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5 A common origin for the
Fundamental Plane of
quiescent and star-forming
galaxies in the EAGLE
simulations

ABSTRACT
We use the EAGLE cosmological simulations to perform a comprehensive and
systematic analysis of the z = 0.1 Fundamental Plane (FP), the tight relation be-
tween galaxy size, mass and velocity dispersion. We first measure the total mass
and velocity dispersion (including both random and rotational motions) within
the effective radius to show that simulated galaxies obey a total mass FP that is
very close to the virial relation (< 10% deviation), indicating that the effects of
non-homology are weak. When we instead use the stellar mass, we find a strong
deviation from the virial plane, which is driven by variations in the dark matter
content. The dark matter fraction is a smooth function of the size and stellar
mass, and thereby sets the coefficients of the stellar mass FP without substan-
tially increasing the scatter. Hence, both star-forming and quiescent galaxies obey
the same FP, with equally low scatter (0.02 dex). We employ simulations with a
variable stellar initial mass function (IMF) to show that IMF variations have a
modest additional effect on this FP. Moreover, when we use luminosity-weighted
mock observations of the size and spatially-integrated velocity dispersion, the in-
ferred FP changes only slightly. However, the scatter increases significantly, due
to the luminosity-weighting and line-of-sight projection of the velocity dispersions,
and measurement uncertainties on the half-light radii. Importantly, we find signif-
icant differences between the simulated FP and observations, which likely reflects
a systematic difference in the stellar mass distributions. Therefore, we suggest the
stellar mass FP offers a simple test for cosmological simulations, requiring minimal
post-processing of simulation data.
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112 5.1. INTRODUCTION

5.1 Introduction

Quiescent galaxies have been found to obey a tight, planar scaling relation between
the stellar velocity dispersion, size and surface brightness, which is known as the
luminosity Fundamental Plane (FP; e.g., Djorgovski & Davis 1987; Dressler et al.
1987; Jorgensen et al. 1996). On the other hand, the star-forming population has
been shown to follow a linear relation between the luminosity and kinematics,
referred to as the Tully-Fisher (TF) relation (Tully & Fisher 1977). More recent
work has demonstrated that the two galaxy populations can be reconciled within
the framework of one scaling relation (e.g., Cortese et al. 2014; Bezanson et al. 2015;
Aquino-Ortíz et al. 2020; de Graaff et al. 2021), by either modifying the TF relation
(Cortese et al. 2014; Aquino-Ortíz et al. 2018) or the FP (e.g., Zaritsky et al.
2008; Hyde & Bernardi 2009; Aquino-Ortíz et al. 2020). However, these studies
are largely empirically driven, aiming to construct a dynamical scaling relation
with minimal scatter. A firmer theoretical footing is imperative to gain a better
understanding of why different types of galaxies may lie on a single dynamical
scaling relation.

5.1.1 Interpreting the luminosity FP

The properties of the FP of quiescent galaxies have typically been interpreted in
terms of the dynamical mass-to-light ratio (Mdyn/L ; as first suggested by Faber
et al. 1987). The zero point of the FP is directly propertional to Mdyn/L, and
the redshift evolution of the FP therefore directly traces the evolution in the
Mdyn/L with cosmic time (e.g., van Dokkum & Franx 1996). Although at a fixed
redshift the scatter about the FP is small (≲ 0.1 dex), it cannot be explained
by measurement uncertainties alone (e.g., Jorgensen et al. 1996; Forbes et al.
1998). Rather, the scatter in the zero point can also be linked to variations in the
Mdyn/L, and correlations between the offsets of galaxies from the FP and various
stellar population and structural properties hence have provided insight into the
formation histories of early-type galaxies (e.g., Gargiulo et al. 2009; Graves et al.
2009).

Furthermore, the tilt of the plane can also be interpreted by the Mdyn/L (e.g.,
Bender et al. 1992; Trujillo et al. 2004; Cappellari et al. 2006). Fundamentally, a
tight scaling relation between the velocity dispersion (σ), effective radius (re) and
surface brightness within re (Ie) is to be expected for systems that are in virial
equilibrium. Interestingly, however, the FP is tilted with respect to this simple
virial prediction:

re ∝ σaIbe (5.1)

where the coefficients a and b describe the tilt of the plane, which in the case
of virial equilibrium would equal a = 2 and b = −1 for a homologous set of
galaxies. In practice, values have been found to be in the range a ≈ [0.7, 1.5] and
b ≈ [−0.9,−0.6], depending on the passband and fitting method used, as well as
the redshift (e.g., Jorgensen et al. 1996; La Barbera et al. 2010a; Hyde & Bernardi
2009; Jørgensen & Chiboucas 2013). By rewriting Eq. 5.1 in terms of Mdyn/L
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(using Mdyn ∝ reσ
2 and L = 2πr2eIe; Cappellari et al. 2006),

Mdyn

L
∝ r−2−(2+a)/(2b)

e M
1+(a/2b)
dyn , (5.2)

which is constant if a = 2 and b = −1, it becomes apparent that the observed
tilt of the FP reflects a correlation between Mdyn/L and Mdyn or re, the latter of
which is often assumed to be subdominant.

Although these various studies of the FP have led to a consensus on the ex-
istence of a rotation of the FP with respect to the virial plane, the origins for
this rotation and precise values of the tilt have been debated extensively for the
past decades, without reaching a consensus. In addition to being highly sensitive
to measurement choices and uncertainties, the tilt depends strongly on the cho-
sen fitting method and sample selection biases (see, e.g., Hyde & Bernardi 2009;
Magoulas et al. 2012), which leads to large uncertainties especially toward higher
redshifts (e.g., Holden et al. 2010; Jørgensen & Chiboucas 2013; de Graaff et al.
2021). Nevertheless, multiple causes have been proposed to explain the observed
deviation from the scalar virial theorem, which can be best understood by decom-
posing Mdyn/L and assessing how the different components scale with Mdyn (Hyde
& Bernardi 2009):

Mdyn

L
=

Mdyn

Mtot

Mtot

M∗

M∗

L
, (5.3)

where M∗ and Mtot are the stellar and total (dark matter and baryonic) mass,
respectively.

First, the departure from the expected virial plane may reflect the fact that
the assumption of homology is inaccurate, captured by the ratio Mdyn/Mtot ̸= 1.
Quantified using the Sérsic index (Sersic 1968), the effects of non-homology were
shown by some studies to play a key role (Bender et al. 1992; Graham & Colless
1997; Prugniel & Simien 1997; Trujillo et al. 2004; Desmond & Wechsler 2017).
However, others have found more modest or negligible contribution arising from
variation in the galaxy structure, based on dynamical modelling or strong lensing
results (e.g., Cappellari et al. 2006; Bolton et al. 2007, 2008; D’Eugenio et al.
2021).

Second, broader agreement has been reached on the magnitude of the contribu-
tion to the tilt from the mass dependence of Mtot/M∗, which depends on the ‘dark’
mass within galaxies. Crucially, this ratio is not simply the dark matter fraction
(assuming negligible gas mass), but also includes missing mass due to uncertain-
ties in the stellar initial mass function (IMF), as stellar masses that are estimated
from spectral energy distribution (SED) modelling often rely on the assumption
of a universal IMF and therefore carry a systematic uncertainty (for a review on
SED modelling, see Conroy 2013). Although this dark component is expected
to contribute significantly to the tilt of the FP (∼ 50%; Renzini & Ciotti 1993;
Hyde & Bernardi 2009; Graves & Faber 2010), distinguishing between the effects
of variations in the IMF versus the dark matter fraction is challenging. Recent
observational work based on simple dynamical models has suggested that IMF
variations can fully explain the observed relation between Mdyn/M∗ and Mdyn, by
allowing for a non-universal IMF that can vary between galaxies as well as radially
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within galaxies (Bernardi et al. 2018; Marsden et al. 2022). However, others have
shown that this would be difficult to reconcile with the observed correlations of
stellar population properties throughout the FP (Graves & Faber 2010), or have
found evidence for variations in both the IMF and dark matter content in galaxies
(e.g., Cappellari et al. 2013b,a).

The third component arises from variations in the stellar population proper-
ties across galaxies, i.e., variations in M∗/L. By evaluating the tilt of the FP in
different passbands or by explicitly estimating M∗/L, the effects of M∗/L varia-
tions have been shown to be insufficient to fully explain the observed tilt, but may
account for up to half of this tilt (e.g., La Barbera et al. 2008; Hyde & Bernardi
2009; Graves & Faber 2010; Bernardi et al. 2020; D’Eugenio et al. 2021).

5.1.2 The stellar mass FP

The effects of M∗/L variations across and along the FP can be addressed by
explicitly estimating M∗/L independently, by fitting the spectral or photometric
SEDs with stellar population models. We can then gain insight into Mdyn/M∗
alone, a quantity that is of great interest, as it depends on the formation and
structural evolution of galaxies, such as the effects of mergers (e.g., Hopkins et al.
2008). Zaritsky et al. (2006, 2008) first proposed the fundamental manifold, a
3D scaling relation within the 4D parameter space of the galaxy kinematics, size,
surface brightness and M∗/L. Hyde & Bernardi (2009) showed that similar results
can be achieved by modifying the FP, replacing the surface brightness by the stellar
mass surface density (Σ∗):

re ∝ σαΣβ
∗ , (5.4)

which is referred to as the stellar mass FP. Including M∗/L also results in a lower
intrinsic scatter about the scaling relation (i.e., the scatter after accounting for
measurement uncertainties) than the standard luminosity FP.

Importantly, Zaritsky et al. (2008) showed that this framework, which up to
then had focused on dynamically-hot spheroids, can be extended to disc-like struc-
tures as well, if the dynamical measurement (σ) explicitly includes galaxy rotation
in addition to the random motions of stars. Later work demonstrated that both
star-forming and quiescent galaxies follow the same stellar mass FP, with nearly
identical tilt, zero point and scatter (Bezanson et al. 2015; Aquino-Ortíz et al.
2020), and that this result holds out to z ∼ 1 with minimal evolution in the FP
(de Graaff et al. 2020, 2021).

These results appear to be at odds with the observation that star-forming
galaxies obey the TF relation, which is explicitly independent of surface brightness
or another third parameter (e.g., Zwaan et al. 1995; Courteau & Rix 1999; Meyer
et al. 2008; Lelli et al. 2019). Furthermore, it casts doubt on earlier theoretical
studies, which suggested that the dissipation of gas in galaxies plays a critical role
in shaping the FP: using simulations of merging galaxies, dissipational mergers
were shown to give rise to the observed tilt of the FP, with the tilt of the FP
being preserved under further dissipationless mergers (Boylan-Kolchin et al. 2006;
Robertson et al. 2006; Hopkins et al. 2008). As a result, Hopkins et al. (2008)
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showed explicitly that discs and spheroids have a different dependence of Mdyn/M∗
on mass.

5.1.3 The FP in cosmological simulations

Cosmological simulations may offer new insight into the origins of the FP, as,
unlike the simulations of galaxy mergers, they do not a priori assume a formation
channel for the FP. These large simulations have been shown to produce a wide
diversity in galaxy morphologies and kinematic structures (e.g., Snyder et al. 2015;
Correa et al. 2017; Thob et al. 2019), and also reproduce key observed relations
such as the galaxy stellar mass function and stellar mass-size relation (e.g., Schaye
et al. 2015; Genel et al. 2018; Davé et al. 2019), although simulations are typically
calibrated to achieve these latter goals.

However, the galaxy structure and dynamics are not ‘tuned’ explicitly: the FP
therefore poses both an interesting test of the realism of a simulation, and an op-
portunity to gain understanding of the drivers behind the relation itself. Focusing
solely on early-type galaxies, different studies have shown that simulations such as
Illustris, Illustris-TNG, Horizon-AGN and EAGLE form a FP that approximately
resembles observations, but with significant variation in the measured tilt and scat-
ter (Rosito et al. 2019b, 2021; D’Onofrio et al. 2020; Lu et al. 2020). Additionally,
D’Onofrio et al. (2020) showed that galaxies follow a complex trajectory through
the parameter space of the FP, and suggest that the low-redshift FP arises from
a combination of galaxy mergers and the passive ageing of galaxies. On the other
hand, Rosito et al. (2021) used the Horizon-AGN and Horizon-noAGN simulations
to show that black hole feedback is a critical factor to reproduce the observed FP.

Taking a more holistic approach, Ferrero et al. (2021) evaluated the relation
between the circular velocity, stellar mass and size for dispersion-dominated qui-
escent galaxies and rotation-dominated star-forming galaxies in the EAGLE and
Illustris-TNG simulations. They suggest that, as a consequence of the stellar-halo
mass relation, by which galaxies of fixed M∗ occupy a narrow range in halo mass,
galaxy size becomes the only differentiating parameter. Star-forming discs are
larger than quiescent spheroids at fixed M∗, and therefore encompass relatively
more dark matter within the effective radius. The TF and FP relations are there-
fore suggested to arise solely from variations in the dark matter fraction, with the
TF relation being independent of surface brightness due to the independence of
the circular velocity on size at large enough radii.

Although an intriguing result, it omits the fact that the observed structures
of star-forming and quiescent differ not only in size, but also in morphology. As
a result, the shape of the gravitational potential may be expected to vary as a
function of galaxy type, leading to the aforementioned effects of non-homology on
the FP. Furthermore, observational biases, due to M∗/L gradients in galaxies and
differences in measurement methods, have been shown to have a significant effect
on the obtained galaxy scaling relations and are important to take into account
when comparing simulations and observations (e.g., Price et al. 2017; Bottrell et al.
2017a,b; van de Sande et al. 2019; de Graaff et al. 2022).

