-1 Universiteit
%47 Leiden
The Netherlands

On cluster algebras and topological string theory
Semenyakin, M.

Citation

Semenyakin, M. (2022, September 15). On cluster algebras and topological
string theory. Casimir PhD Series. Retrieved from
https://hdl.handle.net/1887/3458562

Version: Publisher's Version
Licence agreement concerning inclusion of doctoral
License: thesis in the Institutional Repository of the University
of Leiden

Downloaded from: https://hdl.handle.net/1887/3458562

Note: To cite this publication please use the final published version (if
applicable).


https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/3458562

Chapter 2

Cluster integrable systems
and spin chains

2.1 Introduction

In the seminal paper [172] Seiberg and Witten found ’exact solution’ to 4d
N = 2 super-symmetric gauge theory in the strong coupling regime. More
strictly, the IR effective couplings were constructed geometrically, from the
period integrals on a complex curve, whose moduli are determined by the
condensates and bare couplings of the UV gauge theory. Shortly after, it
has been also realized [72] that natural language for the Seiberg-Witten
theory is given by classical integrable systems. In such context the pure
supersymmetric gauge theories (with only N = 2 vector supermultiplets)
correspond to the Toda chains, while integrable systems for the gauge
theories with fundamental matter multiplets are usually identified with
classical spin chains of X X X-type.

The next important step was proposed in [164], where this picture has
been lifted to 5d. Then it has been shown that transition from 4d to 5d
(actually — four plus one compact dimensions) results in ’relativization’
of the integrable systems [143] (in the sense of Ruijsenaars [159]). In the
simplest case of SU(2) pure Yang-Mills theory, or affine Toda chain with
two particles, instead of the Hamiltonian

Hyg=p*+el+ Ze ™9, (2.1)
corresponding to 4d theory, one has to consider

Hyy=eP+eP+el+ Ze™ 1, (2.2)
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or the Hamiltonian of relativistic Toda chain, which describes effective
theory for 5d pure SU(2) Yang-Mills '. It has been also shown that 5d
theories with fundamental matter correspond to XXZ-type spin chains
(see e.g. [133] and references therein).

Relativistic Toda chains lead to natural relation of this story with the
integrable systems on the Poisson submanifolds in Lie groups, or more
generally to the cluster integrable systems — recently discovered class of
integrable systems of relativistic type [71, 128, 55]. Direct relation be-
tween cluster integrable systems and 5d gauge theories has been proposed
in [14]. It was shown there that for the case of Newton polygons with
single internal point, dynamics of discrete flow is governed by g-Painlevé
equations and their bilinear form is solved by Nekrasov 5d dual partition
functions (for other examples of 5d gauge theories the same phenomenon
was considered in [102, 16, 15])2.

Cluster integrable systems Any convex polygon A with vertices in
72 C R? can be considered as a Newton polygon of polynomial fa (), p),
and equation

fA()‘v:u> = Z )‘aﬂbfa,b =0. (2.3)

(a,b)eA

defines a plane (noncompact) spectral curve in C* x C*. The genus g
of this curve is equal to the number of integral points strictly inside the
polygon A.

According to [71],[55] a convex Newton polygon A, modulo action
of SA(2,Z) = SL(2,7Z) x Z?, defines a cluster integrable system, i.e. an
integrable system on X-cluster Poisson variety & of dimension dimy = 2.5,
where S is area of the polygon A. The Poisson structure can be encoded
by quiver Q with 25 vertices. Let ¢;; be the number of arrows from i-th
to j-th vertex (ej; = —e;;) of Q, then logarithmically constant Poisson
bracket has the form

{JL‘Z’, .Tj} = EijTiTj, {.CIJ@} S (CX)QS . (2.4)

!The slightly misleading term ’relativistic’ appears here due to formal similarity
of momentum dependence to the rapidities of a massive relativistic particle in 1 4+ 1
dimensions.

20ther relations between 5d supersymmetric gauge theories and cluster integrable
systems (involving exact spectrum of quantized cluster integrable systems, BPS count-
ing and toric Calabi-Yau quantization) were discussed in [52], [62], [151] correspondingly.
They seem to be related to our case and we are going to return to these issues elsewhere.



2.1 Introduction 35

The product of all cluster variables []; x; is a Casimir for the Poisson
bracket ((2.4)). Setting it to be

q:HxZ- =1 (2.5)

and fixing values of other Casimirs, corresponding to the boundary points
of Newton polygon I € A (their total number is B —3, since equation (2.3)
is defined modulo multiplicative renormalization of spectral parameters A,
pand fa (A, p) itself), one obtains symplectic leaf.

