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Chapter 4

Topological strings
amplitudes and
Seiberg-Witten

prepotentials from the
counting of dimers in

transverse flux

The proposal of this Paragraph is to show how the partition functions
of topological strings can be obtained in purely cluster algebraic setting,
building the missing red arrow on Fig. 1.1. We claim that in order to deau-
tonomize the cluster integrable system, one has to uplift the Kasteleyn op-
erator from torus to the plane, covering the torus. The deautonomization
parameter q plays a role of the transverse flux of discrete R>0-connection.
The partition function of dimers, which provided spectral curve in the
autonomous case, becomes a partition function of dimers on the infinite
plane. We claim, that being properly regularized and with certain scaling
of parameters, this partition function reproduces the counting of topolog-
ical vertices, which constitute topological string partition function.

This proposal is well agreed with the topological strings/spectral the-
ory correspondence like in [16], since the partition function of dimers on
a plane can be computed using the determinant of Kasteleyn operator,
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which in this case is almost a quantization of spectral curve. Cluster
algebraic interpretation of partition functions opens a room for proving
bilinear relations among them as for A-cluster variables related by muta-
tions of the cluster seed.

Structure of this Chapter In the Paragraph we illustrate all construc-
tions using the single example of cluster integrable system isomorphic to
relativistic Toda chain on two sites, which is shown on Fig. 1.1.

In Section 4.1 we introduce basic objects and recollect necessary facts
on thermodynamic of dimer statistical models. Then we explain how
the “deautonomization” of ∏f xf = q 6= 1 can be achieved by replacing
spectral parameters λ, µ in the Kasteleyn operator of dimers on torus
by the q-commuting operators of magnetic translations T̃x, T̃y. We also
discuss degeneracy of their action on the space of functions on Z2 due to
their commutativity with the dual magnetic translations.

In Section 4.2 we discuss q → 1 limit. We show how the solution of
“limit shape” problem can be derived from the WKB approximation for
Kasteleyn operator. We show then that the free energy of the model,
properly regularized in this limit, gives closed formula for the Seiberg-
Witten prepotential of corresponding 5d N = 1 gauge theory.

In Section 4.3 we show how all the necessary box-counting degrees of
freedom arise from the counting of dimers, resulting in the main formula
of equality of partition function of dimers (in the proper limit) to the dual
partition function of topological strings

Z(Q0 = q,QB, QF , Q2) = (4.1)

=
∑
n∈Z

(Q2)n−1(QBQF )n(n−1)q
2
3n(n−1)(2n−1)Zboxes(q, q2nQB, q

2nQF ).

where Zboxes is defined in 1.2. Then, we discuss some issues of inconsis-
tency of the requirements of “infinite distance” between the walls of the
room, and of “freezing out” of non-boxcounting degrees of freedom.

In Section 4.4 we outline results of the Paragraph, and propose some
directions for the future developments.
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4.1 Kasteleyn operator of dimers in transverse
flux

In this section we will show, how making edge weights linearly dependent
on the position of fundamental cell, one can relax condition ∏f∈F1 xf =
q = 1, deautonomizing cluster integrable system.

4.1.1 Zero flux

Definition of the model. The dimer models are usually defined on
bipartite graphs, such graphs Γ that the vertices V can be decomposed
into black and white subsets V = B tW , and edges connect only vertices
of the opposite colours, see example of Fig. 4.1. Throughout the Chapter
we assume the graphs to be minimal in the sense of [71]. The edges e ∈ E
are weighted by the positive real statistical weights we ∈ R>0 for edges
oriented from black to white vertex (which is assumed to be canonical
in the following), and by weights w−e = w−1

e for the edges taken with
opposite orientations. We also extend multiplicatively w to any sets S of
edges by wS = ∏

e∈S we. It is often instructive to consider edge weights
as discrete connections in R>0-bundle over Γ.

The possible microscopic states of the model are dimers configurations
D ∈ D(Γ) (also called perfect matchings) on Γ, which are such collections
of edges of Γ, that each vertex have exactly one adjacent edge from this
collection and all edges are taken with the canonical black-to-white ori-
entation. The partition function can be defined, as usual, as a sum of
statistical weights over all configurations

Z(Γ, w) =
∑

D∈D(Γ)
wD. (4.2)

It changes by simple common factor

Z(Γ, w) 7→
(∏
v∈B

g−1
v

)( ∏
v∈W

gv

)
Z(Γ, w)

under R>0 gauge transformations of edge weights

we 7→ gt(e)weg
−1
s(e) (4.3)

where g is R>0-valued function on vertices, and s(e), t(e) are starting and
terminal vertices of edge e. So it is meaningful to consider the partition
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function normalized by the weight of some fixed dimers configuration D0

Z(Γ, w;D0) = Z(Γ, w)
wD0

=
∑

D∈D(Γ)
wD−D0 . (4.4)

which depends, for planar graphs, only on gauge invariant face weights
xf = ∏

e∈∂f we, since for any dimers configurations D,D0 holds ∂(D −
D0) = 0 and any cycle in a disk is contractible.

Kasteleyn operator. The dimer models are “free fermionic”: it simply
follows from the definition of determinant, that their partition functions
can be effectively computed [105] as determinants

Z(Γ, w) = ±det KΓ (4.5)

where Kasteleyn matrix KΓ : C|B| → C|W | is twisted by additional signs
weighted adjacency matrix of Γ

(KΓ)α,β =
∑

∂e=α−β
(−1)κewe, α ∈W, β ∈ B, (4.6)

and signs (−1)κe , called Kasteleyn orientation, for every face f are re-
quired to satisfy condition∏

e∈∂f
(−1)κe = (−1)|∂f |/2+1. (4.7)

For planar graph all Kasteleyn orientations are equivalent up to Z/2Z
gauge transformations

(−1)κe 7→ (−1)σs(e)+σt(e) (−1)κe (4.8)

where (−1)σ is ±1-valued function on vertices. The overall sign ± in (4.5)
is gauge-dependent.

Fugacities of the translation invariant model on infinite lattice.
The bipartite graph is called periodic and planar if it can be embed-
ded into plane R2 without intersections of edges and in a way invari-
ant under the action of a Z2 lattice generated by the pair of discrete
translations Tx,Ty. The fundamental domains of this action are cells of
rectangular grid, formed by infinite simple horizontal and vertical curves
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γh,j = (Ty)jγh,0 and γv,i = (Tx)iγv,0 transversal to edges, cell (i, j) is
bounded by the curves γv,i, γv,i+1 and γh,i, γh,i+1, see Fig. 4.1, left. We
decompose set of vertices as V = V1×Z2, where the first multiplier is finite
and counts vertices inside of the cell, and the second denotes position of
fundamental cell which a vertex belongs to. We assume that V1 contains
equal number of black and white vertices B1 and W1. Sets of edges and
faces could be decomposed in a similar way E = E1 × Z2, F = F1 × Z2,
where we attribute an edge to the fundamental cell according to the posi-
tion of the black vertex adjacent to it, and a face intersecting few cells to
one of the fundamental cells which it intersects.

