |)2),
or, failure.

1: Put s = max(
√

2 · η1(C∗), (logn)2) and
B = Õ

(
4n · η1(C∗)r · [ΛK : C] · |Pic0

K | · (log |∆K |)2) as in
Corollary 5.8.

2: Multiply the ideal a by a prime ideal p uniformly sampled from the
set {p prime ideal of OK | N (p) ≤ B}, yielding ap.

3: Sample a Gaussian distributed y ← Gs,H , where H is the hyperplane
where the logarithmic unit lattice lives in.

4: Put p = N (p)1/n, so that eyxap/p has norm 1, where ey ∈ KR is the
component-wise exponentiation of y ∈ H.

5: Sample d−1 ← Dey ·x·ap/p using Algorithm 3, and let v ∈ eyxap/p be
the additional output of Algorithm 3 that satisfies d−1 = v−1eyxap/p.

6: Invoke the γ-Hermite SVP oracle A on DU(Pic0
K) to find a κ ∈ d−1 for

which holds ∥κ∥ ≤ γ · det(d−1)1/n

7: return p · e−y · v · κ ∈ xa.
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5. A Worst-case to Average-case Reduction for Ideal Lattices

Randomize the input ideal lattice xa. The first four steps of Algorithm 4
actually applies a random walk on the input ideal lattice xa, resulting
in a randomized ideal lattice x̃ã. By the results of Chapter 4, this ideal
lattice is nearly uniformly distributed in the Arakelov class group. Therefore,
sampling from the distribution Dx̃ã ≈ DU(Pic0

K) associated with this random
ideal lattice x̃ã then yields an ideal d−1 that must be closely distributed as
DU(Pic0

K). So, that is an intuitive idea of why the output ideal d−1 is almost
distributed as the average-case distribution as in Equation (5.66).

Sample d−1 ← Dx̃ã and apply the Hermite-SVP oracle A on d−1. Because
d−1 ← Dx̃ã is so close to the average-case distribution, we can actually invoke
the oracle A to find a short vector in the ideal d−1 ← Dx̃ã. The sampling is
done in step 5 and calling the oracle in step 6 of Algorithm 4.

Transform the short vector γ ∈ d−1 into a short vector in the randomized ideal
lattice x̃ã. Recall that Algorithm 3 on input x̃ã outputs both d−1 ← Dx̃ã
and a v ∈ x̃ã such that d−1v = x̃ã.

So, any short vector κ ∈ d−1 can be transformed into a short vector vκ ∈ x̃ã.
Because this v ∈ x̃ã is balanced, this does not affect the shortness of the
vector κ much; in a way one might say that the ideal lattices x̃ã and d−1

geometrically very much resemble each other.

Transform a short vector in x̃ã to a short vector in the input ideal lattice
xa. By construction, x̃ã = ey/p · xap, i.e., the randomized ideal lattice is
just the input ideal lattice multiplied by a prime ideal, slightly disturbed a
renormalized. By undoing the disturbance (i.e., dividing by ey) and undoing
the renormalization (i.e., multiplying by p = N (p)1/n) on the short vector
vκ ∈ x̃ã, we obtain a short vector in xap ⊆ xa. More precisely: because
vκ ∈ x̃ã, we have that p · e−y · (vκ) ∈ xap ⊆ xa.

Reason for quality loss. Note that the reduction algorithm only ensures
to find a vector solving B1/n · γ-Hermite SVP, whereas the oracle A in

182



5.4. The Worst-case to Average-case Reduction

Algorithm 4 is assumed to be able to find a vector satisfying γ-Hermite SVP
on an ‘average case’ ideal lattice (see Equation (5.66)).

This particular loss B1/n comes from the fact that we cannot not reasonably
‘undo’ the part of the random walk where we multiply the input ideal
lattice xa by a random prime ideal p. So, this reduction algorithm actually
finds a γ-Hermite short vector in xap, a slightly wider ideal than xa. As
xap ⊆ xa, and the root determinants of these ideal lattices differ with a
factor p = N (p)1/n, a γ-Hermite short vector in xap is a B1/n · γ-Hermite
short vector in xa, as N (p)1/n ≤ B1/n.

Proof of correctness and quantification of the quality loss

In order to prove the result of this chapter, we need the following specializa-
tion of the random walk theorem of Chapter 4, which is specifically tailored
to the worst-case to average-case reduction.

Corollary 5.8 (Random walk in the Arakelov class group, simplified). Let
K be a number field, and let C ⊆ ΛK be a sublattice of the logarithmic unit
lattice. Assuming the Extended Riemann Hypothesis, there exists a bound
B = Õ

(
4n ·η1(C∗)r ·[ΛK : C]·|Pic0

K |·(log |∆K |)2) such that the random walk
distribution with one step WPic0

K
(B, 1, s) is exponentially close to uniform

in L1(Pic0
K).

∥WPic0
K

(B, 1, s)− U(Pic0
K)∥1 ≤ 2−n

Proof. Apply Theorem 4.18 from Chapter 4 with

• k = 1
2 logn ·

(
r·log(1/s̃)+log(Vol(Pic0

K))+2 log(1/ε)+log[ΛK : C]+2
)
,so

that taking N = 1 satisfies the requirements of the theorem.
• s = 1/(

√
2 · η1(C∗)), so that s̃ = 1/η1(C∗);

• ε = 2−n.
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Appropriately substituting above instantiations in the formula for B in
Theorem 4.18, noting that n2k = O(η1(C∗)r · |Pic0

K | · 4n · [ΛK : C]), we
obtain

B = Õ
(
n2k[n2(log log(1/ε))2 + n2(log(1/s̃))2

+ n2 log([ΛK : C])2 + (log |∆K |)2]
)

= Õ
(
4n · η1(C∗)r · [ΛK : C] · |Pic0

K | · (log |∆K |)2).

Using above specialized random walk theorem, we can prove the main
theorem of this chapter.

Theorem 5.9. Let K be a number field with logarithmic unit lattice ΛK ,
let C ⊆ ΛK be any sublattice, and denote its dual lattice by C∗. Put 1/s =
max(

√
2 · η1(C∗), log(n)2).

Assume we have a (possibly randomized) algorithm A that solves γ-Hermite-
SVP within an approximation factor γ ≥ 1 and probability1at least q > 0
when given an input a with a← DU(Pic0

K).

Then there exists a randomized algorithm B solving
(
O(B1/n) · γ

)
-Hermite-

SVP in any ideal lattice xa ∈ IdLatK , with probability2 at least q − n−ω(1),
where B = Õ

(
4n · s−r · [ΛK : C] · |Pic0

K | · (log |∆K |)2). The algorithm B
runs within time polynomial in log |∆K |, log[ΛK : C], size(x) and size(Ma)
on input (x, a) ∈ KR × IK and needs one call to the algorithm A.

1Here, the probability q is taken over the random choice of a ← DU(Pic0
K

) and over
the possible internal randomness of the algorithm A

2Here, the probability is taken over the internal randomness of B
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Furthermore, the loss B1/n in the approximation factor of Hermite-SVP in
the reduction can be upper bounded as follows.

B1/n =



Õ(
√
n) if K = Q(ζpk), a prime power

cyclotomic field, assuming that
h+
K = log(n)O(n).

Õ(n1−nC/n · |∆K |1/(2n)) otherwise
(5.67)

Proof. Proof of the running time. The random walk process and the distri-
bution representation of the reduction have inherently continuous aspects,
that need to be discretized in order to be suitable for an actual computer.
The discretized version of the reduction is treated in Section 5.5, in which
also its running time and its discretization error is studied. In Theorem 5.11
we show that the reduction can be approximated within a negligible error
margin, using time polynomial in log |∆K |, log[ΛK : C], size(x); here we take
ε = 2−n to have exponentially small error.

Success probability. By the choice of parameters in reduction Algorithm 4,
the Arakelov class of xey/p · ap (where p and y ∈ H are randomly chosen
as in Algorithm 4) must be exponentially close to uniform in Pic0

K in total
variation distance (see Corollary 5.8). By the data processing inequality
[CT06, §2.8], Dxey/p·ap is exponentially close to DU(Pic0

K) as well. Therefore,
the algorithm A cannot distinguish reasonably between the two distributions
and outputs with probability at least q − 2−n a solution of γ-Hermite SVP
in d−1 ← Dxey/p·ap.

Quality of the output. Let us assume that algorithm A indeed found a solution
to γ-Hermite SVP, i.e., a vector κ ∈ d−1 which satisfies ∥κ∥ ≤ γ ·det(d−1)1/n,
where d−1 ← Dxey/p·ap.

As κ ∈ d−1 = v−1eyx/p · ap (see Algorithm 3), we must have that3 κ =
v−1ey/p · α for some α ∈ xap. This particular α ∈ xap ⊂ xa is a solution
for O(B1/n) · γ-Hermite SVP in xa, which can be seen by the following

3Note that p = N (p)1/n
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lines of reasoning. We have the following bound on ∥α∥, where we write out
p = N (p)1/n,

∥α∥ = ∥ve−yκ∥ · N (p)1/n ≤ ∥v∥∞∥e−y∥∞∥κ∥ · N (p)1/n

≤ ∥v∥∞∥e−y∥∞ · γ · det(d−1)1/n · N (p)1/n,

(5.68)

But also, by the fact that multiplication by ey doesn’t change the determinant
and det(x/p · ap) = det(xa) (by definition of p = N (p)1/n), we have

det(d−1) = det(v−1eyx/p · ap) ≤ ∥v−1∥n∞ · det(xa). (5.69)

Combining Equation (5.68) and Equation (5.69), using the fact that N (p) ≤
B, and ∥v−1∥∞∥v∥∞ ≤ 3 with high probability (see Lemma 5.5, ‘v is
balanced’), we obtain

∥α∥ ≤ ∥v∥∞ · ∥v−1∥∞︸ ︷︷ ︸
≤3 (w.h.p.)

· ∥e−y∥∞︸ ︷︷ ︸
≤3 (w.h.p.)

· N (p)1/n︸ ︷︷ ︸
≤B1/n

·γ · det(xa)1/n

≤ 9 ·B1/n · γ · det(xa)1/n.

Here, the bound on ∥ey∥∞ can be obtained by the fact that y ← GH,s is from
a Gaussian distribution, with4 s ≤ 1/ log(n)2. Namely, ∥y∥∞ ≤ (logn)2s ≤ 1
except with probability at most 2−Ω((logn)2) = n−ω(1). Therefore ∥ey∥∞ ≤
e∥y∥∞ ≤ 3 except with probability n−ω(1).

Conclusion. So, with probability q − n−ω(1), algorithm B solves 9 ·B1/n · γ-
Hermite SVP in the input ideal lattice xa ∈ IdLatK , within polynomial
time in log |∆K |, log[ΛK : C], size(x) and size(Ma), and using one call to the
algorithm A. The explicit bounds on B1/n in Equation (5.67) are proved in
Proposition 5.10.

4Note that s ≤ 1/(logn)2, by the instantiation 1/s = max(
√

2 · η1(C∗), log(n)2) in the
theorem.
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Proposition 5.10. The loss B1/n in the approximation factor of Hermite-
SVP in the reduction of Theorem 5.9 can be upper bounded as follows.

B1/n =



Õ(
√
n) if K = Q(ζpk), a prime power

cyclotomic field, assuming that
h+
K = log(n)O(n).

Õ(n1−nC/n · |∆K |1/(2n)) otherwise

Proof. The difference between the upper bounds of B1/n for different types
of number fields depends on the choice of the sublattice C ⊆ ΛK of the
logarithmic unit lattice. Because 1/s = max(

√
2η1(C∗), log(n)2), the product

s−r · [ΛK : C] is the only part of B that depends on the choice of this
sublattice.

For general number fields, we will choose C = ΛK , and use a general
upper bound η1(Λ∗K) ≤ O(n(logn)3) due to Kessler and Dobrowolski [Kes91;
Dob79] to obtain s−r · [ΛK : C] ≤ O(nr log(n)3r).

For cyclotomic number fields with prime power conductor, we choose C ⊆
ΛK to be the sublattice of ΛK consisting of the logarithmic image of the
cyclotomic units [Was12, Ch. 8]. For this sublattice it is known that [ΛK :
C] = h+

K , the class number of the maximal totally real subfield of K, and
η1(C∗) ≤ O(1), so that s−r · [ΛK : C] ≤ O(log(n)2r · h+

K) = log(n)O(n) for
these prime power cyclotomic number fields, under the assumption that
h+
K = log(n)O(n). The precise derivation of these bounds follow later in this

proof.

Plugging these bounds into the value of B in Theorem 5.9, using r = n−
nC − 1 ≤ n, |Pic0

K |1/n = Õ(|∆K |1/(2n)) (see Lemma 2.17), |∆K |1/(2n) ≤
√
n
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for cyclotomic fields, and suppressing polylogarithmic factors, we obtain

B1/n = Õ
(

=Õ(nr/n)
for general number fields︷ ︸︸ ︷
s−r/n · [ΛK : C]1/n︸ ︷︷ ︸

=log(n)O(1)

for prime power
cyclotomic fields

·

Õ
(
|∆K |1/(2n)

)︷ ︸︸ ︷
|Pic0

K |1/n ·

polylog. factor︷ ︸︸ ︷
(log |∆K |)2/n )

=


Õ(
√
n) for prime power cyclotomic fields,

assuming that h+
K = log(n)O(n)

Õ
(
n1−nC/n · |∆K |1/(2n)) for general number fields

General number fields. We take C = ΛK , so that [ΛK : C] = 1.
By the fact that η1(Λ∗K) ≤

√
r

λ1(ΛK) [MR07, Lm. 3.2] and by the gen-
eral upper bound 1/λ1(ΛK) ≤ 1000

√
r + 1 log(r)3 [Kes91; Dob79], we ob-

tain η1(Λ∗K) ≤
√
r/λ1(ΛK) ≤ 2000 · r · log(r)3. Therefore, since 1/s =

max(
√

2 · η1(C∗), (logn)2),

s−r · [ΛK : C] ≤ O(nr log(n)3r) for general number fields K

Prime power cyclotomic number fields. We take C to be the logarithmic
image of the group of cyclotomic units, which are units that have a specific
compact shape [Was12, Ch. 8] . For this logarithmic cyclotomic unit lattice
C ⊆ ΛK , holds [ΛK : C] = h+

K , the class number of the maximal real field in
the cyclotomic field K [Was12, Thm. 8.2]. Due to a result of Cramer et al.
[Cra+16, Thm. 3.1] we have an upper bound on the last successive minimum
λr(C∗) of the dual logarithmic cyclotomic unit lattice. Combined with a
general smoothing parameter bound for lattices [MR07, Lm. 3.3], this yields
the following bound on the smoothing parameter of the dual logarithmic
cyclotomic unit lattice: η1(C∗) ≤ log(4r)λr(C∗) ≤ O(log(r)5/2 · r−1/2) =
O(1). Therefore, with the instantiation 1/s = max(

√
2 · η1(C∗), (logn)2),

s−r · [ΛK : C] ≤ O(log(n)2r · h+
K) for prime power cyclotomic fields K.
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5.5. Discretizing the Reduction Algorithm

5.5.1. Introduction

In the reduction algorithm of Section 5.4 (see Algorithm 4), we saw that
the random walk procedure is inherently continuous, due to its continuous
Gaussian walk. On top of that, the computation of the distribution repre-
sentation D also has a continuous aspect, namely the sampling of a vector
on a large circle CM .

The purpose of this section is to show that the result of applying the
random walk procedure and the distribution representation using only finite
precision doesn’t differ too much from the result when one would use infinite
precision instead. In other words, actually computing the random walk and
the distribution on a finite machine (as in Algorithm 6 and Algorithm 5)
doesn’t spoil the end result. In particular, none of the operations in this
section involves real numbers; it is all floating point arithmetic.

Additionally, this section also provides an upper bound on the running time
of this discretized reduction algorithm.

We define DW(Pic0
K)+xa by the distribution of d−1 in step 5 of Algorithm 4,

and D̈Ẅ(Pic0
K)+xa by the distribution of d−1 in step 6 of Algorithm 6. A

precise description of these distributions for the case xa = OK can be found
in Definition 5.14 and Definition 5.16, respectively. These distributions are
only being described for the case xa = OK , as the general case is a mere
translation of this base case. Note the dots above D̈ and Ẅ to indicate
discreteness.

Theorem 5.11. Let xa ∈ IdLat0
K be a norm-one ideal lattice, where a is

represented by a finite-precision matrix Ma and x ∈ KR is represented by a
finite-precision vector. Then, Algorithm 6 approximates the distribution of
Algorithm 4 within a total variation distance of 23 · ε, i.e.,

∥DW(Pic0
K)+xa − D̈Ẅ(Pic0

K)+xa∥ ≤ 23 · ε,
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and runs within time polynomial in log |∆K |, size(x), size(Ma) (see Sec-
tion 2.1) and log(1/ε).

Roadmap of the proof

Introduction. In this proof, we show that the the random walk distribution
DW(Pic0

K)+xa from d−1 in line 5 of Algorithm 4 and the discretized random
walk distribution D̈Ẅ(Pic0

K)+xa from d−1 in line 5 of Algorithm 6 are close
to each other in the total variation distance.

In the proof we will, without loss of generality, assume that xa = OK . The
case of general xa consists of a mere translation of the distributions involved
and does not affect the proof structure. Therefore, we resort to proving
closeness of DW(Pic0

K) and D̈Ẅ(Pic0
K).

The proof of closeness in total variation distance proceeds by two steps;
the first step discretizes the continuous Gaussian sampling in the reduction
Algorithm 4, whereas the second step discretizes the uniform sampling on the
M -circle in the distribution Algorithm 3 which is used in the reduction.

Sampling the Gaussian walk in a discrete manner doesn’t spoil the resulting
distribution. In the random walk procedure, a Gaussian distribution is
sampled in the logarithmic unit lattice ambient vector space and subsequently
exponentiated component-wise to act on the processed input ideal lattice.
This part is referred to as the ‘continuous walk’ of the random walk procedure.
A finite computer cannot sample from continuous distributions, so in the
actual algorithmic implementation a discrete Gaussian is sampled on a
sufficiently fine grid – a lattice – on the ambient vector space.

The discrete random walk distribution resulting from sampling the Gaussian
walk in this discrete way, whereas keeping the rest of the random walk pro-
cedure the same, is what we will call Ẅ(Pic0

K). By a technical computation,
we will show that DW(Pic0

K) ≈ DẄ(Pic0
K).
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Sampling from a discrete circle doesn’t change the map D much. In the
beginning of the distribution representation D, a vector is uniformly sampled
from a M -circle CM in KR. In reality, on a finite computer, we need to
sample from this M -circle in a discrete manner, while keeping the rest
of the distribution computation the same. This particular map is called
D̈ : Pic0

K → L1(IK).

By showing that D̈ and D are close for any a ∈ Pic0
K , we draw the conclusion

that for any distribution P on Pic0
K , D̈P and DP are close as well. In

particular, D̈W(Pic0
K) ≈ DW(Pic0

K).

Finalizing. By using the above two parts, we can show that the following
three distributions are actually close.

DW(Pic0
K) ≈︸︷︷︸

First part
DẄ(Pic0

K) ≈︸︷︷︸
Second part

D̈Ẅ(Pic0
K)

By observing that the latter distribution can actually be computed by a
classical finite machine, we finish the proof.

5.5.2. Precise Definition of the Distributions DW(Pic0
K), DẄ(Pic0

K)

and D̈Ẅ(Pic0
K)

Before defining the three relevant distributions, we first need to define the
discretization of the Gaussian (in the random walk procedure) and of the
circle (in the distribution procedure). The discretization of the continuous
Gaussian happens by sampling a discrete Gaussian on a square grid of the
log-unit hyperplane and the discretization of the hypercircle happens by
taking equidistant points on this hypercircle.

Definition 5.12 (Orthogonal lattice in the log-unit hyperplane H). By
choosing an orthonormal basis (b1, . . . ,br) of the r-dimensional vector space
H = {(xσ)σ ∈ logKR |

∑
σ xσ = 0}, we define ZH = b1Z + . . .+ brZ.
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5. A Worst-case to Average-case Reduction for Ideal Lattices

The actual choice of the orthonormal basis doesn’t matter in the proofs,
so we will just work with the lattice ZH ⊆ H and leaving the basis choice
implicit. For D ∈ N>0, we denote 1

DZH for the scaling of ZH by 1
D , i.e.,

1
DZH = 1

D ·(b1Z+ . . .+brZ). To make the random walk procedure efficiently
computable on a finite machine, we discretize the continuous Gaussian walk
over H by sampling from a discrete Gaussian over 1

DZH .

Definition 5.13 (Sampling in the finite set C̈M ⊆ CM ∈ KR). For a small
discretization parameter ε > 0, we put k =

√
n ·M · ⌈1/ε⌉,

C̈(ε)
M = {(xσ)σ ∈ CM | xσ = ±Me2πij/k for some j ∈ N }.

Recall that for real embeddings σ we have xσ = ±M , and for complex
embeddings xσ̄ = xσ, due to the fact that CM ⊆ KR. We often suppress the
notation of ε in C̈M .

For most purposes, the precise definition of C̈(ε)
M is not so important; what

matters more is the fact that any point in CM is ε-close to C̈(ε)
M (see Figure 5.3).

Figure 5.3.: Any point on the circle CM is ε-close to the red discretized circle C̈M .

Now we are ready to rigorously define the three distributions involved. We
start with the distribution involving a continuous Gaussian and a continuous
circle, Definition 5.14. The algorithm associated with this distribution is
Algorithm 4, with Algorithm 3 as a subroutine.
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5.5. Discretizing the Reduction Algorithm

Then we proceed by the definition of a intermediate distribution, which
has a discrete Gaussian sampling in the random walk procedure, but still
has a continuous sample from the circle in the distribution procedure, see
Definition 5.15. The difference between these two distributions is marked
with the color blue. The algorithm associated with this distribution is
Algorithm 6, still with Algorithm 3 as a subroutine. Also in this algorithm
description, the differences are marked in the color blue.

The last distribution is the one that can be run on a finite computer and
has both a discretized Gaussian and a discretized circle, see Definition 5.16.
The difference between this distribution and the intermediate distribution is
marked with the color green. The algorithm associated with this distribution
is Algorithm 6, with the discrete sampling on the circle Algorithm 5 as a
subroutine, where the differences with the original (Algorithm 3) is marked
with the color green as well.

Definition 5.14 (Continuous Gaussian, continuous circle). Denoting PB =
{p prime ideal of OK | N (p) ≤ B}, the output distribution DW(Pic0

K) of
Algorithm 4 can be described by the following rule, for any integral ideal
d ∈ IK .

DW(Pic0
K)[d−1] = 1

|PB |·Vol(CM )
∫
c∈CM

∑
p∈PB

∫
y∈H

∑
v∈p

(v)=pd

ρς(eyv/p−c)
ρς(eyp/p−c)s

−rρs(y)dy,

where p = N (p)−1/n.

Definition 5.15 (Discrete Gaussian, continuous circle). Denoting PB =
{p prime ideal of OK | N (p) ≤ B}, the output distribution DẄ(Pic0

K), where
the continuous Gaussian GH,s in Algorithm 4 is replaced by a discrete Gaus-
sian G 1

D
ZH ,s

, can be described by the following rule, for any integral ideal
d ∈ IK .

DẄ(Pic0
K)[d

−1] =

1
|PB| ·Vol(CM )

∫
c∈CM

∑
p∈PB

∑
ÿ∈ 1

D
ZH

∑
v∈p

(v)=pd

ρς(⌈eÿ⌋v/p− c)
ρς(⌈eÿ⌋p/p− c)

ρs(ÿ)
ρs( 1

DZH)
,
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5. A Worst-case to Average-case Reduction for Ideal Lattices

where ⌈eÿ⌋ means that eÿ is computed with ⌈log2D⌉ bits of precision in all
coordinates, and where p = N (p)−1/n.

Definition 5.16 (Discrete Gaussian, discrete circle). Denoting PB =
{p prime ideal of OK | N (p) ≤ B}, the output distribution DẄ(Pic0

K), where
the continuous Gaussian GH,s in Algorithm 4 is replaced by a discrete Gaus-
sian G 1

D
ZH ,s

, and the continuous uniform distribution on CM in D : Pic0
K →

L1(IK) is replaced by a uniform distribution over the finite set C̈M can be
described by the following rule, for any integral ideal d ∈ IK .

D̈Ẅ(Pic0
K)[d

−1]= 1
|PB| · |C̈M |

∑
c̈∈C̈M

∑
p∈PB

∑
ÿ∈ 1

D
ZH

∑
v∈p

(v)=pd

ρς(⌈eÿ⌋v/p− c̈)
ρς(⌈eÿ⌋p/p− c̈)

ρs(ÿ)
ρs( 1

DZH)
,

where ⌈eÿ⌋ means that eÿ is computed with ⌈log2D⌉ bits of precision in all
coordinates, and where p = N (p)−1/n.

5.5.3. Discretized Algorithm Analogues

In the following text we treat the discrete analogues of Algorithm 4 and
Algorithm 3. We show that these discretized algorithms (Algorithm 6 and
Algorithm 5) run in polynomial time with respect to the input size and that
their output distribution does not differ significantly from their continuous
counterparts.

We start with defining the algorithms and showing that they run in poly-
nomial time. The remainder of this chapter, Section 5.5.4, is devoted to
showing that the discretized and non-discretized algorithms indeed yield
almost the same distribution.

Lemma 5.17. Algorithm 5 is correct and runs within time polynomial in
log |∆K |, size(Ma), log(1/ε) and size(x).

Proof. The input of this algorithm is given by the vector x ∈ KR (given
in a finite precision representation) and a basis matrix Ba of the ideal a.
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5.5. Discretizing the Reduction Algorithm

Algorithm 5: Sampling efficiently from a distribution very close to
Dxa, discretized
Require: A pair (x, a) ∈ KR × IK such that N (a)∏σ xσ = 1.
Ensure: An sample from a distribution (14ε)-close to the distribution
Dxa in the total variation distance.

1: Put ς = 2n+1 · n · |∆K | and M = 2
√
n · ς.

2: Sample a center c̈ = (c̈σ)σ uniformly in the finite subset
C̈M := C̈(ε/n)

M ⊆ CM = {(yσ)σ | |yσ| = M for all embeddings σ}.
Where C̈M is such that any point in CM is ε/n-close to C̈M (see
Definition 5.13)

3: Sample from the discrete Gaussian Gxa,ς,c̈ with respect to the ideal
lattice xa with center c̈ = (c̈σ)σ and standard deviation ς, leading to
some v ∈ xa.

4: return the inverse integral ideal d−1 = v−1xa ∈ IK

We denote with size(x) the number of bits needed to represent x ∈ KR
and with size(Ba) the number of bits needed to represent the basis Ba (see
Section 2.1).

We go through the lines of Algorithm 5 to examine the running time. Line
1 can clearly be done in linear time in log(|∆K |) and n. Line 2 samples
from in set C̈(ε)

M , which are essentially at most5 n/2 independent samples of
the discretized circle {Me2πij/D | j ∈ N}, with D =

√
nM⌈1/ε⌉. One such

sample takes time linear in logM = O(log |∆K |) and log(1/ε), so a sample
from C̈(ε)

M costs O(n(log |∆K | + log(1/ε))). Line 3 uses Klein’s algorithm
[GPV08; Kle00] to sample from the discrete Gaussian Gxa,ς,c̈, which runs
in time polynomial in size(Ba) and size(x), by an adaptation of [GPV08,
Thm. 4.1] for an exponentially small statistical distance. An additional
property of Klein’s algorithm is that the output v ← Gxa,ς,c̈ is actually
polynomially bounded by size(x) and size(Ba). The last line, line 4, uses
ideal division and multiplication, which (naively) takes the time to solve a
system of equations involving a n2 × n2 matrix (see [Coh99, §4.8.4]) having

5At most half of n, because of the complex conjugate embeddings
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5. A Worst-case to Average-case Reduction for Ideal Lattices

entry sizes comparable to that of size(Ba) and size(x); therefore this can be
done within polynomial time in log |∆K |, size(Ba) and size(x). As all lines
can be computed in polynomial time of size(Ba), size(x) and log |∆K |, the
result follows.

The correctness is proven later, in Lemma 5.20.

Lemma 5.18. Algorithm 6 is correct and runs within time polynomial in
log |∆K |, size(Ma), log[ΛK : C] and size(x), and uses one call to a γ-Hermite
SVP oracle.

Proof. The input of this algorithm is given by the vector x ∈ KR (given in
a finite precision representation) and a basis matrix Ba of the ideal a. We
denote with size(x) the number of bits needed to represent x ∈ KR and with
size(Ba) the number of bits needed to represent the basis Ba.

Since log |Pic0
K | = O(log |∆K |) (see Lemma 2.17), n = O(log |∆K |) and

η1(C∗) ≤ η1(Λ∗K) ≤ Õ(n) (see the proof of Proposition 5.10) the quantity
logB is polynomially bounded in log |∆K | and log[ΛK : C]. Similarly, logD,
the logarithm of the discretization parameter of the Gaussian, is polynomially
bounded by log |∆K | and log(ε−1).