The properly normalized coefficients, corresponding to the internal
points, are integrals of motion in involution

{fa,b(x)y fc,d(x)} =0, (CL, b)v (Ca d) €A (26)
w.r.t. the Poisson bracket (2.4). By Pick theorem one has
25 —-1=(B—-3)+2g (2.7)

where g is the number of internal points (or genus of the curve (2.3)), or
the number of independent integrals of motion. So the number of inde-
pendent integrals of motion is half of the dimension of symplectic leaf,
and the system is integrable. One of distinguished features of the cluster
integrable systems is that their integrals of motion are the Laurent poly-
nomials of (generally — fractional powers) in the cluster variables.

There are several different ways to get explicit form of the spectral
curve equation (2.3):

o Compute the dimer partition function (with signs) for a bipartite
graph on a torus. One possible form of it is a characteristic equation

det D(\, 1) = 0 (2.8)

for the Kasteleyn-Dirac operator on a bipartite graph I' ¢ T?, de-
pending on two ’quasimomenta’ A\, u € C*;

o Alternatively, one can get the same equation (2.3) as a Lax-type
equation of a spectral curve, with the Lax operator coming from
affine Lie group construction, identifying cluster variety with a Pois-
son submanifold in the co-extended affine group.

Short exposition of the first construction of cluster integrable system, rel-
evant for this chapter, is contained Section 1.4.
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Classical integrable chains Integrability of classical gl;; chains of
XXZ type is based on the that their M x M Lax matrices satisfy the
following classical RLL relation

{LA) © L(p)} = &[r(A/p), LX) © L(w)] (2.9)
with the classical (trigonometric) r-matrix
A1/2—|—)\ 1/2 2 1,
r(A) = T2 12 ZE” ® Ejj + /2 \—1/2 ;A 2 Eij @ Eji.
i#j

(2.10)
A classical chain of trigonometric type can be defined by the monodromy
operator

T(p) = Ln(u/pw) - - L1(p/p) € End(CH) (2.11)

where M is called ’rank’ of the chain. Integrability is guaranteed by
classical RTT-relation

{TN) @T(w)} = klr(Mw), T(N) © T ()] (2.12)

for the monodromy operator that follows from (2.9), and gives rise to
the integrals of motion, which can be extracted from the spectral curve
equation (2.3) given explicitly by the formula

Fah ) = det (AQ — T(1)) = 0. (2.13)

where @) - diagonal twist matrix with the constant entities. Relativistic
Toda system can be considered as certain degenerate case of generic XXZ
chain of rank M = 2 (of length N for N particles).

Examples of Newton polygons In what follows we mostly consider
cluster integrable systems, corresponding to the Newton polygons of the
following types:

e Quadrangles with four boundary points, where all internal points
are located along the same straight line, as on Fig. 2.1, left. This
is the case of relativistic Toda chains, studied in [14]. The corre-
sponding gauge theory is 5d N = 1 Yang-Mills theory with SU(N)

3See details of derivation of Lax matrix from quantum algebra and notations in
Section 1.3.
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Figure 2.1. From left to right Newton polygons for: Toda chain on three sites,
gly XXZ spin chain on three sites, gl, spin chain on three sites with cyclic twist
matrix.

gauge group (for N — 1 internal points) without matter multiplets,
possibly with the Chern-Simons term of level |k| < N — in such case
quadrangle is not a parallelogram.

o “Big” rectangles (modulo SA(2,7Z) transform). For the N x M rect-
angle (see Fig. 2.1, center) this can be alternatively described as a
gly spin chain on M sites (cf. with [21]), or vice versa. The corre-
sponding 5d gauge theories are given by linear quivers theories with
the SU(N) gauge group at each of M — 1 nodes: see Fig. 2.2.

SU(N), SU(N),_, SU(N),

7

Mp; Mp;
my bif bif My

SUN);y  SUMN)y

Figure 2.2. Linear quiver which defines multiplets for A/ = 1 gauge theory.
Circles are for gauge vector multiplets, boxes are for hypermultiplets.

o “Twisted rectangles”, or just the parallelograms, which are not SA(2, Z)-
equivalent to the previous class (see Fig. 2.1, right), they can be al-
ternatively formulated as spin chains with nontrivial twists. Gauge
theory counterpart for this class of polygons is not yet known, ex-
cept for the twisted gl chain on one site, leading back to the basic
class of Toda chains.

For all these families the spectral curve of an integrable system, deter-

mined by equation (2.3) is endowed with a pair of meromorphic differen-

dA d—“) with the fixed 2wiZ-valued periods. One can also use this

tials (7, "
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pair to introduce (the SL(2,Z)-invariant for our family) 2-form % A %"
on C* x C*, whose 'pre-symplectic’ form is the SW differential.

Structure of the Chapter The main aim is to extend the correspon-
dence between 5d theories and cluster integrable systems to wider class
of models. We find isomorphism between the classes of gl XXZ-like spin
chains on M sites, corresponding to 5d SU (V) linear quiver gauge theories
(see Fig. 2.2) [21], and cluster integrable systems with N x M rectangular
Newton polygons.