4 3 4 3

1 2 1 2

4 3 4 3

1 2 1 2

1, (i, j)

1, (i, j)

1, (i, j+1)
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Figure 4.1. Example of bipartite graph, known to describe Toda integrable
chain on two sites. Left: labelling of vertices, faces, and edge weights. Since
we consider only periodic weightings of faces, we do not put labels of their fun-
damental domains on the plot. Right: edges weighting of finite flux q = e−ε,
according to (4.18) and face weights expressed in terms of edge weights.

If the weighting on periodic graph is also periodic we = wTxe = wTye,
then by factorization of plane by Z2 action we obtain associated model
on graph Γ1 embedded in torus T2, with the sets of vertices, edges and
faces V1, E1 and F1, and γh,i, γv,j projected to cycles γh, γv generating
H1(T2,Z). Since any closed cycle p on Γ1 can be decomposed as

p = nph +mpv +
∑
f∈F1

nf∂f (4.9)

where ph, pv are some cycles on Γ1 homotopic to γh and γv, the set of
gauge-invariant functions on the space of edge weights is generated by
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face weights xf and pair of “monodromies” xh = ∏
e∈ph we, xv = ∏

e∈pv we.
The face weights of dimer model on torus are not independent, they always
satisfy a “vanishing of total transverse flux” constraint

q =
∏
f∈F1

xf = 1 (4.10)

since ∑f∈F1 ∂f = 0. We will construct the weighting for the model with
non-vanishing flux q in the next subsection. Also, there is no canonical
choosing for cycles ph, pv, however there is a “twist” of edge weights by
eBx , eBy ∈ R>0

we 7→ e〈e,γv〉Bx+〈γh,e〉By we (4.11)

where 〈 , 〉 is a skew-symmetric intersection form with the orientation fixed
by 〈γh, γv〉 = 1, which do not change face weights, but shifts xh 7→ eBxxh,
xv 7→ eByxv. We will be using xf , f ∈ F1 and eBx , eBy as a full set of
fugacities, determining model with the vanishing flux.

4.1.2 Non-vanishing flux

Below we will use the additive notations for gauge transformations, edge
and face weights

gv = egv , we = ewe , xf = exf , (4.12)

where g, w and x are cochains from the discrete de Rham complex

0 C0(Γ,R) C1(Γ,R) C2(Γ,R) 0d0 d1 (4.13)

with the differentials

(d0g)(e) = gt(e) − gs(e), (d1w)(f) =
∑
e∈∂f

we. (4.14)

Using these differentials the gauge transformations and fluxes can be writ-
ten as

w 7→ w + d0g and xf = (d1w)(f). (4.15)

We will also refer to elements of C2(Γ,R) which are not necessary exact
as to face weightings. The classification of discrete R>0-connections on V
with arbitrary translation invariant fluxes is provided by the following:
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Lemma. Choose any face weighting x̃ on periodic graph, which is trans-
lation invariant Tx,yx̃ = x̃. Denote total flux through the fundamental cell
by −ε = ∑

f∈F1 x̃f and fix decomposition

x̃f = xf −

χf +
∑

(i,j)∈Z2

δf,f×(i,j)

 ε (4.16)

where x, χ are translation invariant face weightings of zero flux through
the fundamental cell ∑

f∈F1

xf =
∑
f∈F1

χf = 0, (4.17)

face f×(i,j) is the face, which the crossing γh,j∩γv,i belongs to, and δf,f ′ = 1
if f = f ′, and δf,f ′ = 0 otherwise. Then there is a unique up to gauge
transformation discrete connection w̃ such that d1w̃ = x̃, and its gauge
equivalence class is presented by edge weighting

w̃e = we −

ωe + 1
2

∑
(i,j)∈Z2

i〈γ[i,i+1]
h,j , e〉+ j〈γ[j,j+1]

v,i , e〉

 ε (4.18)

where w and ω are translation invariant edge weightings with fluxes d1w =
x, d1ω = χ, γ[i,i+1]

h,j and γ[j,j+1]
v,i are intervals of γh,j and γv,i bounded by

γv,i, γv,i+1 and γh,j , γh,j+1 respectively.

Remark. The illustrating example to this Lemma can be found in Fig. 4.1,
right. Note, that we separated part of face weighting of zero total flux into
x and χ, in order to fix fluxes in ε→ 0 limit by x and to control ’direction’
along which the total flux vanishes by χ. We also put sign “−” at ε to
have q < 1 for exponentiated flux q = e−ε at positive values of ε.

Proof. To prove existence of w and ω, push translation invariant fluxes
x and χ down to Γ1. The conditions that x, χ ∈ Im d1 are equivalent there
to x, χ ⊥ Ker δ2 where codifferential δ2 : C2(Γ1,R)→ C1(Γ1,R) is defined
by

(d1w, x)2 = (w, δ2x)1 (4.19)
(w′,w′′)1 =

∑
e∈E1

w′ew′′e , (x′, x′′)2 =
∑
f∈F1

x′fx′′f , (4.20)

or explicitly by
(δ2x)(e) = xt(e∗) − xs(e∗), (4.21)
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where e∗ is the edge of dual graph, obtained from e by counter-clockwise
rotation by 90◦. Space Ker δ2 is one-dimensional and generated by the
constant function Ω : Ωf = 1 ∀ f ∈ F1, so orthogonalities (x,Ω)2 = 0 and
(χ,Ω)2 = 0 are guaranteed by (4.17).

The i and j depending terms in (4.18) contribute to (4.16) with −ε ·
δf,f×(i,j)

, and generate total flux −ε. This can be computed in any example,
and then checked that upon adding vertices to ∂f×(i,j) and moving them in a
way, which keeps γh,j∩γv,i inside of f×(i,j) and do not put other intersection
points inside of it, flux remains the same. Intersections of boundaries of
other faces with γh,• and γv,• come in pairs, whose contributions from
these terms cancel each other.

