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Chapter 3

Solution of tetrahedron
equation and cluster
algebras

3.1 Introduction

In the theory of integrable systems one usually starts with the RLL equa-
tion

Ri2L1,oLoq = L24L1,qR12 (3.1)

which defines the relation between the R-matrix R : VRV — V&V
intertwining a pair of “auxiliary spaces” V, and the Lax operator L :
V®F — V®F, acting on the tensor product of the auxiliary space
and the “quantum” space F of the integrable system. The RLL equation
implies [tr1 L1 4, tr2 L2 ,4] = 0, i.e. that the integrals of motion of the system
commute. The renowned Yang-Baxter equation

Ri2R13Ro3 = RogRi3R12 (3.2)
appears in this approach as the associativity condition for the braiding

relations (3.1). This condition can be formulated as an equality between
two different ways of permuting the product of three Lax operators:

£3,a£2,a£1,a == j:t(£1,a£2,a£3,a)7 (33)

J+ = AdR12Ade3AdR23v J-= AdR%AdRmAdRm'
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A solution of the Yang-Baxter equation allows one to construct an inte-
grable system, e.g. a spin chain. Equivalently, in a more abstract language
one can use the solution to define a quasitriangular Hopf algebra, e.g. a
quantum group.
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Figure 3.1. Top. The tetrahedron equation. To view it as a modification of
the Yang-Baxter equation one has to look at the transformation of the dashed
triangle. Bottom. The functional tetrahedron equation. The quantum spaces
are located in the direction transverse to the plane of the figure.

Zamolodchikov tetrahedron equation [182, 184] is a natural generaliza-
tion of the Yang-Baxter equation to three dimensions. While the Yang-
Baxter equation is an equation on operators corresponding to crossings
of lines in a plane, the tetrahedron equation describes triple crossings of
planes in a 3d space. An analog of the RLL equation

L12,aL13 3123, c Rave = Ravelios, L1z pli2,as (3.4)

drawn in Fig. 3.1, left, involves two kinds of spaces, F and V, and two
kinds of operators

L:VeVRF > VeVeF, R:FFRFFRFeF. (3.5

The tetrahedron equation should lead to the structures which are no less
profound and much more beautiful, compared to the Yang-Baxter equa-
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tion. For example, in [122], the tetrahedral structure was related to higher
algebra and category theory. Its interpretation as a “higher” analogue of
the Yang-Baxter equation becomes clear, if one assumes invertibility of
Rape and multiplies both sides of the equation by Ra_blc on the right!. This
gives a version of Yang-Baxter equation “up to” conjugation, i.e. it is
no longer an equality between two ways to permute the L-operators, but
their equivalence. Considering L;;, as a matrix acting in V; ® V;, with
coefficients in the algebra A, = End(F,), we can rewrite Eq. (3.4) as

Lia({va})L1z({ve})Las({ve}) = Las({ve})Lus({vp })La2({vg}),  (3.6)

where by {v;} we denote the set of generators of A,,

Lijo = Lij({va}), (3.7)

and
vl = Rape Ve _blc (3.8)

is the set of generators conjugated by Rape € Ay ® Ap @ A.. Since conju-
gation is an inner automorphism of the algebra, generators v’ satisfy the
same relations as v, and all central functions remain unchanged.

We can apply four transformations (3.6) to rearrange six L-operators
in a different way. Moreover, there are two different ways to perform this
rearrangement (denoted by J; and J_):

Li2,aL13 pLios cLia,gloa.clisa f = T+ (Lsa fLoa eLina alios L1z pli2,a)

J+ = Adgr,, Adg,, Adr,,Adr J- = Adg, ,AdR,,AdRr,, Adr,,,-
(3.9)
See the pictorial representation in Fig. 3.1, right. Statement that these

two ways are equivalent gives under certain assumptions the functional
tetrahedron equation [166, 112]

ade cef?

RcebedeadeRabc = RabcRadeRbdf Rcef . (3 . 10)

The first assumption is that (3.6) fixes R uniquely up to constant, or in
other words, that centralizer of Lig o113 pLo3 . in A, ® Ap ® A, is trivial.
The second assumption is that centralizer of L1 oL13 L23 L4 glio4,eL3a 5
in 4, @ Ay @A @ Ag® Ac ® Ay is trivial as well. It will become clear later

"We always assume that R is invertible.
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that (classical limits of) these assumptions are actually satisfied for the L-
operators that we consider in the present Chapter, once we identify these
3-fold and 6-fold products with elements in the largest double Bruhat
cells in PGL(3) and PGL(4), respectively. These two assumptions are
sufficient to derive (3.10) still up to some extra constant factor. To prove
that this factor is identity one needs either to check some matrix element,
or find some extra property (for example, that traces of Lh.s. and r.h.s.
are defined and non-zero). We are not going into such details and refer to
[19, 20] and references therein.

Forgetting about the space F, one can consider Eq. (3.6) as an equation
on the L-matrix valued in some algebra A, together with an automorphism
of A, ® Ay ® A.. Suppose that A has classical limit to commutative Pois-
son algebra. Then conjugation with R,,. has to be replaced by some
canonical transformation of C[Ag, Ay, A.|.

A solution of tetrahedron equation with V = C? and the Lax operator
valued in the g-oscillator algebra was found in [160, 23] and further studied
in [120], [131], [117], [19], [162], [20], [17]. We do not give the quantum
solution here as we will not need it here. The classical limit of the solution
is an operator Lpg : C? ® C?> — C? ® C? acting as a matrix?

1
uk  —Aux
Lps(@,y, A, p) = ; (3.11)
Y Ak
where k* = 1 — 2y and the Poisson brackets are
{z,y} =K {2, A} = {a, 0} = {y, 2} = {y,n} = 0. (3.12)

The Lax operator (3.11) satisfies the tetrahedron equation (3.6) with the

?Note that compared with [23] we use different notation for 4 x 4 matrices repre-
senting operators acting on C? ® C?: indices of the first C2 encode the position of the
2 x 2 block while index of the second C? encodes matrix elements inside the block.
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transformed variables being

A 1 —1A
T, = ké lri (k‘c.l“a - Nafle ka:pbyC) s Yo = k; 1)\7: (keYa — Aatrckaypre)
37;; =TT + ——kakexy, yé) = YaYe + )\aﬂckakcyba
Aafte 1
_ b —
Ay (kawc - Akcyaxb> C = R (ko — Aapickezams)
By whte By
k;‘:kakfl[)’ ké:kcﬁ7
b kakeaZt
K2 = K2R2R2 — 2K2k2 + k2 + k2 — # — NattckakeTaypre,
afrc

(3.13)
The new variables (3.13) satisfy the same Poisson brackets, so the transfor-
mation is indeed canonical. Variables with different labels a, b, ¢ Poisson
commute, and A’s and p’s do not change under the transformation (the
reason for this is that A and p are central functions, so after quantization
they will not be changed by (3.8), and so we demand that they are do not
change in the classical limit as well).
By contracting IV Lax operators along one space, and taking the trace

,CQN = TI‘O (L017a1 LOQ,aszON,aN) (3.14)

one gets the Lax operator with auxiliary space (C?). This solution is
called the “quantum group-like” solution, as the Lax operator is block-
diagonal and preserves the decomposition L,n = EB{CV:l Lpken, where
Laren is the Lax operator whose auxiliary space is k-th fundamental
representation of Uy(gl;,). In particular, the first non-trivial operator Len
in the classical limit satisfies the r-matrix Poisson bracket

{Len(A); Lov ()} = [r(Np), Lo (A) @ Len ()] (3.15)

with r being the classical trigonometric r-matrix. The quantum version of
the Lax operator satisfies the RLL relation with the quantum trigonomet-
ric R-matrix 3. This implies that by multiplying such Lax operators one
obtains monodromy matrix of some integrable system. This system can
be identified with the XXZ spin chain in the g-oscillatory representation,
or its classical limit.

3We do not give here explicit expression for the classical r-matrix. Interested reader
can find it e.g. in [84], [128] or [140].
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Cluster algebras originally appeared in the theory of Lie groups and
algebras (see e.g. [57]) and are now known to provide convenient language
in the theory of integrable systems [82, 71, 39, 128, 80, ?, 14]. In the
present Chapter we try to make a small step towards fully integrating
the tetrahedron equations into the general mathematical physics context,
showing how Bazhanov-Sergeev solution naturally appears in the theory of
cluster integrable systems. Namely, we show that the Lax operator (3.11)
can be identified with the transfer matrix of paths on a four-gonal bi-
coloured graph shown in Fig. 3.6. The tetrahedron equation for such Lax
operators is then translated into the equality between the transfer matrix
of a graph composed from three four-gonal blocks and the result of the
action of four “spider moves” on it (see Fig. 3.7). This correspondence
allows us to generalize the construction for the spectral curve of the XXZ
chain given in [23] to systems with arbitrary symmetric Newton poly-
gon. We shall note here that this block and the sequence of mutations
leading to tetrahedron equation already appeared in the related contexts
[109, 160, 23, 181, 4], however the full identification was missing.