In this paper, we aim to assess the different effects of non-homology, the dark
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matter content and observational uncertainties on the tilt and scatter of the stellar
mass FP for both quiescent and star-forming galaxies. By using the EAGLE
cosmological hydrodynamical simulations (Schaye et al. 2015), we systematically
introduce one of these components at a time, and evaluate whether these results
differ for quiescent and star-forming galaxies. We build on the mock observations
and measurements presented in de Graaff et al. (2022) to arrive at a FP that is
as close as possible to the observed FP, and show how selection biases affect the
measurement and interpretation of the FP.

The simulations used and the different definitions of galaxy size, mass and
velocity dispersion are described in Section 5.2. In Section 5.3 we present the
simulated FP, and discuss the effects of non-homology and variations in the dark
matter fractions. We introduce observational effects, measurement and selection
biases in Section 5.4, where we demonstrate how the tilt of the FP is sensitive to
these different effects. Moreover, we explore the possible additional complication
of a non-universal IMF. We discuss these results in Section 5.5 and show how
the FP and TF relation may be reconciled. Our main results are summarised in
Section 5.6.

5.2 Data and methods

5.2.1 EAGLE simulations

The EAGLE simulations are a set of cosmological smoothed particle hydrodynam-
ics (SPH) simulations (Schaye et al. 2015; Crain et al. 2015). These simulations all
assume a flat ΛCDM cosmology with cosmological parameters from the Planck Col-
laboration et al. (2014) (Ωm = 0.307, Ωb = 0.0482 and H0 = 67.77 km s−1 Mpc−1),
but vary in the volume, resolution and subgrid model used. In this work, we
will focus mainly on the reference model with a volume of 1003 comoving Mpc3
(cMpc; L0100N1504), which has a mass resolution of mDM = 9.7 × 106 M⊙ and
mb = 1.81 × 106 M⊙ for the dark matter particles and initial mass of the gas
particles, respectively. With the Plummer-equivalent gravitational softening scale
of ϵ = 0.70 proper kpc at z < 2.8, this amounts to an effective spatial resolution
of ≈ 2 proper kpc. The reference model assumes a Chabrier IMF (Chabrier 2003)
for the star formation prescription, which together with the other subgrid pre-
scriptions was calibrated to reproduce the z = 0 stellar mass function and stellar
mass-size relation.

To assess the numerical convergence of our results, we use the smaller simula-
tion of 253 cMpc3 for the recalibrated model (L0025N0752), which has a resolution
that is 8 times higher. Furthermore, to examine the effects of a non-universal IMF,
we use the simulations by Barber et al. (2018). These simulations implement a
variable IMF into the reference EAGLE model, by allowing either the low- or
high-mass end of the Kroupa double power law IMF (i.e., above or below 0.5M⊙;
Kroupa 2001) to vary according to the pressure of the local interstellar medium.
The models were calibrated to reproduce the scaling relation between the excess
stellar mass-to-light ratio and stellar velocity dispersion that has been observed for
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early-type galaxies in the local Universe (Cappellari et al. 2013a), while simultane-
ously matching other key observables such as the K-band luminosity function and
the relation between the half-light radius and luminosity. The resulting bottom-
heavy (LoML0050N0752) and top-heavy (HiML0050N0752) models were run in
503 cMpc3 volumes, which can be readily compared with the reference run of the
same volume.

We will focus on galaxies at z = 0.1, for which mock images of the light dis-
tributions that include realistic dust attenuation, noise and seeing are available
from Trayford et al. (2017) and de Graaff et al. (2022). Throughout, galaxies are
defined in the usual way, as the self-bound substructures that are identified within
haloes by the subfind algorithm (Springel et al. 2001; Dolag et al. 2009). This
mechanism also allows for a separation of central and satellite galaxies, which is
used in Section 5.3. Moreover, we distinguish between star-forming and quies-
cent galaxies based on the specific star formation rate (sSFR) measured within a
spherical aperture of radius 30 proper kpc centred around the potential minimum
(obtained from the online public database; McAlpine et al. 2016): quiescence is
defined as sSFR < 10−11 yr−1. Lastly, in what follows all length units will be
quoted as proper lengths unless explicitly noted otherwise.

5.2.2 Galaxy sizes and masses
As discussed in de Graaff et al. (2022), the sizes of galaxies depend strongly on
whether these are measured from the stellar mass or optical light distributions. A
secondary effect is the measurement technique used, i.e., whether quantities are
measured with a growth curve method or by using parametric models. The mass
that is enclosed within the effective radius then changes correspondingly.

Scaling relations, such as the FP, may be expected to be sensitive to these
differences. To examine to what extent this makes a difference on the obtained
FP, we will use multiple definitions of galaxy size and mass throughout the paper:

• re,3D : the radius that encloses half of the stellar mass within a spherical
aperture of radius 100 kpc centered around the potential minimum (see also
Furlong et al. 2017). We consequently define the stellar mass within a spher-
ical aperture of this radius as M∗(< re,3D), and the total mass within the
same aperture Mtot(< re,3D). The total mass is the sum of the dark matter,
stellar, gas and black hole particle masses.

• re,∗ : half-mass semi-major axis obtained from Sérsic profile fitting to pro-
jected images (along the z-axis of the simulation box) of the stellar mass
distributions from de Graaff et al. (2022). M∗(< re,∗) is half of the stellar
mass of the integrated, best-fit Sérsic model.

• re,r : half-light semi-major axis obtained from Sérsic profile fitting to images
of the optical light distributions in the r-band (again, using the random
projection along the z-axis of the simulation box; Trayford et al. 2017; de
Graaff et al. 2022). We obtain stellar masses M∗(< re,r) by multiplying the
mass-to-light ratio within a spherical aperture of radius 30 kpc (M∗/Lr) by
half of the luminosity of the best-fit Sérsic profile.
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Figure 5.1: Distributions of the total mass and stellar mass enclosed within the 3D
effective radius, for the samples selected by the total mass (left) and stellar mass (right).
Total masses include all particle masses, i.e., dark matter, stellar, gas and black hole
particles.

5.2.3 Sample selection

A key goal of this work is to quantify the effects of sample selection on the obtained
FP. In large imaging surveys, the selection of galaxies is limited by total flux and/or
surface brightness, depending on the apparent size and point spread function.
For a chosen maximum distance, the flux-limited samples can then be used to
construct sub-samples that form an accurate representation of the galaxy stellar
mass function, down to a specified stellar mass limit.

Although cosmological simulations are by construction complete in mass, low-
mass galaxies in the simulation are affected by the limited resolution of the simu-
lation (resulting in, e.g., unreliable sizes; Ludlow et al. 2019, 2021). We therefore
impose a selection on the galaxy mass, and construct two samples that are com-
plete in (i) total mass and (ii) stellar mass. First, we calculate the total mass
enclosed within re,3D, and select galaxies for which Mtot(< re,3D) > 1010.2 M⊙
and that also contain > 103 stellar particles (96% of the sample contain > 1× 104

stellar particles). For the 1003 cMpc3 box (Section 5.2.1), this results in a sample
of 3758 galaxies.

The second sample follows the selection of de Graaff et al. (2022): this sample
is selected by requiring the aperture stellar mass M∗ > 1010 M⊙, and thus effec-
tively selected by M∗(< re,3D) > 109.7 M⊙, with additional criteria imposed on
the quality of the Sérsic profile fits. Namely, as discussed in detail in de Graaff
et al. (2022), we require that the fit has converged within the parameter bound-
aries (removing 35 objects) and pass our visual inspection (by not showing strong
residual features; removing 29 objects). We refer the reader to this previous work
for further examples of the fitting procedure and discussion of the obtained sizes
and morphologies. The stellar mass-selected sample consists of 3624 galaxies, of
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which 3560 are flagged as having good Sérsic profile fits. The mass distributions
for these two different selections are shown in Fig. 5.1. The two samples were
constructed to contain an approximately equal number of objects, and to have a
significant overlap, with 3183 galaxies appearing in both samples (≈ 90%).

5.2.4 Velocity dispersion measurements
The third critical component that enters the FP is the velocity dispersion, which
reflects the depth and shape of the gravitational potential. Observationally, this
quantity is traced by the light emitted by stars, as their motion along the line of
sight leads to a broadening of stellar absorption lines. Importantly, this motion
can come from both the disordered motion and the ordered rotation of the stars
(see also Section 5.1.2).

To systematically assess the impact of these different observational effects, we
begin by measuring the velocity dispersion within spherical apertures of radius
re,3D. Following McAlpine et al. (2016), the kinetic energy of a collection of
particles is calculated as

K =
1

2

∑
i

mi(v − vpec)
2 , (5.5)

where m and v are the mass and velocity of the particle, respectively, and vpec is
the peculiar velocity of the galaxy, which we calculate as the mass-weighted average
velocity of the stellar particles within an aperture of 30 kpc centred around the
potential minimum. We calculate the velocity dispersion within a radius r as the
mean-square speed (thereby including both the random motion and rotation of
the particles, see Binney & Tremaine 1987, Chapter 4.8.3), which depends on the
kinetic energy and mass of the particles enclosed within the same radius:

σ(< r) =

√
2K(< r)

M(< r)
. (5.6)

We calculate two versions of this velocity dispersion: the stellar velocity dispersion
σ∗(< re,3D) that is based on the kinetic energy and mass of the stellar particles
within re,3D, and the total velocity dispersion σtot(< re,3D), which includes the
dark matter, stellar and gas particles in Eq. 5.5 and 5.6. These two different
velocity dispersions are compared in Fig. 5.2, which shows that the total velocity
dispersion is systematically larger than the stellar velocity dispersion.

Next, we apply a measurement that is in better agreement with observational
methods. We use the size, axis ratio and position angle from the best-fit Sér-
sic profile to construct an elliptic cylindrical aperture, which is centred around
the potential minimum and has a length along the z-axis of the simulation box
of ±50 kpc. Selecting all particles within the aperture, we obtain the spatially-
integrated line-of-sight velocity dispersion (σlos; i.e., along the z-axis) by first
calculating the weighted mean

⟨vlos⟩ =
∑

i wivz,i∑
i wi

, (5.7)
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Figure 5.2: Comparison between the velocity dispersion of the stellar particles within
re,3D and the velocity dispersion of the stellar, dark matter, and gas particles within the
same aperture (Eq. 5.5 and 5.6). Individual data points are shown for sparsely sampled
areas of the figure (created using densityplot; Krawczyk & Peters 2014). The total
velocity dispersion is greater than the stellar velocity dispersion, suggesting that the
dark matter particles are dynamically hotter.

followed by

σ2
los =

∑
i wi(vz,i − ⟨vlos⟩)2∑

i wi
, (5.8)

where vz is the velocity of the particle along the line of sight, and wi is the weight.
This spatially-integrated measurement of the velocity dispersion therefore also
includes both the rotational and random motions of the particles along the line-
of-sight direction. Using the Sérsic profile fits to the stellar mass images (see
Section 5.2.2) for the apertures and the current mass of the stellar particles as
weights, we obtain σ∗(< re,∗). Similarly, using the Sérsic profile fits to the optical
light and weighting by the luminosities of the particles, we obtain σ∗(< re,r). Here,
we have chosen to use the r-band Sérsic profile fits to construct the apertures,
but g-band luminosities for the weighting of the velocity dispersions, to mimic
observations where the more prominent absorption lines are around ∼ 5000Å. We
show in Appendix 5.C that the mismatch between the waveband chosen for these
two different measurements has only a small effect.

We compare the three different stellar velocity dispersions in Fig. 5.3, which
shows the luminosity-weighted and stellar mass-weighted velocity dispersion along
the line of sight as a function of the 3D velocity dispersion calculated with Eq. 5.6.
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Figure 5.3: The spatially-integrated line-of-sight stellar velocity dispersions measured in
elliptic cylindrical apertures versus the 3D stellar velocity dispersion, for the luminosity-
weighted (top) and stellar mass-weighted (bottom) measures. The colour coding reflects
the median projected axis ratio in each bin, demonstrating that the scatter about the
unit slope can be attributed mainly to projection effects and the degree to which the
rotational motion along the line of sight contributes to the measured velocity dispersion.
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Although there is good agreement between the different measures, there is a large
scatter that is particularly strong toward low σ∗. By colour coding the data
with the projected axis ratios of the Sérsic models, it becomes apparent that
this is due to projection effects: galaxies that are near face-on are observed to
have a significantly lower velocity dispersion than edge-on galaxies, which is to be
expected for oblate systems that are strongly rotating.

5.3 The simulated Fundamental Plane

As discussed in Section 5.1, the tilt of the FP reflects the deviation from the
simple prediction of virial equilibrium for homologous systems: M(r) ∝ r σ2. In
this Section, we present the theoretical perspective on the cause of these deviations,
by evaluating the effects of structural non-homology and variations in the mass
compositions of galaxies on the FP. Observational effects and selection biases will
then be discussed in Section 5.4.

