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1. Introduction

Main concepts

In this introduction, we will treat the main concepts of this thesis in a
slightly simplified and hopefully intuitive way. Though the first section
roughly covers the necessary knowledge to follow this introduction, a more
extensive treatment can be found in Neukirch’s Algebraic Number Theory
[NS13, Ch. 1] or Peikert’s A Decade of Lattice Cryptography [Peil6, Sec. 2,
Sec. 4]. The Arakelov class group formalism is treated nicely by Schoof
[Sch08].

1.1. Number Theory

Number fields and number rings

In this thesis, the concepts of a number field and a number ring play a large
role. A number field K is a finite-dimensional field extension of the rational
numbers Q, which is just a different way of saying that K ~ Q[X]/(f(X))
for some irreducible polynomial f(X) € Q[X]. The dimension of K as a
Q-vector space is called the degree of the number field.

Every element a € K has a minimal polynomial, the unique monic, irre-
ducible polynomial m(X) € Q[X] satisfying m(«) = 0. If, additionally, the
minimal polynomial of « lies in Z[X], we call « an integral element of K.
The integral elements in K together form a ring, denoted Ok, and is named
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the ring of integers of K. Subrings of such a ring of integers of some number
field K are called number rings.

In this introduction, we will always take the number ring to be the ring of
integers Ok of K, for the sake of simplicity; but the ideas of this introduction
apply to any other number ring R C Ok as well.

The Minkowski embedding

Let K = Q[X]/(f(X)) be a number field defined by the irreducible poly-
nomial f(X) € Q[X]. This polynomial f(X) has deg(f) distinct roots
in the complex numbers C. This yields deg(f) different field embeddings
K < C, respectively, by sending X € K = Q[X]/(f(X)) to any of the
roots of f in C. Those are all possible field embeddings of K into C.
By concatenating these field embeddings next to each other, one gets
the Minkowski embedding K — @,.x_cC, o — (0(a))s. In most of
the literature, the codomain of this Minkowski embedding is restricted to
Kr ={zs € B,.xkc C|Ts = x5}, where 7 is the embedding ¢ : K < C ob-
tained by applying first o and then complex conjugation in C. By component-
wise addition and multiplication, Kg is an R-algebra. We will see later that
the ring of integers Ok forms a full-rank lattice in Kg under the Minkowski
embedding.

Take as an example the number field K = Q[X]/(X? — 2), which has two
embeddings into C, corresponding to the zeroes #1/2 of the polynomial
X2 —21in C. Due to the fact that each of those actually embeds K into
R C C, the (restricted) codomain K of the Minkowski embedding equals
the real plane R2. The Minkowski embedding sends, in this case, X € K to
(vV2,—v2) € R? and 1 € K to (1,1) € R? and is, by linear extension, totally
determined (see Figure 1.1). Such a number field K is, by abuse of notation,
often just denoted Q(v/2), and its ring of integers Z[v/2], where v/2 is used
as a more understandable placeholder for X. Although the ring of integers
of K = Q(«) (with « an integral element of K) equals Z[«| in the specific
examples of this introduction, this is generally not the case for other number
fields.
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Figure 1.1.: The number ring Z[v/2] visualized on the real plane, using the Minkowski
embedding, sending v/2 — (v/2, —v/2) and 1 — (1,1).

A slightly more intricate example concerns the number field K = Q(3/2) =
Q[X]/(X? —2), which has three embeddings into C, corresponding to the
Zeroes Cg -4/2 of the polynomial X3—2 in C (where (3 is a third primitive root
of unity). The Minkowski embedding of K sends X = /2 — (V/2,(3-V/2) €
RxCand 1+ (1,1) € R x C (see Figure 1.2). Both the introduction of the
reals and the absence of a third embedding is due to the restriction of the
codomain of the Minkowski embedding — this third component just follows
from conjugating the second component.

An appropriate metric on number fields

The Minkowski embedding K — Kp yields, via the Euclidean metric on
the R-algebra Kg, a metric on the number field K and its ring of integers
Ok . More specifically, this metric is defined via the geometric norm |laf| :=

V2o lo(@)?.

One of the advantages of this specific metric is its tight connection with the
algebraic norm on the field K, which can be defined on a € K by taking
the products of the all embeddings: N(a) = ], o(«). The algebraic and
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Figure 1.2.: This picture shows the Minkowski embedding of Z[+/2] into R x C.

geometric norm are related by the arithmetic-geometric mean inequality, a
fact that is classically used to show the finiteness of the class group.

1.2. Ideal Lattices

Ideals

Due to the canonical geometry of the number field K, the image of the ring
of integers O under the Minkowski embedding is a discrete subgroup in
Kp, if one only considers the additive structure of O [NS13, Ch. 1, § 4].
In other words, the ring of integers O forms a lattice under this embedding
(see Figures 1.1 and 1.2). In fact, the same holds for any non-zero ideal
of Ok in K. Recall that an ideal is a subgroup I C Ok of the additive
group of O that is stable under multiplication with elements in Ok, i.e.,
Og-1CI1.
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Ideal lattices

The image of an ideal I under the Minkowski embedding is an example of
an ideal lattice; it has the additive structure of a lattice and the ring-like
structure of an ideal. An ideal lattice is defined as any non-zero lattice L C Ky
that satisfies Ok - L C L, where the action of O happens component-wise
after the Minkowski embedding (see Figure 1.3). Equivalently, considering Kg
as an Og-algebra, ideal lattices are discrete Og-submodules of K. Recall
that discrete subgroups of Euclidean vector spaces correspond precisely to
free Z-modules spanned by R-linearly independent vectors in this vector
space, both called (generic) lattices.

PAVE]
L ] @ [ 2 [ ] () [ ® [ ] () [ ) () (] L) [ ]
e o o e o o o ® @ e @ o @ o
3 4 5 -5 -4 -3 -2 -1 .0 1 2 3 4 5
e @ --e- o ® o ® o @ o © o @ o

0000o07;56060 @0.007@ e @ o
o©¢éo©i2\/c:©o©o - @®--0--@® -0 072\/0:) ®--o0--®--0

Figure 1.3.: The blue lattice is the ideal lattice 2-Z[/—5] in Q(v/=5) consisting of multiples
of 2. The green lattice is an example of a lattice that is not an ideal lattice of
Q(+/=5), because it is not stable under multiplication with elements of the ring
of integers Z[v/—5] of Q(/—5). For example, (=1 +1/=5)-v/—5 = —5 — /=5,

which is the red point and does not lie in the green lattice.

It can be shown that ideal lattices L are always of the shape L = x - I,
where I C O is a non-zero ideal and x € K} (the invertible elements
of KR), where the multiplication comes from the Og-algebra structure of
Kg, i.e., component-wise. In other words, ideal lattices are of the shape
L ={(zs-0(t))s | t € I'}, and can be considered as ideals with a deformation.
They can be stretched and squished in several coordinates by the factor
x € Kp, see Figure 1.4.
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~

Figure 1.4.: In this two-dimensional example, the left ideal lattice is slightly stretched
in the z-direction and slightly squished in the y-direction, leading to the
perturbed ideal lattice on the right. The yellow circle functions as a visual
aid, making the precise deformation of the lattice more explicit.

The ideal lattices within Kgr form a group in which the multiplication is
inherited from KR and the group of (fractional) ideals; (z-1I) - (y-J) :=
(x-y)-(I-J), and where the unit ideal lattice is Ox C Kr (under the
Minkowski embedding).

In the remainder of this introduction, we will consider the group of ideal
lattices up to scaling. This can be done by only considering ideal lattices of
fixed determinant, or by constructing the equivalence relation in which two
ideal lattices are equivalent if they only differ by scaling. From now on, we
will refer to this group as the group of ideal lattices of a number field K,
and we denote it by IdLat9.

‘Similar’ ideal lattices

Next to scaling, another equivalence of ideal lattices plays a large role,
one that we will call geometrically similar in this introductory text. Two
ideal lattices x - I,y -J € IdLat‘}( are called geometrically similar, denoted
x -1 ~y-J,if there exists a kK = (ky)o € Kr with |k,| = 1 for all o, such
that Kk -x- I =y - J.

The ideal lattices that are geometrically similar to the unit ideal lattice
O form a subgroup called the trivial-class ideal lattice. In the left image
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of Figure 1.5 some examples of trivial-class ideal lattices are given, whose
geometric similarity with Ok can be verified visually.

o o (o ’-g’ SRR ; i 0 S~ S o @ . (@"’ . @ . @OE @ . "@" . ‘@ .
o o ~.’{”’ o .‘E e o o o o ® ‘@”’ . “@” . | @” . @” v . @ . @ . @
3.‘7.’,"’.5,4‘.;“:‘?“.‘1!1,‘2,3,4,5.,-9,7 3 *7 *" ey 1” r@ 74 5 6 7\
@ e o e o o ® .7‘/? o . ‘o @ e o @ . @ . @ . @ . %” .@.@ .@
IR S .’Q.F; o o @ e e e . @ . @ . @ . @’96@ . @ . @ .
o o o e @ e o .73{5& ¢ @ o o o . @ . @ . @ . @ .75@ . @ . @ . @

Figure 1.5.: On the left are three trivial-class ideal lattices, namely Z[v/—5], v/—5 - Z[/—5]
and (14 +/=5) - Z[y/=5]. By observing the rectangular shapes enclosed by
the lattice points, one indeed observes that these three lattices are equal, up
to scaling and rotation, and thus geometrically similar. In the right image one
can see the blue ideal lattice, which is the smallest ideal lattice in Z[v/—5]
containing both 2 and y/—5. As the shape of this lattice is a diamond instead
of a rectangle, it cannot be a trivial-class ideal lattice.

1.3. Arakelov Class Groups

Looking again at the ideal lattices of Q(v/—5) in Figure 1.5, we can distin-
guish two shapes of ideal lattices; a rectangle with proportion v/5 : 1, and
a diamond with height v/5 and width 2. A reasonable question to ask is:
do all ideal lattices in Q(v/=5), up to scaling and geometric similarity, fall
into one of these two shapes? The answer turns out to be yes; this is closely
related to the fact that Q(v/=5) is a complex quadratic number field with
class number two.

Summarizing, the ideal lattices in Q(v/—5) fall into two classes, the ‘rectangle’
class mm and the ‘diamond’ class 4. This categorization of the ideal lattices
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of Q(v/—b) is described by the Arakelov class group of Q(+/—5), which we
denote by Pic?Q( V) In other words,
Pic(%[\/:r)] = {mm, ¢}.

This categorization of ideal lattices can be done for any number field; in
fact, we have the following definition of the Arakelov class group.

The Arakelov class group of a number field is the group of geometric
similarity classes of ideal lattices of that number field.
Symbolically,

Pic% := IdLat% /~,

where ~ is the equivalence relation of being geometrically similar.

The shapes of the ideal lattices of Q(y/—5) fall into two classes, in other
words, |Pic%( V5 | =2, a finite number. The Arakelov class group being
finite only happens in imaginary quadratic number fields and the rationals
Q, for which can be shown that it is canonically isomorphic to the ideal
class group.

In all other number fields the Arakelov class group is an infinite (but compact)
abelian group. A way of visualizing this is by imagining a spectrum of lattice
shapes; so, for example, not only diamond-shaped or rectangle-shaped, but
also everything in between, see Figure 1.6.

VN0 0044

Figure 1.6.: In most number fields, the Arakelov class group is infinite. The ideal lattices
have an infinite variety of shapes. For example, one could imagine that these
shapes shift seamlessly from mm to ¢.

Infinite Arakelov class groups

We will now consider an example of a number field whose Arakelov class
group is infinite, namely that of Q(v/3), with ring of integers Z[/3]. To show
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that there is a larger variety of ideal lattices here, we refer to Figure 1.7 for
three examples of shapes of ideal lattices in Z[v/3].

Figure 1.7.: In this picture we examine three different shapes of ideal lattices of the number
field Q(v/3). The variety of shapes suggests that there is a spectrum of different

ideal lattice shapes.

Indeed, a continuous spectrum of ideal lattice shapes happen to occur
in Q(v/3), slightly similar to Figure 1.6. Furthermore, this spectrum of
ideal lattice shapes can be exactly found by stretching the shape in the
a-direction and shrinking the same amount in the y-direction (and vice versa,
see Figure 5.2). The deformation of ideal lattices in this way is possible
because the field Q(v/3) has two independent (real) embeddings into C, as
opposed to Q(v/—5), which has only one independent (complex) embedding’.
Note that the product of the deformations in the x and y-direction is required
to be 1, in order to keep the the determinant of the ideal lattice fixed.

Changing an ideal lattices shape this way, something peculiar occurs even-
tually: at a certain point of deforming the lattice shape, one arrives at a
different shape, but representing the same lattice; an example of this phe-
nomenon can be seen in Figure 1.8. As a result, the Arakelov class group of
Q(\/g) has a circular nature, and is in fact isomorphic to the circle group
S1, see Figure 1.9.

More explicitly, the ideal lattice group has the following parametrization for

!Technically, imaginary quadratic number fields have two embeddings into the complex
space, but they are dependent in the way that one is the complex conjugate of the other.
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Figure 1.8.: We consider here ideal lattices of the number field Q(v/3). By stretching
the red shape into the x-direction and shrinking the same amount in the
y-direction, one obtains a variety of shapes. Eventually, one arrives at the
blue shape, which represents the same ideal lattice as that of the red shape.
In fact, this full spectrum of ideal lattices in Q(y/3) is precisely obtained by
multiplying Z[v/3] by (e’,e™") for t € [0,log(2 + v/3)], where 2 + /3 is the
fundamental unit of Z[/3].

t € R,
IdLat?Q(\/g) = {(e!,e™") - Z[V3] C Kg | t € R}.

The ring of integers Z[v/3] has the element 2 + /3 = (2 — v/3)"! as a
fundamental unit, and therefore, taking ¢ = log(2 + v/3), we have

(eh e ™) - Z[V3] = 2+ V3,2 — V3) - Z[V3] = Z[V3] = (e, €°) - Z[V3].

As a result, the Arakelov class group of Q(v/3) is, via the above parametriza-
tion, isomorphic to R/log(2 + v/3) - Z, a circle group. So, the Arakelov class
group Pic% ~ R/log(2+ v/3) - Z of Q(v/3), has volume (length) log(2 + v/3),
which is exactly the regulator R of the number field Q(v/3).

This is not a coincidence. In this specific case, because Q(\/g) has class
number one, the Arakelov class group is canonically isomorphic to the
quotient group H/ Log(O%) of the hyperplane H = span(Log(O%)) and the
logarithmic unit lattice Log(Oj) that arises in Dirichlet’s unit theorem.

10
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Figure 1.9.: By deforming an initial ideal lattice in Q(v/3) appropriately, one eventually
arrives at the same ideal lattice. This yields a circular pattern; as a result,
the Arakelov class group of Q(+/3) is isomorphic to the circle group S*.

General Arakelov class groups

In the previous text, we saw two examples of an Arakelov class group. One
of an imaginary quadratic number field Q(1/—5), which was a finite group
isomorphic to the class group, and one of a real quadratic number field Q(v/3)
which was isomorphic to a circle with the volume equal to the regulator.

So, in one case the Arakelov class group seems tightly related to the class
group, whereas in another case it seems related to the unit group. In reality,
it is related to both: it is a ‘combination’ of both the class group CI(K)
and the logarithmic unit torus T = H/Log(OJ), the quotient group of the
hyperplane H = span(Log(Oj)) and the logarithmic unit lattice Log(O% ).
Here, Log(n) := (log|o(n)|)s for n € O is the logarithmic map, defined by
taking the component-wise logarithm of the absolute values of the Minkowski
embedding. This turns the multiplicative group of units O into a lattice
Log(OF), of which the hyperplane H is the linear span.

More precisely, the Arakelov class group fits in an exact sequence where
the outer groups are the class group Cl(K) and the logarithmic unit torus
T = H/Log(OF).

0 — H/Log(OF) — Pick — CI(K) — 0.

11
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Figure 1.10.: The Arakelov class group of a number field K consists of a union of finitely

many hypertori.

The specific cases of Q(v/—5) and Q(v/3) can now reasonably be explained.
In the imaginary quadratic case of Q(y/—5) the logarithmic unit torus
T = H/Log(Oj) consists of a single point (due to the unit group being
finite), which makes the Arakelov class group isomorphic to the class group.
In the real quadratic case Q(v/3), however, the class group is trivial instead,
so that the Arakelov class group is isomorphic to the logarithmic unit torus
T = H/Log(Ox) ~ R/log(2 + v/3)Z, i.e., R quotiented out by the free
group generated by the logarithm of the fundamental unit of Q(+/3); this is
a circle group.

In the most general case, the logarithmic unit torus 7' = H/ Log(OF) is a

hypertorus and the class group is a finite abelian group. This leads to the
following topological description of the Arakelov class group.

The Arakelov class group of a number field K consists of a union
of finitely many hypertori. The number of tori is equal to the class
number of K and all tori are isomorphic to the logarithmic unit torus
T = H/Log(Oy), thus having a volume equal to the regulator of K.

Summarizing, a point on a torus in the Arakelov class group corresponds to
an ideal lattice (more precisely, a class of same-shaped ideal lattices) in the

12
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number field. Moving the point on the torus a little corresponds to slightly
disturbing the shape of the lattice, exactly like in the circle of Figure 1.9
(see also Figure 1.11).

If the corresponding points of two lattices lie on the same torus (in the
Arakelov class group), they can be transformed into each other by means of
stretching and shrinking appropriately. If, on the other hand, these points
lie on different tori of the Arakelov class group, they can not be transformed
in one another, see Figure 1.11.

<
<
<=
<z

OOO Qoo o0@

Figure 1.11.: Any two lattices corresponding to points on the same torus, can be trans-
formed into each other (left). If two lattices correspond to points on different
tori, they cannot be transformed into each other (right).

1.4. Random Walks on the Arakelov Class Group

The main theorem of this thesis involves random walks on the Arakelov class
group, a specific algorithm that allows to move randomly.

What is a random walk?

An intuitive way of thinking about a random walk is by picturing an ant
on a plane, where the ant gets no external stimuli. This ant will move in
random directions with quite an irregular path, see the left-most picture of
Figure 1.12.

13
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Due to the random behavior of the ant, we do not know its precise future
movements. So, in order to predict the ant’s future position, we have to
resort to using stochastics. The probability distribution that describes the
possible end points of the ant after a certain given time is called the random
walk distribution, and will, on the real plane, take the shape of a Gaussian
distribution (see the right-most picture of Figure 1.12).

_Initial
point

Figure 1.12.: An ant on a plane will, without external stimuli, follow an irregular path, as
in the left-most image. This is can be regarded as an intuitive interpretation
of a random walk. The probability distribution arising from this statistical
behavior is called a random walk distribution and is visualized in the right-

most image.

One can actually define a random walk on any reasonable surface (or even in
the three-dimensional or higher-dimensional space, by imagining a confused
fly). The most relevant surface for our purposes is the hypertorus, because
that is what an Arakelov class group consists of.

In random walks on hypertori, something peculiar occurs whenever the
deviation of the Gaussian gets large. Namely, at a certain deviation the
Gaussian distribution ‘folds round’ the entire hypertorus, and is evenly
spread out everywhere; this concept is known as smoothing in the theory
of lattices. So, this Gaussian random walk distribution on a torus, with
increasing deviation, tends to a uniform distribution, see Figure 1.13.

How to randomly walk on the Arakelov class group?

The Arakelov class group consists of finitely many hypertori. Each point
on one of these tori corresponds to a lattice geometric-similarity class, and

14
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Figure 1.13.: As the deviation of the Gaussian distribution increases, the distribution

‘folds around’ the torus more and more. From a certain value of the deviation,

the distribution is very close to a uniform distribution.

deforming this lattice allows to move around on one torus, see Figure 1.11.
However, in order to obtain a reasonable covering random walk on an
Arakelov class group we need to be able to jump from one torus to the other
as well.

Before unveiling yet how we actually achieve such a jump in terms of lattices,
we define the two allowed moves in a random walk on the Arakelov class

group.

o ‘Crawling’, that is, (slowly) moving on one single torus.
o ‘Jumping’, that is, instantaneously teleport (as it were) to a certain
distant point either on a different torus, or on the same torus.

Because of these two movements, an ant is not anymore the appropriate
insect to keep in mind for intuition. Instead, we might want to think of a
grasshopper, see Figure 1.14.

15
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Figure 1.14.: Due to the disconnected nature of the Arakelov class group, as it consists
of several separated tori, we also need ‘jumps’ in our random walk, next to
‘crawls’. For intuition it is then more appropriate to have a grasshopper in
mind. The grasshopper does not need to land on a different torus per se, but
can also jump to a distant place on the same torus.