We start our exposition in Section 3.2 where we give a brief recapit-
ulation of planar networks, Poisson structure on the variables associated
with paths on these networks and the transformations of the networks
preserving the Poisson structure and partition function of paths. We give
three-parametric family of mappings of Poisson variables corresponding
to “corner” paths, shown in Fig. 3.3, all leading to the usual formulas for
the transformations of the face variables.

Then in Section 3.3 we show that the Lax operator (3.11) coincides
with the transfer matrix (3.30) of non-intersecting paths on the planar
network from Fig. 3.6. We interperet the auxiliary space C? in the Lax
operator as a space on which the transfer matrix of paths acts. We realize
the tetrahedron transformation (3.6) as a sequence of four spider-moves
(and several two-moves) of the planar network shown in Fig. 3.7 and
Fig. 3.11. Surprisingly, this sequence of transformations appears to be
well known in cluster-algebraic literature [119, 181], however it was not
identified before with the Bazhanov-Sergeev solution of the tetrahedron
equation. We also show that the transformation of the “corner” variables
(3.35) derived from the transformations of the network is consistent with
those given by Eq. (3.13).

In Section 3.4 we extend the construction of the Lax operator (3.14) for
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the XXZ spin chain (which has rectangular Newton polygon) made by con-
traction of the “tetrahedron” Lax operators (3.11), to integrable systems
with arbitrary centrally symmetric Newton polygon. Finally, we discuss
this construction from the point of view of the embedding of cluster inte-
grable system into affine group P/G\L(N ) and extend it to non-symmetric
Newton polygons. We also prove a Lemma which shows the converse:
it classifies conjugacy classes in double affine Weyl group of A-type by
Newton polygons.

3.2 Perfect networks and flows on them

In this introductory section we recall notions of perfect networks and flows
on them, construct Poisson structure on paths and discuss discrete trans-
formations of networks preserving this structure. This will allow us to
construct solution of the tetrahedron equation in Section 3.3 and Hamil-
tonians of cluster integrable system with arbitrary Newton polygon in
Section 3.4. The way of exposition, which we follow here, is a mixture of
approaches from [83], [175] and [71].

3.2.1 Flows on perfect networks

The main actor in considered approach to cluster integrable systems is a
(planar) perfect network N = (G, w) — (planar) perfectly oriented graph
in disk, with edges weight function w. Orientation is called perfect if all
vertices of a graph can be coloured in three colours: all boundary vertices
are grey (X), all internal vertices are either white (O) (and have exactly
one outgoing edge) or black (®) (and have exactly one incoming edge).
We do not assume graph to be connected, however we assume that there
are no 1-loops (edges going form the vertex to itself) and leaves (inter-
nal 1-valent vertices). All boundary vertices are assumed to be 1-valent.
Boundary vertex with edges oriented away from it is called source. Vertex
with edges oriented toward it is sink. We denote the set of sources by
I, and the set of sinks — by J. It will be useful to put additional grey
vertices in the middles of internal edges, and refer to edges connecting
black and white vertices with grey vertices as half-edges. We say that the
vertex v with the all adjacent half-edges is the fan of vertex v, number
of half-edges in the fan is degree of the vertex and is denoted by deg(v).
To each half-edge e oriented from black or white to grey vertex we as-
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sign weight w, € C* to half-edge with opposite orientation —e we assign
weight w_, = w_ . Weight of any set of oriented edges P is the product
of weights of all half edges in it wp = [[.cp We.-

Flow p on the perfect network NN is the set of such non-intersecting
and non-self-intersecting paths (=) oriented by G that dp = B — A
with A C I, B C J, i.e. with all begin and end points belonging to the
boundary. The set of all flows with starting points A and end points B
is called F f. For example, the set of all closed non-intersecting oriented
cycles on graph is F5. The sum of weights over all flows from A to B

N(A—=B)= Y w, (3.16)
peF%

is called partition function of flows from A to B. One can find examples
of perfect networks and sets of all lows on them in Fig. 3.6.

The partition function is naturally multiplicative with respect to the
gluing of disks: take pair of planar networks N’ = (G7,w;) and Ny =
(G2, wq) on disks D; and Do. Take intervals ¢; C dD; containing A; C
I, By C Jy at boundary of Dy, and £5 C 0D containing As C I, Bs C Jo
at boundary of Dy. We say that perfect network N in disk D is the result
of gluing of Ny over ¢; to Ny over {5 if disks are glued D = (D1UD2) /¢, ~,
in such a way that the grey vertices from A; are glued to Bs, and from
By — to Aa. Set of sources of N is I = (I;\ A1) U (I2\A2) and set of sinks
is J = (J1\B1) U (J2\B2). It is easy to see that partition function of flows
from A to B on glued network N is given by

Zv(A—=B)= >  Zv(CU(ANDL)—EU[BNJ))- (3.17)
CCA,ECB;

ZN, (EU(AN L) —» CU(BN.J)),

where the sum goes over all subsets of A} = By and B = As.

Consider corresponding subsets in example of two planar networks
glued together in Figure 3.2. Sets that depend on planar networks only
are I = {1,3,8} (all sources in 9D), J = {2,4,5,6,7} (all sinks in 9D),
I = {1,3,13,11} (all sources in dD;), J; = {2,4,5,12,10} (all sinks
in 9Dy), Iy = {8,9,10,12} (all sources in dD3), Jo = {11,13,6,7} (all
sinks in 0D3), A1 = By = {11,13} (passages from Dy to D), Ay =
B; = {10,12} (passages from D to D). The particular flow (denoted by
—) determines sets A = {1,3} (starting points of the flow), B = {5,7}
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Figure 3.2. Gluing of two planar networks.

(endpoints of the flow), C' = {13} (passages where flow is allowed to go
from D3 to D;), E = {10,12} (passages where flow is allowed to go form
D; to Dy). This is a single term in summation which goes over all possible
subsets C C A; = By and E C By = A,, as we sum over all possible flows
in disk D.

Formula (3.17) can be conveniently encoded using transfer matrix of
flows T. This is an operator Ty : (C?)®Hl — (C?)®l/| given by

Tn= Y., Zv(A—B)-Qesn).; ©Q ek, (3.18)
ACI,BCJ jeJ i€l

where s(k, X) = + if k € X and s(k, X) = — if £ ¢ X. The vectors ey ;
are basis vectors in j-th component of (C2)®|J |, vectors e} ; are basis co-

vectors in i-th component of (C2)®H|. Using this operator (3.17) becomes
simply
Ty = T, o T, (3.19)

where spaces with labels A; contract with corresponding spaces in By, and
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the same for Ay and Bs. Transfer matrices for perfect networks drawn in
Fig. 3.6 are written in (3.30).

Remark. For the reader, familiar with combinatorics of dimers, we note
that there is a bijection between bipartite graphs without two-valent ver-
tices with selected perfect matching Dy, and perfect networks without
neighbouring vertices of the same colour. The bijection can be estab-
lished by choosing orientation on the bipartite graph from black to white
for the edges not in Dg, and from white to black for those in Dy. There is
also similar bijection between perfect matchings on bipartite graphs and
flows on perfect networks.

3.2.2 Poisson structure on paths and X-cluster variety

There is a two-parametric family of Poisson brackets on the weights of half-
edges, see [83]. Here we will use, however, 1-parametric specialization of
it restricted to the paths connecting middles of the edges* considered in
[71]. Any path p on perfect network N = (G, w) which begins and ends at
the grey vertices (in the middles of edges or at boundary points) can be
decomposed into sum of contributions associated with the fans of internal
vertices

p= D T (3.20)
’UGC()(G)

where Co(G) is the set of internal vertices of G. Generators 1, ; are called
simple corners and are associated with paths which go through v and
connect middles of adjusted edges in the clockwise order, see Fig. 3.3
for example. They satisfy relation Z?ﬁglv Yy,i = 0 which means that by
traversing all simple corners associated with one vertex we get trivial path.

The logarithmically constant Poisson bracket on weights of paths is

{wplvaz} = 5<p17p2)wp1wp2’ (3'21)

4The latter can be obtained from the former using procedure of the gauge symmetry
reduction in black and white vertices.
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where the skew-linear form ¢ is defined as sum of local contributions of
each fan

5(p15p2) = Z Sgn(v)(sv(pLPQ)a
UEC()(G)

1
o 5 Ouadun i j=it1 (3.22)
Su (V30 Vanj) = ,
0 otherwise
where sgn(v) = 1 for the black vertices and sgn(v) = —1 for the white.

Example of pairing at three-valent black vertex is shown in Fig. 3.3. In
fact, bracket can be defined by extending it from the bracket on weights of
simple corners 7, ; = wyx . Thanks to the local structure of the bracket,
the gluing of perfect networks is Poisson map, as it was shown in [83].
There is an opposite operation of splitting network N = (G,w) on D to
Ny = (G1,w1) and Ny = (Ga,ws) by cutting D into D; and Dy along
some simple curve, which intersects G only at middles of edges and divide
grey vertices into pairs of vertices belonging to different networks. It is not
uniquely defined, if only weights of paths connecting boundary vertices of
D are known, because of the gauge redundancy under transformations
at internal grey vertices, which multiply weights of all paths ending at
internal grey vertex v by x, € C*, and all paths starting at v by 2 1. We
will face this problem again in Section 3.3.2.

