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Chapter 5

Alternating currents and
shear waves in viscous

electronics

5.1 Introduction

Existence of strongly interacting carriers in high-mobility materials opens
fascinating possibilities for "viscous electronics" where current flows like
a viscous fluid rather than according to Ohm’s law [9, 33, 137, 176, 124].
Here we describe a new phenomenon that could be observable in such
materials - propagating shear waves. We show that, apart from intrinsic
interest, observing such waves gives an independent way to measure the
viscosity of the electronic fluid and establish what are the real boundary
conditions satisfied by electronic flows.

Propagation of weak low-frequency currents in strongly interacting
systems is described by classical viscous hydrodynamics. Viscous hydro-
dynamics has been mostly focused on the flows past the bodies. Viscous
electronics makes it necessary to consider flows produced by sources and
sinks. Studies of DC currents were started recently in [124, 54, 176, 66, 67]
and brought several interesting effects (current flowing against electric
field, super-ballistic conductance, electric field expulsion from a flow, etc),
some of which were observed experimentally [9, 168].

In this Chapter we present a study of alternating current (AC) either
flowing across the strip or past the obstacles like strongly disordered zones
in the bulk. In the Ohmic case, time-dependent voltage on the electrodes
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makes the current and potential distribution instantaneously adjust to
it, as far as the flow is incompressible. In the viscous case, momentum
propagates by diffusion, which leads to retardation and the possibility of
running waves. We consider only charge neutral viscous modes, interaction
of electromagnetic waves with viscous electron flows was considered in [41].

For weak currents we can neglect non-linearity in the Navier-Stokes
equations and by incorporating Ohmic resistance get the following equa-
tion:

mn(∂t + γp(r))vi − η∇2vi = −ne∂iϕ. (5.1)

For AC case all quantities depend on time as e−iΩt. For such dependence
equation gets form:

(−iΩ + γp(r))vi − ν∇2vi = −em∂iϕ , (5.2)

where ν = η/mn is the kinematic viscosity.
We start by describing the simplest setting for generating a shear wave.

During the process of placing a graphene sheet on an insulating substrate
many impurities are accumulating between them. Due to Van-der-Waals
forces, the impurities tend to concentrate in the localized regions, "bub-
bles" and "folds", where resistance is high. Running AC current through
the sample with such regions will generate shear viscous waves transversal
to the current. If impurities concentrate in a long fold, we suggest running
AC current parallel to its boundary ~v0(x, y) = v0e

−iΩt~ex. We assume that
γp → ∞ inside the fold and zero outside. Then the current must turn
to zero at the boundary of the current-carrying region, which thus corre-
sponds to the no-slip boundary condition. The solution of (5.10) then has
a simple form

vx(y, t) = v0 Re
(

exp[−iΩt](1− exp[−|y|
√
−iΩ/ν])

)
, (5.3)

which describes a wave propagating with the speed
√

2νΩ while oscil-
lating and exponentially decreasing in space with the same wavenumber
κ =

√
Ω/2ν. Therefore, registering such a wave gives one an ability to

directly measure the viscosity of the electronic fluid. The above con-
sideration is valid at sufficiently low frequencies such that the speed of
the viscous wave is much smaller then the speed of sound-plasmon mode:√

2νΩ� vF /
√

2. On the other hand, the wavelength must be less than the
sample size, which is realistically not much larger than Nlee with N ' 5.
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One can estimate ν ' vF lee where lee is the mean free path for momentum-
conserving electron-electron collisions. That allows one to recast the ap-
plicability condition as N−2 < Ωlee/vF < 1. At Ω ' 10GHz the respec-
tive wavelength is several microns for graphene with vF ' 106m/sec and
ν ' 103cm2/sec [9]. Due to small sizes of samples, the retardation effects
for EM waves related to the finite light speed can be neglected up to THz
frequencies, for which EM wave length is about 100 µm.