16
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‘Crawling’ by a Gaussian deformation

In terms of ideal lattices, ‘crawling’ happens by multiplying the input ideal
by a random log-normal deformation = € Kp satisfying [[, z, = 1, in order
to keep the determinant of the ideal lattice the same.

More precisely, we pick a Gaussian vector (g, ), in which each entry is a zero-
centered Gaussian with deviation s, subject to the requirement ) _ g, = 0.
Putting x, = e9% yields the correct log-normal distribution on Kg.

‘Jumping’ by multiplying with prime ideals

In terms of ideal lattices, such a jump from one torus to another happens
by multiplying the initial ideal lattice by a (non-zero) prime ideal. More
specifically, denoting p C Ok for a prime ideal of O, the operation x-a —
x - (p-a) yields a jump in the Arakelov class group?.

Geometrically, multiplying an ideal lattice L = x - a by a prime ideal of Ok
corresponds to taking a prime sub ideal lattice z - (p-a) C x - a, that is a sub
ideal lattice P C «x - a for which no proper ideal lattice lies in between. In
other words, for a prime sub ideal lattice P C x - a there are no ideal lattices
L such that P C L C z - a (see Figure 1.15).

As we would like the jumps to other tori to be random, aimless like a
grasshopper, a probabilistic element is added. Starting from a certain initial
ideal lattice = - a (corresponding to a point on the Arakelov class group), we
uniformly random pick a prime ideal p C Ok among all prime ideals with
norm bounded by some bound B, and switch to the lattice x - (p - a). This
procedure of multiplying by a random prime can be repeated as often as we
want; we denote with N the total number of these ‘jumps’. A toy example
with two jumps (so N = 2) is depicted in Figure 1.16.

2To be completely precise, it would be more correct to write z-a — (z-A(p)~"/™)-(p-a),
where the norm N (p) of p is involved in order to keep the determinant fixed.

17
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Figure 1.15.: The red, blue and green ideal lattices are all prime sub ideal lattices of the
gray (base) ideal lattice, because the shapes of the respective ideal lattices
are 2, 3 and 11 (prime numbers) times larger than the surface of the gray

ideal lattice.

The result of the dice roll

\ /\;’Q is 5, s0 we pick a prime sub
‘ ideal lattice whose shape

s We start by throwing a ini ) .
/ dice with the prime numbers ‘ —

4 corresponds with a jump.

2,3,5,7,11 and 13 on its sides.

]

.
\ — — So we take a prime
‘ sub ideal lattice that is
2 times as large. Again,
We throw the prime dice again. ‘ this causes a jump on
> the Arakelov class group.

This time the result is 2.

Figure 1.16.: This picture shows two repetitions (N = 2) of a random jump. In more
realistic cases, both the number of primes and the number of jumps are
larger. Note that at each jump, the ideal lattice gets sparser, or, equivalently,

its shape gets larger.
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Description of the full random walk on the Arakelov class group

We now give the final description of our definition of a random walk on
the Arakelov class group, involving three parameters: N, B and s (see
Figure 1.18). Here N is the number of consecutive jumps on the Arakelov
group, as well as the number of prime ideals one multiplies the input ideal
with. The number B is the bound on the norms of these prime ideals and
equals (up to a logarithmic factor) the number of primes one can randomly
pick from in each jump. These two parameters N and B concern the ‘discrete
part’ of the random walk. The ‘continuous part’ of the random walk on the
other hand is determined by the deviation s of the log normal distribution

of the random deformation.

1.5. The Random Walk Theorem for Arakelov Class
Groups

We are now almost ready to phrase the main result of this thesis. Recalling
the framework of the random walk: we tried before to predict the position
of an ant walking on a torus for a certain time, only knowing its initial

19
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A random walk on an
initial lattice...

...happens by taking a
random prime sub ideal
lattice, (a jump on the
Arakelov class group)

...and subsequently
deforming the lattice
(crawling on the
Arakelov class group).

Figure 1.17.: A concrete realization of the random walk procedure on an ideal lattice with

a single jump. The prime sub ideal lattice is chosen at random, as well as

the deformation (by sampling a Gaussian distribution).

The parameter B
is the number

of possible
directions of

one single jump.

3 possible
directions

The parameter N
is the total
number of jumps.

A total of
5 jumps

The parameter s
is the crawling
distance, or the
deviation of the
Gaussian.

Figure 1.18.: An explanation of the random walk’s parameters.

A Gaussian
deviation of
size +—
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position. The current situation is not much different; we now try to predict
the position of a grasshopper on multiple tori (the Arakelov class group),
only knowing its initial position, the number of jumps N, the number B of
primes® to sample from, and the deviation s of the crawl.

As we saw in Figure 1.13, an ant’s crawl of a large enough deviation ‘folds
around the torus’ and therefore leads to a uniform distribution. Something
very similar happens with the grasshopper and the Arakelov class group
consisting of multiple tori. For appropriately many jumps N, appropriately
many primes B and an appropriately large deviation s, the random walk
distribution on the Arakelov class group is also close to the uniformly random
distribution.

Intuitively, the more jumps (i.e., larger N) happen in the random walk, the
less crawling (i.e., smaller s) is needed to cover® the Arakelov class group.
The converse is also true; in the case of few jumps, more crawling is required
to cover all tori, see Figure 1.19.

In the following informal geometric volume-covering argument we show
a necessary condition on the parameters in order to cover the Arakelov
class group fully with a random walk. In fact, if one assumes the extended
Riemann hypothesis, we can show that that this necessary condition is also
almost sufficient — only a slightly more larger parameter choice is sufficient
to have a covering random walk.

Volume covering argument

Assume for the moment that the multiple Gaussians caused by the crawling
do not overlap at all. Then, the total volume covered by the random walk
distribution equals (]E\;,) -s%, namely, each of the (f,) possible final jump points

3Formally, this was the bound B on the norms of the primes; the number of primes
with norm bounded by B equals B/ log B so it does not much harm to identify the number
of primes with B.

“Cover’, here, is used in an informal sense, and not in the (formal) topological sense.
In the informal geometric argument that follows, a point on the Arakelov class group is
‘covered’ if the random walk distribution has a non-negligible density value there.
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More jumps

-’

More crawling

©
g

Figure 1.19.: The more jumps happen in the random walk, the less crawling is needed in
order to cover the entire Arakelov class group.

have a covering of about s% due to the crawling. Here, d is the dimension of

the Arakelov class group of K which is equal to the rank of the unit group
of K.

This means that for the random walk distribution to be uniform, i.e. covering
everything equally, it must cover the entire volume of the Arakelov class
group. In particular, the volume (]]\3,) - s% covered by the random walk
distribution (assuming no overlap) must exceed the volume of the Arakelov
class group.

22
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For the random walk distribution on the Arakelov class group Pic} to
be uniform, the estimated volume coverage (]]\3,) 5% of the random walk
is required to exceed the volume vol(Pic}) of the Arakelov class group,
that is,

(ﬁ) - 5% > vol(Pic%). (1.1)

The assumption that the Gaussians of the random walk do not overlap
at all is not a realistic one, because there will always be some overlap,
especially whenever the covered volume almost exceeds vol(Pic% ). The
volume argument still holds if the overlap is just not too severe, which
exactly happens if the end points of the jumps are reasonably equidistributed.
Such equidistribution of prime ideals is often tackled by assuming some
extended form of the Riemann hypothesis, on which we will elaborate later.

In fact, if we indeed assume this extended form of the Riemann hypothesis,
we can deduce that the number of jumps IV, the number of jump directions
B (number of prime ideals) and the deviation s only need to be slightly
larger than required in Equation (1.1), in order for the random walk to be
uniform on the Arakelov class group. This means that the result is very near
what one optimally would expect. The precise, non-simplified analogue of
this statement, which is the main theorem of this thesis, is spelled out in
Theorem 4.3.

The extended Riemann hypothesis

The Riemann hypothesis is at its very essence an assumption on the regularity
or evenness of the prime numbers among the rest of the numbers. This
assumption is often used in mathematics, mostly to prove efficiency of
certain algorithms involving prime numbers.

In this thesis, we assume an extended form of this Riemann hypothesis,
because we are not dealing with prime numbers, but with prime ideals. The
formal statement of the Extended Riemann Hypothesis in this thesis is that
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Figure 1.20.: The circle-shaped Arakelov class group of Q(v/3) with the positions of the
first few prime ideals p and their associated shapes. Already in this ‘small’
example, there is a reasonable equidistribution of these prime ideals on the

Arakelov class group.

it assumes that all zeroes in the critical strip of Hecke L-functions of number
fields lie on the R(z) = 1/2 line, see Definition 2.10. The impact is that
prime ideals of a number ring lie quite equidistributed on the Arakelov class
group, see Figure 1.20. For the volume covering argument of this section
to be near-optimal, such equidistribution of prime ideals is of fundamental
importance, which suggests the necessity of this particular form of the
Riemann hypothesis. In the actual proof of the random walk theorem, this
Extended Riemann hypothesis indeed seems to be indispensable (see the
proof of Theorem 4.3 in Chapter 4).
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1.6. A Worst-case to Average-case Reduction

Introduction

A reason why random walks on Arakelov class groups are interesting, is
because of their applications. In this section we will explain one of these
applications, which concerns a worst-case to average-case connection for
finding short vectors in ideal lattices.

The shortest vector problem

A computational problem that plays are large role in cryptography, is called
the ‘shortest vector problem’. The associated computational question is to
find a short non-zero point (vector) in a given lattice. Short, here, means
that the lattice point needs to be close to the origin, but not the origin itself,
see Figure 1.21.

More precisely, for a given lattice L, the r-approximate shortest vector
problem (approx-SVP) is the problem of finding a non-zero lattice point
¢ € L that satisfies ||¢]] < r. When only lattices of fixed determinant
are considered, this is named the Hermite approximate shortest vector
problem.

Though this computational problem looks rather easy in two dimensions,
it becomes more and more hard with increasing dimension. It is believed
that this is true not only for classical computers, but also for quantum
computers.

This is one of the reasons why this particular computational problem lies at
the foundation of many post-quantum cryptographic protocols (which require
an underlying ‘hard’ problem). Such cryptographic protocols based on the
shortest vector problem derive their general security from the hardness of this
particular problem. Because of this reason, it is of fundamental importance
to analyze this hardness.
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Figure 1.21.: The shortest vector problem asks to find a short vector in the lattice, which

26

means that it is close to the origin, but not the origin point itself. The red
points are the shortest lattice elements. In most cases, though, just short
vectors, like the orange points, are also good. Concretely, whether a lattice
point is short or not is often decided by whether the lattice point lies in a
circle with predescribed radius r or not.
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The Shortest Vector Problem on ideal lattices

In this thesis, we focus on the hardness of the shortest vector problem in ideal
lattices. Ideal lattices are a special subclass of general lattices that arise from
number fields. Due to this fact, as we saw in an earlier section, ideal lattices
(of a fixed number field) can be assembled into geometrically equivalent
classes, yielding the Arakelov class group. Because for two geometrically
equivalent lattices it is believed to be precisely equally hard to find short
vectors in, this Arakelov class group is appropriate to consider.

In this thesis, we study the hardness of finding short vectors in ideal lattices,
in a relative sense. Concretely, one of the research questions of this thesis
can be phrased as follows: is finding short vectors about equally hard for all
classes of ideal lattices (case A), or are there ideal lattices in which short
vectors are significantly harder to find (case B)? By giving the ‘hard’ ideal
lattice classes a red color, and the ‘easy’ ideal lattice classes a green color on
the Arakelov class group, these two cases are portrayed in Figure 1.22.

Relatively hard to
find short vectors in

_| Relatively easy to
find short vectors in

Case A: In all ideal lattices Case B: For some ideal lattices
it is about equally hard to it is significantly harder to find
find short vectors. short vectors than for other ones.

Figure 1.22.: Is it for all ideal lattices on the Arakelov class group about equally hard to
find short vectors in (case A) or not (case B)? Note that we just pictured
one single torus for the Arakelov class group, for simplicity.

Though the full answer to this research question on relative hardness is
slightly more subtle, and will be elaborated on in the next section, the
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simplified answer is short.

In all ideal lattices associated with a fixed number field it is about
equally hard to find short vectors. In other words, Case A of Figure 1.22
is quite an accurate rendition of reality.

Argument for the evenness of this hardness on the Arakelov class
group, using random walks

To give an argument why all ideal lattice classes in the Arakelov class group
are about equally hard to find short vectors in, one can use the random walk
theorem on Arakelov class groups. This argument is based on the following
important observation, which is, for sake of brevity, specialized to the case
of cyclotomic fields.

For cyclotomic fields, considering ideal lattices of fixed determinant,
finding a lattice vector of length r in the lattice at the end of the random
walk allows to find a short element of length r-+/n in the initial lattice, by
‘undoing’ the random walk on the found short element, see Figure 1.23.

This observation rules out the existence of an ideal lattice in which it is
(compared to other ideal lattices) extraordinarily hard to find short vectors
in (such a hard lattice would be an intense red point on the Arakelov class
group in Case B of Figure 1.22). Namely, by the above observation (and
Figure 1.23), finding short vectors in the end lattice and in the initial lattice
or a random walk is somehow very related. Therefore, finding a short vector
in the fixed initial lattice cannot be so much harder than finding short
vectors in a random ‘average’ lattice. Summarizing, there cannot be much
variation in hardness of finding short vectors in ideal lattices, as visualized
in Case A in Figure 1.22.

Note that the random walk on the Arakelov class group reduces the shortest
vector problem on an initial lattice to a shortest vector problem on the
end lattice with a harder approximation factor, since it is smaller. So, the
portrayal in Figure 1.22 is not completely accurate, since we leave out this
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We apply the random ...by taking: a ...and deforming
Yva.lk. pr(?cedure on. the random prime that lattice slightly.
initial ideal lattice... sub ideal lattice...

0] ‘ @ . o "
...one arrives z;t a . . .
reasonably short ...and undeforming By picking a short
vector of the the lattice and element in the
initial ideal lattice. the short element... deformed lattice...

Figure 1.23.: This infographic (note the unusual order of the panels) explains why finding
a short element in the lattice at the end of a random walk allows to find
a reasonably short element in the initial lattice as well. However, there is
some loss of shortness quality: the orange element is the shortest (non-zero)
element in the deformed lattice, but it is only a reasonably short element in
the initial lattice. Summarizing, the random walk does indeed relate the
shortest vector problem in two different lattices, but with a slight loss of
shortness quality, which is about y/n in degree n cyclotomic fields.
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subtlety in this picture. Though, because the difference in parameters is
rather small in most fields®, we chose to phrase the simplified statement as
a comparison of the same shortest vector problem on the Arakelov class
group.

1.7. ldeal Sampling

Introduction

Another application of the random walk on Arakelov class groups allows for
efficient sampling of (almost) prime ideals. This efficient sampling can be
used to compute power residue symbols in polynomial time, assuming the
Riemann hypothesis for Hecke-L functions.

Density of prime ideals

The prime number theorem states that the number of primes below a given
bound X is roughly equal to X/log(X). Something similar is true for prime
ideals in number fields: the number of prime ideals with norm below X
is also roughly equal to X/log(X), a fact known as Landau’s prime ideal
theorem. Formally,

[{p prime ideal of Ok | N(p) < X}| ~ X/log(X). (1.2)

Note that this estimated number X/log(X) of prime ideals with bounded
norm does not depend on the number field. It seems that all number fields
have about the same number of prime ideals with norm below some given
X. However, the number of all integral ideals with bounded norm does vary

5The loss in shortness quality in generic number fields K is O(n - |A K\ﬁ), where A
is the discriminant of the field. For number fields relevant for cryptography (which have
discriminants that grow at most exponential in the degree) this is polynomially bounded
in the degree n.
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1.7. Ideal Sampling

among different number fields. We namely have the following asymptotic
estimate:

|{a integral ideal of Ok | N(a) < X}| ~ pk - X. (1.3)

In other words, the number of integral ideals with norm bounded by X
grows linearly in X, with slope px = lims_,1(s — 1)(x(s), the residue at
s = 1 of the Dedekind zeta function of the concerned field.

By dividing Equation (1.2) by Equation (1.3), one obtains the average
number of prime ideals among all ideals. This quantity can be considered
as the density of prime ideals among all integral ideals, which then roughly
equals

1/(px - log(X)).

Figure 1.24.: In this image, all shapes of the prime ideal lattices of the number field Q(y/3)
with norm (i.e., surface area) below 25 are portrayed, with their respective
surface area. There are nine such prime ideal lattices. One can see that 2
and 3 ramify, 11, 13 and 23 totally split and 5 is inert in this number field.
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Sampling primes

Intuitively, this density estimate gives an algorithm idea to obtain prime
ideals in number fields. Namely, sample a random ideal with norm below X,
and check whether it is prime or not. By this density estimate, the success
probability is about 1/(pk - log(X)), which is inverse polynomial in the size
of X, if we ignore pg for the moment.

In this thesis, we give an ideal sampling algorithm that precisely allows this
sampling of random ideals, in such a way that indeed the probability of
sampling a prime ideal equals 1/(px - log(X)). This technique involves a
uniformly random distribution on the Arakelov group.

Let a be an ideal whose Arakelov class is uniformly random distributed,
and let o € aN [—r,7]" be uniformly sampled from those elements in a
that lie in the box [—r, r|™.

Then the probability that the ideal (a) - a~! is a prime ideal is at least
1/(3 - px - log(r™)).

In this statement, there is a necessity for a to be randomly distributed on
the Arakelov class group, which is absolutely not the case for any fixed ideal
b. But by means of the random walk procedure on the Arakelov class group,
one can make any fixed ideal b ‘random’ by multiplying it by sufficiently
many random small prime ideals and apply a slight deformation, yielding
a =z [[;p; - b. This ideal is very close to randomly distributed on the
Arakelov class group.

In this way we can algorithmically make b randomly distributed, but some-
thing is lost as well. Omitting the deformation for the sake of simplicity,
sampling o € a =[], p; - b gives a guarantee for (a) - a~! to be prime with
a certain probability. But the fraction («) - b~! can only be guaranteed to
be a prime ‘up to’ the small primes Hj p;. For most applications, though,
this does not cause serious obstacles.
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1.7. ldeal Sampling

Applications

One of the applications of this prime sampling procedure is that it allows to
compute power residue symbols in cyclotomic fields Q((p)-

The power residue symbol is a function (%) with input o € Q((y,) and
b C Z[(n] that outputs a power ¢/, of the m-th root of unity. It satisfies the

properties

0 (3
(i) (&)= (%) (%), that is, multiplicativity in the lower input;
(o3
p

(iii) (2)

One can make use of these three properties in the following way. To compute

) =1 for # =1 modulo m™q;

(with a prime ideal in the lower input) is efficiently computable.

(%), apply a random walk on b, yielding b = Hj~pjb and sample 8 € b

(omitting the deformation for simplicity). Then 8- b~! = p is a prime with

good probability. Slightly modifying the sampling procedure, one can assume

that g satisfies § = 1 modulo m™«. By subsequently using properties (i), (ii)

and (iii) of the power residue symbol, one obtains an efficiently computable
o

expression for ().

=)= i) - )16 )

J

efficiently computable
by property (iii)

The modification of the sampling procedure in order to have 5 = 1 modulo

m™q is not entirely trivial and requires a generalization of the random walk
theorem over Arakelov ray class groups.

Sampling in other ideal sets

Though in this introduction only the set of prime ideals is considered,
any subset of the set of ideals of a number field can be taken in place,
accounting for the density of this specific set of ideals. For example, the set
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of smooth ideals, ideals that only have prime divisors with small norm, is
also an interesting case, as they play a role in class group and unit group
computations.

1.8. The Continuous Hidden Subgroup Problem

One particular subject in this thesis is quite separate from the others: the
continuous hidden subgroup problem. Though this computational problem
does concern (general) lattices, it does not have a very direct relation to
Arakelov class groups. The analysis of the continuous hidden subgroup in
this thesis is a refinement of that of Eistentréiger et al. [Eis+14].

Period-finding

The continuous hidden subgroup problem is about recognizing periodicity in
a continuous signal. Such a continuous signal can be thought of as a sound
signal traveling through the air, and its periodicity is then the frequency or
pitch of this sound.

A computer solving this hidden subgroup problem, in this analogy, then
resembles a violinist with the ability of absolute pitch: given a sound signal,
this violinist directly recognizes it and utters ‘B-flat’, which is around 233
Hertz.