To show uniqueness of the gauge orbit, take difference of any pair of
discrete connections w0 = w̃′−w̃′′ both having flux x̃. It is closed d1w0 = 0
and exact

w0 = d0g, gv =
∑

e∈pv0,v

(w0)e, (4.22)

where pv0,v is any path connecting some fixed vertex v0 with v, and the
sum is path independent as ∑e∈p(w0)e = 0 for any closed path p, so g is
well defined. Thus, g provides desired gauge transformation w̃′ = w̃′′+d0g.
�

The Kasteleyn operator K̃ : C|B1| ⊗ C|Z2| → C|W1| ⊗ C|Z2| constructed
from weighting (4.18) can be compactly written in terms of Γ1 as

K̃ = K̃1(T̃x, T̃y) =
∑
e∈E1

(−1)κeqωewe · Et(e),s(e) ⊗
←−T (e) (4.23)

where q = e−ε is exponentiated flux per fundamental cell, and the trans-
lation operator←−T (e) is ordered along the edge e product over its intersec-
tions with γh, γv, which are images of γh,•, γv,• under projection from R2

to T2
←−T (e) =

←−∏
p∈e∩γh,v

(
T̃x

)〈e,γv〉p (T̃y

)〈γh,e〉p (4.24)

of the basic q-commuting “magnetic translations” T̃x,y : C|Z2| → C|Z2|

T̃x =
∑

(i,j)∈Z2

q−
1
2 j Ei+1,i ⊗ Ej,j , T̃y =

∑
(i,j)∈Z2

q
1
2 i Ei,i ⊗ Ej+1,j , (4.25)

T̃yT̃x = qT̃xT̃y. (4.26)
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The notation K̃1(T̃x, T̃y) means that we can consider K̃ as a finite ma-
trix K̃1 : CB1 → CW1 , with coefficients in the skew Laurent polynomi-
als C[q, q−1, T̃x, T̃

−1
x , T̃y, T̃

−1
y ]. For example, this matrix presentation for

Kasteleyn operator of the network drawn in Fig. 4.1 is

K̃1 =

 w1 + w3T̃−1
y −w6 − w8T̃x

w4 + w2T̃−1
x w7 + w5T̃y

 . (4.27)

The space C|Z2| as a representation of the algebra of q-difference op-
erators by T̃x and T̃y is largely reducible. The degeneracy can be lifted
utilizing the algebra of q−1-difference operators, represented by “dual mag-
netic translations”

T̃∨x =
∑

(i,j)∈Z2

q−
1
2 j Ei−1,i ⊗ Ej,j , T̃∨y =

∑
(i,j)∈Z2

q
1
2 i Ei,i ⊗ Ej−1,j , (4.28)

T̃∨y T̃∨x = q−1T̃∨x T̃∨y . (4.29)

which commute with the former

[T̃s, T̃∨s′ ] = 0, s, s′ = x, y. (4.30)

Therefore any operator, which is a skew Lauren polynomial Q̃ = Q̃(T̃∨x , T̃∨y )
in T̃∨x , T̃∨y , commutes with K̃ in the sense that(

Id C|W1| ⊗ Q̃
)
· K̃ = K̃ ·

(
Id C|B1| ⊗ Q̃

)
. (4.31)

The form (4.23) of Kasteleyn operator survives under gauge transforma-
tions constant inside of fundamental cells, the universal condition deter-
mining operators of dual translations is

T̃∨x T̃x = q−ŷ , T̃∨y T̃y = qx̂ , (4.32)

qx̂ =
∑

(i,j)∈Z2

qi Ei,i ⊗ Ej,j , qŷ =
∑

(i,j)∈Z2

qj Ei,i ⊗ Ej,j . (4.33)

The operator Q̃ is hypostasis of eponymous Laurent polynomial from [116],
which was shown there to label possible limit shapes of dimer model. In
the next section we will show that the complex Burgers equation control-
ling limits shapes in [116] is simply the WKB approximation in q → 1
limit to the spectral problem for the Kasteleyn operator (4.23).
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4.2 Seiberg-Witten integrability inWKB approx-
imation

In this Section we look at the “melting” q → 1 limit of vanishing flux
for dimer model. The usual arguments of quantum mechanical quasi-
classics are applicable to Kasteleyn operator (4.27) in this limit. The main
result of this Section is that the free energy (4.58), which is a regularized
volume under the “limit shape” (4.52), satisfies Seiberg-Witten equations
(4.59). We will use only the example (4.27) throughout the Section, but
all arguments of it can be generalized in a straightforward way.

4.2.1 Quasiclassics of vanishing flux at q → 1 and height
function of limit shape

The main observable in dimer models is “height” function, which counts
portions of dimers oriented “horizontally” and “vertically” in average con-
figuration. Its meaning becomes more clear, once the configurations of
dimer model are interpreted as stepped surfaces.

Let’s choose some reference configuration D0 as in (4.4). As for any
D ∈ D(Γ) holds ∂D = W−B, the differenceD−D0 is a collection of closed
and non-intersecting (having no common vertices) cycles on plane, which
we interpret as boundaries of “steps”. The orientation of cycle determines
whether its step is upward or downward. Assuming each step to be of
heights 1, the difference of heights between the pair of faces f1, f2 of Γ is
〈p∗f2,f1

, D−D0〉, where p∗f2,f1
is any path on the dual graph Γ∗ connecting

f1 and f2 and 〈 , 〉 is an intersection pairing. Since ∂(D − D0) = 0, the
heights difference is independent on choosing of path p∗f2,f1

for planar Γ.
The averaged height function h : F×F → R computes the mean difference
of heights over the ensemble of stepped surfaces

hf2,f1(Γ, w;D0) = hf2,f1 = 1
Z(Γ, w;D0)

∑
D∈D(Γ)

〈p∗f2,f1 , D −D0〉wD−D0 .

(4.34)
It is clear from this definition, that the fugacity ε in q = e−ε controls the
“volume” under the stepped surface made out of these loops, since each
loop l = ∂B contributes to the statistical weight of configuration in par-
tition function by ∼ e−ε·Area(B). The infinite volume limit corresponds to
ε→ 0, and the problem of finding the height function and its fluctuations
in this limit is called the limit shape problem.



4.2 Seiberg-Witten integrability in WKB approximation 131

Due to free-fermionic nature of the model, all correlating functions of
any local observables in it can be computed by bare knowledge of two-
point Green function G, defined by the equations1

K̃ ·G = Id , [Q̃,G] = 0. (4.35)

The problem (4.35) for generic q is fully solved only for hexagonal lattices
with various boundary conditions using free fermionic vertex operators in
[149, 150]. The knowledge of the solution of (4.35) in few leading orders
in ε at ε→ 0 limit is enough for any purposes of the limit shape problem,
but this is still a cumbersome problem. However, the information about
height function itself can be heuristically extracted from the structure of
Ker K̃ ∩Ker Q̃, which is the solution of the simpler problem

K̃ψ = 0, Q̃ψ = 0. (4.36)

In coordinates x = εi, y = εj, considered as continuous coordinates on
R2, these equations become

∑
b∈B1(K̃1)v,b

(
e

1
2y−ε∂x , e−

1
2x−ε∂y

)
ψb(x, y) = 0

Q̃
(
e

1
2y+ε∂x , e−

1
2x+ε∂y

)
ψb(x, y) = 0

, b ∈ B1, v ∈W1.

(4.37)
They can be solved order-by-order in ε using standard quasi-classical an-
zaets for wave-function

ψb(x, y) = exp
( i
ε
S

(0)
b (x, y) + S

(1)
b + ...