5.2 Half-plane geometry
In order of increasing complexity, we consider now the current injected into
a half plane. The potential in the half-plane with a no-stress boundary
can be computed exactly:

φ = I0ν

πme
Re e−iΩt

(
γp − iΩ

ν
log(rλIR)− y2 − x2

(x2 + y2)2

)

Note that finite frequency is equivalent to a finite imaginary resistivity,
for the large r-s - we have logarithmic behavior at infinity as in the Ohmic
case. And like in the usual electrical networks, "impedance" z = γp − iΩ

ν
defines the phase shift between I and φ. But in half-plane there are no
real running waves of the potential - only zero-potential line which is
oscillating between 0 and ∞ once each half-period. In the no-slip case we
have the same asymptotic behaviour. However, running waves could be
clearly seen on the vorticity map. For example, vorticity for the no-stress
case is given by:

ω = − I
π

Re e−iΩt
∫ +∞

0
e−qyk sin(kx)dk

where q2 = k2 +κ, κ = (γp− iΩ)/ν = ρeiθ so ρ describes overall intensity
of resistance, and θ = − arctan Ω/γp - relative contributions of reactance
and resistance. As Ω > 0, γp > 0, thus 0 > θ > −π/2. Properties of the
running wave can be extracted by considering the asymptotic y → +∞
in the vicinity of x = 0, where the integral oscillates and exponentially
decreases with y. Vorticity in this limit is given by:

ω = −Ix

√
ρ3/2

2πy3 cos
(
−y√ρ sin θ2 + 3

2θ − Ωt
)
e−y
√
ρ cos θ/2



154 Chapter 5. AC currents and shear waves in viscous electronics

The propagation speed of zero-vorticity lines and the amplitude decay rate
are the same in both no-slip and no-stress cases and respectively given by

v = Ω
√
ρ| sin θ/2| , γ = √ρ cos θ2 . (5.4)

The main difference between no-slip and no-stress cases is in the behavior
near the boundary. In the no-stress case zero vorticity lines are approach-
ing edge in the transverse direction, while in the no-slip case they are
oriented along the edge. Running waves and behaviour near the bound-
ary can be see in Fig. 5.6 and Fig. 5.7 in Section 5.5). Similar difference
in the behaviour near the boundary could be also observed in the strip
geometry.

5.3 Strip geometry

Let us now describe in detail how AC current across the strip generates
a shear wave running along the strip. It is instructive to comment on the
DC case first. In this case, at the distance from the electrodes comparable
to the strip width w, the pair of separatrices appears, dividing the inside
streamlines connecting electrodes and closed lines outside, that belong to
vortices [54]. The pattern of the vortical flow outside depends crucially
on the boundary conditions [163]. If the boundary is stress-free then the
streamlines close to the separatrices are able to go arbitrary far before
turning back. If, however, boundary stress is non-zero (as, for instance,
at a no-slip boundary) then the streamlines turn back at a finite distance
and a chain of vortices appears (an infinite chain in an infinite strip). The
properties of waves in the AC case are then also strongly dependent on
the boundary conditions, as shown below.

Experimentally, it is most feasible to change the frequency Ω. Whether
the frequency is large or small is determined by comparing the period
with the viscous time of momentum diffusion across the strip, τ = w2/ν.
Therefore, the dimensionless parameter is Ωτ = Ωw2/ν. We can also de-
note Dv =

√
ν/Ω, which is the characteristic vortex’s length scale, as it

can be seen e.g. from the formula (5.4). Since Ωτ = (w/Dv)2 then low
frequency (DC limit) corresponds to a narrow strip. When the frequency
Ω→ 0, we find very different phase velocities for different boundary con-
ditions: no-slip boundary corresponds to the wave velocity going to zero
while no-stress to a finite value.
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Assuming translational symmetry along x and a uniform Ohmic resis-
tance we write for the Fourier harmonics of the stream function defined
by ~v(x, y) = ∇× ~ezψ(x, y):

(∂yy − q2)(∂yy − k2)ψ = 0 (5.5)

Considering dynamics of the fluid constrained by the two edges at −w/2
and w/2, we have to put also boundary conditions. The velocity compo-
nent normal to the boundary is zero everywhere, except the source and
the sink: vy(x,±w/2) = I0δ(x). For the tangential component we gener-
ally impose mixed conditions vx = l∂yvx at y = −w/2 and vx = −l∂yvx
at y = w/2, which transforms into no-slip in the limit l → 0 and into
no-stress in the limit l → ∞. Dependence of the results on l could be
analytically evaluated in the DC case (see Supplementary Materials): for
a finite nonzero l the features are qualitatively similar to the no-slip limit.
Influence of a finite Ohmic resistance is similar to that in the half-plane
case, so from now on we neglect Ohmic resistance.