In reality, a sound signal, especially one from a rich-sounding instrument
like a violin, consists not just of one single sine tone. It has a certain timbre,
which is characterized by the harmonics of the tone. Those harmonics are
tones that are simultaneously heard and that have frequencies that are
exactly integer multiples of the ‘main tone’ In the case of the B-flat of 233
Hertz, for example, the harmonic tones have frequencies 233 - 2 = 466 Hertz,
233 - 3 = 699 Hertz, ad infinitum, see Figure 1.25.
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1.8. The Continuous Hidden Subgroup Problem

Figure 1.25.: A violin tone has harmonics, simultaneously heard tones whose frequency is
an integer multiple of the main frequency (233 Hertz, in this example). The
variety in loudness of these harmonics defines the timbre.

Period-finding in higher dimensions

A sound signal can be considered one-dimensional, where the one dimension
comes from time. Though, the more complex periodicity arises in higher
dimensions, since periodicity is then encoded by a lattice, see Figure 1.26.

Figure 1.26.: An example of a two-dimensional periodic signal: on the left a 3d-view and
on the right a top view. The periodicity can be described by a lattice. The
task of the hidden subgroup problem is to retrieve this lattice from the
two-dimensional periodic signal.

The higher the dimension of the signal (for our purposes’, the dimension

50ne application of the solution of the hidden subgroup problem is in number theory.
It can be used to compute unit groups and class groups of number fields [Eis+14]. Also it
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does not stop at three), the higher the dimension of the associated periodicity
lattice. The ‘harmonics’ of such multidimensional periodic signal must then
be seen as the points of the associated period lattice.

The Fourier transform

The procedure that extracts this periodicity from a signal, including its
‘harmonics’ (the lattice points), and thus solves the continuous hidden
subgroup problem, is called the Fourier transform, see Figure 1.27.

Fourier transform |
\f\\f\\/ﬁ\\f\\ Sl —

233 Hz 699 Hz 1165 Hz 1631 Hz

Figure 1.27.: The Fourier transform allows to find the frequencies occurring in a signal, as
well as their respective loudness or amplitude.

Though, computers cannot reasonably process a continuous signal as a whole;
instead, a computer can only take a finite number of points from the signal.
This process is called discretization. Due to this discretization, there is some
loss of information from the signal; the values ‘in between’ are not known
anymore. This particular loss causes the computed Fourier transform of the
(discretized) signal to have errors, see Figure 1.28.

Summarizing, by the fact that computers are unable to process infinite
continuous signals as a whole, intrinsic errors or ‘noise’ occurs. If this noise
is too large, the out of the computation is unusable.

Errors in the Fourier transform

Whenever the signal is in one dimension, these errors are not that severe. In
higher dimensions, though, these errors get exponentially worse. This can be

has applications in cryptography, as this solution to the hidden subgroup can also be used
to find reasonably short vectors in ideal lattices [Cra+16].
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1.8. The Continuous Hidden Subgroup Problem

Finite
Fourier transform Jh
L .H Wl L u L L

MII"I\“||”||||||"|| >

466 Hz 932 Hz 1398 Hz 1864 Hz
233 Hz 699 Hz 1165 Hz 1631 Hz

Figure 1.28.: Due to taking only finitely many samples of the periodic signal, small errors
occur in the output of the (finite) Fourier transform. In this particular
example, the output still resembles the actual frequencies of the original
signal (see Figure 1.27), but if there were less sampling points, the output
would be so noisy that it would be unusable.

considered as an example of the curse of dimensionality, a general expression
for describing computational difficulties whenever spatial dimensions grow.

As a consequence, to counteract the explosion of the error size, the number
of samples of the signal need to grow exponentially as well. This causes
this solution for the continuous hidden subgroup problem using Fourier
transforms not to be feasible for a normal, classical computer. Instead, we
need to use a quantum computer.

The Quantum Fourier transform

Due to the special recursive nature of the Fourier transform, it can be
efficiently computed by a quantum computer, even when an exponential
number of samples is required’. In this thesis, in Chapter 3, a thorough
analysis is made of how many quantum resources are needed in order to
keep the exponentially growing error manageable, depending on properties
of the high-dimensional periodic signal. For example, the number of qubits

"In reality, these samples are queried in parallel, by using quantum parallelism, which
allows to sample an exponential number of samples in a parallel way, using only a
polynomial amount of classical and quantum resources (i.e., qubits and quantum gates).
Also, the output of a quantum Fourier transform yields a quantum state whose amplitudes
contain the values of the Fourier transform, whose are thus inaccessible due to the nature
of quantum phenomena. Fortunately, in this particular hidden subgroup problem, we are
only interested in the frequencies where those amplitudes are high; such frequencies can
then be obtained by measuring the quantum state.
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(quantum bits) depends logarithmically on how rapidly the signal oscillates
and how small one would like the error caused by the discretization to be.

The continuous hidden subgroup problem in higher dimensions, which
consists of finding the hidden period lattice of a periodic high-dimensional
signal, can be solved efficiently on a quantum computer. For an appro-
priate choice of quantum resources, the errors induced by discretization
(i.e., taking only finitely many samples of the signal) can be shown to
be feasibly small.

1.9. Qutline and Contributions of this Thesis

After this introductory chapter, this dissertation proceeds with Chapter 2,
the preliminaries: it states and concisely covers knowledge that is expected
from the reader before continuing with the actual results of this thesis.

The next chapter, Chapter 3, is about the continuous hidden subgroup
problem, and more or less stands on its own. The contributions of this
chapter have been published in the following article, in a slightly different
form.

Koen de Boer, Léo Ducas, Serge Fehr. On the Quantum Complexity of
the Continuous Hidden Subgroup Problem. In Advances in Cryptology —
EUROCRYPT 2020 [BDF20].

The subsequent chapter, Chapter 4 is about random walks on the Arakelov
ray class group. The contributions of this chapter have been published in
Section 3 of the following paper, though only for Arakelov class groups with
a trivial modulus m = Q. The generalization to arbitrary moduli in this
dissertation is new.

38



1.9. Outline and Contributions of this Thesis

Koen de Boer, Léo Ducas, Alice Pellet-Mary, Benjamin Wesolowski.
Random Self-reducibility of Ideal-SVP via Arakelov Random Walks. In
Advances in Cryptology — CRYPTO 2020 [Boe+20].

Chapter 5 is about an application of the random walk theorem: a worst-case
to average-case reduction for Hermite-SVP on ideal lattices. The contri-
butions in this chapter have been published as well in the CRYPTO 2020
[Boe+20] paper above, with minor differences in some of the proofs concern-
ing discretization.

The last two chapters, Chapter 6 about ideal sampling and Chapter 7 about
provably computing the power residue symbol, contain results that have not
been published yet.

Chapter 2: Preliminaries

Chapter 3: The Continuous | | Chapter 4: Random Walks
Hidden Subgroup Problem in Arakelov Ray Class Groups

Chapter 5: A Worst-case to
Average-case Reduction for Chapter 6: Ideal Sampling
Ideal Lattices

Chapter 7: The Power
Residue Symbol is in ZPP

Figure 1.29.: In this diagram is depicted how the chapters depend on each other content-
wise.
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2. Preliminaries

2.1. General Notation

We denote by N, Z, Q, R, C the natural numbers, the integers, the rationals,
the real numbers and the complex numbers respectively. All logarithms
are in base e. For a rational number p/q € Q with p and ¢ coprime, we
let size(p/q) refer to log|p| + log|q|. We extend this definition to vectors
and matrices of rational numbers, by taking the sum of the sizes of all the
coefficients.

Vectors v € V are denoted in boldface and are to be interpreted column-wise
unless stated otherwise. In the case of a vector in a (quantum) Hilbert space
H, we sometimes deviate from this notation and use the bra-ket notation
as well; |v) for primal vectors and (v| for dual vectors. An inner product of
(w| and |v) is then denoted (w|v), and the notation for the tensor product
|w) @ |v) of two vectors in a Hilbert space is generally suppressed, i.e., we
denote |w)|v) instead.

2.2. Fourier Theory

We start with a brief introduction to Fourier analysis over arbitrary locally
compact abelian groups. This general treatment allows us to then apply
the general principles to the different groups that play a role in this thesis,
especially in Chapter 3. For the reader that is unfamiliar with such a general
treatment, it is useful —and almost sufficient —to think of R, of T = R/Z,

41



2. Preliminaries

and a finite group. For more details and for the proofs we refer to Deitmar’s
book on this subject [DE16].

2.2.1. Groups

Here and below we consider a locally compact abelian group G. Such a group
admits a Haar measure p that is unique up to a normalization factor. The
crucial property of such a Haar measure is that it is invariant under the
group action. Simple examples are G = R with p the Lebesgue measure A,
or a finite group G with p the counting measure #.

The dual group G, consisting of the continuous'group homomorphisms y
from G into S', the multiplicative group of complex numbers of absolute
value 1, is again a locally compact abelian group. As we shall see soon, for a
fixed choice of the normalization factor of the Haar measure p for G, there

is a natural choice for the normalization factor of the Haar measure [i for

G.

Examples of locally compact abelian groups that play an important role in
this dissertation are: the m-dimensional real vector space R"; the m-fold
torus T™ := R"™/Z™ and more generally R™ /A for an arbitrary lattice A in
R™; and the finite ‘discretized torus’ group D" := %Zm JZ™ C T™ (which is
isomorphic to Z™/qZ™) for a positive integer ¢. Figure 2.1 below shows the
corresponding dual groups as well as the respective (dual) Haar measures as
used in Chapter 3 of this thesis.

In some cases it will be useful to identify the quotient groups T™ = R /Z™
and D" = éZm /Z™ with the respective representing sets

11 1
T, =[-1, )™ CcR™ and D, :=1lz"nTH

and similarly D™ ~ Z™ /qZ™ with

Bz, o= [ql2* == 2" N [-4,

rep °T c

N

)"

! Discrete (and in particular, finite) groups have the discrete topology, implying that

the continuity constraint for characters on these groups is void.
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2.2. Fourier Theory

Group Dual group

G 7 G i
R™ A ﬂ:zam ~ R™ A
T .= R™/Z™ A ™ ~ 7™ #
D™= 12"/ Iﬁ)i:\ Z™[qZ™  #
R™/A mA (R™/A) ~ A* #

Figure 2.1.: Some groups G and their respective dual groups G, plus the considered (dual)
Haar measures p and fi. Here, A\ denotes the Lebesgue measure and # the
counting measure. Furthermore, A™ is the dual lattice of A, see Section 2.5.1.

It will be useful to understand that if H C G is a closed subgroup then G/H
and H have dual groups that satisfy the following natural isomorphisms.

CT/-?ISHL::{XGCAJ|X(h):1f0rallh€H}Cé and H~G/H"*.

As we shall see soon, for any choice of the Haar measure pg for H there is
a natural choice for the Haar measure pg g for G/H, and vice versa.

2.2.2. Norms and Fourier Transforms

Let G be as above with a fixed choice for the Haar measure p. For any
p € [1,00], Ly(G) denotes the metric vector space of measurable functions
f: G — C with finite norm || f||, (modulo the functions with norm zero?),

where

1£15:= [ If@Pdu forp < oo,
geG

and

1flloc := ess sup [f(g)],

geG

2This in order to make ||-||, a metric: || f||, = 0 implies f = 0 in that case.
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the essential supremum of | f|. We write || f||,¢ if we want to make G explicit.
For any function f € L'(G), the Fourier transform of f is the function

Foll}: G=Coxm [ flox(o)dn,

geG

also denoted by f when G is clear from the context. The Fourier transform
of f € L'(G) is continuous, but not necessarily in L'(G).

For example, for the group D™ := %Zm /Z™ with the Haar measure as fixed
in Figure 2.1, the Lo-norm and the Fourier transform are respectively given
by

||f||2_ qm Z ’f and f{f} m Z f —27r7,xy

zeDhm xeDm

We note that we use a different convention on the scaling than what is
common in the context of the quantum Fourier transform. Namely, in most
literature (e.g., [NC11, §5.1]), the standard quantum Fourier transform uses
a scaling of g ™/2, for sake of preserving the Lo-norm and symmetry; here,
we use the scaling ¢~ one way, and a unit scaling the other way.

Given the Haar measure u for G, there exists a unique dual Haar measure
fi for G with the property that, for any f € LY(G), if f = Fe{f} € LY(G),
then f = }El{f}, where

Fofr 6= Cogn [ foxiadn
x€G
is the inverse Fourier transform. From now on it is always understood that
the Haar measure of the dual group is chosen to be the dual of the Haar
measure of the primal group. With this choice, we also have the following
well known fact [DE16, Thm. 3.4.8].

Theorem 2.1 (Plancherel’s Identity). For all f € L'(G) N L*(G),
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Finally, we recall the convolution theorem, which states that E = f * g =
Joca f(@)g(- — z)du(z) for all functions f,g € L'(G) that have Fourier
transforms f,§ € L'(G). This extends to functions f € L'(G/H) and
g € LY(G), with f understood as an H-periodic function on G. Tailored to
G =R™ and H = A, where R™/A has dual group A*, it then states that,
for all y € R™,

Frm{fg}(y) = Frm/a{f} x Frm{g}(y)
= > Frmpn{fHE) Fem{g}y — ). (2.4)

0reA*

2.2.3. The Poisson Summation Formula
Poisson summation formula is well-known for the group G = R, where it
states that Y ez f(k) = X4ez f(@). In the case G = Z/NZ, it reads

N/s

S fis) = 3 G
i=0 j=1

for any integer s that divides . In order to formulate the Poisson sum-
mation formula for an arbitrary locally compact abelian group G, we need
to introduce the notion of restriction and periodization of functions (see
Figures 2.2 and 2.3).

Definition 2.2 (Restriction). Let H C G be a subset or a subgroup. For
any continuous function f: G — C we define f‘H :H — C,h+— f(h).

Definition 2.3 (Periodization). Let H be a closed subgroup of G with Haar
measure py. For any function f € LY(G), we define

FIST . GJH > C, g+ H /hEHf(g—i-h)d,uH.
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A function on the
N o T N\ _
real line R, /\\_/ N—

and its restriction , [ ] I 1 11
to the integers Z l l b

Figure 2.2.: A function on the real line and its restriction on the integers.

For any closed subgroup H of G with respective choices of Haar measures p
and gy, there exists a unique Haar measure g, for G/H such that the
quotient integral formula

/G’/H (/H fot h)d“H(h)) dugyu(g + H) = /G f(9)dp(g)

holds for any continuous function f : G — C with compact support (see
[DE16, Sec. 1.5]).

With this choice of Haar measure for G/H, and with the dual measures
for the respective dual groups, we are ready to state the general form of
the Poisson summation formula (obtained from [DE16, Sec. 3.6], see also
Figure 2.5).

Theorem 2.4 (Poisson Summation Formula). For continuous f € L*(Q),
Fualflyy =Fell" and Fopulf19") = Fel Y gge
Applied to G = R™ and H = Z™, so that G/H = R™/Z™ = T™ and
G/H ~ 7; and applied to G = T and H = D™ below, we obtain the

following.

Corollary 2.5. For continuous h € L*(R™), we have

]:Tm{h|Tm} - me{hHZm.
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The real line R,

wrapped into
a helix,

made denser
and denser,

> <

11
collapses into cotlapse collapse

the circle St.

Figure 2.3.: The periodization of a function is a consequence of folding the space of its
domain, i.e., taking the topological quotient space. In this example, the real
line R is folded into a circle.

Corollary 2.6. For continuous t € L'(T™), we have
Fom {tpn } = Fon{t}*".

Remark 2.7. The Poisson summation formula can be used to show that
a ‘wide’ periodized Gaussian on the circle is close to a constant function,
see Figure 2.7. The wider a Gaussian function, the narrower the Gaussian
function of its Fourier transform is. Taking the restriction of such a ‘narrow’
Gaussian function to the integers 7. results in a spectrum heavily concentrated
on zero, which corresponds to a constant function, as can be seen in the
bottom example of Figure 2.7. Also note that for the ‘narrower’ Gaussian
function on the circle, both the Gaussian on the circle as the restricted
Fourier transform on Z resemble much more a ‘real’ Gaussian function. In

short, the narrower the Gaussian on the circle, the more Gaussian properties
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“
|

By cutting the Gaussian
into equal pieces, stacking o
those pieces on top of each
other, and taking the sum, one
obtains the periodized Gaussian

—

Figure 2.4.: An example of the periodization of a Gaussian on the real line, with respect
to the subgroup Z C R. This leads to a periodized Gaussian on the circle
R/Z ~ S

is has; the wider the Gaussian on the circle, the more ‘constant’ properties
it has.

2.2.4. The Fourier Transform of Vector-valued Functions

The Fourier transform as discussed above generalizes to vector-valued func-
tions f : G — C simply by applying F to the N coordinate functions,
resulting in a function F{f} : G — CV. By fixing an orthonormal basis, this
extends to functions f : G — H for an arbitrary finite-dimensional complex
Hilbert space, where, by linearity of the Fourier transform, F{f} : G—H
is independent of the choice of the basis.
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|H |G/H
L'(H) LY(G) LYG/H)
Fu Fa Fa/u
LY(G/G/H) ——— L}(G) LY(G/H)
o la7m

Figure 2.5.: Informal illustration of Theorem 2.4 by means of a diagram that commutes

whenever the maps are well defined.

The norm ||-||2,¢ on functions G — C generalizes to vector-valued functions
f: G — H, as well, by defining ||f||2,¢ to be the norm of the scalar function
x = ||f(z)]|x = V{E(@)[f(z)). The vectorial Fourier transforms and norms
are compatible with each other, in the sense that Plancherel’s identity (see
Theorem 2.1) still holds; that is,

Ifll2.c = I Fe{fH, e (2.5)

Also the Poisson summation formula (see Theorem 2.4) is still valid, as well
as the convolution theorem whenever one of the functions in the product is
scalar:

Falfg} = Fel{f} ~ Fa{g} (2.6)

An important example is the case f : R™/A — H. Spelling out the above,
we get

Famn{F} A = A,

s Jops) = — £(2))e 2@y, (2.7)

N det A x€R™ /A

where the vectors |cy+) are also referred to as the (vectorial) Fourier co-
efficients of f. The Parseval-Plancherel identity [DE16, Thm. 3.4.8] then
becomes

1

—IflI2 _ 1
Z§*<ce*|ce*> = |Ifllgm a = det A IERM/A(f(:EHf(x))dx. (2.8)
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Periodization Restriction

Periodized on
the circle R/Z

Restricted to Z

Figure 2.6.: A graphical depiction of the Poisson summation formula as described in
Theorem 2.4, applied to a Gaussian function. First periodizing a function and
then applying the Fourier transform gives the same result as first applying the
Fourier transform and then restricting the function. As a result, the Fourier
transform of a periodized Gaussian is a discrete Gaussian.
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Fr/z
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Figure 2.7.: The narrower the Gaussian on the circle, the more it looks like a Gaussian;

the wider the Gaussian on the circle, the closer to constant it is.

The convolution theorem, as in Equation (2.6) and Equation (2.4), in this
case, becomes,

Frm{fg} = Frm/a{f} x Frm{g}

= > Frm/a{f} Frm{g}(- =€) (2.9)
JARS S

2.2.5. Trigonometric Approximation

As another application of the Poisson summation formula, we derive a
relation between the Lipschitz constant of a function on T™ = R™/Z™ and
the ‘error of discretization’ in the Fourier transform when restricting the
function to D™.

Theorem 2.8. For any Lipschitz function h : T™ — H (where H is a
Hilbert space) with Lipschitz constant Lip(h), and any subset C' C D™, we
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have

4my/m - Lip(h
e Fom (B} lgn — 1+ Fon Bz | < T 0,

Here and below, we slightly abuse notation and use 1¢ as indicator function
acting on D™ and on Z™, justified by identifying D™ with ]ﬁ)?;p =g CcZ™.
Also, we write Fpm {h} instead of Fpm {h|pm }, taking it as understood that
h is restricted to D™ when applying Fpm.

