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Abstract

Rheumatoid arthritis (RA) and osteoarthritis (OA) are inflammatory joint diseases, 
characterized by pain and structural damage. Besides prostaglandins, usually targeted 
by non-steroidal anti-inflammatory drugs, other lipids, including fatty acids, phospholipids 
and other bioactive lipid mediators derived from fatty acids could also contribute to RA 
and OA.

In this review, we will present evidence for a role of fatty acids and derivatives in RA 
and OA by summarizing findings related to their presence in serum and synovial fluid, 
as well as their association with clinical characteristics and effects on RA and OA 
tissues in vitro. Finally, a more direct evidence for their role in RA and OA derived from 
intervention studies in humans or mouse models of disease will be summarized. Based 
on the presented data, we will present a research agenda, in which some key unresolved 
questions regarding the role of lipids in RA and OA will be formulated.

Key words: Osteoarthritis, Rheumatoid arthritis, lipid mediators, lipids, inflammation, 
oxylipins
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Introduction

Rheumatoid arthritis (RA) and osteoarthritis (OA) are joint diseases characterized by 
different pathophysiological mechanisms, but displaying common clinical characteristics, 
such as joint pain, functional impairment and structural damage which is hallmarked 
by bone erosions in RA and osteophytes in OA. Moreover, both diseases display joint 
space narrowing, reflecting cartilage loss. Another common feature of these diseases 
is the presence of inflammation in the majority of the patients. While inflammation is a 
long-established player in the pathogenesis of RA, its presence and possible role in OA 
has been only recently revealed. Several studies during the past 10 years have shown 
an association between synovial inflammation and pain on one hand and radiographic 
progression on the other hand, establishing inflammation as an important player also in 
OA (reviewed in (1,2)).

Fatty acids acquired through diet are usually transported through the body in triglycerides 
or phospholipids incorporated in lipoproteins, but can also be found in free form in blood. 
Moreover, they are present both in bound and in free form in cells, where they have 
various functions as energy source, membrane constituents or signalling molecules. They 
are essential building blocks for higher order lipids such as phospholipids, sphingolipids, 
glycerolipids and glycolipids. Moreover, they could be metabolized into bioactive lipid 
mediators such as oxylipins, including eicosanoids (prostaglandins, thromboxanes and 
leukotrienes) and other lipids with more anti-inflammatory and pro-resolving activity such 
as lipoxins, resolvins, maresins and protectins. Enzymes such as phospholipases (PLA) 
which release fatty acids from phospholipids, cyclooxygenases (COX) and lipoxygenases 
(LOX) that oxidize fatty acids are involved in generation of oxylipins. Fatty acids, higher 
order lipids and oxylipins can interact with inflammatory as well as tissue-resident cells, 
thereby contributing to various processes in the body, including inflammation, wound 
healing, pain, etc, and potentially playing a role in RA and OA. In general, it is believed 
that saturated fatty acids, n-6 polyunsaturated fatty acids (PUFA), such as arachidonic 
acid (AA), and AA derivatives (prostaglandins and leukotrienes) have a pro-inflammatory 
effect. In contrast, unsaturated fatty acids, n-3 PUFA, such as docosahexaenoic acid 
(DHA) and eicosapentaenoic acid (EPA), and the oxylipins derived from them (resolvins, 
maresins, protectins) are believed to have an anti-inflammatory function. The latter are 
also believed to be pro-resolving, thereby actively helping wound healing and return to 
tissue homeostasis after an inflammatory response.

In this review, we will present data supporting a role of lipids in RA and OA. To this end, 
we will summarize findings from 3 lines of evidence. First, data related to the presence 
of various fatty acids and their derivatives (lipid mediators) in blood or synovial fluid (SF) 
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of RA and OA patients will be summarized. Next, the association of these lipids with 
clinical disease parameters will be presented, as well as in vivo intervention studies both 
in humans and mouse models of disease. Finally, in vitro studies indicating the effects 
of these lipids on human joint tissues will be presented (summarized in fig.1). The role 
of cholesterol and lipoprotein metabolism in RA and OA has been reviewed elsewhere 
(3,4) and will not be discussed in this review.

Lipids and lipid classes described in serum of healthy individuals
In an extensive study in which the major 6 lipid categories as defined by the Lipid 
Maps were measured in plasma of healthy individuals, more than 500 lipid species 
were identified (5). The measured sample was obtained from the National Institute of 
Standards and Technology (USA) and represents a pooled plasma sample, obtained 
and stored after overnight fasting in a standardized fashion, from 100 healthy individuals 
between 40-50 years of age including equal numbers of men and women whose 
ethnicity was representative of the US population. The most abundant (on a molar 
basis) were sterols (including cholesterol), followed by triglycerides (part of lipoproteins), 
glycerophospholipids, free fatty acyls, sphingolipids, diacylglycerols and prenols, which 
were the least abundant. In terms of free fatty acids, oleic acid, followed by palmitic 
acid and stearic acid were the most abundant and comprised approximately 78% of 
all free fatty acids after overnight fasting. The most abundant PUFA were linoleic acid 
(LA) and AA, but EPA and DHA, which are derived from fish oil and are known for their 
anti-inflammatory effects, were also detectable. Lipid mediators such as oxylipins were 
also detected in plasma, with 15-deoxy-PGD2 being the major metabolite generated by 
COX, while 5-HETE was the most prominent eicosanoid of the LOX pathway found in 
plasma (5).