We go through all steps of Algorithm 6 to estimate the running time. Step
1 of Algorithm 6 runs within time quasi-linear in logB. Step 2 involves
the sampling a random prime ideal p and the multiplication of ideals a

and p. The random sampling can be done within polynomial time (see
Lemma 2.14). The product pa can be computed by reducing the n2 × n
matrix consisting of the products of the respective Z-generators of a and
p which runs in time polynomial in n, size(a) and logB (where B is the
maximum norm of p). Step 3 consists of discrete Gaussian sampling in the
lattice 1

DZH with standard deviation s satisfying Õ(n) ≤ 1/s ≤ log(n)2.
An adaptation of [GPV08, Thm. 4.1] shows that this can be done in time
polynomially bounded by logD and n, i.e. bounded by log |∆K | and log(ε−1).
An additional property of this sampling is that the output is polynomially
bounded as well. Step 4 is just rescaling, which has no serious impact on
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5.5. Discretizing the Reduction Algorithm

Algorithm 6: The worst-case to average-case reduction algorithm,
discretized
Require:

• A pair (x, a) ∈ KR × IK satisfying N (a)∏σ xσ = 1.
• The values [ΛK : C] and η1(C∗) of a suitable sublattice C ⊆ ΛK

of the logarithmic unit lattice,
• An oracle A that solves γ-Hermite SVP in d−1 whenever

d−1 ← DU(Pic0
K).

• An error parameter ε > 0
Ensure: A vector α ∈ xa that is a solution to B1/n · γ-Hermite SVP in

the ideal lattice xa, i.e.,
∥α∥ ≤ γ ·B1/n · det(xa)1/n,

where B = Õ
(
4n · η1(C∗)r · [ΛK : C] · |Pic0

K | · (log |∆K |)2), or, failure.
1: Put s = max(

√
2 · η1(C∗), (logn)2) and

B = Õ
(
4n · η1(C∗)r · [ΛK : C] · |Pic0

K | · (log |∆K |)2) as in
Corollary 5.8.

2: Multiply the ideal a by a prime ideal p uniformly sampled from the
set {p prime ideal of OK | N (p) ≤ B}, yielding ap.

3: Sample ÿ ← Gs, 1
D
ZH

, where D = 2n+2 · n4 · ⌈|∆K | · ε−1⌉ and ZH is an
orthonormal basis of the hyperplane H where the logarithmic unit
lattice lives in (see Definition 5.12).

4: Put p = N (p)1/n, so that eyxap/p has norm 1, where ey ∈ KR is the
component-wise exponentiation of y ∈ H.

5: Sample d−1 ← D(⌊eÿ⌉·x/p,ap) using Algorithm 5, where ⌊eÿ⌉ ∈ KR is the
component-wise exponentiation of ÿ ∈ H, computed with ⌈log2D⌉ bits
of precision in all coordinates. Furthermore, let v ∈ eyxap/p be the
additional output of Algorithm 5 that satisfies d−1 = v−1⌊eÿ⌉xap/p.

6: Invoke the γ-Hermite SVP oracle A on DU(Pic0
K) to find a κ ∈ d−1 for

which holds ∥κ∥ ≤ γ · det(d−1)1/n

7: return p · (⌊eÿ⌉)−1 · v · κ ∈ xa.
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5. A Worst-case to Average-case Reduction for Ideal Lattices

the running time. Step 5 uses Algorithm 5, which runs in time polynomially
bounded by size(⌊eÿ⌉ · x/p), size(Ma) and logB. As size(⌊eÿ⌉ · x/p) can be
linearly bounded by logB, size(x) and logD (because ⌊eÿ⌉ is computed with
relative bit precision log2D), this step is polynomially bounded as well in
log |∆K |, log ε−1 and size(x). Step 6 invokes the γ-Hermite SVP oracle once.
Step 7 just rescales the element κ ∈ d−1 without a serious impact on the
running time.

Later in this section we prove two closeness lemmas, namely Lemma 5.19 and
Lemma 5.20. From those two lemmas, one obtains the desired closeness of
distributions of the sampling mechanism of d−1; this proves the correctness.

5.5.4. Closeness Proofs

Sampling the Gaussian walk in a discrete manner doesn’t spoil the
resulting distribution

Lemma 5.19. Let K be a number field and let 1 > s > 0 be a given
Gaussian spread parameter for the continuous part of the random walk, let
ε > 0 be a given error parameter and let M = 2 · n3/2 · 2n+1 · |∆K | as in
Algorithm 5. Let 1

DZH ⊆ H be the discretization of the Log-unit space to
compute the discrete Gaussian analogue of the continuous part of the random
walk, with D ∈ N such that D ≥ ⌈(4 · s−2√n+ 100 · n2M) · 1/ε⌉.

Then
∥DẄ(Pic0

K) −DW(Pic0
K)∥1 ≤ 18 · ε

Proof. Examining the definitions of the distributions DW(Pic0
K) and DẄ(Pic0

K)
(see Definitions 5.14 and 5.15), we can apply the triangle inequality and a
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norm inequality, to directly deduce

∥DW(Pic0
K) −DẄ(Pic0

K)∥1 (5.70)

≤ maxc∈CM
p∈PB

∑
d

∑
v∈p

(v)=pd

∣∣∣∣∣∣∣
∫
y∈H

ρς(eyv/p− c)
ρς(eyp/p− c)

s−rρs(y)dy −
∑

ÿ∈ 1
D
ZH

ρς(⌊eÿ⌉v/p− c)
ρς(⌊eÿ⌉p/p− c)

ρs(ÿ)
ρs( 1

DZH)

∣∣∣∣∣∣∣︸ ︷︷ ︸
.

Therefore, we can focus on the quantity in the bracket of Equation (5.70)
for a fixed prime ideal p ∈ PB and a fixed center c ∈ CM from the M -circle.
We rewrite the term within the absolute value signs by using a block tiling
of the orthonormal lattice 1

DZH ⊆ H (see Definition 5.12) with fundamental
domain FH satisfying Vol(FH) = D−r. Observing that we can collapse the
summation ∑d

∑
v∈p

(v)=pd
to ∑v∈p (as the sum with d is over integral ideals),

we obtain that the quantity in the bracket of Equation (5.70) is at most

∑
v∈p

∣∣∣∣∣∣∣∣∣∣
∑

ÿ∈ 1
D
ZH

∫
y∈ÿ+FH

ρς(eyv/p− c)
ρς(eyp/p− c)︸ ︷︷ ︸

A

s−rρs(y)︸ ︷︷ ︸
B

− ρς(⌊e
ÿ⌉v/p− c)

ρς(⌊eÿ⌉p/p− c)︸ ︷︷ ︸
A′

Drρs(ÿ)
ρs( 1

DZH)︸ ︷︷ ︸
B′

dy

∣∣∣∣∣∣∣∣∣∣
Applying the triangle inequality, switching integrals and sums, and using
the identity AB − A′B′ = B(A − A′) + (B − B′)A′, above equation is at
most

∑
ÿ∈ 1

D
ZH

∫
y∈ÿ+FH

s−rρs(y)
∑
v∈p

∣∣∣∣∣ρς(eyv/p− c)ρς(eyp/p− c)
− ρς(⌊eÿ⌉v/p− c)
ρς(⌊eÿ⌉p/p− c)

∣∣∣∣∣︸ ︷︷ ︸
∥Gp/p,ς/ey,c−Gp/p,ς/⌊eÿ⌉,c∥

dy (5.71)

+
∑

ÿ∈ 1
D
ZH

∫
y∈ÿ+FH

∣∣∣∣∣s−rρs(y)− Drρs(ÿ)
ρs( 1

DZH)

∣∣∣∣∣∑
v∈p

ρς(eÿv/p− c)
ρς(eÿp/p− c)︸ ︷︷ ︸

=1

dy (5.72)

First part of the sum, Equation (5.71). Apply Lemma A.39 to show
that the two Gaussians are reasonably close to each other. Writing eỹ = ⌊eÿ⌉,
we have ∥ỹ − ÿ∥ ≤ ∥eỹ−ÿ − 1∥ ≤

√
n
D because eỹ is the log2(D)-bit precision
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relative approximation of eÿ. By construction, we have ∥y− ÿ∥ ≤
√
n
D as well,

because y ∈ ÿ + FH , therefore,

∥y − ỹ∥ ≤ 2
√
n

D
.

Because ς > ηε(xa) for all ideal lattices xa ∈ IdLatK , we can apply
Lemma A.39 with δ = 2

√
n

D . Since M > ς > 1, ∥c∥ =
√
n ·M (because

c ∈ CM ) and D ≥ 100 ·M · n2/ε, we obtain

∥Gp,ς/ey ,c − Gp,ς/⌊eÿ⌉,c∥ ≤ 8ε+ 4π
( 1
ς2 + n+ 2n∥c∥

)
· ∥y − ỹ∥

≤ 8ε+ 100 ·M · n2

D
= 9 · ε. (5.73)

Since this bound is independent of y ∈ H and ÿ ∈ 1
DZH , and since∑

ÿ∈ 1
D
ZH

∫
y∈ÿ+FH

s−rρs(y)dy = 1,

we deduce that Equation (5.71) must also be bounded by 9 · ε.
Second part of the sum, Equation (5.72). One can apply smoothing
arguments; since s < 1, we have s ≥ s2 ≥

√
n·ε−1

D ≥ log(2n(1+ε−1))
D ≥

log(2n(1 + ε−1))λr( 1
DZH) ≥ ηε( 1

DZH) (see [MR07, Lm. 3.3]). Therefore,

s−r ∈ (1− 2ε, 1 + 2ε) · Dr

ρs( 1
DZH + y)

for all y ∈ H.

Putting this into Equation (5.72), we obtain, using Lemma A.37, using the
lower bound on D and Vol(FH) = D−r,∑

ÿ∈ 1
D
ZH

∫
y∈FH

∣∣∣∣∣s−rρs(ÿ + y)− Drρs(ÿ)
ρs( 1

DZH)

∣∣∣∣∣ dy
≤ 4ε+ max

y∈FH

∑
ÿ∈ 1

D
ZH

∣∣∣∣∣ ρs(ÿ + y)
ρs( 1

DZH + y)
− ρs(ÿ)
ρs( 1

DZH)

∣∣∣∣∣︸ ︷︷ ︸
∥D 1

D
ZH ,s,y

−D 1
D

ZH ,s,0∥

≤ 8ε+ ( π
s2 + 2πn) max

y∈FH

∥y∥ ≤ 8ε+ ( π
s2 + 2πn)

√
n

D
≤ 9 · ε (5.74)

Combining the upper bound on the first and the second part of the sum
(see Equations (5.73) and (5.74)), we obtain the result.
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5.5. Discretizing the Reduction Algorithm

The difference between DP(Pic0
K) and D̈P(Pic0

K), the one with a
discretized circle, is negligible for all distributions P

Lemma 5.20. Let K be a number field and let 1 > ε > 0 be a given
error parameter. Let C̈M ⊆ CM be a discretization of CM as in Defini-
tion 5.13. Let furthermore P ∈ L1(Pic0

K) be any distribution on Pic0
K (i.e.,∫

a∈Pic0
K
P(a)da = 1). Then we have

∥DP(Pic0
K) − D̈P(Pic0

K)∥ ≤ 14ε

Proof. The definitions of the two distributions read as follows, for integral
ideals d ∈ IK .

DP(Pic0
K)[d−1] =

∫
c∈CM

∫
a∈Pic0

K

P(a)
∑
v∈a

(v)=ad

ρς(v − c)
ρς(a − c)

dadc

D̈P(Pic0
K)[d−1] = 1

|C̈M |
∑
c̈∈C̈M

∫
a∈Pic0

K

P(a)
∑
v∈a

(v)=ad

ρς(v − c̈)
ρς(a − c̈)

da

By grouping integrals and summation signs, and splitting up the integral
over CM over multiple ‘arcs’ Ac̈ for c̈ ∈ C̈M (that satisfy ∥c− c̈∥ < ε/n for
all c ∈ Ac̈), we obtain

∥DP(Pic0
K) − D̈P(Pic0

K)∥

=
∑
d∈IK

∣∣∣∣∣∣∣∣
∫

a∈Pic0
K

P(a)
∑
v∈a

(v)=ad

∫
c∈CM

ρς(v − c)
ρς(a − c)

dc− 1
|C̈M |

∑
c̈∈C̈M

ρς(v − c̈)
ρς(a − c̈)

 da

∣∣∣∣∣∣∣∣
=
∑
d∈IK

∣∣∣∣∣∣∣∣
∫

a∈Pic0
K

P(a)
∑
v∈a

(v)=ad

 ∑
c̈∈C̈M

∫
c∈Ac̈

(
ρς(v − c)
ρς(a − c)

− ρς(v − c̈)
ρς(a − c̈)

)
dc

 da

∣∣∣∣∣∣∣∣ .
(5.75)

Applying the triangle inequality, switching integral and summation signs
appropriately, collapsing the summation∑d∈IK

∑
v∈a

(v)=ad
to∑v∈a (as d ranges
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over integral ideals) and replacing the integral over Pic0
K by the maximum,

we obtain that Equation (5.75) must be bounded by

max
a∈Pic0

K


∑
c̈∈C̈M

∫
c∈Ac̈

∑
v∈a

∣∣∣∣ρς(v − c)ρς(a − c)
− ρς(v − c̈)
ρς(a − c̈)

∣∣∣∣︸ ︷︷ ︸
∥Da,ς,c−Da,ς,c̈∥

dc

 ≤ (4 + π
ς2 + 2πn)ε/n

≤ 14ε. (5.76)

This holds by the fact that ∥c − c̈∥ < ε/n and ς > 1, together with
Lemma A.37, which bounds the total variation distance between two discrete
Gaussians with different centers.

Conclusion

Applying Lemma 5.19 and Lemma 5.20 with P(Pic0
K) = Ẅ(Pic0

K), and
using Algorithm 6 for the running time, we obtain Theorem 5.11.
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6. Ideal sampling

6.1. Summary

Many algorithms in cryptography and algorithmic number theory rely on
finding elements α in an ideal a such that their quotient αa−1 is easy to
factor (e.g., prime, near-prime or B-smooth). Such algorithms are typically
analyzed only heuristically, by treating αa−1 as a uniform ideal, and applying
density results for the sets of prime ideals or smooth ideals. The result of this
chapter allows to adjust this strategy and make the reasoning rigorous.

The beginning of this chapter is devoted to showing that, for an ideal a
that is uniformly distributed in the Arakelov class group, one can rigorously
analyze the probability of αa−1 being in a certain ideal set (e.g., the prime
ideals or smooth ideals). This probability can be shown to be very much
related to the density of the ideal set involved, a notion from analytic number
theory.

In the later part of this chapter we invoke the random walk theorem from
Chapter 4, which allows to randomize any fixed ideal a into a randomly
distributed ideal ã in the Arakelov class group. This randomized ideal
can then be used to sample an α ∈ ã from, with a rigorous probability.
Sampling α from ã instead of a does not affect the usefulness of α, since the
randomization – apart from a small distortion – happens only by multiplying
a with small prime ideals. I.e., the quotient αa−1 only differs from αã−1 by
small prime factors, meaning that if the one is easy to factor, the other is as
well.
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6.2. Introduction

In this chapter, we apply the random walk theorem of Chapter 4 to tackle the
following problem that arises in multiple number-theoretic contexts [BF14;
BP17; Buc88]. Let K be a number field, of degree n and discriminant ∆K .
Given an ideal a ⊂ K, sample an element α ∈ a such that the ideal αa−1

is easy to factor. In some cases (e.g., [BF14; Buc88; LL+93]), the fraction
αa−1 is required to only have small prime factors, whereas in other cases
(e.g., [BP17]), the fraction αa−1 is required to be a near-prime (i.e., at most
one of its prime factors is allowed to be large).

In the literature and computer algebra systems (e.g., [CS08, §6.5] [BCP97;
PAR19]), this task is performed by computing a reasonably short basis of the
ideal a (by means of LLL, for example) and repeatedly randomly sampling
reasonably short elements α ∈ a using this basis, until αa−1 is of the desired
form. Assuming heuristically that the ideals αa−1 are more or less randomly
distributed among ideals of bounded norm, one can use specific density
results for subsets of ideals to obtain a heuristic estimate for the success
probability of this method.

Even though the above approach appears to work in many practical cases,
it is generally hard to prove anything in the direction of a rigorous lower
bound for the success probability. A first obstacle is that the ideal αa−1

is not ‘random enough’ as, for example, it always lies in the ideal class
[a]−1. Even for principal ideal domains, a second obstacle is that the number
of generators of (α) may vary unpredictably among sub-ideals (α) of a,
resulting in some sub-ideals of a to be sampled more often than others,
making the distribution of αa−1 skewed.

6.2.1. Our Technique

To resolve these issues, we slightly modify both the ideal a and the way
α ∈ a is sampled. More precisely, the ideal a is replaced by ã = a ·

∏
i pi,

where each pi is a small, random prime ideal. The element α is then sampled
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uniformly in the ideal ã intersected with a ‘distorted box’ in the canonical
embedding space KR. More specifically, in the case of a totally real number
field, the box is chosen as N (ã)1/n ·Br,x = N (ã)1/n ·

∏
j [−rexj , rexj ] ⊆ KR

with large enough r > 0, where xj ∈ R satisfy ∑j xj = 0 and are distributed
according to a Gaussian distribution.

This procedure mimics a random walk in the Arakelov class group, where
multiplying by small primes accounts for the randomization at the finite
places, whereas the distortion of the sampling boxes accounts for the ran-
domization at the infinite places.

The idea behind this procedure is that, while it is hard to predict exactly
how many generators of the ideal (α) are in a ∩N (a)1/n ·Br,0, the average
number of such generators in ã ∩ N (ã)1/n · Br,x is accurately predictable
whenever ã and x are adequately randomized. Indeed, this quantity is given
by the number of points of a shifted Log-unit lattice, intersected with a
simplex; this number of points is hard to estimate for a given shift of the
Log-unit lattice, but it is predictable on average, according to the following
fact.

Lemma 6.1. Let S ⊂ Rn be a measurable set and Λ ⊂ Rn a full rank lattice.
Then, for a uniformly chosen c ∈ Rn/Λ it holds that E[|(Λ + c) ∩ S|] =
Vol(S)/Vol(Λ).

Algorithmically, sampling uniformly in a box N (a)1/n · Br,x and element
of an ideal a can be done in polynomial time with an LLL reduced basis,
whenever log r = poly(n, log |∆K |). One can also strengthen this reduction
as in [BF14; Buc88] for other time-quality trade-offs. Denoting SB the set of
B-smooth ideals, and δS [t] the density of ideals of norm ≤ t which belong to
a given set of ideals S, our (slightly simplified) main result is the following.

Main theorem. Let S be any set of integral ideals. Assuming the Riemann
hypothesis for Hecke L-functions, there exists some B = poly(log |∆K |), such
that Algorithm 7 outputs in time poly(log |∆K |, size(N (a))) an element α ∈ a

such that (α)/a ∈ S · SB with probability at least 1
3δS [rn]− 2−n.
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Since N ((α)/a) ≈ rn, we have therefore formalized the heuristic that element
sampling probability matches ideal density, up to a loss of 1/3 on the
probability, and up to an extra smooth ideal in SB. Moreover, the original
purpose, namely finding a α ∈ a such that αa−1 can be easily factored, is
not spoiled.

Including the modulus m

The non-simplified main result of this chapter (see Theorem 6.9) involves a
modulus m ⊆ OK , an ideal that is to be ‘avoided’ in the computations.

Specifically, the main theorem states the probability that (α)/a is in a given
ideal set, given the fact that α ≡ τ modulo m for some fixed given τ ∈ Km.
This particular generalization is included because of its usefulness for the
computation of the power residue symbol (see Chapter 7). One recovers the
main theorem, as described in this introduction, by putting m = OK .

6.2.2. Applications

As a direct application, one can prove that sampling α ∈ a such that αa−1 is
a near-prime can be done efficiently in cyclotomic fields. This proves that the
‘principalization step’ in the power residue symbol algorithm of the author
of this PhD thesis [BP17, §5.2] runs in polynomial time in the special case
of cyclotomic number fields, and more generally in any family of number
fields with small Dedekind zeta residue ρK .

The most general version of the result of this chapter (Theorem 6.9), involving
a modulus m has even farther consequences. It does not only allow to remove
one specific heuristic ([BP17, §5.2]), but can actually be applied in order
to prove that the entire (slightly modified) algorithm for the power residue
symbol is efficient (see Chapter 7).

We also hope that our technique could be helpful in proving other heuristic
algorithms such as the index calculus algorithms of [Buc88; BF14] (computing
class groups and unit groups), though other obstacles are expected. Not
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only does it require universal bounds on the density of B-smooth ideal in
large-degree number field, one also needs to ensure sufficient independence
of the obtained multiplicative relations. For the second obstacle, further
randomization techniques could turn out useful.

6.2.3. Related Works

We note that the issues we mention above have been circumvented in special
cases. Building on a result of Seysen [Sey87], Hafner and McCurley [HM89]
gave a provable algorithm for computing class-group and unit group of
imaginary quadratic fields. This algorithm involves a random walk in the
class group, which is used to prove that one can find a B-smooth principal
ideal relatively efficiently. The idea of performing a random walk in the class
group was reused in the algorithms of Buchmann [Buc88] and Biasse and
Fieker [BF14], in a heuristic way. Finally, we note also that Schoof [Sch08]
rephrased Buchmann’s algorithm in the terms of Arakelov theory, and we
heavily borrowed from his formalism.

6.3. Preliminaries

An important concept that plays a large role throughout the entire proof
of the main theorem is that of a generator of an Arakelov ray divisor. This
can be seen as a generalization of a generator of a principal ideal a ⊆ OK ,
which is an α ∈ OK satisfying (α) = a. Such a generator α of the ideal a
is called τ -equivalent (with respect to a modulus m) if α ≡ τ mod m (note
that this definition only makes sense if m and a are coprime).

The generalization to Arakelov ray divisors is very similar. As we can see
Arakelov ray divisors as ideal lattices xa, a generator of such divisor is just
an element in KR of the shape xα, where α is a generator of a. Of course,
if a is not a principal ideal, there are no such generators. The τ -equivalent
generators are just those xα ∈ KR for which α ≡ τ mod m. The precise
definition is as follows.
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Definition 6.2 (Generators of an Arakelov ray divisor). Let τ ∈ Km and let
a ∈ DivKm be an Arakelov ray divisor with an infinite part a∞ and a finite
part af (see Equation (2.13)). We define the set of τ -equivalent generators
Exp(a)×τ ⊆ KR of a by the following rule

Exp(a)×τ :=


Exp(a∞) · (κ · O×K ∩ τKm,1) ⊆ Exp(a) if Exp(af) = (κ)

for some κ ∈ Km

∅ otherwise

Equivalently, we can write

Exp(a)×τ = {α ∈ Exp(a) | (Exp(−a∞) · α) = Exp(af) and Exp(−a∞) · α ∈ τKm,1}.

The following specialization of the random walk theorem of Chapter 4 is
tailored to the purposes of this chapter. These purposes require both N

and B to be polynomially small, and s to be rather small as well, to ease
sampling in the log-normally distorted box. There is no specific reason we
chose this particular instantiation below, except for concreteness.

Theorem 6.3 (Random walks on the Arakelov ray class group, ERH). Let
n = [K : Q] ≥ 2, s = 1/(1000·n2) and let ε > 0 be an error parameter. There
exists a bound B = Õ

(
n4[log log(1/ε)]2 +n2[log(|∆K | N (m))]2

)
such that for

N = ⌊8n+ logN (m) + log |∆K |+ 2 log(1/ε)⌋ the random walk distribution
[W(B,N, s)] on Pic0

Km is ε-close to uniform in L1(Pic0
Km), i.e.,∥∥∥[W(B,N, s)]− U(Pic0

Km)
∥∥∥

1
≤ ε.

Proof. This formulation of the random walk theorem is obtained by instan-
tiating Theorem 4.3 of Chapter 4 with C = ΛKm,1 , s = 1/n2 and k = 1.

In that case, B = Õ
(
n4[log log(1/ε)]2+n2[log(|∆K | N (m))]2

)
, by simply sup-

pressing polylogarithmic factors. By using the bounds η1(Λ∗Km,1) ≤ η1(Λ∗K) ≤
2000 · (r + 1) · log(r)3 ≤ 1000 · n2 = s−1 (see the proof of Proposition 5.10),
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log Vol(Pic0
Km)) ≤ log(N (m)) + log Vol(Pic0

Km) ≤ log(N (m)) + log |∆K | (see
Lemma 2.17) and r ≤ n one obtains that Theorem 4.3 applies, with

N = ⌊8n+ logN (m) + log |∆K |+ 2 log(1/ε)⌋

≥ 1
2 logn · (n log(1000n2) + logN (m) + log |∆K |+ 2 log(1/ε) + 2)

≥ 1
2k logn ·

(
r · log(1/s̃) + log|Pic0

Km |+ 2 log(1/ε) + 2
)
.

Remark 6.4. One can simplify the bounds on B and N in the theorem
above by putting ε = 2−n. In that case B = Õ(n2 · (log(|∆K | N (m)))2) and
N = ⌊12n+ logN (m) + log |∆K |⌋ is sufficient.

6.4. Probability-density Correspondence

6.4.1. Result

For an ideal set S ⊆ IK consisting of integral ideals, we denote by S(t)
the subset of S consisting of those integral ideals with norm bounded by
t ∈ R>0, which is made precise in the following lemma. With this notation
we will define the local density in Definition 6.6.

Definition 6.5. Let S be an set of integral ideals of OK . Then we define
S(t) := {b ∈ S | N (b) ≤ t} and we define the counting function |S(·)| :
R>0 → N of S by the following rule:

|S(t)| = |{b ∈ S | N (b) ≤ t}|.

Definition 6.6 (Local density of an ideal set). Let x > 0 a positive real
number, and let S be a set of integral ideals of K. We define the local density1

1Note that this quantity tends to the ‘natural density’ of the ideal set S when x goes
to infinity, since |{a | N (a) < t}| ∼ ρ · t [Ove14, §9.5].
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of S at x as

δS [x] = min
t∈[x/en,x]

|S(t)|
ρ · t

= min
t∈[x/en,x]

|{b ∈ S | N (b) ≤ t}|
ρ · t

.

Definition 6.7 (Infinity ball). Let r > 0 be a positive number, then we
denote

rB∞ = {(xσ)σ ∈ KR | |xσ| ≤ r, for all σ}.

Definition 6.8. For a distribution D on Div0
Km , we denote by [D] = D|K

m,1

the distribution on Pic0
Km obtained by periodizing D with respect to the

subgroup Km,1 ↪→ Div0
Km (see Definition 2.3).In other words,

[D] = D|K
m,1

=
∑

α∈Km,1

D(·+ LαM).

This distribution [D] describes exactly the distribution of the Arakelov ray
class [a], where a← D.

The main result of this section shows a close relationship between the local
density of an ideal set S and the probability that the integral ideal βa−1 lies
in S for β sampled appropriately from a. Here, a is a Arakelov ray divisor
whose Arakelov ray class is uniformly distributed.

Theorem 6.9. Let r ≥ 8 · n · |∆K |
3

2n · N (m)1/n, let τ ∈ (OK/m)∗ and let
Sm be a set of integral ideals coprime to m with local density δSm [rn] at rn.
Let D be a distribution on Div0

Km such that [D] is uniform in Pic0
Km. Then

E
a←D

[
Pr

α←Exp(a)∩rB∞

[
(α) · Exp(−a) ∈ Sm

∣∣∣ α · Exp(−a∞) ∈ τKm,1
]]
≥ 1

3 · δSm [rn].

(6.77)
where α is uniformly sampled from the finite set α← Exp(a) ∩ rB∞.

Remark 6.10. The 1/3 occurring in Equation (6.77) can be made arbitrarily
close to one by increasing the radius r ∈ R and slightly increasing the density
interval [x/en, x] in Definition 6.6. For sake of simplicity we just chose r ∈ R
and the length of the interval [x/en, x] to be minimal to achieve the optimal
lower bound up to an explicit constant (i.e., Equation (6.77)).
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Remark 6.11. Theorem 6.9 involves a conditional probability. It is possible,
with essentially the same proof technique, to rephrase this theorem in such a
way that it concerns the intersection of the events (α) · Exp(−a) ∈ Sm and
α · Exp(−a∞) ∈ τKm,1. The probability then depends as well on the number
ϕ(m) = |(OK/m)∗| = |Km/Km,1| of elements in (OK/m)∗. More specifically,
for a given τ ∈ (OK/m)∗ one can prove that, under the same conditions as
in Theorem 6.9,

Pr
a←D

α←Exp(a)∩rB∞

[
(α) · Exp(−a) ∈ Sm and α · Exp(−a∞) ∈ τKm,1

]

= E
a←D

[
Pr

α←Exp(a)∩rB∞

[
(α) · Exp(−a) ∈ Sm and α · Exp(−a∞) ∈ τKm,1

]]

≥ 1
3 · ϕ(m) · δS

m [rn]. (6.78)

6.4.2. Proof Overview of Theorem 6.9

In the following text we prove Theorem 6.9, leaving out details. In the later
Section 6.5, which follows the exact same structure as this proof overview, a
full proof is given, including all required lemmas.

Simplify the Probability by Fixing a Single Ideal c ∈ Sm and a Single
Arakelov Divisor a ∈ Div0

Km

The statement Equation (6.77) of Theorem 6.9 involves two random processes:
first the random sampling of a← D, then the uniform sampling of an element
α ∈ Exp(a) ∩ rB∞. It is insightful to focus on the latter random process,
that of the element α, for a fixed a ∈ Div0

Km .

Also, the probability in Equation (6.77) concerns an entire ideal set Sm. In
this part of the proof, we focus instead on a single ideal c ∈ Sm. In other
words, we estimate the following probability, for a fixed a ∈ Div0

Km and a
single integral ideal c ∈ ImK ,

pa,c = Pr
α←Exp(a)∩rB∞

[
(α) · Exp(−a) = c

∣∣ α · Exp(−a∞) ∈ τKm,1
]

(6.79)
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where the sampling α ← Exp(a) ∩ rB∞ is uniform. In the notation above
we leave the dependency on r ∈ R, m ⊆ OK and τ ∈ (OK/m)∗ implicit.