Proof. Using a result of Yudin ([Yud76, Example I after Thm. 2], see also®
Appendix A.4), there exists a trigonometric approximation t of h, i.e. a
function t : T™ — C with t(z) := Frm{t}(z) = 0 for all z € Z™\[q]" so
that ||h — t||oc < my/m - Lip(h)/q. Recalling that D™ ~ Z™ /qZ™, the fact
that t : Z™ — C vanishes outside of [¢]” implies for all z € [¢]7 that

t(x)= Y ta+d) =tP"(2) = Fon {t} (2),

deqzm

where the last equality holds by Corollary 2.6 (and our convention of omitting
the restriction to D™). In particular, we have ||1¢ - Fpm {t} ||27]ﬁ)m = |1l¢c -
Frm{t}||2,zm. Therefore, by the (reverse) triangle inequality and the linearity
of the Fourier transform, one obtains

11 - Fom {0} lgm — II1c - Frm{h}{|zm|
<l - Fom {b = t}lgm + |1c - Fom{h — t}]zm .
We now observe that

e Falh =t} < I1Falh -}y = B~ tlzq < \/u(G)h -t
< m-w\/ﬁhp(h)/q,

where ;i(G) = [, dp denotes the total measure of G. We conclude by noting
that u(G) = 1 for both groups at hand G = D™ and G = T™. O

3In Appendix A.4, we provide a slight generalization of Yudin’s paper [Yud76] to

functions with vectorial output. In principle the bound of Theorem 2.8 can also derived
without this generalization, but at the cost of an undesirable extra factor dim H = 2".
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2.3. Number Theory

2.3.1. Algebraic Number Theory

In this thesis is assumed that the reader is somewhat familiar with the
main concepts of algebraic number theory. In this section, we very briefly
introduce definitions and notions required for this thesis. For a more elaborate
explanation, I would suggest Neukirch’s textbook [NS13].

Throughout this thesis, we use a fixed number field K of degree n > 3 over Q,
having ring of integers O, discriminant A, regulator Ry, class number hg
and group of roots of unity px. Elements of the number field K are generally
denoted by lowercase Greek letters, a, 3, v, etc. Minkowski’s theorem [Min67,
p. 261-264] states” that log|Ag| > log(2) - n. The number field K has n
field embeddings into C, which are divided in ng real embeddings and nc¢
conjugate pairs of complex embeddings, i.e., n = ng+2n¢. These embeddings
combined yield the so-called Minkowski embedding K — Kr C @,.x.c C,

a+— (o(a))s, where
Ty — I‘J}.

Kp = {x e @ cC
Here, @ equals the conjugate embedding of ¢ whenever ¢ is a complex

g:K—C

embedding and it is just o itself whenever it is a real embedding. Note that
we index the components of the vectors in Kr by the embeddings of K.
Embeddings up to conjugation are called infinite places, denoted by v. With
any embedding o we denote by v, the associated place; and for any place v
we choose a fixed embedding o,,. There are also finite places v, which are
in one-to-one correspondence with the prime ideals of Q. For finite places
vt oo we denote by p, € Zx their associated prime ideal, for infinite places
v | oo we denote by o, their (chosen) associated embedding.

Composing the Minkowski embedding by the component-wise logarithm of

2

4By Minkowski’s theorem, we have |Ax|Y/™ > 7/4 - —1— > 2 for n > 3.

(n!)2/n
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the entries’ absolute values yields the logarithmic map, denoted by Log.

Log : K* — Log K C @ R, a— (log|o(a)|)e-
o:K—=C

The multiplicative group of integral units O under the logarithmic map
forms a lattice, namely the lattice Ax = Log(Oj)) C Log Kr (see Sec-
tion 2.5.1 for the preliminaries on lattices). This so-called logarithmic unit
lattice has rank r = ng + nc — 1, is orthogonal to the all-one vector (1),
and has covolume Vol(Ag) = /n - 27"¢/2 . R, where the 27"¢/2 factor
is due to the specific embedding we use (see Lemma A.2). We denote by
H = Span(Ag) the hyperplane of dimension r, which can also be defined as
the subspace Log(KR) of Log Kg, where

K= {zekp| [[ |zl=1}.
o:K—C

In other words, H = log KH% is the subspace of Log Kr orthogonal to the
all-one vector (1),. We denote by T'= H/Ak the hypertorus defined by the
logarithmic unit lattice Ax. Note that Kg ~ ], K,, where v ranges over all
infinite places of K, and K,, = C of R depending on whether v is complex or
real respectively. In some cases it is more convenient to use this particular
viewpoint of K. Note that KH% can then be identified with

K ={ze [ K., | [] o)™ = 1}. (2.10)

v|oo v|oo

Note that we take the usual complex absolute value here, which is raised to
the power two whenever K, = C and to the power one otherwise.

Fractional ideals of the number field K are denoted by a,b,..., but the
symbols p, q are generally reserved for integral prime ideals of O . Also, the
symbol m is reserved for the modulus ideal m C Og, a notion from class
field theory. One can think of the primes dividing m as the primes ‘to avoid’.
For a € Zy, we denote ordy(a) = max{k | p* divides a} for the p-valuation
of the ideal a; this can be generalized for elements o € K* by considering
the principal ideal generated by that element. The group of fractional ideals
of K is denoted by Zg; the group of fractional ideals coprime with m is
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denoted by Z%. Principal ideals with generator o € K* are usually denoted
by (). We denote by K™! = (o € O | @ =1 mod m) the ray modulo m,
i.e., the multiplicative subgroup of K* generated by elements in O that are
one modulo m. In many texts the modulus can also include infinite primes
(i.e., embeddings into C); not in this thesis.

For any integral ideal a, we define the norm N(a) of a to be the number
|OK /a|; this norm then generalizes to fractional ideals and elements as well.
The class group of Ok, denoted by Clg, is the quotient of the group Zx by
the subgroup of principal ideals Princk := {(a) € Zg | @ € K}. For any
fractional ideal a, we denote the ideal class of a in Clg by [a].

In some parts of this thesis we need the notion of the idéle group Jx, which
is a topological group defined by the restricted topological product of the

completions of the number field K over all places [[, K, where the restriction
is with respect to the unit groups O)¢ C K. For a modulus m, the idele group
modulo m, Jxm, is defined similarly, by just leaving out the completions
whose place are associated with a prime dividing m. For any modulus m,
the ray K™! embeds diagonally into Jxm, by a — (), € Jgn. Each
component of this diagonal map is just the embedding of the completion
K — K. The quotient of the idéle group (modulo m) and the ray is called
the idéle class group Cr, which can be shown to be the same for any modulus

m (see [Lan12, Ch. VII, §4]).

In this thesis, extra attention is paid to the cyclotomic number fields K =
Q(Gm), for which one can sometimes phrase sharper results due to the fact
thats these fields have more structure. The result in Chapter 5 tailored to
cyclotomic fields relies on the size of the class group hj. = |Clyg+| of the
maximum real subfield K+ = Q((, + () of K, which is conjectured to be
rather small [Mill5; BPRO4]. In Chapter 5, we make the mild assumption
that hj, < (logn)°™, where n = [K : Q] = ¢(m).

An important identity that will play a large role throughout this thesis is the

class number formula, which relates multiple number-theoretic quantities
with the residue at s = 1 of the Dedekind zeta function (x (s) = > qco, W
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2"k . (2m)"C - R - hi
el - VIAK]

PK = hm( 1)Crk (s) (2.11)

2.3.2. The Extended Riemann Hypothesis

Almost all results in this paper rely heavily on the FExtended Riemann
Hypothesis (in the subsequent part of this paper abbreviated by ERH),
which refers to the Riemann Hypothesis extended to Hecke L-functions (see
[IKS04, §5.7]). All statements that mention (ERH), such as Theorem 4.3,
assume the Extended Riemann Hypothesis.

Definition 2.9 (Hecke L-function). Let K be a number field and let x :
JTxm /K™Y — S! be a Hecke character on the idéle class group Cx =
JTgm /K™ of K (see [NS13, Ch. VI and Ch. VII, §6] and Section }.3./)
defined modulo its conductor m. Then we define

L(x,s) = Z X(a)s

o, N
a+m=0p

to be the associated Hecke L-function, where the sum ranges over all integral
ideals of the mazimal order Ok of K, coprime with the modulus m (see, for
example [Neu85, Ch. V, Def. 3.1]).

Definition 2.10 (Extended Riemann Hypothesis). For all number fields
K and all Hecke characters x, all zeroes of the Hecke L-functions that are
in the critical strip 0 < Re(s) < 1, satisfy Re(s) =1/2. Le., for all number
fields K, Hecke characters x and all complex numbers s € C,

[L(x,s) =0 and Re(s) € (0,1)] = Re(s) =1/2.

Remark 2.11. Most of the results in this thesis are phrased in terms
of a fixed number field K. In such a case it is of course not needed to
assume the FExtended Riemann Hypothesis for all number fields; it suffices
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to assume the Extended Riemann Hypothesis for Hecke L-functions arising
from Hecke-characters for the fized number field K.

So, if a theorem in this thesis regards only a single number field K, and it
assumes the Fxtended Riemann Hypothesis, one may weaken this hypothesis
to the Extended Riemann Hypothesis ‘tailored to K

2.3.3. Prime Densities

In multiple parts of this paper, we need an estimate on the number of
prime ideals with bounded norm. This is achieved in the following theorem,
obtained from Bach and Shallit’s book [BS96, Thm. 8.7.4].

Theorem 2.12 (ERH). Let wx(z) be the number of prime ideals of K of
norm < x. Then, assuming the Extended Riemann Hypothesis, there exists
an absolute constant C' (i.e., independent of K and x) such that, for all
T > 2,

T (x) —li(z)| < C - x (nlogx + log |Ak]),
where li(z) = [y 1% ~ s

In certain cases, we prefer a more explicit variant of this theorem that is
due to Grenié and Molteni [GM15, Cor. 1.4].

Lemma 2.13 (ERH). Let m C Ok be an ideal modulus and denote
mi(x) = [{p € I} | p prime and N(p) < 2}

for the number of prime ideals not dividing m and having norm bounded by
x € R. Let w(m) denote the number of different prime ideal divisors of m.

Then, for all z > max((12log |Axk |+ 8n +28)%,3- 10,16 - w(m)?), we have

x
i (@) 2 4dlnz’
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Proof. Denote 1 (x) = |{p € Zx | p prime and N (p) < z}|, i.e., whenever
m = Og. We will prove the statement for this specific case first. By simpli-
fying an explicit result of Grenié and Molteni [GM15, Cor. 1.4], we obtain,
under the Extended Riemann Hypothesis®,

< Vz[6log |Ak| + 4nlogx + 14].

Tr(z) — T (3) — /z du

3 logu

Therefore, we have

t d
i (z) > / L. Vz[6log |Ak| + 4nlogz + 14]
3 logu

> ﬁ — Vzln(z)[6log |Ax| + 4n + 14]

x <1ln(m)2(610g|AK|+4n+14)>> x

~ 2lnz

" Inz Nz
where the first inequality follows from omitting 75 (3) and the second inequal-
ity from [3° h‘i—“u > £ and from the assumption that z > 2* - (6log|Ag| +

In
4n+14)* and z > 3-10'!. Note that with such z, we have In(x)?//z < 2~ /4,
<o that In(z)2(6 log | A i |[+4n+14) < 1/2.

T

For the general case of m # Ok, we need to avoid m; so writing w(m) for
the number of different prime ideals dividing m, we obtain

x (1_2'w(m)'lnx> S T

& (@) 2 (@) —w(m) 2 2Inx T “4lnz

Where the last inequality can be deduced as follows. Since = > 3-10'!, surely
h‘f <z Y2 < (4-w(m))~! and therefore W < 1/2. This proves the
claim. O

Lemma 2.14 (Sampling of prime ideals, ERH). Let a basis of Ok be known
and let P = {p prime ideal of K | N(p) < B} be the set of prime ideals of
norm bounded by B > max((12log|Ak| + 8n + 28)*,3 - 10'1). Then one can
sample uniformly from P in expected time O(n>log? B).

5In the paper of Grenié and Molteni [GM15, Cor. 1.4], only the Dedekind zeta function
Cx(s) =Y, N(a)~* needs to satisfy the condition that all of its non-trivial zeroes lie at
the vertical line R(s) = 1/2.
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Proof. The sampling algorithm can be described as follows. Sample an
integer uniformly in [0, B] and check if it is a prime. If it is, factor the
obtained prime p in O and list the different prime ideal factors {p1,...,px}
that have norm bounded by B. Choose one p; uniformly as random in
{p1,...,pxr} and output it with probability k/n. Otherwise, output ‘failure’

Let q € P be arbitrary, and let N'(q) = ¢/ with ¢ prime. Then, the probability
of sampling q equals n%’ namely % times the probability of sampling g.
Therefore, the probability of sampling successfully (i.e., no failure) equals

[P 1 : B .
wB = Inlog B> Since |P| > Tog B> Py Lemma 2.13.

The most costly part of the algorithm is the factorization of a rational
prime p < B into prime ideals of Og. This can be performed using the
Kummer-Dedekind algorithm, which essentially amounts to factoring a
degree n polynomial modulo p. Using Shoup’s algorithm [Sho95] (which has
complexity O(n? + nlogp) [GPO1, §4.1]) yields the complexity claim. [

2.4. Arakelov Theory

2.4.1. The Arakelov Ray Divisor Group

The Arakelov ray divisor group with respect to a modulus m C O is the

group
Divgm =@ Z x P

pfm v
where p ranges over the set of all prime ideals of Ok that do not divide
the modulus m, and v over the set of infinite primes (embeddings into the
complex numbers up to possible conjugation). For readers that are not yet
familiar with Arakelov ray divisor groups is might be insightful to first
consider the ordinary Arakelov divisor group, which is obtained by putting
m=0 K-

We write an arbitrary element in Divigm as

a:an-(]p[)—FZxV-(]V[),

pm
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with only finitely many non-zero n,. We will consistently use the symbols
a,b,e, ... for Arakelov ray divisors. Denoting ord, for the valuation at the
prime p, there is a canonical homomorphism

() : K™ = Diven, ar— > ordy(a)(p) — > loglow(a)] - ().
ptm v

The divisors of the form (o) for o € K™! are called principal ray divisors.
Here, K™! = (o € Ok | @ = 1 mod m) is the multiplicative subgroup
of K* generated by elements equivalent to one modulo m. We will also
make use of the notation K™ = (a € Og | a mod m € (Og/m)*), the
multiplicative subgroup of K* generated by elements coprime to m. Note
that K™! C K™,

Just as the ideal ray class group is the group of ideals coprime with m
quotiented by the ‘ray’ K™, the Picard ray group is the group of Arakelov
ray divisors quotiented by the group of principal ray Arakelov divisors. In
other words, the Picard ray group Picgw is defined by the following exact
sequence, where jijm1 = pr N K™!, the roots of unity in the ray.

0= pgemn — K™ D Divgen — Picgm — 0.

For any Arakelov ray divisor a = 3>, np - (p) + 22, 2 - () , we denote
its class in the Picard ray group Picgm by [a]; in the same fashion that [a]
denotes the ideal class of the ideal a.

2.4.2. The Arakelov Ray Class Group

Despite the Arakelov ray divisor group and Picard ray group being inter-
esting groups, it is for our purposes more useful to consider the degree-zero
subgroups of these groups. The degree map is defined as follows:

deg : Divgm — R,

Yo e+ w (W)= Y onplogWN(p) + D w+ Yo 2w

ptm pfm v real v complex

(2.12)
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The degree map sends principal ray divisors (o) for « € K™! to zero;
therefore, the degree map is properly defined on Picgm, as well. We sub-
sequently define the degree-zero Arakelov ray divisor group Div%m ={ac
Divgnm | deg(a) = 0} and the Arakelov ray class group Pickw = {[a] €
Picgm | deg([a]) = 0}. In other words, the group consisting of the degree
zero Picard ray classes is called the Arakelov ray class group.

Any Arakelov ray divisor a € Divlm can be decomposed in a finite and an
infinite part, a = ar + aq.

a=Y o)+ w0 (V) (2.13)
ptm N - ,

The finite part af, that consists of a formal integer sum of prime ideals, can
be uniquely associated with an ideal in Z%, i.e., we have

Exp(+f) : Divhm — I, a s Exp(a;) = Hpnp,
pfm

where we use the exponential function Exp to denote the map sending
> plm T (p) to ITpm p™. This map Exp(-) : Divim — Z% has the hyperplane
H as kernel via the inclusion H < Div)m and admits a section d° : % —
Div)-m, defined by the following rule.

d’: 7% — Divhm, a— Zordp(a) - (p) — log(w Z(]u[). (2.14)
ptm v

Occasionally, we also use the non-normalized version of d°, called d : g —
Divgm, which maps into Divgm instead.

d:Ig — Divgm, a— Zordp(a) - (p).
pfm

The infinite part a,, of a consists of a formal real sum of infinite places,
which can be mapped into Kg,

Exp(-oo) : Diviem — Kg, a+ Exp(as) = (e"7), € Kg.
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2.4.3. Relation with Other Number-theoretic Groups

The groups and their relations treated above fit nicely in the diagram of
exact sequences given in Figure 2.8, where the middle row sequence splits
with the section d°. In this diagram we use the notations Opmy = O NK m,1
pgemt = pr N K™ and Princt = {(a) | o € K™} C IR, The group CI}
is called the ideal ray class group with respect to m and is defined by the
exact sequence involved; the group T™ = H/A w1 is the ‘logarithmic ray

unit torus’, with Agm1 = Log(Ogm1) = {(log|o(n)])s | 1 € Ofmn}-

0 0 0

0 — OFfmi/pggm1 — K™Y/ jigms — Princt —— 0

Krn,l
Log () d°
0 /\
0 H Divlm n 0

a — Exp(ar)

0 ™ Pic%m ClE —— 0
0 0 0

Figure 2.8.: A commutative diagram of short exact sequences involving the Arakelov ray
class group.

The (ray) unit groups Og, Om1, the (ray) class groups Clg, Clf, and the
ray groups K™! and K™ are tightly related by an exact sequence. With this
exact sequence one can relate the (relative) cardinalities of these groups.

Lemma 2.15. Let K be a number field and let m C O be any modulus.
Then we have the following exact sequence of groups

0= Ofny — Of = K™/K™! — Cl — Clg — 0.

In particular, |0 /Ofmi || Clf | = ¢(m) | Clg |, where ¢p(m) = [K™/K™!|
= [(Ok /m)7].
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Proof. By considering the kernel-cokernel exact sequence (see Figure A.1)
of the commutative triangle

Kn‘l
N
K™t 77

one obtains the exact sequence
0= Ofns = Of = K™/K™' — Cl — Clg — 0,

where we use the fact that Zj} /K™ ~ Clg by the approximation theorem
[Chi08, Ch. 3, Thm. 1.1]. In particular, one can ‘compress’ this sequence to
an exact sequence of finite groups

0— 0%/0%, — K™/K™! - CIt — Clg — 0,

yielding |05 /Oxmi| - |Cl | = |[K™/K™!| - | Clk |. The isomorphism be-
tween K™/K™! and (O /m)* follows from the following short exact se-
quence, where the map K™ — (Og/m)* sends x/k’ € K™ to (k mod m) -
(k' mod m)~! € (Ok/m)*.

0= K™ 5 K™ = (Og/m)* =0

O]

One would expect that the ray unit torus 7™ = H/Log(Oj1) and the unit
torus T' = H/ Log(Op) differ in volume by |0 /Ox...|. This is true, up to
a correction for whenever the modulus m causes K™! to have less roots of
unity. This happens whenever ¢ Z 1 modulo m for some root of unity ¢ € K.

Lemma 2.16. Let K be a number field and let H = log Kﬂ% be the hyperplane
where the log unit lattice Ax = Log(Ox) and the log ray unit lattice Agm =
Log((’)fx(m,l) live in. Then we have the following exact sequence

0= pgm1 = prg — O /Oy =T =T = 0.

In particular, [pgma| - |Og /Opna| = K| - Vol(T™)/ Vol(T).
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Proof. Applying the kernel-cokernel exact sequence to the following diagram
yields the result.

SN\

Kl ——————— H

Km,1

2.4.4. The Volume of the Arakelov Ray Class Group

It will be proven useful to show that the volume of the Arakelov ray class
group roughly follows the square root of the field discriminant times ¢(m) =

(O /m)*|
Lemma 2.17 (Volume of Pic%m). Forn = [K : Q] > 1, we have

Pic%n| = | CI™ | - Vol(T™) = "Tﬁ;f' - d(m) - hye - Vol(T)

B ’/T/[j;\l’ - p(m)hg Ric/n2 "2, (2.15)

and
1
log|Picha| < log é(m) + 1 5 log(|Ax[/") + loglog(| A ") + 1),

where ¢(m) = |(Ox /m)*|. A simpler, derived bound is

log(Vol(Pic%w)) < log N (m) + log |Ak|. (2.16)
Proof. The first identity involving the volume of the Arakelov ray class
group follows from the exact sequence in Figure 2.8. The second one can
be deduced from the identities |Cl | - [Ox @ Ogni] = ¢(m) - hx and

Vol(T™) = Vol(T) - [Of : Ogewn] - [pgma|/|px| (see Lemmas 2.15 and 2.16).
The third one follows from the volume computation of 7" in Lemma A.2.