5.3.1 Dynamical tracers of the total galaxy mass
In Section 5.2.4 we defined two different tracers of the galaxy dynamics: a stellar
velocity dispersion, and the total velocity dispersion. Clearly, σtot is a quantity
that cannot be measured observationally, however, it may seem a natural choice
when the aim is to recover Mtot. We begin by examining the planar relation

re,3D ∝ σα
tot(< re,3D) Σ

β
tot , (5.9)

where Σtot = Mtot(< re,3D)/(πr
2
e,3D), and the coefficients α = 2 and β = −1 for

homologous systems in virial equilibrium.
To aid in the visualisation of this 3D relation, we form narrow bins in log(Mtot(<

re,3D)), and show the relation between σtot(< re,3D) and re,3D for galaxies in the
Mtot-selected sample in Fig. 5.4. Here, the sample is divided into star-forming
(blue) and quiescent (red) galaxies, and shaded areas show the region in parame-
ter space that is likely to be affected by the limited resolution of the simulation.
We fit linear relations with a fixed slope (m = −0.5) to the data in each panel,
which represent lines of constant Mdyn (dashed lines) and thus the tilt of the virial
plane.

There is a tight sequence around these relations in all mass bins, except for the
very highest mass bin that spans a broad range in mass (up to 1012.25 M⊙). More-
over, toward higher total mass, the sequence itself shifts toward larger sizes and
higher velocity dispersions. The assumption of virial equilibrium and homology,
which would imply Mdyn/Mtot = 1, therefore seems to be reasonable. However,
toward smaller sizes, there appears to be a systematic offset with respect to the
dashed lines.

We fit the coefficients α and β by minimising the sum of the absolute orthogonal
distances to the plane:

∆FP =
|log(re,3D)− α log(σtot(< re,3D))− β log(Σtot)− γ|√

1 + α2 + β2
, (5.10)
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where γ is the zero point of the plane. We obtain errors on the fit parameters
by bootstrapping the data with 1000 subsamples. Excluding galaxies for which
re,3D < 2 kpc, we find that the coefficients deviate significantly from the virial
plane (Table 5.1), with a stronger deviation for quiescent galaxies than for star-
forming galaxies, and with very low scatter about the plane (0.018 dex). Solid
lines in Fig. 5.4 show the best-fit total mass FP of the combined sample, and
the scatter about these lines, calculated using the normalised median absolute
deviation (NMAD), is indicated in each panel. We note that the scatter measured
in Fig. 5.4 is larger than presented in Table 5.1 due to the finite bin widths used.

Next, in Fig. 5.5 we replace the total velocity dispersion by σ∗, which is ex-
pected to be a good tracer of the galaxy dynamics because of the collisionless
nature of stellar orbits. The results are qualitatively similar to those of Fig. 5.4,
except with slightly lower scatter. The overall scaling is also lower, as the stellar
velocity dispersion is systematically lower than the total dispersion (Fig. 5.2). By
inspecting the merger trees and images of the strong outliers that are visible in the
figure, we find that these few systems are either currently merging with another
galaxy or did so in their recent history, and have therefore likely not yet reached
equilibrium.

Fitting the planar relation with σ∗(< re,3D) instead of σtot(< re,3D) results
in coefficients that are even closer, although still not equal, to the virial plane.
Interestingly, the separate fits to the quiescent and star-forming subsamples are
also in better agreement than before, and the scatter about these different planes
is reduced even further (0.013 dex).

Whereas Figs. 5.4 and 5.5 focus on the qualitative differences between tilt of
the FP and virial plane, we quantify the differences between the best-fit FP and
the virial plane in Fig. 5.6. We compute the velocity dispersion predicted from
the virial plane, which is equivalent to the circular velocity at the effective radius
for a spherically symmetric mass distribution,

vc(re,3D) =

√
GMtot(< re,3D)

re,3D
, (5.11)

where G is the gravitational constant, and hence evaluate how the deviation be-
tween the measured velocity dispersion and this circular velocity depends on the
half-mass radius. Fig. 5.6 shows that there is clearly a systematic offset between
the zero-points of the total mass FP and virial plane, for both σtot (left) and σ∗
(right), which we discuss in the following section (5.3.2). By measuring the Spear-
man rank correlation coefficients, we also find that there is a positive correlation
between the deviation from the virial plane and the half-mass radius. This implies
that the total mass FP is tilted with respect to the virial plane, and that this tilt
is stronger for quiescent galaxies than for star-forming galaxies, and is consistent
with the results of our planar fits (Table 5.1).

5.3.2 Effects of non-homology
The deviation of the different fits for the ‘total mass’ FP from the virial plane
raises several questions. Most importantly, we may ask why the dynamical and
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Figure 5.6: The offset between the FP and the virial plane, measured as the difference
between the total (left) or stellar (right) velocity dispersion and the dispersion predicted
by Eq. 5.11, as a function of the half-mass radius. There is not only a difference in the
zero-point of the two planes, but also in the tilt: the positive Spearman rank correlation
coefficients (and corresponding p-values) indicate that the FP is tilted with respect to
the virial plane. This tilt is significant, and is stronger for quiescent galaxies than for
star-forming galaxies.

total masses are different. Secondly, it is unclear why the use of the stellar velocity
dispersion results in a FP that is closer to virial than is the case for the total ve-
locity dispersion, given that the orbits of the cold dark matter are also collisionless
and the gas fractions are small (see Section 5.3.3).

A difference between Mdyn and Mtot within the same spherical aperture of
re,3D indicates that the measured velocity dispersion differs from the expected dis-
persion. Either the assumption of virial equilibrium does not hold, or the systems
are not homologous. The first is unlikely, as the age of the galaxies at z = 0.1 is
∼ 1010 yr, and thus significantly larger than the crossing time (∼ 108 yr). There-
fore, only for systems that have very recently merged with a significantly large
neighbour, might we expect virial equilibrium to not have yet been established,
which explains some of the apparent outliers in Figs. 5.4 and 5.5.

To examine the effects of non-homology, we again use the difference between
the measured velocity dispersion and the velocity dispersion predicted from the
virial plane with Eq. 5.11 (∆ log σ; equivalent to the offset between the measured
FP and the virial plane). We then evaluate how this calculated deviation depends
on different galaxy properties.

Fig. 5.7 shows ∆ log σ = log(σ(re,3D)) − log(vc(re,3D)) for both the total and
stellar velocity dispersion as a function of the instantaneous sSFR. This sSFR of
course cannot be expected to drive the effects of structural non-homology, but
may correlate with the galaxy structure and therefore lead to a correlation with
∆ log σ. Indeed, Correa et al. (2017), Thob et al. (2019, Figs. 2 and 3) and de
Graaff et al. (2022, Figs. 11, 12 and 14) show that the 3D shape and dynamical
properties as well as the inferred projected structural parameters depend on the
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Figure 5.7: Difference between the measured total (left) or stellar (right) velocity
dispersion and the dispersion predicted from the virial theorem (Eq. 5.11), as a function
of the instantaneous sSFR. The Spearman rank correlation coefficients indicate that the
sSFR has negligible impact on the deviation in σtot, and only a weak effect on σ∗.

colour, sSFR and stellar mass. We note that 419 galaxies have SFR = 0M⊙ yr−1,
which for visualisation purposes only have been given an offset of 0.001M⊙ yr−1

(corresponding to the cloud of points below sSFR ≲ −13 yr−1). The Spearman
rank correlation coefficients (ϱ) indicate that the dependence on sSFR is, at most,
weak. This is not unexpected, given that the individual fits to the quiescent
and star-forming populations (Table 5.1) both deviate from the virial plane in an
approximately equal way.

Next, we evaluate explicitly whether ∆ log σ correlates with differences in the
galaxy structure. To do so, we use the Sérsic indices measured from the projected
stellar mass distributions (Section 5.2.2), as well as the 3D structural parameters
measured by Thob et al. (2019). The 3D stellar mass distributions were modelled
with ellipsoids and quantified by the parameters ϵ∗ = 1−C/A, which describes the
flattening of the short axis (C) relative to the longest axis (A), and the triaxiality
T = (A2−B2)/(A2−C2), which also depends on the intermediate axis (B). A value
of T ≈ 0 thus corresponds to an oblate system, whereas T ≈ 1 implies a prolate
shape. The shape of the dark matter (within an approximately equal aperture as
the stellar mass distribution) was measured in a similar way, and is quantified by
the flattening parameter ϵDM. Furthermore, the kinematic structural parameters
from Thob et al. (2019) provide information on the mean orbital properties of the
stars, and are measured from cylindrical apertures that are aligned along the long
axis with the total angular momentum of the stellar particles. The anisotropy in
the velocity dispersion was then calculated as β = 1 − (σz/σ0)

2, where σz is the
stellar velocity dispersion along the long axis of the cylinder (the rotation axis
of the galaxy) and σ0 is the dispersion in the plane perpendicular to this axis,
and thus reflects the degree of disordered motion along the radial or tangential
direction. Finally, the quantity κco = Krot

co /K measures the fraction of the total
kinetic energy that is due to the co-rotation of stars along the axis defined by
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Figure 5.8: Deviation of the total velocity dispersion from the prediction of the virial
plane (Eq. 5.11) as a function of various structural properties: the flattening of the 3D
dark matter (ϵDM) and stellar mass (ϵ∗) distributions, triaxiality of the stellar mass
(T ), Sérsic index (n), anisotropy (β), and the co-rotational kinetic energy fraction (κco).
Central (grey) and satellite (purple) galaxies are indicated separately, with solid and
dashed lines showing the respective running medians in each panel. The correlations
between ∆log σtot and the galaxy structure and dynamics demonstrate the effects of
non-homology: galaxies have highly diverse morphologies and kinematic structures, which
affects the measured value of σtot and hence causes a tilt in the FP with respect to the
viral plane.

the total angular momentum. A value of κco = 1 therefore corresponds to a
dynamically-cold disc in which all stars follow circular orbits.

Figs. 5.8 and 5.9 show how ∆ log σ varies with these different structural prop-
erties, for both the total and stellar velocity dispersion, respectively. As the sSFR
has minimal impact on the measured deviation, we omit the colour coding by
sSFR in these figures. Instead, however, we distinguish between central (grey)
and satellite (purple) galaxies, as the structural properties of satellite galaxies
may be expected to be influenced by their local environment (e.g., through tidal
stripping). The running median is plotted in each panel for the central galaxies
(solid lines) and satellites (dashed lines).

Starting with σtot , we find correlations with all structural properties shown,
particularly with the ϵDM and κco. These trends are generally stronger for central
galaxies than the satellites, except for the ϵDM , and shows that the local environ-
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Figure 5.9: Deviation of the stellar velocity dispersion from the prediction of the virial
plane (Eq. 5.11) as a function of galaxy structure. Compared to Fig. 5.8, the stellar
velocity dispersion is less dependent on the shape of the dark matter distribution (ϵDM),
but instead depends more strongly on the structure of the stellar mass. For spherical,
dispersion-supported systems σ∗ approximates the virial plane prediction, but galaxies
that are more flattened and strongly rotating diverge from this, due to the difference
in the shape of the gravitational potential. Correlations are slightly weaker for satellite
galaxies than centrals, which reflects the additional effect of the local environment on
these systems.

ment has a small effect on the measured σtot and the other structural parameters.
On the other hand, σ∗ is less dependent on the structure of the dark matter, and
instead depends strongly on the morphology and dynamics of the stellar mass.

The wide variety in shapes and structures among galaxies (discussed more ex-
tensively by Thob et al. 2019) clearly shows that the assumption of homology is
incorrect. The measurement of σ(< re,3D) reflects these variations in the density
profiles: for instance, for oblate, rotating systems σ∗(< re,3D) underestimates the
total mass, whereas it is a good approximation of the total mass for more spher-
ical systems with greater dispersion support. These differences in the structure
therefore also lead to a deviation of the total mass FP from the virial plane. This
is to be expected, as the virial plane (Eq. 5.11) assumes a spherically symmetric
mass distribution, but the true circular velocities of galaxies depend on the shape
of the mass distribution (see Binney & Tremaine 1987, Chapter 2). The fact that
the FP with σtot deviates more strongly from the virial plane than σ∗ can then be



CHAPTER 5 131

attributed to the fact that σtot is sensitive to not only the stellar mass distribution,
but also the dark matter.

However, as shown by Trayford et al. (2019), van de Sande et al. (2019) and de
Graaff et al. (2022), the galaxy morphologies in the 1003 cMpc3 EAGLE simulation
are different from observed galaxies: the simulated galaxies tend to be thicker, and
with significantly lower Sérsic indices. This is possibly the result of the pressure
floor in the simulation, or due to the limited resolution, as Ludlow et al. (2019,
2021) showed that the 2-body scattering of the relatively massive dark matter
particles with the baryonic particles in the simulation affects the resulting stellar
mass density profiles. In Appendix 5.A we show results from the higher-resolution
EAGLE simulations (described in Section 5.2.1), and demonstrate that the mor-
phology (particularly the Sérsic index) is strongly dependent on the resolution,
but that our conclusions on the effects of non-homology on the FP are robust to
changes in the resolution.