We start from the brief overview of classical XXZ spin chains. We
illustrate with the simple example of relativistic Toda chain, how Lax
operators naturally arise from the Dirac-Kasteleyn operator of cluster in-
tegrable system. Then we do this for the general case of XXZ spin chain
of arbitrary length and rank. Spectral (or fiber-base) duality arises as an
obvious consequence of the structure of considered bipartite graph. Spin
chains with additional cyclic permutation twist matrix arise in the cluster
context naturally as well.

Then we explain structure of large subgroup of cluster mapping class
group Go. We show that in case of general rank and length of chain it
contains subgroup (2.87) which act in autonomous ¢ = 1 limit by permu-
tations of inhomogeneities and diagonal twist parameters of spin chain.
We also discuss issue of deautonomization and propose a way to define
action of Go on zig-zags in g # 1 case. Then we derive bilinear equations
for the action of generators of Gg on A-cluster variables.

2.2 Spin chains

2.2.1 Relativistic Toda chain

Let us start with the case of relativistic Toda chain, which is known to be
related to Seiberg-Witten theory in 5d without matter [143]. Relativistic
Toda chains arise naturally on Lie groups [56], and therefore have cluster
description. A typical bipartite graph of affine relativistic Toda is shown
in Fig. 2.3. For the Toda system with IV particles it has 2NV vertices, 4N
edges and 2N faces. Corresponding Newton polygon is shown in Fig. 2.1,
left.
The cluster Poisson bracket (2.4) for the Toda face variables is

{a)2]} = {acj,:rj =0, (2.14)
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{.%‘,LX,IL';F} = (5i,j+1 + 5i+1] 26; J)IL' CC;r, i,j €EZ/NZ

where in the non-vanishing r.h.s. one can immediately recognize the Car-
tan matrix of sly. This Poisson bracket has obviously two Casimir func-
tions, which can be chosen, say, as?

q= H(l‘;l’j) 31 300 = I_I:UJ+ (2.15)
J J

However, in what follows we are going to use the edge variables (see Sec-

tion 1.4 for details), which do not have any canonical Poisson bracket, e.g.

since they are not gauge invariant, when treated as elements of C*-valued

gauge connection on the graph. Hence, following [128], we fix the gauge

and parameterize all edges by 2N exponentiated Darboux variables &, ng

{&mi} = 0i&my. {&is e} = {mis 7} = 0, (2.16)
so that the face variables are expressed, as a products of oriented edge
variables (see Fig. 2.3, left) by

27 = S G /o) = (3 /) (2.17)

)

’ & Ni+1
In terms of the edge variables (2.16) the monodromies over zig-zag paths
(see Fig. 2.3, middle, right) can be expressed as follows

N
a = C/%lu ﬁ == %2/<7 Y= %1<7 5 = 1/%2C5 C = H f]lk; (218)
k=1

In the autonomous limit ¢ = 1, there is a single independent Casimir
— diagonal twist of monodromy operator s /s or coupling of the affine
Toda chain. Reduction from four zig-zags a, 3,7, ¢ to single Casimir s /s
is a reminiscence of the freedom A — aA, u — bu and the fact that
afvyé = 1.

The Dirac-Kasteleyn operator here can be read of the left picture at
Fig. 2.3, and is given by N x N matrix:

N
9()‘7 :U') = Z ((52 +u 'r]z) i N V fl'rhEz i+1 -+ %2 iNH_l V finiEiJrl,i)
=1

(2.19)

4Only the ratio of »’s is actually independent Casimir, but we introduce both of
them for convenience in what follows.

5The spectral parameters or quasimomenta A and u appear due to intersection of
the edge with the blue and purple cycles in Hy (TZ, Z), and minuses arise due to discrete
spin structure.
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Figure 2.3. Left: Bipartite graph for the Toda chain. Center, right: zig-zag
paths «, 3,7, 4.

where we have additionally defined
Ennt1=AEn1, Enyin=A"Ein (2.20)

and it almost coincides here [39] with the standard N x N formalism for
the spectral curve of relativistic Toda chain

det DA\, ) =0 & I DA\ )y =0 (2.21)

with Baker-Akhiezer function ¢ € CV.

Now, to illustrate what is going to be done for the spin chains, let us
rewrite this equation in terms of the well-known 2 x 2 formalism for Toda
chains, but not quite in a standard way. In order to do that, we first add an
additional black (white) vertex to each top (bottom) edge in left Fig. 2.3,
and draw it in deformed way as in Fig. 2.4. Such operation obviously
does not change the set of dimer configurations, and new dimer partition
function differs from the old one only by total nonvanishing factor.

