
Point2FFD: learning shape representations of simulation-ready 3D
models for engineering design optimization
de Jesus de Araujo Rios, T.; Stein, B., van; Bäck, T.H.W.; Sendhoff, B.; Menzel, S.

Citation
De Jesus de Araujo Rios, T., Stein, B. , van, Bäck, T. H. W., Sendhoff, B., & Menzel, S. (2021).
Point2FFD: learning shape representations of simulation-ready 3D models for engineering
design optimization. 2021 International Conference On 3D Vision (3Dv), 1024-1033.
doi:10.1109/3DV53792.2021.00110

Version: Publisher's Version
License: Licensed under Article 25fa Copyright Act/Law (Amendment Taverne)
Downloaded from: https://hdl.handle.net/1887/3280044

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:4
https://hdl.handle.net/1887/3280044

Point2FFD: Learning Shape Representations of Simulation-Ready 3D Models
for Engineering Design Optimization

Thiago Rios1, Bas van Stein2, Thomas Bäck2, Bernhard Sendhoff1, Stefan Menzel1
1Honda Research Institute Europe GmbH, 63073 Offenbach, Germany

2Leiden Institute of Advanced Computer Science (LIACS), 2333 CA Leiden, The Netherlands
{thiago.rios, bernhard.sendhoff, stefan.menzel}honda-ri.de

{b.van.stein, t.h.w.baeck}@liacs.leidenuniv.nl

Abstract

Methods for learning on 3D point clouds became ubiq-
uitous due to the popularization of 3D scanning technol-
ogy and advances of machine learning techniques. Among
these methods, point-based deep neural networks have
been utilized to explore 3D designs in optimization tasks.
However, engineering computer simulations require high-
quality meshed models, which are challenging to automat-
ically generate from unordered point clouds. In this work,
we propose Point2FFD: A novel deep neural network for
learning compact geometric representations and generat-
ing simulation-ready meshed models. Built upon an au-
toencoder architecture, Point2FFD learns to compress 3D
point clouds into a latent design space, from which the net-
work generates 3D polygonal meshes by selecting and de-
forming simulation-ready mesh templates. Through bench-
mark experiments, we show that our proposed network
achieves comparable shape-generative performance than
existing state-of-the-art point-based generative models. In
real world-inspired vehicle aerodynamic optimizations, we
demonstrate that Point2FFD generates simulation-ready
meshes of realistic car shapes and leads to better optimized
designs than the benchmarked networks.

1. Introduction

Geometric data are ubiquitous in engineering design pro-

cesses. During product development, engineers define dif-

ferent representations of 3D shapes to explore solutions,

analyze performance and verify the compliance to manu-

facturing standards. However, handcrafted design features

often bias the design exploration and constrain the solutions

[42]. Furthermore, since these representations are often

product-specific, this approach hinders the exploitation of

engineering expertise embedded in similar previous prod-

ucts by transferring design properties.

Recently proposed geometric deep learning architectures

address some of these challenges by enabling automated

feature learning on unstructured data [5]. Autoencoder net-

works are particularly suitable for learning design features

for engineering optimization, since autoencoders both com-

press geometric data into low-dimensional representations

and learn a shape-generative model [43, 2, 37, 14, 38]. Fur-

thermore, networks for learning on 3D point cloud data be-

came widespread in the literature due to the data availability

and simplicity of the representation [3, 16].

However, simulation-based design optimization algo-

rithms often require designs represented as high-quality

polygonal meshes. Meshing unordered 3D point clouds

is an ill-posed problem, difficult to automate, and usu-

ally requires manual tuning and verification [3]. Recently,

researchers approached the mesh reconstruction task with

deep neural networks (DNNs). In these approaches, the

DNNs either mesh point clouds as a post-processing task

[40, 18, 36], or combine additional information, e.g. struc-
tural or shape priors, to learn mesh representations from 3D

point clouds [27, 45, 14]. Nonetheless, the literature still

lacks a method that addresses both simultaneously, repre-

sentation and reconstruction of 3D representations tailored

for engineering simulations.

In this paper, we propose Point2FFD1: An artificial neu-
ral network for automated generation of simulation-ready

3D meshes from learned latent representations. Our pro-

posed architecture builds upon a 3D point cloud autoen-

coder to compress point cloud data into low-dimensional

latent vectors. From the latent space, a two-branch network

generates simulation-ready meshes by selecting and de-

forming existing mesh templates parameterized with free-

form deformation (FFD). A 3D polygonal mesh is said

simulation-ready if the mesh is artefact-free and suitable for

performing engineering computer simulations, e.g., com-

1Source code available in our repository GDL4DeisgnApps

(https://github.com/HRI-EU/GDL4DesignApps.)

1024

2021 International Conference on 3D Vision (3DV)

978-1-6654-2688-6/21/$31.00 ©2021 IEEE
DOI 10.1109/3DV53792.2021.00110

20
21

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 3

D
 V

is
io

n
(3

D
V

) |
 9

78
-1

-6
65

4-
26

88
-6

/2
1/

$3
1.

00
 ©

20
21

 IE
EE

 |
D

O
I:

10
.1

10
9/

3D
V

53
79

2.
20

21
.0

01
10

puter fluid dynamics (CFD). Hence, Point2FFD generates

meshed 3D models with diverse topology, which avoids in-

tense post-processing, as required for 3D point clouds, and

allows engineers to directly manipulate simulation meshes,

reducing the computational effort during optimizations.

We outline this paper as follows: In Section 2, we survey

the literature related to our work and discuss the state-of-

the-art on data-driven design representations. In Section 3,

we present the Point2FFD architecture, as well as the uti-

lized techniques to sample 3D point clouds, network hyper-

parameters and training settings. In Section 4, we provide

details on the set-up and results of two experiments. First,

we benchmark the performance of Point2FFD against sim-

ilar 3D point cloud autoencoders used in engineering opti-

mization. Second, we apply the representations learned by

Point2FFD in real-world inspired vehicle aerodynamic op-

timization experiments. Finally, in Section 5, we conclude

this paper with a summary and outlook of our work.