By the law of conditional probability, we have that Equation (6.79) equals

pa,c =

Pr
α←Exp(a)∩rB∞

 (α) · Exp(−a) = c

and
α · Exp(−a∞) ∈ τKm,1


Pr

α←Exp(a)∩rB∞
[α · Exp(−a∞) ∈ τKm,1] (6.80)

Focusing on the numerator first, we will prove later, in Lemma 6.12, that

Pr
α←Exp(a)∩rB∞

 (α) · Exp(−a) = c

and
α · Exp(−a∞) ∈ τKm,1

 = |Exp(a + d(c))×τ ∩ rB∞|
|Exp(a) ∩ rB∞|

(6.81)

Here, |Exp(a + d(c))×τ ∩ rB∞| is the number of generators of the ideal lattice
Exp(a)c that are equivalent to τ modulo m (see Definition 6.2) lying in
the box rB∞. So, essentially, Equation (6.81) counts how many of the
|Exp(a) ∩ rB∞| elements in the sampling space rB∞ actually generate the
ideal lattice Exp(a)c and are equivalent to τ modulo m.

For the denominator we will prove (see Lemma 6.12) that there exists τ̃ ∈ KR
such that

Pr
α←Exp(a)∩rB∞

[
α · Exp(−a∞) ∈ τKm,1

]
= |(Exp(a)m + τ̃) ∩ rB∞|

|Exp(a) ∩ rB∞|
(6.82)

where the sampling α ← Exp(a) ∩ rB∞ is uniform. This equation can be
intuitively derived by ignoring the a∞-part. Any element α ∈ Exp(a) that
satisfies α ≡ τ modulo m must lie in Exp(a) ∩ (m + τ), which can indeed by
rewritten to Exp(a)m + τ̃ by choosing an τ̃ ∈ Exp(a) that satisfies τ̃ ≡ τ

modulo m.

By combining Equations (6.80) to (6.82) and scratching terms that occur
both in the numerator and denominator, one concludes that there exists

212



6.4. Probability-density Correspondence

τ̃ ∈ Exp(a) such that

pa,c = Pr
α←Exp(a)∩rB∞

[
(α) · Exp(−a) = c

∣∣ α · Exp(−a∞) ∈ τKm,1
]

= |Exp(a + d(c))×τ ∩ rB∞|
|(Exp(a)m + τ̃) ∩ rB∞|

. (6.83)

Using the estimate
|(Exp(a) + τ̃) ∩ rB∞| ≈ rn · 2nR · (2π)nC/(edeg(a) ·

√
|∆K |)

When the radius r is quite large compared to the lattice Exp(a) ⊆ KR, one
can deduce that for a ∈ DivKm the number of points in (Exp(a)+ τ̃)∩rB∞ is
approximately Vol(rB∞)/edeg(a), where deg(·) is defined in Equation (2.12).
More specifically, in Lemma 6.13 we prove that for all a ∈ Div0

Km and
τ̃ ∈ KR,

|(Exp(a)m + τ̃) ∩ rB∞| ∈ [e−1/4, e1/4] · rn · 2nR · (2π)nC/(N (m) ·
√
|∆K |).

Applying this to the denominator of Equation (6.83), we directly deduce
that

pa,c = Pr
α←Exp(a)∩rB∞

[
(α) · Exp(−a) = c

∣∣ α · Exp(−a∞) ∈ τKm,1
]

∈ [e−1/4, e1/4] ·
√
|∆K | · N (m)

rn · 2nR · (2π)nC
· |Exp(a + d(c))×τ ∩ rB∞| (6.84)

Estimating the probability of sampling a single fixed ideal for a random
Arakelov divisor

As already mentioned, Equation (6.77) of Theorem 6.9 involves two random
processes, where the first process samples the Arakelov ray divisor a ← D
and the second process samples α ← Exp(a) ∩ rB∞ uniformly. Therefore,
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for a fixed integral ideal c ∈ ImK , using Equation (6.84), we have

E
a←D

[pa,c]

= E
a←D

[
Pr

α←Exp(a)∩rB∞

[
(α) · Exp(−a) = c

∣∣ α · Exp(−a∞) ∈ τKm,1
]]

∈[e−1/4, e1/4] ·
√
|∆K | · N (m)

rn · 2nR · (2π)nC
· E

a←D

[
|Exp(a + d(c))×τ ∩ rB∞|

]
. (6.85)

The number |Exp(a + d(c))×τ ∩ rB∞| only depends on the Arakelov ray
class of a ∈ Div0

Km

By quite a technical argument (see Lemma 6.14(iii)) one can show that
the number of ‘good’ α’s, |Exp(a + d(c))×τ ∩ rB∞|, only depends on the real
number r ∈ R>0, the Arakelov ray class of the divisor a and τ ∈ (OK/m)∗.

Since the distribution D is assumed to be uniform when projected to the
Arakelov ray class group Pic0

Km , we can deduce that, for any fundamental
domain F of Pic0

Km in Div0
Km ,

E
a←D

[|Exp(a + d(c))×τ ∩ rB∞|] = E
a←U(F )

[|Exp(a + d(c))×τ ∩ rB∞|] (6.86)

where U(F ) is the uniform distribution on the fundamental domain F .

By scaling, one can show that |Exp(a + d(c))×τ ∩ rB∞| = |Exp(a + d0(c))×τ ∩
rN (c)−1/nB∞|. By another technical argument (see Lemma 6.14(i)) one can
show that this quantity is non-zero only if [a + d0(c)] ∈ [Lτ−1M]Tm ⊆ Pic0

Km ,
i.e., if the Arakelov ray class of a + d0(c) lies in a specific coset of the ray
unit torus in Pic0

Km . We can then deduce that for any fundamental domain
FTm of Tm in H,

E
a←U(F )

[|Exp(a + d(c))×τ ∩ rB∞|]

= 1
|ClmK |

E
a←U(FTm )

[|Exp(a)×τ ∩ rN (c)−1/nB∞|]. (6.87)

where U(FTm) is the uniform distribution on the fundamental domain FTm .
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Taking the logarithmic map into H = LogK0
R

Applying the logarithmic map on the set Exp(a)×τ ∩ r · N (c)−1/nB∞, sends
Exp(a)×τ to a shift of the logarithmic ray unit lattice ΛKm,1 = Log(O×Km,1)
and r ·N (c)−1/nB∞ to a simplex Sn log r−logN (c) of volume C(r,N (c)), where
Sx = Log(xB∞) ⊆ LogKR as in Lemma A.1.

The expected value as in Equation (6.87) then equals the average number of
points of a randomly shifted logarithmic ray unit lattice into this simplex,
which equals C(r,N (c))/Vol(Tm). The precise value is as follows.

1
|ClmK |

E
a←U(FTm )

[|Exp(a)×τ ∩ rN (c)−1/nB∞|] = |µK | · C(r,N (c))
ϕ(m) · hK ·RK

(6.88)

Applying the Abel summation formula to get the probability for the
ideal set Sm

By combining Equations (6.85) to (6.88), using the class number formula (see
Equation (2.11)) and by the fact that N (m)

ϕ(m) = |OK/m|
|(OK/m)∗| ≥ 1, one obtains,

E
a←D

[pa,c]

= E
a←D

[
Pr

α←Exp(a)∩rB∞

[
(α) · Exp(−a) = c

∣∣ α · Exp(−a∞) ∈ τKm,1
]]

≥ e−1/4 ·
√
|∆K | · N (m)

rn · 2nR · (2π)nC
· |µK | · C(r,N (c))
ϕ(m) · hK ·RK

= e−1/4 · C(r,N (c))
rn · ρK

· N (m)
ϕ(m)

≥ e−1/4 · C(r,N (c))
rn · ρK

, (6.89)

By taking the sum over all c ∈ Sm, using linearity of the expected value
operator, one can achieve the following lower bound.

E
a←D

[
Pr

α←Exp(a)∩rB∞

[
(α) · Exp(−a) ∈ Sm

∣∣∣ α · Exp(−a∞) ∈ τKm,1
]]

= E
a←D

[∑
c∈Sm

pa,c

]
=
∑
c∈Sm

E
a←D

[pa,c] ≥ e−1/4 ∑
c∈Sm

C(r,N (c))
ρK · rn

(6.90)
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By an application of the Abel summation formula, one can relate the
sum ∑

c∈Sm C(r,N (c)) with an integral involving the counting function
|Sm(t)| = |{c ∈ Sm | N (a) ≤ t}| of the ideal set Sm. In fact, we will show
that, for some function f : R→ R,∑

c∈Sm

C(r,N (c))
ρK · rn

=
∫ rn

t=1

|Sm(t)|
ρK · t

· f(t)dt ≥ δSm [rn]/2 (6.91)

where the last inequality is due to the function f(t) having most of his weight
in the interval [rn/en, rn]; precisely the relevant interval for the local density
δSm [rn] (see Definition 6.6). By combining Equations (6.90) and (6.91), we
obtain

E
a←D

[
Pr

α←Exp(a)∩rB∞

[
(α) · Exp(−a) ∈ Sm

∣∣ α · Exp(−a∞) ∈ τKm,1]] ≥ δSm [rn]/3.

which finishes the proof.

6.5. Extended Proof of Theorem 6.9

6.5.1. Simplify the Probability by Fixing a Single Ideal c ∈ Sm and
a single Arakelov divisor a ∈ Div0

Km

In this part of the proof we focus on a fixed a ← Div0
Km in the proba-

bilistic process of Equation (6.77) in Theorem 6.9, leaving the remaining
randomness to be the uniform sampling of α ∈ Exp(a) ∩ rB∞. Furthermore,
we concentrate on a fixed ideal c ∈ Sm as well. By the law of conditional
probability, we have

pa,c = Pr
α←Exp(a)∩rB∞

[
(α) · Exp(−a) = c

∣∣ α · Exp(−a∞) ∈ τKm,1
]

=

Pr
α←Exp(a)∩rB∞

 (α) · Exp(−a) = c

and
α · Exp(−a∞) ∈ τKm,1


Pr

α←Exp(a)∩rB∞
[α · Exp(−a∞) ∈ τKm,1] . (6.92)

In the following lemma we compute the exact values of these probabilities.
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6.5. Extended Proof of Theorem 6.9

Lemma 6.12. Let m ⊆ OK be a modulus, let τ ∈ (OK/m)∗, let a ∈ Div0
Km

be a fixed Arakelov ray divisor, and let c ∈ ImK be an integral ideal. Then

Pr
α←Exp(a)∩rB∞

 (α) · Exp(−a) = c

and
α · Exp(−a∞) ∈ τKm,1

 = |Exp(a + d(c))×τ ∩ rB∞|
|Exp(a) ∩ rB∞|

,

(6.93)
and, there exists some τ̃ ∈ KR such that

Pr
α←Exp(a)∩rB∞

[
α · Exp(−a∞) ∈ τKm,1

]
= |(Exp(a)m + τ̃) ∩ rB∞|

|Exp(a) ∩ rB∞|
, (6.94)

where the sampling α← Exp(a) ∩ rB∞ is uniform in both expressions.

Proof. By examining Definition 6.2 closely, noting that Exp((a + d(c))f)
= Exp(af) · c ∈ ImK , we see that for all α ∈ Exp(a),

(α) · Exp(−a) = c and α · Exp(−a∞) ∈ τKm,1 ⇐⇒ α ∈ Exp(a + d(c))×τ .

As the number of choices for α ∈ Exp(a) ∩ rB∞ equals |Exp(a) ∩ rB∞|,
the number of good choices equals |Exp(a + d(c))×τ ∩ rB∞| and since the
sampling procedure is uniform, we arrive at the first probability claim. For
the second probability claim, write a = Exp(af) ∈ ImK , for conciseness. We
note that for α ∈ Exp(a), α · Exp(−a∞) ∈ τKm,1 is equivalent to

α · Exp(−a∞) ∈ Exp(af) ∩ τKm,1 = a ∩ τKm,1 = am + τ ′,

where τ ′ ∈ a is such that τ ′ ≡ τ modulo m (note that a and m are coprime).
This, in turn, is equivalent to

α ∈ Exp(a∞)(am + τ ′) = Exp(a)m + τ̃

where τ̃ = Exp(a∞)τ ′ ∈ KR, which proves the claim.

6.5.2. Estimating the Number of Shifted Lattice Points in a Box

Both Equations (6.93) and (6.94) involve the number of shifted lattice points
in the volume rB∞. For large enough radius r, we can reasonably estimate
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6. Ideal sampling

this quantity to be |(Exp(a) + τ̃)∩ rB∞| ≈ rn ·2nR · (2π)nC/(edeg(a) ·
√
|∆K |).

Lemma 6.13. Let x ≥ 1. For any Arakelov ray divisor a ∈ DivKm, any
r > x · n2 · |∆K |

3
2n · edeg(a)/n and any τ̃ ∈ KR, we have

|(Exp(a) + τ̃) ∩ rB∞| ∈ [e−1/x, e1/x] · r
n · 2nR · (2π)nC

edeg(a) ·
√
|∆K |

,

where we note that for a ∈ Div0
Km , i.e., degree-one Arakelov ray divisors, we

have deg(a) = 0.

Proof. Let us write V∞ for the Voronoi cell of Exp(a) around 0 with respect
to the infinity norm, i.e., V∞ = {x ∈ KR | ∥x∥∞ < ∥x − v∥∞ for all v ∈
Exp(a)}. This is well-known to be a fundamental domain for the lat-
tice Exp(a) (up to a set of ‘faces’ of measure zero), thus having vol-
ume det(Exp(a)) = edeg(a) ·

√
|∆K |. Denote cov∞ = cov∞(Exp(a)) =

max{∥x∥∞ | x ∈ V∞} for the covering radius of the lattice Exp(a) with
respect to the infinity norm. Furthermore, denote τ̃0 ∈ V∞ for the unique
representative of τ̃ + Exp(a) in V∞, implying Exp(a) + τ̃ = Exp(a) + τ̃0.

The sets v + V∞ for v ∈ (Exp(a) + τ̃0) ∩ rB∞ are disjoint and are in-
cluded in KR ∩ (r + 2 · cov∞)B∞. Hence, by computing the volume of
∪v∈(Exp(a)+τ̃0)∩rB∞(v + V∞) in KR, we obtain

|(Exp(a) + τ̃0) ∩ rB∞| · edeg(a) ·
√
|∆K | ≤ (r + 2 · cov∞)n ·Vol(KR ∩ B∞)

≤ (r + 2 · cov∞)n · 2nR · (2π)nC ,

where we used the fact that Vol(V∞) = det(Exp(a)) = edeg(a) ·
√
|∆K |.

Observe also that KR ∩ B∞ contains some coordinates that are real and
other that are complex. Hence, its volume is 2nR · (2π)nC and not 2n (the
2-dimensional volume of {(x, x) ∈ C2| |x| ≤ 1} is 2π).

In a similar fashion, we can deduce that the set KR ∩ (r − 2 · cov∞)B∞ is
included in ∪v∈(Exp(a)+τ̃0)∩rB∞(v+V∞), where V∞ is the topological closure
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of V∞. The sets v + V∞ for v ∈ (Exp(a) + τ̃0) ∩ rB∞ are disjoint up to sets
of measure zero, and therefore, by computing volumes, we obtain

(r − 2 · cov∞)n · 2nR · (2π)nC = (r − 2 · cov∞)n ·Vol(KR ∩ B∞)

≤ |(Exp(a) + τ̃0) ∩ rB∞| · edeg(a) ·
√
|∆K |

Combining the two bounds, one obtains(
1− 2 · cov∞

r

)n
· r

n · 2nR · (2π)nC

edeg(a) ·
√
|∆K |

≤ |(Exp(a) + τ̃0) ∩ rB∞|

≤
(

1 + 2 · cov∞
r

)n
· r

n · 2nR · (2π)nC

edeg(a) ·
√
|∆K |

.

From Lemma 2.22, we know that cov∞(Exp(a)) ≤ n/2 · |∆K |
3

2n ·edeg(a)/n; so,
by assumption, r ≥ 2 · x ·n · cov∞. We obtain the final claim by substituting
r and using the inequality (1 + y/n)n ≤ ey for all y ∈ (−1, 1).

Figure 6.1.: The number of lattice points in the red box is clearly sandwiched by the
number of green cells and the number of green and yellow cells together.

Applying above lemma with x = 4 and thus r = 4 · n2 · |∆K |
3

2n · N (m)1/n,
to Equations (6.93) and (6.94) and substituting them into Equation (6.92),
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6. Ideal sampling

one obtains,

pa,c = Pr
α←Exp(a)∩rB∞

[
(α) · Exp(−a) = c

∣∣ α · Exp(−a∞) ∈ τKm,1
]

= |Exp(a + d(c))×τ ∩ rB∞|
|(Exp(a)m + τ̃) ∩ rB∞|

∈ [e−1/4, e1/4] ·
√
|∆K | · N (m)

rn · 2nR · (2π)nC
· |Exp(a + d(c))×τ ∩ rB∞| (6.95)

Here, we use that det(Exp(a)m) = edeg(a) ·
√
|∆K | = N (m) ·

√
|∆K |, and

thus |(Exp(a)m + τ̃) ∩ rB∞| ∈ [e−1/4, e1/4] · r
n·2nR ·(2π)nC√
|∆K |·N (m)

.

6.5.3. Estimating the Probability of Sampling a Single Fixed Ideal
for a Random Arakelov Divisor

To obtain the probability of sampling a fixed ideal for a random Arakelov
divisor, one needs to take the weighted sum over the probabilities of sampling
a fixed ideal for a fixed Arakelov divisor, where the weights are given by the
density D on Div0

Km . In other words, one needs to take the expected value.
So, for a fixed integral ideal c ∈ ImK , we have

E
a←D

[pa,c]

= E
a←D

[
Pr

α←Exp(a)∩rB∞

[
(α) · Exp(−a) = c

∣∣ α · Exp(−a∞) ∈ τKm,1
]]

∈ [e−1/4, e1/4] ·
√
|∆K | · N (m)

rn · 2nR · (2π)nC
· E

a←D

[
|Exp(a + d(c))×τ ∩ rB∞|

]
. (6.96)

where the last approximate equality follows from the linearity of the expec-
tation and Equation (6.95).

6.5.4. The Number |Exp(a + d(c))×τ ∩ rB∞| Only Depends on the
Arakelov Ray Class of a ∈ Div0

Km

It thus remains to focus on the expected value

E
a←D

[
|Exp(a + d(c))×τ ∩ rB∞|

]
. (6.97)
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In the following rather technical lemma we will – among other things –
prove that the number of elements in Exp(a + d(c))×τ ∩ rB∞ only depends
on the Arakelov ray class of a, meaning that we might take the expected
value over the uniform distribution over a fundamental domain of Pic0

Km

in Div0
Km in Equation (6.97), as [D] is uniform over Pic0

Km , per assumption
(see Definition 6.8).

Lemma 6.14. For all ray divisors a ∈ Div0
Km, elements τ, τ ′ ∈ Km, ideals

c ∈ ImK and real numbers r > 0 we have the following list of facts.

(i) |Exp(a)×τ ∩ rB∞| = |Exp(a + Lτ ′M)×ττ ′ ∩ rB∞|, i.e., the number of τ -
equivalent ray generators of a in a fixed box of radius r is equal to the
number of ττ ′-equivalent ray generators of a + Lτ ′M in the same box.

(ii) |Exp(a + d(c))×τ ∩ rB∞| = |Exp(a + d0(c))×τ ∩ r
N (c)1/nB∞|, so the only

difference between the maps d0 and d is just some appropriate scaling.
(iii) Writing a∞ = ∑

ν aν · LνM ∈ H ⊆ Div0
Km, we have

|Exp(a∞)×1 ∩ rB∞| = |µKm,1 | · |(ΛKm,1 + (aνσ )σ) ∩ Slog(r)|, (6.98)

where Slog r = {x ∈ LogKR | xσ ≤ log(r) , ∑σ xσ = 0} is a simplex as
in Lemma A.1.

Proof. For part (i), observe that multiplying by
(
σ(τ ′)
|σ(τ ′)|

)
σ
∈ KR yields a bijec-

tion from Exp(a) to Exp(a+Lτ ′M), preserving the maximum norm. It remains
to show that this bijection sends Exp(a)×τ to Exp(a + Lτ ′M)×τ ′τ . Using Defi-
nition 6.2 and assuming Exp(af) = κOK (and therefore Exp([a + Lτ ′M]f) =
τ ′κOK), we have(

σ(τ ′)
|σ(τ ′)|

)
σ

· Exp(a)×τ =
( 1
|σ(τ ′)|

)
σ

· (τ ′) · Exp(a∞) · (κO×K ∩ τK
m,1)︸ ︷︷ ︸

Exp(a)×
τ

=
( 1
|σ(τ ′)|

)
σ

· Exp(a∞)︸ ︷︷ ︸
Exp((a+Lτ ′M)∞)

·(τ ′κO×K ∩ τ
′τKm,1) = Exp(a + LτM)×τ ′τ
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For part (ii), recall that multiplying the ideal lattice Exp(d(c)) = c ⊆ KR
by the scalar N (c)−1/n results in the ideal lattice Exp(d0(c)). Applying
this scalar multiplication to the set Exp(a + d(c)) ∩ rB∞ yields a bijective
correspondence with Exp(a + d0(c)) ∩ r

N (c)1/nB∞.

In part (iii) it is enough to show that the logarithm Log : KR → Log(KR)
takes Exp(a∞)×1 to the shifted lattice Log(O×Km,1) + (aνσ )σ ⊂ H and takes
rB∞ to the simplex Slog(r) ⊂ H. This logarithmic map is |µKm,1 |-to-one on
Exp(a∞)×1 , as it sends roots of unity to the all-one vector in KR, yielding
the extra factor |µKm,1 | in Equation (6.98). Here, µKm,1 = µK ∩Km,1, i.e.,
the roots of unity in Km,1.

As a corollary of Lemma 6.14(i) we deduce that

|Exp(a)×τ ∩ rB∞| = |Exp(a + LκM)×τ ∩ rB∞|

for κ ∈ Km,1, i.e., the number of elements |Exp(a)×τ ∩ rB∞| only depends
on the Arakelov ray class of a (next to r ∈ R, m and τ ∈ Km). Choose
a (measurable) fundamental domain F ⊆ Div0

Km of the quotient group
Pic0

Km , and put FTm = {a ∈ F | [a] ∈ Tm}, a fundamental domain of Tm in
Pic0

Km . Then, by the assumption that [D] is uniform on Pic0
Km , and writing

r̃ = rN (c)−1/n we deduce

E
a←D

[
|Exp(a + d(c))×τ ∩ rB∞|

]
= E

a←D

[
|Exp(a + d0(c))×τ ∩ r̃B∞|

]
= E

a←U(F )

[
|Exp(a + d0(c))×τ ∩ r̃B∞|

]
= E

a←U(F )

[
|Exp(a + LτM)×τ ∩ r̃B∞|

]
= E

a←U(F )

[
|Exp(a)×1 ∩ r̃B∞|

]
= 1
|ClmK |

E
a←U(FTm )

[
|Exp(a)×1 ∩ r̃B∞|

]
(6.99)

where the first equality follows from scaling (Lemma 6.14(ii)) and the second
one by the fact that the random variable is an Arakelov ray class invariant
(Lemma 6.14(i)) and that [D] is uniform on Pic0

Km . The third equality holds
because F + d0(c)− LτM is a fundamental domain of Pic0

Km in Div0
Km if F

is. The fourth equality follows directly from Lemma 6.14(i), and the last
equality follows from Definition 6.2. Namely, an Arakelov divisor a can only
have generators if the ideal class of Exp(af) is trivial, i.e., if [a] ∈ Tm. So,
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instead, a can be chosen uniformly from a fundamental domain FTm of Tm

in Div0
Km , with a correction factor of 1

|ClmK |
in the expected value.

6.5.5. Taking the Logarithmic Map into H = Log K0
R

By taking the Logarithmic image, we find, by Lemma 6.14(iii), that Equa-
tion (6.99) equals

|µKm,1 |
|ClmK |

· E
a←U(FTm )

[
|ΛKm,1 + (aνσ )σ ∩ Slog(r)−logN (c)/n|

]
(6.100)

= |µKm,1 |
|ClmK |

Vol(Slog(r)−logN (c)/n)
Vol(FTm) (6.101)

= |µK | · C(r,N (c))
|ClmK | · [O×K : O×Km,1 ] ·RK

= |µK | · C(r,N (c))
ϕ(m) · hK ·RK

. (6.102)

where C(r,N (c)) = Vol(Slog(r)−logN (c)/n) = (n log r−logN (c))r/r! whenever
N (c) ≤ rn and zero otherwise; and where ϕ(m) = |(OK/m)∗|. The first
inequality of Equation (6.101) follows from Lemma 6.1, the second equality
follows from Lemmas A.1 and A.2 and the fact that Vol(FTm) = Vol(Tm) =
[O×K : O×Km,1 ] · |µKm,1 | · |µK |−1 ·Vol(T ) (see Lemma 2.16). The third inequality
(Equation (6.102)) uses the fact that |ClmK | · [O×K : O×Km,1 ] = ϕ(m) · hK (see
Lemma 2.15).

Remark 6.15. Note that all number-theoretic quantities in Equation (6.102)
make sense intuitively: one out of hK random ideal lattices is expected to
be principal, the density of units (including roots of unity) is |µK |/RK and
one out of ϕ(m) random elements coprime to m equals τ mod m

Combining Equations (6.96), (6.99) and (6.100) and the class number formula
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(see Equation (2.11)), we have

E
a←D

[pa,c]

E
a←D

[
Pr

α←Exp(a)∩rB∞

[
(α) · Exp(−a) = c

∣∣ α · Exp(−a∞) ∈ τKm,1
]]

∈ [e−1/4, e1/4] ·
√
|∆K | · N (m)

rn · 2nR · (2π)nC
E

a←D

[
|Exp(a + d(c))×τ ∩ rB∞|

]
= [e−1/4, e1/4] ·

√
|∆K | · N (m)

rn · 2nR · (2π)nC
· |µK | · C(r,N (c))
ϕ(m) · hK ·RK

= [e−1/4, e1/4] · C(r,N (c))
rn · ρK

· N (m)
ϕ(m) ≥ e

−1/4 · C(r,N (c))
rn · ρK

. (6.103)

where C(r,N (c)) = (n log r − logN (c))r/r! whenever N (c) ≤ rn and zero
otherwise.

6.5.6. Applying the Abel Summation Formula

We have, by Equation (6.103),

E
a←D

[
Pr

α←Exp(a)∩rB∞

[
(α) Exp(−a) ∈ Sm

∣∣ αExp(a∞) ∈ τKm,1
]]

= E
a←D

[∑
c∈Sm

pa,c

]
=
∑
c∈Sm

E
a←D

[pa,c] ≥
e−1/4

rn · ρK

∑
c∈Sm
N (c)≤rn

C(r,N (c)). (6.104)

Lemma 6.16. Let Sm ⊆ ImK a set of integral ideals, let r > e, and denote
C(r,N (c)) = (n log r−logN (c))r

r! . Then

1
rn · ρK

∑
c∈Sm
N (c)≤rn

C(r,N (c)) ≥ 1
2 · δSm [rn]

Proof. We apply the Abel partial summation formula with aN,Sm := |{c ∈
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Sm | N (c) = N}| and C(r,N) := (n log r−logN)r
r! , whose derivative equals

d
dNC(r,N)

∣∣∣
t

= −(n log r − log t)r−1

t · (r− 1)!

= −rn

t · (r− 1)! ·
[
d
dNΓ

(
r, n log r − logN

)]∣∣∣
t
,

where Γ(r, x) =
∫∞
x ur−1e−udu is the upper incomplete Gamma function. Re-

call that |Sm(t)| = ∑
N≤t aN,Sm . A typical application of the Abel summation

formula yields
1

rn · ρK

∑
c∈Sm
N (c)≤rn

C(r,N (c))

= 1
rn · ρK

∑
1≤N≤rn

aN,Sm · C(r,N)

= −
∫ rn

t=1

|Sm(t)|
ρK · rn

·
[
d
dNC(r,N)

∣∣∣
N=t

]
dt

= 1
(r− 1)!

∫ rn

t=1

|Sm(t)|
ρK · t

·
[
d
dNΓ

(
r, n log r − logN

)∣∣∣
N=t

]
dt, (6.105)

Using Definition 6.6 about ideal density and the fact that the integrand is
positive, Equation (6.105) is lower bounded by

1
(r− 1)!

∫ rn

t=(r/e)n

|Sm(t)|
ρK · t

·
[
d
dNΓ

(
r, n log r − logN

)∣∣∣
N=t

]
dt

≥ δSm [rn]
(r− 1)!

∫ rn

t=(r/e)n

[
d
dN Γ

(
r, n log r − logN

)∣∣∣
N=t

]
dt ≥ 1

2 · δSm [rn], (6.106)

where the last inequality (Equation (6.106)) follows from the definition of
the upper incomplete Gamma function,

1
(r− 1)!

∫ rn

t=(r/e)n

(
d

dt
Γ(r, n log r − logN)

∣∣
N=t

)
dt

= 1
(r− 1)! · (Γ(r, 0)− Γ(r, n)) = 1− e−n

r−1∑
k=0

nk

k! ≥ 1/2,

where we used the fact that e−n∑r−1
k=0

nk

k! equals the probability that a Poisson
distribution with parameter n yields at most r − 1 ≤ n − 1 occurrences,
which is bounded by a half.

225



6. Ideal sampling

We conclude that

E
a←D

[pa,c]

= E
a←D

[
Pr

α←Exp(a)∩rB∞

[
(α) Exp(−a) ∈ Sm

∣∣ αExp(−a∞) ∈ τKm,1
]]

≥ e−1/4

rn · ρK

∑
c∈Sm
N (c)≤rn

C(r,N (c)) ≥ δSm [rn]/3.