This review focuses on a selection of lipids in the 6 lipid classes: fatty acids either in 
free form or incorporated in higher order lipids (especially phospholipids), as well as their 
bioactive lipid mediators in RA and OA (Table 1).
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Figure 1. Summary showing lipids and relevant enzymes (in italic) in the context of rheumatoid 
arthritis (A) or osteoarthritis (B) discussed in this review. Lipids are incorporated in phospholipids in 
the membrane. The enzyme autotaxin can convert lysosphosphatidylcholine (LPC) to lysophospatidic 
acid (LPA), and phopholipases (PLA) can both generate LPC from phosphatidylcholine (PC) and 
release fatty acids from the membrane phospholipids. These fatty acids can be metabolized into 
oxylipins by different cyclooxygenases (COX) and lipoxygenases (LOX). Symbols represent different 
tissues that have been shown to be affected by lipids. The effects of lipids on tissues are indicated 
by colours: red = inflammatory, green = anti-inflammatory/resolving, blue = both inflammatory and 
anti-inflammatory/resolving.

Presence of fatty acids and derivatives in RA and OA patients

Lipids in serum of RA patients
Direct comparisons between different lipids in RA serum/plasma and healthy controls 
were only made in few studies and generally included relatively low numbers of patients 
(between 10 and 16). In a metabolomics study, it was found that the levels of lipids 
in general were lower in serum of newly presenting RA patients compared to healthy 
controls although a systematic investigation of different lipid classes was not performed. 
To exclude the effect of disease-modifying antirheumatic drugs (DMARD) on metabolic 
status, patients that were taking DMARD’s were excluded from this analysis (6). In another 
study in 166 RA patients, the levels of free fatty acids were found to be similar in RA 
patients and healthy controls (7), indicating that free fatty are not quantitatively different in 
the diseased state. Fatty acids in phospholipids and sphingomyelins were also described 
in serum of healthy individuals and RA patients (8). Of the different phospholipids studied, 
only the ratio phosphatidylcholine (PC)/lysophosphatidylcholine (LPC, generated from 
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PC by the PLA enzyme) was found to be lower in serum of RA patients compared to 
healthy individuals (9), indicating a higher activation of PLA in RA patients. This could 
results in higher levels of free fatty acids that can further be metabolized into bioactive 
lipids. Indeed, lipid mediators such as prostaglandins, PGD2 and PGE2 (10), generated 
by COX enzymes, were shown to be present in serum of RA patients, indicating that not 
only precursor fatty acids might be higher in RA compared to healthy individuals, but 
also certain enzymes involved in generation of bioactive lipids. However, bioactive lipids 
were mainly studied in SF.

Lipid class (according to Lipid Maps) Lipids included in this review

Fatty acyls Fatty acids, oxylipins: eicosanoids (prostaglandins, 
leukotrienes, lipoxins), derivatives of DHA, EPA 
(resolvins, maresins, protectins)

Glycerolipids -
Glycerophospholipids Phospholipids (e.g. PC) and lysophospholipids (e.g. 

LPC, LPA)
Sphingolipids Sphingomyelin
Sterol lipids -
Prenol lipids -

Table 1. Summary of lipids included in the present review and their corresponding lipid classes. 
DHA: docosahexaenoic acid; EPA: eicosapentaenoic acid; PC: phosphatidylcholine; LPC: 
lysophosphatidylcholine; LPA: lysophospatidic acid.

Lipids in SF of RA patients
Broad lipidomic studies in SF of RA patients were performed in which most of the lipid 
species described in serum/plasma could be detected (8,10-13); several phospholipid 
and fatty acid species were found. Similarly to plasma, PC were the most abundant 
phospholipids in SF, followed by LPC and sphingomyelins (12) and their levels were 
higher in RA SF than controls (12,13). The ratio of PC/LPC was higher in RA SF than 
in controls, in contrast to what was found in serum (12,13). A detailed analyses of the 
species of lipids revealed that RA SF was relatively enriched in LPC containing saturated 
fatty acids, while saturated PC were lower than in controls, indicating that saturated fatty 
acids were possibly more efficiently released from PC in RA. The length of fatty acids 
contained in PC species was not different between RA SF and controls, but RA SF 
contained relatively more short-chain fatty acids in LPC compared to controls (12,13). 
As a longer chain length and higher saturation grade are believed to be beneficial for the 
lubricating properties of phospholipids, these data could indicate that the phospholipids 
present in RA SF are less potent lubricators and protect less against mechanical damage 
than in healthy controls. All studies were small and included no more than 20 patients.
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Eicosanoids such as prostaglandins and leukotrienes were intensively investigated in 
SF of RA patients and were recently reviewed (14). ProstaglandinE2 (PGE2) (14,15), as 
well as PLA2 and COX, enzymes involved in its generation, were found to be higher in 
SF or were higher expressed in synovium of RA patients (mPGES) (16-20). Likewise, 
the enzyme converting PGE2 into the inactive 15-PGDH was higher in RA synovium, 
indicating that regulatory mechanisms targeting PGE2 are also activated in this disease. 
Interestingly and in line with this observation, the more anti-inflammatory prostaglandins, 
PGD2 and its metabolite 15-deoxy-PGJ2 were also found in the RA joint. Expression of 
PGD2 was detected in cells in RA joints, however no evidence was found for enhanced 
biosynthesis of 15-deoxy-PGJ2. Next to prostaglandins, leukotrienes such as LTB4, LTD4 
and LTE4 were found in SF of RA patients (14).