51}(7{7 ’Y>2k) =

ou(73,73) =

N = N = N

k * * 6 x * -

Figure 3.3. Definition of the local pairing on paths at the three-valent vertex,
v + 75 = —~5. Simple corners are shown by blue.

The weight of any flow on planar network can be expressed using
only the weights of oriented boundaries of faces x; = Wpfne)- Faces are
defined from decomposition D\G = J; fi. Note that for unbounded disks
(adjacent to dD) we take only parts belonging to G. The face variables
x; satisfy single relation [[;x; = 1, as each edge of G belongs to the
boundaries of exactly two faces with the opposite orientations.
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Space of face weights admits structure of the toric chart in the A-
cluster variety. This means that it is algebraic torus with coordinate
functions x; satisfying log-constant Poisson bracket

{Xi7 Xj} = &5 XiXy (323)

with some skew-symmetric matrix € called exchange matrix. We say that
x; are X-cluster variables, and those x; which come from faces adjacent to
0D are frozen variables. Exchange matrix ¢ for perfect networks follows
from (3.21). It is convenient to represent ¢ as oriented graph (quiver) with
edges with multiplicities, whose oriented adjacency matrix is € and vertices
correspond to x;, see examples in Fig. 3.5 and 3.7. Toric charts are glued
by transformations of mutations in directions of non-frozen variables x;.
Mutation p; in direction of variable x; is defined by the action

x: 1 i=j

J
pi(x5) = ) (3.24)
(LX) i
) —Ekl, ifi=kori=I
Hil\Ekl) = e e
Ekl T+ ‘Ekz‘gll i Ekz‘gm, otherwise

2

on cluster variables and exchange matrix. We will call X-cluster variety
of face variables of graph G by Xq. Realization of mutations as transfor-
mations of perfect network will be discussed in the next subsection.

Operation of gluing of the disks results in the product of X-cluster
varieties with amalgamation, for details see [49]. In simple words one has
to replace pair of frozen variables corresponding to two unbounded faces,
which are glued to one bounded, by the new unfrozen variable (which
equals to the product of initial variables), and obtain new exchange ma-
trix from the glued graph. From the point of view of quivers, product with
amalgamation is gluing of quivers by vertices corresponding to frozen vari-
ables.

3.2.3 Plabic graph transformations

There are two well-known basic local transformations of perfect networks,
which preserve both partition function of flows on them and Poisson struc-
ture: two-move shown in Fig. 3.4 and four-move (also known as spider
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move or urban renewal or square move) shown in Fig. 3.5. The choosing
of perfect orientation is inessential here. For the two-move either face vari-
ables and quiver stay the same, while under the four-move they change
as under mutation [157, 71]. Here we present formulas for transformation
of corner variables under this moves, which will be required in Section 3.3.

For both two- and four- moves we derive mapping of the corner vari-
ables from reasonable monomial ansétze using three requirements

1. Transfer matrix of flows has to be preserved

2. Poisson brackets of new corner variables have to be consistent with
the transformed plabic graph

3. Mapping has to respect symmetries of plabic graph

It is easy to see that the unique monomial transformation rule under
the black two-move for corner variables labelled in Fig. 3.4, left, satisfying
this requirements is

U =tgby, 1, =bs(tib)2, I =ta(tiby)2, (3.25)

N

1
7”/1 = bsts, Té = tg(tlbl) , T‘é = bg(tlbl)ﬁ.

Under white two-move variables labelled in Fig. 3.4, right, transform as

U =toby, 1y =t5(t1b1)2, 1= bo(t1by)2, (3.26)

1 1
7’/1 = bots, Té = bg(tlbl)i, T’/3 = tg(tlbl)i.

Exchange matrix ¢ does not change under these transformations.

For the four-move there is a family of transformations, parametrized
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Figure 3.4. Transformations of the plabic graph under the two-moves at black
and white vertices.

by a1, as, as, which acts on corner variables by

1
_ Ca— TN —
ay = badg - my®3T?myM T g =dy- (1+x71)"2m, my “2m3?,

1L 1
aby=bz-(1+x)2m; * ~ mg*ms?,

1
/) asz+ag,  —aztaz ;o —1y—41 170 a9 ag
b = ages - mg ms , by=co-(14+x7")"2m{  my Pms3,
R
- 1 oator —ag —ap
by =az- (1+x)2m}  my*¥mg "2,
1
= doba - m&3—2 az+tasg ! — by - (1+ _1),% —3to s —ag
1 = 203 - My mg ) Coy = 02 X mq My "Mg ~,
= iy (1P g
5 =dz-(14+x)2m, my “mg 2,
1
! —a3—a az—o ’ —1\—% 71 o —a
di = coag - mgy BT PmgE T2, b=az-(14+x7)"2mi my>mg ™3,

/ 1 i‘i’al a3, a2
dy =c3-(1+x)2mi my*m3?,

(3.27)
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where

X = alblcldl, my = ——, mo = s m3 = ———. (328)

Figure 3.5. Top: change of bipartite graph under the spider-move and changes
in the quiver. Grey arrows are for the entries +1/2 of exchange matrix €. Bottom:
two ways for parallel bigon reduction and changes in the quiver.

Quivers encoding exchange matrix € before and after transformation
are drawn in Fig. 3.5, left, bottom. Whole family gives usual transforma-
tion rules for face variables, and are equivalent for our purposes, however
choosing a1 = as =0, az = —% strangely makes formulas simpler.

The most subtle transformation is so-called parallel bigon reduction
shown in Fig. 3.5, right. Recall that the zig-zags are paths, which turn
right at each black vertex, and turn left on each white one. Parallel bigon
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is a pairs of zig-zags which have such pair of intersection points, that
disk(s) bounded by their segments between intersection points cannot be
oriented in a way, consistent with orientation of segments.

The subtlety of parallel bigon reduction is that there are two different
ways to perform it, both of which are bad. One of them, labelled by (a) in
Fig. 3.5, change topology of zig-zag paths which will be unwanted for us
in the following, but preserves transfer matrix of flows and acts as cluster
transformation (mutation supplied by forgetting of one variable) on cluster
variables. Another one, labelled by (b), does not change topology of zig-
zags, however, its action on cluster variables is ill-defined and it changes
partition function of flows on plabic network. In the following, we will
either assume that the network does not contain parallel bigons, or reduce
first all its parallel bigons with transformation (b), before considering any
flows.

3.3 Tetrahedron equation from cluster algebra

The claim of this section is that transfer matrices for both plabic graphs
shown in Fig. 3.6, left, coincide with Bazhanov-Sergeev solution of tetra-
hedron equation. Moreover, we will show that tetrahedron transformation
is the result of sequence of four spider-moves.

3.3.1 Lax operators

As only paths which got both ends on the external edges of bipartite graph
contribute to the transfer matrices of flows, we need only path variables
~; shown in Fig. 3.6, left. For both graphs Poisson brackets of variables
are

{v,72} = =372, {12,713} = 37213, {3, 74} = =337, (3.29)

{va,m1} = 37, {n,73} =0, {72,74} =0.

All the paths contributing to the transfer matrices are drawn in Fig. 3.6,

right. Note that the only difference between the cases is in non-equivalent

perfect orientation. Two plabic graphs are related by one spider move.
The transfer matrices for upper and lower networks in the basis C?> ®
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Figure 3.6. Left. Four-gonal pieces of bipartite graphs whose transfer matrices
define Lax operators. Right. Paths contributing to transfer matrices.

C?=(e; ®ey, e, Qe_,e_Rey, e ®e_) are respectively

193"
(v372) ! Vs
Lew(y) = B K (3.30)
7 + (727374) (7273)
1
Yov7 !
~1
_ Y2¥3 Y4 T Y1723
Len(y) =
72 Y172
1

Matrix Lcp, coincides with Bazhanov-Sergeev Lax operator (3.11) after
conjugation

LBS:(0’1®0'10P)OLCLO(O'1®O'10P) (331)

where P is a permutation matrix P(u®v) = v ® u, and after identification
of variables

i

T = 7]__17 y=m + (7273’74)_17 k= m, (332)
N\ = Y174 . Y172
= —1 _— ,U = —1 [EA——
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The Poisson brackets (3.12) follow from (3.29). Matrix Ly, can be mapped
to Ler, by conjugation with P and replacement

newh wenl wenh uenh (3.33)

In the following we will be dealing with matrix L¢g, only.