2. Related Work
Deformation-based design representations. In opti-

mization, engineers prefer compact design representations

to balance computational efficiency and design flexibility

[48, 42]. Specifically for simulation-based shape optimiza-

tion problems, the simulation algorithms often require 3D

shapes represented as refined polygonal meshes, which are

computationally expensive to generate. Hence, for this class

of problems, deformation-based representations are often

more efficient, since the methods operate directly on the

vertices of the meshes used for simulations and reduce the

number of re-meshing steps during an optimization [17].

Free-form deformation (FFD) is a prominent shape mor-

phing technique [39]. FFD represents the deformation of

3D polygonal meshes by mapping the vertices to a low-

dimensional lattice of control points utilizing tri-variate

Bernstein polynomials. The control points operate as de-

sign features and intuitively deform the mesh when dis-

placed in the 3D Cartesian space (Fig. 1). Depending on the

amount of deformation and configuration of the lattice, FFD

preserves the quality of the embedded mesh within reason-

able tolerance and, thus, the quality of the simulation results

[30, 11, 17].

xy
z Control points

Initial configuration Deformed mesh

FFD

y
z Cont

FFD Lattice

Figure 1. Deformation of a car shape using standard FFD tech-

niques proposed in [39].

Many works explore FFD and variations of the technique

in design optimization problems, particularly in the context

of aerodynamic applications using CFD [29, 30, 31, 41,

22, 47]. However, FFD still requires human expertise to

set up the lattice and select the degrees of freedom, which

is challenging for unexperienced designers. Furthermore,

FFD only generates isomorphic meshes, which constrains

the design exploration. Point2FFD addresses these chal-

lenges by learning the design representations and by gener-

ating shapes based on templates with different topology.

3D point cloud autoencoders. The interest on learn-
ing point cloud data has been increasing due to the flexi-

bility and low computational effort required to process 3D

point clouds [16]. For 3D design tasks, point clouds also

enable engineers to learn generative models on shapes with

different topology, which is a current restriction for learn-

ing on polygonal meshes [6]. Furthermore, computer aided

engineering (CAE) models are often aligned, scaled and the

point cloud data derived from these models lack artifacts

observed in scanned 3D shapes.

Qi et al. [8, 32] pioneered the research on deep neu-
ral networks for learning point cloud data. The authors

in [2, 46] extend these networks to deep-generative mod-

els of 3D point clouds. In [34], the authors use a variation

of the architecture given in [2] to learn latent representa-

tions of vehicle designs for a target-shape matching opti-

mization, and in [35] they verify the scalability of the archi-

tecture to higher-dimensional CAE models. In [35], the au-

thors exploit the transfer of the latent variables learned with

the same autoencoder to foster commonality and knowl-

edge transfer between shapes in a multi-task vehicle aero-

dynamic optimization problem. The authors in [38] extend

the network to a variational autoencoder and assess the ef-

fects of the regularization of the latent space on the shape-

generative capabilities of the autoencoder.

Yet, since these networks process input data with point-

wise operators, the latent features miss global shape in-

formation and encode a notion of occupancy of the input

space [36]. The works presented in [13, 26, 20] address

the feature aggregation issues with more complex architec-

tures, but for shape segmentation and classification tasks.

Umetani [43] proposed to re-parameterize CAEmodels into

organized point clouds, which the author used to learn 3D

shapes. Although effective, the proposed autoencoder com-

prises only fully-connected layers, which scale poorly to

higher-dimensional point clouds.

3D mesh-generative models. In practice, automated

post-processing of 3D point clouds into CAE meshes is the

main challenge for applying deep-generative models in en-

gineering optimization. Most of the well-known techniques,

e.g. Poisson [23], ball-pivoting algorithm [4] and graph-cut
minimization [21], require manual tuning and verification,

which is undesired in automated optimization pipelines.

1025

Recent works propose novel DNNs for re-meshing unor-

ganized point clouds. PointTriNet [40] triangulates points

in R3 by combining two networks to search and classify

samples in a point cloud. Point2Mesh [18] matches the ver-

tices of a template mesh to an input point cloud by leaning

shape priors and, thus, avoids any pre-training of the net-

work. Rios et al. [33] proposed a method to search proto-
typical meshes for recovering the surfaces on point clouds

using target-shape matching optimization with FFD.

The autoencoder-based networks proposed in [15, 45]

learn both, shape representation and surface reconstruction.

Given a pair with target and template shapes, the network

learns to deform the vertices of the template mesh to match

the target shape. Li et al. [27] proposed the GRASS au-
toencoders for learning latent representations and shape re-

constructions based on the hierarchical structures of 3D de-

signs. Finally, based on GRASS, Gao et al. [14] proposed
SDM-NET: A variational autoencoder that learns to deform

and combine shape primitives to generate meshed geome-

tries with different topologies.

Instead of envisioning shape generation as an isolated

task, we tailored Point2FFD to address the efficiency in

engineering design optimization with learning-based rep-

resentations. Our objective is to leverage engineering ex-

pertise embedded in templates of simulation-ready meshes

parameterized with FFD to both, improve the quality of the

simulation results and speed up the simulation setup dur-

ing the optimization. Furthermore, the network still learns

a compact design parameterization, which improves the

performance of optimization algorithms by simplifying the

search space.

3. Methods
In the following, we first describe the Point2FFD archi-

tecture (Section 3.1) and data set pre-processing utilized to

train the network (Section 3.2). Then, we describe the base-

line hyperparameters of the network, the algorithm and re-

spective settings for training Point2FFD (Section 3.3).

3.1. Point2FFD Architecture

The Point2FFD architecture comprises two parts: An en-

coder and a shape-generative model (Fig. 2). By compress-

ing the input data through the encoder, the network learns

a compact design representation, the so-called latent space

(Z). The shape-generative model is a two-branch network
that selects a simulation-ready mesh template from a pool

of available FFD-parameterized CAE models based on the

latent representation, and predicts the lattice deformation to

match the mesh template to the input shape.