We start analysis of vortex dynamics in the strip from the vorticity
distribution in the no-stress case:

ω(x, y) = − I
π

Re e−iΩt
+∞∫
0

k sin kx cosh yq
cosh wq

2
dk (5.6)

For a wide strip, dynamics is almost width-independent: vortices are
ejected from the electrodes and move toward the mid-line of the strip,
where they meet, join, and move along the strip as a single big vortex
which occupies entire strip. It can be seen, that far from the source they
have regular form, distinct geometrical periodicity and on average - vor-
ticity decays exactly exponentially.

When w/Dν → ∞, the distance between vortices saturates to a con-
stant, while if w/Dν → 0, the wave length tends to infinity as Dν/w.
The results of numerical computation shown in the Fig. 5.2, left, are in a
good agreement with the results of the "saddle point" estimation for the
integral. To put it simply, vortices cannot be squeezed into too narrow
strip.

Let us see how different is the no-slip case. Vorticity in this case is
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Figure 5.1. Contours of constant vorticity ω(x, y) = const for the no-stress
boundary conditions for w/Dν = 5. Different pictures correspond to differ-
ent moments of time. Places where lines condensate correspond to the isolines
ω(x, y) = 0. Videos with the dynamic here and below can be sent by authors on
demand.

Figure 5.2. Dependence of the distances between zeroes of function ω(x, 0)
(see Fig. 5.3) far from the source in log-log scale. Lines - linear fit, points -
results of numerics. Upper panel: no-stress case. Asymptotic dependence on the
frequency is λ/w ∼ (τΩ)−1, Ω → 0 and λ/w ∼ (τΩ)−1/2, Ω → ∞ (x � w, Dν)
Lower panel: no-slip case. Here λ/w ∼ const, Ω→ 0 and λ/w ∼ (τΩ)a, Ω→∞,
a ∼ 0.6. Characteristic time scale is τ = w2/ν
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given by:

ω = I

π
Re e−iΩt

+∞∫
0

dk κ cosh yq sinh wk
2 sin kx

k cosh wq
2 sinh wk

2 − q cosh wk
2 sinh wq

2

The major striking difference is that zero-vorticity lines at mid-strip move
towards the source as seen in Fig. 5.3. The reason is that the wave
of vorticity is emitted from the source not as a round vortices, as in the
no-stress case, but rather as elongated ellipses oriented along the edge.

Figure 5.3. Contours of the constant vorticity ω(x, y) = const for the no-slip
boundary conditions for w/Dν = 5.

The movement of the vortex line in mid-strip is the result of the meet-
ing of ’waves’, coming from the source and the sink. Frequency dependence
of the distance between zero-vorticity points at y = 0, which in fact is the
vortex size, is shown on the Fir. 5.2, right. This horizontal distance is
different from the vertical distance between "layers" in the half-plane case,
and thus doesn’t tend to some constant in the limit w →∞ (in distinction
from the distance between vortices in the no-stress case). DC limit Ω→ 0
corresponds to w/Dν → 0. As follows from the consideration of the DC



158 Chapter 5. AC currents and shear waves in viscous electronics

case, there must still exist vortices of finite length in this limit, as long as

λ/Dν ∼ w/Dν ⇒ λ ∼ w, (5.7)

that is the vortex size shouldn’t depend on Ω. Another interesting novelty
in comparison with the no-stress case is that for the narrow strip vortexes
are moving by jumps, not smoothly. The less is w, the shorter is the
duration of jump - major part of the period vortices are spending as a
standing wave, and only when the amplitude is very little, I(t)→ 0, they
are moving. In the limit w → ∞, vortexes are moving smoothly. This
phenomenon is due to the asymmetry between the real and imaginary
parts of the function.

Formula for the voltage in the no-stress case has the form:

Vl→∞(x, y) = φ(x, y)− φ(+∞, y) =

= −mνI0
eπ

Re e−iΩt
+∞∫
0

dk
q2 sinh ky
k cosh kw

2
cos kx (5.8)

and, surprisingly, there are no vortices at all, as it can be seen, e.g. on the
Fig. 5.4. This happening because of miraculous cancellation of the terms
containing cosh qw/2 in the numerator and in the denominator. However,
this cancellation is absent for finite l length, and thus for general l we
shall see vortices as in the no-slip case. Potential for the no-slip case has
the form:

Vl→0(x, y) = φ(x, y)− φ(+∞, y) = −mνI0
eπ

Re κe−iΩt×

×
+∞∫
0

qdk

k

sinh ky sinh wq
2 cos kx

k cosh wq
2 sinh wk

2 − q cosh wk
2 sinh wq

2
(5.9)

General behaviour is qualitatively similar to that of the vorticity, including
freezing and inverted phase speed.