3.3.2 Tetrahedron transformation

Tetrahedron transformation (3.6) for the Lax operators Lpg itself recasts
into the relation

LEL(va)LEL (w)LeL (ve) = LEL (ve) L () LEL (va) (3.34)

for the transfer matrices of perfect networks. Gluing left and right sides
of this equation from the blocks shown in Fig. 3.6 gives equality for net-
works as drawn in Fig. 3.7. Note that as in Fig. 3.6, each Lax operator
‘permutes’ vector spaces. The networks are related by sequence of four
spider-moves pur = prpqapaps supported by two-moves, detailed sequence
is shown in Fig. 3.11. Mapping (3.13) being rewritten in «-variables using
(3.32) results in

;L Ya, 1% 4 ;o Ya,276,47c,3 -1 -1
’Ya,l - 7(1,2 - X2X3[X3 7X2 }7
Yb,4%¢,3 X3 ) X2 X2X3 Ya,4

/ _ f)/(l 3’7& 4 X4 / . —1 -1
, Ya,4 = Vb,47¢,3%X2X3 [Xg , Xo ],
’Yb 47¢,3 X3 7X2 X2X3
-1
;o Ya1%c,1 ;o Malxs ] x3 1
Pybvl - 1 ) 7[),2 - Z?
[Xg ] Ya,1Ya,4Ve,1Ve,2 | X2X4q
—1
/ Vb,3%a,1Ya,4Ve,1 Ve, 2 ;o Malxs ] x3 1
Vb3 = Vo4 = k
X3 [X3 Ya,1Va,4Ye,1Ye,2 | X2Xy4
;o Ve, 1 Ve, 2 r -1 -1
Ye1 = Ye,2 = V5,27a,3X4X3 [X3 Xg
Ya,37b,2 X3 ,X4 X4X3
;L Ye,37e, 2 X9 ;_ Ya,376,27c,4 1 -1
Ye,3 = Yed = — . X4X3 [X3 » Xg ]
Ya,370,2 X3 ) X4 X4X3 Ye,2

(3.35)
where A = 1+ x5 +x7 [x3 1, % [x3 L, xY], [2] = 1+ =, [z,y] =1+
z(1 + y) and locations of face variables x; are shown in Fig. 3.7. Their
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explicit expressions in terms of «-variables are

1

B Ye,1Ye,47e,3Ve,2 ’
1 1

= X1 = ——"—",
Ya,17a,47a,3%a,2 V6,176,476,37b,2
X1 = Ycu4 X (weights of other boundaries),

X2 X3 = Vb,1%a,47e,2,

X4
X5 = Va2 X (weights of other boundaries),

( )
X6 = Y4 X (weights of other boundaries),
( )

xg = Y2 X (weights of other boundaries),

(3.36)

where by “weights of the other boundaries” we denote a product of the ~-
variables that correspond to the other boundaries of the face corresponding
to given x-variable, which are unimportant as neither transform under
four- and two-moves, nor contribute into the transfer matrices of flows.

Vel X0 Ya,1
———F—— —————F—

1 3
X1 Yed X3 Ye,2 X3 Va4 X4 Ya,2 X5
Vb1
— \

2 %_ e %_ 2’
Ye,3 Ya,3
X6 b4 X7 T2  Xg
3 y—2 1/

3/

9!

/I v
\ \ 5
2 z———¢
Th3
’ / ’ / 33 A~ ’ Vi ’
Xe Va4 X2 Ya,2 , Ye,4 X4 Ve,2 Xg
X7
b I

3oe——— 1

Figure 3.7. Left. Tetrahedron equation realized as equality of transfer matrices
of perfect networks. Grey crosses are for the points of gluing of four-gonal building
blocks. Graphs are related by sequence of four spider-moves ur = pritqfiots.

Right. Corresponding quiver before and after mutation.

It is easy to check that formulas (3.35) are consistent with the mapping
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of X-cluster variables

1 [x3 ] 11
X)) = Xq , X =x—2 1 x,= —
U T Tl T e d
11 5
Xy = X3XoXyX7A, X = 1 X5 = X Plcg ],1 ;
X3X4 1 X4_] (3.37)

/ -1 -1 /
Xg = X - X3X2[X5 , Xy |, X7 = —

1

/ — -1
X§ = Xg - X3X4[X5 ,X, ], Xg=Xo

under pugr which follows from (3.24). Trying to recover formulas (3.35) us-
ing 'refined’ formulas (3.25) — (3.27) for transformation of corner variables
one faces problems. In Appendix A we explain how these problems can
be treated successfully.

3.4 Integrable system for arbitrary Newton poly-
gon

In this section we give explicit construction for bi-coloured graph G defin-
ing integrable system with arbitrary Newton polygon. It will turn out that
for symmetric Newton polygon Lax operator is 'patchworked’ by contrac-
tion of 'XXZ spin chain’ rectangular blocks (see Fig. 3.8), which are made
from tetrahedron Lax operators (3.30). This extends results of [23] and
[140] to the case of non-rectangular Newton polygons.

Then we will show, how our constructions come out in the approach
to cluster integrable systems via double Bruhat cells in P/G\L(N ). Tetra-
hedron Lax operator will be identified with generator s;s; of diagonal sub-
group W(Ag\})_l) C I/I/(Ag\lf)_1 X AS\})_I), and tetrahedron transformation
— with the Coxeter relation there. Embedding of commuting subgroups
P/Gr\L(al) X oo X PTG\L(an) C ITG\L(N), N = a; + ... + ay, will provide
natural framework for the construction of Bruhat cell for arbitrary sym-
metric Newton polygon. Finally, we will construct double Bruhat cells
for non-symmetric Newton polygons via triangular decomposition of Lax
operators, discuss additional freedom, coming from Newton polygons with
sides, containing internal integral points, and prove classification theorem
for perfect networks on torus.
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3.4.1 Spectral curve and perfect network on torus

To the moment we were considering bi-coloured graphs on disks only.
Integrable system appears once we consider network on torus: due to [71],
spectral curve, which is generating function of Hamiltonians of integrable
system

S={(A\p) eC*xC* | S\ p)= >  Np/Hy=0}, (3.38)
(i,5)€Z?

is equal to the partition function of flows on perfect network N = (G, w)
on torus T2. In this subsection we are going to explain how spectral pa-
rameters (A, 1) and Hamiltonians of the system appear.

There are two major differences in structure of X for the network
N = (G,w) on torus T? compared to the case of disk. First, there are no
open faces, so Hi (G, 0G) = H1(G), and second, not any path on G can be
decomposed as a sum of paths along boundaries of faces, one has to take
also representatives of Hy(T2). Bringing this together we can uniquely
decompose any closed path v € H;(G) into

v =na()ya+ns()s+ Y ni(y)of:, (3.39)
fi€F

where F is the set of faces of graph G embedded into T2, and v, vp is
fixed pair of paths on G, which represent two classes in homologies of
torus with non-trivial intersection. The best choices for y4 p are zig-zag
paths Z (those oriented paths which turn left at each white vertex and
turn right at each black one) because, as it is easy to see, all face variables
x; and all zig-zag variables (o, = w,,, 24 € Z are Poisson-commuting

{xi,¢} =0, {¢a, s} =0. (3.40)

with respect to the bracket (3.21), so they are good candidates for the
role of ’spectral parameters’. For further convenience, we fix trivialization
H;(T?) = Z? by choosing a pair of cycles on torus hu, hg with simple
intersection < hy, hp >= 1, so one can assign a vector Uy = (aq,ba) €
H;(T?) to each zig-zag [24] = aa[ha] + balhp]. It often happens that the
lattice [Z], generated by classes 1, of all zig-zags, does not generate entire
lattice Z2 = Hy(T?), but some sub-lattice of finite index [Hy(T?)/[Z]| = d
instead. In those cases there is no way to choose any pair of zig-zags
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Za, 28 € Z to be 'basic cycles’ y4 = z, and yp = zg, and express all classes
in homologies as their integral combination. In such cases one has to make
coefficients n4,np,n; in (3.39) rational numbers with denominators being
divisors of d instead. So we get an embedding of finite index H;(G) C
7> ® éZ'F | which implies decomposition for the space of functions

Xg = C[(Hy(G))*] € CAF, 1t @ Clx Yser, (3.41)

where A = ((o)F4(C5)*4 5, u = (Co)*B=((s)"2# will have powers chosen
so that

kaata +kapglpg = (1,0), kB atia + kp gl = (0,1), (3.42)

so that A,y are variables corresponding to generators (1,0) and (0,1) of
homologies, and will play the role of ’spectral parameters’ in the following.
Now, spectral curve of cluster integrable system defined by perfect network
N = (G,w) can be calculated as partition function of flows

SO = 2 = 3wy = (343)
PEF 2
— Z )\< [p},hB>M*< [p]zhA> H x:ll(p) — Z )\ZMJHZ]7
pEFs fi€F (ig)eA

where Fr2 is the set of flows on torus, Hamiltonians H;; = H;j({xq})
depend only on face variables x;, which are X-cluster coordinates, and
set A C Z? is convex envelope of those (i,j) € Z? for which H;; are
non-zero, and is called Newton polygon of curve S. It was proved in [71]
that for minimal bi-coloured graphs there exist special perfect orientations,
called a-orientations (we will give both definitions in a moment)® for which
following theorem holds.

Theorem ([71]). Let N = (G,w) be a-orientated perfect network on
torus with minimal bi-coloured graph and (3.43) be partition function of
flows on it. Then:

1. Hamiltonians corresponding to boundary points of A are Casimir
functions.®

5 Actually, logic of [82] and [80] suggests that similar statement holds for any perfect
orientation, however the understanding of this point is still missing in the literature.

5Spectral parameters (A, ) are obviously Casimirs as well, as they are expressible
via zig-zag variables only.



