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ORIGINAL ARTICLE

Metabolic Age Based on the BBMRI-NL 
1H-NMR Metabolomics Repository as Biomarker 
of Age-related Disease
Erik B. van den Akker , PhD; Stella Trompet , PhD; Jurriaan J.H. Barkey Wolf, MSc; Marian Beekman , PhD;  
H. Eka D. Suchiman , MSc; Joris Deelen , PhD; Folkert W. Asselbergs , MD, PhD; BBMRI-NL*; Eric Boersma , PhD;  
Davy Cats , BSc; Petra M. Elders , MD, PhD; J. Marianne Geleijnse , PhD; M. Arfan Ikram , MD, PhD;  
Margreet Kloppenburg, MD, PhD; Haillang Mei , PhD; Ingrid Meulenbelt , PhD; Simon P. Mooijaart , MD, PhD;  
Rob G.H.H. Nelissen, MD, PhD; Mihai G. Netea, MD, PhD; Brenda W.J.H. Penninx , PhD; Mariska Slofstra, BSc;  
Coen D.A. Stehouwer , MD, PhD; Morris A. Swertz , PhD; Charlotte E. Teunissen , PhD; Gisela M. Terwindt , MD, PhD;  
Leen M. ‘t Hart , PhD; Arn M.J.M. van den Maagdenberg, PhD; Pim van der Harst , MD, PhD; Iwan C.C. van der Horst , MD, PhD;  
Carla J.H. van der Kallen , PhD; Marleen M.J. van Greevenbroek, PhD; W. Erwin van Spil , MD, PhD; Cisca Wijmenga, PhD;  
Alexandra Zhernakova , MD, PhD; Aeilko H. Zwinderman , PhD; Naveed Sattar , PhD; J. Wouter Jukema , MD, PhD;  
Cornelia M. van Duijn , PhD; Dorret I. Boomsma , PhD; Marcel J.T. Reinders , PhD; P. Eline Slagboom , PhD

BACKGROUND: The blood metabolome incorporates cues from the environment and the host’s genetic background, potentially 
offering a holistic view of an individual’s health status.

METHODS: We have compiled a vast resource of proton nuclear magnetic resonance metabolomics and phenotypic data 
encompassing over 25 000 samples derived from 26 community and hospital-based cohorts.

RESULTS: Using this resource, we constructed a metabolomics-based age predictor (metaboAge) to calculate an individual’s 
biological age. Exploration in independent cohorts demonstrates that being judged older by one’s metabolome, as compared 
with one’s chronological age, confers an increased risk on future cardiovascular disease, mortality, and functionality in older 
individuals. A web-based tool for calculating metaboAge (metaboage.researchlumc.nl) allows easy incorporation in other 
epidemiological studies. Access to data can be requested at bbmri.nl/samples-images-data.

CONCLUSIONS: In summary, we present a vast resource of metabolomics data and illustrate its merit by constructing a 
metabolomics-based score for biological age that captures aspects of current and future cardiometabolic health.

Key Words: aging ◼ cardiovascular disease ◼ data science ◼ metabolomics

Chronological age is an important risk factor for virtually 
all types of common disease, including diabetes melli-
tus type 2, cardiovascular disease, and many forms of 

cancer.1 Moreover, chronological age is often used as an 
important criterion on which clinical treatment decisions in 
older adults are based. Yet, especially in the elderly, chrono-
logical age is a poor representative of an individual’s intrin-
sic biological age, including the susceptibility to disease 

and resilience to treatment.2 Hence, novel biomarkers are 
required that give additional information about the dis-
parity between chronological and biological age, that is, 
whether individuals are biologically older and potentially 
more vulnerable than their peers.