The encoder follows the network proposed in [35] with

five 1D convolutional layers. The first four layers are ac-

tivated with rectified linear unit (ReLU) and the last layer

with a hyperbolic tangent function. After the convolutions,

a max-pooling operator reduces the dimensionality of the

input data to a Lz-dimensional vector Z
0 ∈ [−1, 1]Lz .

The latent representation Z is obtained by adding Gaussian
noise to Z0 (Eq. 1). During the training, the noise increases

the robustness of the shape-generative model without re-

quiring and additional term in the loss function that needs

to be weighted, as in a variational autoencoder [38]. Hence,

γ is set to 1 only for training the model and σ2 is defined

according to the desired level of noise.

Z = Z0
(
1+ γN (0, σ2)

)
(1)

Following the latent space, the shape-generative model

is divided into two branches. In the first, a multi-layer per-

ceptron (MLP) selects the mesh template based on the sim-

ilarity to the input shape. The MLP consists of two lay-

ers, where the first is activated with ReLU and the sec-

ond with a softmax function. Thus, the index of the se-

lected template corresponds to the index of the neuron with

maximum softmax activation (winner-takes-all). In the sec-

ond branch, a decoder predicts the displacement ΔV of the
control points that parameterize the template. The decoder

comprises three fully-connected layers with only the first

two activated by ReLU.

The network forwards the selected template and pre-

dicted lattice deformation to an FFD operator [39]. We de-

fine a template as a pair (B, V) of FFD parameters, where
B is the matrix of the tri-variate Bernstein polynomial co-

efficients, and V is the vector with the coordinates of non-

deformed control points. Each coefficient ba,p in B is de-

fined by the transformed coordinates (s, t, u) ∈ [0, 1]3 of a
point a sampled from the template mesh (Eq. 2), and the
position p = (i, j, k) of a control point v in a (l ×m × n)-
lattice (Eq. 3). Hence, the FFD operator that computes the

Sdef deformed nodes of the template mesh is defined by

Sdef = B(V +ΔV).

(sa, ta, ua) =

(
xa − x0

xspan
,
ya − y0
yspan

,
za − z0
zspan

)
(2)

ba,p = (1− s)l−isi

[
(1− t)m−jtj

[
(1− u)n−kuk

]]
(3)

3.2. Data Set Processing

Prior to the training, we sample the input and tem-

plate shapes with the shrink-wrapping algorithm proposed

in [35]. First, we fit an initial mesh of a rectangular box to

the dimensions of a target shape. Then, the algorithm iter-

atively approximates the vertices xi of the initial shape to

the corresponding nearest vertices xn,i in the target shape,

given a step size α (Eq. 4). After a defined number of it-
erations t, the algorithm relaxes the shrank mesh using a

1026

E

Shape classifier

D
Deformed FFD lattice

Decoder FFD

Loss:

Encoder Shape-generative model

Gaussian noise
Z0 Z

3D point cloud

Template 2Template 1 Template 3

Output mesh

template

Figure 2. Point2FFD architecture and data flow for training the network.

Laplacian-based filter [44] to improve the distribution of

the points. We shrink-wrap the geometries using step size

α = 0.5 [25] for six iterations, and smooth the shapes in a
single step.

xt+1
i = xt

i + α(xt
n,i − xt

i) (4)

Shrink-wrapping generates organized 3D point clouds,

which follow the vertex assignment of the initial mesh.

Hence, since all shapes are sampled prior to the training and

the point correspondence is known, it allows us to simplify

the loss function and, thus, to increase the computational

efficiency of the training algorithm.

3.3. Network Settings and Training

Network hyperparameters. The baseline hyperparam-
eters of Point2FFD are based on the architectures proposed

in [2, 38, 35] (Table 1). For training the model, we utilize

γ = 1 and σ2 = 9.70E-03 to restrict the noise to a level
of 2.5% with 99% confidence interval. In shape-generative

tasks, the noise is removed by setting γ = 0.
For training Point2FFD, the weights and biases are ini-

tialized randomly according to a normal distribution with

mean μ = 0 and standard deviation σ2 = 1E-02. In partic-
ular, by initializing the decoder (layers 7d to 9d) with lower
σ2 values avoids the network to learn local optima solutions

by self-intersecting the template meshes.

Loss function. The loss function for training Point2FFD
comprises 2 terms (Eq. 5). The first term computes the

reconstruction error defined by the mean-squared distance

(MSD) between corresponding points xi, i = (1, ..., N) and
x̃i in the input and output point clouds, respectively. Since

the similarity between template and input geometries im-

proves the quality of the shape matching [33], the second

term computes a weighted-average of the MSD between

Table 1. Baseline hyperparameters of the Point2FFD architecture.

Layer Type Activation Features Output
Encoder

1 1D-C ReLU 64 [N, 64]

2 1D-C ReLU 128 [N, 128]

3 1D-C ReLU 128 [N, 128]

4 1D-C ReLU 256 [N, 256]

5 1D-C tanh 128 [N, 128]

Latent layer
6 max-pool + N (0, σ2) 128 [1, 128]

Decoder
7d FC ReLU 768 [256, 3]

8d FC ReLU 768 [256, 3]

9d FC None 3(lmn) [(lmn), 3]
MLP

7m FC ReLU 25 [25, 1]

8m FC softmax K [K, 1]

Acronyms and variables: 1D convolution (1D-C), point cloud size (N),
fully-connected layer (FC) and number of available templates (K). The
indices m and d in the layers indicate MLP and decoder, respectively.

the available K templates and input shapes. The weight

for each template is defined by the corresponding output ρj
of the MLP-classifier. Thus, the second term is minimized

when the MLP yields the highest selection probability ρj to
the template with lowest MSD value (highest similarity).

L =
1

N

N∑
i=1

‖xi − x̃i‖2 +
K∑
j=1

ρj
N

(
N∑
i=1

‖xi − xj
i‖2
)
(5)

Despite requiring ordered point clouds, MSD has ad-

vantages over permutation invariant functions, e.g. Cham-

1027

fer Distance [12]. MSD is computationally more efficient,

since the correspondence between points on different point

clouds is known and fixed, and preserves the permutation-

invariance of the features calculated by the encoder. For the

same reason, MSD also avoids learning deformations with

self-intersections, which reduce the quality of the shape re-

constructions.