This concludes the proof of Theorem 6.9.

Remark 6.17. As already mentioned, the fraction 1
3 before δSm [rn] can be

made arbitrarily close to 1. In order to achieve that, we need to enlarge the
‘ideal density’ interval in Definition 6.6 to [x/e2n, x] and we need to increase
the radius r ∈ R>0 in Lemma 6.13.

In the case of this larger density interval, the Poisson distribution in above
proof changes into a Poisson distribution with parameter 2n, but with the
same bound (r− 1 ≤ n− 1) on the occurrences. This yields an exponential
instead of a constant bound. Increasing the radius r by an exponential factor
2n also yields an exponential bound on the error. So, by implementing these
changes, one can obtain a lower bound on the probability in Theorem 6.9 of
(1−O(e−n)) · δSm [rn], which is exponentially close to optimal.

6.6. Ideal Sampling

6.6.1. Sampling in a Box

In this section, we explain how one can efficiently sample in a (distorted)
infinity box, provided that all the dimensions of the box are sufficiently large.
More precisely, let (rσ)σ ∈ KR be such that rσ > 0 for all coordinates. We
let (rσ)σB∞ denote the distorted box

(rσ)σB∞ := {(xσ)σ ∈ KR | |xσ| ≤ rσ, ∀σ}.
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Proposition 6.18. Let a ⊂ OK be an ideal represented by a basis Ma, let
β ∈ OK be a shift and let (rσ)σ ∈ KR be such that rσ > 0 for all σ. Assume
that for all embeddings σ, it holds that rσ ≥ 4 · 2n ·n3/2 · |∆K |3/(2n) ·N (a)1/n.
Then, there exists an algorithm sampling uniformly in (a + β) ∩ (rσ)σB∞
using time O

(
n6 log(|Ma|)3), where |Ma| denotes the length of the longest

basis vector of Ma.

Remark 6.19. This lemma can be seen as the ‘algorithmization’ of the
ideas in the very similar Lemma 6.13. In that particular lemma (see also
Figure 6.1), an estimation is made of the number of lattice points in a box,
where Voronoi cells are used as the fundamental domain.

In the proof of this lemma, we sample a random element in the ambient
vector space of the lattice that also lies in the predescribed box (rσ)σB∞.
Then, we use a ‘rounding algorithm’ to round this real vector to an actual
lattice point in a. Such a rounding algorithm needs a fundamental domain
of the lattice a, which can be computed by means of the LLL-algorithm. This
might yield quite a skewed fundamental domain, hence the slightly worse
requirements on the parameters, compared to Lemma 6.13.

Proof. The algorithm first computes (in polynomial time) an LLL reduced
basis (a1, · · · , an) of a from Ma. This basis satisfies ∥ai∥ ≤ 2nλn(a) ≤
2n ·
√
n · |∆K |3/(2n) ·N (a)1/n (using Lemma 2.22). After that, reduce β ∈ OK

modulo this LLL reduced basis (a1, · · · , an) of a, yielding β̃ ∈ β + a. That
is, write β = ∑

i tiai and put β̃ = ∑
i(ti − ⌊ti⌉)ai.

Denoting D := ∑
i ∥ai∥∞ ≤ 2n ·

√
n · |∆K |3/(2n) · N (a)1/n for the sum of

the infinity norms of the basis vectors ai, we have ∥β̃∥∞ ≤ D. Also, by
assumption on (rσ)σ, it holds that rσ ≥ 4nD for every embedding σ.

To sample a uniform element v ∈ a∩(rσ)σB∞, the algorithm goes through the
following steps. It first samples a uniform element t = (tσ)σ ∈ (rσ +2D)σB∞.
This can be done in time poly(n, log(maxσ rσ + 2D)), by sampling every
first rR + rC coordinates of t ∈ KR independently, and defining the last
rC ones appropriately in order to have t ∈ KR. The algorithm then writes
t = ∑

i tiai with ti ∈ R (the vector t lies in the real span of a) and puts
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6. Ideal sampling

v = ∑
i⌊ti⌉ai + β̃, which lies in β + a. Finally, the algorithm outputs v if

v ∈ (rσ)σB∞, otherwise it restarts.

Let us first show that the distribution of v is indeed uniform in (a + β) ∩
(rσ)σB∞. Let us define P = {∑i xiai , xi ∈ [−1/2, 1/2]} the fundamental
parallelepiped associated to the basis (a1, · · · , an). It holds that for all x ∈ P ,
we have ∥x∥∞ ≤ D.

The probability of sampling v = α+ β̃ ∈ (rσ)σB∞ for α ∈ a via the above
procedure is equal to the probability of sampling t ∈ α+P ⊆ (rσ + 2D)σB∞.
This probability is equal to Vol(P)/Vol((rσ + 2D)σB∞ ∩KR), which does
not depend on α ∈ a. We conclude that above sampling procedure yields
v = α+ β̃ that are uniformly distributed in (a+ β)∩ (rσ)σB∞. The running
time of the algorithm is dominated by the LLL-reduction of Ma, which takes
time O

(
n6 log(|Ma|)3), where |Ma| denotes the length of the longest basis

vector of Ma.

To conclude the proof, we show that the success probability of the algorithm
is constant. Indeed, observe that whenever t = ∑

i tiai ∈ (rσ−2D)σB∞, then
we have v = ∑

i⌊ti⌉ai + β̃ ∈ (rσ)σB∞ (since ∥t − v∥∞ ≤ D and ∥β̃∥ ≤ D),
and so the algorithm succeeds. The success probability of the algorithm is
then at least

Vol((rσ − 2D)σB∞ ∩KR)
Vol((rσ + 2D)σB∞ ∩KR) =

∏
σ

(1− 2D/rσ
1 + 2D/rσ

)
≥
(

1− 1
2n

1 + 1
2n

)n
≥ 1/3,

where we used the fact that 2nD/rσ ≤ 1/(2n) for any σ. This concludes the
proof.

6.6.2. The Sampling Algorithm

Definition 6.20. We denote by SB the set of B-smooth ideals, i.e.,

SB = {a ideal of OK
∣∣ for any prime ideal p | a holds N (p) ≤ B}
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Algorithm 7: Sampling of β ∈ b such that β ≡ τ modulo m

Require:

• A modulus m ⊆ OK .
• An ideal b ⊆ OK coprime with m,
• An element τ ∈ OK coprime with m,
• An error parameter ε > 0.

Ensure: An element β ∈ b such that

• β ≡ τ modulo m,
• | N (β)| ≤ N (b) ·BN · rn, where r = 4 · 2n ·n3/2 · |∆K |

3
2n ·N (m) 1

n ,
where B = Õ

(
n4[log log(1/ε)]2 + n2[log(|∆K | N (m))]2

)
and

N = ⌊8n+ logN (m) + log |∆K |+ 2 log(1/ε)⌋ as in Theorem 6.3.

1: Multiply b by N random prime ideals coprime with m and that have a
norm bounded by B, obtaining b̃ = b ·

∏
j pj .

2: Sample a Gaussian distortion (xσ)σ ∈ H ⊆ logKR with parameter
s = 1/n2 and define the (exσ )σ-distorted box
B̃ = (exσ · r · N (b̃)1/n)σB∞.

3: Compute τ̃ ∈ b̃ such that τ̃ ≡ τ modulo m.
4: Sample an element β ∈ (b̃m + τ̃) ∩ B̃ = b̃ ∩ (m + τ) ∩ B̃ uniformly

random following the algorithm from Proposition 6.18.
5: return β.

Theorem 6.21 (ERH). Let S be any set of integral ideals, let m ⊆ OK
be any ideal modulus, let b ⊆ OK be an integral ideal coprime with m and
let τ ∈ (OK/m)∗ be any invertible element modulo m. Let, furthermore,
r ≥ 4 · 2n · n3/2 · |∆K |

3
2n · N (m) 1

n and let ε > 0 be an error parameter.
Then, assuming the Extended Riemann Hypothesis, Algorithm 7 outputs in
time T = poly(log |∆K |, size(N (b)), log(1/ε), log(N (m))) an element β ∈ b

such that

• (β)/b ∈ (S · SB) ∩ ImK ,
• β ≡ τ mod m
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6. Ideal sampling

with probability at least 1
3δS [rn]− ε.

Here, B = Õ
(
n2 ·

[
n2 · (log log(1/ε))2 + (log(|∆K | N (m)))2]).

Proof. We split the proof into two parts. We start with the proof of correct-
ness and the success probability and finish with the proof of the polynomial
running time.

(Correctness and success probability). By Lemma 6.22, which we will treat
later, the ideal-element pair

(
(β)/b̃, β

)
∈ ImK × OK from Algorithm 7 is

distributed as
(
(α) Exp(−a), αExp(−a∞)

)
with a ← W = W(N,B, s) +

d0(b) and α ← Exp(a) ∩ rB∞ uniformly. Here W = W(N,B, s) + d0(b)
is the random walk distribution starting on the point d0(b) ∈ Div0

Km (see
Definition 4.1).

For the random walk distribution W =W(N,B, s) + d0(b) on Div0
Km with

these parameters holds that [W ] on Pic0
Km is ε-close to uniform in the total

variation distance. So, allowing an error of ε we may as well assume that a
instead comes from a distribution D on Div0

Km that satisfies [D] = U(Pic0
Km)

(see Lemma 6.23).

By applying Theorem 6.9, one then obtains that the expected probability
(over the randomness of a ∈ Div0

Km) that (β)/b̃ = (α) Exp(−a) ∈ S ∩ ImK
given that β = αExp(−a∞) ≡ τ mod m is at least 1

3δS [rn] − 2−n. From
the fact that b̃ = b ·

∏
j pj with pj ∤ m and N (pj) ≤ B, we have that

(β)/b ∈ (S · SB) ∩ ImK in that case, and the result follows.

(Running time). Note that logB and N are poly(log |∆K |, size(N (b)),
log(1/ε), log(N (m))), so any complexity polynomially involving logB and
N must be polynomial in the size of the input as well. In the following
complexity analysis, any complexity that is within poly(log |∆K |, size(N (b)),
log(1/ε), log(N (m))) we will call ‘polynomial in the size of the input’.

For the running time, we go through steps 1 to 4 of Algorithm 7. Step
1 involves the sampling of N primes, which, by Lemma 2.14 takes O(N ·
n2 log2B) time, clearly polynomial in the size of the input; the fact that
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6.6. Ideal Sampling

the primes need to be coprime with m does not give a significant overhead2.
Multiplication of two ideals can be done by LLL-reducing the n2 × n matrix
involving all products of the Z-generators of the respective ideals, taking
time at most Õ(n8+η log(M)1+η) [NS16] for any η > 0, where M is the
maximum entry of the matrix involved3. This multiplication is done with
N ideals, which means that the total time of this ideal multiplication is
polynomial in the size of the input. An alternative way to see this is by
using the two-element representation of ideals (e.g., [CS08, §4.7]).

Step 2 requires to sample a Gaussian in H = LogK0
R, which can be done

by inverse transform sampling, without a significant running time. The
estimation of the time required for sampling in the box (exσ ·r ·N (b̃)1/n)σB∞
is deferred to step 4.

In step 3 one only needs to compute β ∈ b̃ and µ ∈ m such that β + µ = 1.
In that case τ̃ = βτ suffices. Such a pair (β, µ) ∈ b̃ × m can be found by
applying the Hermite normal form to the concatenated basis matrices of b̃
and m [Coh99, Prop. 1.3.1]. This requires Õ(n5 log(M)2) time [SL96], where
M is the maximum entry occurring in the basis matrices.

Step 4 requires the sampling-in-a-box algorithm described in Proposition 6.18
which requires O(n6 log(|∆K | N (mb̃))3) = O(n6 log(|∆K | N (m)BN )3) time.

Clearly all steps require time at most polynomial in the size of the input,
which proves the time complexity claim.

Above proof needs the results of Lemma 6.22 and Lemma 6.23. The first
proves the fact that Algorithm 7 mimics a random walk, and the second
shows that the random walk distribution on Div0

Km is close to a distribution
D for which [D] is uniform on Pic0

Km . After these two lemmas, the proof is
completed.

2In the sampling procedure in Lemma 2.14, the first step is sampling a random integer
p in [0, B]. In this particular step one can avoid primes dividing m by simply compute
the greatest common divisor of p and N (m). This only gives a non-significant overhead
compared to the full algorithm in Lemma 2.14.

3This time estimate is from Neumaier and Stehlé [NS16], instantiated with β =
log maxi ∥bi∥ ≤ log(nM) and lattice dimension n2.
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Lemma 6.22 (Algorithm 7 mimicks a random walk). Let m ⊆ OK a
modulus, let N,B, s and r as in Algorithm 7 and let W = W(N,B, s) be
the random walk distribution on Div0

Km (see Definition 4.1). Let Wr be the
distribution on KR ×Div0

Km obtained by sampling a ←W(N,B, s) + d0(b)
and subsequently sampling α ∈ Exp(a) ∩ rB∞ uniformly.

Then the pair
(
(β)/b̃, β

)
∈ ImK × OK obtained by running Algorithm 7

follows the exact same distribution as
(
(α) Exp(−a), αExp(−a∞)

)
with

(α,a)←Wr.

Proof. The difference in the sampling procedure consists of where the dis-
turbance of the ‘infinite places’ happens. In the case of the random walk,
the disturbance happens on the the divisor, whereas in Algorithm 7 the
disturbance happens on the box to be sampled in. We will show that this
does not matter for the end distribution.

Both the distribution W and Algorithm 7 involve the following two random
processes: picking N uniformly random primes from

{p ∈ ImK prime | N (p) ≤ B}

and sampling a Gaussian (xσ)σ ∈ H; both with the exact same parameters.
Without loss of generality, we can therefore focus on one fixed sample
{pj | 1 ≤ j ≤ N} of primes and one fixed vector (xσ)σ ∈ H.

This means that we consider the fixed a = ∑N
j=1LpjM +∑

ν xσν LνM + d0(b) ∈
Div0

Km for the procedure involving Wr and the fixed ideal b̃ = b
∏N
j=1 pj and

distortion (e−xσ )σ for the procedure involving Algorithm 7. Then, writing
b̃ = N (b̃)1/n,

Exp(a) = (exσ )σb̃/b̃, Exp(af) = b̃ and Exp(a∞) = (exσ )σ/b̃

Thus, αExp(−a∞) for uniformly random α ∈ Exp(a) ∩ rB∞ is distributed
as

Exp(−a∞) · U
(

Exp(a) ∩ rB∞
)

= (e−xσ )σ · b̃ · U
(
(exσ )σb̃/b̃ ∩ rB∞

)
= U

(
b̃ ∩ (e−xσ )σ · b̃ · rB∞

)
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which is exactly the distribution of β ∈ b̃ in Algorithm 7 for fixed b̃. It
follows that (α) Exp(−a) = (α) Exp(−a∞) Exp(−af) = (α) Exp(−a∞)/b̃ is
distributed as (β)/b, which finishes the proof.

Lemma 6.23 (Lifting property of distributions). Suppose that a distribution
D : Div0

Km → R satisfies ∥[D]− U(Pic0
Km)∥1 < ε (see Definition 6.8). Then

there exists a ‘lifted’ distribution DU : Div0
K → R+ such that [DU ] =

U(Pic0
Km) and ∥D − DU∥1 < ε.

Proof. Put

DU (a) =


1

Vol(Pic0
Km ) ·

D(a)
[D]([a]) if [D]([a]) ̸= 0

u otherwise
,

for some u : Div0
Km → R+ that satisfies [u] = 1

Vol(Pic0
Km ) . Then, one can

check that [DU ] = 1
Vol(Pic0

Km ) is uniform on Pic0
Km . Furthermore, writing F

for a fundamental domain in Div0
Km for Pic0

Km , we have

∥D − DU∥1 =
∫

a∈F

∫
α∈K∗/µK

|D(a + LαM)−DU (a + LαM)|dαda

=
∫

[a]∈Pic0
Km

∣∣∣∣∣[D]([a])− 1
Vol(Pic0

Km)

∣∣∣∣∣ d([a])

= ∥[D]− U(Pic0
Km)∥1 ≤ ε.

The first equation holds by definition, the second equation by the fact that
the sign of (D(a + LαM)−DU (a + LαM)) depends per construction solely on
the coset [a].
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7. The Power Residue Symbol is in
ZPP

7.1. Summary

In this chapter we show that, assuming the Riemann hypothesis for Hecke
L-functions on the cyclotomic fields Q(ζm), the problem of computing the
m-th power residue symbol in a field containing the m-th root of unity lies
in the complexity class ZPP. In other words, there exists an algorithm that
computes power residue symbols within probabilistic polynomial time in
the input size. Though this algorithm never outputs an incorrect output,
it might simply give no output with a certain constant probability. The
probability here is over, say, random coin flips, which allows the algorithm
to repeat until having a negligible error probability. Such algorithms are
also known as Las Vegas algorithms.

The proof of the polynomial running time consists of essentially two parts,
which are treated separately in Section 7.4 and Section 7.5. The former
part consists of an efficient reduction from general power residue symbols to
power residue symbols in cyclotomic fields; this reduction is due to Lenstra
[Len95] and Squirrel [Squ97]. The latter part is a new result and consists of
a proof that power residue symbols in cyclotomic fields can be computed
efficiently, assuming the Extended Riemann Hypothesis for Hecke L-functions
on cyclotomic fields. The key ingredient for this algorithm to be provable is
the sampling algorithm of the previous Chapter 6. By combining these two
parts, one obtains a conditional proof that power residue symbols can be
computed efficiently in any number field.
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7.2. Introduction

The power residue symbol often plays a significant role in algorithms in
which residuosity is involved, which is about distinguishing m-th powers
from non-m-th powers modulo an ideal in a number field. In such case, the
m-th power residue symbol serves as a first check, as it should be equal to
one in the case of an m-th power.

Examples of cryptographic schemes involving residuosity and that need a
fast computation of power residue symbols include [SW95; GM84; Sch98;
Wil85], which mostly consider m being prime and below 12. It should be
noted that these cryptographic schemes (and actually, most residuosity-
based schemes) are not quantum secure, due to their susceptibility to Shor’s
efficient quantum algorithm for factoring [Sho94]. In fact, if one is allowed
to use a quantum computer, a very simple algorithm for the power residue
exists, by just factoring the bottom input ideal of

(
α
b

)
. So, to be clear, in

this chapter we will solely consider classical computing power.

Efficient algorithms for the m-th power residue symbol for specific small
cases of m ≤ 11 are studied extensively [CS10; DF05; Wei02; Wil85; SW95;
Lem00]. A first attempt to design an efficient algorithm for general m-
th power residue symbols (i.e., for all m) was done by Squirrel in his
undergraduate thesis [Squ97]. In that work, Squirrel derives an efficient
reduction from power residue symbols in general number fields to those in
cyclotomic fields based on an idea of Lenstra [Len95]. Squirrel also proposes
an algorithm for computing power residue symbols in cyclotomic fields, but it
relies on heavy precomputations and is therefore not polynomial for varying
m [Squ97, Ch. 5, §3]. On top of that, the algorithm also seems unfeasible
in terms of practical running time.

Later, an algorithm for m-th power residue symbols that seems practically
feasible and runs heuristically in polynomial time (for varying m) was given
by the author of this PhD thesis [Boe16; BP17]. In this chapter we prove that
a variant of this heuristic algorithm lies in the complexity class ZPP, assuming
the Extended Riemann Hypothesis for Hecke L-functions on cyclotomic fields.
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It should be noted that the aforementioned algorithms tailored to specific
small m ≤ 11 are by far more efficient than this more general algorithm, are
mostly deterministic and also do not require any variant of the Riemann
hypothesis.

Difference between the power residue symbol algorithm of this
chapter and the heuristic algorithm in [Boe16; BP17]

The key difference between the power residue symbol algorithm of this
chapter and that of [Boe16; BP17] is their purpose. The algorithm described
in this chapter is namely specifically constructed in such a way that the
proof of its polynomial time complexity is as simple as possible. The heuris-
tic algorithm in [Boe16; BP17], however, is much more directed toward
implementation and a fast practical running time (for an implementation,
see [Boe17]). This distinction in purpose lead to the following key differences
between the two algorithms.

The provable algorithm does not use the Hilbert reciprocity law. As opposed
to the heuristic algorithm, the provable algorithm of this chapter does not
use Hilbert reciprocity. In other words, the following reciprocity law involving
Hilbert symbols does not play any role in the provable algorithm of this
chapter. (

α

β

)
m

(
β

α

)−1

m
=

∏
p|m∞

(α, β)p,

Here, (α, β)p are the m-th Hilbert symbols in the completion Q(ζm)p (e.g.,
[Neu85, Ch. III, §5 and Ch. IV, §9]). Avoiding the Hilbert reciprocity law
has as an advantage that there is no need to compute Hilbert symbols
in the provable algorithm. In the heuristic algorithm, the computation of
such Hilbert symbols relied on a efficient and provable algorithm of Bouw
[Bou21].
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The provable algorithm uses the Artin reciprocity law. Instead, the provable
algorithm of this chapter uses a different reciprocity law, namely the Artin
reciprocity law (see Lemma 7.3), which states that for elements κ ∈ Km,1 in
a specific ray, the power residue symbol

(
α
κ

)
= 1 for all α ∈ K∗. This turned

out to be easier to use in a proof and has as an additional advantage that
no computation of Hilbert symbols is needed. In fact, one can even use this
provable algorithm to compute Hilbert symbols instead (see Section 7.6.1).

The provable algorithm does not use LLL-reduction. The heuristic algorithm
of [Boe16; BP17] uses LLL-reduction to minimize sizes of the input while this
is omitted in the provable algorithm for the sake of brevity and provability.

7.3. Preliminaries

In this chapter, K is a degree n = [K : Q] number field containing the m-th
cyclotomic number field, i.e., K ⊇ Q(ζm), where ζm is a primitive m-th root
of unity. The main subject of this chapter is the power residue symbol, a
map that partially captures m-th residuosity.

This power residue symbol takes as an input an ideal b in an order R of
K and an element α ∈ R, and outputs an m-th root of unity ζkm. The
symbol and its definition resembles that of the Jacobi symbol, for example
in the sense that it can be defined in terms of prime ideals first, and can
subsequently be multiplicatively extended to general ideals.

Definition 7.1 (Power residue symbol). Let p ∤ m be a prime ideal in an
order R of K ∋ ζm and let α ∈ R be an element coprime with m and p. We
define

(
α
p

)
∈ ⟨ζm⟩ = {ζkm | k ∈ N} to be the m-th root of unity that satisfies

(
α

p

)
≡ α

N (p)−1
m mod p.
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For general ideals b in R coprime with m we then use the prime ideal
factorization b = ∏

j p
ej

j to define the power residue symbol
(
α
b

)
.

(
α

b

)
:=
∏
j

(
α

pj

)ej

.

By the very definition of the power residue symbol ‘above’ prime ideals, they
can be computed efficiently and deterministically.

Lemma 7.2. Let p ⊆ Z[ζm] be a prime ideal not dividing m. Then the power
residue symbol

(
α
p

)
can be computed within poly

(
m, logN (p), log | N (α)|

)
time.

Proof. By the power residue symbol formula for prime ideals we have
(
α
p

)
≡

α(N (p)−1)/m modulo p. We compute the (modular) Hermite normal form
[SL96; HM91] [Coh93, §2.4.2] of the ideal p, which allows to have a unique
representative for each element in Z[ζm]/p. By modular exponentiation, can
compute α(N (p)−1)/m modulo p within time poly

(
m, logN (p), log | N (α)|

)
.

The following lemma shows that the power residue symbol is trivial for
certain values of the lower input. Specifically, considering a fixed upper input
for the power residue symbol, the map

(
α
·
)

: K → ⟨ζm⟩ has a kernel that
includes the ray Km,1 with m = mm · α. This particular fact forms one of
the very key ingredients of the efficient power residue symbol algorithm.

Lemma 7.3. For all α ∈ Z[ζm] coprime with m, and all κ ∈ Q(ζm)∗ with
ordp(κ) ≥ 0 for all p|αm, we have,(

α

1 + κ ·mm · α

)
= 1
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Proof. Denote K = Q(ζm) and L = Q(ζm, m
√
α) for α ∈ Q(ζm). The power

residue symbol
(
α
b

)
∈ ⟨ζm⟩ in Q(ζm) has the following relation with the

Artin symbol [Lem00, §4.1] [Koc97, Ch. 2, §2.1](
α

b

)
· m
√
α =

(
b

L/K

)
[ m
√
α].

Denote fL/K for the conductor of the extension L/K. For any modulus
m satisfying fL/K | m, the kernel of the Artin symbol

(
·

L/K

)
: ImK → G

contains the ray Km,1, the multiplicative subgroup of K∗ generated by
elements κ ∈ Z[ζm] that are 1 modulo m. This is a consequence of the Artin
reciprocity law [Chi08, Thm. 2.1].

It remains to show that m = mmα satisfies fL/K | m, i.e., that fL/K | mmα.
If we can prove that fact, the result follows, since 1 + k ·mm · α ∈ Km,1 for
κ satisfying ordp(κ) ≥ 0 for all p | αm.

In the following, we prove that fL/K | (mmα). Since α is required to be
coprime with m, and the degree of the extension satisfies [L : K] | m, any
p | (α) is tamely ramified in the extension L/K, because p ∤ m. Therefore,
we have, [CG05, Ch. 2, Prop. 1.6.3] [CS08, Eq. (3.10) and Eq. (3.11)]

For all p | (α) : ordp(fL/K) = 1.

From the same results, or from the fact that fL/K | ∆L/K | mmαm−1 [CF10,
Lm. 5, Ch. 3] [NS13, Ch. VII, Prop. 11.9] follows that fL/K | (mmα).

The following result, namely, multiplicativity in the bottom input of the
power residue symbol, can be found in [Neu85, Ch. 4, Eq. (9.2)] or [Koc97,
Thm. 2.13].

Lemma 7.4. Let K be a number field containing Q(ζm). Let b, c ∈ IK be
coprime with m. For all α ∈ K coprime with b, c and m, we have(

α

bc

)
=
(
α

b

)(
α

c

)
.
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The last important lemma of this preliminaries concerns the local density of
the prime ideals coprime to m. It turns out that for large enough r and not
too large modulus m, the density δPm [rn] does not differ so much from the
density δP [rn] of all prime ideals in a number field. This density is known to
be close to 1

ρK ·log(rn) , where ρK is the residue of the Dedekind zeta function
ζK(s) at the pole at s = 1.

This density is important because it is tightly related to the success proba-
bility of the power residue symbol algorithm of this chapter. This is because
the power residue symbol algorithm involves prime ideal sampling, as in
Chapter 6.

Lemma 7.5. Let Pm = {p ∈ ImK | p prime } and let ω(m) denote the number
of different prime ideal divisors of m. Then, for all rn ≥ max((12 log |∆K |+
8n+ 28)4, 3 · 1011, 16 · ω(m)2), we have

δPm [rn] ≥ 1
4n · ρK · log r .

Recall that n = [K : Q], the degree of the number field K.

Proof. By Lemma 2.13, considering x ∈ [(r/e)n, rn] and Definition 6.6, we
have

δPm [rn] = min
x∈[(r/e)n,rn]

πmK(x)
ρKx

≥ x/ log x
4ρKx

≥ 1
4nρK log(r/e) ≥

1
4nρK log r .

7.4. Reduction to Cyclotomic Fields

7.4.1. Introduction

In this section, we will show that the computation of the m-th power residue
symbol in any order R (of a number field) containing Z[ζm] reduces to the
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7. The Power Residue Symbol is in ZPP

computation of (polynomially) many power residue symbols in Z[ζm], the
ring of integers of the m-th cyclotomic field.

The strategy of this proof is described in a paper of Lenstra [Len95], in
which the special case m = 2 is elaborately worked out. For general m > 2,
a full description of this reduction is given by Squirrel in his undergraduate
thesis [Squ97]. In this section we will follow closely the reasoning of Squirrel
and Lenstra, omitting precise complexity claims; any of the steps in this
reduction runs in time polynomial in the input size.

In the following section, we give an overview of the proof of this reduction,
postponing the definitions and proofs to a later moment.

7.4.2. Proof Strategy

Introduction. In this proof summary, we will consider number fields K
containing all m-th roots of unity, i.e. K ⊇ Q(ζm). Instead of the maximal
order OK , which might be very hard to compute, we will mainly consider
general orders R ⊆ OK of K.

The main purpose of this proof overview is to show on a high level that
we can reduce the computation of the power residue symbol

(
α
b

)
m,K

for an
element α ∈ R and an ideal b ⊆ R to the computation of power residue
symbols in the cyclotomic field Q(ζm).

Signature identity. The power residue symbol
(
α
b

)
m,K

is equal to another
special quantity, (mα, R/b), which we will call the signature. This signature
captures certain behavior of the multiplication map mα : x 7→ α · x on the
finite Z[ζm]-module R/b. Because of this equality, we can shift our attention
to computing the signature (mα, R/b).

Invariant factor decomposition of R/b. A very important observation is
the fact that the signature (mα, R/b) only depends on the structure of R/b
as a Z[ζm]-module. Using an analogue of the invariant factor decomposition
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for finite modules over Dedekind domains (see [Coh99, Thm. 1.2.30]), we
can efficiently compute a decomposition of R/b of the following shape.