64



2.4. Arakelov Theory

The bound on the logarithm is obtained by using % < 1, applying
the class number formula [NS13, VIL.§5, Cor. 5.11] and Louboutin’s bound
[Lou00] on the residue pg of the Dedekind zeta function at s = 1:

m)prVI|Ak| - ek Vi
21 (2+/27)1C

1 A n—1
< p(m) - /|Ak| - pr < d(m)y/|Ak] (eog|K|>

2(n—1)
< o(myla (B2

Pickn] < o(m)hsc Ric/m2 /2 =

For the bound on the logarithm, we write
nlog(elog|Ax|/n) = nloglog(|Ax|"™) + n.

For the simpler bound in Equation (2.16) we use the fact that €1<|Jg||ff»‘\ <1

for all z € R. Therefore,

etog (1877 )

[Ax| =D

and thus (EICEg'AK‘) <V]Axkl. O

<1,

We let U (Pic%m) = m Ipico, denote the uniform distribution over the

Arakelov ray class group.

Fourier theory over the Arakelov ray class group

As the Arakelov ray class group Pic(}(m is a compact abelian group, every
function in® Lo(Pickw) = {f : Pichm — C | fPic(;(m |fI*> < oo} can be

5The measure on the Arakelov class group is unique up to scaling — it is the Haar
measure. By fixing the volume of Pic%m as in Lemma 2.17, we fix this scaling as well. We
use then this particular scaling of the Haar measure for the integrals over the Arakelov
class group.
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uniquely decomposed into a character sum

f: Z Ay X,

XEPich
with a, € C. In the proof of Theorem 4.3, we will make use of Parseval’s
identity [DE16, Thm. 3.4.8] (see also Theorem 2.1) in the following form.

1
Joo M= = g 3 P (217

icym —

xEPic%m

2.4.5. An Example of an Arakelov Class Group

We compute the Arakelov class group of a totally real cubic field. Let
K = Q(«) where a € C is defined by the polynomial

f(z) = 2% — 2% — 9z + 10. (2.18)

Computing the ring of integers

The discriminant of this polynomial equals A(f) = 1957 = 19 - 103 > 0.
Because this is square free, the ring of integers of K equals O = Z[a], and
Ag = 1957. Since the discriminant is positive, the cubic field must be totally
real, by Brill’s theorem. The Minkowski bound can then be computed as
My = /][Ag|- 3 ~ 9.83.

Computations in the class group

The class group is therefore generated by the primes with norm at most
9.83, which are the four prime ideals po, qo,p5,q5. This can be seen by
factoring the polynomial f(z) modulo F, for p = 2,3,5,7; noting that f
mod 3 and f mod 7 are irreducible, and f(z) = z(z? + 2 +1) mod 2 and
f(z) = x(2? + 4z + 1) mod 5. We have (2) = paqe and (5) = psqs, so, for
the class group it is enough to consider only p2 = (2, ) and p5 = (5, a).
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Additionally, we have (a) = pops and (o — 2) = p2 This can be seen by
computing the norms of o and o — 2, which equal f(0) = 10 and f(2) = —4
respectively. Since (a — 2) C (2,a) = py we must have (a — 2) = p3.
Combining these relations yields that the class group is generated by po and
is either trivial or of order 2. We will show that the latter is the case; for
that we need the fundamental units.

Computing units and (a multiple of) the regulator

The elements o — 1 and « — 3 are units in O, since N(a — 1) = f(1) =1
and N(a — 3) = f(3) = 1. Under the Minkowski embedding, the element
a sends to (—3.04096,1.12946,2.9115), and 1 to (1,1,1). Therefore, the
images under the Minkowski embedding of &« — 1 and o — 3 are respec-
tively ~ (—4.04096,0.12946, 1.9115) and ~ (—6.04096, —1.87054, —0.0885).
Taking the Logarithmic image of the absolute values yields Log(a — 1) =
(1.40, —2.04,0.64) and Log(av—3) = (1.80,0.63, —2.42). Putting these vectors
into a matrix, one obtains

140 —2.04 0.64

= 2.19
1.80 0.63 —2.42|’ ( )

of which the absolute determinant of any 2 x 2 minor equals 4.554, which
must be an approximation of a multiple of the regulator Rg. So surely,
Ry < 4.554.

Computing an approximation of the Dedekind residue

Computing an approximation of the residue of the Dedekind zeta function
pr = limg_,1(s — 1){x(s) by means of a truncated combined Euler product,

o [I<100(1 —1/p)
HN(p)<100(1 =1/ N(p))

By the class number formula (see Equation (2.11)), we have that

i VIAK] - |pk| 0.827-44.24 -2
= INR . (27{')”@ ~ 23 K (27'(')0

we obtain

= 0.827.

Rihk =9.15
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Since h € {1,2} and Rx < 4.554, we must have hg = 2 and Rg =~ 4.554.

Assembling the Arakelov class group from the unit group and the class
group

We have that H = {(z,y,2) € R® |  + y + 2 = 0} equals the hyperplane
where the logarithmic unit lattice lives in, and the log unit lattice equals
Ag = L(B), where L(B) is the lattice generated by the rows of the matrix
in Equation (2.19). The log unit torus is then equal to T'= H/L(B).

The Arakelov class group Pic} of the cubic field K then has two connected
components, one consisting of T', and one consisting of T+ [d°(p2)] (see
Equation (2.14)). The maps of the exact sequence

0 — T — Pic% — Clg — 0

just consist of inclusion T < Pic) and projection Pic}, — Clg, where T C
Pic% sends to the trivial ideal class, and T + [d°(p2)] sends to [ps] € Clk-.

Computing elements in the Arakelov class group

We will compute the positions of [d°(p5)], [d°(q2)] and [d°(p17)] in the
Arakelov class group, where ps = (5,a), g2 = (2,a® + a + 1) and p17 =
(17, 4+ 1). This accounts to computing the discrete logarithm in the ideal
class group and reducing modulo the logarithmic unit lattice.

As we have psps = (a) and p3 = (o — 2), we compute p5 = (a)p; ' =

() - (o —2)7! - po. In terms of divisors, we have

( ) = (ps) — (p2d — Log(a/(a —2)),

where we use the abbreviation Log(8) = >, log|o,(5)] - (v). So,

(07

o — 2

d(p5) = (ps) — § - Log(5) = (pa) + (——) + Log(——) — § - Log(5).

= d(p2) + () + & - Log(2/5) + Log(

o o)
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Taking Arakelov classes, thus letting vanish the part (a/(a —2)) (as it is a
principal divisor), we obtain that

[d°(p5)] = [d°(p2)]

+ 1 Log(2/5) + Log(a/(a — 2))
~ [d°(p2)] +
_|_

(—0.81, —0.05,0.86)
(2.39,—1.46,—0.92) € [d*(p2)] + T

where the last computation just adds both rows of the logarithmic unit
matrix from Equation (2.19) (in order to get in a fixed fundamental domain).
A similar computation for qo, satisfying paqe = (2), gives (2/(a — 2)) =
(q2) — (p2) + Log(2/(av — 2)), and therefore

[d°(q2)] = [d°(p2)] — § Log(2) + Log(2/(e - 2))
[d°(p2)] + (—1.15,0.60, 0.55)
[d°(p2)] + (2.05, —0.81, —1.23) € [d°(p2)] + T.

S

Q

&

where, again, the last computation adds both rows of the logarithmic unit
matrix from Equation (2.19). For p;7 = (17, + 1), compute the norm of
a+ 1 to see that it equals 17, therefore, (o + 1) = (p17) — Log(cr + 1). This
implies

[d°(p17)] = —3 Log(17) + Log(a + 1) ~ (—0.23,—-0.19,0.42)
~ (1.57,0.44,-2.00) € T

where the last computation adds the last row of the logarithmic unit matrix
from Equation (2.19).

The Arakelov classes of the primes g9, p5 and p17 are portrayed in Figures 2.9
and 2.10, in which the full Arakelov class group of K = Q(«) is displayed.
In Figure 2.9, the primes are visualized in a two-dimensional fundamental
domain (a disjoint union of two parallelograms) whereas in Figure 2.10 the
toroidal nature of the Arakelov class group is exemplified.
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(1.80,0.63) (1.80,0.63)

Figure 2.9.:

70

(1.40, —2.04) (1.40, —2.04)

In this picture, the Arakelov class group of K = Q(«) is portrayed, where
a € C is defined by the polynomial f(z) = x* — 2% — 92 + 10. Due to the
fact that the class group has order 2 and the unit group is free of rank 2, the
Arakelov class group can be portrayed as a disjoint union of two parallelograms,
serving as a fundamental domain. The connected component of the unit [Ox]|
is the white parallelogram on the left-hand side; the gray parallelogram is
associated with the non-trivial ideal class group element. Prime ideals up to
norm 113 are displayed as points, where the color hue varies with the size
of the associated prime number, and the size of the point with the residue
class degree of the prime ideal. The prime ideal g2 = (2, +a + 1) of residue
class degree 2 can be seen in the gray parallelogram as the rather large dot
labeled with ‘2. The prime ideal ps = (5, ) is located at the right bottom of
the gray parallelogram, as a purple point. The prime ideal p17 = (17, + 1)
is principal and it is therefore located in the white parallelogram, at the top
right corner, as a blue point.



2.4. Arakelov Theory

113 41
97 59

103

Figure 2.10.: This picture shows the Arakelov class group of the same number field K as
in Figure 2.9. One obtains this image by ‘gluing’ the gray parallelogram into
a gray torus and the white parallelogram into a white torus from Figure 2.9.
The prime ideals with norms up to 113 are displayed accordingly. Note that
the location of the smaller prime ideals seem to be skewed on the gray torus;
but as the norms increase, the division among the two tori, but also on the
tori seem to get more and more uniform. This phenomenon can be seen
as a manifestation of the random walk theorem, which states that from
a certain lower bound on the norms, prime ideals become more and more
uniformly located on these tori; assuming the extended Riemann hypothesis
(see Theorem 4.3).

71



2. Preliminaries

2.5. Lattices

2.5.1. General Lattices

A lattice A is a discrete subgroup of a real vector space. In the following, we
assume that this real vector space has dimension m and that the lattice is full-
rank, i.e., span(A) equals the whole real space. A lattice can be represented
by a basis B = (by,---,by,) such that A = {}°, 2;b;, z; € Z}. Important
notions in lattice theory are the covolume Vol(A), which equals the volume of
the hypertorus span(A)/A (alternatively, Vol(A) is the absolute determinant
of any basis of A); the first minimum A;(A) = min,cp\qoy [|v]| ; and the
last minimum A, (A), which equals the minimal radius » > 0 such that
{veA]||v| <r}is of full rank m. The equivalent notions with respect
to the maximum norm || - ||« instead of the Euclidean norm are denoted
by )\goo) (A) and Al (A). We will also use the following notation for the
covering radius; cova(A) (and cove(A) for the maximum norm analogue),
which is the minimum 7 > 0 such that any element = € span(A) is at most
r-close to a lattice point.

For any (full-rank) lattice A C R™ we denote by A* = {v € R™ | (v,{) €
Z for all £ € A} the dual lattice of A. It is a lattice of full rank and, further-
more, for any basis B of A holds that D = (B7)~! is a basis of A*.

We will be interested into the following algorithmic problem over lattices.
Definition 2.18 (y-Hermite Shortest Vector Problem). Given as input a

basis of a rank m lattice A, the problem v-Hermite-SVP consists in computing

a non-zero vector v € A such that

Joll < - Vol(A)/™.

2.5.2. Divisors and ldeal Lattices

It will be proven useful to view both ideals and Arakelov divisors as lattices
in the real vector space Kg, where K has its (Euclidean or maximum)

72



2.5. Lattices

norm inherited from the complex vector space it lives in. Explicitly, the
Fuclidean and maximum norm of a € K are respectively defined by the
rules ||a]|2 =3, |o(a)]? and ||a/|s = max, |o(a)|, where o ranges over all
embeddings K — C. By default, ||«|| refers to the Euclidean norm | «||2.

For any ideal a of K, we define the associated lattice a C Kg to be the
image of a C K under the Minkowski embedding, which is clearly a discrete
subgroup of Kg. By slightly abusing the notation we both denote the ideal
and the associated lattice with the same symbol a. In particular, Ok is
a lattice and we will always assume throughout this thesis (except stated
otherwise) that we know a Z-basis (by, - - ,by) of Ok. For Arakelov divisors
a=>,n-(p) + 3,z - (V), the associated lattice is defined as follows.

Exp(a) = {(™ - o(a))y | a € [[p™} = dlag(%a)-Hp"ngR,

where diag denotes a diagonal matrix. We have Vol(a) =+/|Ax|N(a) for
ideals a € Tk and, for Arakelov divisors a € Divg,

Vol(Exp(a)) = /| Ax| - He%- HP"” — 1A - edes@).

The associated lattice Exp(a) of a divisor is of a special kind, which we call
ideal lattices, as in the following definition.

Definition 2.19 (Ideal lattices). Let K be a number field with ring of
integers Ok. An ideal lattice of K is a Og-module I C Kg, with the
additional requirement that there exists an x € Kr\{0} such that 21 C Ok.
We denote the group of ideal lattices by IdLat .

Note that the lattices a for a € Tk are special cases of ideal lattices, which we
will call fractional ideal lattices. Since the Minkowski embedding is injective,
the Minkowski embedding provides a bijection between the set of fractional
ideals and the set of fractional ideal lattices.

The set IdLatg of ideal lattices forms a group; the product of two ideal
lattices I = za and J = yb is defined by the rule I - J = xyab. It is clear that
Ok C Kp is the unit ideal lattice and z~'a~! is the inverse ideal lattice of za.

73



2. Preliminaries

The map Exp(-) : Div}y — IdLatg,a +— Exp(a) sends an Arakelov divisor

to an ideal lattice. The image under this map is the following subgroup of
IdLatg.

IdLat} = {za | N(a) H:ca =1 and z, > 0 for all o}.

Definition 2.20 (Isometry of ideal lattices). For two ideal lattices L, L’ €
IdLat}, we say that L and L' are K-isometric, denoted by L ~ L', when
there exists (&) € Kr with |{,| = 1 such that (&), - L = L'.

In other words, we consider two ideal lattices to be K-isometric if they only
differ in component-wise complex phase. Being K-isometric is an equivalence
relation on IdLat% that is compatible with the group operation.

Relation between ideal lattices and Arakelov classes

Denoting Isok for the subgroup {L € IdLat), | L ~ Ok} C IdLat%, we
have the following result.

Lemma 2.21 (Arakelov classes are ideal lattices up to isometry). Denoting
P : IdLat} — Pic% for the map xa — >opordp(a)p] + 32, log(zs, ) [V]
modulo principal divisors, we have the following exact sequence.

0 — Isog — IdLat® £ Pic% — 0.

Proof. This is a well-known fact (e.g., [Sch08]), but we give a proof for
completeness. It suffices to show that P is a well-defined surjective ho-
momorphism and its kernel is Isok. In order to be well-defined, P must
satisfy P(za) = P(2'a’) whenever xa = 2’a’. Assuming the latter, we obtain
7' Ok = (/)7 la = a0k, for some a € K*, as the module is a free Of-
module. This implies that (z7'2'), = o(na) for all embeddings o : K — C,
for some unit 7 € Oy . Therefore, we have, P(za)—P(z'a’) = 3, ordy () [p]+
> log((z6,) el )[v] = (na)); ie., their difference is a principal divisor,
meaning that their image in Pic% is the same.
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One can check that P is a homomorphism, and its surjectivity can be proven
by constructing an ideal lattice in the pre-image of a representative divisor
a =Y, np[p]+>, zy[v] € Divi of an Arakelov class [a], e.g., (€7 )o -], p™.

We finish the proof by showing that the kernel of P indeed equals Isoxk.
Suppose za € ker(P), i.e., P(za) = 3, ordy(a)[p] + 3=, log(ws,)[V] = (a)
is a principal divisor. This means that a = aOk and = = (Jo(a)|™!),,
ie., ra = (Jo(a)|1)eaOk = (%)J - Ok, so za ~ Ok, implying za €
Isok. This shows that ker P C Isok. The reverse inclusion starts with the
observation that za ~ O directly implies that a = aOf is principal, by the
fact that za is a free Ox-module. So, (z,0())s - Ox = 20Ok = (&5)s - Ok
for some ({y)s € Kgr with [{,| = 1. Therefore, |z,0(na)| = [&]| = 1, ie.,
25| = |o(na)|~! for some unit n € OF. From here one can directly conclude
that P(za) = P((lo(na)|™!)eaOk) = (na)), a principal divisor. O

Bounds on invariants of ideal lattices

Denote T'(A) = A (A)/A1(A), and define, for a fixed number field K:

'k = sup T'(Exp(a)) (2.20)
a€eDivg
Recall the notion of the covering radius; cova(A) (and cove(A) for the
maximum norm), which is the minimum r > 0 such that any element
x € span(A) is at most r-close to a lattice point. For ideal lattices, we then
do have the following useful bounds, which are used often throughout this
thesis.

Lemma 2.22. For any modulus m C Ok and any divisor a € Divim,

(i) Tic < A (Ok) < [Ag[V7;
(ii) For cyclotomic number fields K, T = 1;
(iii) A\u(Exp(a)) < /n - Tk - Vol(Exp(a))'/";
(iv) covee(Exp(a)) < cova(Exp(a)) < n/2-I'k - Vol(Exp(a))'/™.
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Proof. The bound A%OO)(OK) < |Ag|Y™ can be proven by means of the
techniques of [Bha+20, Thm. 3.1], as is done in Theorem A.4 of Appendix A.1.
To obtain the bound 'y < ,\530) (Ok), pick an arbitrary divisor a € Divgm
and choose a shortest element za € Exp(a) with x = Exp(as) and « €
Exp(af) € Zp. That means ||za|| = A1 (Exp(a)). Then Exp(a) D z - («), and
therefore

Mn(Exp(a)) < Aoz - (@) < [lzallz - A7 (Ok) = M (Exp(a)) - A7 (Ok),

which proves part (i). Part (ii) follows from part (i) and the fact that
IIC|l = ||1]] for roots of unity ¢ € K. Part (iii) is essentially Minkowski’s
bound A (Exp(a)) < v/n Vol(Exp(a))/™ combined with the definition of T'f¢.
The last item follows from the fact that cova(A) < /n/2- A, (A) [Mic]. O

2.5.3. The Gaussian Function and Smoothing Errors

Let n be a fixed positive integer. For any parameter s > 0, we consider the
n-dimensional Gaussian function

_ mlle)?
pg") R"—>C,x—e 2,

(where we drop the (n) whenever it is clear from the context), which is well
known to have the following basic properties.

Lemma 2.23. For alls >0, n € N and z,y € R", we have [, pn ps(2)dz =
s", .F]Rn{ps} = nyR" ps(y)€_27m<y">dy = Snpl/s ’ ps(x)2 = ps/\@(ﬂf) and
VPs(@)ps(y) = pas(z +y)p2s(z —y).

Remark 2.24. From these properties it follows that the the Lo-norm of

z s s™2 . Pl/s(x) equals 1, i.e., Hsm/2 ’ pl/s(x)H]%%m =L

The following two results (and the variations we discuss below) will play an
important role and will be used several times in this paper: Banaszczyk’s
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bound, originating from [Ban93], and the smoothing parameter, as introduced
by Micciancio and Regev [MR07]. They allow us to control

ps(X) = Z ps(x)

zeX
for certain discrete subsets X C R™. For ease of notation, we let

B(n) . (27rez2>n/2 e_mz

n

which decays super-exponentially in z (for fixed n). In particular, we have
Bt(n) <e 't forallt> v/n. The following formulation of Banaszczyk’s lemma
is obtained from [MS18, Eq. (1.1)].

Lemma 2.25 (Banaszczyk’s Bound). Whenever r/s > /5=,

ps(A+6)\B,) < B - (1),
where B, = B(0) = {x € R" | [zl <r}.

Definition 2.26 (Smoothing parameter). Given an e > 0 and a lattice A,
the smoothing parameter 7.(A) is the smallest real number s > 0 such that
p1/s(A"\{0}) < e. Here, A* is the dual lattice of A.

Lemma 2.27 (Smoothing Error). Let A € R™ be a full rank lattice, and let
s > nz(A). Then, for any t € R™,

n n

s
gps(A-l—t)S(l—i-E)detA.

(1- E)detA

(2.21)

We have the following two useful upper bounds for full-rank n-dimensional
lattices A [MRO7, Lm. 3.2 and 3.3]: n-(A) < /log(2n(1 +1/¢)) - A\n(A) for
all e > 0 and 71 (A) < mo-n(A) < /A1 (A*) < /n- A\p(A). The latter leads
to the following corollary.
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Corollary 2.28. Let L be an ideal lattice in IdLaty . Let t € R™ be arbitrary
and s > n - \y(Ok) - VOl(L)V/™. Then it holds that

po(L — 1) - Vol(L)

STL

-1 <27, (2.22)
Proof. By the assumption on s and by Lemma 2.22, we have s > n -

M(Of) - VOl(L)Y™ > /- A\p(L) > 19—n (A). The result follows then from
Lemma 2.31. OJ

Alternative descriptions of the smoothing bound

Imitating techniques from Micciancio and Regev [MR07, Lm. 3.2], we have:

Lemma 2.29. Let s > 2. Then P1/s(A\0) < 2+ By (ax)-
As a direct corollary, we have the following result.