Interestingly, anti-inflammatory products of lipoxygenases were also described in SF of 
RA patients. These included the anti-inflammatory and pro-resolving mediators lipoxin 
A4 (LXA4) and the mediators derived from the n-3 PUFA DHA: maresin 1 (Mar1) and 
resolving D5 (RVD5) (11). Although this study was performed in only 5 patients and 
although the effects of pro-resolving lipids on RA development or progression was not 
yet investigated, their potent immune modulatory functions (21) identify them as promising 
therapeutic agents for chronic inflammatory diseases.

Besides the PLA, COX and LOX enzymes, autotaxin makes an important contribution 
to bioactive lipids in RA. It can convert membrane phospholipids such as LPC to 
lysophospatidic acid (LPA), as well as sphingosylphosphorylcholine to yield sphingosine-
1-phosphate (S1P). S1P can act as an intracellular second messenger or extracellular 
lipid mediator via G-coupled receptors and affects pro-inflammatory pathways and cell 
migration. Both LPA and S1P, as well as autotaxin were shown to be present in SF of RA 
patients (22-24), while higher autotaxin levels were shown in RA SF (n = 16) and serum 
(n = 26) compared to controls (25).

Lipids in serum/SF of OA
Several lipidomics studies in OA patients have been performed over the recent years. 
Although most of them study SF, one study investigated the phospholipid profile of hip 
and knee OA patients (n = 59 females) in plasma (26). Similarly to RA, the LPC/PC ratio 
was higher in both mild and moderate OA (based on radiographic damage) compared 
to controls, which is the opposite to what was found in SF. In two studies with 30 and 48 
OA patients, the levels of phospholipids were found to be elevated in SF of OA patients 
compared to post-mortem controls (12,13), similar to what was found for RA.

2
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Few studies have investigated oxylipin levels in OA. In one study with 10 OA patients, 
8-iso-PGF2α and 15-keto-dihydroPGF2α were detected in both serum and SF, but the 
levels did not correlate in these two fluids (27). This indicates that there might be local 
production of these lipids, rather than systemic diffusion. Noteworthy is that levels of both 
metabolites were higher in serum of OA patients compared to controls. Higher levels 
of these metabolites in serum of OA patients could indicate higher systemic oxidative 
damage and inflammatory responses. For some patients, the levels of both compounds, 
but especially 15-keto-dihydroPGF2α tended to be somewhat higher in SF compared to 
serum. These data are, however, difficult to interpret due to the lack of healthy SF and low 
numbers of patients. More recently, a study investigated the 15-LOX product 15-HETE 
and the COX product PGE2 in plasma of symptomatic OA patients and controls (28). Both 
metabolites were elevated in patients (three different cohorts with 291 patients in total) 
compared to controls, which could be a systemic reflection of local inflammation in the 
knee. Similarly, leukotriene B4( LTB4) has also been described in SF of some OA patients, 
although no comparison with healthy controls was performed (29). Together, these 
data indicate that pro-inflammatory lipids are present in OA patients, although a more 
extensive investigation of the presence of other lipid classes, such as prostaglandins 
and anti-inflammatory oxylipins, in OA patients is warranted.

Fatty acids and phospholipids

Dietary fatty acids, such as the n-3 PUFA EPA and DHA derived from fish oil. These n-3 
PUFA are believed to have anti-inflammatory properties, while the n-6 PUFA arachidonic 
acid (AA) is believed to be more pro-inflammatory. Long-chain fatty acids such as AA, 
EPA and DHA are incorporated in phospholipids and these are essential constituents 
of membranes. In healthy individuals on a typical Western diet, about 10-20% of 
phospholipids in membrane of leukocytes are composed of the AA, while 0,5-1% is EPA 
and 1,5-3% is DHA (30). Dietary intake of EPA and DHA leads to an increase of these 
fatty acids in cellular membranes and this occurs usually at the expense of AA. This 
incorporation begins within days and is dose-dependent (31,32) . Because erythrocytes 
have a life-span of 100-120 days, their membrane phospholipid composition is generally 
used to monitor dietary intake of lipids (32,33).

Association with clinical characteristics and intervention studies in RA
Most studies investigating types of fatty acids present in RA patients and association 
with clinical parameters focused on dietary fatty acids.