3.4 Integrable system for arbitrary Newton polygon 101

2. Hamiltonians corresponding to internal points are algebraically in-
dependent and in involution

{Hij, Hu} = 0. (3.44)

3. Number of Hamiltonians (which are not Casimirs) is exactly half of
the dimension of symplectic leaf.

4. The Newton polygon A is the unique (up to permutation of collinear

vectors) convex polygon whose set of primitive oriented boundary
7

intervals is {ﬁk}‘kzzll

Together statements 1-3 imply integrability of the system. Statement
4 gives simple way to predict shape of the Newton polygon without compu-
tation of entire spectral curve. We will use it intensively in the following.
By deforming slightly zig-zag paths from the graph, so that they cross
edges only at grey vertices, and erasing graph itself, one obtains so-called
wiring diagram. This operation is invertible: it is easy to recover the
graph from its wiring diagram [71].

Partition function of flows Zp2 on toric network N = (G, w), G C T?
can be obtained by gluing of sides of the disk with network N = (G, w). To
do this, divide boundary of the disk into four clockwise oriented segments
Lo, by, Lo, £g with no sources or sinks at the points of contact of segments.
The gluing is possible if one can find such continuous monotonic map
J1 : £y — L. that puts beginning of ¢, to the end of /., end of ¢, to the
beginning of £., sources to sinks and sinks to sources, and similar map
for jo : €y — £4. If one found jq 2, then the partition function of flows on
perfect network N on torus is related to N on the disk, from which the
torus is glued with jj 2, by

Zpp= Y > ) > (3.45)

AcCl, BCcIl, CCl. DCly

Zg(AUBUCUD — ji1(A) U j2(B)U (1) (C) U (j2) (D))

where I}, and Jj, are sets of sinks and sources on ¢, for k € {a, b, c,d}, and
we use identifications ji(Iy) = Je, jo(Ip) = Ja, jl_l(Ic) = Jg, j;l(Id) =
Jp. Term with chosen subsets (A, B,C, D) contributes to Hamiltonian

"It might be so because there is a pair of zig-zags which travel in two opposite
directions along each edge of graph, so y_, [zx] =), @ = 0.
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H\c|—|a},|p|-|B|, if generators of H;(T?) are chosen to be hy = —f, = {4
and hp = £, = —/{. respectively. To obtain the same partition function
using transfer matrix of flows, one can ’take trace’ of transfer matrix by
contraction of spaces whose boundary points are glued by ji 2. With ex-
plicit dependence on A and p (which are not A, u from (3.41), but just
generating parameters, keeping trace of classes in homologies) incorpo-
rated it looks

N N A N N 1
Zr2 = Tl"j1 o (TN o )\PJG_PJCMPbede> , Px= Z 7(1 + OA'ZZ'), (346)
9. . 2 b
€eX
where 6,;, =1® ... ® 0, ® ... ® 1 is operator acting by o.-matrix in space
1, and by unity in all other spaces.

Now, it remains to construct special orientation for network on torus,
for which Hamiltonians are involutive. We construct it using so-called
dominant orientation for network on disk. In the following we will be
considering only graphs called minimal graphs, for which zig-zags do not
have self-intersections, there are no closed zig-zags (i.e. those isotopic to
S1) and no parallel bigons of zig-zags. For minimal planar graphs, we can
label zig-zags by their staring points.

Take any linear order < on the set of zig-zags, i.e. for any pair of
zig-zags z1 and zo set z1 < 29 or 29 < 21. For intersecting zig-zags order
must be strict, those zig-zags which do not have intersection points could
be equal in this order. Take any black or white vertex v, and let zig-zags
which pass it are z, < z4—1 < ... < 21, where a is the degree of the vertex.
We say that z, is the lowest zig-zag at v and z; is the highest zig-zag
at v. The order is said to be consistent at v if it satisfies the following
requirements:

o If zig-zag 27 is highest at v, then it is highest in the next vertex along
z1 if the next vertex is black, and in the previous vertex along z; if
the previous vertex is white. Note, that the both cases could occur
at the same vertex, as we do not demand graph to be bipartite.

e Any other zig-zags z;, i = 2,...,a is not the highest in the next
vertex along z; if the next vertex is black, and in the previous vertex
along z;, if the previous vertex is white.

The order is consistent if it is consistent at all vertices. To construct
perfect orientation on the graph by ordering on zig-zags, define first ori-
entation on fans of all internal vertices. For any black vertex the only
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incoming half-edge is those, along which the highest zig-zag come to the
vertex, and all the other are outgoing. For any white vertex the only out-
going half-edge is those, along which the highest zig-zag leave the vertex,
and all the other are incoming. It is easy to see that if the order on zig-
zags is consistent, then orientations of halves of all the internal edges are
consistent. We do not give explicit description of the set of all consistent
orders on zig-zags, however make the following

Conjecture. All perfect orientations without oriented loops for graphs
on disks are orientations constructed from some consistent orders on zig-
zags.

If one glue pair of disks Di and D, each equipped with dominant
orientation, the dominant orientation on D{ Uy Dy can also be obtained,
once the orders on zig-zags are concerted, and consistency condition at
boundary vertices holds (note that all the gluings in Section 3.3.2 was s0).
The same is true also for gluing disk into torus. Now, construct a-ordering
by taking any zig-zag to be the highest among all, and other zig-zags to be
ordered according to counter-clockwise order of their classes in Hy(T?,Z)
considered as vectors in Z2. As it was claimed, for orientation built from
such ordering, Hamiltonians H;; are involutive.

3.4.2 Integrable system with symmetric Newton polygon

In this sub-section using four-gonal block from Fig. (3.6) we construct
cluster integrable systems with arbitrary symmetric Newton polygon. As
it was discussed in the previous sub-section, for this it is enough to con-
struct such bi-coloured graph, that collection of homology classes of its
zig-zags coincides with the set of oriented boundary intervals of the New-
ton polygon.

We say that Newton polygon is 'symmetric’ if it is invariant under the
central symmetry (i,7) — (—i,—j), see e.g. Fig. 3.8. Due to the symme-
try, it always has even number of vertices — it is 2n-gonal. Let’s select
any point with the minimal é-coordinate. Starting from this point, we enu-
merate all oriented boundary intervals @y = (a1,b1), 42 = (az,b2), ..., U, =
(@n, by) in counter-clockwise direction, until the point, which is symmet-
ric to the initial one. Since we started from the left-most point, then all
a; > 0. We assume also that all intervals are primitive, i.e. ged(a;,b;) = 1.
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Opposite half of polygon, which starts at rightmost point, and ends at left-
most, consists of vectors with coordinates —iiy, ..., — .

Figure 3.8. Left. Example of the Newton polygon. Center. Schematic drawing
of the graph on torus. Four-gonal blocks are drawn in details on the right panel.
Edges are coloured according to the colours of zig-zags going along them, by
colours from the left panel. Right. Detailed view on graph and on wiring diagram
of zig-zags at the intersection points.

Decompose fundamental domain of torus into grid of n x n rectangular
blocks. Diagonal block at i-th position has a; sources on its left side, a;
sinks on its right side, |b;| sinks and sources on upper and lower sides
respectively if b; > 0, or visa versa if b; < 0. Edges are non-intersecting,
and if b; > 0, then graph is constructed by iterative connection of closest
non-connected sources with sinks by edges starting from top-left corner,
while if b; < 0, the process of connection starts from bottom-left corner,
see example in Fig. 3.8, center. Non-diagonal block at row i (counting
from the top) and column j (counting from the left) is a; x |b;| fence net’
bipartite graphs, which is rectangular grid glued from four-gonal blocks.
As it is shown in Fig. 3.8, right, at each four-gonal block zig-zag paths
are going without changing of direction, so it is easy to convince yourself
that the classes of zig-zags in Hy(T?) are precisely i1, ..., @y, —1, .., —iin
as required.

Remark. Bi-coloured graphs on torus obtained in this way might be not
simple because of parallel bigons. The evidence for this, is that the graph
constructed by proposed recipe, for each pair of boundary intervals u; and
@}, has |a;bj| + |a;b;| four-gonal blocks at their intersection points, which
is not SA(2,Z)-invariant quantity. Obtaining minimal graph, which is
necessary for integrability theorem, requires additional spider-moves and
parallel bigon reductions. As an illustration, interested reader can try to
construct graph and reduce it for the Newton polygon obtained from the
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one drawn in Fig. 3.8 by transformation z — z + y,y — y.

Transfer matrix of each four-gonal block is Ly, from (3.30), which
we identified with the solution of tetrahedron equation. If all blocks are
oriented as in Fig. 3.6, top, then the global orientation turns out to be the
a-orientation, so does not have oriented cycles. It is known since [23], and
redirived in the context of cluster integrable systems in [140], that 'fence
net’ a x b block being glued by pairs of opposite sides to cylinder defines
either Lax operator of gl, classical XXZ spin chain on b sites or gl chain
on a sites, depending on pair of sides chosen to be glued. As we remarked
in (3.14), it was noted in [23] that the result of contraction of tetrahedron
Lax operators decomposes into direct sum of Lax operators for XXZ chain
with auxiliary space being sum of all fundamental representations of gl,

(@)% = BT = T(w) = B Laea (). (3.47)
=0 1=0

In our approach this is the result of the natural grading by the number of
paths which cross cylinder from the left to the right, and implication® of
LGV lemma [86, 123]. Dependence on spectral parameter p comes from
the paths which cross horizontal boundary of fundamental domain, and
formula (3.46).