A range of multimarker algorithms has been developed 
to serve as indicators of biological age. Examples are those 
based on physiological deterioration of organ systems 
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from the second3 or third4 decade onward or those based 
on combined health deficits in later life, the so-called 
frailty indices.5,6 Others have exploited large quantities 
of highly standardized molecular data, for example, DNA 
methylation data, to train the so-called clock algorithms7–9 
that allow one to calculate an omics-based age. The differ-
ence between an individual’s actual chronological age and 
the estimated methylation age was for instance shown to 
associate with mortality.10 Interestingly, when compared, 
each of these omics-based biological age indicators 
appeared to mark unique aspects of ageing,11,12 giving 
ample incentive for the development of other, possibly 
complementary omics-based indicators of biological age. 
While several large epidemiological studies on the blood 
metabolome have revealed many age-associated changes 
in metabolite levels, as determined by either mass spec-
tral analyses,13 or proton nuclear magnetic resonance (1H-
NMR),14 to date, only studies of a fairly limited size have 
been used to construct a metabolomics clock.15

METHODS
Data are available upon request. Please visit bbmri.nl/samples-
images-data and fill out and sign the data access request and 
code of conduct forms to request the data in this manuscript. 
Application complaints with ethical and legal legislations will be 
reviewed by the Dutch Biobanking and Biomolecular Resources 
and Research Infrastructure the Netherlands (BBMRI-NL) board 
for overlap with other ongoing projects before access is granted.

Included studies have been approved by their respective 
local medical ethical committees, and all participants gave 
informed consent for study participation. Detailed Methods are 
available in the Data Supplement.

RESULTS
BBMRI-NL Resource
We present a novel, well-standardized 1H-NMR blood-
based metabolomics dataset encompassing over 25 000 
samples collected by the Dutch Biobanking and BioMo-
lecular Resources and Research Infrastructure derived 

from 26 community- and hospital-based cohorts (Fig-
ure 1; Table II in the Data Supplement for cohort descrip-
tions; data available upon request at BBMRI-NL: bbmri.
nl/samples-images-data). We have used these data to 
construct a metabolomics-based clock (predictions made 
available as web resource; metaboage.reasearchlumc.nl; 
see Methods for instructions) and show that the differ-
ence between chronological age and metabolomic age 
captures aspects of cardiometabolic health.

Deriving a Metabolomics-Based Score for 
Biological Age
A metabolomics predictor for chronological age was 
trained and evaluated (Document III in the Data Supple-
ment) using 56 of 226 most reliable and independent16 
metabolomic variables (Document II in the Data Supple-
ment; Table III in the Data Supplement), derived from 24 
cohorts (Figure 1). Two biobanks missing a metabolomic 
variable were omitted (Methods). In addition, PROSPER 
and LLS_SIBS were left out from training the metabo-
lomic age predictor and used to independently explore 
the predictive value of the obtained indicator of bio-
logical age. With use of the data of the remaining 22 
biobanks comprising 18 716 samples (9680 men and 
10 036 women), a linear model was trained with the 56 
metabolomic variables to estimate chronological age 
(Tables IV and V in the Data Supplement; Methods). A 
5-Fold-Cross-Validation (5CV; Methods; Document III in 
the Data Supplement) scheme was used for randomly 
splitting the data in training (80%; 15 208 samples) and 
test (20%; 3802 samples) sets for an unbiased training 
and evaluation of the models. In addition, model perfor-
mances were evaluated using Leave-One-Biobank-Out-
Validation (LOBOV; Methods; Document III in the Data 
Supplement) to simulate the scenario of applying the 
trained model to a completely unseen dataset. While 
LOBOV results displayed more variation in prediction 
performances compared with 5CV, they overall showed 
good agreement between predicted and chronological 
age for all analyzed biobanks (Document III in the Data 
Supplement). The age-independent part of the differ-
ence between the estimated metabolomic age and 
chronological age (Figure 1C), hereafter referred to as 
ΔmetaboAge, may reflect for each individual the dis-
parity between their biological and chronological age 
(Methods). Consequently, a high ΔmetaboAge indicates 
a relatively old blood metabolome for a given chrono-
logical age.