Several clinical trials have been performed with either fish oil or n-3 supplementation 
in RA patients. These randomized control trials have been recently summarized in a 

Volledig Binnenwerk_Hilde Brouwers_V03.indd   32Volledig Binnenwerk_Hilde Brouwers_V03.indd   32 27/06/2022   14:4327/06/2022   14:43



33

Lipid mediators in rheumatoid arthritis and osteoarthritis 

systematic review by Miles and Calder (31). The authors analysed 23 studies, in which 
EPA and DHA doses varied largely, between <1 and > 7g/day and were administered 
mostly orally as fish oil supplements. The duration of the studies varied between 4 and 
52 weeks and the placebo controls were usually other types of oils, such as corn, olive 
oil, paraffin oil, etc. The sample size of these studies was typically around 20-30 patients/
group with few exception in which less or more patients participated. Many studies had 
methodological shortcomings and no meta-analysis was performed. In general, beneficial 
effects of n-3 PUFA were observed that were related to morning stiffness, number of 
tender/swollen joints, grip strength, pain or disease activity. The effects were overall 
modest.

Since this systematic review, one other study investigated the effect of intake of moderate 
amounts of n-3 PUFA (2,090g EPA and 1,165g DHA) in combination with regular anti-
inflammatory therapy in 109 RA patients. High oleic acid sunflower oil was used as 
control. Although there was an increase in n-3 PUFA and a relative decrease in n-6 PUFA 
AA in erythrocyte membranes in the treatment group, there was no significant effect on 
clinical symptoms, NSAID usage, cytokines, eicosanoids and bone turnover markers in 
this group (34), which might be attributable to the low dose of n-3 PUFA administered. 
Similar results regarding the incorporation of n-3 PUFA in erythrocyte membranes at the 
expense of AA were found in another study with a relative low number of patients (54 RA 
and 6 psoriatic arthritis patients) in which patients were randomized into 3 groups: one 
treated with 3g n-3 PUFA/day, one with 3,2g g-linolenic acid (n-6 PUFA)/day and one 
with a combination of a low dose n-3 PUFA (1,6g) and g-linolenic acid (1,8g)/day. The 
treatment duration was 12 weeks. A relative decrease of AA/EPA ratio was observed 
in the n-3 PUFA treated group, similar to earlier studies. Additionally, an enrichment in 
g-linolenic acid in plasma lipids, cholesterol membranes and erythrocyte membranes 
was observed, and this enrichment was dependent on the dose indicating that this n-6 
PUFA is also dose-dependently incorporated in cellular membranes upon intake (35).

Interestingly, several recent studies have investigated effects of n-3 PUFA on early RA 
patients or on development of RA and related features in pre-RA individuals. Early RA 
patients (n = 140) treated with DMARD therapy were additionally treated with 5,5g/day 
EPA+DHA or with 0,4g/day EPA and DHA (control group). Primary outcome was failure 
on triple DMARD after 3 months. Failure was lower and the rate of remission was higher 
in the n-3 PUFA treated group compared to the control group after 3 months of treatment 
(36). Remarkably, EPA in plasma phospholipids was inversely associated with time to 
remission and to DMARD failure, while similar results, albeit not significant, were also 
obtained for DHA, indicating that EPA might be more effective than DHA as disease 
modulator.
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Several studies investigated the effect intake of fish containing n-3 PUFA on the risk of 
development of RA in healthy individuals. In a meta-analysis containing both prospective 
and case-control studies, the authors found that for each serving of fish per week the 
relative risk of RA became 0.96 (95%CI 0.91;1.01), while there was a 20-24% lower risk 
(0.76 (95%CI 0.57;1.02) of RA for 1-3 servings of fish/week compared to no servings 
(37). In an observational population-based cohort study (32,232 women aged 54–89 
years), self-reported intake of more than 0,21g/day of n-3 PUFA led to a 35% (95% CI 10 
to 52%) lower risk of developing RA than lower intake. Moreover, long-term consistent 
intake of > 0,21g/day of n-3 PUFA led to a 52% (95% CI 29 to 67%) lower risk of RA 
than lower intake, while long-term consistent intake of more than 1 serving of fish/week 
led to 29% lower risk (RR 0.71; 95% CI 0.48 to 1.04) compared to <1 serving/week (38). 
Although the intake was based on self-reported data and no measurements of n-3 PUFA 
in phospholipids were presented, these studies suggest that n-3 PUFA could be beneficial 
for lowering the risk of RA development in pre-disease individuals and this effect is 
probably dose-dependent. This would also be in line with a more recent study in which 
individuals at risk for developing RA (non-diseased first degree relatives of RA patients 
and HLA-DR4+ individuals) and positive for anti-CCP antibodies (n = 30) were compared 
to seronegative individuals (n = 47) for the amount of n-3 PUFA intake (self-reported) and 
the percentage of n-3 PUFA in erythrocyte membranes. The findings indicate that anti-
CCP+ individuals were less likely to report n-3 PUFA intake and the anti-CCP positivity 
was inversely correlated to the percentage of n-3 PUFA in erythrocyte membranes (39). 
All together, these findings suggest that n-3 PUFA might affect the risk for development 
of RA, as well as the clinical parameters of the disease in RA patients.

Supporting these data, interventions with DHA and EPA have been also shown to reduce 
the onset, incidence and severity of collagen-induced arthritis (CIA) in mice (40,41).