R/b = γ1Z[ζm]/d1 ⊕ · · · ⊕ γkZ[ζm]/dk, (7.107)

where γ ∈ R and dj are ideals of Z[ζm] that satisfy dj = ∏j
i=1 ci for ideals

ci of Z[ζm] that are neither the zero or the unit ideal. In other words,
dj+1/dj = cj+1 for j ∈ {1, . . . , k − 1} and d1 = c1. This computation
shows that we can shift our focus to modules of a form as described in
Equation (7.107).

The signature is compatible with short exact sequences. Let M ′,M,M ′′ be
Z[ζm]-modules with respective (Z[ζm]-module compatible) automorphisms
ϕ′, ϕ and ϕ′′, that fit into the following commuting diagram

0 M ′ M M ′′ 0

0 M ′ M M ′′ 0

ϕ′ ϕ ϕ′′

Then we have (ϕ,M) = (ϕ′,M ′) · (ϕ′′,M ′′), i.e., the signature of the ‘middle’
module can be computed with the signatures of the ‘outer’ modules.

The determinant formula. For Z[ζm]-modules isomorphic to (Z[ζm]/c)t for
some t ∈ Z>0 and integral ideal c of Z[ζm], we can compute the signature
by means of the determinant formula. Any automorphism ϕ of (Z[ζm]/c)t
can be described by a non-degenerate matrix with entries in Z[ζm]/c, which
makes det(ϕ) ∈ Z[ζm]/c a well-defined quantity. The determinant formula
then reads as follows.

(ϕ, (Z[ζm]/c)t) =
(det(ϕ)

c

)
m,Q(ζm)

. (7.108)

Note that this reduces the computation of this specific signature to a power
residue symbol in the cyclotomic field Q(ζm).
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Applying induction on the components of the module. Denoting M = R/b,
we have the following exact sequence

0→M/(c1M)→M → c1M → 0,

where c1 is the first factor in the invariant factor decomposition (Equa-
tion (7.107)). Because of the compatibility of the signature with short
exact sequences, it is enough to compute the signatures (ϕα,M/(c1M)) and
(ϕα, c1M).

The first module, M/(c1M), can be shown to be isomorphic to (Z[ζm]/c1)k,
and therefore the determinant formula applies (see Equation (7.108)).

The last module, c1M , can be shown to have less ‘components’ than M

itself; k − 1 instead of k.

c1M =
k−1⊕
j=1

γjZ[ζm]/d̃j ,

where d̃j = dj/c1, and where dj are obtained from the invariant factor
decomposition of M = R/b.

Conclusion. By induction, we can therefore conclude that the compu-
tation of (ϕα, R/b) reduces to k power residue symbols

(
dj

cj

)
m,Q(ζm)

for
j ∈ {1, . . . , k} in the cyclotomic field Q(ζm). Here, cj are the invariant
factors of the module R/b as a Z[ζm]-module and dj ∈ Z[ζm]/cj are deter-
minants of associated automorphisms.

7.4.3. Signature Identity

Definition 7.6 (Admissible modules). We call a Z[ζm]-module M admissible
if |M | is finite and gcd(|M |,m) = 1.

Letting the group ⟨ζm⟩ = {ζjm | j ∈ Z/mZ} act on an admissible module M ,
we can directly deduce that this action must be free on M\0. Namely, suppose
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that there exists an x ∈ M with ζjmx = x. Then we have (ζjm − 1)x = 0,
which implies mx = 0 (as (ζjm − 1) | m). Since |M |x = 0, mx = 0 and
gcd(|M |,m) = 1, we have 1 · x = 0.

This means that M\0 can be written as a disjoint union of orbits ⟨ζm⟩ · x
(for some x ∈M), where the orbits have precisely m elements. This directly
implies |M | = tm+ 1, where t is the number of orbits in M\0. Summarizing,
any admissible module M satisfies |M | ≡ 1 modulo m.

Let M be an admissible Z[ζm]-module and let ϕ : M → M be a bijective
function satisfying ϕ(ζm ·x) = ζm ·ϕ(x) for all x ∈M . Then ϕ acts faithfully
on the ⟨ζm⟩-orbits of M , as ϕ(⟨ζm⟩ · x) = ⟨ζm⟩ · ϕ(x). In other words, ϕ
induces a permutation on the quotient set M/⟨ζm⟩, fixing 0 ∈M .

Example 7.7. Put K = Q(ζ6,
3√2), a degree 6 extension of Q. The subring

R = Z[ζ6,
3√2] is an order in K which has the following R-ideal p5 =

(5, 3 − 3√2). Then the Z[ζ6]-module R/p5 has 25 elements; one of them is
zero, and the others fall into four ⟨ζ6⟩-orbits of length six, see Figure 7.1.

Figure 7.1.: The multiplicative action of ⟨ζ⟩ on the 25 elements of R/p5 as in Example 7.7,
where ζ = ζ6, a 6-th primitive root of unity. It consist of one zero-orbit of
length one, and four orbits of length 6.

Let S ⊆M be a representative set for M/⟨ζm⟩, i.e., M = ⋃
s∈S⟨ζm⟩s (where

the union is disjoint). Then, the action of ϕ on M/⟨ζm⟩ induces a bijection
s 7→ sϕ on S. Here sϕ ∈ S is the unique representative in S satisfying
ϕ(⟨ζm⟩s) = ⟨ζm⟩sϕ. Note that this means that ϕ(s) ∈ ⟨ζm⟩sϕ, making the
fraction ϕ(s)

sϕ ∈ ⟨ζm⟩ well-defined for all s ∈ S\0. We then arrive at the
following definition.

Definition 7.8 (Signature). Let M be an admissible Z[ζm]-module, let ϕ :
M →M be Z[ζm]-module homomorphism and let S ⊆M be a representative
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set for M/⟨ζm⟩. Then we define the signature (ϕ,M) ∈ ⟨ζm⟩ as follows.

(ϕ,M) =
∏
s∈S\0

ϕ(s)
sϕ

(7.109)

Figure 7.2.: The signature of a map ϕ forgets about the permutation of the ⟨ζm⟩-orbits.
Instead, it captures the ‘compound deviation’ of the images of representatives
from the representative of the orbits that image lives in. For example, the
ϕ-image of the green dot deviates +1 from the yellow representative in its
orbit.

Remark 7.9. The definition above can be generalized to any bijective map
M →M that commutes with ζm [Squ97], but for our purposes it is enough
to consider Z[ζm]-module homomorphisms.

The very nature of the definition shows that (ϕ,M) does not depend on
the choice of the representative set S. Namely, changing a single s ∈ S

into s′ = ζjm · s causes a ζjm to appear once in the numerator of a factor in
Equation (7.109) and once in the denominator of a factor in Equation (7.109);
therefore it does not change the overall value.

Lemma 7.10. Let R be an order in a number field K with Z[ζm] ⊆ R. Let p
be a prime ideal in R, coprime with m. Let α ∈ R such that ᾱ = α mod p ∈
(R/p)∗ and denote ϕα : R/p→ R/p, x 7→ ᾱ · x. Then(

α

p

)
m

= (ϕα, R/p)
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Proof. Taking a representative set S for M = R/p (modulo ⟨ζm mod p⟩) we
write out the definition of (ϕα, R/p) (see Definition 7.8). In the following
chain of equalities we make use of the fact that M = R/p (next to a Z[ζm]-
module) is also a field, so that division and multiplication of elements there
make sense.

(ϕα, R/p) =
∏
s∈S\0

ϕα(s)
sϕα

=
∏
s∈S\0

ᾱ · s
sϕα

= ᾱ|S\0|
∏
s∈S\0 s∏
s∈S\0 s

ϕα
= ᾱ|S\0|.

The last inequality follows from the fact that s 7→ sϕα is a bijection on S\0. As
|S\0| = |M |−1

m = N (p)−1
m , we conclude that1(ϕα, R/p) = α(N (p)−1)/m mod p.

This coincides with the definition of the power residue symbol
(
α
p

)
m

.

Example 7.11. Put, again, K = Q(ζ6,
3√2) with order R = Z[ζ6,

3√2] and
the R-ideal p5 = (5, 3− 3√2), as in Example 7.7. Putting α = ζ6 + 1, we want
to verify that

(
ζ6+1
p5

)
6

= (ϕζ6+1, R/p5), as in Lemma 7.10. The computation

of
(
ζ6+1
p5

)
6

happens by observing that N (p5) = 25 and computing (using
Lemma 7.2)

(ζ6 + 1)
N (p5)−1

6 = (ζ6 + 1)4 = ζ4
6 + 4 · ζ3

6 + 6 · ζ2
6 + 4 · ζ6 + 1

≡ 9 · ζ6 + 9 ≡ −(ζ6 + 1) = ζ5
6 mod p5.

Therefore,
(
α
p5

)
6

= ζ5
6 . The computation of the signature gives the same

result, as can be seen in Figure 7.3. For the computation of the images in
that figure; ϕ1+ζ(ζ + 2) = (1 + ζ)(2 + ζ) = 4 · ζ + 1 ≡ −ζ + 1 = −ζ2 (mod
p5) and ϕζ+1(ζ − 2) = (1 + ζ)(ζ − 2) = −3 ≡ 2 (mod p5).

For later purposes, we will need the following lemma, which shows that the
signature map (·,M) : AutZ[ζm](M)→ ⟨ζm⟩ is a group homomorphism.

Lemma 7.12. For two automorphisms ϕ, ψ of an admissible module M , we
have

(ϕ ◦ ψ,M) = (ϕ,M) · (ψ,M)
1Note that this element ᾱ(N (p)−1)/m coincides with the action of multiplication x 7→

ζj
mx on R/p for some j ∈ Z/mZ.
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Figure 7.3.: The computation of the signature (ϕ1+ζ , R/p5) of the map ϕ1+ζ(x), given by
the rule ϕ1+ζ(x) = (1 + ζ) · x, as in Example 7.11. By taking the sum of the
images’ displacements from the chosen representatives (the colored points),
we obtain −1 + 0 + 2− 2 = −1. Therefore, we conclude that (ϕ1+ζ , R/p5) =
ζ−1

6 = ζ5
6 .

Proof. Choose a representative system S of M/⟨ζm⟩. Then

(ϕψ,M) =
∏
s∈S

ϕ(ψ(s))
sϕψ

=
∏
s∈S

ϕ(ψ(s))
(sψ)ϕ =

∏
s∈S

ϕ(ψ(s))
ϕ(sψ)

ϕ(sψ)
(sψ)ϕ

= ϕ

(∏
s∈S

ψ(s)
sψ

)∏
s∈S

ϕ(s)
sϕ

= ϕ((ψ,M)) · (ϕ,M) = (ψ,M) · (ϕ,M).

7.4.4. Invariant Factor Decomposition of R/b

Computing the invariant factor decomposition of R/b as a module over
Z[ζm] happens by means of the Smith normal form in Dedekind domains
(see [Coh99, §1.7]).

This particular Smith normal form algorithm as described in Cohen’s book
[Coh99, §1.7], needs modules to be represented in terms of pseudobases.
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Usually, (in a computer algebra system) an R-ideal b is represented by
means of a basis over Z instead. We shortly describe here how to obtain
such a pseudobasis from a Z-basis. Let b = ∑t

j=1 Zβj . Then it is clear
that the same set (βj)j∈{1,...,t} is also a generating set over Z[ζm], that
is: b = ∑t

j=1 Z[ζm]βj . By using the Hermite normal form over Dedekind
domains [Coh99, §1.4] that removes linear dependencies, we arrive at a
pseudobasis of b over Z[ζm]. The exact same reasoning can be applied to
obtain a pseudobasis the ring R as a module over Z[ζm].

Remark 7.13. In the undergraduate thesis of Squirrel [Squ97], this step is
partially done by computing Z[ζm]-annihilators of the module R/b [Squ97,
Ch. 4, §3].

By [Coh99, §1.7], using a modular Smith normal form, we can deduce that
we can find pseudobases for R and b of the following shape. R = ⊕t

j=1 sjωj ,
and b = ⊕t

j=1 djsjωj where sj are ideals of Z[ζm], dj are integral ideals
of Z[ζm] satisfying dj−1 ⊊ dj for j ≥ 2 and ωj ∈ R. This means that
R/b

∼−→
⊕t

j=1 Z[ζm]/dj .

7.4.5. The Signature is Compatible with Short Exact Sequences

Proposition 7.14. Let M ′,M,M ′′ be admissible Z[ζm]-modules and let
ϕ′, ϕ, ϕ′′ be Z[ζm]-module automorphisms of M ′,M,M ′′ such that the follow-
ing diagram commutes.

0 M ′ M M ′′ 0

0 M ′ M M ′′ 0

ι

ϕ′

π

ϕ ϕ′′

ι π

Then
(ϕ′,M ′)(ϕ′′,M ′′) = (ϕ,M).
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Proof. Let S′ be a representative set of M ′/⟨ζm⟩. Extend ι(S′) with a
(disjoint) set S′′ ⊆ M such that S = ι(S′) ∪ S′′ is a representative set of
M/⟨ζm⟩. Then

(ϕ,M) =
∏
s∈S

ϕ(s)
sϕ

=
∏
s′∈S′

ϕ(ι(s′))
ι(s′)ϕ ·

∏
s′′∈S′′

ϕ(s′′)
(s′′)ϕ = (ϕ′,M ′)(ϕ′′,M ′′), (7.110)

where the last equality is proven in two parts.

(i) As ϕι = ιϕ′, we have ι(s′)ϕ = ι((s′)ϕ′). Therefore,
∏
s′∈S′

ϕ(ι(s′))
ι(s′)ϕ = ι

( ∏
s′∈S′

ϕ′(s′)
(s′)ϕ′

)
= ι((ϕ′,M ′)) = (ϕ′,M ′).

(ii) Since S′′ is distinct from ι(S′), none of the s′′ ∈ S′′ send to zero under π.
Therefore, we can apply π to the rightmost factor in Equation (7.110).

π

 ∏
s′′∈S′′

ϕ(s′′)
(s′′)ϕ

 =
∏

s′′∈S′′

πϕ(s′′)
π((s′′)ϕ) =

∏
s′′∈S′′

ϕ(π(s′′))
π(s′′)ϕ′′ (7.111)

As S′′ covers all ⟨ζm⟩-orbits of M that do not send to zero under π,
the map S′′ → π(S′′), s′′ 7→ π(s′′) is a |M ′|-to-one map, i.e., |π(S′′)| =
|S′′|/|M ′|. Also, by surjectivity, π(S′′) is a representative set for the
set (M ′′\0)/⟨ζm⟩. Therefore, Equation (7.111) equals ∏

t∈π(S′′)

ϕ′′(t)
tϕ′′

|M ′|

=
(
(ϕ′′,M ′′)

)|M ′| = (ϕ′′,M ′′),

where the last equality holds because |M ′| ≡ 1 modulo m and (ϕ′′,M ′′)
∈ ⟨ζm⟩.

Lemma 7.15. Let R be an order in a number field K with Z[ζm] ⊆ R. Let b
be an ideal in R, coprime with m. Let α ∈ R such that ᾱ = α mod b ∈ (R/b)∗
and denote ϕα : R/b→ R/b, x 7→ ᾱ · x. Then(

α

b

)
m

= (ϕα, R/b)
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Proof. We proceed by induction on the number of different prime ideal
factors of b. The base case consists of b having only one prime divisor, i.e.,
b = pk being a prime power. If k = 1, we can apply Lemma 7.10. If k > 1,
we can construct the following exact sequence

0→ R/p→ R/pk → R/pk−1 → 0

where the injection map is defined (non-canonically) by multiplying by an
element γ ∈ pk−1\pk. Then, together with the multiplication-by-α map
(which we conveniently write ϕα for all rings involved), above exact sequence
satisfies the conditions of Proposition 7.14. Therefore, by induction,

(ϕα, R/pk) = (ϕα, R/pk−1) · (ϕα, R/p) =
(

α

pk−1

)
m

(
α

p

)
m

=
(
α

pk

)
m

.

The induction step consists of b being not a prime power. In that case, we
write b = pkc with p prime, k ≥ 1 and p ∤ a, and construct the following
exact sequence

0→ R/pk → R/b→ R/c→ 0,

where the injection R/pk → c/b is defined (non-canonically) by multiplying
by an element γ ∈ c that satisfies γ ≡ 1 modulo pk. Again denoting ϕα for
multiplication by α in all of the rings involved, this exact sequence satisfies
the conditions of Proposition 7.14. Therefore, by induction,

(ϕα, R/b) = (ϕα, R/pk) · (ϕα, R/c) =
(
α

pk

)
m

·
(
α

c

)
m

=
(
α

b

)
m
.

7.4.6. The Determinant Formula

Let M = (Z[ζm]/c)t for some ideal c of Z[ζm] and some t ∈ N>0. Then any
automorphism ϕ : M →M can be described as a non-degenerate t×t matrix
with coefficients in Z[ζm]/c, which we call Mϕ.
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Lemma 7.16. We have

(ϕ, (Z[ζm]/c)t) =
(det(Mϕ)

c

)
m,Q(ζm)

Proof. We prove the statement first for c = p a prime ideal. In that case the
matrix Mϕ has coefficients in the field Z[ζm]/p. Matrices over fields can be
decomposed into Mϕ = ULU ′, where U,U ′ are upper triangular and L is
lower triangular, by means of Gaussian elimination. We denote ϕU , ϕL, ϕ′U
for their associated maps on (Z[ζm]/p)t. We have the exact sequence

0→ Z[ζm]/p→ (Z[ζm]/p)t → (Z[ζm]/p)t−1 → 0

where the injection map is just x 7→ (x, 0, . . . , 0) and the projection map
projects on the last t− 1 coordinates. By the (upper/lower) triangular shape
of the matrix U of ϕU and by induction, one can deduce that

(ϕU ,M) =
(det(U)

p

)
,

and the same for U ′ and L. Therefore,

(ϕ,M) = (ϕUϕLϕU ′ ,M) = (ϕU ,M)(ϕL,M)(ϕU ′ ,M)

=
(det(U)

p

)(det(L)
p

)(det(U ′)
p

)
=
(det(ULU ′)

p

)
=
(
Mϕ

p

)
.

This proves the statement for c being a prime ideal. For the general case,
write c = pa, and construct the exact sequence

0→ (Z[ζm]/a)t → (Z[ζm]/c)t → (Z[ζm]/p)t → 0 (7.112)

where the injection map is defined by scalar multiplication by ϖ ∈ p\p2 and
the projection map just takes the entries modulo p.

Let ϕ′ : (Z[ζm]/a)t → (Z[ζm]/a)t respectively ϕ′′ : (Z[ζm]/p)t → (Z[ζm]/p)t
be the map defined by reducing the entries of the matrix Mϕ ∈ (Z[ζm]/c)t×t
modulo a respectively p. Then Equation (7.112) satisfies the requirements
of Proposition 7.14, therefore

(ϕ, (Z[ζm]/c)t) = (ϕ′, (Z[ζm]/a)t) · (ϕ′′, (Z[ζm]/p)t)
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=
(det(Mϕ)

a

)(det(Mϕ)
p

)
=
(det(Mϕ)

c

)
.

Here, we used the induction hypothesis, the fact that

det(Mϕ′) = det(Mϕ mod a) = det(Mϕ) mod a,

and the similar statement for p.

7.4.7. Applying Induction on the Components of the Module

Lemma 7.17. Let R ⊆ K be a number ring containing a primitive m-th
root of unity ζm and let b ⊆ R be an ideal coprime with m. Let

R/b = γ1Z[ζm]/d1 ⊕ · · · ⊕ γkZ[ζm]/dk, (7.113)

be the invariant factor decomposition of R/b with dj = ∏
ℓ≤j cℓ. Then we

have, for all α ∈ R coprime with both b and m,

(
α

b

)
m,K

=
k∏
j=1

(
dj
cj

)
m,Q(ζm)

,

where dj ∈ Z[ζm]/cj are specific determinants of k−j+1×k−j+1 matrices
with coefficients in Z[ζm]/cj.

Proof. Denoting M = R/b, we have the following exact sequence

0→M/(c1M)→M → c1M → 0,

where c1 is the first factor in the invariant factor decomposition (Equa-
tion (7.107)). Because of the compatibility of the signature with short
exact sequences, it is enough to compute the signatures (mα,M/(c1M)) and
(mα, c1M).

The first module, M/(c1M), can be shown to be isomorphic to (Z[ζm]/c1)k,
and therefore the determinant formula applies (see Equation (7.108)).
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The last module, c1M , can be shown to have less ‘components’ than M

itself; k − 1 instead of k.

c1M =
k−1⊕
j=1

γjZ[ζm]/d̃j ,

where d̃j = dj/c1, and where dj are obtained from the invariant factor
decomposition of M = R/b.

7.4.8. Conclusion

By induction, we can therefore conclude that the computation of

(
α

b

)
m,R

= (ϕα, R/b)

reduces to the computation of k power residue symbols
(
dj

cj

)
m,Q(ζm)

(for
j ∈ {1, . . . , k}) in the cyclotomic field Q(ζm). Here, cj are the invariant
factors of the module R/b as a Z[ζm]-module as in Equation (7.113) and
dj ∈ Z[ζm]/cj are determinants of associated automorphisms. We thus proved
the following statement.

Theorem 7.18 (Lenstra, Squirrel). Let R ⊆ K be a number ring of a
number field containing the m-th root of unity ζm. Let b ⊆ R be an ideal
coprime with m and let α ∈ R be an element of coprime with b and m.
Then the computation of the power residue symbol

(
α
b

)
m,R

reduces to at most
log(N (b)) computations of the power residue symbols

(
dj

cj

)
in Q(ζm), where

the dj and cj are bounded in size by the size of b and α.
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7.5. Computing the Power Residue Symbol in
Cyclotomic Fields

7.5.1. Main Idea

Before explaining an algorithm in full detail, it is often insightful to give a
simplified version first. The simplified version of the algorithm that computes
power residue symbols

(
α
b

)
with an element α ∈ Z[ζm] and an integral ideal b

of Z[ζm] essentially proceeds by two steps. An essential part of the algorithm
is the idea that prime ideals ‘occur quite often’ in cyclotomic fields. This is
a consequence of the density of primes of norm N being around 1

ρK logN and
the fact that the residue ρK of the Dedekind zeta function of cyclotomic
fields at s = 1 is polynomially bounded (see Appendix A.2).

Step 1: Reducing the symbol
(
α
b

)
to a ‘principal’ symbol

(
α
β

)
.

This happens by repeatedly sampling random β ∈ b until the ideal (β)/b
is equal to some prime ideal p of Z[ζm]. In that case, write (β) = pb

and use the multiplicative property of the power residue symbol to obtain(
α
β

)
=
(
α
b

)
·
(
α
p

)
. By the fact that there exists an efficiently computable

formula (see Lemma 7.2) for power residue symbols with a prime ideal as
the bottom input, the symbol

(
α
p

)
is efficiently computable.

Therefore, provided that such a suitable β ∈ b can be efficiently found,
the above procedure reduces the computation of the symbol

(
α
b

)
to the

computation of a power residue symbol
(
α
β

)
where the bottom input β is

an element in Z[ζm] instead of a generic ideal.

Step 2: Evaluating the symbol
(
α
β

)
by shifting β.

This happens by sampling random κ ∈ Z[ζm] until the shifted element
β + κmmα = ϖ is a prime element. As the power residue symbol

(
α
β

)
with
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7. The Power Residue Symbol is in ZPP

α, β ∈ Z[ζm] satisfies the ‘shifting property’, (see Lemma 7.3) we have(
α

β

)
=
(

α

β + κmmα

)
=
(
α

ϖ

)
.

Because (ϖ) is a prime ideal, there exists an efficiently computable formula
for the symbol

(
α
ϖ

)
(see Lemma 7.2). Therefore,

(
α
β

)
can also be computed

efficiently, provided that one indeed can find a κ ∈ Z[ζm] such that β+κmmα

is a prime element in Z[ζm].

Discussion

It is clear that the first step only works whenever sampling a random β ∈ b

results sufficiently often in an ideal (β)/b that is prime. In other words, the
probability that (β)/b is prime should be high enough. Likewise, the second
step only works whenever sampling random κ ∈ Z[ζm] results sufficiently
often in an element β + κmmα that is prime.

It turns out to be notoriously hard to estimate these probabilities whenever
b and β are fixed. However, if both b and β are appropriately random instead,
one can actually lower bound these probabilities by means of Landau’s prime
ideal theorem. This theorem can be informally expressed by saying that there
are many prime ideals among the ideals in Z[ζm]. In other words, if one
takes a ‘random ideal’ in Z[ζm], there is a reasonable probability that it is a
prime ideal.

So, in order to be fully able to estimate the success probability of the
algorithm, we will need to appropriately randomize the lower input of the
power residue symbol. With this adequate randomization, which will be done
by means of a random walk as in Chapter 4 (thus relying on the Extended
Riemann Hypothesis), one obtains the provable, full algorithm.

Remark 7.19. In an actual implementation, one should not use this chap-
ter’s provable algorithm. Instead, one should use the heuristic variant of it
described in [BP17; Boe16]. A specific blend between the provable and the
heuristic variant that uses Artin reciprocity (see Lemma 7.3) might also be
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7.5. Computing the Power Residue Symbol in Cyclotomic Fields

Algorithm 8: PowerResidueSymbol(α, b,m), the computation of
the symbol

(
α
b

)
Require:

• An integer m > 1 defining the cyclotomic field Q(ζm) of degree
n.

• An integral element α ∈ Z[ζm] coprime with m.
• An integral ideal b ⊆ Z[ζm] coprime with α and m,

Ensure:
(
α
b

)
∈ ⟨ζm⟩, or failure.

1: Put m = mm · (α) as the modulus.
2: Apply the sampling Algorithm 7 with b, m, τ = 1 and

1/ε = max(2n, n5+1(n+ log | N (α)|)) to sample an element
β ∈ b̃ ∩ (1 + m), where b̃ = b

∏
j pj comes from the sampling

algorithm.
3: return

(
α
p

)−1
·
∏
j

(
α
pj

)−1
if β/b̃ = p is prime, using the formula

for the power residue symbol above prime ideals (Lemma 7.2).
4: return failure otherwise.

interesting to implement, because it avoids the need for the computation of
Hilbert symbols. Such an implementation (that relies on Artin reciprocity
and not Hilbert reciprocity) might therefore even be used to compute Hilbert
symbol due to a ‘global-to-local’ principle (see also Section 7.6.1).

7.5.2. The Full Algorithm

Lemma 7.20 (ERH). Assuming the Riemann Hypothesis for Hecke L-
functions on cyclotomic fields, Algorithm 8 is correct and runs in time
polynomial in m, log | N (α)| and logN (b). Furthermore, Algorithm 8 has
success probability at least

Ω
( 1
n5 · (n2 logn+ log | N (α)|)

)
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7. The Power Residue Symbol is in ZPP

Proof. We start with proving the correctness of Algorithm 8, i.e., that the
algorithm computes the symbol

(
α
b

)
if it does not fail. This is proven by

the sequence of equalities in Equation (7.114), which uses the multiplicative
property of the power residue symbol (see Lemma 7.4) and the fact that
the power residue symbol is trivial on the ray Km,1 with m = mm(α) (see
Lemma 7.3). So, since β ∈ Km,1 (i.e.,

(
α
β

)
= 1) and (β) = pb̃ = pb

∏
j pj ,

one obtains

1 =
(
α

β

)
=
(
α

p

)
·
(
α

b̃

)
=
(
α

p

)
·
(
α

b

)
·
∏
j

(
α

pj

)
. (7.114)

The correctness of the algorithm follows by rearranging terms to get an
expression for

(
α
b

)
.

For the success probability, we need to estimate the probability that (β)/b̃ is a
prime ideal in step 3. By the correspondence theorem between sampling prob-
ability and ideal density (see Theorem 6.21) we know that the probability of
(β)/b̃ being prime equals at least δSm [rn]−ε, where Sm = {p ∈ ImK | p prime }.
By Lemma 7.5, the fact that rn ≥ N (m) ≥ 16 · ω(m)2, Writing out the
instantiation for r in Algorithm 7, using |∆K |3/(2n) ≤ n3/2 for cyclotomic
fields K, we have

r = 4 · 2n · n3/2 · |∆K |
3

2n · N (m)1/n ≤ 4 · 2n · n3 · N (m)1/n

≤ 2n+2 · n3 · N (m) · N (α)1/n,

I.e., log(rn) ≤ n(n+2) log(2)+3n log(n)+n2 logn+log | N (α)| = O(n2 logn+
log | N (α)|). Then, we have that the success probability is lower bounded
(see Theorem 6.21) by

δSm [rn]− ε ≥ 1
3 · ρK · n · log r − ε ≥

1
ρK · n · (n2 logn+ log | N (α)|) − ε

We show in Appendix A.2 that ρK = O(n4) (the hidden constant is e15 ≈
3.3 · 106). By the instantiation 1/ε = max(2n, n5+1(n2 logn+ log | N (α)|))
we then have,

δSm [rn]− ε = Ω
( 1
n5 · (n2 logn+ log | N (α)|)

)
− ε

= Ω
( 1
n5 · (n2 logn+ log | N (α)|)

)
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7.6. Discussion

As Algorithm 7 is polynomial in its input size and in log(1/ε), it is enough
to show that logN (p), logN (pj) and log(1/ε) are polynomially bounded
in m, log | N (α)| and logN (b), in order to prove that Algorithm 8 runs in
polynomial time.

Note that m = mm(α), therefore log(N (m)) = poly(n, log | N (α)|) is poly-
nomially bounded. The logarithm of the inverse error log(1/ε) is easily
shown to be polynomially bounded as well. Also N, logB and log r from
Algorithm 7 with the instantiation of ε are polynomially bounded by
m, log |∆K | = O(m), log(1/ε) and logN (d)). So logN (pj) ≤ logB are poly-
nomially bounded.