Associations of metaboAge With 
Cardiometabolic Risk Factors
In subsequent analyses, we explored which aspects of 
biological age are marked by ΔmetaboAge. First, we 
investigated whether ΔmetaboAge correlates with estab-
lished clinical risk factors for cardiometabolic disease 

Nonstandard Abbreviations and Acronyms

1H-NMR Proton Nuclear Magnetic Resonance
5CV 5-Fold-Cross-Validation
BBMRI-NL  Biobanking and Biomolecular 

Resources and Research Infrastruc-
ture the Netherlands

BMI body mass index
LOBOV Leave-One-Biobank-Out-Validation
PROSPER  Prospective Study of Pravastatin in the 

Elderly at Risk
LLS-SIBS  Leiden Longevity Study - nonagenar-

ian siblings
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using phenotypic data available within the BBMRI-
NL resource (see Document I in the Data Supplement 
for distribution and availability of phenotypic data per 
cohort). Meta-analyses across biobanks showed that a 
positive ΔmetaboAge corresponded with a poor cardio-
metabolic health, as represented by higher body mass 
index (BMI), higher serum levels of C-reactive protein, 
and not unsurprisingly, higher cholesterol and triglycer-
ides. In addition, use of blood pressure–lowering medica-
tion, but not lipid-lowering medication, is associated with 
a higher ΔmetaboAge (Figure 2A; Document I in the 
Data Supplement for results per cohort). These associa-
tions remained significant when further adjusted for sex 
and BMI (Table VI in the Data Supplement).

Associations of metaboAge With Current and 
Future Cardiometabolic Disease
Next, we investigated whether ΔmetaboAge marks cur-
rent and future clinical metabolic disease end points. 
Participants with current metabolic syndrome or diabe-
tes mellitus type 2 were consistently estimated older 
as compared with their healthy counterparts of similar 
age (Figure 2B), with diabetes mellitus type 2 remaining 
significant when also adjusting for sex and BMI (Table 
VII in the Data Supplement). The predictive value of 

ΔmetaboAge for future cognitive and cardiometabolic 
disease was tested in the PROSPER study,17 a multi-
center clinical trial investigating the efficacy of lipid-low-
ering medication for elderly patients (70–82 years) at risk 
of cardiovascular events followed for a median follow-up 
time of 3.3 years (Table II in the Data Supplement). While 
at most marginal correlations were observed between 
ΔmetaboAge and measures of cognitive decline at base-
line (Table VIII in the Data Supplement) or during follow-
up (Table IX in the Data Supplement), patients with a 
positive ΔmetaboAge were shown to be at risk of future 
coronary and cardiovascular events independent of sex, 
BMI, smoking status, diabetes mellitus type 2 status, 
antihypertensive medication, and pravastatin treatment 
(Figure 2C). Using the same model, we found patients 
with a positive ΔmetaboAge to be at increased risk of 
heart failure hospitalization and vascular and all-cause 
mortality (Figure 2C).

Associations of metaboAge With Mortality and 
Functionality in the Oldest Old
Finally, we evaluated whether ΔmetaboAge marks bio-
logical aging near the extremes of human life span. We 
examined participants of the LLS_SIBS,18 aged ≥89 
years and followed during a median follow-up time of 