)
, b ∈ B1. (4.38)

In the leading orders e 1
ε

# and ε0 the consistency conditions for the equa-
tions (4.36) become

P (ez, ew) ≡ det K1(ez, ew) = 0

Q(ez∨ , ew∨) = 0∑
b∈B1

(K1)v,b (ez, ew) eS
(1)
b = 0

, (4.39)

1The equation [Q̃,G] = 0 has not-clear-yet physical nature, but should be related to
the control over boundary conditions of the model, and the exact Green functions from
[149, 150] satisfy it.
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where K1 = K̃1|ε=0, Q = Q̃|ε=0 and

z = 1
2y − i∂xS(0)(x, y), w = −1

2x− i∂yS(0)(x, y), (4.40)

z∨ = 1
2y + i∂xS(0)(x, y), w∨ = −1

2x+ i∂yS(0)(x, y). (4.41)

Commutativity of K̃ and Q̃ implies in the quasiclassical limit that the
differential

dS(0) = ∂xS
(0)dx+ ∂yS

(0)dy = (4.42)

= i
2(zdw − wdz)− i

2(z∨dw∨ − w∨dz∨) + i
2d(w∨z − z∨w)

is closed, so the quasiclassical action S(0) = S(0)(x, y) can be defined by
its integration from. In the simplest case when Q = P , the conditions
(4.39) and (4.40) can be solved by z∨ = z̄, w∨ = w̄ and one can simplify
(4.42) to

S
(0)
Q=P (x, y) = Im

(∫ z(x,y)
(wdz − zdw) + z̄w

)
= (4.43)

= −2 · Im
(∫ z(x,y)

zdw

)
+ 2 · Re (z)Im (w),

which up to exact terms is (−2) times an imaginary part of integral of the
meromorphic differential zdw, called Seiberg-Witten differential, over the
complex curve

CP = {P (ez, ew) = 0 ⊂ (C∗)2}. (4.44)
To compute the height function, let’s assume now that the local be-

haviour of model with flux in ε → 0 limit mimics those of the “homoge-
neous” model of zero flux on the torus. For homogenous model the height
function can be easily computed using an expression for free energy density
[118]

R(Bx, By) =
2π∫
0

2π∫
0

dθdφ

(2π)2 logP (eBx+iθ, eBy+iφ), (4.45)

since the average number of “horizontal” and “vertical” dimers are dual
to the “twist” parameters (Bx, By) h(x+ ε, y)− h(x, y) ' −∂ByR = θ∗

π

h(x, y + ε)− h(x, y) ' ∂BxR = φ∗
π

, (4.46)
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where P (eBx+iθ∗ , eBy+iφ∗) = 0. At the same time, the zero-mode of ho-
mogeneous model is

ψα,(a,b) = ei(aθ∗+bφ∗)ξα, α ∈ B1, (a, b) ∈ Z2, (4.47)

where (K1)(eBx+iθ∗ , eBy+iφ∗) · ξ = 0. Applying in (4.47) coordinates a =
x/ε, b = y/ε and comparing it with (4.38), one can guess the height
function of the model with flux in ε→ 0 limit to be

h(x, y) =
∫

(∂xh dx+ ∂yh dy) ' S(0)(x, y)
πε

. (4.48)

The WKB quantization condition coming from single-valuedness of wave-
function becomes also the natural condition for height difference between
frozen regions of the model [116] to be integral.

In the case of Q = P comparing formulas (4.39), (4.40) with (4.46),
one can deduce

hQ=P (x, y) = −2
ε
R
(
y

2 ,−
x

2

)
. (4.49)

In [116] similar results were obtained, but the logic (and notations)
were different. Pair of equations (4.39) appeared there as a solution of
variational problem, optimizing the total surface tension2 to be minimal.
The Euler-Lagrange equation of this problem results to equations

∂yz − ∂xw = 1, P (ez, ew) = 0, (4.50)

called complex Burgers equation. The function Q appears then as a free
function, parametrizing the space of solutions of this equation, and con-
trolling the boundary conditions for solutions. So the equation, which
in our setup is a consistency condition supporting Hamilton-Jacobi equa-
tion, appears also to be the stationary-action principle for 2d field theory.
Expression for height function similar to (4.48) was also derived in [116].

4.2.2 Free energy density is Seiberg-Witten prepotential.

The WKB arguments can be also applied to computation of partition
function in ε→ 0 limit. The usual heuristics

Tr[A(Tx, Ty)] →
∫∫

dxdy

ε2

∫∫
dθdφ

(2π)2A(e
y
2 +iθ, e−

x
2 +iφ) as ε→ 0

(4.51)
2The surface tension density is a Legandre dual to the free energy density R. It

computes the energy of the region with the known slope (∂xh, ∂yh) in opposite to R,
which computes energy of the region with fugacities (Bx, By).
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gives the integral formula for the partition function of the model

Z = det K̃ = etr log K̃ ∝ exp
( 1
ε2

∫∫
dxdyR

(
y

2 ,−
x

2

))
= qVol(P,P ),

(4.52)
Vol(P, P ) = 1

2

∫∫
dxdy

ε2 hQ=P (x, y).

The proportionality of the free energy of the model to the volume3 under
the limit shape is a natural thing: in the leading order, the partition func-
tion is dominated by single configuration, and the free energy determined
by it is proportional to the sum of areas of all contours which this config-
uration contains (which is basically volume). It is diverging, and proper
regularization of determinant in (4.52) and extension of the formula to
the case Q 6= P requires careful consideration of the boundary conditions
for the model and role of Q. We will instead define some regularization of
Vol guided by its properties and natural equation satisfied by it. In order
to to this we need first to make a closer look to the properties of spectral
curve P (ez, ew) = 0 and function R.

For the lattice drawn on Fig. 4.1, the Laurent polynomial P computed
using (4.27) is

P (λ, µ) = det K1(λ, µ) = (4.53)
= w2w6

λ
+ w4w8λ+ w1w5µ+ w3w7

µ
+ (w3w5 + w2w8 + w1w7 + w4w6) .

For the purposes of this Section the rescalings P (λ, µ) 7→ A · P (Bλ,Cµ)
are immaterial, so we will be using here P in the equivalent form

P (λ, µ) = λ+ Z

λ
+ µ+ 1

µ
− U, (4.54)

Z = x1x3, −U = √x1x4 + 1
√
x1x4

+
√
Z

(
√
x3x4 + 1

√
x3x4

)
, (4.55)

where xi are face variables labelled following Fig. 4.1, left. Curves CP
appearing in planar dimer models are Harnak [115], which means that the
logarithmic projection (λ, µ) 7→ (log |λ|, log |µ|) of spectral curve CP to R2

is 2 to 1 mapping in the interior of amoeba4

A(P ) = {(x, y) ∈ R2 | ∃ (θ, φ) ∈ R2 : P (ex+iθ, ey+iφ) = 0}, (4.56)
3Up to 1/2, whose appearance in the definition of Vol is unclear.
4Starting from here and until the end of this Section we use coordinates (x, y) dif-

ferently compared to the usage above.
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and 1 to 1 at its boundary. The inverse is also true: any Harnak curve
in C∗ × C∗ can be obtained from some planar dimer model. For Laurent
polynomial (4.53) the curve is Harnak if Z ∈ R≥0, U ≥ U0 = 2(

√
Z + 1)

which is satisfied because of xi ∈ R≥0, following from positivity of edge
weights. The corresponding amoeba is drawn on Fig. 4.2, left.