Figure 2.4. Extended and deformed bipartite graph for the Toda chain.
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The Dirac-Kasteleyn matrix, read from the Fig. 2.4, can be written in
the block form

N
= Z (EZz QA+ Eiit1 ® CZ'Q(Si’N) = (2.22)
=1

N
=> ( &+ 1 'n)Ei ® En + By ® E1g + VE&miEii © Eo—

i=1
5 0
5 N \/ﬁTmEi,iJrl ® E11 — ’NEi,iJrl &® E22>
with
A; = fl’—i_uilm ! , C; = AT , Q= S
VG 0 o R

(2.23)

The first factor in the tensor product corresponds to the number of the
particle (or of the ’site’), arising naturally in the framework of 2 x 2
formalism for Toda systems and spin chains below, while the second —
to position of a vertex inside the ’site’. For the ’extended’ (compare to
(2.19)) operator (2.22) one gets the same equation (2.21), but now with
1 € C?N | which can be written as:

pin

1,2

N N
b= e® =Y e @y (2.24)
i=1 =

For the coefficients of this expansion (2.21) gives

Y41 = Li (),
Yng1 = AQYy

(2.25)

or the system of finite-difference equations on Baker-Akhiezer functions
with the quasi-periodic boundary conditions, where the 2 x 2 Lax matrix

%\/g T i %
& Vi (2.26)
7% V 62771 0

M\H

=
=
||
|
Q
L
=
=
=
[
I\J\b—‘
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is equivalent to the standard Lax matrix for relativistic Toda chain (see
e.g. [128]) up to conjugation by permutation matrix, and redefinition of
the variables

Em Y pe ot (2.27)

This Lax operator satisfies classical RLL relation

{Li(N) © Lj()} = 6i5[r(A/ 1), Li(A) @ L (p)] (2.28)

with the classical (trigonometric) r-matrix (2.10) 6. Compatibility condi-
tion of (2.25) gives spectral curve equation in the form

det (AQ — Ly (p)...L1 (1)) =0 (2.29)

where Q = diag (51, 72) is extra twist matrix’, and inhomogeneities {y;},
which appear in the case of generic XXZ chain, are absorbed here into
redefinition of dynamical variables.

2.2.2 Spin chains of XXZ7 type

Let us now apply the same arguments, which we used for the Toda chain,
to the following class of chains: the rank M chains on N cites of XXZ-type,
which means that the Poisson structure (2.28) is defined by trigonometric
r-matrix. Such systems naturally arise in ¢ — 1 limit of U,(gly,), see
Appendix 1.3. We claim that such classical spin chain can be alternatively
described as cluster integrable systems, constructed from ’big rectangles’
of the size N x M.

For a cluster integrable system with such Newton polygon (see Fig. 2.5,
left) one gets a bipartite graph, drawn at Fig. 2.6. According to [71] this
graph is drawn on torus T2, i.e. left side is glued with the right side, and
top - with the bottom, we will call such graphs as N x M ’fence nets’.
The cluster coordinates z;,, :13;»2, now associated with the faces of graph
at Fig. 2.6, satisfy the following Poisson bracket relations

{255, 2} = (=030ab + 0i,j+10ab + 0ij0at1p — 0ij+10ar1) 750, (2.30)

{725} ={aih, 2} =0, 4,j€Z/NZ, a,beZ/MZ

5Up to numeric rescaling, see Section 1.3 for discussion.
"Note that constant diagonal matrices Q satisfy [r, @ ® Q] = 0, and therefore can be
also used in construction of monodromy operators.
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(O.M) o . . (N,M)

(0,0) (N,0)

Figure 2.5. Left: Newton polygon for (N, M) = (3,2). Zig-zags from Fig. 2.6
as elements of torus first homology group are drawn by colored arrows. Right:
Poisson quiver. It is drawn on the torus, so vertices lying on left-right and up-
down sides have to be identified.

with two kinds of indices living 'on circles’: 7, j enumerating rows of bipar-
tite graph and a, b enumerating columns. Corresponding quiver is drawn
at Fig. 2.5, right. As in Toda case, ’fixing’ a gauge, we pass now to the
edge variables

2 ¢
X Mia T = M(Ui+l/ai)6a’l(%afl/%a)éi‘N- (2‘31)

a 2 a
ia Ni+1,aMi,a—1

with the Poisson bracket
1 ..
{&iasmin} = §5ij5ab€¢a?7jb, i,j € Z/NZ, a,beZ/MZ (2.32)

X

Extra parameters in (2.31) are the Casimir functions of the bracket (2.30),
together with

s Héf“, (2, = (ot M0y =0, (2.33)
177117 —1 Nja

It is useful to re-express them via the zig-zag variables (see the zig-zag
paths on Fig. 2.6, middle and right)

o =0;/Ct, Bi=1/Cloy, i=1,...,N (2.34)
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Yo =Co/%ay O0a=Costq, a=1,....M (2.35)

These formulas relate convenient generators of the center of cluster Poisson
algebra with inhomogeneities {u = 1/ox(f! = Bi}, twists {4}, ‘on-site’
Casimirs ¢ = (aiﬁi)% and ’projections of spins® (¥ = (vaéa)% of the
chain.