Corollary 2.30. Let s > 2/m , and let © € R™ with ||z|s < 1/2. Then

Proof. We have py,(Z"™\{0} +z) < pl/s((Zm+x)\B%) < Boj2 - prys(ZM),
where the second inequality follows from Lemma 2.25. Using Lemma 2.29
to argue that py/,(Z™) = 1+ p1/,(Z™\0) < 1+2- s < 2 then proves the
claim. O

The following lemma, which combines [MR07, Lm. 4.1] and [MR07, Lm. 3.2],
controls the fluctuation of the sum ps(A + ¢) for varying t € R™.

Lemma 2.31 (Smoothing Error). Let A € R™ be a full rank lattice, and let
s > /m/Ai(A*). Then, for any t € R™,
Sm Sm

(1-2- 55/\1(A*))m <ps(A+t) < (1+2- ﬁs,\l(A*))m- (2.23)
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Corollary 2.32. For s > A;{T") and for any t € R™, we have ps(A +t) <
25

det A

Proof. Using Lemma 2.31 and noticing 2 - B4y, (a+) < 2+ B, < 1 yields the
result. O

2.5.4. Gaussian Distributions

In this work, both discrete and continuous Gaussian distributions play a
major role. We denote both of these distributions with Gx ., where the
subscript X is a metric space which supports the distribution and thus
indicates whether the Gaussian is discrete or continuous. More concretely,
for discrete spaces X like lattices, Gx s a discrete Gaussian, whereas for
continuous spaces it is a continuous Gaussian. For the cases of a vector space
and a lattice, the definition is spelled out below.

Continuous Gaussian distribution. For a real vector space H of dimension
n, a parameter s > 0 and a center ¢ € H, we write Gy 5. the continuous
Gaussian distribution over H with density function ps(z — ¢)/s™ for all
x € H. When the center c is 0, we simplify the notation as G s.

Discrete Gaussian distributions. For any lattice L C R™, we define the
discrete Gaussian distribution over L of standard deviation s > 0 and center
c € R™ by

ps(z —c)
Ve €L, G ge= "t
bse = L —¢)

When the center c is 0, we simplify the notation as Gy, ;.

2.6. The Lipschitz Condition

Theorem 2.33 (Rademacher’s theorem). A Lipschitz function £ : R™ /A —
H has weak partial derivatives O, ,f : R™ /N — H lying in La(R™/A). In
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particular,

> 10, £ [[m/a < Lip(£)*.
j=1

Proof. Combining the proof of [Hei04, Thm. 4.1 and 4.9] and [Vil85, Thm. 2]
on measures of compact sets, we obtain this result. ]

Corollary 2.34. Let f : R™/A — H be a Lipschitz-continuous function,
and denote by |cg<) the vectorial Fourier coefficients of £. Then,

> {eple) < Lip(f)

e T Am 232 '
e>5

Proof. Since f is Lipschitz, we can apply Theorem 2.33. Furthermore, the
identity [f(2)) = Y peepx [co- )™ @) implies that

|0, £ () = 2mi Z C3lees) e2mi@ )
£ eA*

almost everywhere ([Wer07, Lm. V.2.11] or [RA08, Lm. 2.16]). Finally, given
that ZT:1||8xjf||]§m/A < Lip(f)2, Plancherel’s identity implies that

Lip(£)? 2 ) 1|05, fllfm/a = 47 Y [1€°]]3 - co-|ee)

j=1 *eN*
>an? S |13 (e lews) = ABPR ST (eelere),
*eN* r*eA*
le*]l2>B le*]l2>B
from which the claim follows. O
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3.1. Summary

This chapter is about a complexity analysis of a slightly modified algorithm
of Eisentrager et al. [Fis+14] that quantumly solves the continuous hidden
subgroup problem. This problem consists of finding a ‘hidden lattice’ A in
R™ given a (possibly) quantum function f : R™ — S that is periodic with
respect to this lattice A. This computational problem falls into the class of
the so-called ‘period finding problems’.

This quantum algorithm mimics the blueprint of Shor’s algorithm for finding
a hidden subgroup H in a discrete abelian group G, given an oracle function
on the group that is strictly periodic with respect to H. This blueprint
consists of consecutively sampling a uniform quantum superposition over
all group elements, applying an oracle call to the H-periodic function, and
computing a discrete quantum Fourier transform. Then, one measures to
obtain a character y € G that has H in its kernel. Assembling enough of
such characters allows to retrieve H itself.

The quantum algorithm solving the continuous hidden subgroup problem

The quantum algorithm of this chapter deviates from this blueprint in a
few ways. (1) Since the ambient group R™ is continuous, we need to cut-off
and discretize this space to get something finite and thus processable by a
quantum computer. This has as a consequence that the Fourier transform
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becomes discretized as well, inducing errors with respect to the continuous
Fourier transform. (2) The initial state of this quantum algorithm does not
consist of a uniform quantum sample but of a Gaussian state instead. This
is done to ease the analysis, as both the Gaussian function and its Fourier
transform (which is also a Gaussian function) have tight tail bounds. (3)
The measurement output is, due to the cut-off and discretization, always
an approximation of a dual lattice vector £* € A* (which can be seen as a
character of R™ with A in its kernel). So, in the end, we cannot expect more
to gain from this algorithm than an approzimate basis B of the lattice A.
(4) Such an approximate basis is obtained as follows. By sampling many
approximate £* € A*, LLL-reducing these samples to an approximate basis
D of the dual lattice A*, and inverting and transposing D, one retrieves an
approximate basis B of A.

Analysis of the algorithm

Each deviation from the original ‘hidden subgroup problem blueprint’ causes
difficulties; mostly those difficulties take the shape of discretization errors. We
show how to solve these difficulties per deviation. Tackling these difficulties
was already partially done by Eisentréger et al. [Eis+14]; we revisit their
work to obtain a more explicit and precise complexity.

(1) The discrete Fourier transform and the continuous (real) Fourier trans-
form can be shown to differ not too much if their input function is continuous
enough. A large part of this chapter (Section 3.5) is devoted to show that
if the A-periodic oracle function is Lipschitz continuous, the induced error
by using a discrete Fourier transform instead of a continuous one can be
reasonably bounded.

(2) For the initial input to be Gaussian, one needs to know how to actually
assemble this state on a quantum computer. Such a Gaussian superposition
has already been shown to be computable in polynomial time by Kitaev and
Webb [KWO08], but for completeness we included a more precise complexity
estimate in Appendix A.5.
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(3) Due to the discrete nature of the quantum algorithm, the output dual
lattice point can only be approximated within a certain distance. The
maximum allowed distance (relative to the minimum distance Aj(A*) of the
dual lattice A*) will be a parameter in the algorithm, called 6 > 0.

One of the problems that might occur is that the output dual lattice points
are not equidistributed enough on A*, thus not giving enough information
to retrieve a basis of A. An extra assumption on the A-periodic function f
is needed to avoid such a situation; which we call separating. A separating
A-periodic function can be intuitively thought of as being not too constant.
Showing that such an oracle will yield equidistributed points in A* is the
object of Section 3.6.

(4) From many such d-close dual lattice points one can compute an ap-
proximate basis of the dual lattice A* by means of LLL-reduction; from
this approximate dual basis one can obtain a basis of A by inversion and
transposition. These operations (LLL-reduction and inversion) are quite
numerical unstable, meaning that they make existing errors in the input
progressively larger. Using a result of Buchmann and Kessler [BK96] one
can reasonably bound the final error (see Section 3.7).

Relation with the Arakelov (ray) class group

The computation of the Arakelov (ray) class group can be phrased in terms
of a hidden lattice problem; a fact that can already be inferred from the
original applications of the hidden lattice problem, namely computing (S)-
unit groups and class groups [BS16; Eis+14] in works of Biasse, Song and
Eisentrager et al. By a slight modification in formulation of the ideas in
these papers one can construct an oracle on the Arakelov divisor group
that is periodic with respect to the principal divisors. In this modification,
a ‘reduced’ version of the Arakelov (ray) divisor group is used, one with
only finitely many prime ideals, that are required to generate the ideal class
group. Finding the periodicity of this oracle then allows to find explicit
relations that define the Arakelov (ray) class group.
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At the time of writing, a precise complexity estimation (beyond polynomial
time) of the oracle function in this approach to quantumly compute Arakelov
(ray) class groups is still open.

3.2. Introduction

The Hidden Subgroup Problem

Among all quantum algorithms, Shor’s algorithm [Sho94] for factoring and
finding discrete logarithms is singular by its cryptanalytic implications. Due
to progress toward the realization of large quantum computers, this cele-
brated algorithm is now motivating the standardization of quantum-resistant
schemes [Nat17], in preparation of a global update of widely deployed en-
cryption and authentication protocols.

The core idea of quantum period finding [Sho94] is not limited to factoring
and discrete logarithm. The Hidden Subgroup Problem, formalized in [ME9S8],
serves as a convenient interface between the quantum-algorithmic techniques
for period finding, and applications to solve other computational problems,
in particular problems arising from number theory. We will here discuss only
the case of commutative groups. The cases of non-abelian groups such as
dihedral groups are very interesting as well and have fascinating connections
with lattice problems [Reg04b]; however, no polynomial time algorithm is
known for those cases, and the best known algorithm has sub-exponential
complexity [Kup05], using very different techniques.

The simplest version of the Hidden Subgroup Problem consists of finding
a hidden subgroup H in a finite abelian group G, when given access to a
strictly H-periodic function f : G — S. Here, in the language of represen-
tation theory, the off-the-shelf period-finding quantum algorithm finds a
uniformly random character y € G that acts trivially on H. Shor’s origi-
nal algorithm [Sho94] for integer factoring finds a hidden subgroup H in
the ambient group Z. The infiniteness of Z induces some “cut-off” error;
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nevertheless, the distribution of the algorithm’s output is still concentrated
around the multiples of the inverse period.

A generalization to the real line H = R was given by Hallgren [Hal07] and
allows to solve Pell’s equation. The case of real vector space of constant
dimension H = R has also been studied [Hal05; SV05], and permits the
computation of unit groups of number fields of fixed finite degree.

The Continuous Hidden Subgroup Problem

The latest generalization of the HSP algorithm, given by Eisentréger, Hall-
gren, Kitaev and Song in an extended abstract [Eis+14], targets the ambient
group G = R™ (for a non-constant dimension m) with a hidden discrete sub-
group H = A, i.e. a lattice. Next to the ambient group R™ being continuous,
an additional special feature is that the A-periodic function f is assumed
to produce a “quantum output”. More formally, f : R™ — S, x — |f(x)),
where S is the state space of a quantum system, and the HSP algorithm is
given access to a unitary that maps |z)|0) to |z)|f(z)). A crucial observa-
tion here is that |f(x)) and |f(y)) are not necessarily orthogonal (or even
distinct) for distinct z and y modulo A. In other words, it is not assumed
that f is strictly periodic, but merely that |f(z)) and |f(y)) are “somewhat
orthogonal” for x and y that are “not too close” modulo A, and that f is
Lipschitz continuous.

More specifically, they consider a variation of the standard HSP algorithm
in order to tackle the Continuous Hidden Subgroup Problem (CHSP). In
order to deal with the continuous nature of the domain R™ of f, the given
HSP algorithm acts on a bounded “grid” of points within R™. Additionally,
the algorithm is modified in the following ways: (1) The initial state is not a
uniform superposition (over the considered grid points in R™) but follows a
trigonometric distribution, and (2) the quantum Fourier transform is done
“remotely”, i.e., rather than applying it to the actual register, the register is
entangled with an ancilla and the quantum Fourier transform is then applied
to the ancilla instead. According to Eisentrager et al. [Eis+14], applying the
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quantum Fourier transform directly would make the resulting approximation

errors difficult to analyze.

As an application, Eisentriger et al. also gave a quantum polynomial time
algorithm for computing the unit group of a number field in their arti-
cle [Eis+14]. This was generalized by Biasse and Song [BS16] to the compu-
tation of S-unit groups, and therefore to the computation of class groups
and to finding a generator of a principal ideals. This led to solving the short-
est vector problem in certain ideal lattices for non-trivial approximation
factors [Cra+16; CDW17; PHS19]. While the cryptanalytic consequences for
ideal-lattice based cryptography seem limited so far [DPW19], these results
demonstrate a hardness gap between ideal lattices and general ones.

Our Contributions

The goal of this chapter is to provide a complete, modular, and quantitative
analysis of (a slightly modified version of) the Continuous HSP quantum
algorithm given by [Fis+14]. More concretely, we provide an explicit bound
on the number of qubits needed by the algorithm, clarifying the dependency
on the parameters of the Continuous HSP instance and on the required
precision and success probability. This shows explicitly in what parameters
the algorithm is polynomial time and with what exponent.

The algorithm that we consider and analyze differs from the one considered
in [Eis+14] in the following points:

e First, we specify the initial state of the algorithm to have Gaussian
amplitudes, while [Fis+14, Sec. 6.2] suggests to use a cropped trigono-
metric function; as far as we can see, our choice makes the analysis
simpler and tighter thanks to the well known tail-cut and smoothness
bounds of Banaszczyk [Ban93] and Micciancio and Regev [MRO7].

e Secondly, we do not make use of a “remote” Fourier transform but
instead follow the blueprint of Shor’s original algorithm in that respect;
the claimed advantage of the “remote” Fourier transform is unclear to
us.
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These modifications simplify the algorithm and its analysis. Due to the lack
of details given in [Fis+14], we can not state a complexity comparison, but
we think this variation is at least as efficient as the original algorithm.

Our analysis is divided into four parts, each summarized by a formal state-
ment given in Sections 3.3.3 to 3.3.6, leading to the main theorem (Sec-
tion 3.3.2). We insist on this modular presentation, so as to enable future
work on optimization and specialization of this algorithm to instances of
interests; specific suggestions follow.

Dual lattice sampling. In the first part, which is the technically more
involved one, we show that the appropriately discretized and finitized, but
otherwise (almost) standard HSP quantum algorithm produces sample
points in R™ that lie close to the dual lattice A* with high probability.
More precisely, and more technically speaking, we show that the algorithm’s
output is a sample point close to £* € A* with probability close to (cg«|ce=),
where the vectors |cg+) are the Fourier coefficients of the function f. This is
in line with the general HSP approach, where for instance Shor’s algorithm
for period finding over Z produces a point that is close to a random multiple
of the inverse period, except with bounded probability.

In this first part (Section 3.4 and Section 3.5), we bound the complexity of
the core algorithm in terms of the error probability that we allow in the
above context of a sampling algorithm, and depending on the Lipschitz
constant of f. In particular, we show that the number of qubits grows as
m@, where @, the “number of qubits per dimension”, grows linearly in the
logarithm of the Lipschitz constant of f, the logarithm of the inverse of the
error probability and the logarithm of the inverse of the (absolute) precision,
and quasi-linearly in m. The running time of the algorithm is then bounded
by O(m@ log(m@)), by using an approximate Fourier transform [HHO0O].

Full dual recovery. In the second part, Section 3.6, we then relate the
parameters of the Continuous HSP instance to the number of sample points,
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and thus to how often the core algorithm needs to be repeated, necessary in
order to have an approximation of the entire dual lattice A*.

Primal basis reconstruction. In the third part, Section 3.7, we study the nu-
merical stability of reconstructing an approximate basis of the primal lattice
A from a set of approximate generators of the dual lattice A*. This is based
on the Buchmann-Pohst algorithm [BK96] already mentioned in [Eis+14].
The claim of [Eis+14] involves intricate quantities related to sublattices of A,
making the final complexity hard to derive; we provide a simpler statement
with a detailed proof.

Gaussian state preparation. Finally, in Appendix A.5, we revisit the quan-
tum polynomial-time algorithm for the preparation of the Gaussian initial
state [GRO2; KWO08] used as a black-box in our first part, and provide its
precise complexity.

Conclusion. These four parts lead to our formal and quantitative version
of the informal CHSP Theorem of Eisentréiger et al. [Eis+14, Thm. 6.1],
stated as Theorem 3.3 in Section 3.3.2.

Conclusion and Research Directions

Our conclusion is that, in its generic form, the Continuous Hidden Subgroup
Problem is rather expensive to solve; not accounting for other parameters
than the dimension m, it already requires O(m?) qubits and O(m?*) quantum
gates (using an approximate quantum Fourier transform). However, this
inefficiency seems to be a consequence of its genericity. In particular, the core
algorithm for Dual Lattice Sampling would only need O(m?) qubits, if it
wasn’t for accommodating for the terrible numerical stability of the Primal
Basis Reconstruction step. Similarly, we expect the number of samples
needed to generate the dual lattice to be significantly smaller for smoother

oracle functions.
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All in all, our modular analysis of the generic steps of the CHSP algorithm
sets the stage for analyzing and optimizing its specializations, in particular
to cryptanalytic applications [Cra+16; CDW17]. We propose as few research
directions towards this objective:

o Study the costs (qubits, quantum gates) and the parameters of the
oracle functions from [Eis+14; BS16; Son13] for solving the Unit Group
Problem, the Principal Ideal Problem (PIP), and for the computation
of the class group.

o Find stronger hypotheses satisfied by the above oracle functions (or
by variant thereof) that improve this generic analysis of the CHSP
algorithm; or resort to an ad-hoc analysis of the Full Dual Recovery
step by directly studying the spectrum of these oracle functions.

o Explore the possibility of a trade-off between the (classical) Primal
Basis Reconstruction step and the (quantum) Dual Lattice Sampling
step, possibly up to small sub-exponential classical complexity. More
specifically, does replacing LLL by BKZ with a medium block-size
substantially improve the numerical stability of Buchmann-Pohst al-
gorithm?

» Exploit prior knowledge of sublattices (potentially close to full-rank)
of the hidden lattice to accelerate or skip the Full Dual Recovery and
Primal Basis Reconstruction steps. This is for example the case when
solving PIP [BS16] while already knowing the unit group and the class
group of a given number field. This would be applicable in the context
of [Cra+16; CDW17].

e Exploit known symmetries of the hidden sublattice to improve the
Full Dual Recovery and Primal Basis Reconstruction steps. Such
symmetries are for example induced by the Galois action on the log-
unit lattice and the lattice of class relation, in particular in the case of
the cyclotomic number fields. This would again be applicable in the
context of [Cra+16; CDW17].

Remark 3.1. Recovering the exact hidden lattice is outside the scope of
this work, since this task is application-dependent. It is even true that one
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cannot generally expect the quantum algorithm of this chapter to recover the
exact hidden lattice, without extra information about this hidden lattice.

For instance, when applying this algorithm to compute the unit group Oj;
of a number field K, the hidden lattice will be the so-called logarithmic unit
lattice. Of this lattice it is known that any point is of the shape Log(n) =
(log|o(n)|)o € Log KR with n € O C Ok; its entries are logarithms of
integral elements in a given number field. This is the extra information that
is to be exploited in order to get the exact lattice. Namely, from a sufficiently
good approximation of the logarithm of a unit one can obtain the exact
underlying unit, simply by taking the exponential and rounding it to the

closest element in the ring of integers Ok .

3.3. Problem Statements and Results

3.3.1. Notation and Set-up

Here and throughout this chapter, H is a complex Hilbert space of dimension
N = 2" and S is the unit sphere in H; thus, a vector in S describes the state
of a system of n qubits. For an arbitrary positive integer m, we consider a
function

f:R" =SCH, z— |f(x))

that is periodic with respect to a full rank lattice A C R™; hence, f may
be understood as a function R™/A — S. The function f is assumed to be
Lipschitz continuous with Lipschitz constant

Lip(f) = inf {L > 0 | [[[£()) = [£@)}l,, < Lllz =yl }.

Later, we will also require f to be “sufficiently non-constant”. One should
think of f as an oracle that maps a classical input x to a quantum state
over n qubits, which is denoted |f(x)).

We write A* for the dual lattice of A. By A\1(A) we denote the length of a
shortest non-zero vector of A, and correspondingly for \;(A*). Since A is
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typically clear from the context, we may just write A\; and A} instead of

A1(A) and Aj(A*).

We denote by B, (x) = {y € R™ | |[y — z|| < r} the open Euclidean ball with
radius 7 around z. For the open ball around 0 we just denote B,, and for a
set X C R™ we write B,.(X) = U,ex Br(x).