Other fatty acids have only scarcely been studied. Although not yet investigated in relation 
to human RA, α-lipoic acid (ALA) showed promising results in mice, as it inhibited joint 
inflammation and bone destruction in the CIA model both when administered intra-
peritoneally (42) and through diet (43). Although the mechanisms are unclear, ALA 
inhibited synovial inflammation in both studies, as well as human osteoclast differentiation 
in vitro (42) and in mice in vivo (43).

Supporting a possible role for LPA/autotaxin axis in arthritis, inhibition of the LPA receptor 
inhibits development of disease in the K/BxN serum transfer model through effects 
on cartilage destruction and bone erosions, possibly through inhibition of osteoclast 
differentiation and activity and promotion of osteoblast differentiation (44). Similarly, 
mice lacking autotaxin in the mesenchymal cell compartment had less arthritis on a 
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hTNFα transgenic background, as well as in the CIA model of arthritis and this effect was 
likely mediated by LPA effects on synovial fibroblasts (25). Interestingly, preventive oral 
administration of LPC precursor PC to CIA mice also inhibited severity of CIA, possibly 
through inhibition of leukocyte-endothelium interactions and nitric oxide (NO) production 
(45). These data indicate that the PC/LPC/LPA metabolic pathway might represent a 
promising target for intervention in RA patients.

Association with clinical characteristics and intervention studies in OA
Two studies have measured phospholipids in both early OA and late OA patients, with 
early and late being defined by the Outerbridge classification scale. One of these studies 
assessed the difference in lipids between early (n = 17) and late OA (n = 13) and showed 
that concentrations of 66 phospholipid species were different between these stages and 
that total lipid content was higher in late OA compared to early OA (12). In addition, the 
PC/LPC ratio was higher in late OA then early OA, possibly indicating a higher activation 
of PLA2 in early compared to late disease. A metabolomic approach can also be used to 
classify OA patients based on their metabolite profile. Using this approach, it was found 
that especially levels of carnitines and its acyl esters acylcarnitines (involved in fatty acid 
metabolism) in knee SF, divided a group of 80 OA patients in two distinct groups (46). 
The group with lower acylcarnitine levels could be further divided into two subgroups 
based on their glycophospholipid and sphingomyelin(SM) levels. Although the groups 
were not correlated to any clinical OA characteristics, these data indicate that OA patients 
can be divided in metabolically distinct groups. An earlier study by Kosinska et al did 
correlate the levels of SM with relevant OA features (47). All measured SF SM species 
were 2.4-fold higher in early OA patients (n = 17) compared to controls and 2 fold higher 
in late (n =13) vs early OA patients. Early and late OA patients were classified using the 
Outerbridge score.

Most reports studying lipids and their association with clinical parameters have studied 
fatty acids, rather than phospholipids or other higher order lipids. To our best knowledge, 
only one study investigated the association of plasma fatty acid levels with clinical 
features in OA patients. This study measured fasting plasma levels of fatty acids in 472 
individuals, including OA patients, as well as individuals at risk of developing knee OA 
(48). N-3 fatty acids, in particular DHA, were inversely correlated with patellofemoral 
cartilage loss, but not tibiofemoral cartilage loss or synovitis at 30 months follow-up, 
suggesting a protective effect of this n-3 fatty acid on selected structural findings. The 
levels of the n-6 fatty acid AA, which is believed to be more pro-inflammatory, was 
positively correlated with synovitis. In line with this result, in another study in knee OA 
patients, the AA levels were found to correlate with histologic disease severity (49).

2
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While fish oil or n-3 PUFA supplementation has been intensively studied in RA patients, 
only a few intervention studies have been performed in OA patient groups. Most of 
these studies aimed at reducing pain. Fourty-seven patients with knee or hip OA taking 
1200 mg fish oil (total n-3 18% EPA and 12% DHA) a day for 12 weeks in a randomised 
trial, showed no improvement on either Visual Analogue Scale (VAS) for patient self-
assessment of pain or the Health Assessment Questionnaire (HAQ) for patient self-
assessment of activity (50). Also a double blind placebo controlled trial in 86 OA patients 
failed to detect any benefit from taking either 10 ml cod liver oil (786 mg EPA) or olive 
oil per day for 24 weeks, next to the regular intake of NSAIDs (51). In contrast, one 
study reported beneficial effects of fish oil in OA patients. A randomised, double-blind 
multicentre trial investigated the effect of a low dose of 0,45 grams of fish oil (18% EPA 
and 12% DHA) per day versus a high dose of 4,5 grams on pain and function scores 
in 202 knee OA patients after 2 years (52). Both groups benefitted from the treatment, 
although unexpectedly, the group receiving low-dose fish oil benefitted the most, with 
significantly lower pain scores (WOMAC index) at 18 and 24 months and better function 
limitation scores after 24 months. No beneficial effects were observed on cartilage 
volume or bone marrow lesions. It should be mentioned however, that the low-dose 
fish oil preparation also contained Sunola oil which includes n-9 monounsaturated oleic 
acid. Therefore, it is difficult to conclude whether the observed effects were due to the 
n-3 fatty acids alone (53).