Our main statement here is that the classical spin variables (for defi-
nition see Section 1.3) associated with single site of the chain could also
be expressed via the edge variables &, by

1 1
58 =22, Sy = =2 2(22422) % a<b, Sw = —222(242) 2 a > b,
(2.36)
where?
M
b—
Za =1/ §a/77a, Ta = V&aNa H Z;gn( “) (2.37)
b=1
and the ’site index’ ¢ = 1,..., N is omitted here. Spin-variables cannot

be directly expressed through the cluster variables in a natural way, but
rather as a product of edge variables over some non-closed paths. However
it is possible to express cluster variables via the spin variables on two
adjacent sites by

g = e 28 (2.38)

i,a

SNip1+(S°_Dirat+ . -\ ) . .
B R I Y (2} ()™ 2

e cosh (S9_)i41 cosh (59); oi 2,

where index outside brackets of spin variables enumerates number of site.

The spectral curve again can be given by determinant of the Dirac-
Kasteleyn operator, which is the weighted adjacency matrix of the bipar-
tite graph. For generic (N, M) system it has the form:

=

M=

)

1 0 a
DA p) = ¢ia(Bii @ Egq — 23" 0,"" " Eii-1 ® Egy1.4)+

(]

0 i 6 a
+Nia(3a"" Eiic1 @ Eqq + 0, Ei; ® Egt1.4)

I
-
2
Il
—

(2.40)

8Notice that spin’s projections are not originally the Casimir functions for spin’s
brackets, but rather ’trivial’ integrals of motion — like the total momentum of particles
in Toda chains.

9This is basically standard bosonization formulas for the spin variables, cf. for
example with [23],[134].
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+ +
Xz 31 X3y 32

3. &1 mN32/ Ep oamm

X H

X31 X32 i

7131 &3 32 03&3

+ +
X9 21 X9y 22

21/ &1 mN22/ f ol
X X -

X1 X2 i

21 & 22 o262yt

+ +
x5 bL Xy 12

1L/ &n Jm 1.2/ & gﬂllzé
X11 X1 ii
e 1M 2161 2112

Figure 2.6. Left: bipartite graphs with labeled edges and faces: each edge,
crossing purple cycle has to be multiplied by u, each edge, crossing blue cycle —
by A. Center: horizontal zig-zag paths. Right: vertical zig-zag paths.

where the summand E;; ® E, is corresponding to the edge between black
and white vertices'® (i,a) — (j,b), and those matrices E;; which get out
of fundamental domain are promoted to the elements of the "loop algebra’,
with the "loop’ parameters (A, p1):

Evo=ME1 N, Eypim =pEry g (2.41)

Remark 2.2.1. The operator (2.40) as an element of End(C™)[[A!]] ®
End(CM)[[;7!]] can be naturally embedded into tensor product of evalu-
ation representations of the loop algebras gly ® gl;;, i.e.

N M 0i1 _OM,a
D)= 3 &alhi @hg — 2" 0, fii1 @ fa)+
i=1a=1 (2.42)

+nia(%a1’ifi—1 & ha + UfM’ahi & fa)

10Signs '’ in D arise in a standard way [71] due to choice of Kasteleyn marking or

discrete spin structure on T2,
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for two evaluation representations gly — End(CF)[[¢]]:

ei=FEijit1, 1<i<K-—-1, ey=ex=CFg;
fi=FEiy1s, 1<i<K-1, fo=fxk=("'Eix (2.43)

Let us now, breaking M < N symmetry, collect the terms, corre-
sponding to Ej;; and Ej; ;1 in the first tensor factor, i.e. rewrite (2.40)
as:

N
D) = Ei; ® A + Bii1 @ Ci(Q) (2.44)
i—1
with

M M
5 5
A=) (fz‘bEb,b + nibUiM’bEb—i-l,b) , Ci=)_ (mbEbvb — &ipo, M”’EbH,b) ,
b—1 -1
(2.45)

M
Q=> Ey
b=1

From the spectral curve equation det © (A, 1) = 0 one finds for

N N M
= thiei = tiaei @eq € CMY L DO ) =0.  (2.46)
=1

i=1a=1

that

Aihi + Ci(Q)14hi1 =0, i=1,...,N, o= \n. (2.47)