The largest prime, p, satisfies logN (p) ≤ log(| N (β)|/N (b)) ≤ N logB +
n log r, by Algorithm 7. Therefore, all relevant quantities are polynomially
bounded, thus the entire algorithm runs within polynomial time.

Theorem 7.21. Let K ⊇ Q(ζm) be a number field and let R ⊆ K be an
order in that number field. Assume the Extended Riemann Hypothesis for
Hecke-L functions of the cyclotomic number field Q(ζm).

Then, there exists an algorithm that computes the power residue symbol
(
α
b

)
for all elements α ∈ R and ideals b ⊆ R, within time polynomial in log |∆K |,
[K : Q], size(α) and size(b).

Proof. Follows immediately from Lemma 7.20 and the reduction from Lenstra
and Squirrel (Theorem 7.18).

7.6. Discussion

7.6.1. Computing Hilbert Symbols Using Power Residue Symbols

Because the algorithm in this chapter does not use the computation of
Hilbert symbols (as opposed to the heuristic algorithm in [BP17; Boe16]),
one can reverse the roles and use the computation of power residue symbols
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7. The Power Residue Symbol is in ZPP

to derive information about the associated Hilbert symbols in a number field
K containing Q(ζm) in the following way [Neu85, Ch. IV, §9].

∏
p|m∞

(α, β)p =
(
α

β

)
m

(
β

α

)−1

m
.

To compute (α, β)q for a fixed chosen q | m, one picks, using the Chinese
remainder theorem, an element γ ∈ OK that satisfies γ ≡ 1 modulo pd

2 for
p | m and p ̸= q, and γ ≡ β modulo qd

2 , where d = [K : Q] is the degree of
the number field K. In that case, (α, γ)p = 1 for p ̸= q and (α, γ)q = (α, β)q,
and therefore

(α, β)q = (α, γ)q =
∏

p|m∞
(α, γ)p =

(
α

γ

)
m

(
γ

α

)−1

m
.

In above reasoning, we use the following lemma.

Lemma 7.22. Let Kp be the completion of a number field K ⊇ Q(ζm)
of degree d = [K : Q] with respect to the finite prime p | m, and let
(·, ·)p : K∗p ×K∗p → ⟨ζm⟩ denote the Hilbert symbol on this completion. Then

(α, 1 + πd
2)p = 1 for all π ∈ p.

Proof. As (α, ·)p : Kp → ⟨ζm⟩ equals the Artin symbol (or norm residue
symbol) of the extension Kp( m

√
α) : Kp [Neu85, Ch. 3, Prop. 5.1], it suffices

to show that 1 + πdm ∈ NKp( m√α)/Kp
(Kp( m

√
α)) for all π ∈ p [Neu85, Ch. 3,

Prop. 5.2iii]. In other words, we need to show that the conductor fKp( m√α)/Kp

of this local Kummer extension divides pd
2 . By using local computations

and Hensel’s lemma [CS08, Eq. (3.11)], we know that

ordp(fKp( m√α)/Kp
) ≤ d(1 + log(d/m)) + 1 ≤ d2.

This leads to the following corollary.
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7.6. Discussion

Corollary 7.23. Assuming the Extended Riemann Hypothesis for Hecke-L
functions on cyclotomic fields, Hilbert symbols can be computed within time
polynomial in the input size.

This corollary is quite weak compared to the much stronger results of Bouw
[Bou21]; his algorithm is unconditional (i.e., does not require any variant
of the Riemann Hypothesis), deterministic, and his algorithm’s studied
complexity is way more explicit. Though no real-life comparison has been
made yet, I suspect Bouw’s algorithm to run significantly faster than the
method described above.

7.6.2. Computing Artin Symbols in the Same Fashion

A very similar algorithm as Algorithm 8 could in principle be used to compute
Artin symbols

(
·

L/K

)
for abelian extensions L/K. The main caveat is that

the residue ρK of the Dedekind zeta function ζK(s) of K at s = 1 might be
too large, i.e., not polynomially bounded. Such a large residue would make
such an algorithm not feasible, as the success probability depends inversely
on this residue ρK .

For the sake of completeness, we do spell out a proposal for an algorithm
computing Artin symbols in Algorithm 9. We would like to stress that
no guarantee on the running time is given, except maybe whenever the
residue ρK is polynomially bounded. In that case, the proof resembles that
of Lemma 7.20.

Remark 7.24. To compute the Frobenius element
(

p
L/K

)
∈ G = Gal(L/K)

for a prime p as in Line 3 of Algorithm 9, one goes through the following
lines.

• Compute P ⊆ OL, any prime ideal above p ⊆ OK .
• Compute a primitive element α ∈ L, i.e., an α ∈ L such that L = K(α),

by means of linear algebra.
• Compute αq mod P, where q = |OK/p|.
• Output a g ∈ G = Gal(L/K) for which holds αq ≡ g(α) mod P.
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7. The Power Residue Symbol is in ZPP

Algorithm 9: ArtinSymbol(b, L,K), the computation of the Artin
symbol

(
b

L/K

)
∈ Gal(L/K)

Require:

• A number field extension L/K, where both L and K are defined
by a defining polynomial over Q.

• An integral ideal b ⊆ OK coprime with ∆L.
• For all g ∈ G = Gal(L/K) and α ∈ L, an efficient algorithm

that computes g(α) ∈ L.

Ensure:
(
α
b

)
∈ ⟨ζm⟩, or failure.

1: Put m = ∆L/K the relative discriminant of the extension L/K as the
modulus.

2: Apply the sampling Algorithm 7 with b, m, τ = 1 and
1/ε = max(2n, ρK · n · (n2 logn+ n logN (m))) to sample an element
β ∈ b̃∩ (1 +m), where b̃ = b

∏
j pj comes from the sampling algorithm.

3: return
(

p
L/K

)−1
·
∏
j

(
pj

L/K

)−1
if β/b̃ = p is prime, using the

formula for the Artin symbol for prime ideals (‘Frobenius element’, see
[Neu85, Ch. IV, §8]).

4: return failure otherwise.
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7.6. Discussion

Remark 7.25. The approach of Algorithm 9 is not expected to work for
number fields with large Dedekind residue ρK . Though, we might enlarge
the set of ‘good’ ideals S by also including ‘near primes’, which are ideals
that are a product of a large prime ideal and several smaller prime ideals; in
other words, a large prime ideal times a smooth ideal.

This might increase the local density of S significantly in some cases, maybe
even to the point that the Algorithm 9 succeeds within polynomial time even
though ρK is not small.

An open question arising here is: What exactly does a large residue ρK mean?
If it just implies more frequent small primes or more (higher) prime powers,
it does not affect the Artin symbol algorithm. If it, on the other hand, implies
a scarcity of easy-to-factor ideals, it does affect the Artin symbol algorithm.
Are there means to distinguish these two cases?
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Appendix

A.1. Number-theoretic Computations

Lemma A.1. The volume of the simplex Sα = {x ∈ LogKR | xσ ≤
α ,
∑
σ xσ = 0} for some α > 0 is given by

Vol(Sα) = (nα)r ·
√
n√

2nC · r!
,

where r = nR + nC − 1.

Proof. Define S′α = {x ∈ Rr+1 |
∑
ν xν = 0, xν ≤ α for real places ν, xν ≤

2α for complex ν}. The map

A : Rr+1 → LogKR, eν 7→
{

eσν when ν is real
1
2(eσν + eσν ) when ν is complex

sends S′α to Sα bijectively. By applying on S′α ⊆ Rr+1 the translation
yσ = α−xσ or yσ = 2α−xσ depending on whether σ is real or complex, one
can see that it is a regular r-simplex with edge length

√
2 · nα. Therefore,

the volume of S′α equals (nα)r
√
r+1

r! [Rab89]. In order to compute the volume
of Sα, we need to estimate how the linear map A scales the subspace {x ∈
Rr+1 |

∑
ν xν = 0}. Therefore, we choose the basis B = (e1 − er+1, . . . , er −

er+1), and compute the scaling factor by means of taking the square root

279



Appendix A. Appendix

of the determinant of (AB)TAB and dividing it by the square root of the
determinant of BTB, i.e.,

Vol(Sα) =

√
det(BTATAB)√

det(BTB)
Vol(S′α).

By the Weinstein–Aronszajn identity, we obtain that det(BTB) = det(I +
1 · 1T ) = nR +nC = r+ 1, where 1 is the all-one column vector of dimension
r = nR + nC − 1. Note that ATA = diag(1, . . . , 1, 1/2, . . . , 1/2), where
the 1 is repeated nR times and the 1/2 is repeated nC times. Therefore,
BTATAB = J + 1

21 ·1T , where J = diag(1, . . . , 1︸ ︷︷ ︸
nR

, 1/2, . . . , 1/2︸ ︷︷ ︸
nC−1

). Again using

the Weinstein-Aronszajn identity, we obtain

det(BTATAB) = det(J + 1/2 · 1 · 1T ) = det(J)(1 + 1/2 · 1TJ−11)
= 2−nC+1(1 + 1/2(nR + 2nC − 2)) = 2−nC · n

So, we conclude the argument by spelling out all formula’s:

Vol(Sα) = 2−nC
√
n√

r + 1
Vol(S′α) = 2−nC

√
n√

r + 1
· (nα)r

√
r + 1

r! = (nα)r ·
√
n√

2nC · r!

Lemma A.2. Let LogO×K ⊆ H ⊆ logKR be the logarithmic unit lattice.
Then the covolume of this lattice in H equals

√
n · 2−nC/2 ·R.

Proof. In the literature, often one uses the embedding Log′O×K ⊆ H ′ ⊆
RnR+nC , where (Log′(η))σ equals log |σ(η)| or 2 log |σ(η)|, depending on
whether σ is real or complex. The space H ′ = {x ∈ RnR+nC |

∑
j xj = 0} is

the equivalent hyperplane. It is evident that the linear map

A : Rr+1 → LogKR, eν 7→
{

eσν when ν is real
1
2(eσν + eσν ) when ν is complex

maps Log′O×K ⊆ H ′ to LogO×K ⊆ H.
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Let U be a basis of Log′O×K , and denote U by the same basis, but the last
row removed; the determinant of U is called the regulator R of the number
field K. Define B : Rr → Rr+1, ej 7→ ej − enR+nC . By the fact that for any
element in Log′O×K holds that the sum of the entries equals zero, we have
BU = U . As A maps Log′O×K to LogO×K , we obtain that ABU is a basis
of LogO×K . The covolume of this basis equals

√
det(BTATAB) det(U) =√

det(BTATAB)R =
√
n2−nC/2R.

The last equality is proven by the computation of det(BTATAB) below.
Note that ATA = diag(1, . . . , 1, 1/2, . . . , 1/2), where the 1 is repeated nR
times and the 1/2 is repeated nC times. Therefore, BTATAB = J + 1

21 · 1T ,
where

J = diag(1, . . . , 1︸ ︷︷ ︸
nR

, 1/2, . . . , 1/2︸ ︷︷ ︸
nC−1

).

and 1 is the all-one vector of dimension r. Using the Weinstein-Aronszajn
identity, we obtain

det(BTATAB) = det(J + 1/2 · 1 · 1T ) = det(J)(1 + 1/2 · 1TJ−11)

= 2−nC+1(1 + 1
2(nR + 2nC − 2)) = 2−nC · n

Lemma A.3. Let H ⊆ Log(KR) be the hyperplane orthogonal to the all-one
vector, and let ρ(n)

s be the Gaussian function. Then∫
x∈H

s−rρ(n)
s (x)dx = 1

Proof. Use the matrices A and B from the previous lemma to apply inte-
gration by substitution, observing that H = ABRr.∫

x∈ABRr

s−rρ(n)
s (x)dx =

√
det(BTATAB)

∫
x∈Rr

s−rρ(n)
s (ABx)dx

=
√

det(DTD)
∫
x∈Rr

s−re−πx
TDTDx/s2

dx =
∫
x∈Rr

s−re−πx
T x/s2

dx = 1
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Where DTD = BTATABT is the r-dimensional Cholesky decomposition,
and the last equality follows then again by integration by substitution.

Theorem A.4 (Bhargava,Shankar,Taniguchi,Thorne,Tsimerman,Zhao). Let
K be any number field of degree n and let OK be its ring of integers. Let
OK ⊆ KR have the structure of a lattice via the Minkowski embedding (see
Section 2.3), and denote λ∞j (OK) for the j-th successive minimum with
respect to the infinity norm in KR. Then

λ∞n (OK) ≤ |∆K |1/n.

The following proof is a copy of [Bha+20, Thm. 3.1], with the difference that
it is applied to the infinity norm and has explicit constants everywhere.

Proof. Let αj ∈ OK attain the successive minima for the infinity norm
λ∞j (OK) for j ∈ {1, . . . , n}, with α1 = 1. For any element β ∈ OK , we
write β = ∑n

j=1[β]jαj , i.e., [β]j are the coordinates of β with respect to
(α1, . . . , αn).

For 2 ≤ k, ℓ ≤ n − 1 consider the (n − 2) × (n − 2)-matrix C = ([αkαℓ]n),
i.e., the matrix consisting of the coordinates of αkαℓ with respect to αn.
We will show at the end of this proof that this is a non-degenerate matrix,
implying that there are no zero rows or columns. In other words, there exists
a permutation π : {2, . . . , n− 1} → {2, . . . , n− 1} such that [αkαπ(k)]n ̸= 0
for all k ∈ {2, . . . , n− 1}.

So, the product αkαπ(k) ∈ OK extends {α1, . . . , αn−1} to a n-dimensional
lattice; therefore we have ∥αk∥∞∥απ(k)∥∞ ≥ ∥αkαπ(k)∥∞ ≥ λ∞n (OK). Taking
products over all k ∈ {2, . . . , n− 1} we obtain

n−1∏
k=2
∥αk∥2∞ =

n−1∏
k=2
∥αk∥∞∥απ(k)∥∞ ≥

(
λ∞n (OK)

)n−2
.

Multiplying above equation by ∥α1∥2∞ = 1 and ∥αn∥2∞ = λ∞n (OK)2, and
using Minkowski’s second inequality [Cas12, Ch. VIII]∏n

k=1 λ
∞
k (Λ) ≤ det(Λ),
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we obtain
|∆K | ≥

n∏
k=1
∥αk∥2∞ ≥

(
λ∞n (OK)

)n
.

It remains to prove that C = ([αkαℓ]n) is non-degenerate. Suppose it is not,
and there exists dℓ for ℓ ∈ {2, . . . , n− 1} (not all zero) such that

[ n−1∑
ℓ=2

dℓαkαℓ
]
n

=
n−1∑
ℓ=2

dℓ[αkαℓ]n = 0 for all k ∈ {2, . . . , n− 1}

Writing β = ∑n−1
ℓ=2 dℓαℓ, this means that αkβ lies in the span of the elements

(α1, . . . , αn−1). In other words, L = Qα1 + . . .+Qαn−1 is Q(β)-invariant, i.e.,
a Q(β)-vector (strict) subspace of K. That is, dimQ(β)(L) ≤ dimQ(β)(K)− 1.
But then

n− 1 = dimQ(L) = dimQ(β)(L) · [Q(β) : Q]
≤ (dimQ(β)(K)− 1) · [Q(β) : Q] = n− [Q(β) : Q],

yielding [Q(β) : Q] = 1, i.e., β ∈ Q, which is impossible by the fact that
β = ∑n−1

ℓ=2 dℓαℓ is assumed to be non-zero and has no α1 = 1 part.

We conclude that C is non-degenerate, which finishes the proof.

A.2. Bound on the Residue of the Zeta Function for
Cyclotomic Fields

In the proof of Lemma 7.20, we used that for the cyclotomic field K = Q(ζm),
the residue ρK of the zeta function for cyclotomic fields is in O(m4). This
section is dedicated to the proof of this fact.

Theorem A.5 (ERH). Let K = Q(ζm) with m ≥ 3. Then, assuming the
Riemann Hypothesis for L-functions L(χ, s) for all Dirichlet characters
modulo m, we have

ρK ≤ e15 ·m4 = O(m4).
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Proof. The proof extends to the rest of this section, through the following
steps.
(Appendix A.2.1) Writing log(ρK) = RK +MK

We first split the computation of ρK into two parts, a ramified part RK
and a main part MK . This ramified part occurs because the characters
χ ∈ Ĝ\1 for G = Gal(K/Q) are defined modulo their conductor fχ | m. For
computations it is simpler to consider characters modulo m instead, denoted,
χ|m. The ramified term pops up as a correction factor, just being the sum
of L(χ, 1)− L(χ|m, 1) for the non-trivial characters χ.
(Appendix A.2.2) Bounding the ramified term RK ≤ 2 log(m)
By elementary methods one can show that RK ≤ 2 log(m) (see Proposi-
tion A.9).
(Appendix A.2.3) Splitting MK = M

(w)
K + limx→∞(M (x)

K −M (w)
K ).

The main part MK = ∑
q
aq

q can be seen as a sum where q ranges over all
prime powers. By defining the partial sum M

(w)
K = ∑

q<w
aq

q one obtains an
‘initial’ part M (w)

K and a ‘tail part’ limx→∞(M (x)
K −M (w)

K ) of MK .
(Appendix A.2.4) The initial part M

(w)
K ≤ 2 log(m) + 11 for w =

max(e5/4·m, 1010).
By applying partial summation to the Brun-Titchmarsh bound (see Lemma
A.13) one obtains the bound M

(w)
K ≤ 2 log logw + 7. It easy to show that

for w = max(e5/4·m, 1010) holds 2 log logw + 7 ≤ 2 log(m) + 11.
(Appendix A.2.5) The tail part limx→∞(M (x)

K −M (w)
K ) ≤ 4 for w =

max(e5/4·m, 1010).
This bound, proven in Proposition A.17, assumes the Riemann Hypothesis
for L-functions for Dirichlet characters modulo m, and follows from an
explicit result of Dusart [Dus98].
Combining the bounds yields log(ρK) ≤ 4 log(m) + 15.
We have the following bound, of which taking the exponent yields the final
claim.

log ρK ≤ RK +M
(w)
K + lim

x→∞
(M (x)

K −M
(w)
K ) ≤ 2 log(m) + (2 log(m) + 11) + 4.

284



A.2. Bound on the Residue of the Zeta Function for Cyclotomic Fields

A.2.1. Splitting log(ρK) = RK + MK into a Ramified Term and a
Main Term

Notation A.6. In the following, every Dirichlet character χ is assumed to
be primitive, i.e., defined modulo its conductor fχ. If we, instead, want to
consider a Dirichlet character modulo a larger modulus m (with fχ | m), we
write χ|m (and we have χ|m(a) = 0 whenever gcd(a,m) > 1). We denote by
1 the trivial character that has value one everywhere.

Lemma A.7. Let K = Q(ζm) be a cyclotomic field extension with Galois
group G ≃ (Z/mZ)∗ and consider all characters Ĝ as Dirichlet characters.
Then we have log(ρK) = RK +MK , where

RK = −
∑

χ∈Ĝ\1

∑
p|m
p∤fχ

log(1− χ(p)/p) and MK =
∑

χ∈Ĝ\1

logL(χ|m, 1)

Proof. We have the following formula for the logarithm of the residue ρK ,
by considering the quotient of the Dedekind zeta function and the Riemann
zeta function [Nar04, Thm. 8.6].

log(ρK) =
∑

χ∈Ĝ\1

logL(χ, 1)

Concentrating on a fixed χ ∈ Ĝ\1, and applying the Euler product formula,
we obtain

logL(χ, 1) = −
∑
p∤fχ

log(1− χ(p)/p)

= −
∑
p∤m

log(1− χ(p)/p)−
∑
p|m
p∤fχ

log(1− χ(p)/p)

= logL(1, χ|m)−
∑
p|m
p∤fχ

log(1− χ(p)/p).
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Summing over all non-trivial χ ∈ Ĝ yields

log(ρK) = −
∑

χ∈Ĝ\1

∑
p|m
p∤fχ

log(1− χ(p)/p) +
∑

χ∈Ĝ\1

logL(1, χ|m) = RK +MK .

We call the terms RK and MK the ramified term and the main term
respectively.

A.2.2. Estimating the Ramified Term

Lemma A.8. For any prime-power cyclotomic number field K = Q(ζpk),
the ramified term RK equals zero.

Proof. For a prime-power cyclotomic field Q(ζpk), the conductor of every
non-trivial character χ ∈ Ĝ is divisible by p, since G = Gal(Q(ζpk)/Q) ≃
(Z/pkZ)∗. Therefore, RK = −∑χ∈Ĝ\1

∑
p|m
p∤fχ

log(1− χ(p)/p) = 0.

Proposition A.9. For any cyclotomic number field K = Q(ζm) with m ≥ 3,
we have

RK ≤ 2 log(m)

Proof. Denoting G ≃ (Z/mZ)∗ for the Galois group of K, swapping sums
and using the Taylor expansion of the logarithm, we obtain

RK =
∑
p|m

∑
χ∈Ĝ\1
p∤fχ

∑
j>0

χ(pj)
jpj

=
∑
p|m

∑
j>0

1
jpj

∑
χ∈Ĝ\1
p∤fχ

χ(pj)

=
∑
p|m

∑
j>0

1
jpj

−1 +
∑
χ∈Ĝp

χ(pj)

 .
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where Ĝp = {χ ∈ Ĝ | p ∤ fχ}. Note that Ĝp ≃ (Z/mpZ)∗ is isomorphic to
the Galois group of Q(ζmp), where mp is the p-free part of m. By character
orthogonality relations , we know that

∑
χ∈Ĝp

χ|mp(a) =
{
|Ĝp| = ϕ(mp) if a ≡ 1 mod mp

0 otherwise

Since p is coprime with mp, we know that for any character χ of Ĝp and
exponent j > 0, it holds that χ(pj) = χ|mp(pj). Denoting jp for the order of
p in (Z/mpZ)∗, we deduce that jp is the smallest non-zero exponent such
satisfying ∑χ∈Ĝp

χ(pjp) = ϕ(mp). Moreover, we have pjp = 1 + kmp > mp.
Using these properties, we obtain the following rather crude bound.

∑
p|m

∑
j>0

1
jpj

−1 +
∑
χ∈Ĝp

χ(pj)

 ≤∑
p|m

∑
k>0

ϕ(mp)− 1
(kjp)pkjp

≤ −
∑
p|m

(ϕ(mp)− 1) log(1− p−jp)

≤
∑
p|m

2 log(2) · (ϕ(mp)− 1)
pjp

≤ 2 log(2) · ω(m) ≤ 2 log(m)

The first inequality omits the pj ̸≡ 1 modulo mp, as they add negative
value anyway; the second inequality uses the equation ∑k>0(p−jp)k/k =
− log(1− p−jp) after disposing jp in the denominator. The third inequality
uses the fact that − log(1−x) ≤ 2 log(2) ·x for x < 1/2, the fourth inequality
uses the fact that pjp > mp. By Lemma A.8, we may assume, without loss
of generality, that m has at least 2 distinct prime divisors, i.e., ω(m) > 1.
Then the fifth inequality is just a trivial upper bound on the prime omega
function ω(m), the number of distinct prime divisors of m.
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A.2.3. Splitting the Main Term in an Initial Part and a Tail Part

Notation A.10. For a ∈ N with gcd(a,m) = 1, we put

Sa,x =
∑

p prime,j>0,
pj≡a mod m

pj≤x

1
jpj

Proposition A.11 (Estimating the main term). Let K = Q(ζm) be a
cyclotomic field. Then

MK = lim
x→∞

ϕ(m) · S1,x −
∑

a∈(Z/mZ)∗

Sa,x


Proof. We have

MK =
∑

χ∈Ĝ\1

logL(χ|m, 1) =
∑
p∤m

∑
j

1
jpj

∑
χ∈Ĝ\1

χ|m(pj)

For numbers a coprime with m we know that ∑χ∈Ĝ χ|m(a) equals ϕ(m) if
a ≡ 1 mod m and 0 otherwise.This yields:

MK = (ϕ(m)− 1)
∑

p prime,j>0
pj≡1 mod m

1
jpj
−

∑
p prime,j>0

p∤m,pj ̸≡1 mod m

1
jpj

.

Writing out the new notation and flipping summands corresponding to
pj ≡ 1 mod m from the left-hand to the right-hand side yields the result.

It will be proven useful to cut the main term into two parts:

MK = M
(w)
K + lim

x→∞

(
M

(x)
K −M (w)

K

)
.

That is, a finite initial part M (w)
K and a tail part limx→∞

(
M

(x)
K −M (w)

K

)
.

More precisely, for w > 1,

Notation A.12.

M
(w)
K = ϕ(m)S1,w −

∑
b∈(Z/mZ)∗

Sb,w
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A.2.4. Estimating the Initial Part of the Main Term

Lemma A.13. For w ≥ m4 we have

M
(w)
K ≤ 2 log logw + 7.

Proof. By omitting the negative terms in Notation A.12, we obtain

M
(w)
K ≤ ϕ(m)S1,w = ϕ(m)

∑
p prime,j>0
pj≡1 mod m

pj≤w

1
jpj
≤ 5 + ϕ(m)

∑
p prime

p≡1 mod m
p≤w

1
p
.

where the last inequality follows from Lemma A.14∑
p prime,j>1
pj≡1 mod m

1
jpj
≤ 5/m,

For a fixed m, we denote by π1(t) the number of primes p with p ≤ t that
satisfy p ≡ 1 mod m. For t > m, we have the Brun-Titchmarsh bound
π1(t) ≤ 2t

ϕ(m) log(t/m) [MV73]. Combining this bound with Abel partial sum-
mation, we obtain∑

p prime
p≡1 mod m

p≤w

1
p
≤ 1
m

+ 1
2m +

∑
p prime

p≡1 mod m
em≤p≤w

1
p

= 1
m

+ 1
2m + π1(w)

w
− π1(em)

em
+
∫ w

em

2dx
ϕ(m)x log(x/m)

≤ 3
2m + 1

ϕ(m) log(w/m) + 2/ϕ(m) · log log(w/m)

The first inequality just writes out the first two terms of the sum, the
subsequent equality is the Abel summation formula, using the facts that
t−1 has derivative −t−2 and π1 has the Brun-Titchmarsh bound. The last
inequality follows from evaluating the integral, combining the terms and
using again the Brun-Titchmarsh bound for π1(w). Concluding, one can
deduce that M (w)

K is bounded by 5 + 3/2 + 1/ log(w/m) + 2 log logw ≤
7 + 2 log logw.
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Lemma A.14. For all m ≥ 2 holds∑
p prime,j>1
pj≡1 mod m

1
jpj
≤ 5
m
,

Proof. Using the technique from Ankeny and Chowla [AC49, p. 532] we
split the sum into a part where p > m and a part where p < m.

For p > m we have
∑

p prime,j>1
pj≡1 mod m

p>m

1
jpj
≤
∑
k>m

1
k2 ≤

∫ ∞
m

1/x2 · dx = 1
m

(A.115)

The first inequality follows from the fact that for every fixed prime p > m

we have ∑
j>1

1
jpj
≤ 1

2p2

 ∞∑
j=0

p−j

 ≤ 1
2p2 ·

p

p− 1 ≤
1
p2 .

For p < m we use the fact that Xk ≡ 1 modulo m can have at most
k incongruent solutions [AC49, p. 532]. This implies, by considering all
numbers am+ 1 with a ∈ Z,

∑
p prime,j>1
pj≡1 mod m

p<m

1
jpj
≤
∞∑
j=2

1
j

 B(j)∑
a=A(j)

1
am+ 1

 ≤ ∞∑
j=2

1
( j2−j

2 + 1)m+ 1
,

where A(j) = j2−j
2 + 1 and B(j) = j2+j

2 . Dividing out 1
m , using j2 − j ≥

(j − 1)2 for j ≥ 2, and applying the Basel problem equality, we obtain

∑
p prime,j>1
pj≡1 mod m

p<m

1
jpj
≤
∞∑
j=2

1
( j2−j

2 + 1)m+ 1
≤ 2
m
·
∞∑
j=2

1
(j − 1)2 ≤

π2

3m. (A.116)

Combining Equation (A.115) and Equation (A.116), and simplifying π2/3 +
1 ≤ 5 we obtain the claim.
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A.2.5. Estimating the Tail Part of the Main Term

Defining Ma(k) =M(k) if k ≡ a mod m and zero otherwise, and putting
ψa(x) = ∑

k<xMa(k), we have the following explicit result, due to Dusart
[Dus98, Thm. 3.7, p. 114].

Theorem A.15 (ERH). For every x > max(e5/4·m, 1010), we have, assum-
ing the Riemann Hypothesis for L(χ, s) for all Dirichlet characters χ modulo
m,

|ψa(x)− x/ϕ(m)| ≤ 1
4π
√
x log2(x)

Lemma A.16 (ERH). Let m be a fixed modulus and let a be coprime with
m and let x ≥ w ≥ e5/4·m. Then there is a value Kx,w that does not depend
on a, and a value ηa with |ηa| ≤ 1, such that∣∣∣∣(Sa,x − Sa,w)−Kx,w −

2ηa
m

∣∣∣∣ = O(1/ log x).

Proof. We have
Sa,x − Sa,w =

∑
p prime,j>0,
pj≡a mod m
w<pj≤x

1
jpj

.

Applying Abel summation, using that the derivative of 1
t log t equals −(log(t)+1)

log(t)2t2 ,
we obtain

Sa,x − Sa,w =
∑

w<k≤x

Ma(k)
k log k = ψa(x)

x log x −
ψa(w)
w logw +

∫ x

w

ψa(t)(log(t) + 1)
log(t)2t2

dt.

Writing ψa(t) = t
ϕ(m) + 1/(4π) · η(t)

√
t log2(t) with |η(t)| ≤ 1, we obtain

that, for some η′ with |η′| ≤ 1,∫ x

w

ψa(t)(log(t) + 1)
log(t)2t2

dt

= O(1/ log(x)) + log log x+ log logw − 1/ logw + η′
2 log(w) + 3

4π
√
w︸ ︷︷ ︸

≤1/m

.