5.4 Conclusions
To conclude, vorticity and potential waves propagating along the strip
are qualitatively different for no-stress and no-slip boundary conditions -
waves could be observed on the vorticity map in the both cases, and on
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Figure 5.4. Distribution of the voltage for the no-stress case

Figure 5.5. Distribution of the potential in the no-slip case.

the potential map in the no-slip case only. There is no running potential
wave for no-stress case. Moreover, phase speed of the waves is directed
in the opposite directions in the different cases. Wave-length of viscous
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waves also depending on the frequency in a different ways for the no-stress
and no-slip cases.

5.5 Appendix A. AC current in a half-plane
To find the velocity field of a Ohmic-viscous flow we need to solve the
equation:

(−iΩ + γp(r))vi − ν∇2vi = −em∂iϕ , (5.10)

with the uniform Ohmic resistivity γp(r) = const. Acting by ∇× on both
sides and assuming translational invariance along x, we get the equation
for the stream function:

(∂yy − q2)(∂yy − k2)ψ = 0. (5.11)

Here the stream function is defined by ~v(x, y) = ∇×~ezψ(x, y), its Fourier
image ψ(x, y) =

∫ dk
2πe

ikxψ(k, y), and

q2 = k2 + κ, κ = (γp − iΩ)/ν = ρeiθ.

This equation has 4 solutions ψ(k, y) = c1e
−|k|y + c2e

|k|y + c3e
qy + c4e

−qy.
General boundary conditions vy(x, 0) = I0δ(x) and vx(x, 0) = l∂yvx(x, 0)
give ψ(k, 0) = I/(ik) and l∂yyψ(k, 0) = ∂yψ(k, 0). Adding condition
v(x, y) → 0, y → +∞ we completely define all the coefficients and
find:

ψ(x, y) = I

π

+∞∫
0

e−qyk(1 + kl)− e−kyq(1 + ql)
k(k − q)(1 + l(k + q)) sin(kx)dk . (5.12)

The solution for the non-resistive case corresponds to the limit κ → 0.
The vorticity ω(x, y) = ∆ψ(x, y) is plotted in Figure 6, where one can see
two vortices appearing every half-period. A line of zero vorticity separates
the two vortices from the next pair. In the lower panel of Fig. 5.6, the
vorticity is shown for the case with strong ohmic resisitivity, θ = −π/6.
It can be seen that in this case vortices disappear much faster, yet there
are no qualitative differences. Thus, for simplicity sake, further we will
consider non-ohmic case only. In the no-slip case, zero-vorticity line is
oriented along the edge of the bulk. On the contrary, the line comes
in the transverse direction in the no-stress case. This difference gives
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qualitatively different pictures for the strip case.
Most of the flow properties related to vortices are encoded in the vorticity:

ω(x, y) = − I
π

+∞∫
0

(1 + kl)(k + q)
1 + l(k + q) e−qy sin(kx)dk (5.13)

In the no-stress case l→ +∞ we have:

ω(x, y) = − I
π

+∞∫
0

e−qyk sin(kx)dk (5.14)

It is vanishing at the x = 0. However, we can consider its behaviour at
x ∼ 0. As for k � 1/y, k � 1/√ρ exponential suppresses other integrands,
and for small x we can expand sin(kx) ∼ kx. At the first order we have:

ω(x, y) = −Ix
π

(∂2
yy − κ)

+∞∫
0

e−qydk (5.15)

Obtaining asymptotic at y → +∞, in the lowest order in 1/y we get:

ω(x, y) = −Ix
√

κ
√
κ

2πy3 e
−y
√
κ, (5.16)

ω(x, y, t) = Reω(x, y)e−iΩt =

= −Ix

√
ρ3/2

2πy3 cos
(
−y√ρ sin θ2 + 3

2θ − Ωt
)
e−y
√
ρ cos θ/2

Thus, zero-vorticity lines correspond to:

− y√ρ sin θ2 + 3
2θ − Ωt = π

(
k + 1

2

)
, k ∈ Z (5.17)

Or for the non-Ohmic case:

y
√

Ω/2ν − Ωt = π

(
k + 3

4

)
, k ∈ Z (5.18)
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Figure 5.6. No-stress case. Upper row: vorticity for the half-plane for the pure
AC case, θ = −π/2. Lower row: partially ohmic case: Dν = 1/√ρ, θ = −π/6

In the no-slip case l→ 0 we have:

ω(x, y) = − I
π

+∞∫
0

e−qy(k + q) sin(kx)dk (5.19)

In the lowest degrees by 1/y and x it gives:

ω = ωl→+∞ −
Ixκ
πy

e−y
√
κ = −Ix

√κ
√
κ

2πy3 + κ
πy

 e−y√κ (5.20)

For large enough y we get:

ω(x, y) ∼ −Ixκ
πy

e−y
√
κ, (5.21)

ω(x, y, t) ∼ −Ixρ
πy

e−y
√
ρ cos θ2 cos

(
y
√
ρ sin θ2 + Ωt− θ

)
(5.22)

Thus, the coordinates of zero-vorticity lines are given by:

y
√
ρ sin θ2 + Ωt− θ = π

(
k + 1

2

)
k ∈ Z (5.23)

In the non-Ohmic case, it gives:

y
√

Ω/2ν − Ωt = πk k ∈ Z (5.24)
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The speed of zero-vorticity line and the decay rate of excitations are the
same in both cases:

v = Ω
√
ρ| sin θ/2| , γ = √ρ cos θ2 (5.25)

which shows robustness of the result with respect to appearance of small
(γp < ω) Ohmic contribution, which only slightly changes angle θ.

Figure 5.7. No-slip case. Upper: vorticity for the half-plane for the pure AC
case, θ = −π/2. Lower: partially ohmic case: Dν = 1/√ρ, θ = −π/6

The potential is be obtained as follows:

∂iϕ = − ν

em
(κ −∇2)vi (5.26)

which for general l gives

V (x, y) = φ(x, y)−φ(+∞, y) = κIν
πme

+∞∫
0

q(1 + lq)e−ky
k(k − q)(1 + l(k + q)) cos(kx)dk .

(5.27)
That gives in the no-stress limit l→ +∞

Vl→+∞(x, y) = − Iν

πme

+∞∫
0

q2

k
e−ky cos(kx)dk (5.28)

which has singularity at x, y → 0 given by

Vl→+∞(x, y) ∼ − Iν

πme

y2 − x2

(y2 + x2)2 . (5.29)
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That coincides with the expression for the DC case. Asymptotic for large
x is given by

Vl→+∞(x, y) ∼ − Iνκ
πme

Re
+∞∫
0

e−k(y+ix)

k
dk ∼ − Iνκ

πme
log(rλIR) (5.30)

and has log-dependence on IR cutoff (assuming that r � 1/λIR). This
assymptotic coincide up to a complex phase with the solution for the
Ohmic case. No-slip limit l→ 0 is as follows:

Vl→0(x, y) = − Iν

πme

+∞∫
0

q(k + q)e−ky
k

cos(kx)dk = (5.31)

= Vl→+∞(x, y)− Iν

πme

+∞∫
0

qe−ky cos(kx)dk,

and has similar asymptotic behaviour. In both cases there are no running
waves, as far as there is no spatially oscillating mixing between real and
imaginary parts.

5.6 Appendix B. General equations for the strip
Expression for ψ in the case of strip could be obtained from the general
solution

ψ(k, y) = A cosh ky +B cosh qy + C sinh ky +D sinh qy (5.32)

of the equation
(∂yy − k2)(∂yy − q2)ψ = 0 (5.33)

with the boundary conditions

ψ(k,−w/2) = I

ik
, l∂yyψ(k,−w/2) = ∂yψ(k,−w/2) (5.34)

ψ(k,w/2) = I

ik
, l∂yyψ(k,w/2) = −∂yψ(k,w/2) (5.35)

(for definitions of q and ψ(k, y) see previous Section). General solution
looks:

ψ(x, y) = − I
π

∞∫
0

dk

k
· (5.36)
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·
q cosh ky

(
lq cosh qw

2 + sinh qw
2
)
− k cosh qy

(
kl cosh kw

2 + sinh kw
2

)
k cosh qw

2 sinh kw
2 − q cosh kw

2 sinh qw
2 − κl cosh kw

2 cosh qw
2

sin kx

where y - coordinate from the mid of the strip, and for vorticity:

ω(x, y) = I

π
· (5.37)

·
∫
dk

κ cosh qy
(
kl cosh kw

2 + sinh kw
2

)
k cosh qw

2 sinh kw
2 − q cosh kw

2 sinh qw
2 − κl cosh kw

2 cosh qw
2

sin kx.