M
Solving these equations recursively for the vectors ¥; = > ¥.eq, One
a=1

finally gets

(AQ = (~)NC s Ot AN ) iy = 0 (2.48)
with consistency condition
det ()\Q — L (Jld‘,u) ..Ln (JNC]]@,u)> =0 (2.49)

of the form (2.13), with the Lax matrices

L; (aig{m) =-C7'4;, i=1,...,N. (2.50)
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Hence, the spectral curve det© (A, ) = 0 is represented in the form
(2.11), common for the classical integrable chains with inhomogeneities
Wi = 1/aiCih = f; and twist Q = >, %aFaa = D0 V9a/VaFaa- There are
also two sets of Casimirs related to spin variables: total projections of spin
¢ =1L eSia and single non-trivial on-site Casimirs Qh. The Lax operators
(2.50) on different sites satisfy classical RLL-relations

{Li(w) @ L (1)} = %527 [ (/1) Li(p) @ Ly ()] (2.51)

which coincide with (1.43) arising from the classical limit of U, (gl;;) with
g=¢e"and k = % in (1.31), see Section 2.6 for details. In such way one
gets explicit formulas (with the sign-factors (1.5)

1 1
1 a=b, przl4+pu222

(Lz)ab(u) M; _ M_% a 7& b, Miﬁ%b(ng n 2;1)2)% s (2.52)

Tia
for the Lax operators (2.50) on the sites i € 1,..., N in terms of variables
introduced in (2.37).

Comparing L-operator (2.52) with (1.44) one comes to the formulas

(2.36), expressing the ’spin operators’ on each site in terms of the edge
variables. Expressions (2.36) satisfy all the relations of the classical limit
of Uy(glys) with k = % Note that this Lax operator is belonging to the
lowest rank Kirillov orbit.
Remark 2.2.2. An equivalent construction of the cluster integrable systems
is based on the Poisson submanifolds or double Bruhat cells in P/G\L,
endowed with the usual r-matrix Poisson structure [49, 55]. For the family
of systems we consider here, given by the SA(2,Z)-orbit of rectangular
N x M Newton polygons, one gets in such way a double Bruhat cell of
P/G\L(N + M), given by the word

u = (sp3ps ... s151A)N (2.53)
in the co-extended double Weyl group W(A%) X A%)) (here with K =
N + M) with the generators s;, s;, A satisfying relations

=1, (sisi1) =1, sis; = sj8;, for |i—j| >1

§2 = 1’ (§i§i+1)3 = ]_’ SiSj = gjgl, for |’L —]| >1 Z,] = 17 <. '7K

AK = 1, ASH—I = SZ'A, A§i+1 = §iA
(2.54)
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x : x
11 X1 X3
d d
x + x + ' x + '
X1z X1y X3 X3 X3 X
o

S92 S9 S1 S1 A 52 S9 S1 S1 A 52 S9 S1 S1 A

Figure 2.7. Thurston diagram in the (3,2) case, which appears from u =
(52§281§1A)3.

We are not going to repeat here all steps of the construction in detail,
and just present the main ingredient — the Thurston diagram for (2.53),
drawn for (N, M) = (3,2) at Fig. 2.7. The corresponding bipartite graph
(see Fig. 2.7) differs from the discussed above ’fence-net’ by additional
horizontal twist of the cylinder by 27, which does not affect an integrable
system, since it corresponds to the SL(2,Z) transformation of the spectral
parameters (\, p) — (A, gA™1).

Example. SU(2) theory with Ny =4 The most well-known case of
the system we consider here corresponds to the five-dimensional supersym-
metric gauge theory with the SU(2) gauge group and Ny = 4 fundamental
multiplets. The corresponding Newton polygon is a square with sides of
length N = M = 2 (see Fig. 2.8), and as a spin chain this is just common
XXZ-model on two sites with the Lax operator!! (see e.g. [133])

S0 —1,-S59 -
pe’ —pu e 25 x 0
L(p) = , Q=

25+ pe=S" — 1S 0 !
Spectral curve for the system is given by

det (L (t/pn) L (11/2) Q = A) = 0. (2.56)

"This form is slightly different from (1.52) arising from the classical limit of Uy (gl,).
However, in 2 x 2 case these two forms are equivalent.




2.2 Spin chains 49

The Poisson brackets of spin operators are given by classical trigonometric
r-matrix and written as:

{S° S} =+5%, {ST, S~} =sinh 25° (2.57)

for the S-variables on the same site, and zero for the variables on the
different sites. Such bracket has one natural Casimir function

1
K=—h— ("M '= 5 cosh 289 + S5~ (2.58)

Figure 2.8. Newton polygon for (N, M) = (2,2).

As a cluster integrable system it lives on X-variety with the quiver
corresponding to Aél)—type system from figure 2 in [14], and its deautono-
mization leads to the Painlevé VI equation, solvable by conformal blocks,
or equivalently topological strings amplitudes [102]. We derive Lax opera-
tor for this system from Kasteleyn operator in details in the next example,
which is simply generalization of this example to three sites.