Despite the unclear effects of n-3 PUFA on pain in humans, they were shown to reduce 
radiographic damage in mouse models of OA, both in spontaneous (54) and surgically-
induced models (55). Interestingly, their beneficial effect was correlated to a better 
wound-healing, while saturated fatty acids and n-6 fatty acids had opposite effects on 
OA severity and wound healing (55), suggesting the existence of common mechanisms 
involved in both processes. Moreover, it suggests a possible benefit of n-3 PUFA on 
structural damage, which still needs to be investigated in humans.

Effects on RA human tissues in vitro
Free fatty acids have been described in serum and SF of RA patients and they could 
affect joint tissues and immune cells involved in disease pathogenesis. Indeed, in 
vitro treatment of RA synovial fibroblast with free fatty acids induced pro-inflammatory 
cytokines IL-6, IL-8, MCP-1 and MMPs and this effect was independent of the length or 
saturation degree of the fatty acid, but variable between donors (56). For chondrocytes, 
lipids isolated from SF could inhibit chondrocyte proliferation (57), while saturated fatty 
acids induced IL-6 (56). Endothelial cells only responded to high concentrations of fatty 
acids such as palmitic acid and linoleic acid, but not oleic acid (56). Taken together, 
these data indicate that different cell types respond differently to individual fatty acids 
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and that combinations of fatty acids could have a different effect than the individual 
components. Moreover, free fatty acids and especially dietary fatty acids can potently 
influence bone metabolism through regulation of PGE2 and leukotrienes, stimulating bone 
resorption or prostaglandin-mediated regulation of IGF-1, a growth factor that stimulated 
bone formation (58). The role of these processes in bone metabolism in RA remain to 
be investigated.

Besides their effect on joint tissues, fatty acids also have immune modulatory effects. 
Effects of n-3 PUFA on cells derived from RA patients have been investigated, while much 
less attention has been given to other fatty acids. N-3 PUFA had an anti-inflammatory 
effect on cytokine secretion by monocytes derived from RA patients (59), while inhibiting 
formation of reactive oxygen species (60) and the AA-mediated induction of TNFRI and 
–II on RA neutrophils (61). Fatty acids can also affect T cell function (62) and B cells 
function (63), although the effects of fatty acid type, saturation and length, as well as the 
specific effects on T and B cells from RA patients remain to be addressed.

Some of the phospholipids found in serum or SF have been shown to affect joint tissues 
and cells thereby potentially contributing to RA. Among these, LPC and LPA have 
received special attention, as they were described to have potent immune modulatory 
effects (reviewed in (64)). For example LPA has been shown to induce COX2 expression 
in RA synovial fibroblasts, either alone or in combination with pro-inflammatory cytokines 
such as IL-1α or b (22), to induce their proliferation and enhance production of IL-6, 
VEGF, CCL 2 and MMP3, as well as expression of VCAM and migration (65). Although 
the effects of LPC on human RA tissues were not yet investigated, LPC was shown to 
induce COX2 expression in vascular endothelial cells (66) and macrophages (67), which 
would suggest a possible pro-inflammatory role of this lipid in RA.

Another product of autotaxin found in RA SF, S1P, was also shown to have effects on 
RA-derived tissues, including to stimulate proliferation of RA synovial fibroblasts (68) and 
enhancing COX2 and PGE2 production in synovial fibroblasts (68) and chondrocytes (69), 
or by decreasing aggrecan production by chondrocytes (69) and stimulating osteoblast 
differentiation (70).

Together, these data indicate a pro-inflammatory effect of the PC/LPC/LPA axis in RA.

Effects on OA human tissues in vitro
While intervention studies with fatty acid supplementation mainly focused on reducing 
pain in patients, the in vitro studies performed focused predominantly on the effects of 
fatty acids on OA tissues and the mechanisms underlying these effects. Chondrocytes 

2
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were most studied in this respect and they were usually stimulated with cytokines believed 
to have a prominent role in OA. Chondrocytes from knee cartilage explants of OA patients 
were shown to take up linoleic, oleic and palmitic acid, regardless of whether they were 
stimulated with TNF-α (71). Upon oleic acid exposure, TNF-α stimulated chondrocytes 
secrete less GAG and downregulate expression of MMP-1 and COX-2, indicative for an 
anti-inflammatory effect. Palmitic acid had similar effects on GAG release and MMP-1 
expression but did not affect PGE2 release or COX-2 expression. In contrast, AA precursor 
linoleic acid increased the release of PGE2 by TNF-α stimulated chondrocytes. These 
results suggest that local fatty acid concentrations can contribute to cartilage damage. In 
another study, the effect of palmitate and oleic acid on chondrocytes of OA patients was 
investigated in comparison to post-mortem control chondrocytes (72). The data indicated 
that IL-1β together with palmitate synergistically increased IL-6 and COX-2 expression, 
whereas oleic acid did not in both donor types, indicating a rather pro-inflammatory effect 
of palmitic acid. In addition, increased apoptotic cell death was observed in chondrocytes 
stimulated with both IL-1β and palmitate in the post-mortem cartilage. The contrasting 
effects of palmitic acid on chondrocytes in these two studies could be due to differences 
in stimulus used to mimic OA-related inflammation in chondrocytes.