γi = −∂Ωi

θ φ

γ0 0 0
γ1 0 −π
γ2 −π 0
γ3 0 π

γ4 π 0

A
B

x

y

Ω0 Ω1

Ω2

Ω3

Ω4

−R(x, y)

Figure 4.2. Left: Amoeba A(P ) of the curve P (ex+iθ, ey+iφ) = 0. Red lines are
for θ = const, blue are for φ = const, their values are taken for one of two sheets
of CP over A(P ). Boundaries γi of ovals Ωi are oriented counter-clockwise along
∂A. The projections of A− and B− cycles are drawn by dashed lines. Right:
minus Ronkin function −R(x, y) for the same P .

Complement of amoeba of Harnak curve consists of disjoint regions
R2\A(P ) = ∪iΩi, which are bounded and unbounded ovals. Their com-
binatorics of ovals is captured by Newton polygon NP of polynomial P -
the convex hull of such (i, j) ∈ Z2, that λiµj is contained in P (λ, µ) with
non-zero coefficient. Bounded ovals correspond to integral internal points
of NP , unbounded ovals to integral boundary points, so the amoeba can
be contracted to the graph, dual to some triangulation of Newton polygon.
The function R, called Ronkin function of P in mathematical literature,
in case of Harnak P is concave function on R2, linear of slope (i, j) on oval
corresponding to point (i, j) of Newton polygon, and interpolating slopes
of ovals in the interior of amoeba, as shown on Fig. 4.2, right.

Since the ovals have to be invariant under the complex involution
(λ, µ) 7→ (λ̄, µ̄), functions θ(x, y) and φ(x, y) can take only πZ values
there. The parametrization of CP by (z, w) is uniquely determined by the
condition, that the single-valued smooth functions θ(x, y), φ(x, y) in the
interior of A are such solution of

z = x+ iθ(x, y), w = y + iφ(x, y) : P (ez, ew) = 0, (4.57)
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that θ = φ = 0 at γ0 and φ(x, y) is increasing along the short paths from
γ0 to γ3. We call part of CP parametrized by this (z, w) to be upper
sheet, and those, which is complex conjugated, to be lower. Both θ, φ
considered as a functions on CP are single valued in the interior of A and
on γ0, however they can have jumps at other γi.

Now we can define the regularization of free energy in (4.52) by

F(U) = F̃(U)− F̃(U0), (4.58)

F̃(U) = i
π

∫∫
R2

R(x, y)dxdy −

∫
γ1

−
∫
γ3

 x2dy

8 −

∫
γ4

−
∫
γ2

 y2dx

8

 .
It is finite, since at large x, y graphs or Ronkin functions for P with
the same values of Z but different U are exponentially close. The overall
normalization and presence of boundary terms is justified by the following
Claim, which is natural due to the reasons explained in Introduction:

Claim. The prepotential F defined in (4.58) satisfies Seiberg-Witten
equation

∂F
∂a

= aD, a =
∮
A
z
dw

2πi , aD =
∮
B
z
dw

2πi , (4.59)

where A and B = −γ0 are simple cycles on curve, which intersect with
A ∩ B = 1, as shown on Fig. 4.2, and orientation of A-cycle is such, that
it is directed from γ0 to γ3 when goes along the upper sheet of CP .

Proof. Firstly, note that a = a(U) is analytic function at a generic
point, so (4.59) is equivalent to

∂F
∂U

= aD
∂a

∂U
, (4.60)

and that since R(x, y;U) − R(x, y;U0) is exponentially small at infinity,
we can interchange integration and differentiation

∂

∂U

∫∫
R2

(R(x, y;U)−R(x, y;U0)) dx ∧ dy2πi =
∫∫
R2

∂R(x, y)
∂U

dx ∧ dy
2πi .

(4.61)
Decompose R2 = Ω0 ∪A∪Ω1 ∪Ω2 ∪Ω3 ∪Ω4, and consider integrals over
the regions separately. For any of Ωi or A, their shapes depend on U , so
change of the order of differentiation and integration over any single of
them would change integral by additional contact term.
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• Let (x, y) ∈ Ω0, then

∂R(x, y)
∂U

=
2π∫
0

dφ

2π

∮
|z|=x

dz

2πi
∂UP (ez, ey+iφ)
P (ez, ey+iφ) = (4.62)

=
2π∫
0

dφ

2π
∂UP (ez∗ , ey+iφ)
∂zP (ez∗ , ey+iφ) = −

∮
A

∂z(w)
∂U

dw

2πi = −∂a(U)
∂U

where the contour of integration is deformed first from Re z = x
to Re z = −∞, keeping Rew = y, and picking pole at z∗, such
that P (ez∗ , ey+iφ) = 0, see Fig. 4.3. Then the remaining integration
over dφ becomes integral of −idw over A-cycle, and we use that
0 = dP/dU = ∂UP + ∂zP∂Uz, assuming that z = z(U,w) 5. As
∂UR(x, y) does not depends on (x, y) ∈ Ω0, it remains to compute∫∫

Ω0

dx ∧ dy
2πi =

∮
∂Ω0

xdy

2πi = (4.63)

= 1
2πi

∮
−γ0

(zdw − i(θdy + xdφ) + θdφ) =
∮
B
z
dw

2πi = aD(U)

where we used that θ = φ = 0 at γ0.

• Regions Ω1,Ω2,Ω3,Ω4 do not contribute to integral, as we can de-
form integration contour there to Re z → +∞, Rew → +∞, Re z →
−∞, Rew → −∞ respectively, where integrand is exponentially
suppressed, without picking any poles.