Training algorithm. In our experiments, we train

Point2FFD using the Adam optimizer [24]. We set the algo-

rithm with learning rate η = 1.00E-04, momenta β1 = 0.9
and β2 = 0.999, and maximum number of epochs to 750.
We split the data set into 90% and 10% partitions for train-

ing and testing, respectively, which are fed to the network

in randomly shuffled batches of 50 shapes.

4. Experiments
In this section, we assess the performance of Point2FFD

in two sets of experiments. First, we benchmark our pro-

posed network against the point cloud autoencoders on

which we base our Point2FFD architecture. Second, we

implement Point2FFD as shape-generative model in a real-

world vehicle aerodynamic optimization problem, and com-

pare the results to an analogous optimization performed

with the point cloud autoencoder utilized in [35].

4.1. Verification Analyses

In our verification analyses, we utilized shapes from the

car and airplane classes of ShapeNetCore [7]. We sam-

pled the shapes according to the methods in Section 3.2

and tested Point2FFD in four different scenarios (Table 2).

We evaluated the scalability of Point2FFD by increasing the

point cloud size from Scenario A to Scenario B, as well as
the performance of the classifier in Scenario D by mixing

the object classes.

Table 2. Scenarios for benchmarking the networks.

Scenario Classes Point cloud size K
A Car 6146 1

B Car 24578 1

C Airplane 24578 1

D Car & Airplane 24578 2

Acronyms and variables: Number of templates (K).

In all experiments, the data sets comprised 3450 ran-

domly selected shapes and equal splits between the classes

(Scenario D). Furthermore, we selected a single mesh tem-
plate per class based on the similarity to the mean shape of

each class (Fig. 3). We embedded the mesh templates in a

lattice with l = 16, m = 6 and n = 6 control planes in s-,
t- and u-direction, respectively.

We benchmarked Point2FFD against three point cloud

autoencoders with similar architecture: The autoencoder

Figure 3. Mesh and sampled point clouds of the template models

selected for the verification experiments.

proposed in [2] (PC-AE-Achlioptas), the modified version

proposed in [35] (PC-AE-Rios), and the variational autoen-

coder proposed in [38] (PC-VAE). We selected the first two

networks because PC-AE-Rios is trained with MSD instead

of Chamfer Distance (CD) [12]. Hence, the differences in

computational demand and reconstruction quality depend

almost exclusively on the different loss functions. We also

considered the PC-VAE in our analyses to compare the la-

tent representation learned with Point2FFD to a regularized

latent space. In all cases, we set the networks to the same

latent space dimensionality (128) and utilized the networks’

hyperparameters proposed in the reference work.

We implemented the architectures using Python with

Tensorflow®for computation on Graphic Processing Units

(GPU). In Scenario A, we trained the models on a ma-
chine with two CPUs Intel®Xeon®Silver, clocked at 2.10

GHz, and four GPUs NVidia®GeForce®RTX 2080 Ti

with 12 GB each. For the remaining scenarios, we uti-

lized a machine with similar CPUs, however with 2 GPUs

NVidia®Quadro®RTX 8000 with 48 GB each. In all cases,

the networks were trained on a single GPU and with the

machines under similar workload.

We evaluated the performance of the networks based on

three main criteria: number of parameters, training runtime

and reconstruction losses (Table 3). The first two criteria

provide an insight on the computational effort to generate

the models. The third criterion, measured with CD, indi-

cates the performance of the networks as shape-generative

models.

Number of parameters and runtime: Since

Point2FFD predicts the deformation of an FFD lat-

tice, the number of trainable parameters is invariant with

the point cloud size. However, the matrix B of polynomial

coefficients scales with the dimensionality of the point

clouds and lattice. Hence, Point2FFD processes point

clouds more efficiently, but requires larger memory allo-

cation (total variables) to store the FFD parameters. This

result is particularly evident in the Point2FFD runtime

of Scenarios B, C and D, which is similar to PC-AE-
Achlioptas. Furthermore, when comparing the runtime

of PC-AE-Achlioptas and PC-AE-Rios, we concluded

that the MSD reduces the computational effort compared

to CD, especially in higher-dimensional point clouds, as

previously discussed. In all cases, the PC-VAE required the

highest computational effort, which was expected.

1028

Table 3. Performance of the selected networks in learning shape-generative models in the Scenarios A to D.
Scenario A: Car class, point cloud size: 6146 points

Network PC-AE-Achlioptas PC-AE-Rios PC-VAE Point2FFD

Loss function CD [12] MSD α1CD + α2 KL-D MSD + MSDproto
Free variables 1 831 942 1 831 942 1 897 606 392 563
Total variables 1 831 942 1 831 942 1 897 606 3 934 387

CDtraining (1.34± 0.03)E-04 (9.37± 0.57)E-05 (5.59± 0.82)E-04 (5.67± 0.39)E-05
CDtest (1.34± 0.09)E-04 (8.93± 1.41)E-05 (5.03± 2.62)E-04 (5.52± 1.07)E-05
Runtime 1 h 45 min 19 s 1 h 42 min 24 s 2 h 34 min 2 s 2 h 7 min 21 s

Scenario B: Car class, point cloud size: 24578 points

Free variables 6 605 830 6 605 830 6 671 494 392 563
Total variables 6 605 830 6 605 830 6 671 494 14 552 219

CDtraining (1.00± 0.03)E-04 (1.05± 0.06)E-04 (4.10± 0.79)E-04 (4.04± 0.09)E-05
CDtest (1.05± 0.11)E-04 (1.03± 0.17)E-04 (4.99± 3.03)E-04 (4.95± 0.99)E-05
Runtime 4 h 32 min 40 s 3 h 42 min 13 s 6 h 39 min 58 s 4 h 43 min 23 s