Example. SU(3) theory with N; =6. This case is corresponding to
the word u = (2211A)3 in double Weyl group of PGL(5). Bipartite graph
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is drawn on Fig. 2.6. Kasteleyn operator is 6 X 6 matrix

bw | 11 12 21 22 31 32
11 | &1 poime 0 0 Asaimr —Aps201812
121 nu &12 0 0 —Aaén A2m12
D= 21| nu —po2é E1  poanme 0 0 =
22 | €1 M2 n21 §22 0 0
31 0 0 N3 —po2€s2 31 HO2732
32| 0 0 —&31 732 31 E32
(2.59)
A 0 AC1Q
=| Cy Ay 0
0 C3 Asg
Spectral curve is given by condition
1
detD(\,p) =0 & I =| oy (2.60)
V3
AQu3 = Ly(o1(fp)n
DA\wp=0 < 1 = La(o203 1)1
¥y = La(o3Ch )i
| prbS e (fe )
Li(p) = — ; ni1 §i1 Si1 \mi2 &2
(2.61)
ch = &1&27 [ 0
11752 0 s
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which could be rewritten using monodromy operator

(M\Q-TF2(w)vs =0 & det (AQ —T%(n)) =0,

(2.62)
T2 () = Ly(01¢P ) La(o2¢ 1) Ly (03¢ ).

Lax operator (2.61) is of gl, type, so can be mapped to (1.52). To trans-
form it in sly form (2.55) we have to apply transformations like (1.54)

HH*&@ (2.63)

n1n2

5152 iz, -3 p=? 0 20
| 5182 [Tz L) -
< m' ae" ) 1 (k) 0 1

so it becomes
/ [&1 S 52
?7152 §1771 (2.64)
_ ﬁ (51 m ;\/ﬁ = \/>
§am2 méz §172

Defining classical sly spin variables by

/§2U2 <€2+772)’ gt _ _ /§1n1 (51 +> oS0 |G

Sm \m2 - & 1282 & mé2

(2.65)

we see that Lax operator (2.64) coincides with the (2.55) up to replacement
/2 — o and SO — —S°. The latter is a consequence of the fact that
(2.64) is coming from ¢ = e~" prescription, but (2.55) - from the usual

q = €. Poisson brackets of spin variables coming from edge variables

bracket {&;,n;} = §8,;¢m; are

MM—A
MM—A

{80, §*} = 5 Si {s+, 5~ b= L inh 259 (2.66)

which differs from (2.57) by factor 1/2, appearing from xk = % in the pre-
scription for the classical limit of commutators (1.31). For details see Sec-
tion 1.3. Spectral curve (2.56) could be obtained from (2.49) by transfor-

mation A\ — )\(%1%2)_% with identification of parameters » = (3¢1/ %2)%,
1
pi = (s13)2 (o))~
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2.3 Dualities and twists

2.3.1 Spectral duality

For some integrable chains special kind of duality could be observed both
on the classical and on the quantum level: namely system with N-dimensional
auxiliary space on M sites share Hamiltonians with some other system
with M-dimensional auxiliary space on N sites. Under duality spectral pa-
rameter which monodromy operator depends on, and spectral parameter
of characteristic equation exchange, so this duality is often called spectral
duality (however, sometimes referred as ’level-rank’ or 'fiber-base’ duality,
see [134] and references therein).

In the case of our interest, system doesn’t change its type: XXZ clas-
sical spin chain of gl;,; type on N sites is dual to the XXZ chain of the gl
type on M sites [134], [23]. Looking at M x N fence-net bipartite graph, it
becomes obvious: graph keeps its structure under 90-degree rotation. On
the level of Kasteleyn operator, this corresponds to exchange of factors in
tensor product, and using different expressions for spin variables.

SU(2) theory with Ny = 4 and one bi-fundamental multiplet.
We start discussion of spectral duality in our context from simplest non-
trivial example. Let us consider gl; spin chain on two sites, which is dual
to gly chain on three sites, considered in Section 2.2.2. To derive dual
Lax operators, we should permute some rows and columns of Kasteleyn
operator (2.59), which is exchanging of factors in tensor product End(C?®
C?) = End(C? ® C?):

11 21 31 12 22 32
11} én 0 Asimi o112 0 — 201812
21| n21 &: 0 —pogboe  pLO2M22 0
D=31] 0 nn &31 0 —po3&32 posmz2 =
12| n 0 —Xaén 12 0 Asami2
22| =81 mm 0 122 22 0
321 0 =& 31 0 732 32