291



Appendix A. Appendix

Since w ≥ e5/4·m, we have 2 log(w)+3
4π
√
w
≤ 1

m . Also, for some η′′ with |η′′| ≤ 1,
we have

ψa(w)
w logw = 1

log(w)ϕ(m) + η(t) log2(w)
4πw1/2 = 1

log(w)ϕ(m) + η′′/m

Combining all equations and putting Kx,w = log log x+log logw−1/ logw+
1

log(w)ϕ(m) , we obtain
∣∣∣∣∣∣
∑

w<k≤x

Ma(k)
k log k −Kx,w − (η′ + η′′)/m

∣∣∣∣∣∣ = O(1/ log(x)).

Proposition A.17 (ERH). Let x ≥ w ≥ e5/4·m. Then

M
(x)
K −M (w)

K ≤ O(m/ log(x)) + 4,

where the implied constant is absolute (and does not depend on m).

Proof. We have, using Lemma A.16,

M
(x)
K −M (w)

K = ϕ(m)(S1,x − S1,w)−
∑

a∈(Z/mZ)∗

(Sa,x − Sa,w)

= (ϕ(m)− ϕ(m))(O(1/ log x) +Kx,w) + ϕ(m) · 2η1/m+
∑

a∈(Z/mZ)∗

2ηa/m.

By using the fact that |ηa| ≤ 1 for all a ∈ (Z/mZ)∗, we obtain the result.

A.3. Exact Sequences

Lemma A.18 (Kernel-cokernel exact sequence). Let A,B,C be abelian
groups and let f : A→ B and g : B → C be group homomorphisms, fitting
in the following commutative diagram.
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B

A C

f g

gf

Then, denoting ‘ker’ for the kernel of a map and ‘coker’ for the cokernel of
a map, we have the following exact sequence.

0→ ker f → ker gf → ker g → coker f → coker gf → coker g → 0.

This sequence can be obtained mnemonically by observing the outer, blue
arrows in Figure A.1.

Proof. Apply the snake lemma twice to obtain the result.

0 ker f ker gf

0 A A 0

0 ker g B C

ker g coker f coker gf

id

f gf
g

∂

ker gf ker g coker f

A B coker f 0

0 C C 0

coker gf coker g 0

f

gf g
id

∂
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ker g coker f

B

ker gf A C coker gf

ker f 0 coker g

f g

gf

Figure A.1.: The kernel-cokernel exact sequence in the outer, blue arrows.

A.4. The Yudin-Jackson Theorem

In the chapter about the Continuous Hidden Subgroup Problem (Chapter 3),
the main issue is the impact of discretization on the success probability of
the quantum algorithm. This impact turns out to be largely influenced by
how well a complex vector-valued function on the torus Tm = Rm/Zm can
be approximated by trigonometric functions with bounded frequencies.

This problem of finding the best trigonometric approximation has already
been solved in the specific case of scalar complex functions on the torus by
Yudin [Yud76], using Fourier analysis. We show here that Yudin’s reasoning
applies straightforwardly to vector-valued functions as well. To be clear, the
following text contains the same proof as in Yudin’s work [Yud76] and it is
restated here for the sake of self-containedness.
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Generalized result of Yudin

Recall that the Lp-norm for p ∈ [1,∞] for a vector-valued function f : Tm →
CN is defined as follows1.

∥f∥p,Tm :=
(∫

x∈Tm
∥f(x)∥pCNdx

)1/p
,

where ∥·∥CN is the Euclidean norm on CN . Any function for which the value
∥f∥p,Tm is well-defined is called an Lp-function. For a function f : Tm → CN

we define its Lipschitz constant to be

Lip(f) = inf{L | ∥f(x)− f(y)∥CN ≤ L∥x− y∥Tm for all x, y ∈ Tm}.

For f we also define a related constant, the modulus of smoothness [Yud76]:

ω2(f , δ)p := sup
|y|≤δ
∥f(· − y)− 2f(·) + f(·+ y)∥p,Tm .

It is evident that ω2(f , δ)p ≤ ω2(f , δ)∞ ≤ 2 Lip(f)δ for functions f for which
both quantities are defined.

Theorem A.19 (Yudin-Jackson). Let f : Tm → CN be an Lp-function.
Then there exists a function t : Tm → CN with FTm{t} having support in
[−r/2, r/2]m such that

∥f − t∥p,Tm ≤ 2ω2(f ,
√
m/r)p ≤ 2

√
mLip(f)/r.

In essence, above theorem just states that the best trigonometric approxi-
mation of a function mainly depends on the smoothness of that function (in
terms of the Lipschitz constant, for example) and how high the frequencies
of the trigonometric functions are allowed to be, which is measured by r.

1For p =∞, we let ∥f∥∞,Tm to be the essential supremum of the function x 7→ ∥f∥CN .
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Proof

First we prove a basic result about the modulus of smoothness; it satisfies
the following ‘scaling’ property.

Lemma A.20 (Scaling property of the modulus of smoothness). For any
Lp function f : Tm → CN and for any ρ, δ > 0, we have ω2(f , ρδ)p ≤
2(1 + ρ2)ω2(f , δ)p.

Proof. Note that we have the following ‘telescopic’ finite sum

f(x− nt)− 2f(x) + f(x+ nt)

=
n−1∑

j=−n+1
(n− |j|)

[
f(x+ (j − 1)t)− 2f(x+ jt) + f(x+ (j + 1)t)

]
.

So, for |t| ≤ δ, we have, by the triangle inequality,

∥f(· − nt)− 2f(·) + f(·+ nt)∥p,Tm ≤
n−1∑

j=−n+1
(n− |j|)ω2(f , δ)p

= n2ω2(f , δ)p.

Therefore, for any ρ > 0, ω(f , ρδ)p ≤ ω(f , ⌈ρ⌉δ)p ≤ ⌈ρ⌉2ω(f , δ)p ≤ (1 +
ρ)2ω(f , δ)p. Using the fact that (1+ρ)2 ≤ 2(1+ρ2), we obtain the result.

Next, we try to approximate the function f by the function f ⋆ K, a convo-
lution of f with a suitable kernel K. The closeness of this approximation
largely depends on the smoothness of f and the value of of a certain integral
involving the kernel K.

Lemma A.21. Let K : Tm → [0,∞) be a L1-function satisfying
∫
t∈TmK(t)dt

= 1 and K(−t) = t for all t ∈ Tm. Denote t = f ⋆K =
∫
t∈Tm f( ·− t)K(t)dt.

Then, for all r > 0,

∥f − t∥p,Tm ≤ ω2(f ,
√
m/r)p

(
1 + r2

m

∫
t∈[−1/2,1/2]m

|t|2 ·K(t)dt
)
, (A.117)
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Proof. By the fact that K is even,

t(x) = f ⋆ K(x) =
∫
t∈Tm

f(x− t)K(t)dt =
∫
t∈Tm

f(x+ t)K(t)dt

= 1
2

∫
t∈Tm

f(x− t) + f(x+ t)K(t)dt.

We can write f(x) =
∫
t∈Tm f(x)K(t)dt, since

∫
t∈Tm K(t)dt = 1. Therefore,

t(x)− f(x) = 1
2

∫
t∈Tm

(f(x− t)− 2f(x) + f(x+ t))K(t)dt.

Taking Lp-norms, using the integral-triangle inequality, integrating over the
set [−1/2, 1/2]m, using the fact that K(t) is a positive scalar and applying
Lemma A.20 with δ =

√
m/r and ρ = r|t|/

√
m, we obtain

∥f − t∥p,Tm ≤ 1
2

∫
t∈[−1/2,1/2]m

ω2(f , |t|)pK(t)dt

≤
∫
t∈[−1/2,1/2]m

(
1 + |t|

2r2

m

)
ω2(f ,

√
m/r)pK(t)dt.

Rewriting the integral, using
∫
t∈Tm K(t)dt = 1, we arrive at Equation (A.117).

In the next step, we will instantiate the kernel K = Kr in such a way that
its Fourier coefficients have support in [−r/2, r/2]m. This means, by the
convolution formula, that t = f ⋆Kr also has Fourier coefficients with support
only in [−r/2, r/2]m. Furthermore, Kr is chosen in such a way that

r2

m
·
∫
t∈[−1/2,1/2]m

|t|2Kr(t)dt ≤ 1.

Lemma A.22. Let λ = ϕ ⋆ ϕ =
∫
t∈Rm ϕ(· − t)ϕ(t)dt, where

ϕ(x1, . . . , xm) =
{

2m∏m
j=1 cos(2πxj) if (x1, . . . , xm) ∈ [−1/4, 1/4]m

0 otherwise

Furthermore, define Kr : Tm → C by the rule Kr(t) := F−1
Tm{λ(·/r)

∣∣
Zm}(t) =∑

z∈Zm λ(z/r)e2πi⟨t,z⟩. Then
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(i) Kr(t) ≥ 0 and Kr(t) = Kr(−t) for all t ∈ Tm,
(ii)

∫
t∈Tm Kr(t)dt = 1,

(iii) FTm{Kr} has support only in [−r/2, r/2]m,
(iv)

∫
t∈Tm |t|2Kr(t)dt ≤ m/r2.

Proof. For (i), note that Kr is even because λ is. For positivity, we apply
the Poisson summation formula.

Kr = F−1
Tm{λ(·/r)

∣∣
Zm} = F−1

Rm{λ(·/r)}
∣∣∣Zm

= rmλ̂(r·)
∣∣∣Zm

≥ 0.

The last inequality follows from the convolution formula: λ̂ = ϕ̂ ⋆ ϕ = ϕ̂ · ϕ̂ ≥
0. For (ii), note that

∫
t∈Tm Kr(t)dt = FTm{Kr}[0] = λ(0) =

∫
t∈Rm ϕ(t)2dt =

1. Part (iii) is can be shown by combining the following facts: FTm{Kr} =
λ(·/r)

∣∣
Zm and λ(x) = 0 if |x|∞ > 1/2. Part (iv) is the most technical; since

Kr = rmλ̂(r·)
∣∣∣Zm

and |t|2 ≤ |t+ v|2 for any v ∈ Zm and t ∈ [− 1/2, 1/2]m,
we have∫

t∈[− 1
2 ,

1
2 ]m
|t|2K(t)dt =

∫
t∈[− 1

2 ,
1
2 ]m
|t|2rm

∑
z∈Zm

λ̂(r(t+ z))dt

≤
∫
Rm
|t|2λ̂(rt)rmdt = r−2

∫
Rm
|y|2λ̂(y)dy, (A.118)

where the last equality holds by the substitution rule. By the definition of λ,
Plancherel’s theorem and the fact that 2πiyϕ̂ = FRm{∇ϕ}, we obtain that
the right side of Equation (A.118) equals

r−2
∫
y∈Rm
|y|2ϕ̂(y)ϕ̂(y)dy = r−2∥yϕ̂(y)∥22,Rm = r−2∥(2π)−1∇ϕ∥22,Rm = m/r2.

where the last equation follows from integrating the following function over
Rm, which proves (iv).

|(2π)−1∇ϕ(x)|2 =
{

22m∑m
j=1 sin2(2πxj)

∏
k ̸=jcos2(2πxk) if x ∈ [−1

4 ,
1
4 ]m

0 otherwise

Combining Lemma A.22 and Lemma A.21 we arrive at a proof for Theo-
rem A.19.
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Proof of Theorem A.19. Put t = f ⋆ Kr =
∫
t∈Tm f(t)Kr(· − t)dt with Kr as

in Lemma A.22. As Kr satisfies the requirements of Lemma A.21 and

r2

m

∫
t∈[−1/2,1/2]m

|t|2Kr(t)dt ≤ 1,

by Lemma A.22(iv), we have ∥f − t∥p,Tm ≤ 2ω2(f ,
√
m/r) ≤ 2

√
mLip(f)/r.

By Lemma A.22(iii) and the convolution formula, we have FTm{t} =
FTm{f} · FTm{Kr} = FTm{f} · λ(·/r)

∣∣
Zm . Since λ(·/r) only has support

in [−r/2, r/2]m, the Fourier transform of t has also only support there.

A.5. The Gaussian State

A.5.1. Reducing to the One-dimensional Case

In this section, we estimate the exact quantum complexity of obtaining an
approximation, in the trace distance, of the state

1√
ρ1/s(Dmrep)

∑
x∈Dm

rep

√
ρ1/s(x)|x⟩, (A.119)

where Dmrep = 1
qZ

m ∩ [−1/2, 1/2)m, and where ρ1/s(·) = e−πs
2∥·∥2 is the

Gaussian function (see Section 2.5.3).

An element |x⟩ with x = (x1, . . . , xm) ∈ Dmrep is represented as a tensor
product |x1⟩ ⊗ . . . ⊗ |xm⟩. As the function

√
ρ1/s(x) = ρ√2/s(x) can be

written as a product of functions with separated variables as well, we obtain
that Equation (A.119) equals

m⊗
j=1

1√
ρ1/s(1

q [q]c)

∑
x∈ 1

q
[q]c

√
ρ1/s(x)|x⟩,

where 1
q [q]c = 1

qZ ∩ [−1/2, 1/2). Therefore, the problem of approximating
the state as in Equation (A.119) reduces to the one-dimensional case. By
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rescaling the variable x ∈ 1
q [q]c, the computation of this one-dimensional

state boils down to calculating the following quantum state, with ς = q/s.

|ρς,q⟩ := 1√
ρς([q]c)

∑
x∈[q]c

√
ρς(x) · |x⟩.

Here, [q]c = {− q
2 +1, . . . , 0, . . . , q2}, and q = 2Q is a 2-power, for simplicity.

A.5.2. The Periodic and Non-periodic Discrete Gaussian

To obtain a Gaussian superposition in one dimension, we follow a method
of Kitaev and Webb [KW08]. Their algorithm is an improvement of that of
Grover and Rudolph [GR02].

Kitaev and Webb’s algorithm actually does not compute a discrete Gaussian
quantum state, but something very close; a periodized discrete Gaussian
quantum state. This periodized state has the advantage of having a more
natural normalization and, more importantly, having a specific sum decom-
position. These advantages lead to a slightly more efficient algorithm [KW08]
computing the discrete Gaussian superposition, compared to the algorithm
of Grover and Rudolph.

Definition A.23 (Discrete Periodized Gaussian function). For ς ∈ R>0
and q = 2Q a power of two, we denote by ξς,q : Z/qZ → R>0 the function
defined by the following rule

ξς,q(x) =
√∑
z∈Z

ρς(x+ qz).

The associated quantum state is defined as follows

|ξς,q⟩ = 1√
ρς(Z)

∑
x∈[q]c

ξς,q(x)|x⟩

Lemma A.24. Let ς ∈ R>0 and q = 2Q ∈ N, with q ≥ ς. Then

D (|ξς,q⟩, |ρς,q⟩) ≤ exp
(
− q2

2ς2

)
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where D is the trace distance [NC11, §9.2.1].

Proof. Since ξς,q(x) ≥
√
ρς(x), we have, writing out the definitions,

⟨ξς,q|ρς,q⟩ =
∑
x∈[q]c ξς,q(x)

√
ρς(x)√

ρς(Z)ρς([q]c)

≥
∑
x∈[q]c ρς(x)√
ρς(Z)ρς([q]c)

=
√
ρς([q]c)/ρς(Z) .

Since the trace distance between the pure states |ξς,q⟩ and |ρς,q⟩ is equal to√
1− |⟨ξς,q|ρς,q⟩|2 [NC11, §9.2], we obtain

D (|ξς,q⟩, |ρς,q⟩) ≤
√

1− ρς([q]c)/ρς(Z) =
√
ρς(Z \ [q]c)

≤
√
β

(1)
q/ς ≤ exp

(
− q2

2ς2

)
,

where we applied Banaszczyk’s tail bound (see Lemma 2.25).

Above lemma essentially states that whenever q is relatively large, and ς is
not too large, then the periodic discrete Gaussian and the (non-periodic)
discrete Gaussian are very close in trace distance. That has as a consequence
that the associated measurement probability distributions are close in total
variation distance [NC11, Thm. 9.1].

A.5.3. Computing the Periodic Gaussian State

According to the previous subsection, we can resort to computing the
state |ξς,q⟩ instead of |ρς,q⟩, as they are close to each other for a suitable
choice of parameters. As already mentioned, the quantum state |ξς,q⟩ can be
decomposed into a superposition that can be exploited algorithmically. In
order to phrase this decomposition we first introduce the following notation
of a quantum state ‘translated’ by t ∈ R.

∣∣ξς,q(·+ t)
〉

= 1√
ρς(Z + t)

∑
x∈[q]c

ξς,q(x+ t)|x⟩
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Likewise, we denote∣∣ρς,q(·+ t)
〉

:= 1√
ρς([q]c + t)

∑
x∈[q]c

√
ρς(x+ t) · |x⟩

Now we are ready to state the decomposition lemma.

Lemma A.25 ([KW08, Eq. (11)]). Let ς ∈ R>0, t ∈ R and let q ∈ N be
even. Then∣∣ξς,q(·+ 2t)

〉
=
∣∣ξ ς

2 ,
q
2
(·+ t)

〉
⊗ cosα|0⟩+

∣∣ξ ς
2 ,

q
2
(·+ t+ 1

2)
〉
⊗ sinα|1⟩,

with α = arccos
(√

ρ ς
2
(Z + t)

/
ρς(Z + 2t)

)
.

Proof. Splitting the sum into a part with even numbers and a part with odd
numbers, we obtain√

ρς(Z + 2t) ·
∣∣ξς,q(·+ 2t)

〉
=

∑
x∈[q]c

ξς,q(x+ 2t)|j⟩

=
∑
x∈[ q

2 ]c

ξς,q(2x+ 2t)|x⟩|0⟩+
∑
x∈[ q

2 ]c

ξς,q(2x+ 1 + 2t)|x⟩|1⟩. (A.120)

We now focus the computation on the sum over the odd numbers, as the
computation for the even numbers is similar. By writing out the definition
of ξς,q(x) and putting the scalar 2 into the standard deviation ς, we obtain

ξς,q(2x+ 1 + 2t)2 = ρς(2x+ 1 + 2t+ qZ)
= ρ ς

2
(x+ t+ 1

2 + q
2 · Z) = ξ ς

2 ,
q
2
(x+ 1

2 + t)2.

Using a similar computation for the even case and writing out the definitions,
we obtain√

ρς(Z + 2t) ·
∣∣ξς,q(·+ 2t)

〉
=
√
ρ ς

2
(Z + t) ·

∣∣ξ ς
2 ,

q
2
(·+ t)

〉
⊗|0⟩+

√
ρ ς

2
(Z + t+ 1

2) ·
∣∣ξ ς

2 ,
q
2
(·+ t+ 1

2)
〉
⊗|1⟩.

Dividing above expression by
√
ρς(Z + 2t) we obtain Equation (A.120),

where we use the fact that ρς/2(Z + t) + ρς/2(Z + t+ 1
2) = ρς(Z + 2t).
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This lemma directly leads to an algorithm for computing (an approximation
of) the state

∣∣ξς,q〉, which is spelled out in Algorithm 10.

Algorithm 10: Recursive algorithm preparing the periodic Gaussian
state
Require: The parameters ς ∈ R>0, t ∈ R, k ∈ N and q = 2Q ∈ N.
Ensure: An approximation of the state |ξς,q(·+ t)⟩

1: Initial state: |t, ς, q⟩|0Q⟩ ;
2: Compute the α-rotation by on the last qubit: Compute α with

bit-precision k and store it in a k-qubit ancilla register. Apply the
α-rotation on the last qubit and uncompute α again, which yields the
state |t, ς, q⟩|0Q−1⟩ (cosα|0⟩+ sinα|1⟩) ;

3: Apply a parameter change, controlled by the last qubit
yielding cosα| t2 ,

ς
2 ,

q
2⟩|0Q−1⟩|0⟩+ sinα| t+1

2 , ς2 ,
q
2⟩|0Q−1⟩|1⟩ ;

4: Apply quantum recursion (step 2 and 3) on all qubits except
the last, whenever q > 1, yielding
cosα| t2 ,

ς
2 ,

q
2⟩
∣∣ξ ς

2 ,
q
2
(·+ t

2)
〉
|0⟩+ sinα| t+1

2 , ς2 ,
q
2⟩
∣∣ξ ς

2 ,
q
2
(·+ t+1

2 )
〉
|0⟩ ;

5: Un-apply the controlled parameter change, yielding
|t, ς, q⟩

(
cosα

∣∣ξ ς
2 ,

q
2
(·+ t

2)
〉
|0⟩+ sinα

∣∣ξ ς
2 ,

q
2
(·+ t+1

2 )
〉
|1⟩
)

=
|t, ς, q⟩|ξς,q(·+ t)⟩ ;

A.5.4. Estimating the Complexity and Fidelity of Algorithm 10

We will discuss now how well Algorithm 10 approximates the state |ξς,q⟩.
For ease of analysis, we will assume (without loss of generality) that the
operations on the parameters ς (in step 3 of Algorithm 10) are exact. Then it
turns out that the approximation error is primarily caused by the fact that
the angle α in the algorithm is computed up to bit precision k (meaning,
with error at most 2−k). This is made precise in the following lemma.
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Lemma A.26. Let |ξ̃ς,q(· + t)⟩ be the output of Algorithm 10 with input
parameters ς ∈ R>0, k ∈ N, q = 2Q ∈ N and t ∈ (−1, 1), then we have

T
(∣∣ξ̃ς,q(·+ t)

〉
,
∣∣ξς,q(·+ t)

〉)
≤ 2−kQ

where T denotes the trace distance.

Proof. The proof proceeds by induction on Q, where q = 2Q. We use the the
identity D(|ψ⟩, |ϕ⟩)2 + |⟨ψ|ϕ⟩|2 = 1 multiple times throughout the proof (see
[NC11, §9.2]). Let α̃ be a k-bit approximation of α, i.e., |α− α̃| < 2−k, and
denote |ξ̃ς,q(· + t)⟩ = cos α̃|ξ̃ ς

2 ,
q
2
(· + t

2)⟩|0⟩ + sin α̃|ξ̃ ς
2 ,

q
2
(· + t+1

2 )⟩|1⟩ for the
output of Algorithm 10 with input parameters ς, k, q = 2Q and t ∈ (−1, 1).
Without loss of generality, we assume that t = 0 for sake of clarity; for
arbitrary t ∈ (−1, 1) the calculation is similar.

⟨ξ̃ς,q|ξς,q⟩=cos(α) cos(α̃)⟨ξ̃ ς
2 ,

q
2
|ξ ς

2 ,
q
2
⟩+ sin(α) sin(α̃)⟨ξ̃ ς

2 ,
q
2
(·+ 1

2)|ξ ς
2 ,

q
2
(·+ 1

2)⟩.

By the induction hypothesis, we have

|⟨ξ̃ ς
2 ,

q
2
(·+ t)|ξ ς

2 ,
q
2
(·+ t)⟩| ≥

√
1− (Q− 1)22−2k

for t ∈ (−1, 1). Using the trigonometric identity cos(α) cos(α̃) +sin(α) sin(α̃)
= cos(α− α̃) and the fact that the periodic Gaussian state only has positive
amplitudes, we obtain

|⟨ξ̃ς,q|ξς,q⟩| ≥ cos(α− α̃)
√

1− (Q− 1)22−2k

Therefore D(|ξς,q⟩, |ξ̃ς,q⟩) =
√

1− |⟨ξς,q|ξ̃ς,q⟩|2 ≤ sin(α− α̃) + (Q− 1)2−k ≤
Q2−k. Note that we omitted the base case, which can be done by a very
similar computation using the same trigonometric identity.

Lemma A.27. Computing α with k-bits of precision in step 2 of Algo-
rithm 10 can be done within O(k3/2 · polylog(k)) operations.

Proof. Can be found in Appendix A.5.5.
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Proposition A.28. Algorithm 10 with input ς ∈ R>0, k ∈ N, q = 2Q ∈ N
and t ∈ (−1, 1) uses O(Q+ k) qubits and O(Q · k3/2 · polylog(k)) quantum
gates.

Proof. The number of qubits used in Algorithm 10 equals O(Q+k), because
α is stored in k ancilla qubits during step 2 with bit precision k. The variable
ς ∈ R can be stored with similar precision.

For the number of gates, we go through the relevant steps of Algorithm 10.
Step 2 computes (and uncomputes) α with precision 2−k. By Lemma A.27,
this costs at most O(k3/2 polylog(k)) quantum gates. The α-rotation in this
step costs k quantum gates, as a sequence of controlled Rπ/2j -gates.

Step 3 (and step 5) is a parameter change, which costs a mere constant
number of gates. Step 6 applies recursion, which, by induction, costs O((Q−
1) ·k3/2 ·polylog(k)) gates. Adding all together gives a number of O(Q ·k3/2 ·
polylog(k)) gates.

Theorem A.29. For q = 2Q ∈ N, k ∈ N and ς > 1, there exists an quantum
algorithm that prepares the one-dimensional Gaussian state

|ρς,q⟩ = 1√
ρς([q]c)

·
∑
x∈[q]c

√
ρς(x)|x⟩ (A.121)

within trace distance exp(− q2

2ς2 ) + log(q)2−k, using O(log(q) + k) qubits and
O(log(q) ·k3/2 ·polylog(k)) quantum gates. Here, [q]c denotes {− q

2 , . . . ,
q−1

2 }.

Proof. The state in Equation (A.121) can be approximated by running Al-
gorithm 10 with parameters ς, q = 2Q, t = 0 and k. Combining Lemma A.24
and Lemma A.26 and using the fact that we can add trace distances [NC11,
Ch. 9], this approximation is within trace distance exp(− q2

2ς2 ) +Q2−k.

For the running time, use Proposition A.28 to conclude that Algorithm 10
with the mentioned parameters uses O(Q+k) qubits and O(Q·k3/2) quantum
gates, which proves the claim.
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Theorem 3.12. For q = 2Q ∈ N, error parameter η ∈ (0, 1) and s >

2
√

log(m/η), there exists an quantum algorithm that prepares the higher-
dimensional Gaussian state

1√
ρ1/s(Dmrep)

∑
x∈Dm

rep

√
ρ1/s(x)|x⟩ =

m⊗
j=1

1√
ρ1/s(1

q [q]c)

∑
x∈ 1

q
[q]c

√
ρ1/s(x)|x⟩,

within trace distance η, using O
(
mQ + log(η−1)

)
qubits and using O(mQ

· log(mQη−1)2) quantum gates.

Proof. Instantiating Theorem A.29 with ς = q/s and k = ⌈log(2mQη−1)⌉
and rescaling the states x by q, gives the desired quantum state.

Note that the trace distance needs to be multiplied by m, due to the m-fold
tensor product. This yields a trace distance of m exp(−s2/2) +mQ2−k ≤
1
2η + 1

2η ≤ η. Regarding qubits, we need O(mQ) qubits for storing the
m-dimensional Gaussian state and O(k) = O(log(η−1) + log(mQ)) ancilla
qubits, for computing and uncomputing the rotation angle α. Together this
is at most O(mQ+ log(η−1)) qubits.

For the number of quantum gates we just multiply the number of gates used
in Theorem A.29 by m, instantiating k = ⌊log(2mQη−1)⌉ and simplifying
the expressions using the big-O notation:

O(m · log(q) · k3/2 · polylog(k)) ≤ O(mQ · k2) = O(mQ · log(mQη−1)2).

A.5.5. Proof of Lemma A.27

Lemma A.30. The value ρµ
2 ,

ς

2
√

2
(Z) can be computed with relative precision

2−k within time O(k3/2 polylog(k)).

Proof. We distinguish two cases.
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• ς <
√

2. Then, by Lemma 2.25,∣∣∣ρµ, ς√
2
(Z)− ρ⌊µ⌉, ς√

2
({−h, . . . , 0, . . . h})

∣∣∣ ≤ β(1)√
2h/ς · ρµ, ς√

2
(Z).

• ς >
√

2. Applying the Poisson summation formula, we obtain

ρµ, ς√
2
(Z) = ς√

2
∑
t∈Z

ρ0,
√

2
ς

(t)e−2πitµ.

Therefore∣∣∣∣∣∣ρµ, ς√
2
(Z)− ς√

2
∑

t∈{−h,...,0,...h}
ρ√

2
ς

(t)e−2πitµ

∣∣∣∣∣∣ ≤ ς√
2
β

(1)
ςh/
√

2 · ρ0,
√

2/ς(Z)

which is bounded by β
(1)
ςh/
√

2 · ρ0,ς/
√

2(Z) ≤ 2β(1)
ςh/
√

2 · ρµ, ς√
2
(Z), by

the Poisson summation formula and by smoothing arguments (see
Lemma 2.31), as ρµ,ς/√2(Z) ≥ (1− 2β(1)

s/
√

2)ρ0,ς/
√

2 ≥
1
2ρ0,ς/

√
2.

So the relative error is at most 2β(1)
h ≤ e−(h−1)2 for h > 2. Therefore,

choosing h = k1/2 + 1 is enough to compute ρµ
2 ,

ς

2
√

2
(Z) with relative error

2−k. Because evaluating an exponential function takes O(k ·polylog(k)) time
[Bre10], we arrive at the claim.

Lemma A.31. The fraction ρµ
2 ,

ς

2
√

2
(Z)
/
ρµ, ς√

2
(Z) can be computed with

precision 2−k within time O(k3/2 · polylog(k)).