Definition 3.2 (Definition 1.1 from [Eis+14]). A function f : R™ — S C H
is said to be an (a,r,€)-HSP oracle of the full-rank lattice A C R™ if

o f is A-periodic,

o f is a-Lipschitz: Lip(f) < a,

o f is (r,e)-separating (see Figure 3.1): Le., |{f(x)|f(y))| < € for all
z,y € R™ satisfying dgm /a(z,y) > 7.

where dgm /p(7,y) = min,ep ||z —y —v|| denotes the distance induced by the
Euclidean distance of R™ modulo A.

—

T

Figure 3.1.: A picture of what an (r, €)-separating function f should look like: outside of
the interval or length 2r around the origin, the inner product x — (f(x)|£(0))
deviates from 0 by no more than e.

3.3.2. Main Theorem: Continuous Hidden Subgroup Problem

Theorem 3.3. There exists a quantum algorithm that, given access to an
(a,r,€)-HSP oracle with period lattice A, r < A1 (A)/6 and € < 1/4, computes,
with constant success probability, an approzimate basis B = B + Ap of this
lattice A, satisfying | Al < 7.
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This algorithm makes k quantum oracle calls to the (a,r,€)-HSP oracle, and
uses m@Q + n qubits, O(kmQ - (log(kmQ))?) quantum gates and poly(m,
log )\4“,{, log 2) classical bit operations, where

Q = O(mk) + O (log Aal) +0 (log A; T) : (3.24)

k=0 (m -log (ﬁ a - (det A)l/m)) (3.25)

Remark 3.4. Note that the quantities inside logarithms are homogeneous.
In particular, scaling the lattice A by a factor f, also scales T, 1/a and 1/)}
by the same factor f, leaving the complexity parameters (Q and k unaffected.

Remark 3.5. The expert reader may expect the “distortion” parameter
A1 - A] of the lattice A to have a bearing on the complexity of this algorithm.
It is indeed implicitly the case: the assumption the HSP definition implies
that ar > Lip(f) - r > 1 — € (see Figure 3.2), and therefore the theorem’s
hypothesis requires a > Lip(f) > &.

Figure 3.2.: Due to the (r, €)-separating property of the oracle function f, its Lipschitz

constant cannot be too small.

The proof of Theorem 3.3 can be found in Section 3.3.7.
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3.3.3. Dual Lattice Sampling Problem

Following our modular approach as outlined in the introduction, we first
consider the following Dual Lattice Sampling Problem. Informally, the task
is to sample points in R™ that are respectively close to points £* € A* that
follow the distribution Djgeq;(€*) = (cox|ce+), where |¢g«) are the vectorial
Fourier coefficients of f : R™ /A — S (see Section 2.2.4).

Problem 3.6 (Dual Lattice Sampling Problem). Given error parameter
n > 0 and a relative distance parameter % > > 0, and given oracle
access to an HSP oracle f as above, sample according to a (finite)
distribution D on R™ that satisfies, for any S C A*,

lxes

ps = 'D(Bts)\{ (S)) > (Z <Cg*‘04*>) —-n. (3.26)

In the problem statement above, D(B‘W{ (S)) denotes the cumulative weight

of the set Bsx: (S) = Uses Bsaz (s) with respect to the distribution D. Here,
Bsxz(s) = {y € R™ | [|s — y|| < AT} is the open ball of radius dA] around
se SCA*CR™.

Theorem 3.7. Algorithm 2 solves the Dual Lattice Sampling Problem with
parameters 1 and §; it uses one call to the Gaussian superposition subroutine
(see Theorem 3.12), one quantum oracle call to £, mQ + n qubits, and
O(mQlog(mQ)) quantum gates, where

Q:O(mlog(m))+o(1og <n.zxf>>. (3.27)

Remark 3.8. Note that this step only requires smoothness of the HSP
oracle (via the Lipschitz constant), but does not rely on the “separateness”
assumption (third item of Definition 3.2). Indeed this third assumption will
only play a role to ensure that those samples are actually non-trivial and

usable.
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3.3.4. Full Dual Lattice Recovery

Recovering the full lattice (or, equivalently, its dual) requires an extra
assumption on the oracle function f, as captured by the third condition in
the following definition, reformatted from Definition 1.1 of [Eis+14].

According to Eisentrager et al. [Eis+14], for (some undetermined) adequate
parameters, Definition 3.2 ensures that the distribution on the dual lattice
A* is not concentrated on any proper sublattice, hence sufficiently many
samples will generate the lattice fully. We formalize and quantify this proof
strategy, and obtain the following quantitative conclusion. We note that the
constraints on r and € are milder than one could think, for example € does
not need to tend to 0 as a function of n or m. More precisely, a constant
e < 1/4 and a constant r < A1(A)/6 would suffice.

Theorem 3.9. Let f : R™ — S be an (a,r,€)-HSP oracle of the full-rank
lattice A C R™, with r < M\(A)/6 and € < 1/4. Let D be the distribution
supported by N*, with weight (co«|co«) at £* € A*, where |cy«) are the vectorial
Fourier coefficients of the function f.

Then, with overwhelming probability, we need at most

@) (m log, (ma - det(A) l/m))

samples from D¢ to fully generate the lattice A*.

The above theorem is obtained by combining Lemma 3.21 and proposi-
tion 3.24 from Section 3.6, instantiating the parameter R to R? = ma?. This
choice is somewhat arbitrary and given for concreteness, however it does not
have a critical quantitative impact.

3.3.5. Primal Basis Reconstruction

Theorem 3.10. There exists a polynomial time algorithm, that, for any
matriz G € RF¥*™ of k generators of a (dual) lattice A*, and given an
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approzimation G = G+Aqg € Q™ computes an approzimation B = B+Ap
of a basis B of the primal lattice A, such that

QO(mk) . Héng—kl
(A])3 - det(A%)

min(1,(A})2)-det(A*)
200km) G

[ABleo <

NAclco

under the assumption that ||Ag|leo <

Remark 3.11. More specifically, the algorithm from Theorem 3.10 essen-
tially consists of the Buchmann-Pohst algorithm [BP89; BK96] and a matrix
inversion. Its complexity is dominated by two calls to LLL on matrices of
dimension (m + k) x k and entry bit size O(k*log(||G||/\Y)) (see the discus-
sion before [BK90, Cor. 4.1]). One can optimize the final running time by
choosing a fast variant of LLL, e.g., [NS16].

Our contribution on this step is merely a completed numerical analysis, with
the help of a theorem from [CSV12]. A claim with a similar purpose is given
in [Fis+1/], yet involves more intricate lattice quantities.

3.3.6. Gaussian State Preparation

The main algorithm of this paper requires the preparation of a multidi-
mensional Gaussian initial state, which can be obtained by generating the
one-dimensional Gaussian state on m parallel quantum registers. This task
is known to be polynomial time [GR02; KWO08], and we provide a quantita-
tive analysis in Appendix A.5. The precise running time of preparing this
Gaussian state is summarized below.

Theorem 3.12. For ¢ = 29 € N, error parameter n € (0,1) and s >
2y/log(m/n), there exists an quantum algorithm that prepares the higher-
dimensional Gaussian state

Y S =@ ——— Y s@l),

pl/s(D?gp) <€D, j=1 Pl/s(%[Q]C) Iéé[q]c

within trace distance 1, using O(m@Q + log(n™1)) qubits and using O(mQ
log(m@n=1)?) quantum gates.
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Remark 3.13. In Theorem 5.3, we chose 1 to be 1/k%. Therefore, one call
to the m-dimensional Gaussian state preparation with the parameters of The-
orem 3.3 takes O(mQ+log(k)) qubits and O(mQ log(kmQ)?) quantum gates.
As Theorem 3.3 requires k subsequent preparations of the m-dimensional
Gaussian state, the total costs of the Gaussian state preparation steps are
O(mQ +log(k)) qubits (by reusing qubits) and O(kmQ log(kmQ)?) quantum
gates.

This is slightly more than the costs of k times applying the Fourier trans-
form, and it explains the quantum gate complezity of O(kmQ log(km@Q)?)

in Theorem 3.35.
3.3.7. Proof of the Main Theorem

Proof of Theorem 3.3. The result is obtained by running Algorithm 1 and
instantiating Theorems 3.7, 3.9, 3.10 and 3.12.

Correctness of Algorithm 1. In step one, the dual sampling algorithm (Algo-
rithm 2) is applied k times with error probability n = 1/k?. The probability
that all measurements are actually d\j-close to dual lattice points and are
of length less than y/ma is then at least (1 —n)* = (1 — 1/k?)k > 1 —1/k,
which is at least a constant success probability. We assume in the rest of
the proof that all measurements are indeed dAj-close to dual lattice points
and of length less than /m - a.

In step two, these JAj-close-to-A* samples are assembled into a matrix
k x m-matrix G, on which is then applied the Buchmann-Pohst algorithm
[BK96; BP89] twice. Subsequently, the resulting square matrix is inverted
and transposed. By Theorem 3.10, this procedure runs in polynomial time
and has no error probability. Due to the choice of § and the fact that
|Glloe < v/ma and ||G — G| < 6 - Xi, we can apply Theorem 3.10 to obtain
|AB|leo = ||B — B|| < 7, as required. Note that the size of § is chosen in
such a way that the decline in precision (see Theorem 3.10) is taken care of.
By Theorem 3.3, the matrix G indeed approximates a full generating set
of A* with overwhelming probability; implying that the output matrix B
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approximates a basis of A with overwhelming probability (and not a basis
of a strict sublattice of A).

Complezity estimate. We focus first on the less important complexity, the
classical complexity. This complexity is mainly driven by LLL-algorithm
and inversion in step (2) of Algorithm 1. This complexity can be bounded
polynomially in the dimensions and the entry sizes of the matrix involved.
The dimensions of G are k x m, and can therefore by polynomially bounded
by m, loga and log(det A). The entry sizes (taking a precision of at least
d into account) can be polynomially bounded by m, log(det A), log(7) and
log(1/A7). As log(det A) < O(mlog(1/A})) we can just omit log(det A).
Making all quantities homogeneous with respect to lattice scaling, we obtain
a classical complexity of poly(m,log /\%, log ) bit operations.

The quantum complexity is driven by the Fourier transform in the dual lattice
sampling and the Gaussian preparation step. Repeating the dual lattice
sampling k times costs O(km@ log(m@)) quantum gates and O(m@ + n)
qubits, where n is the number qubits required to store the values |f(z)) of the
quantum oracle in (see Theorem 3.7). Repeating k times the preparation of
the Gaussian initial quantum state (within total variation distance n = 1/k?)
requires O(kmQ@ log(km@)?) quantum gates and O(mQ + log(k)) = O(mQ)
qubits (where we hide log(k) into O(mQ@)), see Theorem 3.12. As discussed
in Remark 3.13, the quantum gate complexity is slightly dominated by that
of the Gaussian preparation step that occurs in Step 1 of Algorithm 2; it is
O(kmQlog(kmQ)?). The overall qubit complexity is O(mQ + n).

For the estimation of the number of qubits () needed ‘per dimension’, i.e.,
to prove Equation (3.24), we instantiate n = 1/k? and § = 2-90mk) . (\/m .
a)~m*D odet(A)~! - (A})? - 7 in Theorem 3.7 to obtain

log(1/6) = (m + 1) log(yv/ma) + log(det(A)) + O(mk) — log T — 2log(\}).

Noting that mlog(y/ma) + log(det(A)) € O(k) C O(mk), we see that

O (log ) O(mk) + O <10g > O(log(a/AT))

a
7 0]
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Putting O(mlogm) into O(mk) in Equation (3.27) yields

Q = O(mk) + O (log ;1) 1o <log A;‘ T) , (3.28)

3.4. Dual Lattice Sampling Algorithm

3.4.1. The Algorithm

Given a A-periodic function f : R™ — S as discussed in Section 3.3, which
maps a classical input  to a quantum state |f(z)), we consider the following
quantum algorithm (see Algorithm 2, or more graphically, Figure 3.4). The
algorithm has oracle access to f, meaning that it has access to a unitary that
maps |z)]0) to |z)|f(z)). As a matter of fact, we may assume the algorithm
to have oracle access to a unitary that maps |z)|0) to |z)|f(Vx)) for a
parameter V' € R chosen by the algorithm. Per se, x may be arbitrary in
R™; for any concrete algorithm it is of course necessary to restrict x to some
finite subset of R™.

The algorithm we consider follows the blueprint of the standard hidden-
subgroup algorithm. Notable differences are that we need to discretize (and
finitize) the continuous domain R™ of the function, and the algorithm starts
off with a superposition that is not uniform but follows a (discretized and
finitized) Gaussian distribution. The reason for the latter choice is that
Gaussian distributions decay very fast and behave nicely under the Fourier
transform (as they are eigenfunctions of the Fourier transform).

The algorithm is given in Algorithm 2. It uses two quantum registers, each
one consisting of a certain number of qubits. Associated to the first register

are grid points: orthonormal bases {|z)pm }zepm and {|y)pm } where the

< yebm
basis vectors are labeled by x € D™ and y € D™, respectively, which we
identify with elements z € D™ and y € D™ (see Section 2.2.1). The second

rep rep
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Vpl/U'f . \/pl/a'f

Discretized

Figure 3.3.: Intuitively, it is easier to see the (quasi-)periodicity of the continuous signal
(left) than that of the discrete signal (right). It is exactly the loss of information
‘between the sampling points’ that causes this chapter’s quantum algorithm
to behave slightly erroneously or noisily. Of course, increasing the number of
sampling points should reduce this noise; but it also causes the algorithm to
need more expensive qubits. The analysis sought to keep the required qubits
as low as possible, while still maintaining an acceptable error probability.

register has state space H. The algorithm is parameterized by ¢ € N (which
determines D™), s > 0 and V > 0.

Intuitively, the fraction {; is tightly related to the absolute precision of the
output, whereas log g is connected with the number of qubits needed. In
Algorithm 2, all quantum states described are unnormalized (i.e., do not
have norm 1) but have all the same norm, due to the unitary operations
in each step. In the analysis later, we show that, for adequately chosen
parameters, the initial state |1¢,), and therefore all states, are actually very
close to normalized.

The description and analysis of Step 1 of Algorithm 2 is deferred to Ap-
pendix A.5. It will be shown (as summarized in Theorem 3.12) that its cost
is comparable to the main cost of Algorithm 2, while contributing an error
of at most o(n) in the trace distance.
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VPija
Create the Gaussian /\

superposition

Query f
uery /\ /\

in superposition

i

Apply the G
Fourier transform n
Measure A

Figure 3.4.: A visual representation of Algorithm 2, if it would have been run on a ‘con-
tinuous’ quantum computer with infinitely many qubits. In reality, quantum
computers have only finitely many qubits, leading to discretization errors.
These errors are the main topic of this chapter. Note that the state after the
Fourier transform ‘peaks’ at the dual lattice points.
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3.4.2. The Figure of Merit

Recall that N = dim H = 2". Then the state after step (2) of Algorithm 2
equals, up to normalization,

¥y =52 "\ prys(@) |[2hpm E(Va))
xeDm
which we can rewrite as

= Y |2)on[h(z))

rehm

|h \/pl/s |f Vﬂ?

Applying the quantum Fourier transform in step (3) maps this to
[y =q ™2 37 3 PV ) h()
xehm ye]ﬁ)m

=¢"? 3" [YpmlFom {h} (),

yeDm

where

where the factor ¢™/2 comes from the fact that, by our convention, the
Fourier transform JFpm is scaled with the factor ¢—™, while the quantum

Fourier transform comes with a scaling factor ¢~™/2.

Up to normalization, the probability to observe outcome y € D™ in step (4)
thus is

@l(lyXyl @ D[P) = ¢™ - | Fom {0} ()17,
and so, for any “target” subset C' C D™, the probability for the algorithm
to produce an outcome y € C equals

5 Gllyl D) _ e Fom )1,
yeC (oltho) Zz zeDm P1/s( ) '

D(C) = (3.29)
This target set are the points that one would like to have as an outcome
after measuring. In our situation, this target set C' consists of points close
to dual lattice points £*, as those are considered ‘good’ measurement (see
Figure 3.5).
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Figure 3.5.: The target set C' consists of those grid points that are § - A-close to the dual

lattice A™; these points give valuable information about the dual lattice A*.
In this specific example, the target set consists of the green points and the
blue circles around the black dual lattice points have radius 6 - AJ.

The algorithm’s behavior in the limit

Intuitively, in the limit ¢ — oo, the grid %Zm becomes R™; thus, neglecting
constant factors, the function Fpm {h} is expected to converge to

]:]Rm{p\/i/s f(V)} = Ps/\/ﬁ*FRm{f(V')}‘

Furthermore, when V is large enough compared to s, then, relative to the
dual lattice VA*, the Gaussian function behaves as a Dirac delta function.
Thus, the above function is then supported by VA* and takes on the values
|ce=). Hence, by taking square norms, we get the claimed (cg«|cg-).

Below, we prove that this intuition is indeed correct, and we work out the
actual “rate of convergence”.
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3. The Continuous Hidden Subgroup Problem

3.5. Analysis

3.5.1. Proof Overview

In the following few paragraphs we give an overview of the proof of correctness
of Algorithm 2. The main idea boils down to showing that the finite Fourier
transform is close to the continuous Fourier transform on the function
h=1-p;/. They are indeed close due to the smoothness of the Gaussian
and the Lipschitz-continuity of the oracle function f.

The unnormalized initial state |1o) has approximately norm one. By the
smoothing argument of Banaszczyk, we derive that the initial state’s norm
satisfies (¢o|1ho) = 2—: > zepm P1/s(z) = 1. So, the initial state might not be
perfectly normalized, but it is almost. Therefore,

i Fe 0},
27: Z:EGID)W pl/S(x)

~||1¢ - Fpm {h}

2
Dm

meaning that we can focus on the latter quantity, that consists just of the
norm of the Fourier transformed function h.

Replacing the function h by its T™-periodization h\Tm. The function h =
sM2f . p V3/s is a product of the function f and a Gaussian that is narrow
enough to be contained within the centered unit cube. Therefore, peri-
odization of h with respect to the unit cube [—3%,4]™ (ie., the central
representative of the unit torus) doesn’t differ too much from restricting h

to the torus. Therefore,

I1c - Fpm {h}

2~ |1c- Fpm{n/™"}

2
Dm-

Replacing the finite D™ -Fourier transform by the T™-Fourier transform.
Because the function h is Lipschitz-continuous, changing the finite Fourier
transform into a continuous one over the torus T™ gives us a error that
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depends mainly on the discretization parameter ¢ and the Lipschitz constant
Lip(f).
™ ™
It - Fom{b]" }HE,. ~ 1 - Fro{h[" }|Zm.

Replacing the T™-Fourier transform by the R™-Fourier transform. Using
the Poisson summation formula, one can derive an equality between the
Fourier transform of h|™ over the torus T™ and the Fourier transform of h
over the reals R™.

e - Frm{|™ }Em = [[1c - Frem {1} |Fm.

Relating the R™-Fourier transform with the Fourier coefficients |ce+) of |f).
As h is essentially a product of f and a relatively wide Gaussian, one can
apply the convolution theorem to obtain the real Fourier transform of h.
This Fourier transform is then very much related with the Fourier coefficients
|ces) of £.

e - Frm {h}|Zm D {corle) - o ()

e *

The function ¢c here acts as sort-of an indicator function; one can think
of 1c(£*) being close to one whenever ¢* is in the ‘target set’ C' and zero
otherwise. Recall that this target set are the ‘wanted’ points, i.e., the desired
outcomes after measuring the quantum state. In our situation, this target
set C consists of points close dA-close to dual lattice points ¢*, as those
are considered ‘good’ measurements; they namely give valuable information
about the dual lattice A*.

Lower bounding the success probability by means of Fourier coefficients of f.
In particular, one can show that, up to a small error, the function ¢t indeed
acts as an indicator function. Whenever a large enough ball around a dual
lattice point £* is contained in C, the value of (¢ (£*) approximates one.

D(C)~ > (coleg=) - 1o(l) > 3 (eeslee). (3.30)
*eN* *eN*
Bsx: (¢)nzmce
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3. The Continuous Hidden Subgroup Problem

Taking into account the bounded output of Algorithm 2 and finalizing the
analysis. The output distribution D of Algorithm 2 has support only in
[—q/2,q/2]™. So, for any S C A* the probability pg from Problem 3.6 applied
to the output distribution of Algorithm 2 satisfies

ps = D(Bsx:(9)) = D(B(s,\;(s) N[—q/2, Q/Q]m>

Yo Aleeler) RO (erler)

rreN* xS
e eSn[—q/2,q/2™

Qv

where the first ‘approximate inequality’ (which is an inequality up to some
small error) is obtained from Equation (3.30) and the last ‘approximate
inequality’ holds by the fact that the ‘tail’ of the Fourier coefficients of f
has small weight, i.e., 35 |px|5q/2(cex

cg+) is small.