Cylindric transfer matrix of the system with arbitrary Newton polygon
can be obtained by cutting of graph drawn in Fig. 3.8 by vertical line
between any pair of columns of four-gons. Due to the chosen orientation,
all the sources are located on the left, and all sinks are located on the
right side of cylinder. The transfer matrix by cylindric LGV lemma again
provides Lax operator acting in direct sum @)_oA‘C", 7 = a3 + ... +
ap. The first fundamental Lax operator Lcr(u) satisfies r-matrix Poisson
bracket (3.15), as it was proved in [84].

One can keep decomposing cylinder by vertical cuts, up to separating
transfer matrix into product of n transfer matrices, each corresponding to
flows passing one column in the array of fence-nets. We will clarify how
this cylindric blocks are related to combinatorics of affine Weyl groups be-
low. However, we want to stress here, that only the toroidal representation
of the system makes SA(2,Z) covariance explicit.

8This is not LGV lemma itself, as we deal with cylinder. Some subtleties with
spectral parameter and its signs appear because of the closed paths which go around
cylinder. For discussions see [84] and [125].
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3.4.3 Integrable systems on Poisson-Lie group

Another origin of cluster coordinates in integrable systems is factorization
ansétze for elements of Poisson-Lie group PGL(N) [49], [82], [?], which
appeared in theory of positive matrices [57]. In this approach phase spaces

of systems are double Bruhat cells B,, C P/GEJ(N ), which are enumerated
by elements w of extended double Weyl group |74 (Ag&ll X Ag\lfll), which
has presentation

W (AR, < AJ,) = (3.48)

— _ 2 __ <  e.T
S$iSi4+1Si = Si+1SiSi+1, ASi = 81'_4_1/\7 S; = 1, SiSj = SjSi, >

e - = 2 _
5i8i418; = 5i415:5i11, A& =351, 5 =1

< Siy 85y A
1 €Z/NZ
Fach reduced decomposition of w into product of generators s;, s;, A pro-
vides open embedding of X'-cluster chart in B,,: to each generator one as-
signs certain matrix (namely, transfer matrix in one-path sector of blocks
shown in Fig. 3.9), depending on X-cluster variables. Product of these
matrices in the same order, as letters in the word w are located, provide
matrix g(A) parametrizing B,,. Cycle hy is chosen to be interval lying on
the ’back’ side of cylinder and connecting its left and right boundaries, so
the dependence on A comes from generators sg, 59 and A which contain
edges crossing h 4, for details see [?].
The restriction of r-matrix bracket with trigonometric r-matrix

{g(M1) @ g(A2)} = [r(A1/A2), 9(M1) @ g(A2)] (3.49)

to double Bruhat cells, which are Poisson submanifolds, turns out to be
compatible with logarithmically constant bracket (3.21). The simplest
way to check this is by checking for each block drawn in Fig 3.9, and
using co-product property of r-matrix bracket, that if g; and go satisfy
it, then g1g2 also satisfies. Exchange matrix € can be easily written from
the word w by considering graphs, dual to those drawn in Fig. 3.9, as
it was done in Fig. 3.5. Change of reduced decomposition via Coxeter
relations s;8;415; = Si4+15:S;+1 and 5;5;4+15; = 5;4+15;5;+1 amounts in single
four-move and pair of two-moves. Relation 5;s; = s;5; can be realized as
single two-move and does not affect exchange matrix if 4 = j £+ 1, and is
single four-move if i = j. The relations s? = 1 and 52 = 1 can be done
by pair of two-moves followed by parallel bigon reduction of type (b),
and therefore are not cluster transformations and do not preserve transfer
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matrix, however preserves wiring of zig-zags. If one applies parallel bigon

reduction of type (a) instead, one gets Weyl semi-group with relation

s? = s;. Below we will assume that we use reduction of type (b).
Spectral curve of integrable system is given by characteristic equation

S(A p) = det(g(A) — p). (3.50)

Hamiltonians of the system are Ad-invariant functions on Bruhat cells,
and so only conjugacy class of word w matters. Taking characteristic
equation of g(\) is close relative of gluing torus into cylinder, so the spec-
tral curve coincides with the one given by (3.43) up to transformations
S\, p) = fF(NSA, 1), p— g(A)p, where f, g are some rational functions
with coefficients depending on Casimirs.

Si S; A

Figure 3.9. Basic graphs on cylinder corresponding to generators of Weyl group.
Zig-zag paths are drawn by green lines, and generators act on their ends by
permutation. Note that zig-zags are drawn so, that in-going and out-going ends
of zig-zags alternate along the boundary.

Important observation, which we will need in the following, is that the
building blocks for s;, §;, A indeed 'permute’ zig-zag paths, which we will
sometimes refer as strands. One can see in Fig. 3.9 that zig-zags going
from the left to the right along lines 7 and i+ 1 are permuted after passing
s;, while s; permutes those going from the right to the left along ¢ and
1+ 1. Note, that the label i of generators s; and s; is given not by the
number of zig-zag, but by the number of horizontal line of bi-coloured
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graph. Generator A shifts by +1 all zig-zags going from the left to the
right, and by —1 those going from the right to the left.

Weyl group interpretation of tetrahedron equation Double Weyl
group of P/G\L(N ) contains diagonal subgroup W(Ag\l,ll) C W(Ag\l,ll X
Ag\lfll) generated by s;5; and A. Comparing Fig. 3.6 and Fig. 3.9 one
sees that plabic graphs corresponding to Lax operator of Bazhanov and
Sergeev coincides with the one presenting word s;5; in double Weyl group!
As we will see below, systems with symmetric Newton polygons can be
constructed using diagonal subgroup only, so this again gives construc-
tion of integrable system with arbitrary symmetric Newton polygon from
contraction of Lax operators (3.11). Tetrahedron transformation shown
in Fig. 3.7, can be interpreted just as braiding relation

PRt (8i80)(Sit18i41)(8i5:) = (Si415i41)(565:) (Si418i41) (3.51)
for diagonal subgroup of W(Ag\lfll X A%ll). This is the same transfor-
mation, which relates two ’positive’ parametrizations [57] for the largest
Bruhat cell wg in PGL(3).

The functional tetrahedron equation (3.10) recasts into statement, that
two ways to identify two different parametrizations for the largest Bruhat
cell wy in PGL(4) are equivalent

wo = (51§182§283§3)(81515252)(5151) = (535352§281§1)(33533252)(5353).
(3.52)

Symmetric Newton polygon Now, we are ready to show how con-
struction from section 3.4.2 for integrable system with symmetric Newton
polygon (i1, ..., @, —Uj..., —i,) can be reproduced for double Bruhat cell

of the group PGL(N), N = aj + ... + a,. Construction comes from con-
sideration of commuting subgroups PGL(a1) x PGL(a2) X ... x PGL(ay)
in PGL(N), similar to those from [53], and observation that s; and §; act
on zig-zag paths by permutations. Consider subgroup W; ; = W(Agljl X
Agl_)z) - W/(AS\Q1 X Ag\l,ll) which permutes strands from ¢ to j keeping
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other strands intact. More precisely, generators s;, A’ of this subgroup are

/ U < : ;
8¢ = Sita—1, Sq = Sita—1, 1< a<j—i,

a =

/
Sop = S$i—15i—2---5150SN—-1---5j4+15j5j+1---SN—-15051-.-5;—-2S5i—1, (3 53)

— _ _ _ _ _ _ _ _ _
Sop = S$i—15i—2.--51850SN—-1.--5j4+15j5j+1-.-SN—-15051-.-5{—-2S5i—1,

’ _ _ _ _ _ _
AN = Si_lSi_lsi_gsi_z...8181808081\[,181\[71...Sj+18j+1A,

so generators from s} to 3;-72-71 act on strands i,...,J as usual, while the
affine generators are ’skipping’ other strands 1,...,s— 1,7+ 1,..., N. Gen-
erator A’ of subgroup W; ; will be referred as A, ; in the following. Note,
that bipartite graph defined by block A;; is the same stripe of four-gons
as a one, which appeared in Section 3.4.2.

It is always possible using SA(2,Z) transformation to place Newton
polygon in such a way, that it does not have any vertical sides. It is
straightforward to check that the Bruhat cell which gives Newton polygon
(U1, ..., Up, —Uj..., —Uy) is defined then by element

w = (Al’rl)bl (Ar1+177«2)b2...(Arn_l+1jrn)bn, T = aj 4+ ...+ ag (354)

in double Weyl group. Side (ag, bi) of the Newton polygon is generated by
strands a,, ,+1,...,ar,. Together they got projection a;, on the generator
of homologies oriented along cylinder. Generator A, ,11,, mixes only
them, and each application of this 'twist’ operator increases their common
projection on generator of homologies, oriented across cylinder, by 1. By
applying it bg times and making torus from cylinder, they are gluing into
longer strands representing class (ay,by) € Hy(T?,Z), so it presents side
i} of the Newton polygon. Strands going along the same lines but with
the opposite orientations generate class —1i.