Oxylipins

Association with clinical characteristics and intervention studies in RA
It is generally accepted that PGE2 contributes to the disease process in RA (14). This is 
primarily based on studies in mouse models of arthritis, as well as on intervention studies 
in humans. Deficiencies in enzymes involved in PGE2 generation, such as cPLA2 (73), 
COX-1 (74) and COX-2 (75) or mPGES-1 (76), as well as blockers of PGE2 receptors 
(77) were associated with diminished disease in mouse models of arthritis. Moreover, 
intervention studies using pharmacological inhibitors used also in humans indicated 
that PGE2 contributes to pain in antibody-induced models of arthritis, especially in the 
inflammatory phase of the disease (78,79). Taken together, these data indicate that 
PGE2 plays a role in this disease. Intriguingly, however, it was also suggested that PGE2 
has a dual role in arthritis, being pro-inflammatory in the induction phase, while also 
contributing to disease resolution, by inducing the pre-resolving lipid mediator LXA4 
during the later phases (80). LXA4 has been shown to have anti-inflammatory and pro-
resolving properties also in other murine arthritis models, such as zymosan-induced 
arthritis (81).

In humans, most evidence for a deleterious contribution of PGE2 to pain was obtained 
from studies investigating the effect of non-steroidal anti-inflammatory drugs (NSAIDS) 
in RA (reviewed in (82)). The involvement of PGE2 in inflammation in RA is less clear, 
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although some studies indicate that local administration of corticosteroids in knee RA 
diminishes also swelling besides pain and this is paralleled by a reduction in mPGES-1, 
COX-1 and COX-2 expression, as well as less PGE2 production (83). In line with this, 
randomized-control trials indicate that drugs aimed at blocking COX activity affect also 
the number of swollen joints (84). Because COX is involved in generation of several lipid 
species, including anti-inflammatory ones, such as PGJ2 or the pro-resolving E series 
resolvins, it would be highly interesting to test the clinical efficacy of inhibitors of mPGES 
or antagonists of PGE2 receptors, which would be expected to modulate more specifically 
PGE2-mediated effects.

Besides prostaglandins, leukotrienes, especially LTB4, could also play a role in RA. 
Serum levels of LTB4 were associated with higher disease activity (85), while SF levels 
of LTB4 were correlated with inflammatory markers (e.g. cellular infiltrate) in RA patients 
(86). However, one should be careful in interpreting these data, as 5S,12S-diHETE, a 
less active isomer of LTB4, was also described in SF of RA patients (11). These two 
lipids are difficult to distinguish with ELISA or HPLC techniques (own unpublished data). 
Evidence for a role of LTB4 in RA originates from murine studies, in which 5-LOX or LTA4H 
deficiency prevented development of antibody-induced arthritis and this could be restored 
by transfer of neutrophils capable of secreting LTB4, indicating a role for this lipid and 
neutrophils in this model (87). Similarly, absence of the LTB4 receptor BLT1, especially on 
neutrophils, also resulted in less arthritis in the K/BxN and CIA models (88,89). Data in 
RA patients are less clear. Zileuton, a 5-LOX inhibitor, did not decrease joint tenderness 
and pain after a four week treatment in patients with active RA. However, there was a 
nonsignificant decline in the number of joints effected (90).

Association with clinical characteristics and intervention studies in OA
Studies investigating the role of oxylipins in OA patients are scarce. In a recent study, 
plasma levels of PGE2 and 15-HETE, as well as TNF-α, IL-1β and COX-2 expression in 
peripheral blood leukocytes (PBL)were investigated in three separate cohorts of knee 
OA patients (28). Higher levels of plasma PGE2 and 15-HETE were associated with 
presence of knee OA, while higher expression of TNFα, IL-1b and COX-2 in PBL at 
baseline predicted more rapid progression of joint space narrowing (JSN) 24 months later.

In a recent systematic review, the efficacy of pharmacological interventions for knee 
OA was investigated (91). A hundred and thirty-seven randomized controlled trials 
were summarized. Treatments included COX inhibitors such as diclofenac, ibuprofen, 
naproxen, celecoxib. All treatments were more efficient than placebo in controlling pain, 
while intra-articular treatments were superior to oral treatments. Regarding function 
and stiffness, all treatments with COX inhibitors were more effective than oral placebo, 
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indicating a possible beneficial effect of these pharmacological agents in OA. Another 
enzyme involved in generation of lipid mediators is 5-LOX. The safety of a natural 
5-LOX inhibitor was evaluated in seventy-five OA patients (92). The inhibitor showed 
pain reduction in the treated group compared to placebo, however, effects on structural 
damage in patients remains to be defined.

A third approach is to inhibit both COX and 5-LOX enzymes, as several studies now 
showed that the dual COX/5-LOX inhibitor licofelone is equally effective in diminishing 
pain as the COX inhibitor naproxen, but has less gastrointestinal related adverse effects 
(93). Moreover, in one study with 355 OA patients, licofelone was more efficient than 
naproxen in reducing cartilage volume loss in the global joint and lateral compartment at 
6,12 and 24 months (94). However, the effects of this compound on OA structural damage 
compared to placebo was not yet investigated in humans. Nevertheless, 2 studies in OA 
models in dogs indicated less cartilage lesions and decreased levels of PGE2, LTB4, 
collagenase 1 and IL-1β in the joint in the treated group (95), as well as reduced size of 
cartilage lesions and development of osteophytes (96). These findings are supported 
by in vitro studies, in which IL-1b-treated chondrocytes displayed decreased MMP-13 
production upon treatment with Licofelone (97).