Lastly, although we have explained the relative differences in ∆ log σ, we have
thus far neglected the fact that there is also a systematic offset in ∆ log σtot visible
in Fig. 5.7 and 5.8: σtot systematically overpredicts the total mass within re,3D.
This suggests that there must be a factor missing in Eq. 5.11, which can most
plausibly be attributed to the assumptions made in obtaining the virial theorem.
To arrive at the scalar virial theorem of 2K+W = 0, where W is the gravitational
potential energy, one has to assume that the mass density ρ(r → ∞) = 0 (Binney &
Tremaine 1987). Albeit a reasonable assumption for the stellar mass distribution,
the distribution of the dark matter is more complex. The dark matter particles
are more likely to be on highly eccentric orbits with semi-major axes that are
significantly larger than the stellar half-mass radius of the galaxy. This can also
be interpreted as a surface pressure term in the virial theorem, such that 2K +
W + Sp = 0 , with Sp/|W | < 0 and hence 2K/|W | > 1 (see also Shapiro et al.
2004). Therefore, we would expect to find σtot > vc (from Eq. 5.11), which is
exactly what Fig. 5.7 and 5.8 show.

5.3.3 Variations in the dark matter fraction
Having quantified the Mdyn/Mtot contribution to the tilt of the FP, we now add
in the effects caused by the different mass compositions of galaxies, i.e. the con-
tribution from stellar, gas and dark matter mass (we neglect the black hole mass,
as this typically comprises < 1% of Mtot(< re,3D)). This is also coupled with a
change in the sample selection, as instead of using the Mtot complete sample, we
from hereon focus on the M∗-selected sample and stellar velocity dispersions only.

First, we examine the effect of this change in the sample on the total mass FP.
Because of the strong overlap between the two samples the coefficients are changed
only weakly, although this is statistically significant. The total mass FP spanned
by the M∗-selected sample is slightly closer to the virial plane than before, but the
effects of non-homology discussed in the previous section still apply.

Second, we change from the total mass FP to the stellar mass FP (Eq. 5.4),
and investigate the relation between σ∗(< re,3D) and re,3D in narrow bins of
M∗(< re,3D). Fig. 5.10 differs from Fig. 5.5 only by the choice of the mass used
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to bin the data, with an additional small effect due to differences in the samples
used. Dashed lines show the predicted slope in each panel for homologous galaxies
in virial equilibrium, which is clearly a poor prediction. By fitting the tilt of the
stellar mass FP, we find a much stronger deviation from the virial plane than
before, particularly for the β coefficient, and with increased scatter (solid lines;
Table 5.1).

We again define a predicted velocity dispersion, by replacing the total mass in
Eq. 5.11 by the stellar mass:

σpred =

√
GM∗(< r)

r
, (5.12)

using r = re,3D and evaluate how the dynamical and stellar mass differ from each
other. The effects from non-homology discussed in the previous section (5.3.2) still
hold here. However, there are now two new factors to consider: the dark matter
(fDM) and gas fraction (fgas) within re,3D.

In Fig. 5.11 we show the difference between the stellar velocity dispersion and
the predicted dispersion (∆ log σ∗) as a function of fDM(< re,3D) and fgas(< re,3D).
The upper panels are colour coded using the division into star-forming (blue) and
quiescent (red) galaxies; the lower panels distinguish between central (grey) and
satellite (purple) galaxies, for comparison with Fig. 5.9. There is a systematic
offset in the obtained ∆ log σ∗, as Eq. 5.12 misses a significant fraction of the total
galaxy mass and therefore leads to a systematically lower value of σpred.

Most importantly, we find a very strong correlation between ∆ log σ∗ and fDM,
for all four categories of galaxies. These trends are stronger than any of the
correlations with galaxy structure found in Fig. 5.9, and therefore demonstrate
that systematic variations in the dark matter fractions are the main driver of the
tilt of the stellar mass FP. We find no correlation with the gas fraction for star-
forming galaxies, which may be contrary to expectations, but the gas fractions are
generally very low (≲ 5%). On the other hand, there is a correlation among the
satellite galaxies, which suggests an additional, weak effect of the local environment
on the stellar mass FP.

Fig. 5.12 further examines the variation in fDM across the stellar mass-size
plane. This indicates that there is not simply a large variation in fDM, but that
the variation in fDM is a smooth power-law function of both M∗ and re,3D. In
turn, these variations result in the observed strong correlation between ∆ log σ∗
and fDM found in Fig. 5.11, and hence the tilt of the simulated stellar mass FP.
The common FP for star-forming and quiescent galaxies can then be interpreted
as the power-law relation fDM(< re,3D) ∝ Ma

∗ r
b
e,3D having similar coefficients a

and b for both galaxy populations. We estimate the coefficients by minimising the
sum of the offsets orthogonal to the planar relation:

∆DM =
|log(fDM(< re,3D))− a log(M∗)− b log(re,3D)− c|√

1 + a2 + b2
, (5.13)

where c is the zero-point of the relation and M∗ = 2M∗(< re,3D). We present the
results of these fits in Table 5.2.
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Figure 5.11: Deviation between the measured stellar velocity dispersion and the disper-
sion predicted from the stellar mass and stellar half-mass radius (Eq. 5.12; corresponding
to the offset from the virial plane) versus the dark matter (left) and gas (right) frac-
tions within the half-mass radius. Top panels distinguish between star-forming (blue)
and quiescent (red) galaxies; bottom panels separate central (grey) and satellite (purple)
galaxies. Solid and dashed lines show the running medians. The correlation with the
dark matter fraction is stronger than for any other parameter (Fig. 5.9), indicating that
it is the primary driver of the tilt of the stellar mass FP, for both star-forming and qui-
escent galaxies.

Table 5.2: Best-fit coefficients for the relation log(fDM(< re,3D)) = a log(M∗) +
b log(re,3D) + c. Galaxies for which re,3D < 2 kpc are excluded from the fits.

Sample selection a b c NMAD

M∗ −0.214± 0.004 0.573± 0.009 1.58± 0.04 0.0312± 0.0006
M∗ & quiescent −0.317± 0.008 0.781± 0.015 2.54± 0.07 0.0339± 0.0014
M∗ & star-forming −0.194± 0.004 0.518± 0.008 1.41± 0.04 0.0280± 0.0007
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Figure 5.12: Total stellar mass versus the half-mass radius for all (quiescent and star-
forming) galaxies, colour-coded by the dark matter fraction within the half-mass radius.
The variation in fDM is a smooth function of both size and stellar mass, which leads to
the observed correlation between ∆log σ∗ and fDM in Fig. 5.11. As a result, quiescent
and star-forming galaxies lie on a common stellar mass FP that deviates strongly from
the virial plane.

5.4 Observing the Fundamental Plane

Measurements of the FP in the previous section relied entirely on 3D measurements
of the size, mass and velocity dispersion. To be able to compare with observations,
we need to take into account the different observational effects that may bias
the observed FP with respect to the intrinsic ‘3D FP’. Broadly, these are the
effects of projection along a random viewing angle, differences in the measurement
methods and associated measurement uncertainties, gradients in the M∗/L ratio
and associated systematic uncertainties in the assumed IMF, and selection biases.
In this section, all these effects are added in, to arrive at a realistic measurement
of the FP.

5.4.1 Impact of projection effects and measurement biases

We use the mock observations described in Section 5.2, and begin with the mea-
surements of the projected stellar mass distributions. As before, we create bins in
stellar mass, which are now changed to the mass inferred from the best-fit Sérsic
profile, and show the line-of-sight velocity dispersion as a function of the half-mass
radius in Fig. 5.13. Star-forming and quiescent galaxies are again indicated sepa-
rately, using blue and red symbols, respectively. The virial plane is shown as the
dotted line in each panel for easy comparison with previous figures.
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The main differences with respect to Fig. 5.10 are in the scatter: the offset in the
velocity dispersion ∆ log σ∗ = −0.007 dex with a scatter of 0.05 dex, and the offset
in the size ∆ log re = −0.06 dex, with a scatter of 0.07 dex. The mass bins are also
changed slightly, although this effect is small (offset of ∆ logM∗ = −0.02 dex with
a scatter of 0.04 dex). These systematic offsets and scatter arise from projection
effects, which particularly affect the velocity dispersions, and, for the sizes and
masses, differences in the measurement methods and measurement uncertainties.
We note that the projected velocity dispersions as measured in Section 5.2.4 are
noise-free (nor include PSF smoothing), and the scatter therefore is purely from
projection along the line of sight. However, measurement errors are expected to be
subdominant, as we find that the typical uncertainty on the velocity dispersion for
galaxies of M∗ > 1010 M⊙ at z ∼ 0 in the Sloan Digital Sky Survey is ≈ 0.02 dex
(SDSS; using the sample described in de Graaff et al. 2021).

To estimate the effect on the inferred stellar mass FP, we first calculate the
stellar mass surface density within the elliptical aperture described by the re,∗
and the axis ratio q∗: Σ∗ = M∗(< re,∗)/(πq∗r

2
e,∗), with M∗ being half of the

stellar mass of the integrated Sérsic profile. We then measure the tilt of the
stellar mass FP with the same orthogonal fitting used previously (dashed lines in
Fig. 5.13; Table 5.3), and compare with the stellar mass FP measured from the 3D
measurements (solid lines; Table 5.1). The scatter about this solid line is printed
in each panel for comparison with Fig. 5.10.

The increased scatter affects mainly the α parameter of the tilt, likely due
to the asymmetric scatter toward low σ∗ from galaxies that are close to face-on.
Moreover, the scatter about the FP itself is nearly doubled. The β parameter is
largely unchanged, however, despite an offset and significant scatter in the size,
which can be understood from the fact that changes in the size correlate in a
direction that is near-parallel to the FP itself (see also Appendix B of de Graaff
et al. 2021).

However, observational studies of the FP rarely use the effective radius as
we have here, i.e., the semi-major axis size. Rather, the effective radius is often
circularised, such that rcirc =

√
q re , as this may be a better approximation of the

galaxy size for systems that are not oblate in shape (the fraction of low-redshift
early-types that have prolate shapes or are triaxial). It also serves as a crude
correction for the projection effects on σ∗, mitigating residual correlations with q
throughout the FP. We therefore repeat our fits using the circularised size instead
of the major axis size, and present the results in Table 5.3 and Appendix 5.B.
Again, the changes to the β parameter are small, because of the covariance between
rcirc and Σ∗. On the other hand, the α parameter depends strongly on the measure
of size that is used, due to the corrective effect on the velocity dispersion. The
FP resulting from the circularised sizes is closer to the intrinsic, 3D FP than
is the case for the major axis sizes, despite the fact that the circularised size
is a poor approximation of the galaxy size for oblate systems (i.e., most of the
galaxy population). This also suggests that a properly-calibrated correction for
the projected velocity dispersions, as derived empirically by van der Wel et al.
(2022, submitted) using dynamical Jeans models, may provide even better results
than the ad hoc correction from the circularised sizes.
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Lastly, we examine the effects of variations in M∗/L (for a universal IMF)
within galaxies, which can lead to significantly larger sizes, depending on the star
formation activity and dust attenuation. The velocity dispersions as calculated
in Section 5.2.4 do not include the effects of dust, however, the measurements
will be biased toward the location of the younger stellar populations. As a result,
the scatter in the velocity dispersion (Fig. 5.3) is increased, as the younger stellar
populations tend to lie in dynamically-cold discs (Trayford et al. 2019) and the
projected velocity dispersions therefore will be more strongly dependent on the
inclination angle.

Fig. 5.14 shows the equivalent of Fig. 5.13, but for the luminosity-weighted
measurements. Except for the two highest mass bins, the scatter is significantly
increased (by ≈ 50%), due to the greater scatter in the size (0.14 dex in comparison
with the 3D half-mass radii) and the velocity dispersion (scatter of 0.07 dex in
comparison with the 3D dispersions). In Appendix 5.C, we investigate whether
the strong increase in the scatter is caused by the inconsistency in the tracer used
for the size and velocity dispersion, i.e., the use of half-light radii measured from
r-band imaging that include the effects of dust, while the velocity dispersions
are measured using the unattenuated g-band luminosities. We show that the
strong increase in the scatter between the top panels of Figs. 5.13 and 5.14 is
driven primarily by the change from a M∗-weighting to a L-weighting for the
velocity dispersions, with the (in)consistency between the tracers being of lesser
importance.

To measure the coefficients of the mock observed FP, we again calculate Σ∗ =
M∗(< re,r)/(πqrr

2
e,r), now using the stellar mass and axis ratio corresponding to

the luminosity-weighted Sérsic model (see Section 5.2.2). As a result, the best-fit
stellar mass FP has systematically different values for the α parameter (Table 5.3)
than is the case for the mass-weighted measurements, and the scatter is further
increased. We also perform the fits with the circularised half-light radii, and
show the corresponding figure in Appendix 5.B. These again lead to a difference
in α alone, as the result of the circularised size effectively compensating for the
projection effects on σ∗.

5.4.2 Selection bias
All fits of the stellar mass FP thus far have been based on the stellar mass-selected
sample. In observational studies of the FP, however, these galaxies would likely
not all be selected: imaging and spectroscopic surveys have lower completeness at
low luminosities, as well as toward low velocity dispersions (due to the limitation in
the spectral resolution of the instrument, or a selection against velocity dispersions
with large measurement uncertainties). As also shown by, e.g. Hyde & Bernardi
(2009), these selection effects lead to a bias in the measured tilt of the FP.