General expression for the potential

V (x, y) = φ(x, y)− φ(∞, y) = −Imν
eπ
· (5.38)

·
∞∫
0

dk

k

κq sinh ky
(
lq cosh qw

2 + sinh qw
2
)

k cosh qw
2 sinh kw

2 − q cosh kw
2 sinh qw

2 − κl cosh kw
2 cosh qw

2
cos kx

is computed by integration of Stokes equation in x and differentiation on
y.

5.7 Appendix C. Wavelength computations
Dependence λ/Dν(w/Dν) can be found analytically in the various inde-
pendent ways. First of all, we can apply saddle-point approximation, as
far as we have large parameter x→ +∞. If we find saddle-point value of
the wave-number k0 = k0(w), we will be able to obtain distance between
vortices as λ0 = π/Re k0. For integral

ω(x, 0) = − I

2πi

+∞∫
−∞

keikx−ln coshwq/2dk (5.39)

saddle-point equation can be written as:

kw

qw
tanh qw/2 = i

x

w
(where q =

√
k2 − i/D2

ν) (5.40)

If we are interested in the behavior of the function for the large values
of x, we should make l.h.s. of equation large. There are two ways to do
so. If w/Dν � 1, then we need q � k, and thus k → (1 + i)/

√
2Dν ,
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λ0 = π
√

2Dν . In the opposite limit w/Dν � 1 we can make tanh large
by choosing q ∼ k ∼ iπ/2w + O(w/D2

ν) - main contribution is purely
imaginary. Sub-leading order:

k0 ∼ iπ/2w +
√
−i/x+ w/D2

νπ +O(w3), (5.41)

in the limit x → +∞ gives λ0 = π2D2
ν/w. Both results agree with the

results of the numerics presented in the main text.
For the no-slip case we can again try to find λ by finding the pole

closest to the real axis. Equation for the pole has the form:

q sinh qw2 cosh kw2 − k sinh kw2 cosh qw2 = 0 (5.42)

It can be symmetrized by using replacements:

k2 = i/2(σ + 1), γ = w/2
√
i/2 (5.43)

and gets form
√
σ + 1 tanh γ

√
σ + 1 =

√
σ − 1 tanh γ

√
σ − 1 (5.44)

In the limit γ → 0 (or equally w → 0) it can be solved by direct expansion
in σ. In the first order σ = 3/(2γ2), which gives k0 =

√
6/w2 + i/2D2

ν , λ0 =
πw/
√

6. Opposite limit w → +∞ is treated numerically in the main text.

5.8 Appendix D. Comment on DC case in the
strip

The DC case in the strip was considered in the [124], where only one pair
of vortices was shown both for no-slip and and no-stress case. Here we
show that there could be multiple pairs of vortices. Consider, for instance,
vorticity for the DC case:

ω(x, y) = −4I0
π

+∞∫
0

k cosh ky
(
kl cosh

(
kw
2

)
+ sinh

(
kw
2

))
2kl(1 + cosh kw) + kw + sinh kw sin kx dk

(5.45)
At x � w one can use the sadle-point approximatin with the following
saddle point condition:

2kl(1 + cosh kw) + kw + sinh kw = 0 . (5.46)

It gives in the two limits:
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• l→ 0: kw+ sinh kw = 0 - lots of solutions, with non-zero imaginary
part (minimal - with Re k0 ∼ 2.25).

• l→∞: k0 ∼ iπ(2k + 1) + 1√
lw

, i.e. λ = π

Re k0
∼ π
√
lw

Results of numerical solving of this equation is given in the figure below,
which coincides well with the analytic asymptotic.

Figure 5.8. Dependence of the wavelength on the slippage parameter. In the
limit l → +∞ the wavelength tends to infinity, while for all the other values it
remains finite. Dashed line - analytical asymptotic for l→ +∞.
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