Scenario C: Airplane class, point cloud size: 24578 points

CDtraining (8.90± 0.27)E-05 (1.47± 0.06)E-04 (4.58± 0.28)E-04 (1.69± 0.06)E-04
CDtest (9.61± 1.05)E-05 (1.48± 0.19)E-04 (4.62± 0.79)E-04 (1.80± 0.24)E-04
Runtime 4 h 29 min 17 s 3 h 42 min 22 s 6 h 31 min 50 s 4 h 35 min 39 s

Scenario D: Car and airplane classes, point cloud size: 24578 points

Total variables 6 605 830 6 605 830 6 671 494 28 709 875

CDtraining (1.34± 0.05)E-04 (1.43± 0.06)E-04 (5.48± 0.52)E-04 (1.36± 0.11)E-04
CDtest (1.31± 0.10)E-04 (1.44± 0.18)E-04 (4.26± 1.08)E-04 (1.43± 0.35)E-04
Runtime 4 h 31 min 5 s 3 h 43 min 3s 6 h 38 min 27 s 4 h 39 min 53 s

KL-D indicates the Kullback-Leibler divergence and the variables α1, α2 the weights for scaling the components of the loss function.

Reconstruction losses: We utilized CD to calculate the
losses on the training and test sets. For a 95% confi-

dence interval, we observed that Point2FFD achieved re-

construction quality at least comparable to the other meth-

ods. Since the networks trained with CD performed bet-

ter on the data sets with airplane shapes, we visually in-

spected reconstructed samples from Scenario D (Fig. 4).

We observed that PC-AE-Achlioptas and PC-VAE differen-

tiated the shape topologies better than the other networks,

but generated fuzzier point clouds. We also noticed that

Point2FFD generated sharper geometries than PC-AE-Rios,

which were over-smoothed. Therefore, we concluded that

the shape reconstruction based on templates improves the

quality of the generated models on networks trained with

MDS-based loss functions (Fig. 4).

We also compared the templates assigned by Point2FFD

to the classes of the shapes in Scenario D. We visualized the
latent space by embedding the latent representations into a

2D space using UMAP [28] (Fig. 5). Point2FFD correctly

identified ≈ 93% of the labels and, despite the differences

to the ground truth, the representations of airplanes and cars

are clearly divided in the latent space.

Conclusions: In this set of experiments, we showed that
Point2FFD achieved overall a better performance than simi-

lar 3D point cloud autoencoders considering computational

effort quality of the generated shapes. We also showed

that the network identifies correctly different classes of ob-

jects, even though the classifier learns the labels based on

shape similarity. In the next set of experiments, we uti-

lize Point2FFD as a shape-generative model in a real-world

vehicle optimization problem, which requires high-quality

surface reconstruction and has non-trivial shape labeling.

4.2. Vehicle Aerodynamic Optimization

The aerodynamic performance of vehicles is often as-

sociated to the aerodynamic drag. The power consumed by

the drag force increases cubically with the vehicle’s velocity

and, thus, it has significant impact on the fuel consumption,

especially at cruise speeds [10, 9].

In this section, we optimize three car shapes for minimiz-

ing the aerodynamic drag: a coupé, a sedan and a sport util-

ity vehicle (SUV) (Fig. 6). We assume as underlying sce-

nario that these vehicles were designed in previous product

development cycles and their simulation-ready mesh repre-

sentations are available. Hence, we use Point2FFD to learn

design representations of benchmark car shapes based on

the deformation of these templates to explore novel solu-

tions during the optimizations.

Experimental set up: For this set of experiments, we
trained Point2FFD with the same settings as in Scenario A

1029

Input

PC-AE-Achlioptas

PC-AE-Rios

PC-VAE

Point2FFD

5.3E-05 7.0E-02 2.9E-05 1.0E-01 3.6E-05 6.5E-02 2.7E-05 1.0E-01 7.5E-05 7.8E-02 3.1E-05 1.0E-01

Figure 4. Analysis of shapes reconstructed by the models trained on the data set with car and airplane shapes (Scenario D). The colors

indicate the distance between corresponding points in the input and output shapes.

Figure 5. 2D-embedding of the learned latent representations col-

ored according to the ground truth and predicted labels.

Coupé Sedan SUV

Figure 6. Initial designs of the coupé, sedan and SUV used in the

optimizations.

(Section 4.1), apart from the latent space dimensionality,

which we reduce to 50. Also, for comparing the optimiza-

tion performance, we also trained the PC-AE-Rios using

the same settings as Point2FFD. Since PC-AE-Rios gener-

ates only point cloud representations, we used the shrink-

wrapping algorithm (Section 3.2) to recover the surfaces on

the shapes generated by PC-AE-Rios.

We calculated the aerodynamic forces through CFD sim-

ulations implemented using OpenFOAM®. As simulation

conditions, we assumed the vehicles driving in straight line

with velocity U = 110 km/h. To reduce the computational
effort, we assumed that the shapes are symmetric with re-

spect to the xz-plane and, thus, performed half-car simula-

tions.

Finally, we utilized the covariance matrix adaptation

evolution strategy (CMA-ES), a state-of-the-art optimizer

for computationally costly real-world design optimization

[19]. In all cases, we set the population size to λ = 16,
number of parents to μ = 5 and maximum number of gen-
erations to 20. Our complete framework is computed in

a cluster set up, which comprises supermicro-boards with

2 Westmere 4 Core Intel®Xeon®E5620, 2,4 GHz, 12 MB

Cache and 24 GB of RAM. Each simulation is performed

in parallel on 16 processors and with a runtime of approxi-

mately 2 hours.

Results and discussion: Based on the fitness of the
individuals over the generations (Fig. 7), the optimiza-

tions with Point2FFD achieved results significantly better

(>50%) than with PC-AE-Rios. Furthermore, by verifying
the optimized shapes, we observe that Point2FFD yielded

designs similar to drag-optimized milage marathon vehicles

[1]. Despite the difference to the initial design, this result

indicates that Point2FFD combined different features that

were learned from the data during the optimizations to drive

the design towards the optimality.