Non-symmetric Newton polygons For integrable system with non-
symmetric Newton polygon it is convenient to present Lax operator in tri-
angular decomposed form. This requires getting out of diagonal subgroup
of W(Ag\lfll X Ag\lfll), and considering separately 'positive’ and 'negative’
commuting subgroups f/IV/'(A(l) ) X ... X W(Agi)fl) and W(Agll) X ... X

a1—1

C
boundary intervals of polygon between the leftmost and rightmost points,

U1 = (—c1,—d1), ..o, Uy, = (—Cm, —dy,) are intervals between the rightmost

W(A(Bfl), where i, = (a1,b1),..., 4, = (an,by,) are primitive oriented
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and leftmost points in counter-clockwise direction. Introducing halves of
'twisting’ operators

A;; = si_lsi_Q...slsosN_l...sj+1A, Az_] = §i—1§i—2---§1§0§N—1'--§j+1Aa
(3.55)

where 7, = a1 + ... +a; and I; = ¢1 + ... + ¢;, the word in double Weyl

group which provides wiring diagram for non-symmetric Newton polygon

is

w=wrw AT (3.56)

P, = (A ) (A )

+ (AT
w' = (A I —1+1,lm

17T1

oA

Tn—1+1,mn

see example in Fig. 3.10, left. As far as the shifts w™ — A¥w™A~F preserve
Newton polygon, by + ... + b, = di + ... + d,,, and only the conjugacy
class of word matters, the same Newton polygon is provided by w =
w-wtA~%==dn The upper- and lower- diagonal Lax operators defined
by w* are constructed from hexagonal graph, in contrast to the symmetric
case, where the basic building blocks were four-gonal 'fence-net’ graph.

Wiring of parallel zig-zags It remains to discuss a wiring of paral-
lel zig-zags. Take Newton polygon with integral points on the boundary,
which are not at the corners, i.e. those having at least one 'non-simple’
side @), = hy - (ag, by), with ged(ag,by) = 1 (hy > 0, and let aj, > 0 for
certainty). Considering hj simple boundary intervals (ag, br) separately,
one gets hy commuting sub-groups (W(Ag?_l))mk, whose resulting con-
tribution into word in double Weyl group by twists is

by, b
— +

Wk k+hy = (Arkfl‘i‘lﬂ“kfl‘i’ak) ( T‘k_1+(hk—l)ak-f-l,rk_l-i-hkak) . (357)
Alternatively, one can consider this intervals together, which gives group

W(A;llk)ak_l) contributing by

bhg
_ (At

wk»k+hk - (Ark_l—i—l,rk_l—l—hkak) : (358)

Two choices can be transformed one into another by local moves, however
the second ansatz is more reduced compared to the first one, as it involves
(N — aghy + 1)bihy generators against (N — a + 1)bihy in the first case.
Another benefit is that it can be easily extended to involve 'wiring’ of
parallel strands, by

Ry,
_ (At - .
Wkl = (Ark—l“rlﬂ"k—l‘i‘hkak) W, Wk € W(Ahk—1)7 (3.59)
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where W (Ap, 1) is group acting by permutations of strands ry_1+1, ry_1+
2,...,7k—1 + hg, see example in Fig. 3.10, right. One can assign such
'non-affine’ word to each non-simple boundary interval of Newton poly-
gon, however it is more natural not to bring all parallel intervals together,
but to join them according to decomposition of Wy, into a product of simple
cycles.

WY N
[N
—~—~—
I
— e
O N
==
[
q
q

@ = (1,0) @
ﬂ'Q:(l,O) Vo= (—=1.0) teeeeeeee o
ﬁ3:(170) U3 = (— a*2)§1 So Sg 81 Sg S2 81 So

Figure 3.10. Top: Example of the double Bruhat cell in ﬁ(?;) with non-
symmetric Newton polygon. The corresponding element in the double Weyl

we used commutation relations of §; with A. The bipartite graphs are drawn on
torus, i.e. one has to glue right side with the left one, and upper with the lower.

Bottom: Example of the double Bruhat cell in PTG\L(B) with non-trivial wiring
of parallel zig-zags, the corresponding element in double Weyl group is w =

3.4.4 Classification of perfect networks on torus

Systematizing examples of previous subsection, we show now that all bi-
coloured graphs on torus can be reduced by local moves to 'normal forms’,
which are enumerated by Newton polygons (containing information about
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winding of zig-zags on torus), with the sides containing integral inter-
nal points partitioned according to the wiring of parallel zig-zags. Nor-
mal form attributed to graph is unique, up to SA(2,7Z) transformation of
Newton polygon. Similar combinatorics already appeared in [34] in the
description of moduli spaces of monopole walls.

The statement is straightforward consequence of the fact, proved in
[55], that one can always ’slice’ bipartite graph on torus, and put into
correspondence to it some conjugacy class in double Weyl group (3.48),
and the following

Lemma. Any conjugacy class in double Weyl group (3.48) contains
unique element of the form

w=w! .. wh-w . ow, AT (3.60)

bk
wi = (Aﬁfﬁl,m) (rg—1 + ged(ag, bg)y ooy i1 + 1),

d
wy = (A pag)” (et sed(en dy), -l + 1),

where

e Numbers ag, bi, ¢k, d. define ordered set of counter-clockwise ori-
ented, boundary intervals @iy, = (ag, bg), Ux = (—cg, —dg) with ag, ¢, >
0, of some Newton polygon of width N. The order starts from the
direction (0, —1), ’parallel’ vectors (i.e. proportional, with positive
rational coefficient)? are ordered from the longest to shortest.

e Numbers 7,1l are defined by 7, = a1 + ... + ag, lp = c1 + ... + ¢ for
k>0,7‘0:l():0.

« Words A;tj are 'subgroup twists’ defined by formula (3.55).

o Words (],,’L) = 5iSi+1---8j-255—-1 and (],,’L) = §i§i+1---§j72§j71
are simple cycles'®, i < j.

9Sides of the Newton polygon, containing internal integral points, can be split into
pieces in various different ways.
10The name comes from its action as permutation j — j — 1,...,5+ 1 +— 4,i— j
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Proof. Any element w of the group W(A%ll X Ag\l,ll) admits decom-

position w = wrw~A™E, where wT,w™ are words, which contain only
generators s;, A or 5;, A respectively, and total degree of A in either w™ or
w™ is K. Both w® belong to sub-groups of I//IV/(A%)_l) - type, so we will
classify conjugacy classes of its elements, and then show, how ambiguity
with the distribution of A can be fixed. Choose for definiteness subgroup
generated by s;, A. There is a structure of semi-direct product

W (AW ) =7V x W(Ax_1), (3.61)

which comes from presentation w* = L - g, where g is element of non-
affine Weyl group generated by s;, and L is element of lattice generated
by commuting elements A;fi, as defined in (3.55), i.e. those which take
strand, wind it up over cylinder, and bring back onto initial place. Writing
this as pairs, and using additive notation for elements of lattice e; = A;,ri,

we get product rule

(L1; 91) - (L25 g2) = (L1 + Ry, (L2) 5 9192), (3.62)

where Ry, acts on the basis elements of lattice by permutations

R, (€i) = eit1, Ry, (€i1) = iy Rs,(ej) = ¢j if i # j, j+1and Ry, Rg, = Ry, g,.
(3.63)
The conjugacy classes in W(Ag\l,ll) are in bijection with the set of pairs
(7,7), where A = (A1 > ... > Ayn) > 0) is the partition of number N, ¢ €
Z'™) and £()\) is the number of parts in the partition X. Indeed, conjugacy
classes of permutations on IV elements are enumerated by partitions A of
number N, each containing representative

(P1, s (P2, 501 + 1) oo (Pen)s -+ s Pey—1 + 1), (3.64)

where pg =0, p; = A1 + ... + X, and (j,...,4) = s;... sj_1 is cyclic permu-
tation, acting on the lattice by

R(j,...,i) : €= €i+1 , .. 5, €j_1r>e€j €; — €; (3.65)

for i < j. As simple cycles (pg, ..., px—1 + 1) commute for different k, and
generators of the lattice can be shifted along the cycles

[(ex s 1d) - (05 (5, -, )] = [(er5 1) - (05 (4, .-, 9))], Vi <k, 1<, (3.66)
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where | | is taking of conjugacy class, then by moving elements of the
lattice to the ’first lines’, one gets
Feewgn)s wi = (@ ep 115 (ks P—1 + 1)), (3.67)
for some i, € Z, so the vector ¢ = (qi, ..., gg(»)) is the vector of the "lengths’
of lattice elements. To put conjugacy class in the form of the products of
"twists” A;j, note that
W (pr—1+ged(Ne, Gr), o PE—1+1) = (Vie; 0% (Pr, PE—1+1) 01 1),
(3.68)
where the lattice element V;, = t;c(epkfﬁ-l+-'-+epk)+€pk71+1+---+€pk,1+t;{
with ¢}, € Z>o, 0 <t} < A is defined by ¢ = t; \x + t}, and comes from
decomposition

(Apk_l-i—l,pk)

(Ap_y1.00) ™ = (Vies (Dry s D1 + D)%), (3.69)

which can be checked by direct computation, using that A;; = (k,...,17)
A,i'k (4, ..., k) for any i < k < j, and non-affine permutation oy, is defined
from

(Phs s D=1+ 1) ™ (D1 4+8ed( Ak, Gi), oo s Pre1+1) = O (P -y P—1+1) 0 !