Given the relatively high stellar mass (and therefore high luminosity) of our
sample, we may expect all these galaxies to be identified in large imaging surveys
of the z ∼ 0 Universe, except for possibly very rare, very low surface brightness ob-
jects. Moreover, luminosity biases are relatively easily corrected for using standard
Vmax corrections. We therefore only examine the effects of selection cuts
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Figure 5.15: Effect of a selection bias in log σ∗ on the measured tilt of the stellar
mass FP for the luminosity-weighted measurements, using the major axis effective radius
(left) and circularised effective radius (right) as the measure of size. Blue and red data
points have been given a slight offset in log σ∗ for visualisation purposes. Although the
β parameter is quite stable (varying by ≲ 10%), the α parameter can vary strongly
depending on the selection (differing by up to ≈ 80% with respect to the complete
sample).

in log σ∗, as the dispersions do not scale trivially with luminosity or stellar mass
and are susceptible to strong variation from the random projection on the sky.

We use the luminosity-weighted measurements, and measure the stellar mass
FP after imposing different selections on log σ∗ (i.e., horizontal cuts in Fig. 5.14).
Fig. 5.15 shows the dependence of the parameters α and β on the different selec-
tions in log σ∗, for the full sample (black), and the quiescent (red) and star-forming
(blue) sub-samples. Both fits using the semi-major axis half-light radii (left) and
circularised sizes (right) are shown.

We find results are qualitatively similar to the effects found by Hyde & Bernardi
(2009): the β parameter varies only weakly with differences in the sample selection,
particularly for the fits using the major axis sizes. On the other hand, the α
parameter increases toward higher cuts in log σ∗, which is a particularly strong
effect for the fits using the circularised sizes. The star-forming population even
reaches super-virial values, albeit with large uncertainties.

Although low-redshift studies of the FP will focus on samples of quiescent
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galaxies with high completeness down to log(σ∗/km s−1) ≈ 1.8, these selection
effects will likely become much more important toward higher redshift. Given
the difficulty in measuring stellar absorption lines in high-redshift galaxies, the
completeness boundary for the velocity dispersion shifts to log(σ∗/km s−1) ≈ 2.1−
2.2 (e.g., Holden et al. 2010; de Graaff et al. 2021). At the same time, the structural
properties of quiescent galaxies also change, becoming more disc-like and with
stronger rotational support (Chang et al. 2013; Bezanson et al. 2018a), which will
likely lead to selection effects that are more similar to that of the star-forming
population in Fig. 5.15. To measure the evolution in the FP, then requires not
just a fair comparison sample (i.e., a low-redshift sample for which the velocity
dispersions are greater than the high-redshift completeness limit in log σ∗), but
also a correction factor to account for evolution in the (dynamical) structures of
the galaxy population.

5.4.3 Contribution of IMF variations

Although we have measured in detail the stellar mass FP and its dependence on
different observational effects, one potentially significant systematic uncertainty
remains due to the assumption of a universal IMF in the simulations. We use
the simulations with a pressure-dependent bottom-heavy (‘LoM’) and top-heavy
(‘HiM’) IMF, which varies both between and within galaxies (further described in
Section 5.2.1), to assess the magnitude of this uncertainty on the FP within the
EAGLE simulations.

We compare the variable IMF runs with the 503 cMpc3 simulation that uses
the reference model (‘Ref’), which assumes a fixed, Chabrier IMF. Because obser-
vational studies typically assume a universal IMF, we can no longer use a sample
selection based on the summed stellar particle masses for a fair comparison between
the different simulations. Instead, we therefore select by the r-band luminosity:
luminosities for the stellar particles were computed using the FSPS software, and
based on the age, metallicity and IMF of each particle (for details, see Barber
et al. 2018). By comparing the total luminosity within a spherical aperture of
radius 30 kpc to the stellar mass within the same aperture for galaxies in the Ref
simulation, we find that a minimum (rest-frame) r-band luminosity of 109.85 L⊙,r

(Mr ≈ −20.0) results in a selection completeness of ≳ 50% down to a stellar
mass of 1010 M⊙. Applying this limit provides a sample of 527, 528, and 415
galaxies in the Ref, LoM and HiM simulations, respectively. As before, we divide
these samples into star-forming and quiescent subsamples using the boundary of
sSFR = 10−11 yr−1. We note that the SFR and stellar mass are both dependent
on the IMF, but the effect on the sSFR and thus the definition of quiescence is
negligible due to the approximately equal change in the SFR and the stellar mass
(see also Clauwens et al. 2016).

We subsequently extract 3D aperture measurements as used in Section 5.3,
measuring the particle masses and stellar velocity dispersions within the 3D half-
mass radii. To estimate the effect of an incorrect assumption for the IMF requires
luminosity-based measurements. We use measurements from the online catalogues
(McAlpine et al. 2016; Barber et al. 2018), as individual particle luminosities are
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Figure 5.16: Measured tilt of the stellar mass FP for galaxies in the 503 cMpc3 EAGLE
simulations for the reference, bottom-heavy IMF (LoM) and top-heavy IMF (HiM) mod-
els. Circles and triangles show results for the quiescent and star-forming populations,
respectively. Black outlined symbols indicate the fits to the 3D aperture measurements
(as in Table 5.1); coloured symbols show the fits to the projected measurements using the
true stellar mass (filled symbols) and Chabrier-reinterpreted stellar mass (open symbols),
respectively. The effects of a variable IMF are small for the intrinsic (3D) stellar mass
FP. However, by assuming an incorrect IMF, the inferred tilt of the stellar mass FP can
be changed by ≈ 10%, and up to ≈ 20% for quiescent galaxies.

not available. The size used is the circular half-light radius in the r-band, re,2D,
based on the total luminosity within a 30 kpc spherical aperture1; the velocity
dispersion (σ∗(< re,2D)) is measured within a circular aperture of radius re,2D in
projection along the z-axis of the simulation box, and weighted by the r-band
luminosities of the particles. For the stellar mass, we use (i) the true stellar
mass within the circular aperture (i.e., based on the varying IMF; M∗(< re,2D))
and (ii) the stellar mass within the same aperture that is reinterpreted under the
assumption of a Chabrier IMF (M∗,Chab(< re,2D); Chabrier 2003). The latter
quantity is calculated by multiplying the r-band luminosity with the M∗/Lr ratio
that is obtained for the particles when these are evolved with a Chabrier IMF
(using FSPS), and therefore allows for a comparison with observations (Barber
et al. 2018).

The tilt of the stellar mass FP is measured in the same way as before, with the
results shown in Fig. 5.16 for the three simulations. The 3D aperture measurements
are shown as the black circles (triangles) for the quiescent (star-forming) popula-
tions. The results for the Ref simulation are consistent with the measurements in

1We note that these sizes are free from measurement uncertainties and do not include the ef-
fects of dust, therefore leading to considerably lower scatter than seen in Section 5.4.1. Moreover,
these circular half-light radii are smaller than the 3D half-mass radii by ≈ 25% for all galaxies,
which differs strongly from the Sérsic model half-light radii that are larger by ≈ 25% and smaller
by ≈ 10% in comparison with the 3D half-mass radii for star-forming and quiescent galaxies,
respectively.
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Table 5.1. For the LoM model, the fits to these 3D aperture measurements are very
similar to those of the Ref model, with only a marginally lower value of β. The
star-forming population in the HiM simulation is also consistent with the other
models, and only the quiescent galaxies diverge, particularly in the measurement
of β, although with a large measurement uncertainty.

Because of the differences in the projected measurements with respect to the
previous sections of this paper, measurements of the tilt based on the 2D quantities
cannot easily be compared to the results of Table 5.3. However, comparison of
the 2D and 3D measurements using the true stellar masses gives insight into the
effects of measurement biases: the filled coloured symbols show that there is indeed
a small difference in the measured tilt due to a combination of effects from the
projection, aperture definition and M∗/L gradients.

Comparing the three simulations, we find that the measurements of the tilt for
the LoM model are close to those of the Ref model (< 10% difference), whereas the
HiM model deviates more strongly. We calculate the difference in the measured
(projected) stellar velocity dispersion and the predicted velocity dispersion (using
the true stellar mass; Eq. 5.12) and examine the drivers of these FPs in Fig. 5.17.
Instead of the dark matter fraction, we compute the ‘dark mass’ fraction as 1−f∗(<
re,2D), where f∗ ≡ M∗/Mtot and is calculated using 3D apertures of radius re,2D.
If the gas fraction is negligible, f∗ simply measures the dark matter fraction. The
LoM model leads to slightly lower dark fractions than the Ref model, particularly
for the quiescent galaxies. On the other hand, galaxies in the HiM simulation are
strongly dark matter-dominated within re,2D. Despite this difference, there is a
strong correlation between ∆ log σ∗ and 1− f∗ for both models. We also show the
correlations with the luminosity-weighted average IMF slope within the circular
aperture of re,2D. Although these correlations are strong, the fluctuations in 1−f∗
still dominate, indicating that variations in the dark matter fractions are still the
primary driver of the simulated stellar mass FP. This likely also explains why we
find little variation in the tilt between the different simulations.

Finally, we can quantify the effect of IMF variations on the observed tilt of the
stellar mass FP, by using the 2D measurements and comparing the fits obtained
for the true stellar masses and the reinterpreted stellar masses, shown as the open
symbols in Fig. 5.16. As expected for the Ref model, the Chabrier and Chabrier-
reinterpreted IMF measurements result in identical fits. For the LoM model both
α and β are slightly lower in value for the Chabrier-reinterpreted measurements,
and lower than is measured for the Ref model (by ≈ 10 − 25%), an effect that
is stronger for the quiescent galaxy population. Star-forming galaxies in the HiM
model are not affected significantly by a change in the assumed IMF, and agree
well with the fit to the Ref model. On the other hand, the quiescent population
does show a very different tilt from the Ref model. Although the formal statistical
uncertainty on the fit is large (due to a small sample size and likely a small number
of outliers affecting the fitting), the result itself is of significance, as the comparison
is between three simulations with equal initial conditions.

In Fig. 5.18 we show the corresponding change to the results of Fig. 5.17, ob-
tained by calculating the velocity dispersion predicted from the Chabrier-reinterpreted
stellar mass, and similarly the reinterpreted stellar mass fraction (1−f∗,Chab). For
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Figure 5.17: Deviation between the measured stellar velocity dispersion and the pre-
dicted velocity dispersion for galaxies in the LoM and HiM variable IMF simulations,
as a function of the dark mass fraction and luminosity-weighted IMF slope within the
circular aperture of re,2D. Galaxies in the LoM simulation are slightly less dark matter-
dominated than in the reference model (in comparison with Fig. 5.11), whereas the HiM
model produces strongly dark matter-dominated galaxies. In both cases, there is a some-
what stronger correlation between ∆log σ∗ and 1−f∗ than with the IMF slope, indicating
that fluctuations in the dark matter content are the primary driver of the stellar mass
FP, and likely explains the weak variation in the inferred tilt between the different sim-
ulations (Fig. 5.16).

the LoM model, the effect of an incorrectly assumed IMF largely removes the cor-
relation with the IMF slope for the quiescent galaxies, and strongly reduces the
effect for the star-forming galaxies. Instead, the missing stellar mass is interpreted
as extra dark matter, resulting in high values of and a strong correlation with
1 − f∗,Chab. The difference in the tilt between the ‘true IMF’ and Chabrier IMF
measurements then must stem from the mismatch between the density profile that
is traced by the measured velocity dispersion and the (incorrectly) estimated stel-
lar mass surface density. Interestingly, the correlations for galaxies in the HiM
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Figure 5.18: Deviation between the measured stellar velocity dispersion and the ve-
locity dispersion predicted from the Chabrier-reinterpreted stellar mass for galaxies in
the LoM and HiM variable IMF simulations, as a function of the dark mass fraction
and luminosity-weighted IMF slope within the circular aperture of re,2D. The Chabrier
IMF underestimates the true stellar mass of galaxies in the LoM simulation, leading to
increased dark mass fractions compared with Fig. 5.17 (grey lines show the medians from
Fig. 5.17), and weakened correlations with the IMF slope. Galaxies in the HiM simula-
tion are largely unaffected by a difference in the assumed IMF, which may reflect strong
structural differences between galaxies in the HiM simulation and the other models.

simulation are largely unchanged with respect to Fig. 5.17, which is consistent
with the very small changes found in the tilt between the ‘true IMF’ and Chabrier
IMF fits. Possibly, the top-heavy IMF strongly affects the structural properties
of galaxies in the HiM model, such that the profile of the dark matter and corre-
sponding variations in the dark matter content dominate the stellar mass FP (see
also Section 5.5.2), and a reinterpretation of the stellar mass with a different IMF
therefore has a comparatively small impact.

Overall, in comparison with the Ref model, the parameters of the observed
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stellar mass FPs using the reinterpreted stellar masses differ from each other by
at most ≈ 9% for star-forming galaxies and at most ≈ 29% for quiescent galaxies.
For star-forming galaxies, this effect is thus of similar magnitude to the effects of
non-homology (Section 5.3.2); for quiescent galaxies, the uncertainty on the IMF
has a larger effect, although this is still subdominant to the effects of variations in
the dark matter content.

5.5 Discussion

5.5.1 Interpreting the tilt and scatter of the FP
We set out to measure the low-redshift stellar mass FP, as its tilt and scatter in
the zero point trace Mdyn/M∗, and therefore reflect the structural properties and
assembly of galaxies. By firstly constructing the total mass FP, we have found
that although there is significant variation in the structural properties among the
simulated galaxy population, the non-homology of this population has only a weak
effect on the tilt of the FP. The resulting deviation from the tilt expected under
the assumption of homology is strongest for the population of quiescent galaxies,
but still < 10%. In other words, within the effective radius the stellar velocity dis-
persion, measured by taking into account both the random and rotational motions
of stars (see Section 5.2.4), provides a good proxy of the circular velocity (although
with an offset of ≈ 10%). Hence, Mdyn ∝ Mtot, which broadly agrees with obser-
vational findings based on dynamical modelling or strongly lensing systems (e.g.,
Cappellari et al. 2006; Bolton et al. 2007, 2008; Li et al. 2018).