Effects on RA human tissues in vitro
Several studies investigated the effect of prostaglandins, especially PGE2, on tissues 
derived from RA patients. In line with what was observed in vivo, PGE2 can display both 
pro- and anti-inflammatory effects. PGE2 has been shown to upregulate IL-6 and mPGES 
in RA synovial fibroblasts (98,99), IL-6 in chondrocytes (100), while inhibiting RA fibroblast 
growth (101) and MMP-1 expression (JI 2009; 15:1328) as well as osteoclast development 
(101). Also on immune cells, PGE2 can have pro-inflammatory effects on dendritic cells, 
by inducing IL-23 production (102) and anti-inflammatory effects on monocytes and 
macrophages (103) by reducing the p40 subunit of IL-12 and IL-23. These data suggest 
that the inhibition of PGE2 in RA should be carefully considered. For 15-deoxy-PGJ2, 
predominantly anti-inflammatory effects were shown, such as downregulation of IL-6 (100) 
and induction of apoptosis in chondrocytes (104), as well as inhibition of TNFα-induced 
MMP-13 production in RA synovial fibroblasts (105).

In vitro studies indicate that leukotriene B4 has a pro-inflammatory effect on RA tissues. 
LTB4 induced TNFα and IL-1b in RA synovial fibroblasts (106) and was capable of inducing 
osteoclast differentiation (107).
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The effect of anti-inflammatory lipid mediators was much less studied. Intriguingly, one 
study indicated that 15-HETE, a derivative of 15-LOX, could upregulate MMP-2 in RA 
synovial fibroblasts (108), suggesting a possible pro-inflammatory role of this lipid in RA.

Effects on human tissues in vitro OA
Several studies investigated the effect of oxylipins on OA tissues in vitro. 15-LOX products 
as well as PGD (COX product) dose dependently decreased IL-1β induced MMP-1 and 
MMP-13 production by chondrocytes isolated from OA cartilage (109), suggesting a 
beneficial role for these lipids in OA. In contrast, the 5-LOX product LTB4 was shown to 
increase IL-1b secretion by OA synovial membranes (110), while increasing osteocalcin 
secretion by OA osteoblasts (111), indicating that LTB4 might contribute to inflammation 
and structural damage in OA patients.

PGE2 is the most studied oxylipin in the context of OA and has been shown to induce 
IL-6, VEGF and M-SCF production by human OA synovial fibroblasts (112) and to have 
deleterious effects on OA chondrocytes. On articular cartilage of OA patients, PGE2 
inhibits proteoglycan release, stimulated MMP-13 production and collagen type II 
breakdown via engagement of EP receptors. Blocking the EP4 receptor could inverse 
these effects, indicating it as potential therapeutic target, more specific than COX 
inhibitors (113). However, it was also shown that PGE2 at concentrations lower than 
found in SF, are important in maintaining normal chondrocyte phenotype (114). Taken 
together, these data indicate that future studies on PGE2 and its signalling pathways are 
needed to fully understand its contribution to OA.

Practice points
•	 Lipid mediators, such as prostaglandins and leukotrienes are increased in synovial 

fluid of both RA and OA patients
•	 Anti-inflammatory lipid mediators were detected in RA synovial fluid, indicating 

activation of regulatory mechanisms
•	 PGE2 can have both deleterious and beneficial effects
•	 COX is involved in pain perception in RA and OA
•	 Targeting COX and LOX enzymes can affect both pro- and anti-inflammatory/pro-

resolving lipid synthesis
•	 N-3 PUFA supplementation are suggested to have (small) beneficial effects, in RA 

patients

2
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Research agenda
•	 The effects of n-3 PUFA supplementation in RA and OA should be further investigated 

in high quality randomized controlled trials
•	 Therapeutical interventions aimed at inhibiting lipid mediator receptors rather than 

the enzymes involved in their generation should be studied in humans
•	 The effects of PGE2 in inflammation in RA need further investigation
•	 The involvement of COX and LOX enzymes and their lipid products in development 

or severity of OA needs further pre-clinical investigation
•	 The overall effect of anti-inflammatory/pro-resolving lipids on OA and RA tissue needs 

to be addressed

Summary

Fatty acids, phospholipids and oxylipids can be detected in RA and OA patients. Most 
evidence points towards the activation of the COX/PGE2 and autotaxin/LPA axes in 
RA, and the COX/PGE2 and LOX pathways in OA. Inhibition of the COX pathway is 
beneficial for pain in both diseases, while the effects of inhibition of the LOX pathway 
are unclear. Whether and how lipids generated by these two pathways are involved 
in structural damage and inflammation in these diseases is still under investigation. 
Moreover, research is needed on the role of anti-inflammatory (oxy)lipids in RA and OA.
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