• For any (x, y) ∈ A we can shift integration contour to x → −∞,
along any sequence of straight segments of rational slope. The poles
are picked as in (4.62), because of SL(2,Z) invariance of integration
measure

− ∂z(w)
∂U

dw

2πi = ∂UP

∂zP

dw

2πi = (4.64)

= ∂UP

d∂z̃P − c∂w̃P

(
d+ c

∂z̃

∂w̃

)
dw̃

2πi = −∂z̃(w̃)
∂U

dw̃

2πi ,

5These two steps are equivalent to deformation of 2d contour and picking Poincaré
residue of dz∧dw

P
at P = 0



138 Chapter 4. Counting of dimers in transverse flux

Re z = x

z∗(φ)

ez

Figure 4.3. Slice of the curve CP by y = const section, plotted in ez coordinate,
shown by ovals. The y is such that the y = const line crosses a hole of amoeba.
Red dots are points with the same φ. Dashed circle is dz integration contour in
(4.62), which has to be contracted to zero.

where z = az̃+ bw̃, w = cz̃+ dw̃, with a, b, c, d ∈ Z, ad− bc = 1. As
the integrand is a holomorphic form, the integration contour might
be deformed to any convenient smooth contour which goes from
w = w(x, y) to γ3, and then to w̄, on another sheet. Using that
inside of A we can present area element dx ∧ dy as

dx ∧ dy = 1
4 (dz ∧ dw̄ + dz̄ ∧ dw) , (4.65)

we apply integration by parts, to get

−
∫∫
A

(∫ w̄

w

∂z(w)
∂U

dw

2πi

)
dz ∧ dw̄ + dz̄ ∧ dw

8πi =

=
∫
∂A

(∫ w̄

w

∂z(w)
∂U

dw

2πi

)
w̄dz + wdz̄

8πi + (4.66)

+
∫∫
A

(
w̄
∂z̄(w̄)
∂U

dz ∧ dw̄
(4πi)2 − w

∂z(w)
∂U

dz̄ ∧ dw
(4πi)2

)
=

=
∫
∂A

(∫ w̄

w

∂z(w)
∂U

dw

2πi

)
w̄dz + wdz̄

8πi +

+
∫
∂A

(
∂z̄(w̄)
∂U

zw̄dw̄

(4πi)2 −
∂z(w)
∂U

z̄wdw

(4πi)2

)
.

Using that the contours in
∫ w̄
w (∂z/∂U)dw are now closed (since

w = w̄ at ∂A), and some of them can be contracted to points at
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infinity, where ∂z(w)/∂U is exponentially suppressed, the first inte-
gral reduces to

4∑
i=0

∫
γi

(∫ w̄

w

∂z(w)
∂U

dw

2πi

)
w̄dz + wdz̄

8πi = ∂a

∂U

∫
γ0

ydx

4πi = aD
2
∂a

∂U
.

(4.67)
Using also the values of θ, φ ∈ πZ on γi at upper sheet of CP , which
are indicated on Fig. 4.2, and SL(2,Z) invariance (4.64), we get for
the remaining

4∑
i=0

∫
γi

(
∂z̄(w̄)
∂U

zw̄dw̄

(4πi)2 −
∂z(w)
∂U

z̄wdw

(4πi)2

)
= (4.68)

=
4∑
i=0

∫
γi

∂z

∂U

(zw̄ − z̄w)dw
(4πi)2 =

∫
γ1−γ3

∂x

∂U

xdy

8πi +
∫

γ4−γ2

∂y

∂U

ydx

8πi .

All contributions brought together give us identity (4.60). �

Another interesting limit can be taken now. It is called perturbative or
tropical or decompactification in different contexts. In it, the parameters
scale as

U = eR5u, Z = eR5z, R5 → +∞. (4.69)

The amoeba shrinks then to its spine, which is a union of intervals as
shown on Fig. 4.4, and pre-image of projection CP → A becomes S1 over
the internal points of intervals, and pairs of triangles, connecting these
circles, over the joints of intervals. The Ronkin function in the leading
in R5 order become piecewise linear function of x, y, and integrations in
(4.58) becomes trivial exercises in computations of polyhedron volumes.
Taking U0 = 2(

√
Z + 1) at which domain Ω0 shrinks to point, one gets

F → − R3
5

24πi (2u− z)2(4u+ z), (4.70)

a =
∮
A
z
dw

2πi → R5 · (z − u), aD =
∮
B
z
dw

2πi →
R2

5
2πi 2u(2u− z).

This completely “frozen” by extreme values of parameters configuration
will be the starting point in the next Section. However we will “unfroze”
it in a different way, keeping finite q under extreme values of xi.
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x

y y = −u

y = x− z y = −x

y = u

y = z − x y = x

x = ux = z − u

Figure 4.4. Amoeba of the curve CP in tropical limit. Coordinates here are
normalized by R5

4.3 Boxcounting in tropical limit

In this Section we will show, how the Fourier-transformed topological
string amplitude (4.1) comes combinatorially from the counting of dimers
in the running example as on Fig. 4.1: we identify degrees of freedom cor-
responding to 0d boxes constituting 3d Young diagrams, 1d boxes consti-
tuting 2d Young diagrams and 2d boxes constituting 1d Young diagrams.
We also suggest how the properly taken tropical limit for face weights
xi = eR5ξi+xi , R5 → ∞ might suppress all the other degrees of freedom,
but it appears to be inconsistent with the thermodynamic limit.

4.3.1 Combinatorics of boxcounting

The starting point for the box counting combinatorics is the “empty room”
dimers configuration, which is drawn on all four panels of Fig. 4.5 by
coloured dimers. The structure of configuration is similar to the struc-
ture of amoeba drawn on Fig. 4.2: there are four unbounded domains
corresponding to Ω1,Ω2,Ω3,Ω4, and one internal domain Ω0. Dimers con-
figurations in unbounded domains are just the tilings by configurations
corresponding to four “external” monomials at λ, λ−1, µ, µ−1 in (4.53),
and configuration in Ω0 is one of those at λ0µ0. Two parameters defin-
ing this configuration are width N and height M of central domain. For
the configuration on Fig. 4.5 we have N = 4, M = 5 by the number of
fundamental domains filled by purple dimers plus 1.

The “rotation in the set of faces” is a transition from one dimers con-
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Q0 = x1x2x3x4 Q1,B = x2x3(Q0)N

Q1,F = x2
x1

(Q0)M Q2 = x2
(
x2
x1

)N
(x2x3)M(Q0)NM
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Figure 4.5. Toda bipartite lattices with “empty room” configuration D0 drawn.
Faces involved in the rotations corresponding to addition of boxes weighted by
Q0, Q1,B , Q1,F , Q2 are highlighted by lime colour.

figuration to another by choosing such a set of faces that exactly half
of edges on their common boundary (each second edge) is contained in
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dimers configuration, and exchanging sets of occupied and non-occupied
edges on this boundary. This changes the weight of the dimers configu-
ration by the product of the corresponding face weights. There are four
classes of transformations of the “empty room” configuration (and config-
urations obtained from it by these transformations), which correspond to
adding of different types of boxes to the room:

• Four rotation in the sets of faces as on Fig. 4.5, left, top. Each
rotation of this type is weighted by q = Q0 = x1x2x3x4, and corre-
sponds to the addition of 0d box to one of four 3d Young diagrams
located in the corners of the room. First rotation of this type opens
possibility for three more similar rotations in the adjacent locations,
which is in agreement with the fact that there are three 3d Young
diagrams containing two boxes. Similar matching works further, un-
til the diagram growing in one corner touches diagram from another
corner. This can be easily seen considering e.g. left top corner of the
“room” and erasing edges between the faces 2 and 3, 3 and 4, 4 and
1, which are not covered by any dimers there and are not involved
into transformations then. Making reduction of pairs of adjacent
2-valent vertices of bipartite graph after erasing, we get hexagonal
lattices, which provides 3d box counting [151].