Instead, as also suggested by earlier theoretical work (e.g., Boylan-Kolchin et al.
2006; Robertson et al. 2006; Hopkins et al. 2008) and more recently specifically
for the EAGLE and IllustrisTNG simulations (Ferrero et al. 2021), we have shown
that systematic variations in the dark matter fraction as a smooth function of
the size and stellar mass drive the strong, observed deviation of the stellar mass
FP from the virial plane. Variations in the IMF can affect the inferred dark
matter mass fraction, and thereby contribute to the tilt as well, but have a smaller
effect. Interestingly, this is true for both the stellar mass FP of the quiescent and
star-forming galaxy populations, and leads to a near identical tilt of and scatter
about the two simulated FPs: within the parameter space of the mass, velocity
dispersion and size, we can therefore regard these two populations as forming a
single distribution.

Observationally, it is difficult to constrain fDM, particularly in a way that is
independent from the measurement of the FP itself (i.e., through strong lensing),
to allow for a robust measurement of potential gradients in fDM along the FP.
Mock observations from the simulations therefore are important to estimate the
effects of observational uncertainties and test the role of fDM in the interpretation
of the observed FP. We have found that simply the effects from the random pro-
jection of galaxies on the sky, leading to differences in the measured sizes and the
velocity dispersion, alter the measured FP by > 5σ, although this can be remedied
somewhat by adopting a circularised size rather than a major axis size (or, likely,
an alternative correction factor that directly corrects σ∗ for the random inclination
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Figure 5.19: Edge-on view of the stellar mass FP for the intrinsic FP (relying on 3D
aperture measurements; left), and the mock observed FPs using measurements weighted
by the stellar mass (middle) and the observed light (right). The colour scale shows the
dark matter fraction within the effective radius, and insets show the offset from the FP
as a function of the same dark matter fraction. Systematic variations in fDM across the
galaxy population set the tilt of the stellar mass FP. The remaining scatter about the
FPs anti-correlates only weakly with fDM (Spearman ρ = −0.23), and is therefore driven
by random scatter and measurement uncertainties.

angle). Moreover, gradients in M∗/L also have a significant effect on the retrieved
FP, bringing very good consistency in the β parameter (associated with Σ∗) with
the 3D measurements. On the other hand, the α parameter (associated with σ∗)
is biased low and strongly dependent on the sample selection.

The edge-on projections of the intrinsic and mock observed stellar mass FPs
are shown in Fig. 5.19, where the colour scale illustrates the correlation with
fDM along the FP. In comparison with observational results, we find that the
mock observed EAGLE FP broadly agrees with measurements of the stellar mass
FP of quiescent galaxies (Hyde & Bernardi 2009; Bernardi et al. 2020) as well
as the K-band luminosity FP (La Barbera et al. 2010a; Magoulas et al. 2012)
when taking into account differences in the sample selection, as these studies have
found α ≈ 1.5 − 1.6 (and α ≈ 1.9 for the most massive early-type galaxies, of
M∗ > 1011 M⊙). We emphasise that the simulation was not explicitly tuned to
reproduce the FP – only the stellar mass-size relation was used to reject unrealistic
subgrid models (Schaye et al. 2015) – and the inferred FP and the drivers of the
relation can therefore be considered to be predictive. We note that, unfortunately,
the FP of star-forming galaxies has as of yet not been measured explicitly, and we
therefore cannot compare those results with observations.

In detail, however, there are some significant differences between the simulated
and observed z ∼ 0 stellar mass FP of quiescent galaxies. The values for β differ
more strongly, with β ≈ −0.8 in observations, whereas the lowest value of β
measured in the EAGLE simulations is β = −0.66 ± 0.04 for the bottom-heavy
IMF model. The top-heavy IMF model on the other hand (with β = −0.37 ±
0.16) is disfavoured, although not ruled out given the large uncertainties on our
measurements. The physical interpretation of the discrepancy in β is further
discussed in Section 5.5.2.2. The measured scatter also differs by a factor ≈ 2,
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with the simulated FP having both a lower observed scatter and intrinsic scatter.
The difference in the measured scatter can easily be attributed to the fact that

the observed stellar mass FP includes additional scatter due to the measurement
uncertainties on the stellar masses. Yet, the nonzero (intrinsic) scatter in the
observed stellar mass FP has been suggested to arise from physical effects, namely
variations in fDM or the IMF through the thickness of the FP (Graves & Faber
2010). The insets in Fig. 5.19 show the residuals from the simulated FPs as a
function of the dark matter fraction: we find only a weak anti-correlation between
∆FP and fDM (Spearman ρ = −0.23) for the 3D FP (left-hand panel), which
indicates that galaxies with higher Σ∗ than predicted from the FP have slightly
lower fDM (since ∆ logΣ∗ ∝ ∆FP, see Eq. 5.10). Interestingly, we also find a
correlation with the co-rotating fraction κco (Section 5.3.2) within the scatter, of
ρ = 0.35. We do not find any correlations with other bulk galaxy properties,
e.g., with mass, velocity dispersion or SFR. This suggests that the scatter in the
3D FP may not be entirely random, but still be partially due to physical effects
(e.g., recent mergers). On the other hand, for the mock observed FPs the scatter
is predominantly driven by measurement uncertainties. Therefore, the difference
found between the intrinsic scatter of the simulated and observed FP may most
easily be explained by an underestimation of the uncertainties in M∗/L from the
SED modelling. This includes the systematic uncertainty due to the assumed
IMF, which we find to lead to an increase of ≈ 10% in the measured scatter in the
simulated FPs.

Despite the differences between simulated and observed FP, it is interesting to
explore the physical origins of the simulated relation. Of course, although we have
demonstrated that the variation in fDM can largely explain the tilt of the FP, with
observational uncertainties and biases muddying the picture, the quantity fDM in
itself is merely a consequence of other factors. From Fig. 5.10 we see that, at fixed
M∗, the scatter in σ∗ is relatively small, but there is strong variation in re. The
variation in re correlates with fDM (Fig. 5.19), and is in line with the suggestion by
Ferrero et al. (2021) that galaxy size is the main differentiating parameter between
galaxies. The question of which physical mechanisms drive the FP can therefore
be recast as: what causes the scatter in re at fixed M∗ ?

This effectively reduces the FP to a 2D scaling relation, namely the stellar
mass-size relation, and the question of which galaxy properties show correlations
along this plane. Observational studies have shown that galaxy size correlates with
colour, age, metallicity and α-element enhancement at fixed mass (Franx et al.
2008; Scott et al. 2017; Barone et al. 2020, 2022), and suggested an additional
dependence on the structural properties (Sérsic index, level of rotational support)
and environment. For instance, at fixed stellar mass, more compact galaxies have
been found to be older and to have higher metallicities, as well as greater α-element
enhancements. However, these measurements are difficult to interpret, as the
stellar population properties are typically luminosity-weighted, global quantities,
and therefore are difficult to relate to the overall star formation histories and
merger histories of galaxies.

Cosmological simulations may offer valuable insight here, as they allow to trace
individual particles within the formation history of a galaxy, and therefore to dis-
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tinguish between the in-situ and ex-situ growth of galaxies. Furlong et al. (2017)
demonstrated that there is a dependence on the sSFR across the stellar mass-size
plane for star-forming galaxies in the EAGLE 100 Mpc simulation, with larger
galaxies having higher sSFR at fixed M∗, and a correlation with the mass assem-
bly timescale for simulated quiescent galaxies, such that more extended quiescent
galaxies assembled later in cosmic time. Rosito et al. (2019a) showed that this
also translates to observable measurements, finding trends with not just age and
metallicity, but also radial gradients therein, across the dynamical mass-size plane
in the EAGLE simulations, and suggest that this in turn correlates with the stel-
lar spin parameter. Therefore, combining these different ideas, investigating the
in-situ and ex-situ growth and associated timescales across the stellar mass-size
plane and linking these to observable measures may deliver powerful insight into
the assembly of galaxies and the physical origins of the tilt of the FP, for simulated,
and likely also for observed, populations of galaxies.

5.5.2 Reconciling the FP with the TF relation

We have found that, at least intrinsically, the simulated star-forming galaxies lie
on a total mass FP and stellar mass FP that are approximately the same as the
FPs spanned by the quiescent population, and with equally low scatter. On the
other hand, star-forming galaxies have been shown to obey the TF relation in both
observations and the EAGLE simulations (e.g., Tully & Fisher 1977; Schaye et al.
2015; Ferrero et al. 2017). These two findings may appear to be contradictory, as
the FP is explicitly dependent on surface brightness, yet, extensive literature has
shown that the TF relation does not correlate with a third parameter (e.g., Zwaan
et al. 1995; Courteau & Rix 1999; Meyer et al. 2008; Lelli et al. 2019).

5.5.2.1 Star-forming galaxies can simultaneously obey the FP and TF
relation

There is a slight difference between the two relations in the measure of the kine-
matics that is used: whereas the FP takes the spatially-integrated velocity disper-
sion, the TF relation uses the inclination-corrected rotational velocity. Although
different in nature, both serve as a proxy for the circular velocity, because the in-
tegrated velocity dispersion accounts for both the disordered motion and rotation
of the stars (see Section 5.2.4). Furthermore, there is a difference in the aperture
that is considered: rotational velocities are often measured in the outskirts of the
disk, whereas the FP probes the effective radius or even smaller radii. The stellar
mass or baryonic mass TF relation, described by M ∝ vµc , has a slope of µ ≈ 3−4
depending on the aperture chosen (e.g., see Lelli et al. 2019).

If we rewrite the FP in a form that is closer to that of the TF relation, we
obtain

M ∝ σ−α/βr(1+2β)/β
e . (5.14)

Focusing on the 3D measurements of the size, stellar velocity dispersion and the
total mass, this results in

Mtot ∝ σ1.94
∗ r0.96e,3D , (5.15)
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for the M∗-selected star-forming population (Table 5.1). As expected from Sec-
tion 5.3.2, this is very close to the viral relation, which indicates that the star-
forming galaxies form a near-homologous sample, and corresponds roughly to the
group of galaxies with T ≈ 0, ϵ∗ ≈ 0.7 and κco ≈ 0.6 in Fig. 5.9. Although σ∗ has
a small systematic offset from vc in this parameter range, because of the small im-
pact of non-homology for this sample we can conclude that σ∗ ∝ vc(re), provided
that σ∗ does not suffer from projection effects. Hence,

M ∝ σ
−α/β
∗ r(1+2β)/β

e ∝ vµc (re)r
ν
e . (5.16)

If we now set M = M∗, and continue with the 3D measurements to avoid projection
effects on σ∗, we obtain (using the bottom rows of Table 5.1)

M∗(< re,3D) ∝ v2.85c (re,3D)r
0.21
e,3D , (5.17)

which is effectively the TF relation, as ν ≪ µ . Moreover, this value of µ corre-
sponds very well to observationally measured values: e.g., using integral field unit
(IFU) data from the SAMI Survey, Bloom et al. (2017) found µ−1 = 0.31 ± 0.09
(µ ≈ 3.2), whereas Lelli et al. (2019) found µ = 3.06 ± 0.08 for the baryonic TF
relation of galaxies in the SPARC dataset using their smallest aperture of 1.3re.
We stress that the choice of aperture is critical here, as Lelli et al. (2019) show,
using the exact same sample, that the velocity of the flat part of the rotation curve
results in a slope of µ = 3.85± 0.09.

Star-forming galaxies in EAGLE are thus simultaneously compatible with the
stellar mass FP and the stellar mass TF relation. We indeed find that the scatter
is lower for the FP than the TF relation, finding an orthogonal scatter of 0.0221±
0.0005 dex for the TF relation obtained from an orthogonal linear fit to the stellar
masses and circular velocities calculated in Section 5.3.2 (with a best-fit slope
µ = 3.24 ± 0.03). This is a marginal, although statistically significant, difference
of 0.0035± 0.0006 dex with respect to the scatter in the stellar mass FP, and may
help to explain why observational studies might not find a correlation with size
within the TF relation.

It is unclear, however, to which extent this result can be translated to the
observed FP and TF relation. The tilt of the simulated FP differs from obser-
vations, and indicates that there may be fundamental discrepancies between the
(dynamical) structures of simulated and observed galaxies. As is discussed more
extensively in Section 5.5.2.2, we expect this to be of particular importance for
quiescent galaxies, but the star-forming galaxies may likely also be affected.

Nevertheless, we can examine why the TF arises from the FP in the simulations,
by dividing Eq. 5.17 by Eq. 5.15:

M∗

Mtot
∝ σ0.91

∗ r−0.75
e,3D , (5.18)

which under the assumption of homology, σ∗ ≈ vc and Mtot ≈ Mdyn, reduces to

M∗

Mtot
∝ M0.46

tot r−1.21
e,3D . (5.19)
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Figure 5.20: Tully-Fisher relation of star-forming galaxies, using the total mass (left)
and stellar mass (right) and circular velocities calculated with Eq. 5.11. Solid lines show
the relations obtained with orthogonal distance regression, and the orthogonal scatter is
printed in each panel. The offset from the total mass TF relation correlates with the
half-mass radius (top), and in turn also with the dark matter fraction (bottom). Because
of the correlation between re,3D and fDM, the stellar mass TF relation is nearly as tight
as the stellar mass FP.