We conclude from these results that two main factors

cause the difference in performance: The shape-generative

capability of the networks and realism of the generated

shapes. In terms of shape-generative capability, the ver-

ification analyses in Section 4.1 indicated that both net-

1030

Initial Optimized
Point2FFD

PC-AE-Rios

Point2FFD

PC-AE-Rios

Initial Optimized

Point2FFD

PC-AE-Rios

Initial Optimized

Figure 7. Normalized performance of the fittest individuals per

generation and optimized shapes obtained with Point2FFD and

PC-AE-Rios after 20 generations.

works have comparable performance. However, by gen-

erating shapes with FFD, Point2FFD potentially modifies

shapes more smoothly, which enables the network to better

explore unknown regions in the latent space than PC-AE-

Rios.

The similarity of the reconstructed shapes to real car de-

signs influences the quality of the simulation results. Since

shrink-wrapping approximates coarsely the surface of the

car shapes, the generated meshes lack detailed structures,

e.g. wheels (Fig. 8). Differently, Point2FFD generates rep-
resentations with higher degree of realism, which allowed

the optimization algorithm to better exploit local design fea-

tures and generate designs with better performance.

Point2FFD PC-AE-Rios
Figure 8. Comparison between meshes generated by Point2FFD

and shrink-meshing for similar shapes at the first generation of the

sedan optimization.

5. Conclusion
Motivated by the current challenges for utilizing deep

shape-generative models in engineering optimization, we

propose in this paper a novel method for learning repre-

sentations of simulation-ready 3D geometric models. Our

architecture learns compact latent representations from 3D

point cloud data and generates simulation-ready polygo-

nal meshes by selecting and deforming available template

meshes parameterized with FFD.

Compared to similar point cloud autoencoders, our

method has advantages in both computational efficiency

and quality of the shape reconstructions. Although the

representation of the FFD-templates is memory demand-

ing, the number of parameters in Point2FFD is invariant

with respect to the dimensionality of the input and output

representations. Hence, our architecture scales to higher-

dimensional point clouds with competitive performance.

Furthermore, by training the network with both, MSD

losses and template-based shape reconstructions, we en-

abled the network to learn a smoother shape-generative

model. We noticed in Section 4.1 that learning data sets

with more complex shapes (airplanes) was more challeng-

ing for Point2FFD. However, we explored a single FFD lat-

tice configuration and suited the shrink-wrapping sampling

to the vehicle data set, which was our main application.

Hence, we conclude that the Point2FFD still has potential

to improve its performance by utilizing template-specific

FFD lattices and different point cloud sampling techniques,

which we will address in future work.

In a set of real world-inspired optimizations, we utilized

the representation learned by Point2FFD to minimize the

aerodynamic drag of three car shapes. We showed that our

network generates polygonal meshes that preserve shape

details, e.g., wheel rims, which improve the fidelity of the
simulation results. Furthermore, compared to a conven-

tional point cloud autoencoder, our network enabled the op-

timization algorithm to better explore the design space and

to find higher-quality optima solutions. In future work, we

will build upon our architecture to address more complex

optimization scenarios, e.g., multi-domain optimization and
increase the degree of control over the deformations for han-

dling design constraints.

Acknowledgement
This project has received funding from the European

Union’s Horizon 2020 research and innovation programme

under grant agreement number 766186 (ECOLE).

References

[1] Essam Abo-serie, E. Oran, and O. Utcu. Aerodynamics As-

sessment Using CFD for a Low Drag Shell Eco-Marathon

Car. Journal of Thermal Engineering, 3:1527–1536, 2017. 7

1031

[2] Panos Achlioptas, Olga Diamanti, Ioannis Mitliagkas, and

Leonidas Guibas. Learning Representations and Generative

Models for 3D Point Clouds. In Jennifer Dy and Andreas

Krause, editors, Proceedings of the 35th International Con-
ference on Machine Learning, volume 80 of Proceedings of
Machine Learning Research, pages 40–49. PMLR, 10–15 Jul
2018. 1, 2, 4, 5

[3] Matthew Berger, Andrea Tagliasacchi, Lee M. Seversky,

Pierre Alliez, Joshua A. Levine, Andrei Sharf, and Clau-

dio T. Silva. State of the Art in Surface Reconstruction from

Point Clouds. In Sylvain Lefebvre and Michela Spagnuolo,

editors, Eurographics 2014 - State of the Art Reports. The
Eurographics Association, 2014. 1

[4] Fausto Bernardini, Joshua Mittleman, Holly Rushmeier,

Cláudio Silva, and Gabriel Taubin. The Ball-Pivoting Al-

gorithm for Surface Reconstruction. IEEE Transactions on
Visualization and Computer Graphics, 5(4):349–359, Oct.
1999. 2

[5] Michael M. Bronstein, Joan Bruna, Yann LeCun, Arthur

Szlam, and Pierre Vandergheynst. Geometric Deep Learn-

ing: Going beyond Euclidean Data. IEEE Signal Processing
Magazine, 34(4):18–42, 2017. 1

[6] Wenming Cao, Zhiyue Yan, Zhiquan He, and Zhihai He. A

Comprehensive Survey on Geometric Deep Learning. IEEE
Access, 8:35929–35949, 2020. 2

[7] Angel X. Chang, Thomas Funkhouser, Leonidas Guibas, Pat

Hanrahan, Qixing Huang, Zimo Li, Silvio Savarese, Mano-

lis Savva, Shuran Song, Hao Su, Jianxiong Xiao, Li Yi,

and Fisher Yu. ShapeNet: An Information-Rich 3D Model

Repository. Technical Report arXiv:1512.03012 [cs.GR],

Stanford University — Princeton University — Toyota Tech-

nological Institute at Chicago, 2015. 5

[8] R. Qi Charles, Hao Su, Mo Kaichun, and Leonidas J. Guibas.