• Two rotations weighted by Q1,B as shown on a top right panel, and
two ones weighted by Q1,F from a bottom left panel are correspond-
ing to addition of 1d boxes constituting four 2d Young diagrams.
These 2d Young diagrams can be considered as a so long lines of
boxes added to the corners, that they meet each other. However,
since the shapes corresponding to addition of boxes to different cor-
ners are different, there is a mismatch, because of which Q1,B and
Q1,F are not simply degrees of q, but contain also other combina-
tions of the weight of faces. So the 2d Young diagrams determine
the initial shape, on the top of which 3d Young diagrams are built.

• Rotation shown on a bottom right panel is weighted by Q2 and
results in the change (N,M) 7→ (N + 2,M + 2). In terms of the
boxes, this can be viewed as change of the level of “floor” in the
room. Since you can repeatedly apply this transformations, they
are enumerated by N or 1d Young diagrams.

• There are also two types of transformations of infinite weights, shown
on Fig. 4.6, left. They change (N,M) 7→ (N + 1,M) and (N,M) 7→
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(N,M + 1), and do not contribute to the partition, since we assume
boundary conditions at infinity to be fixed. However, we will be
back to them in the Discussion section, we expect them to play an
important role in the context of solutions of q-difference equations
with the partition functions of dimers. From the point of view of
box counting, these transformations are corresponding to shifts of
the “walls” of the room.

Summation of 3d and 2d boxes is given by Zboxes(q,QB, QF ) in (4.1),
Q2, QB and QF in the formula are taken at some large fixed values of
(N,M). The weight in front of Zboxes(q,QB, QF ) originates from multi-
plication byQ2 factors for (N,M), (N+2,M+2),...,(N+2n−2,M+2n−2).
The growth rate 4

3εn
3 in the exponent is related to the volume of pyramid.

It matches nicely with the leading in u term

F ∼ −4
3

(R5u)3

2πi (4.71)

in (4.70), where 2πi comes from the different normalization of prepoten-
tial compared to the volume. The external summation over n is for the
summation over the “heights” of the floor, or divergences of size of central
domain from (N,M). It has to go in the limits −min(N,M) ≤ n ≤ +∞,
but we can take it to be two-sided infinite, since we are working in ap-
proximation N,M → +∞, which is also important for 3d Young diagrams
to not to touch each other.

4.3.2 Inconsistency of “freezing out” and thermodynamic
limit

We are going to suggest now how to freeze all non-boxcounting “rotations”
at once by the proper tuning of weights of faces, and show then why
thermodynamically this is incompatible with N,M → +∞ limit.

First of all, there are no possible local rotations of size� N,M in non-
bounded domains Ω1,Ω2,Ω3,Ω4, since the dimers configurations which tile
them are “extremal”: the difference with any other configuration will be
a collection of paths which go in one direction and can’t go back. There
are many possible local rotations in the central domain, as it is shown on
Fig. 4.6, right. We are looking for such limit of faces’ weights to zeroes
or infinities (tropical limit), that weights of all rotations in this domain
are suppressed. We also want to keep finite q, so we will assume now
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Figure 4.6. Left: “Unbounded” rotations, changing (N,M) 7→ (N + 1,M + 1)
and (N,M) 7→ (N,M + 1). Right: different types of rotation
possible in the central region, which are freezing out in tropical
limit. The weights of rotations shown on picture by lime color are
x1, (x1)2x4, (x2)−1, (x2)−2(x3)−1, (x1)4x3(x4)2, (x1)6(x3)2(x4)3, (x2)−5(x3)−3(x4)−1, ...

x1x2x3x4 = 1 in compare with the weights of individual faces. Then, the
partition function of local rotations can be estimated, by selecting the
term at λ0µ0 in the partition function on large torus of size L × L [118],
which can be estimated as

ZT2,L×L(Γ, w;D0)|λ0µ0 ≤ (4.72)

≤ (w3w5)−L2
L∏
a=1

L∏
b=1

det K1(λe
2πia
L , µe

2πib
L )|λ0µ0 ≤

(det K1(λ, µ)
w3w5

)L2

|λ0µ0 =

=
∑

2a+2b+c=L2

(
x1
x2

)a
(x1x4)b (1 + x1 + x1x4 + x1x3x4)c

Using additive variables ξi in xi = eR5ξi+xi at R5 → +∞, all terms except
1 are vanishing if

ξ1 < 0, ξ1 + ξ4 < 0, ξ1 + ξ3 + ξ4 < 0, ξ1 + ξ2 + ξ3 + ξ4 = 0. (4.73)

As a check, one can see that all of the rotations shown on Fig. 4.6, right,
are suppressed in this limit. It also has to be shown that these bounds
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are enough to suppress all the local rotations in between of domain Ω0
and other domains Ωi. We do not know how to show this systematically
though.

Unfortunately, constraints (4.73) are inconsistent with the thermody-
namic limit N,M → +∞. We require that in thermodynamic limit all
the weights Q0, Q1,B, Q1,F , Q2 should be finite, not becoming 0 or ∞.
Inverting formulas for their weights on Fig. 4.5, one gets

x1 = XN+1,M , x2 = XN,M , x3 = 1
XN,M+1

, x4 = 1
XN+1,M−1

, (4.74)

where XN,M = Q2 · (Q0)NM
(Q1,B)M · (Q1,F )N . The leading terms are determined

here by Q0 = q = e−ε since NM � N,M � 0, so taking R5 = NM , one
gets

ξ1 = −ε, ξ2 = −ε, ξ3 = ε, ξ4 = ε ⇒ ξ1 + ξ3 + ξ4 = ε > 0, (4.75)

which is inconsistent with (4.73).
Another issue with thermodynamic limit is the instability due to the

multiplier ∼ q
4
3n

3
in (4.1). Even if all Q are finite and non-boxcounting

degrees of freedom are suppressed, the cubic term at n → −∞ domi-
nates all the other contributions at fixed n, making small n preferable and
breaking N,M � n� 1 assumptions.

4.4 Discussion
In the Chapter we made several steps towards understanding the role of
cluster algebras in the theory of topological string. We have shown how
starting from the “deautonomization” of cluster integrable system one
naturally gets objects related to topological string: either Seiberg-Witten
prepotential in the “melting” limit, or boxcounting of topological vertices
in the “tropical” limit. Despite of inconsistencies, outlined in the Section
4.3.2, this consideration seems to provide proper framework for the con-
struction of the arrow shown on Fig. 1.1 in the Introduction.