This relation can be interpreted in terms of the stellar and dark matter density
profiles (provided that the gas fractions are low). At fixed Mtot the stellar-to-total
mass ratio decreases strongly with radius, which implies that the dark matter
fraction rises rapidly. Ferrero et al. (2021) showed that the half-mass radii of star-
forming EAGLE galaxies lie in the dark matter-dominated regions of galaxies,
i.e., re,3D > rc with the ‘critical radius’ (rc) defined as MDM(< rc) = M∗(< rc).
As a result, M∗/Mtot depends mainly on the mass profile of the dark matter,
MDM(< r), which increases monotonically with radius for a NFW profile. The
small scatter in the stellar-halo mass relation (≈ 0.15 dex for galaxies in the mass
range considered here; Matthee et al. 2017) implies that galaxies of fixed M∗ have
similar MDM profiles. Variations in re,3D therefore are largely responsible for the
slope of the TF relation: Fig. 5.20 shows that although there is no tight TF
relation between Mtot and vc , there is a tight relation between M∗ and vc due to
the near-perfect correlation between re,3D and fDM at fixed vc .
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Moreover, there is a weaker dependence on Mtot, such that at fixed size, more
massive galaxies are relatively more baryon-dominated within re,3D. This overall
scaling with mass thus reflects the compactness of the stellar mass distribution,
and depends on the mass assembly history of galaxies, e.g., through variations in
the star formation efficiency within re,3D or the merger history. For star-forming
galaxies, this possibly reflects the build-up of central bulges in more massive galax-
ies.

5.5.2.2 A TF relation for quiescent galaxies?

The same reasoning of the previous section can be applied to the quiescent galaxy
population. Although the effects of non-homology are stronger for this population,
we can obtain a relation similar to Eq. 5.17 for the quiescent population: M∗(<
re,3D) ∝ σ2.68

∗ r0.23e,3D. This form is close to that of the Faber-Jackson relation (FJ;
Faber & Jackson 1976), which is the linear scaling relation between the mass (or
luminosity) and velocity dispersion for early-type galaxies.

However, whereas the re dependence found here is just as weak as for the
star-forming galaxies, observational studies have shown that the scatter in the
FJ relation correlates significantly with galaxy size, therefore motivating the use
of the FP (e.g., Djorgovski & Davis 1987; Dressler et al. 1987). This mismatch
between the observed and simulated FJ relation suggests that either projection
effects on the observed σ∗ depend on galaxy size, or, more plausibly, that there is
a discrepancy between the simulated and observed FP.

To achieve the weak dependence of M∗ on re, requires that the tilt of the FP
β ≈ −0.5 with no strong restriction on α (see Eq. 5.14). Throughout, we have
found β ≈ −0.56 with minimal variation, despite significant effects from random
inclination angles and M∗/L gradients, and different sample selection effects, and
therefore describes a FP that can be easily reconciled with the TF relation.

Yet, observational studies of early-type galaxies at z ∼ 0 have measured a
different tilt, with β = −0.84 ± 0.02 or β = −0.776 ± 0.019 for the stellar mass
FP (Hyde & Bernardi 2009; Bernardi et al. 2020). Similarly, for the luminosity
FP, which in principle may differ slightly in the tilt due to M∗/L variations,
measurements have consistently resulted in β ≈ −0.8 for early-type galaxies (e.g.,
Jorgensen et al. 1996; La Barbera et al. 2010a; Cappellari et al. 2013b). These
measurements all point to a much weaker dependence of M∗/Mtot on size, i.e., we
would expect Fig. 5.12 (showing fDM in the stellar mass-size plane) to look very
different for observed galaxies. This suggests that there are either differences in
the dark matter density profiles, or differences in the stellar mass density profiles
with respect to the simulated galaxies.

Other theoretical studies of the FP using cosmological simulations have noted
a similar systematic discrepancy in the tilt: although these use different sample
selections (i.e., a selection of early-type galaxies by the Sérsic index or kinematic
structure), measurements, and fitting methods, Lu et al. (2020) found that the
luminosity FP in the IllustrisTNG-100 simulation has a tilt of β = −0.63 and
Rosito et al. (2021) reported β = −0.54 for the stellar mass FP in the Horizon-
AGN simulation. Moreover, Ferrero et al. (2021) showed that the FJ relation
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of early-type galaxies is systematically offset from the observed relation in both
IllustrisTNG and EAGLE.

As also proposed by the aforementioned studies, the difference between the
observed and simulated quiescent galaxy population is likely related to the fact
that the sizes of simulated galaxies are systematically too large in comparison with
observations, and, correspondingly, the velocity dispersions too low (e.g., Genel
et al. 2018; Rodriguez-Gomez et al. 2019; van de Sande et al. 2019; de Graaff et al.
2022). In addition, the morphological properties also differ from observations,
with star-forming galaxies not being flattened enough, and quiescent galaxies not
being sufficiently round and having Sérsic indices that are too low. This implies
that the stellar mass distributions diverge from real galaxies, which can be caused
by several effects, such as the limited resolution, the gas pressure floor imposed in
the simulation, or the details of the star formation and feedback prescriptions in
the subgrid models, including the choice of the adopted IMF.

Interestingly, the three cosmological simulations employ different subgrid mod-
els, yet all result in a similarly divergent mass-size relation and FP. The simulations
do have similar resolutions, and EAGLE and Illustris-TNG both use a pressure
floor with an associated spatial scale of ≈ 1 kpc, which likely affects the stellar
mass density profiles. An increased resolution for the EAGLE simulations leads
to improved Sérsic indices (i.e., more realistic 1D profiles) and smaller half-mass
radii, but similar 3D shapes and velocity dispersions (Appendix 5.A; Thob et al.
2019). Despite the improvements, the obtained stellar mass FP is similar to that
in the simulations at standard resolution. Therefore, either due to the pressure
floor or inaccuracies in the subgrid model (e.g., the implementation of the feed-
back processes, or the IMF), simulated quiescent galaxies do not obtain the correct
shapes and dynamical properties.

We suggest that, as a result, the 3D stellar mass distributions are too ‘puffy’,
with sizes that are larger than observed or ellipticities that are lower than observed,
and thereby containing relatively more dark matter within the effective radius.
Even for the EAGLE model that assumes a bottom-heavy IMF, evidence for which
has been found in low-redshift early-type galaxies (e.g., van Dokkum & Conroy
2010; Auger et al. 2010), the inferred tilt deviates by > 3σ from observations and
is likely too dark matter-dominated. In the terminology of the previous section,
this would mean that the effective radii of quiescent galaxies are not small enough
in comparison with their critical radii.

On the other hand, Mukherjee et al. (2022) performed a strong lensing analysis
to compare the inferred dark matter fractions of massive early-type galaxies in
simulations and observations, and found good agreement between the projected
measurement of fDM(< re) from EAGLE and observed lenses, and only a slight
discrepancy for the smaller aperture of fDM(< re/2). However, their study focuses
on the most massive galaxies in EAGLE (M∗ ≳ 1011 M⊙), thereby probing a
different regime than considered here. Moreover, as we showed, even though the 1D
mass profiles may appear realistic, the 3D structures of the dark matter and stellar
mass can still differ and lead to systematic differences in σ∗ between observations
and simulations. Although relying on projected measurements, the FP is sensitive
to the 3D structure, and therefore the stellar mass distribution relative to the dark
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Figure 5.21: Tilt parameter β of the stellar mass FP as a function of the aperture size,
for galaxies with low and high Sérsic indices in the high-resolution EAGLE simulation.
The line of β = −0.5 implies no dependence of the stellar mass on size, i.e., the existence
of a perfect TF or FJ relation. There is a weak trend toward this value of β for larger
aperture sizes, indicating that the dark matter content plays an increasingly important
role in the tilt of the stellar mass FP.

matter mass distribution.
If our assertion, that the greater relative importance of the dark matter in the

simulated galaxies affects the inferred FP, is correct, then we would expect to find
a dependence of the FP tilt on the chosen aperture. So far, we set this aperture to
be half of the enclosed mass or light. Miller et al. (2019) proposed the use of the
radii enclosing 20% (r20) and 80% (r80) of the light (or stellar mass) distribution
instead of the half-light (half-mass) radius, as these sizes are suggested to be more
closely linked to the star formation history and halo mass, respectively.

We use the high-resolution, 253 cMpc3 EAGLE simulation to measure the 3D
stellar mass r20 and r80 radii (where the percentiles are calculated using the stellar
mass enclosed within a spherical aperture of radius 100 kpc), and measure the
stellar velocity dispersions within the same apertures. Given the very small number
of galaxies with sSFR < 10−11 yr−1, we instead divide the sample in two equal-
sized subsamples of high and low Sérsic indices (split at n = 3.7). Fig. 5.21 shows
the measured value of the β parameter of the stellar mass FP as a function of the
aperture size for the two subsamples. Although a strong conclusion is not possible
due to the small sample size and the limited resolution affecting the measurements
for r20, there seems to be a trend in the expected direction: larger apertures
are more dark matter-dominated, and result in a higher measured value for β.
Moreover, high Sérsic index galaxies have systematically lower (more negative) β,
in line with the suggestion that galaxy structure is correlated with the dark matter
fraction and hence the tilt of the stellar mass FP.
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We can therefore conclude that the stellar mass FP offers an important measure
of success for the realism of early-type galaxies in cosmological simulations. Lu
et al. (2020) similarly proposed the use of the scaling relation between Mdyn/L
and Mdyn , however, to obtain a realistic estimate of L requires significant effort in
the post-processing of a simulation (e.g., Trayford et al. 2017). Instead, the stellar
mass FP is easily measured, and provides an equally valuable assessment of the
3D stellar mass profile.

Lastly, it is interesting to note that the problem of an inconsistency in the
measured tilt occurs mainly at low redshift, as Lu et al. (2020) and Rosito et al.
(2021) report no evolution and weak evolution in β with redshift, respectively. At
the same time, observational work does show evidence for evolution in the tilt of the
FP, with values reported in the range β ≈ [−0.7,−0.5] at z ≈ 1 (e.g., Saglia et al.
2010, 2016; Jørgensen & Chiboucas 2013; Jørgensen et al. 2019; Saracco et al. 2020;
de Graaff et al. 2021). The change in the tilt may be correlated with the observed
structural evolution across the same redshift range, as quiescent galaxies become
smaller and more disc-like in shape toward higher redshift (Chang et al. 2013) and
with greater rotational support (Bezanson et al. 2018a). This also appears to be
supported by the fact that Bernardi et al. (2020) report a systematically higher
value of β for low-redshift S0 galaxies than elliptical galaxies.

If the tilt of the FP indeed depends on the average structural properties of the
selected galaxy population (e.g., discs versus spheroids), then we would expect star-
forming and quiescent galaxies to lie on a single stellar mass FP at higher redshifts
(as has been observed; de Graaff et al. 2021), but to span increasingly divergent
FPs toward z ∼ 0. The fact that Bezanson et al. (2015) find star-forming galaxies
to be consistent with the stellar mass FP of quiescent galaxies at z ≈ 0.05, may
then be due to the larger scatter from measurement errors and projection effects
for the star-forming population (which affect both the measured velocity dispersion
and size), or be caused by the small apertures in which the velocity dispersions
were measured, probing only the bulge-like centres of star-forming galaxies at low
redshifts. Recently completed large IFU surveys of low-redshift galaxies can shed
light on whether the stellar mass FP of star-forming galaxies is truly the same as
for quiescent galaxies, and simultaneously offers a direct comparison with the TF
relation within the same aperture.

5.6 Conclusions

We have used the EAGLE cosmological simulations to measure the tilt and scatter
of the stellar mass FP (re ∝ σαΣβ

∗ ) for a mass-selected sample of galaxies at
z = 0.1 (M∗ ≳ 1010 M⊙). From measurements of the total and stellar masses
and velocity dispersions within 3D spherical apertures defined by the half-mass
radii, we have evaluated the different drivers of the simulated FP. By comparing
with measurements of the masses, sizes and stellar velocity dispersions obtained
from realistic mock observations, we have quantified the effects of observational
uncertainties and the sample selection on the inferred scaling relation.

Our results can be summarised as follows:
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• We use the measured total masses and 3D stellar velocity dispersions to
show that, within the effective radius, the simulated galaxies obey a total
mass FP that is very close to the virial relation. The stellar velocity dis-
persions, which take into account both the random and streaming motions
of the stars, thus provide a good approximation for the circular velocities
(deviating by ≈ 10%), with only a weak effect from the galaxy environment
(i.e., the classification into central/satellite systems). Therefore, despite sig-
nificant variation in the structural properties among the simulated galaxy
population, the effects of this non-homology on the simulated FP are weak.
The velocity dispersion of all (dark matter, stellar and gas) particles devi-
ates more strongly from the circular velocity, due to the dynamically-hot
dark matter particles.

• Replacing the total mass by the stellar mass, we find that star-forming and
quiescent galaxies span a nearly identical stellar mass FP within the EA-
GLE simulations, with equally low scatter (0.019 dex). The stellar mass FP
deviates strongly from the virial relation, which is driven by variations in
the dark matter fraction within the effective radius (fDM), with negligible
impact from variations in the gas content. We show that fDM is a smooth
function of the size and stellar mass, and therefore sets the tilt of the stellar
mass FP. We find that the remaining scatter in this FP anti-correlates only
very weakly with fDM, and correlates weakly with the degree of rotational
support.