PointNet: Deep Learning on Point Sets for 3D Classification

and Segmentation. In 2017 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 77–85, 2017.
2

[9] Harun Chowdhury, Hazim Moria, Abdulkadir Ali, Iftekhar

Khan, Firoz Alam, and Simon Watkins. A Study on Aerody-

namic Drag of a Semi-trailer Truck. Procedia Engineering,
56:201–205, 2013. 5th BSME International Conference on

Thermal Engineering. 6

[10] Laurent Dumas. CFD-based Optimization for Automotive
Aerodynamics, pages 191–215. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2008. 6

[11] Giles Endicott, Toyotaka Sonoda, Markus Olhofer, and

Toshiyuki Arima. Aerodynamic Improvement of a Transonic

Fan Outlet Guide VaneUsing 3D Design Optimization. vol-

ume Volume 7: Turbomachinery, Parts A, B, and C of Turbo
Expo: Power for Land, Sea, and Air, pages 1395–1404, 06
2011. 2

[12] Haoqiang Fan, Hao Su, and Leonidas Guibas. A Point Set

Generation Network for 3D Object Reconstruction from a

Single Image. In 2017 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 2463–2471, 2017. 5,
6

[13] Matheus Gadelha, Rui Wang, and Subhransu Maji. Multires-

olution Tree Networks for 3D Point Cloud Processing. In

Vittorio Ferrari, Martial Hebert, Cristian Sminchisescu, and

Yair Weiss, editors, Computer Vision – ECCV 2018, pages
105–122, Cham, 2018. Springer International Publishing. 2

[14] Lin Gao, Jie Yang, Tong Wu, Yu-Jie Yuan, Hongbo Fu, Yu-

Kun Lai, and Hao Zhang. SDM-NET: Deep Generative Net-

work for Structured Deformable Mesh. ACM Trans. Graph.,
38(6), Nov. 2019. 1, 3

[15] Thibault Groueix, Matthew Fisher, Vladimir G. Kim,

Bryan C. Russell, and Mathieu Aubry. 3D-CODED: 3D

Correspondences by Deep Deformation. In Vittorio Ferrari,

Martial Hebert, Cristian Sminchisescu, and Yair Weiss, edi-

tors, Computer Vision – ECCV 2018, pages 235–251, Cham,
2018. Springer International Publishing. 3

[16] Yulan Guo, Hanyun Wang, Qingyong Hu, Hao Liu, Li Liu,

and Mohammed Bennamoun. Deep Learning for 3D Point

Clouds: A Survey. IEEE Transactions on Pattern Analysis
and Machine Intelligence, pages 1–1, 2020. 1, 2

[17] James Hall, Daniel J. Poole, T. Rendall, and Christian B.

Allen. Volumetric Shape Parameterisation for Combined
Aerodynamic Geometry and Topology Optimisation, chap-
ter 3354, pages 1–29. American Institute of Aeronautics and

Astronautics, Inc., 2015. 2

[18] Rana Hanocka, Gal Metzer, Raja Giryes, and Daniel Cohen-

Or. Point2Mesh: A Self-Prior for Deformable Meshes. ACM
Trans. Graph., 39(4), July 2020. 1, 3

[19] N. Hansen. The CMA Evolution Strategy: A Tutorial. ArXiv,
abs/1604.00772(arXiv:1604.00772 [cs.LG]), 2016. 7

[20] Amir Hertz, Rana Hanocka, Raja Giryes, and Daniel Cohen-

Or. PointGMM: A Neural GMM Network for Point Clouds.

In 2020 IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 12051–12060, 2020. 2

[21] Alexander Hornung and Leif Kobbelt. Robust Reconstruc-

tion of Watertight 3D Models from Non-Uniformly Sampled

Point Clouds without Normal Information. In Proceedings of
the Fourth Eurographics Symposium on Geometry Process-
ing, SGP ’06, page 41–50, Goslar, DEU, 2006. Eurographics
Association. 2

[22] Mikael Kaandorp, StefanMenzel, and Sebastian Schmitt. An

Aerodynamic Perspective on Shape Deformation Methods.

In 18th AIAA/ISSMO Multidisciplinary Analysis and Opti-
mization Conference. American Institute of Aeronautics and
Astronautics, June 2017. 2

[23] Michael Kazhdan, Matthew Bolitho, and Hugues Hoppe.

Poisson Surface Reconstruction. In Proceedings of the
Fourth Eurographics Symposium on Geometry Processing,
SGP ’06, page 61–70, Goslar, DEU, 2006. Eurographics As-

sociation. 2

[24] Diederik P. Kingma and Jimmy Ba. Adam:

A Method for Stochastic Optimization. CoRR,
abs/1412.6980(arXiv:1412.6980 [cs.LG]), 2015. 5

[25] Bon Ki Koo, ChangWoo Chu, Jae Chul Kim, and Young Kyu

Choi. Srink-Wrapped Boundary Face Algorithm for Surface

Reconstruction fromUnorganized 3D Points. In Proceedings
of the 4th WSEAS International Conference on Signal Pro-
cessing, Computational Geometry & Artificial Vision, ISC-
GAV’04, Stevens Point, Wisconsin, USA, 2004. World Sci-

entific and Engineering Academy and Society (WSEAS). 4

1032

[26] Jiaxin Li, Ben M. Chen, and Gim Hee Lee. SO-Net: Self-

Organizing Network for Point Cloud Analysis. In 2018
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 9397–9406, 2018. 2

[27] Jun Li, Kai Xu, Siddhartha Chaudhuri, Ersin Yumer, Hao

Zhang, and Leonidas Guibas. GRASS: Generative Recur-

sive Autoencoders for Shape Structures. ACM Trans. Graph.,
36(4), July 2017. 1, 3

[28] L. McInnes and John Healy. UMAP: Uniform Manifold Ap-

proximation and Projection for Dimension Reduction. ArXiv,
abs/1802.03426(arXiv:1802.03426 [stat.ML]), 2018. 6

[29] Stefan Menzel, Markus Olhofer, and Bernhard Sendhoff.