Summarizing, this error mainly occurs because of the phrasing of the Prob-
lem 3.6. It makes the suggestion that the distribution D should have un-
bounded support and should be able to reach any dual lattice point, whereas
in reality (for the output distribution of Algorithm 2) this is very much
not the case. The error induced by this discrepancy is, as a consequence,
essentially the combined weight (i.e., the ‘lost probability’) of the lattice
points unreachable by the output distribution of Algorithm 2.

The wvelocity parameter V. In the formal analysis below, we sometimes
temporarily assume that the velocity parameter equals one, i.e., V = 1.
This is for sake of clarity and can be done without loss of generality, since
for arbitrary V the very same reasoning can be applied to the function
fy, .= f(V-). This affects the quantities involved in the sense that A* becomes
VA*, A} becomes V - A} and Lip(fy) becomes V Lip(f).

To be clear, the end results and errors involved are always stated for general
V. Moreover, whenever the assumption V' = 1 occurs in a proof or a line of
reasoning, we will always explicitly say so, in order to avoid confusion.
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3.5.2. Formal Analysis
The unnormalized initial state |¢,) has approximately norm one

By the smoothing lemma (see Lemma 2.31), we have, whenever ¢/s > /m,

m

1
<¢0|w0 = Z pl/s > P1ys (qZ ) < 1_|'26q/s

xe]D)m
<140(e 9.

Therefore,

I1c - Fom {h}|2

O(e /s .
TS o p1yal) S

— ¢ - Fom {h}|[3,.

By requiring that q/s > /m + log(n—1), we can safely neglect this error.

Replacing the function h by its T"-periodization h\Tm

By the linearity of the Fourier transform, by the fact that 1¢ is an indicator
function and by Parseval’s theorem, one can deduce

¢ - Fom {h} = 1c - Fom (b Higm < [|Fom{h —h"" Y5

= 0™~ o

Writing out the definition of the functions h = s"/2.f . p AP and h\Tm =
> .ezm h(z + -), we obtain

thT”—hH]%)m_ DS hx—i—zH

xeDm 2€Z™\0
2
—3 ( > pﬁ/s@cﬂ)-Hf<V<x+z>>||H> .

" yepm z€Z™\0

<
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3. The Continuous Hidden Subgroup Problem

Since |[f(x)|ln = {f(x)|f(x)) = 1, as |[f(x)) is a quantum state for any
x € R™, above expression is bounded by

2
ZW Z( > P\/ﬁ/s(erz)) <2 ,|n |'(2'52;§)2

z€D™ \ zeZ™\0 q

<2:8_s
2v2

m 2
<48 (Be)

as P, 3/ (Z™\{0} +z) <2- Bﬁ’ from Banaszczyk’s tail bound in Corol-

lary 2.30. By the reverse triangle inequality, provided that s > +/8m, we
conclude

116+ Fom {0}

2, — o Fom B3, < O™, (3.32)

By requiring that s > /8mlog(m) + log(n=1), we can safely neglect this
error.

Replacing the finite D"*-Fourier transform by the T™-Fourier transform

Using Theorem 2.8 with h|Tm, one obtains

m m 47y/m Lip(h|™"
e Fom (0™ g 1+ Frn b Hlzn| < TEEL 35

<0 (msm/Q(V;ip(f) + SQ)) . (3.34)

Remark 3.14. In above inequality the indicator function 1¢ is used as a
function on both D™ and Z™. The function 1¢ on Z™ must be interpreted
as having the same values on Dig, € Z™ as on D™ and having value zero
otherwise.
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3.5. Analysis

Lemma 3.15. Assume that s > 4y/m. Then, for the Lipschitz constant
Lip(h|™™) of h|™™ holds

Lip(h[™") < 5™/ (2V Lip(f) + 7).

Proof. For the sake of clarity, we assume V = 1 throughout this proof;
at the end we will then have to replace Lip(f) by V Lip(f). Also, we will

temporarily omit the constant term s™/2

in the definition of h and use p
for p /5 /s’ thus calculating with h = f - p instead. In the final step, the

multiplicative term s™/2 will then be multiplied again to the end result.

By applying the triangle inequality multiple times, using the fact that
If(z)|[x = 1 for all z € R™ and using the Lipschitz-continuity of f, one
obtains, for every x,y € R™,

Ih(z) = h(y)lln < [[f(@)(p(x) = p(v) ||, + || (E(z) = £()p(Y)]],
< |p(x) — p(y)| + Lip(f) - |z — yllrm - p(y) (3.35)

By periodizing with respect to the unit torus T™ = R™/Z"™ and applying
the triangle inequality, we obtain, for all =,y € [-1/2,1/2]™,

™ (@) = b W)l < Y |ole+2) = ply + 2)]

zE€ZL™
+Lip(f) -z —ylrm - Y ply+2)  (3.36)

zZEL™

By smoothing arguments of Banaszczyk, one deduces that p_ 5 / Sy+zZm) <2
(see Corollary 2.30), where we use the assumption s > 4./m. By the reasoning
in Lemma A.33, we have that

> Doyl +2) = pyyly + 2)

zEZ™
<ns?/2- |z —yllrm D pyg(r+y+22)[lz +y+ 22
zZEZ™
<2
<ns® ||z — yl|lpm, (3.37)
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3. The Continuous Hidden Subgroup Problem

where the last inequality can be obtained by absorbing ||z + y + 2z|| into the
Gaussian and applying smoothing arguments again; py/,(z) - [|z]| < pg/s(7)
for all z € R™ and s > /m, and p g, (Z™) < pym(ZM) <1428 m < 2,
for s > 4\/m (see Lemma 2.29). In other words,

S syt 22) ety +2: <Y pugmle oyt 22)
zeZ™ rezm

By combing Equations (3.35) to (3.37), multiplying the factor s™/2 and
replacing Lip(f) by V - Lip(f) we obtain the final result. O

Replacing the T""-Fourier transform by the R"*-Fourier transform

Apply the Poisson summation formula (see Corollary 2.5) to conclude that
¢ - Frm{b"" Hizm = [[1c - Fam{h}|zm ,

where Fgrm{h} is temporarily identified with its restriction to Z™.

Relating the R™-Fourier transform with the Fourier coefficients |c/+) of
)

By applying the convolution theorem as outlined in Equation (2.9) of
Section 2.2.2, we see that

Frm{b}[y] = Fam/a{E(V-)} % Frm{s™2p 5,,()}(v)

= (2>m/2z lce=) Py sy — V),

57 prenr

where |cg«) are the vectorial Fourier coefficients of f. Therefore,

1P {0} )15

= (2>m Yo D leelewdpg sy = Vg aly — VE)

87 kreh* rrenx

- <2>m Z Z <Cv*+u*’%Lu*)ﬂs/g(Vu*)ps/Q(y —Vv*), (3.38)

S
= %A* v*Eur+A*
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where the latter is obtained by the variable substitution u* = Z*Ek* , vt =

Z*;k*, and using the multiplicative properties of Gaussian functions (see

Lemma 2.23), like p; 5(%)p,,5(y) = ps2((z +1)/2)ps2((x — y)/2) for all
z,y € R™.

Definition 3.16. For any subset C CZ™, any s > 0 and any £* € A*, we
define 1o : A* — Rsq by the following rule,

)= (2)" S bty - ve),

yeC

where leave out the dependence on s and V in the notation.

The above definition of ¢ is mainly to make the notation in this analysis
more compact. But this function on A* also has an intuitive interpretation;
it is the cumulative Gaussian weight of all points in C' around ¢* (or, V - £*
in the case of scaling with V). So, if C' contains many close points around ¢*
(see Figure 3.5 and Figure 3.6), this cumulative Gaussian weight approaches
1, whereas if there are no points in C around ¢*, this weight approaches zero.
Summarizing, the value (o (¢*) quantifies the number of close points around
£*; a value of 1 indicates many good close points in C', whereas a value near
0 indicates no good close points (see Figure 3.6).

Figure 3.6.: The function tc(¢*) equals the cumulative Gaussian weight of all points in C
around £*. In the left panel above, the set C' contains many points around
the red lattice point £*, yielding a cumulative Gaussian weight approaching
one, i.e., tc(£*) = 1. In the right panel, set C only contains a few points close
to the lattice point, yielding a very low Gaussian weight, i.e., tc(£") ~ 0.
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3. The Continuous Hidden Subgroup Problem

Lemma 3.17. Let V, s > 0 satisfy the conditions VAi/s > \/m and s > \/m.
Then, for any C C [q]

m, we have

Lo Fam {B}[Zn — D (celeehio(€)| < O(em VX, (3.39)

LA

Proof. Without loss of generality, we assume in the rest of the proof that
V =1, as sketched in the last paragraph of Section 3.5.1. At the end of the
proof we will then replace A\} by V - AJ.

By writing out the definition of the norm over Z™ and using Equation (3.38),
we obtain

e Frm{h}Zm = > |1 Frn{h}[y]13,
yeC

= (i)m Z Z <Cv*+u* ‘CU*—u*>ps/2(U*)ps/2(y - U*) :

yel u*G%A*
v*eu*+A*

By swapping the summation over C' to the right, we deduce
[leFen{b}Zn = > (Coturleo—w)pepa(u®)ic(v”).
u*E%A*
,U*eu*+A*

We split above sum into a part where u* = 0 and a part where u* # 0.
Notice that for the case u* = 0, the inner product (cy .+ |Cy*—qy+) becomes
(co|ey<) and pgja(u*) = 1. This yields

leFrm{b}|Zm = > (colee) - 1o (€F)

L eA*
+ Z ps/Q(U*) Z <Cv*+u* Cv*—u*> : LC(U*). (3.40)
u*€IA*\0 v*EUF A

In order to achieve the claim of this lemma, it is enough to bound the second

term (where u* # 0) in Equation (3.40). As we assumed that s > \/m, we
m

can bound (¢ (v*) < (%) ps2(Z™ +1t) < 2 for any v* € R™ and C C Z™ by

applying smoothing arguments (see Corollary 2.32). The sum of the ‘shifted
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3.5. Analysis

inner products’ of the Fourier coefficients is bounded by one, as can be seen
by applying the Cauchy-Schwarz inequality and the inequality of arithmetic

and geometric means.

Co* )

Z <Cv*+u* Cv*fu*> < Z \/<Cv*+2u* C'L)*+2u*><cv*

v*Eur+A* v*EA*

<CU*+2u*’cv*+2u*> + <C1}*|CU*> — |I£]2 _
> : = 1 = 1

v*EA*

Combining above reasoning with a tail bound of Banaszczyk (Lemma 2.29)
the u* # 0 part in Equation (3.40) can be bounded as follows.

Z Ps/Z(U*) Z (Corqur[eve—ux) - Lo (V")

u*€ZA*\0 v*Eur+A* pE

<2 Z Ps/Z(U*) Z (Comtur|Crr—ur)

u*€LA*\0 v*Eur A
<1
<2 ) pyp(ut) <20 pg (AT 0) <4 By
u*E%A*\O

In order to drop the assumption that V = 1 from the start of the proof,
we need to replace A\] by V' - A7 in above expression. Applying the bound
4-Pyrrss < O(e=(VA/9)%) for VXY /s > \/m yields the final claim. O

By requiring that VAj/s > \/m + log(n~1), we can safely neglect the error
from Lemma 3.17.
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Lower bounding the success probability by means of Fourier coefficients
of f

Whenever B(;ATV(VE*) NZ™ C C for an £* € A*, it holds that

@)= (2) Topw-ver=(3)" T pp-ve)

5/ yec 5 YEBy rz (VE)NZ™
2 m
> (S) Psy2(Z™) (1 - 52V5X;/s) > (1 =2 B52)(1 = Bavsnyss) »

where the second inequality follows from Banaszczyk’s tail bound (see
Lemma 2.25) and the last from the smoothing bound in Lemma 2.31. In
other words, 1o(¢*) is close to one if C' contains all vectors in D™ that
are 0A\]V-close to V¢*. This coincides with the intuitive explanation after
Definition 3.16. Note that dA] is the maximum distance from a dual lattice
point £* required to consider the output valuable.

It follows then that

| Y fevleshc@) = X (erler)
£xeA* e
Bysxx (VE)NZTCC

gO(e’sz/A‘) +O(e’(2v‘s’\1/s)2), (3.41)

where we use the fact that Y.y« (cox|cp<) = Hf||]%§m/A = 1. By requiring that

SV /s > /m+1log(n~1) and s > 4y/m + log(n~1), we can safely neglect

this error.

Taking into account the bounded output of Algorithm 2 and finalizing
the analysis

As the output distribution D of Algorithm 2 has support only in [—¢/2, ¢/2]™,
we have, for any S C A*,

D(Bsy; (9)) = D(Bsx; (9) N [~a/2,0/2]"™).
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By simply splitting the set S C A* into an ‘tail part’ Siay = S\[—q/4, ¢/4]™
and a ‘bounded, finite part’ Sg, = S N [—q/4,q/4]™, we obtain

> {eelee)=D(Bsx: (9)) = > leelee)

€S £* EStail

Small because of a tail bound

+ 3 lerler) = D(Bog(9) N [=g/2,0/2) . (3.42)

0*€Skn

Small because of the error analysis

By the fact that f is a Lipschitz continuous function, its Fourier coefficients
have a tail bound. By applying Corollary 2.34 with B = ¢/4, we obtain the
following bound

> lepler) < > (coxlees) <

% € Stail CreA*\[—q/4,9/4™

4 - Lip(f)?
7T2q2 .

The summand in Equation (3.42) is, by the full error analysis, bounded by

) {cer

Byxe (6)CBias (S)N[—a/2.0/2™

<0 <\/m8m/2(VqLip(f) + 82)) + 0(77) (3_43)

ce-) = D(Bpp () N [=a/2,0/2]")

As the only non-negligible error is caused by Equation (3.33), provided
that dV /s > /m+1log(n~1), s > 4y/mlogm +log(n~1) and ¢/s >

vm +log(n=1).

Remark 3.18. Note that we chose for Sg, = S N [—q/4,q/4]™ the box
[—q/4,q/4]™, whereas in the analysis we used the box [—q/2,q/2]™. This is
to crudely include also all points that are dA]-close to dual lattice vectors.

Final theorem

Assembling all errors, we obtain the following theorem.
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Theorem 3.7. Algorithm 2 solves the Dual Lattice Sampling Problem with
parameters n and 0; it uses one call to the Gaussian superposition subroutine
(see Theorem 3.12), one quantum oracle call to £, mQ + n qubits, and
O(mQ log(mQ)) quantum gates, where

Q:O(mlog(m))+0(log (n-?ﬂ’{»' (3.27)

Proof. In Algorithm 2, two quantum registers are used: one to encode the
grid D™ and another one for the storage of the state of the continuous
hidden subgroup oracle |f(z)). As the grid has ¢ points, we need mlogq
qubits to encode it. For the oracle state it is assumed that it can be stored
in n qubits, thus arriving at a total of m(@Q 4+ n qubits, where @ = loggq.
Apart from constructing the initial Gaussian superposition, the only part of
Algorithm 2 that uses quantum gates is the quantum Fourier transform on
the grid register consisting of m@) qubits. Using a result of Hallgren et al., a
sufficient approximation of this quantum Fourier transform can be obtained
using only O(m@ log(m@)) elementary quantum gates [HHO0].

To compute the value of @ = log(q), we instantiate the parameters s =
4y/mlogm +log(n~1) and V = ﬁ - (mlogm + log(n~!)). This implies
s > 4y/mlogm + log(n=1) and 6V \} /s > /m + log(n~1), making the errors
from Equations (3.31), (3.32), (3.39) and (3.41) all negligible compared to .
To get the errors from Equation (3.33) and Equation (3.43) well below 7,

we put
logg=0Q = O<m log(s) + log (‘/L;p(f))>

Writing out the instantiations of s and V and grouping the resulting expres-
sions properly, we arrive at Equation (3.27). Here we use the fact that, for
allmp > 0 and m € N, m(log (mlogm+log(1/n))) € O(mlogm+1log(1/n)).

O
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3.6. From Sampling to Full Dual Lattice Recovery

3.6. From Sampling to Full Dual Lattice Recovery

We have so far focused on approximate sampling dual lattice points with
probability weights (cg« |cg+) for £* € A*, regardless of how useful this distribu-
tion may be. Indeed, until now, it could be that the function f : R™/A — S
is constant, and therefore that all weight is concentrated on 0 € A*. We
would like now make sure we can reconstruct (approximately) A* from
such samples, i.e., that a sufficient number of sampled vectors from A* will
generate it. Informally, an equivalent condition is that the weight (cg«|cg=) is
not concentrated on any proper sublattice M* C A*. This is exactly what
happens if the oracle function f is separating, i.e., is not too constant.

More formally, we give the following sufficient conditions for a distribution
to be useful as a (approximate) lattice sampling distribution.

Definition 3.19. Let L C R™ be a full-rank lattice. A distribution D on L
is called p-evenly distributed whenever Pr,.plv € L'] < p for any proper
sublattice L' C L.

Definition 3.20. Let L C R™ be a full-rank lattice. A distribution D on L
is called (R, q)-concentrated whenever Pr,pl||v| > R] < q.

||!
|
i

Figure 3.7.: An example of a (R, ¢)-concentrated distribution, where R is the radius of the
green circle and ¢ = 0.05, i.e., less than 5 percent of the weight lies outside
the circle. Note that this Gaussian distribution is also 0.5-evenly distributed.

The following lemma states that an evenly distributed and well-concentrated
distribution on a lattice L should eventually output a full generating set of
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3. The Continuous Hidden Subgroup Problem

Figure 3.8.: Both these distributions are not p-evenly distributed for any p < 1, as the
strict sublattices indicated by the red points have all of the weight.

that lattice, and gives a precise probabilistic upper bound on the number of
samples needed.

Lemma 3.21. Let L C R™ be a full-rank lattice with a p-evenly distributed
and (R, q)-concentrated distribution D with R > det(L)Y/™. Denote by S the
random variable defined by the number of samples that needs to be drawn
from D such that the samples together generate L as a lattice. Then, for all
a >0,

(t+m)
l—=p—gq
where t = mlogy(R) — logy(det(L)) > 0.

PriS>2+a)- < exp(—a(t+m)/2)

Proof. First, we define the following sublattices of L, for any v1,...,vj_1 €
L.

I _Jspang(vi,...,vj—1) N L ifdim(spang(vy,...,vj-1)) <m
Tt Zvi + -+ + Zvj_y otherwise.

Consider a sequence of samples (v;);>0 (from D). We call v; ‘good” whenever
llvjl| < R and v; & Ly, ... 0;_,- We argue that we need at most m + ¢ good
vectors to generate L.

Denote L’ for the lattice generated by the m + t good vectors. Then the
first m good vectors ensure that L’ is of rank m, whereas the last ¢ good
vectors will reduce the index of the L’ lattice in L. Calculating determinants,
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using the fact that all good vectors are bounded by R, we have det(L") <
R™ /2! < det(L). This yields L' = L.

Denote by X the random variable having the negative binomial distribution
with success probability p + ¢ and number of ‘failures’ m + t. That is, X is
the number of independent samples from a (p + ¢)-Bernoulli distribution
until m + ¢ ‘failures’’ are obtained. We argue that the random variable S is
dominated by the random variable X, i.e., Pr[S > z] < Pr[X > z] for every

z € N.

Again, consider a sequence of samples (v;);>o (from D). The probability
of v; being a ‘good’ vector is at least 1 — p — ¢, by the fact that D is
(R, q)-concentrated and p-evenly distributed. Because at most m + ¢ ‘good’
vectors are needed to generate the whole lattice, S is indeed dominated by
X. Therefore, for any k € N,

Pr[s>t+m+k}<pr{X>t+m+k}<pr[B<m+t]
I1—-p—q 1—-p—q
1 k2
< T 3.44
—eXp< 2t+m+k> (3.44)

where B is binomially distributed with L%j trials and success probability
1 —p — q. The first inequality follows from the fact that S is upper bounded
by X. The second inequality comes from the close relationship between the
negative binomial distribution and the binomial distribution [GKP94, Ch. 8,
Example 17]. The last inequality follows from the Chernoff bound. Putting

k= (1+ «a)(t +m) into Equation (3.44) yields the claim. O

We conclude this section by relating the parameters (a,r,€) of the HSP
oracle (Definition 3.2) f : R™/A — S to how equally-distributed and
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