We want to sketch now how the missing arrow from Fig. 1.1 can be
constructed, after resolving of inconsistencies of Section 4.3.2. First, it has
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to be understood how the transformations of the weighted bipartite graph
on torus, corresponding to the mutations in X -cluster algebra, should
be properly uplifted to the transformation of quasi-periodically bipartite
graph on a plane. Then, in the theory of total positivity, many of A-
cluster variables are come as minors of the transfer matrices of paths
on the bipartite graphs [60], [13], [157], or equivalently to the different
minors of the Kasteleyn operator of this graph. We can relate then the
different minors of infinite-dimensional q-difference Kasteleyn operator to
the different A-cluster variables in deautonomized case. These minors also
correspond to the partition functions of dimers with the different boundary
conditions. Those, which are related by the unbounded “rotations” from
Fig. 4.6, left, in the boxcounting limit present the same partition functions,
but with the slightly shifted parameters. In our example, one can produce
four different partition functions in this way, corresponding to (QB, QF )
and its shifts

(Q1,B, Q1,F ) 7→ (qQ1,B, Q1,F ), (Q1,B, Q1,F ) 7→ (Q1,B, qQ1,F ), (4.76)

(Q1,B, Q1,F ) 7→ (qQ1,B, qQ1,F ),

which reproduces shifts of parameters in four τ -functions in [14]. Then, the
q-difference equations, satisfied by the dual topological string amplitudes
become a Plucker relations between the regularized infinite dimensional
minors of Kasteleyn operator, or exchange relations in the corresponding
A-cluster algebra. The evidences of proper combinatorics, underlying this
problem, might be contained in [73], [161], [44].

There is also a number of other intriguing directions, in which the
developments of this Chapter might be continued:

• It is conjectured that all the fluctuations of the height function above
the limit shape at “infinite volume” q → 1 limit can be described us-
ing the Gaussian free field in the properly chosen complex structure,
see e.g. [104]. In Section 4.2.1 using the quasi-classical computation
for the zero-mode of Kasteleyn operator we provided a heuristic
derivation for the height function of the limit shape. Similar quasi-
classical computation for the Green function (4.35) would provide a
solution for a problem of uniformization of fluctuations in spirit of
[116]: for any bipartite lattice and boundary conditions.
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• The distinguishing property of prepotential F(U,Z) is that it sat-
isfies the Seiberg-Witten equation (4.59). However, this equation
does not fix Z-dependence completely. There are also the so-called
residue formulas and WDVV equations, which are differential equa-
tions on prepotential, involving ∂/∂Z derivatives [130], [76]. These
formulas would be important approbations for prepotential (4.58)
as for the physical prepotential related to gauge theory.
The formula (4.58) has to be extended also beyond the Harnak lo-
cus, since it essentially uses the property that the complex curve
P (ez, ew) = 0 projects 2 to 1 inside its amoeba. Another promis-
ing direction of studies is their extension to the case P 6= Q. This
is a completely novel direction with no known analogue of Seiberg-
Witten equation.

• In [14] the quantization of cluster algebras [27], [48] was also applied,
and the non-commutative q-difference bilinear equation on quantum
τ -functions where derived there as a result of application of several
mutations. The solutions of these equations were provided there
in terms of 5d Nekrasov functions with the generic Ω-background,
which generalizes the self-dual background of the commutative case.
Our approach can be also generalized to this case in a straightfor-
ward way, promoting the face variables to be t-commutative, and
performing the proper normal ordering. In this case, we expect the
boxcounting formulas to be upgraded to the (q, t) counting of “re-
fined topological vertices” [98]. Similar ideas were proposed in [142].
Also the property of refined topological amplitude to intertwine the
action of quantum toroidal algebra [3] might find its “cluster” inter-
pretation using two-parametric quantization of classical r-matrix of
[83]. It would be also interesting to “refine” results of [37] in this
setting.

• The dimer models are similar to the Hermitian matrix models, since
both can be described as specifications of Schur processes [149], [132].
One of the most fundamental properties of matrix models is the
genus expansion, when the diagrams of perturbation theory are in-
terpreted as ribbon graphs, and the entire series is interpreted as a
summation over all topologies. Similar expansion in q-case is more
tricky and there is no final answer what to count as “expansion over
genuses” in that case yet [138]. However, the dimer models might
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shed some light on this.
By bipartite graph on surface one can construct bipartite graph on
dual surface by twisting all of its ribbons [71]. This can be also done
with the graph Γ on the plane R2, getting the graph Γ̃ on the infinite
genus, but “regular”, dual surface S̃. Uplifting the paths, which are
contributions to the normalized partition function of dimers, to the
dual surface, one gets the set of cycles of non-trivial topology on S̃.
Shrinking all the cycles on S̃, which are not winded by these paths,
one gets finite genus curve, so the entire partition function becomes
a summation over the surfaces of different topologies.
Once the expansion is properly formulated, one can find the observ-
ables for q-deformed resolvent, cut and joint, and check operators
to obtain the loop equations and formulate q-topological recursion.
This topological recursion might be also useful for the enumerative
problems of [103] and [37].

• The phase space of cluster integrable system, as X -cluster variety,
is equipped with the logarithmically quadratic Poisson bracket for
the face variables. For our main example from Fig. 4.1 the quiver
encoding this bracket is drawn on Fig. 2 from [14] under the name
A

(1)′
7 . The same quiver can be obtained6 by computing the Euler

form of sheaves from the exceptional collection

C = (O(0),O(1, 0),O(1, 1),O(2, 1)) (4.77)

of coherent sheaves on Hirzebruch surface F0 = P1 × P1 [18]. More
striking coincidence is that the formula (4.22) from [18] for the Chern
classes [N ; (c1,1, c1,2); c2] of the dual objects

γ1 = [1; (0, 0); 0], γ2 = [−1; (1, 0); 0], (4.78)

γ3 = [−1; (−1, 1); 1], γ4 = [1; (0,−1); 0]

can be reproduced taking the “finite”, not depending on N and M
parts of degrees of Qi variables in (4.74), and under identifications

γ1 ↔ x2, γ2 ↔ x3, γ3 ↔ x4, γ4 ↔ x1, (4.79)
6We are grateful to Fabrizio Del Monte for bringing our attention to this correspon-

dence
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N ↔ degQ2, c1,1 ↔ degQ1,B, c1,2 ↔ degQ1,F , c2 ↔ degQ0.
(4.80)

The correspondences above are precise to be just coincidence, so
the dimer statistical model should have the deeper meaning in the
counting of geometric objects, and there is a point to start. The local
3d Calabi-Yau, a mirror dual to the one defined by uw = P (λ, µ)
with P from (4.54), is the total space of the canonical bundle over
F0 [6], and D-branes on this total space are in correspondence with
the exceptional collection of sheaves on the base [18]. And there
is a straightforward way to produce more examples of this kind for
check, since the both sides (either local 3d CY and cluster integrable
system with the spectral curve P ) can be conveniently constructed
starting from the Newton polygon.
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