Application of Free Form Deformation Techniques in Evo-

lutionary Design Optimisation. In Jose Herskovits, San-

dro Mazorche, and Alfredo Canelas, editors, 6th World
Congress on Structural and Multidisciplinary Optimization
(WCSMO6), Rio de Janeiro, 2005. COPPE Publication. 2

[30] Stefan Menzel and Bernhard Sendhoff. Representing the

Change - Free Form Deformation for Evolutionary Design

Optimisation. In Tina Yu, David Davis, Cem Baydar, and

Rajkumar Roy, editors, Evolutionary Computation in Prac-
tice, chapter 4, page 63–86. Springer, Berlin, 2008. 2

[31] Markus Olhofer, Thomas Bihrer, Stefan Menzel, Michael

Fischer, and Bernhard Sendhoff. Evolutionary Optimisation

of an Exhaust Flow Element with Free Form Deformation.

In K.W. Seibert and M. Jirka, editors, Simulation for Innova-
tive Design, Proceedings of the 4th EASC - 2009 European
Automotive Simulation Conference, pages 163–174. ANSYS
Inc., 2009. 2

[32] Charles R. Qi, Li Yi, Hao Su, and Leonidas J. Guibas.

PointNet++: Deep Hierarchical Feature Learning on Point

Sets in a Metric Space. In Proceedings of the 31st In-
ternational Conference on Neural Information Processing
Systems, NIPS’17, page 5105–5114, Red Hook, NY, USA,
2017. Curran Associates Inc. 2

[33] Thiago Rios, Jiawen Kong, Bas van Stein, Thomas Bäck,

Patricia Wollstadt, Bernhard Sendhoff, and Stefan Menzel.

Back To Meshes: Optimal Simulation-ready Mesh Proto-

types For Autoencoder-based 3D Car Point Clouds. In

2020 IEEE Symposium Series on Computational Intelligence
(SSCI), pages 942–949, 2020. 3, 4

[34] Thiago Rios, Bernhard Sendhoff, Stefan Menzel, Thomas

Bäck, and Bas van Stein. On the Efficiency of a Point Cloud

Autoencoder as a Geometric Representation for Shape Opti-

mization. In 2019 IEEE Symposium Series on Computational
Intelligence (SSCI), pages 791–798, 2019. 2

[35] Thiago Rios, Bas van Stein, Thomas Bäck, Bernhard Send-

hoff, and Stefan Menzel. Multi-Task Shape Optimization

Using a 3D Point Cloud Autoencoder as Unified Represen-

tation. IEEE Transactions on Evolutionary Computation,
pages 1–1, 2021. 2, 3, 4, 5

[36] Thiago Rios, Bas van Stein, Stefan Menzel, Thomas Back,

Bernhard Sendhoff, and Patricia Wollstadt. Feature Visual-

ization for 3D Point Cloud Autoencoders. In 2020 Interna-
tional Joint Conference on Neural Networks (IJCNN), pages
1–9, 2020. 1, 2

[37] Thiago Rios, Patricia Wollstadt, Bas van Stein, Thomas

Bäck, Zhao Xu, Bernhard Sendhoff, and Stefan Menzel.

Scalability of Learning Tasks on 3D CAE Models Using

Point Cloud Autoencoders. In 2019 IEEE Symposium Series
on Computational Intelligence (SSCI), pages 1367–1374,
2019. 1

[38] Sneha Saha, Stefan Menzel, Leandro L. Minku, Xin Yao,

Bernhard Sendhoff, and Patricia Wollstadt. Quantifying The

Generative Capabilities Of Variational Autoencoders For 3D

Car Point Clouds. In 2020 IEEE Symposium Series on Com-
putational Intelligence (SSCI), pages 1469–1477, 2020. 1, 2,
3, 4, 5

[39] Thomas W. Sederberg and Scott R. Parry. Free-Form De-

formation of Solid Geometric Models. SIGGRAPH Comput.
Graph., 20(4):151–160, Aug. 1986. 2, 3

[40] Nicholas Sharp and Maks Ovsjanikov. PointTriNet: Learned

Triangulation of 3D Point Sets. In Andrea Vedaldi, Horst

Bischof, Thomas Brox, and Jan-Michael Frahm, editors,

Computer Vision – ECCV 2020, pages 762–778, Cham,
2020. Springer International Publishing. 1, 3

[41] Daniel Sieger, Stefan Menzel, and Mario Botsch. On Shape

Deformation Techniques for Simulation-based Design Opti-

mization. In Luca Formaggia Simona Perotto, editor, New
Challenges in Grid Generation and Adaptivity for Scientific
Computing, SEMA SIMAI Springer Series, pages 281–303.
Springer, LNCS, LNAI, LNBI, May 2015. 2

[42] S.N. Skinner and H. Zare-Behtash. State-of-the-art in Aero-

dynamic Shape Optimisation Methods. Applied Soft Com-
puting, 62:933–962, 2018. 1, 2

[43] Nobuyuki Umetani. Exploring Generative 3D Shapes Using

Autoencoder Networks. In SIGGRAPH Asia 2017 Technical
Briefs, SA ’17, New York, NY, USA, 2017. Association for
Computing Machinery. 1, 2

[44] J. Vollmer, R. Mencl, and H. Müller. Improved Laplacian

Smoothing of Noisy Surface Meshes. Computer Graphics
Forum, 18(3):131–138, 1999. 4

[45] Weiyue Wang, Duygu Ceylan, Radomir Mech, and Ul-

rich Neumann. 3DN: 3D Deformation Network. In 2019
IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 1038–1046, 2019. 1, 3

[46] Yaoqing Yang, Chen Feng, Yiru Shen, and Dong Tian. Fold-

ingNet: Point Cloud Auto-Encoder via Deep Grid Deforma-

tion. In 2018 IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 206–215, 2018. 2

[47] Bin Zhang, Zhiwei Feng, Boting Xu, and Tao Yang. Efficient

Aerodynamic Shape Optimization of the Hypersonic Lifting

Body Based on Free Form Deformation Technique. IEEE
Access, 7:147991–148003, 2019. 2

[48] Yu Zhang, Zhong-Hua Han, Laixiang Shi, and Wen-Ping

Song. Multi-round Surrogate-based Optimization for Bench-
mark Aerodynamic Design Problems. 2016. 2

1033