Proof. Denote a = ρµ
2 ,

ς

2
√

2
(Z) and b = ρµ, ς√

2
(Z). Suppose we have relative

errors |ã − a| ≤ 2−ka/2 ≤ 2−kb/2, |b̃ − b| ≤ 2−kb/2 and ã/b̃ < 1, then∣∣∣ ã
b̃
− a

b

∣∣∣ ≤ |b̃(a−ã)−ã(b−b̃)|
bb̃

≤ |a−ã|
b + |b−b̃|

b ≤ 2−k. By Lemma A.30, we see
that both a and b can be computed within relative precision 2−k/2 within
time O(k3/2 polylog(k)). Therefore, the fraction a/b can be computed with
absolute precision 2−k within time O(k3/2 polylog(k)).

Lemma A.32. For x ∈ [0, 1− ε] and ε < 3
4 , we have

| arccos(
√
x+ ε)− arccos(

√
x)| ≤ 8

√
ε

307



Appendix A. Appendix

Proof. The derivative of arccos(
√
t) equals w(t) = − 2√

(1−t)t
. Therefore

| arccos(
√
x+ ε)− arccos(

√
x)| ≤

∣∣∣∣∫ x+ε

x
w(t)dt

∣∣∣∣
≤
∫ x+ε

x
|w(t)|dt ≤

∫ ε

0
|w(t)|dt.

The last inequality follows from the fact that w(t) is both strictly decreasing
on [0, 1/2] and symmetric around t = 1/2. The claim then follows from the
bound

∫ ε
0 |w(t)|dt =

∫ ε
0

2√
(1−x)x

≤ 4
∫ ε

0
dt√
t

= 8
√
ε.

By combining Lemma A.31 and Lemma A.32, we obtain that the expression
arccos

√
ρµ

2 ,
ς

2
√

2
(Z)
/
ρµ, ς√

2
(Z) can be approximated with k bits of precision

within O(k3/2 · polylog(k)) time, which proves Lemma A.27.

A.6. Discrete Gaussians

Recall, for n ∈ N>0 and any parameter s > 0, we consider the n-dimensional
Gaussian function

ρ(n)
s : Rn → C , x 7→ e−

π∥x∥2

s2 ,

where we drop the (n) whenever it is clear from the context.

Lemma A.33. We have

|ρs(x)− ρs(y)| ≤ π
s2 · ∥x− y∥∥x+ y∥ · ρ2s(x− y)ρ2s(x+ y).

Proof. We have, using the inequality |1 − x| ≤ | ln(x)| (for all x > 0) and
the reverse triangle inequality,

|ρs(x)− ρs(y)| ≤ ρs(x)
∣∣1− ρs(x)/ρs(y)

∣∣ ≤ π
s2 · ρs(x)

∣∣∥x∥2 − ∥y∥2∣∣
≤ π

s2 · ρs(x) · ∥x− y∥∥x+ y∥.

Since the bound above is symmetric in x and y, we might as well replace
ρs(x) by ρs(y) in the rightmost expression, or even by their harmonic
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mean
√
ρs(x)ρs(y). Rewriting this harmonic mean

√
ρs(x)ρs(y) = ρ2s(x+

y)ρ2s(x− y) using multiplicative properties of the Gaussian function (see
Lemma 2.23), we obtain the result.

Lemma A.34 (Bounds on the first and second moment of the discrete
Gaussian). Let Λ ⊆ Rn be a full-rank lattice and let c ∈ Rn and let s >
4
√
n · λn(Λ). Then, we have

1
ρs(Λ− c)

∑
ℓ∈Λ

ρs(ℓ− c)∥ℓ− c∥2 ≤ 2ns2

1
ρs(Λ− c)

∑
ℓ∈Λ

ρs(ℓ− c)∥ℓ− c∥ ≤ 1 + 2ns2.

Proof. Using a result from Micciancio and Regev [MR07, Lm. 4.3] and the
fact that s > 4

√
nλn(Λ) > 2η1/2(Λ), we directly obtain

1
ρs(Λ− c)

∑
ℓ∈Λ

ρs(ℓ− c)∥ℓ− c∥2 ≤
( 1

2π + 1
)
ns2 ≤ 2ns2.

For the second bound, split up the sum in a part where ∥ℓ − c∥ ≤ 1 and
∥ℓ − c∥ > 1. It is clear that the former must be bounded by 1, whereas
the latter is bounded by 2ns2, by the fact that ∥ℓ− c∥ ≤ ∥ℓ− c∥2 in that
case.

Definition A.35. Let t ∈ SLm(R) be a diagonal matrix and let Λ ⊆ Rm be
a full rank lattice. Then we define the distribution GΛ,s/t,c by the rule

GΛ,s/t,c(ℓ) = ρs(t(ℓ− c))
ρs(t(Λ− c))

Remark A.36. Note that this definition coincides reasonably with the
definition of the Gaussian distribution with a ‘variance matrix’ [Gut09,
Ch. 5].
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Lemma A.37. Let Λ ⊆ Rm be a full-rank lattice, ε ∈ (0, 1
2), c, c̃ ∈ Rm, and

s ≥ ηε(Λ). Then

∥GΛ,s,c − GΛ,s,c̃∥ ≤ 4ε+ (2π
s2 + 4πn)∥c− c̃∥

Proof. By smoothing properties, we have ρs(Λ− c), ρs(Λ− c̃) ∈ (1− ε, 1 +
ε)ρs(Λ). Allowing an extra error of 4ε, we can therefore replace the denomi-
nator in the definitions of GΛ,s,c and GΛ,s,c̃ by ρs(Λ).

∥GΛ,s,c − GΛ,s,c̃∥ ≤ 4ε+ 1
ρs(Λ)

∑
ℓ∈Λ
|ρs(ℓ− c)− ρs(ℓ− c̃)|.

By Lemma A.33 (using the fact that ρs/2(c − c̃) ≤ 1) and subsequently
Lemma A.34, we have∑
ℓ∈Λ
|ρs(ℓ− c)− ρs(ℓ− c̃)| ≤ π

s2 ∥c− c̃∥
∑
ℓ∈Λ

ρ2s
(
2ℓ− (c+ c̃)

)∥∥2ℓ− (c+ c̃)
∥∥

≤ π
s2 (1 + 2ns2)∥c− c̃∥ρs(Λ− c+c̃

2 )
≤ 2π

s2 (1 + 2ns2)∥c− c̃∥ρs(Λ).

Combining the two bounds yields the result.

Lemma A.38. Let Λ ⊆ Rm be a full-rank lattice, c ∈ Rm, ε, δ ∈ (0, 1
2),

t ∈ SLm(R) be a diagonal matrix with2 |t − 1| ≤ δ. Additionally, assume
that s ≥ max

(
ηε(Λ), ηε(tΛ)

)
. Then

∥GΛ,s/t,c − GΛ,s,c∥ ≤ 4ε+ 2πnδ

Proof. Since det(tΛ) = det(Λ)∏i tii = det(Λ), we have ρs(Λ− c), ρs(t(Λ−
c)) ∈ (1− ε, 1 + ε)ρs(Λ), by smoothing properties of the Gaussian function.
Allowing an extra error of 4ε, we can therefore replace the denominator in
the definitions of GΛ,s,c and GΛ,s/t,c by ρs(Λ).

∥GΛ,s/t,c − GΛ,s,c∥ ≤ 4ε+ 1
ρs(Λ)

∑
v∈Λ−c

|ρs(tv)− ρs(v)|. (A.122)

2Here, we mean that the vector v consisting of the diagonal elements of t satisfies
|v− 1| ≤ δ in the Euclidean norm.
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By Lemma A.33, using the fact that ρ2s((t−1)v) ≤ 1 and ∥(t−1)v∥ ≤ δ∥v∥,
we have

|ρs(tv)− ρs(v)| ≤ δπ
s2 · ρ2s((1 + t)v) · ∥v∥ · ∥(1 + t)v∥

≤ δπ
s2 · ρs((1 + t)v) · ∥(1 + t)v∥2. (A.123)

Where the last inequality follows from ∥v∥ ≤ ∥(1 + t)v∥, which can be
deduced by applying the triangle inequality on ∥v∥ in the following way.

∥v∥ ≤ 1
2∥(1 + t)v∥+ 1

2∥(1− t)v∥ ≤ 1
2∥(1 + t)v∥+ δ

2∥v∥
≤ 1

2∥(1 + t)v∥+ 1
2∥v∥.

Plugging Equation (A.123) into Equation (A.122), and applying Lemma A.34,
we obtain

∥GΛ,s/t,c − GΛ,s,c∥ ≤ 4ε+ δπ

s2 (2ns2) = 4ε+ 2πnδ.

Lemma A.39. Let t0, t1 ∈ SLm(R) be diagonal matrices satisfying3 |t0/t1−
1| ≤ δ < 1/2, let ε ∈ (0, 1/2), let c ∈ Rm and let Λ ⊆ Rm be a full rank
lattice. Let furthermore s > max(ηε(t0Λ), ηε(t1Λ)).

Then,

∥GΛ0,s,c − GΛ0,s/t,c/t∥ ≤ 8ε+ (2πn+ (2π
s2 + 4πn)∥c∥) · δ.

Proof. We have, writing Λ0 = t0Λ and t = t1t−1
0 ,

∑
ℓ∈Λ

∣∣∣∣ ρs(t0ℓ− c)
ρs(t0Λ− c) −

ρs(t1ℓ− c)
ρs(t1Λ− c)

∣∣∣∣ ≤ ∑
ℓ0∈Λ0

∣∣∣∣ ρs(ℓ0 − c)ρs(Λ0 − c)
− ρs(tℓ0 − c)
ρs(tΛ0 − c)

∣∣∣∣
= ∥GΛ0,s,c − GΛ0,s/t,c/t∥ ≤ ∥GΛ0,s,c − GΛ0,s,c/t∥+ ∥GΛ0,s,c/t − GΛ0,s/t,c/t∥.

(A.124)

3By this we mean that the vector v = t0/t1 consisting of the diagonal elements of the
matrix t0/t1 satisfies |v− 1| ≤ δ in the Euclidean norm.
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Since s ≥ ηε(Λ0), by assumption, we have, by Lemma A.37,

∥GΛ0,s,c − GΛ0,s,c/t∥ ≤ 4ε+ (2π
s2 + 4πn)∥c− c/t∥ ≤ 4ε+ (2π

s2 + 4πn)∥c∥ · δ,

since ∥1− 1/t∥ ≤ ∥1− t0/t1∥ ≤ δ by assumption. Also, since s ≥ ηε(tΛ0)
(note that tΛ0 = t1Λ), we have, by Lemma A.38,

∥GΛ0,s,c/t − GΛ0,s/t,c/t∥ ≤ 4ε+ 2πnδ.

Combining the bounds into Equation (A.124), we obtain the final claim.
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Summary

The main topic of this PhD thesis is the Arakelov ray class group of a
number field, an algebraic object that contains both the ideal class group
structure and the unit group structure. The main result consists of the fact
that certain specific random walks on the Arakelov ray class group result
in a target point that is uniformly distributed on this group, under the
assumption of an extended version of the Riemann Hypothesis (Chapter 4).
Almost all other results of this work are consequences of this fact.

As a first direct application, using these random walks on the Arakelov class
group one can show that finding a short vector in a arbitrarily chosen ideal
lattice is no harder than finding a short vector in a random ideal lattice of a
fixed number field (Chapter 5). In other words, finding short vectors in the
‘most difficult’ ideal lattice is not much harder than finding short vectors in
a random ideal lattice.

A second application uses these random walks to rigorously and efficiently
sample elements from ideals of number fields, in such a way that the quotient
of this element and the ideal lies in a pre-chosen ideal set. The success
probability of this sampling procedure turns out to be proportional to the
analytic number-theoretic density of this ideal set. One obtains a particularly
interesting application of this result when one chooses the ideal set to be the
set of prime ideals and when the number field equals a cyclotomic number
field. In that case the theorem reads: one can efficiently sample elements in
ideals of cyclotomic number fields such that the quotient of the concerning
element and ideal is near-prime, i.e., a product of a large prime ideal and
several very small prime ideals (Chapter 6).
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Summary

The purpose of the above sampling algorithm is to transform heuristic
arguments into rigorous proofs in certain number-theoretic algorithms, like
ideal class group and unit group algorithms. We successfully achieve this
goal for an algorithm that computes the power residue symbol: we give a
formal proof of the polynomial running time of that algorithm. Before the
writing of this thesis, this running time was only heuristically estimated to
be polynomially bounded (Chapter 7).

A more self-contained part of this thesis consists of a quantum algorithm of
the continuous hidden subgroup problem and a full, rigorous analysis thereof
(Chapter 3). This algorithm can be applied to compute Arakelov ray class
groups explicitly; though this is still a topic of research.
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Samenvatting

Het hoofdonderwerp van deze dissertatie is de Arakelov straalklassegroep van
een getallenlichaam, een algebraïsch object dat zowel de ideaalklassestructuur
als de eenhedenstructuur van een getallenlichaam omvat. Het hoofdresultaat
van deze thesis betreft het feit dat zekere specifieke toevalsbewegingen op de
Arakelov straalklassegroep resulteren in een eindpunt dat uniform random
verdeeld is over deze groep, onder aanname van een uitgebreide variant van
de Riemann hypothese (hoofdstuk 4). Bijna alle andere resultaten in dit
werk vloeien voort uit dit feit.

Als een direct gevolg, kunnen we met behulp van deze toevalsbewegingen
op de Arakelov klassegroep aantonen dat het vinden van een kortste vector
in een gegeven (mogelijk ingewikkeld) ideaalrooster computationeel niet
veel moeilijker is dan het vinden van een kortste vector in een random
ideaalrooster van een vast gekozen getallenlichaam (hoofdstuk 5).

Een ander resultaat maakt gebruik van deze toevalsbewegingen om rigoureus
en op een efficiënte wijze elementen uit idealen van een getallenlichaam te
samplen op zodanige manier dat het quotiënt van het betreffende element en
ideaal uit een bepaalde vooraf gekozen ideaalverzameling komt. De succes-
kans van dit samplen is dan evenredig met de analytisch-getaltheoretische
dichtheid van de ideaalverzameling op een zeker punt. Een interessante
toepassing van dit resultaat verkrijgt men wanneer men voor de betreffende
ideaalverzameling de verzameling van priemidealen neemt en voor het ge-
tallenlichaam een cyclotomisch lichaam. In dat geval luidt de stelling dat
men op efficiënte wijze elementen in idealen van cyclotomische lichamen
kan vinden zodanig dat het quotiënt van het betreffende element en ideaal
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Samenvatting

‘bijna’ een priemideaal is. Dat wil zeggen dat dit quotiënt bestaat uit het pro-
duct van een groot priemideaal en eventueel meerdere kleinere priemidealen
(hoofdstuk 6).

Het doel van bovenstaand sampling algoritme is om heuristische argumenten
voor bepaalde algoritmen in de getaltheorie, zoals ideaalklasse- en eenheden-
groepalgoritmes, te vervangen door rigoureuze bewijzen. In deze dissertatie is
het op deze manier gelukt om formeel te bewijzen dat een algoritme voor het
machtrestsymbool, een polynomiale looptijd heeft. Van de looptijd van dit
algoritme was voorheen alleen heuristisch aangetoond dat deze polynomiaal
begrensd was (hoofdstuk 7).

Een deel van deze thesis dat wat meer op zichzelf staat, betreft een kwan-
tumalgoritme voor een continue variant van het hidden subgroup problem
en een volledige analyse van dit algoritme (hoofdstuk 3). Dit algoritme kan
toegepast worden om Arakelov straalklassegroepen expliciet te berekenen;
dit moet echter nog wel nauwkeurig onderzocht en bewezen worden.
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List of Symbols

∥·∥p,G The Haar-measure induced p-norm on functions G→ C, where
G is a locally compact abelian group G. In this thesis, p is either
1, 2 or ∞ in this context. The subscript G is often suppressed,
as well as the subscript p in the case of p = 2 (page 43)

f |H The periodization of a function f : G → C with respect to a
subgroup H ⊆ G (page 45)

f
∣∣
H

The restriction of a function f : G → C with respect to a
subgroup H ⊆ G (page 45)

|·⟩, ⟨·|, ⟨·|·⟩ The ket, bra and bra-ket notation, used for quantum states in
a quantum Hilbert space H (page 41)

⌊·⌉, ⌊·⌋, ⌈·⌉ Respectively, rounding to the nearest integer (x ∈ [− 1
2 ,

1
2 )

rounds to 0), rounding down and rounding up
⋆ The convolution operation on functions on a locally abelian

group G (page 45)
L·M The diagonal embedding of K into the Arakelov divisor group

DivK . The notation LpM and LνM for prime ideals and places
is also used for the generators in the Arakelov divisor group
(page 59)

·̂ The dual group of a locally compact abelian group, e.g., Ĝ is
the dual group of G (page 42)

·̃ An approximation; for example, B̃ indicates an approximation
of B

·0 The subgroup of elements of norm or degree one, where the
norm or degree is induced by the associated number field.
For example, Div0

K , Pic0
K (page 60), K0

R (page 53), J 0
K , C0

K

(page 148)
·m The ray analogue of a number field related group, involving

m. For example, DivKm , PicKm (page 59), ImK (page 54), ClmK
(page 62)

·̈ A discretized analogue of a continuous object. For example, D̈
for a discretized version of a continuous distribution
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List of Symbols

(
α
b

)
m,K

The m-th power residue symbol, where the top argument is an
element of K and the bottom argument is an ideal of a number
ring of K; if K is clear from context, this notation is dropped
(page 238)

(α, β)p The m-th Hilbert symbol, where both arguments α, β are ele-
ments of the p-adic completion Kp of the associated number
field K; the ‘power’ m is always clear from the context and not
included in the notation (page 259)

(ϕ,M) The signature symbol of the automorphism ϕ on a finite admis-
sible module M (page 245)

(xσ)σ, (rσ)σ Elements in KR, written as vectors indexed by the embeddings
of K into C (page 53)

1G The unit character on the locally compact abelian group G

a, b, c, . . . Ideals of the ring of integers of a number field, elements of IK

(page 54)
[a], [b], [c], . . . Ideal classes, elements of ClK (page 55)
a,b, c, . . . Arakelov divisors, elements of DivK (page 59)
[a], [b], [c], . . . Arakelov classes, elements of PicK (page 60)
af ,a∞ The finite part and respectively infinite part of an Arakelov

divisor a (page 61)
Br(x) The ball of radius r around x with respect to the 2-norm

(page 77)
Br(X) The union of balls

⋃
x∈X
Br(x) over all x ∈ X (page 91)

rB∞, (rσ)σB∞ The box of radius r around 0 with respect to the ∞-norm
(page 210) respectively the distorted box of component-wise
radius (rσ)σ (page 226)

C In Chapter 3, the ‘target set’ of the algorithm, i.e., the set of
good outcomes of a measurement (page 102)

C(r,N (c)) The volume of the simplex with edge length (n log r− logN (c))
and dimension r, which equals (n log r− logN (c))r/r! whenever
N (c) ≤ rn and zero otherwise (pages 215 and 279)

CK The idèle class group of a number field (page 55)
ClK The class group of a number field (page 55)
ClmK The ray class group of a number field (page 62)
CM The hypercircle {(xσ)σ ∈ KR | |xσ| = M} (page 175)
C̈M The discretized hypercircle (page 192)
cov2(Λ), cov∞(Λ) The covering radius of a lattice Λ with respect to the 2-norm

or the ∞-norm respectively (page 72)
d The map sending IK to DivK by using the valuations of the

prime ideals as coefficients for the finite places of the Arakelov
divisor (page 61)
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d0 The map sending IK to Div0
K by using the valuations of the

prime ideals as coefficients for the finite places of the Arakelov
divisor, and a fraction of the negative logarithmic norm of the
ideal at the infinite places (page 61)

D Generally, a distribution. In Chapter 6, it is a distribution over
Div0

Km

[D] The Km,1-periodization D|K
m,1

of a distribution D over Div0
Km

(page 210)
Dxa The distribution representation of an ideal lattice xa (page 174)
Dm The group 1

q
Zm/Zm ⊆ Tm, a q-discretized version of the unit

torus (page 42)
Dm

rep The standard representation 1
q
Zm ∩ [− 1

2 ,
1
2 )m of Dm (page 42)

D̂m The dual of Dm, isomorphic to Zm/qZm (page 42)
D̂m

rep The standard representation Zm ∩ [− q
2 ,

q
2 )m of D̂m (page 42)

deg(·) The degree of an Arakelov divisor; a weighted sum of the coeffi-
cients associated with the places. Equivalently, the logarithm of
the determinant of the ideal lattice associated with the Arakelov
divisor (page 60)

det(·) The determinant of a matrix, or, the determinant of a lattice
Λ, which is equal to its covolume Vol(Λ) (page 72)

DivK The Arakelov divisor group of a number field K, consisting of
formal sums of places of K (page 59)

DivKm The subgroup of the Arakelov divisor group consisting of formal
sums not involving the places dividing the modulus m (page 59)

Exp(a) The exponentiation map sending an Arakelov divisor a ∈ DivK

to an ideal lattice in IdLatK (page 73)
Exp(a)×

τ The τ -equivalent generators of the Arakelov ray divisor a
(page 208)

f In Chapter 3, the periodic function over Rm that ‘hides’ the
lattice Λ (page 81)

FG{·} The Fourier transform with respect to the locally compact
abelian group G (page 44)

GX,s The (discrete) Gaussian distribution with deviation s, where
the structure of the space X determines whether G is continuous
or discrete (page 79)

h In Chapter 3, the ‘wave packet variant’ of the periodic function
over Rm that hides the lattice Λ (page 102)

H The hyperplane Log(K0
R) in Log(KR) where the Logarithmic

unit lattice ΛK = Log(O×
K) lives in (page 54). Occasionally, a

subgroup of a locally abelian group G

H In Chapter 3, a finite-dimensional quantum Hilbert space
(page 41). In Chapter 4, a Hecke operator (page 142).
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HP The Hecke operator with respect to a finite set of prime ideals
P; this set is omitted in the notation if it is clear from context
(page 142)

hK The class number |ClK | (page 53)
h+

K The class number of the maximal totally real subfield of K
(page 55)

IK The group of fractional ideals of the ring of integers of a number
field K (page 54)

ImK The subgroup of IK consisting of ideals coprime to a modulus
m (page 54)

JK The idèle group of the number field K (page 55)
IdLatK The group of ideal lattices of the number field K (page 73)
K A finite-degree number field (page 53)
Km,1 The multiplicative subgroup of K generated by the elements in

OK that are equivalent to 1 modulo the modulus m (page 55)
Km The multiplicative subgroup of K generated by the elements in

OK that are invertible modulo the modulus m (page 55)
KR The tensor product R ⊗Z K where K is a number field; also,

co-domain of the Minkowski embedding (page 53)
K0

R The subgroup of KR consisting of those elements whose K-
induced algebraic norm equals 1 (page 54)

Kν ,Kp The completion of K with respect to the place ν or prime p

(page 55)
ℓ Generally, a lattice point ℓ ∈ Λ
ℓ∗ Generally, a dual lattice point ℓ∗ ∈ Λ∗

L(χ, s) The L-function associated with a Hecke character χ of a number
field K(page 56)

Lp(G) The metric vector space of measurable functions f : G → C
on a locally abelian group G for which the p-norm ∥f∥p,G

is well-defined and finite (modulo functions with norm zero)
(page 43)

Lip(f) The Lipschitz constant of a function f between two normed
spaces (page 90)

Log The logarithmic map K → Log(KR) defined by taking the loga-
rithm of the absolute value of each component of the Minkowski
embedding (page 54)

m In Chapter 3, the dimension of the hidden lattice; in Chapter 7
the m in the m-th power residue symbol

m An ideal modulus of a number field, consisting of a formal
product of finite places of that number field (page 54)

n The degree [K : Q] of the number field K (page 53)
nR The number of real embeddings K ↪→ R (page 53)

324



List of Symbols

nC The number of conjugate pairs of complex embeddings K ↪→ C
(page 53)

N (·) The algebraic norm of a number field element or ideal (page 55)
o(·) The Bachmann-Landau Small-o notation
O(·) The Bachmann-Landau Big-O notation
Õ(·) The soft-O notation, ignoring polylogarithmic factors
OK The ring of integers of the number field K (page 53)
O×

K The unit group of the number field K (page 54)
O×

Km,1 The ray unit group of the number field K with respect to the
modulus m, i.e., O×

K ∩K
m,1 (page 62)

ordp The valuation with respect to the prime ideal p (page 54)
p A prime ideal of a number field (page 54)
pν A prime ideal of a number field uniquely associated with the

finite place ν (page 53)
PrincK The subgroup of principal ideals in IK , i.e., those generated by

a single element in K (page 55)
q A prime ideal of a number field (page 54)
q∞(χ) The infinite part of the analytic conductor of a Hecke character

χ ∈ P̂ic0
Km (page 151)

q The discretization parameter in the continuous hidden subgroup
quantum algorithm (page 100)

Q log(q), the numbers of qubits ‘per dimension’ in the continuous
hidden subgroup quantum algorithm (page 87)

r Generally, the radius of a ball or box in a vector space; in
Chapter 3, part of the definition of a function being (r, ϵ)-
separating (page 91)

r The rank of the unit group of a number field K, which equals
nR + nC − 1 (page 54)

RK The regulator of the number field K, strongly related to the
volume of T (page 53)

S In Chapter 3, the space of quantum states (page 90). In Chap-
ters 6 and 7, a set of integral ideals of the ring of integers of a
number field K (page 209)

Sm A set of integral ideals of the ring of integers of a number field
K that are coprime with the modulus m (page 209)

SB The set of all B-smooth integral ideals of OK , i.e., all integral
ideals having only prime ideal factors with norm ≤ B (page 205)

|S(t)| The number of ideals in S with norm bounded by t (page 209)
s The deviation for the Gaussian function or the (discrete) Gaus-

sian distribution. Occasionally, input variable of zeta functions
and L-functions
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span(·) The linear subspace spanned by the vectors or the lattice within
the brackets

Tm The unit torus Rm/Zm (page 42)
Tm

rep The standard representation [− 1
2 ,

1
2 )m of the unit torus Tm

(page 42)
T The logarithmic unit torus H/Log(O×

K) (page 54)
Tm The logarithmic ray unit torus H/Log(O×

Km,1 ) (page 62)
U(X) The uniform distribution over the compact space X (page 65)
Vol(·) Volume of the compact abelian group with respect to the fixed

given Haar measure (page 42), or, the covolume of a lattice
(also called the determinant of the lattice, (page 72))

WPic0
Km

(B,N, s) The random walk distribution over the Arakelov ray class group
Pic0

Km with prime ideal norm bound B, number of steps N and
Gaussian deviation s (page 140)

xa, yb Ideal lattices, elements of IdLatK (page 73)
ZH Orthogonal discretization of the hyperplane H where the log

unit lattice ΛK = Log(O×
K) lives in (page 191)

α, β, γ, . . . Generally, elements of a number field K (page 53)

βz Banaszczyk’s function z 7→
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2πez2

n

)n/2
e−πz2

(page 77)
ΓK The maximum of the quotient between the outermost successive

minima λn(xa)/λ1(xa) over all ideal lattices xa ∈ IdLatK for a
fixed number field K (page 75)

δ In Chapter 3, the relative distance error in the dual sampling
algorithm (page 93). In the rest of the thesis, generally a small
distance or error

δS [x] The local density of the ideal set S around norm x (page 209)
∆K The discriminant of the number field K (page 53)
ε A small error parameter in [0, 1], often indicating the failure

probability of an algorithm
ϵ A parameter in the definition of a function being (r, ϵ)-

separating in Chapter 3 (page 91)
ζ(s) The Riemann zeta function
ζm A primitive m-th root of unity
ζK(s) The Dedekind zeta function with respect to the number field

K (page 56)
η In the dual lattice sampling algorithm of Chapter 3, the failure

probability of the algorithm (page 93). In the rest of the thesis,
a small error or sometimes a unit η ∈ O×

K

ηε(Λ) The smoothing parameter, the smallest s > 0 such that
ρ1/s(Λ∗\{0}) ≤ ε (page 77)

λ∗
1 The first successive minimum λ1(Λ∗) of the dual lattice, when-

ever the lattice Λ is clear from context (page 72)
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λj(Λ) The j-th successive minimum of the lattice Λ with respect to
the 2-norm (page 72)

λ
(∞)
j (Λ) The j-th successive minimum of the lattice Λ with respect to

the ∞-norm (page 72)
λχ The eigenvalue of the character χ ∈ P̂ic0

Km under the Hecke
operator H

Λ A lattice, i.e., a discrete subgroup of a Euclidean vector space
(page 72)

Λ∗ The dual of the lattice Λ (page 72)
ΛK The log unit lattice Log(O×

K)
ΛKm The ray log unit lattice Log(O×

Km,1 ) = Log(O×
K ∩K

m,1)
µK The group of roots of unity of the number field K (page 53)
ν A formal place, associated with an absolute value |·| : K → R>0

on a number field K (page 53)
νσ The place associated with the absolute value induced by the

embedding σ : K → C (page 53)
ρs The Gaussian function x 7→ e−π∥x∥2/s2

(page 76)
ρK The residue lims→1(1− s)ζK(s) of the Dedekind zeta function

at s = 1 (page 56)
σ An embedding from a number field K into the complex numbers

C (page 53)
ς The deviation for the Gaussian function or the (discrete) Gaus-

sian distribution whenever s is already used
ϕ(m) The Euler indicator function, ϕ(m) = |(Z/m)∗| for m ∈ N>0

ϕ(m) The generalized Euler indicator function for ideals m ⊆ OK ,
ϕ(m) = |(OK/m)∗| (page 62)

χ A character χ ∈ Ĝ of a locally compact abelian group G, i.e., a
continuous group homomorphism from G to C (page 42)
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