Figure 1. Biobanking and Biomolecular Resources Research Infrastructure the Netherlands (BBMRI-NL) is a vast proton 
nuclear magnetic resonance (1H-NMR) metabolomics resource enabling approaches for personalized medicine.
A, Cohorts in the Dutch Biobanking and Biomolecular Resources Research Infrastructure (BBMRI-NL), totaling 25 253 samples display 
interlinked age distributions robustly covering the complete adult life span from 18 till 85 y. While, VUNTR (Vrije Universiteit Netherlands 
Twin Register) and CODAM (Cohort on Diabetes and Atherosclerosis Maastricht; gray) were omitted for training the age predictor due to 
incomplete data (Methods), LLS_SIBS and PROSPER (boxed) were held out to independently evaluate the merit of age predictions as 
surrogate biomarkers for clinical end points. B, Additional omics data (orange) and phenotypic variables (blue) available within the BBMRI-NL 
resource. C, Flowchart of the analyses: a predictor for chronological age is trained on BBMRI-NL metabolomics data. The age-independent 
part of differences between predicted age and chronological age, termed ΔmetaboAge, is associated with end points. D, Five-Fold-Cross 
Validation (5CV) is performed to assess the accuracy of the age predictor. Predictions on the test set of a representative fold are depicted, with 
ΔmetaboAge exemplified in orange. F indicates female; M, male; N, no; and Y, yes.D
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12.4 years for all-cause mortality (Table II in the Data 
Supplement). At baseline, a positive ΔmetaboAge cor-
related with lower instrumental activities of daily living 
(P=2.0×10−16)—a measure of physical independence. 
Moreover, a positive ΔmetaboAge also marked nona-
genarians at an increased risk of all-cause mortality 
(Figure 2D) during 10 years of follow-up, even when 
adjusting for instrumental activities of daily living (Table 
X in the Data Supplement).

DISCUSSION
We present a rich resource of 1H-NMR serum metabo-
lomics and routine serum measurements encompassing 
over 25 000 samples, derived from 26 community- and 
hospital-based cohorts (download data access request 
at bbmri.nl/samples-images-data). Using this resource, 
we have constructed a score reflecting an individual’s 
biological age, called metaboAge, and demonstrate 
that the excess of metaboAge over chronological age 
(ΔmetaboAge) confers an increased risk for future car-
diovascular disease, mortality up to the highest ages, and 
functionality among older adults. Lastly, we have made a 
web-based tool available at metaboage.researchlumc.nl 

facilitating an easy incorporation of ΔmetaboAge scores 
in future epidemiological studies.

We evaluated the applicability of ΔmetaboAge as a 
biomarker for current and future cardiometabolic health 
and disease as the same metabolomics platform has 
previously been successfully used to predict outcomes 
for cardiovascular disease16 and type 2 diabetes.19 In line 
with these papers, we observed that higher ΔmetaboAge 
indicates various aspects of current and future cardio-
metabolic health, including significant associations with 
BMI (P=2.59×10−33), C-reactive protein (P=1.76×10−07), 
current type 2 diabetes mellitus (P=5.10×10−17), future 
cardiovascular events (P=2.64×10−04), and vascular 
mortality (P=8.56×10−07). Hence, ΔmetaboAge can 
be readily explored, also in studies lacking cardiometa-
bolic risk factors or end points, as a surrogate marker 
to capture some aspects of current or future cardio-
metabolic health.

Ideally, biomarkers of biological age are broadly appli-
cable and are thus indicative of one or several of the 5 
health domains as defined by Lara et al.20 Whereas we 
showed that ΔmetaboAge is indicative of classical bio-
markers belonging to the physiological (cardiovascular 
health), immune (high-sensitivity C-reactive protein), 
and physical capability domain (Instrumental Activities 