(3.70)
which holds, because all orbits of the action of i — i + g on Z/A\;Z can
be uniquely presented by one of the numbers 1, ..., gcd(Ag, gx), so both
sides of (3.70) got only one orbit. From (3.68), using (3.66), for conjugacy
classes follows

[(Ape_ 141, p0) ™ - (k1 + ged (M, @) v s pl—1 + 1)] = (3.71)

= [(Qk “Cpp_1+15 (pk7 s Dk—1 T+ 1))] = [w]:—],

which is almost statement of the Lemma. The w™ part can be reduced to
the normal form, encoded by (qj, ;\), in the same way. The only element,
which is common for words w™ and w™ is A, which also do not commute
with all generators s; and s;. However, we initially distributed it in w =
wTw™A™X in a such way, that the total degree of A inside w™A~% or
A~ Ew? is zero, so the treatment of w™ or w™ is not affected by another
part. Finally, conjugating w* by suitable permutations from non-affine
parts, we can rearrange indices of s;,s; inside w,f by counter-clockwise
order on the directions of vectors ()i, q;), (—\i, —@;), starting from the
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direction (0, —1), and by decrease of lengths for the vectors of the same
slope, obtaining numbers (a;, b;) and (¢;, d;). The properties that the sum
of vectors is zero, i.e. that they can be composed into the boundary of
Newton polygon, and that the width of this polygon is IV, are guaranteed

by M= =N, >0 =>;0=K.

3.5 Discussion

In this Chapter we have demonstrated that the Bazhanov-Sergeev solution
of the tetrahedron equation appears naturally as the basic building block
for the transfer matrix of paths in the theory of cluster integrable systems.
We have also shown how the integrable system with arbitrary symmetric
Newton polygon can be built using this building block. We have explained
how this construction originates from the combinatorics of words in the
double affine Weyl groups and used it to explicitly construct bi-coloured
graph for the integrable system associated with any Newton polygon. We
have also proven the classification Lemma stating that we have constructed
all possible systems of such kind.

The following questions seem to be promising for future developments
of this topic:

o As the Poisson brackets on weights of paths are bi-linearly constant,
it can be quantized in a straightforward way by [48]

{w’n ) w’yz} = e(m, '72)w71 Wy,  — Wy Wy, = téa(% 7’m)w’yﬁr’m

(3.72)
The mutation, which was a canonical transformation classically, in
the quantum world becomes a conjugation by quantum dilogarithm.
Extension of the arguments presented in this Chapter to the quan-
tum case will provide a closed formula for the tetrahedron R-matrix
Rape in terms of four quantum dilogarithms. This can clarify the ap-
pearance of the product of four functions similar to quantum dilog-
arithms at the root of unity in the vertex weight of the 3d vertex
model [10, 11, 107, 108], whose solution is known to be a solution
of the tetrahedron equation [113, 170]. Such product (outside of the
roots of unity) was also noted in [160]. Another promising direc-
tion of research is construction of new solution for the tetrahedron
equation using cluster algebras with fermionic variables [152], as
suggested by recent appearance of quivers with fermionic nodes in
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representations theory of affine algebras [117, 126, 127, 12, 183] and
approach of [162] to super-algebras using tetrahedron equation.

e Surprisingly, the same quiver and the same cluster transformation
as those shown in Fig. 3.7 have already appeared in the context
of the relation between cluster algebras and vertex integrable sys-
tems in [181]. The physical origin of these solutions was the 2d
N = (2,2) supersymmetric sigma-model, whose Kédhler parameters
were shown in [22] to transform as cluster variables under Seiberg
dualities. From the other side, the approach to cluster integrable
systems which we have used here is suspected to originate from 5d
N =1 theories [39, 14, 140], where cluster variables play the role of
Seiberg-Witten curve’s moduli. This intriguing coincidence should
have some unifying physical origins.

e The systems we have considered were mainly of “affine” type: they
live on double Bruhat cells of the affine group P/G\L(N ) and being
rewritten in Darboux variables represent “closed” chains of interact-
ing particles [39, 128, 55, 80]. The integrability theorem, proved in
[71], assumes that the perfect network on torus is minimal, i.e. that
its zig-zags do not have self-intersections, and that parallel zig-zags
(those, whose classes in Hy(T?,Z) are proportional with positive co-
efficient) do not intersect. The cluster description of the “open”
chains'!, which live on double Bruhat cells of the non-affine group
PGL(N), involves networks drawn on a cylinder (or on a cut torus
— this can be treated as a particular case of a “squashed” Newton
polygon of zero area). So all the intersections of zig-zags are either
self- or parallel-, and integrability of such systems is not guaranteed
by [71]. However it can be proved by other methods.

We have unified these classes of systems by considering the wiring
of parallel zig-zags. As it was shown in [84], the Lax operator of any
network on a cylinder has an r-matrix Poisson bracket with itself,
however the general integrability criterion, which allows to compare
the number of independent integrals of motion and the dimensions
of the symplectic leaves still has to be developed.

o We have proven the classification theorem for bi-coloured graphs on

1YWhich were historically the first examples of the cluster description of integrable
systems [82].
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torus. Graphs which contain wiring of parallel zig-zags cannot be
made minimal by local moves, i.e. self-intersections of zig-zags are
protected by topology. However, they can always be made “locally
minimal”, which means that they become such networks on torus,
that being cut by any curves into a disk, they become minimal net-
work on the disk, as follows from the reduction theorem proved
in [174]. In the language of double Weyl groups locally minimal
diagrams are those defined by reduced words.

However, in our consideration we allowed to reduce parallel bigons by
the use of s? = 1 which is not a cluster transformation. Classification
of the normal forms of the locally minimal networks “up to cluster
transformations” with the bigon reduction relation s? = s; seems to
be a fruitful direction for further investigations, especially as it might
exhibit interesting SL(2,Z) covariant behaviour 2. The problem of
parallel bigons itself is still poorly understood in cluster algebras,
and also awaits its solution. We also expect, that the condition
that the Newton polygon does not contain vertical sides might be
removed and full SL(2,Z) covariance restored by the replacement of
the double affine Weyl group with a certain generalization thereof,
originating from toroidal algebras.

e In this Chapter we have been discussing continuous time integrabil-
ity only. However, the cluster integrable systems are known to have
rich discrete dynamics. In [65] the general structure of the group
of discrete transformations generated by spider moves was given.
However, it is known that even for quivers coming from bi-coloured
graphs there is a much larger group of cluster transformations (se-
quences of mutations and permutations of quiver vertices) which
bring quivers back into itself, which however cannot be represented
by a sequence of bi-coloured graph transformations (see e.g. [99] for
hexagonal lattice and [140] for the four-gonal one). These trans-
formations are related to boundary intervals of Newton polygons
with integral internal points, and realize permutations of “parallel”
zig-zags (whose classes in torus homology coincide).

We expect that using the results of this Chapter, a big piece of
the cluster mapping class group containing the sub-group W(Ag\l,))

2However, we conjecture that the set of cyclically irreducible words will be the same
for both relations, s? = s; and s? = 1.
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for each boundary interval with N internal points, and a subgroup
described in [65], can be explicitly constructed. The half Dehn-twists
R-matrix [87, 171] should also find their natural interpretation in
this construction.

3.6 Appendix. Details on tetrahedron transfor-
mation.

As it was said in Section 3.3.2, it is easy to check that transformation of
cluster variables (3.37) is agreed with tetrahedron transformation (3.13)
via (3.32). However, it is not that easy to derive transformation rules
for ~ variables (3.35) directly from sequence of two- and four- moves.
The major difficulty is that after sequence of moves shown in Fig. 3.11
new variables 7/ defined in Fig. 3.7 can not be expressed using ~,; with
xr =a,b,c; i =1,2,3,4 variables only, but more refined corner variables,
ai,as,as, ..., 11,12, 3, as indicated in Fig. 3.11, should be involved.

It turns out that this problem might be treated by choosing of ap-
propriate gauge. After application of two- and four- moves one can still
apply gauge transformations at points shown by grey crosses in Fig. 3.7,
left, bottom, which transform +’ variables by

Vo1 = XVo1s Va2 = X Yo, ez =Y s,
Vo2 — ZVh 2 Yoz XZ_IVZ/;,:’,’ Vba = X_IVI/;A’ (3.73)
Yeq — Zil%,h Vs — YﬁlZ’Yé,Ap Yes = Y3

and change transfer matrix of each four-gonal block, but do not affect
transfer matrix of whole network. Direct check shows'® that once X,Y, Z
are chosen to be

x - [f2r0s (’Ya,wa,ﬂig%,wc,g)l/ i
€3%a,2 %,2%,371?,1%,3%,4
v — lobo (d3l3 ) 3/8 (’Ya,27b,4’7c,2> A 7 (3.74)
\ asks \izao Va,4Vb,2Ve,A
g [h2ea (%,2%,375,1%,3%,4>1/ °
93%e2 \Va1VadVogVelVe2 )

"*With four-move parameters chosen to be a1 = az =0, as = —1 in (3.27)
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Figure 3.11. Tetrahedron transformation as sequence of eight two-moves and
four spider-moves. Red colour highlights those parts of graph which being trans-
formed by two- or four- moves.

transformed + variables match (3.35) obtained directly from (3.13) via
(3.32).
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