• For the star-forming galaxies in the simulations, we demonstrate that they
are simultaneously compatible with the stellar mass FP and the linear Tully-
Fisher relation, provided that both relations are evaluated within the same
aperture of the effective radius. The scatter about the TF relation is only
slightly higher (0.022 dex) than the stellar mass FP.

• We create mock observations to show that the projection of galaxies at a
random inclination angle along the line of sight affects both the measured
sizes and (spatially-integrated) velocity dispersions. These effects can change
the inferred tilt of the simulated stellar mass FP by ≈ 10%, and increase the
scatter by a factor of ≈ 2. When we use luminosity-weighted measurements
instead of M∗-weighted measurements, the tilt of the stellar mass FP is
changed by a similar amount, but in the opposite direction. The α parameter
(associated with σ∗) in particular is highly sensitive to these changes, and
also depends strongly on the sample selection. The scatter about the mock
FP is further increased by ≈ 30%, which we show is caused by the luminosity
weighting of the velocity dispersions.

• Systematic uncertainties in the assumed IMF can have a significant effect
on the inferred tilt of the stellar mass FP: the parameters of the tilt change
by up to ≈ 30% for simulations that employ an observationally-motivated,
variable IMF with respect to the stellar mass FP measured for the standard
EAGLE model that assumes a universal Chabrier IMF. Nevertheless, we find



158 5.A. HIGH-RESOLUTION SIMULATION RESULTS

that regardless of the adopted IMF, variations in fDM, which are themselves
correlated with the IMF, are the main driver of the FP.

• However, although the tilt and scatter of the measured mock FPs broadly
agree with observational results, we find significant differences as well. Re-
gardless of the adopted IMF or the resolution of the simulation, the β pa-
rameter (associated with Σ∗) differs by > 5σ from local observations. The
imposed pressure floor in the simulation, or inaccuracies in the subgrid model
likely lead to substantial differences in the 3D stellar mass distributions of
the simulated galaxies with respect to local observations. In addition, the
standard resolution used in the EAGLE simulations leads to Sérsic indices
that are too low. The effects of non-homology are therefore possibly also
weaker for simulated galaxies than for the real Universe.

Our work indicates that fDM is the dominant factor that sets the properties of
the FP in the simulations, which in turn is most likely caused by the large varia-
tion in re at fixed M∗. We have found that the correlations between the variations
in fDM and re at fixed M∗ naturally give rise to both a FP and TF relation for
star-forming galaxies within the aperture of 1 re, although it is unclear to what
extent this is the result of the systematic discrepancies in the mass distributions
of EAGLE galaxies with respect to observations. For the galaxy population as a
whole, it further raises the question of which physical mechanisms may be respon-
sible for the variation in re at fixed M∗, as this may provide valuable insight into
the physical origins of dynamical scaling relations such as the FP, as well as the
TF relation.
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Appendix

5.A High-resolution simulation results

In Section 5.3 we investigated the tilt of the FP and showed that there are cor-
relations with the morphological and dynamical properties of galaxies, as well as
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their mass compositions (particularly fDM). However, the structural properties
of galaxies in the EAGLE simulations have been found to deviate from observed
galaxies (e.g., Trayford et al. 2017; van de Sande et al. 2019; de Graaff et al. 2022).
Ludlow et al. (2019, 2021) showed that this is at least in part due to the limited
resolution of the simulations, as the 2-body scattering of dark matter and baryonic
particles causes a dynamical heating of the baryons, which affects the galaxy size
and likely also other structural properties.

These effects can be alleviated by increasing the resolution: the high-resolution
253 Mpc3 EAGLE simulation (RecalL0025N0752; Section 5.2.1) therefore provides
an important test for the robustness of the conclusions drawn from simulations
at the standard resolution. Using this simulation, Thob et al. (2019) showed that
their measured structural properties are not affected by a change in the resolution.

We perform a similar test for the Sérsic profile modelling, selecting all (78)
galaxies of M∗ > 1010 M⊙ (within a spherical aperture of radius 30 kpc) in the
high-resolution simulation. We also select 71 galaxies from the reference model
simulation that was run at standard resolution, and has the same volume and ini-
tial conditions as the high-resolution simulation (RefL0025N0376). We follow the
methodology described in de Graaff et al. (2022) to fit Sérsic profiles to the pro-
jected stellar mass distributions, and show in Fig. 5.22 how the Sérsic indices and
projected axis ratios differ between the RefL0025N0376 and RecalL0025N0752
simulations. The increased resolution has a strong effect on the measured Sér-
sic indices, and largely resolves the previously found discrepancy between the
RefL0100N1504 simulation and observations in the local Universe.

On the other hand, the projected axis ratios are largely unchanged, and galax-
ies in the high-resolution simulation are only slightly rounder. This suggests that
the 3D shapes do not depend on the resolution, as also found by Thob et al.
(2019). We therefore also assess the effect of resolution on the half-mass radius
and the stellar velocity dispersion within this spherical aperture. The distribu-
tions are shown in Fig. 5.23: in line with the higher Sérsic indices (indicating
more centrally concentrated mass distributions), we find that the half-mass radii
are systematically smaller in the high-resolution simulation. However, the veloc-
ity dispersions show no dependence on the resolution, and are still smaller than
observed (see van de Sande et al. 2019).

Next, we assess the convergence of the results obtained in Section 5.3. We
apply the exact same methodology as before, by constructing a sample that is
complete in Mtot and measuring the different mass components within re,3D , as
well as σtot(< re,3D) , σ∗(< re,3D) and the differences (∆ log σ) with the predicted
velocity dispersion of Eq. 5.11.

Fig. 5.24 presents the equivalent of Figs. 5.8 and 5.9 for the high-resolution
simulation, showing the correlation between ∆ log σ and different structural pa-
rameters. We show ∆ log σtot (filled circles) and ∆ log σ∗ (open circles) within
the same figure, with solid lines indicating the running medians. Given the small
number of objects (79), we omit the separation into central and satellite galaxies.
Compared with Fig. 5.8, we find that the correlations for ∆ log σtot are weaker,
suggesting that the results found before are partially driven by the effects of the
limited resolution (likely particularly that of the dark matter particles). On the
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Figure 5.22: Probability density distribution of the Sérsic index (left) and axis ratio
(right) of the projected stellar mass distribution for EAGLE galaxies of M∗ > 1010 M⊙ .
The black histogram shows the results for the 253 Mpc3 simulation run at standard res-
olution; the grey histogram shows the distribution for galaxies in the high-resolution
simulation. The Sérsic index is strongly dependent on the resolution: the standard reso-
lution does not produce a sufficient number of bulge-like (n ≈ 4) systems in comparison
with observations, which is largely solved by the increased resolution. On the other hand,
there is little change in the projected axis ratios, with galaxies in the high-resolution sim-
ulation being only slightly rounder.
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Figure 5.23: Probability density distribution of the 3D stellar half-mass radius (left)
and the stellar velocity dispersion within this radius (right) for EAGLE galaxies of M∗ >
1010 M⊙ . The black histogram shows the results for the 253 Mpc3 simulation run at
standard resolution; the grey histogram shows the distribution for galaxies in the high-
resolution simulation. The increased resolution leads to more compact galaxies, with
higher Sérsic indices (Fig. 5.22). However, the velocity dispersions remain unchanged,
and are therefore still lower than in local observations.
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Figure 5.24: Analogous to Fig. 5.8 and 5.9, the deviation in the total (filled symbols)
and stellar (open symbols) velocity dispersion from the predicted velocity dispersion of
Eq. 5.11 as a function of different structural properties, for galaxies in the high-resolution
RecalL0025N0752 simulation. Lines show the running medians in each panel. Although
the number of massive galaxies galaxies in the high-resolution simulation is limited, the
measured correlations are similar to those found for the standard resolution. Despite a
dependence of the galaxy morphology on the simulation resolution (Fig. 5.22), the effects
of non-homology shown in Section 5.3.2 are not affected significantly.

other hand, the results for ∆ log σ∗ are nearly identical to those found in Fig. 5.9.
Our conclusions on the effects of non-homology on the total mass FP therefore are
robust to changes in the resolution. Moreover, the systematic offset between σtot

and σ∗ remains, which indicates that this is not an effect of the resolution, and
gives credence to the interpretation discussed in Section 5.3.2.

Lastly, we use the M∗-selected sample from above to assess the stellar mass
FP in the high-resolution simulation. Following Section 5.3.3, we measure ∆ log σ∗
using Eq. 5.12 and examine the relation with the dark matter and gas fraction.
Fig. 5.25 shows star-forming (blue) and quiescent (red) galaxies separately: we
find that the main conclusion, that fDM is the main driver of the stellar mass FP,
is unchanged. Unlike the results of Fig. 5.11, we find a weak correlation with the
gas fraction for star-forming galaxies, although this is at low statistical significance
(p-value of 0.041).

In conclusion, we find good convergence between the results obtained with
the simulation at standard and high resolution, despite differences in some of the
morphological properties between the two different sets of simulations.
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Figure 5.25: Deviation between the measured stellar velocity dispersion and the dis-
persion predicted from the stellar mass and half-mass radius (Eq. 5.12) versus the dark
matter (left) and gas (right) fractions within the half-mass radius, for galaxies in the
high-resolution simulation. Unlike Fig. 5.11, there is a weak correlation with the gas
fraction for star-forming galaxies (p-value = 0.041). However, the conclusion that the
variation in fDM is the primary driver of the stellar mass FP does not depend on the
resolution of the simulation.

5.B Stellar mass FP with circularised sizes

In Section 5.4.1 we presented the stellar mass FP, and showed the relation between
the projected major axis size and line-of-sight velocity dispersion for different
stellar mass bins (Figs. 5.13 and 5.14). However, observational studies often use
circularised sizes rather than major axis sizes, which we showed to result in a FP
that is in better agreement with the intrinsic stellar mass FP, as the circularised
sizes provide an ad hoc correction for the random inclination angles of galaxies.

In Figs. 5.26 and 5.27 we show the circularised size as a function of the line-of-
sight velocity dispersion, binned by the stellar mass, for the stellar mass-weighted
and luminosity-weighted measurements, respectively. These differ from Figs. 5.13
and 5.14 by only the measure of size used. The velocity dispersions are unchanged,
as these are spatially-integrated measurements within elliptical apertures (see Sec-
tion 5.2.4).

As is to be expected, the circularised sizes are smaller than the major axis
sizes, with an average offset of −0.1dex. Most importantly, however, the scatter in
log rcirc changes as well: there is a wide spread in the distribution of the projected
axis ratios (de Graaff et al. 2022), and the circularised size can differ from the
major axis size by ≈ −0.35 dex for a galaxy that is projected edge-on (q ≈ 0.2).
At the same time, from the top panel of Fig. 5.3 we can see that, at fixed intrinsic
dispersion σ∗(< re,3D), the observed line-of-sight velocity dispersion is a factor
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≈ 2 greater for edge-on systems in comparison with face-on systems. As log σ∗ is
unchanged in the fits of the stellar mass FP and in Figs. 5.26 and 5.27, it is this
change in the scatter in log rcirc that counteracts the projection effects on log σ∗
and hence alters the inferred FP.

5.C Effects of luminosity-weighting on the FP

In Section 5.4.1 we found that the mock observations of the sizes and velocity
dispersions introduce significant scatter in the FP. The M∗-weighted mock sizes
and velocity dispersions shown in Fig. 5.13 indicate that this is likely due to the
random projection of galaxies along the line of sight, as well as the uncertainties
on the half-mass radii, as these were measured from mock images with realistic
noise and PSF smoothing.

However, in Fig. 5.14 we found that the use of luminosity-weighted measure-
ments further increases the scatter by ≈ 50% for the less massive galaxies, despite
the fact that these measurements were extracted using the exact same method-
ology. Whereas the measurements in Fig. 5.13 are both weighted by M∗ , the
measurements in Fig. 5.14 use slightly different tracers: the sizes were measured
from r-band images that include the effects of dust attenuation (Section 5.2.2),
but the velocity dispersions were measured using the unattenuated g-band lumi-
nosities of the stellar particles, which are spatially-integrated measurements within
elliptical apertures defined by the r-band Sérsic profiles.

Therefore, we explore whether the inconsistency in the tracer used causes the
strong increase in the scatter. We create images of the unattenuated rest-frame
g-band light, and follow the methodology described in de Graaff et al. (2022) to
construct mock images and fit Sérsic profiles. Next, we use these g-band Sérsic
profiles to construct elliptical apertures, and hence obtain consistent, spatially-
integrated velocity dispersions that are weighted by the g-band luminosities of the
particles.

We show the resulting relation between the g-band half-light radii (major axis
sizes) and velocity dispersions in Fig. 5.28. The scatter is approximately equal
to the scatter found in Fig. 5.14 that used the inconsistent, luminosity-weighted
measurements. We therefore conclude that it is the luminosity-weighting itself
that leads to an increase in the scatter, rather than the difference between the
tracers. This is likely caused by the fact that the younger stellar particles (which
have low M∗/L) are dynamically colder, and the line-of-sight velocity dispersion
is therefore more strongly dependent on the inclination angle of the galaxy.
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