Figure 2. Associations of ΔmetaboAge with (risk factors of) cardiometabolic disease risk and all-cause mortality.
Associations with (A) association of cardiometabolic risk factors with ΔmetaboAge in Biobanking and Biomolecular Resources Research 
Infrastructure the Netherlands (BBMRI-NL). B, Association of prevalent cardiometabolic disease with ΔmetaboAge in BBMRI-NL. C, 
Association of incident cardiometabolic disease with ΔmetaboAge in PROSPER. D, Association of mortality with ΔmetaboAge in LLS_SIBS 
adjusted for age and sex. A Kaplan-Meijer curve illustrates the difference in mortality between quintiles with the highest (blue; estimated ≥6.9 y 
older) and the lowest (red; estimated ≥7.3 y younger) ΔmetaboAge. βs are reported as increase in ΔmetaboAge per unit of increase in the risk 
factor (A) or disease status (B). Hazard ratios (HRs) reported as increased risk per 10-y of ΔmetaboAge. P values are in bold when significant 
after correction for multiple testing (Bonferroni). F indicates female; HDL, high-density lipoprotein; hsCRP, high-sensitivity C-reactive protein; M, 
male; med, medication; N, no; OR, odds ratio; and Y, yes. *Log-transformed.
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of Daily Living), we were unable to establish significant 
correlations with classical biomarkers of the cognitive or 
endocrine domain. This was either because we lacked 
the classical biomarkers, as for the endocrine domain, 
or that ΔmetaboAge did not correlate with the avail-
able classical biomarkers, as for the cognitive domain. 
Of note is that a measure not available to us, general 
cognitive ability, has recently been reported to associate 
with several metabolite measurements of this platform 
in a large epidemiological study.21 Hence, we expect 
that future large-scale metabolomics studies using the 
Nightingale platform, for example, the UK Biobank, will 
shed more light on other aspects of biological age indi-
cated by ΔmetaboAge.

We have used 2 evaluation procedures to get an 
unbiased estimate of the model performance of our 
1H-NMR metabolomics-based predictor for chronolog-
ical age under 2 different though complementary sce-
narios. First, we have used 5CV splitting the data into 
5 training and test sets in which all train and tests sets 
have similar age and sex distributions. As this method 
takes samples from all evaluated biobanks, it intrin-
sically conditions on potential batch effects and can, 
therefore, be too optimistic. To specifically evaluate 
the scenario of unseen biobanks, we also performed a 
LOBOV. While this method more realistically captures 
variation introduced between biobanks, it suffers, due 
to the choice of the Pearson correlation between pre-
dicted and chronological age as an evaluation mea-
sure, from the considerable differences in sample sizes 
and age ranges between biobanks. Hence results with 
LOBOV might be overly conservative. Collectively, the 
5CV and LOBOV results should provide sensible esti-
mate on the performance of the proposed metabolo-
mics-based age predictor.

While the blood metabolome can be readily assessed 
using 1H-NMR metabolomics at high throughput, high 
reproducibility, and low costs, no 1H-NMR metabolomics 
clock has to date been made available. We have applied 
the clock paradigm popularized by the work of Horvath et 
al8 to derive such a metabolomics-based predictor of age 
for a metabolomics platform commonly used in large epi-
demiological studies. Similarly, we have shown that our 
clock associates with various clinical end points including 
mortality. While clock algorithms have become increas-
ingly popular as a means to perform sample stratification, 
an important limitation of the clock paradigm remains that 
it is hard to trace back why such scores reflect aspects 
of current and future disease, let alone for which disease 
applications a particular score is most suitable. Hence, 
newly proposed scores inevitably require additional empir-
ical evidence in other epidemiological cohorts to support 
its added value. To accommodate future research with 
ΔmetaboAge, we have made a web-based tool available 
at metaboage.researchlumc.nl. Lastly, ongoing research 
on clock algorithms also generates new knowledge on 

the methodology how such health predictors could be 
derived. Here we made the conservative decision to omit 
metabolites measured with low success rates (<98%) or 
that frequently failed to reach the detection limit (<98%), 
thus potentially ignoring the fact that these aspects 
might be informative on aging processes. Hence, to also 
accommodate future research into newly created clocks 
or other scores, data access can be requested at bbmri.
nl/samples-images-data.

In summary, we present a rich resource of 1H-NMR 
serum metabolomics and routine serum measure-
ments encompassing over 25 000 samples (download 
data access request at bbmri.nl/samples-images-data). 
Moreover, we illustrate the merit of such a resource by 
presenting ΔmetaboAge—a novel metabolomics-based 
indicator of biological age capturing aspects of current 
and future cardiometabolic health (predictions available 
at metaboage.researchlumc.nl).
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