(2.67)
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_ 1211 MQéz
C, A
Spectral curve is given by condition
det D\, 1) =0 & T = (1 do): (2.68)
- Do = 1 L1 (51 (VN
D=0 o lf)z~ ¢1~ 1~( 167 A)
1 Q = aLa(322(5A)
Li(\) = ! (2.69)
: A7 — A3 '
_lg 1 1 ¢
VESEealme b (G b (S n)
L& Lo Lnop (o ok
S (s

771k
—% oo (&ak | Mk —3 &k (S 4 Mk —3&k 4 \3 Bk
A2 MkT2k (773k + §3k) ATz N2k (773k + fsk) ATz N3k +Az &3k
01 0 0
v _ £1k€2k773k7 g=| 0 o o (2.70)
N1kM2k713k
0 0 o3
which could be rewritten using monodromy operator
(2.71)

O (HQ =T3P (N) =0 & det (kQ - TF3(N)) =0,

T573(A) = L1 (5 (P A) Lo (50265 M.
It is indeed spectral dual to the curve (2.62). One can check by direct

calculation that

(1= 3. CPA) (1 — seaCI N\ )det (MQ T3\ )) _

(2.72)
(1= 1) (1 = ook (1 = aschu)det (\Q — T2 (w))
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General case. If the order of factors in tensor product in (2.44) had
been chosen in the other way, we would get M matrices A and Cy, of size
N x N:

M
D) =D A ® Epn + (@) Crn @ Epgam (2.73)

m=1

N N
A 51,'" ~ 6n,1
Ay = Z gnmEn,n"‘T/nm%m En,nfly Cpm = Z nnmEn,n_gnm%m nn—1,
n=1

n=1

(2.74)

R N

Q= Z onEnn.
n=1
Again, we present spectral curve as condition
3= 33 Gumen @ em € CN 2 FD(A 1) =0 (2.75)
n=1m=1

which gives for the spectral curve

det (L1 (3 Y N) .. Ly (eaa G N) — @) = 0, Ly (i N) = —AxCp L

(2.76)
Using variables (2.37) we can write dual Lax operator
) 1 A G
(Lm)ij(A) = —— 1 o Tmo o (277)
A2 =ATR =g, Aig 24 aTe2,
N
=1
We can relate them to L-operators (2.52) of the same size
L(z,w,p) =Lz = 2z Lw A= DT, (2.78)
Noting that for the classical r-matrix
r(a™H) T = —r(a) (2.79)

where transposition is taken in each tensor multiplier, we can deduce from
(2.51) that

{LO) ® L(w)} = S[LO) @ L(p), r(M/ w)]. (2.80)

N |
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To obtain explicit relation for the dual spectral curves, we have to come
back to the Kasteleyn operator of the system, and consider its determi-
nant. In terms of M x M blocks A, C} defined by (2.74) spectral curve

is given by
A 0 0 AC1Q
Cy Ay 0 0
det D(\, ) = = (2.81)
0 0 An_1 0
0 O Cn AN
crtAr 0 0 AQ
1 CylA, 0 0
= H (det Cy) - =
i 0 0 Oyt Any 0
0 0 1 Oy AN
1 0 0 AQ
1 1 0 0
= ..:H(detCi)- ,
i 0 0 1 0
0 0 1 ()N
TYM = L. Ly, L =—-C. A,
and subtracting consequentially lines from first to last
det D\, 1) = (=) Mdet (Cy...Cy) det (TA>M (1) — AQ).  (2.82)
Acting in the same way, we get for the dual spectral curve
det D(, 1) = (~1)MMdet (Cy...Cnr) det (TN (V) = @), (2:83)

TN _ F Lo,

Ly = —ACy!
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so, precise relation between curves is

det (C1...C) det (THM (u) = AQ) = det (C1...Cay ) det (TN (A) - uQ)
(2.84)
Note that the relation of pre-factors is Casimir of the bracket

N
I1 (onClip) =12 = (onChip)/?
1

ﬁ (%mC}’n)\)_l/Q - (%mc%ﬂ)l/Q.
m=1
(2.85)

N4

det (C1..On) _ pt (01-~-0N )1/2
det <016N> )\% Al M

N

2.3.2 Twisted chains

A diagonal twist matrix is not the only one, commuting with r-matrices.
A cyclic twist

N N-1
Qra(A) =Y Eiy1i= Y Ei1i+ By (2.86)
=1 =1

also satisfies [r(\/u), Qa(N) @ Qo ()] = 0. In terms of bipartite graphs it
corresponds to the twist on a cycle of the torus, where the bipartite graph
is drawn on, or the gluing condition for the sides of fundamental domain,
see Fig. 2.6. Such twist also changes a Poisson quiver, even though the
edge variables are not affected themselves.

The twist of a bipartite graph results further in change of the zig-zag’s
structure. Several parallel zig-zags now join into ’longer sequences’ with
non-trivial winding so that rectangle Newton polygon undergoes a ’shear
shift’ — see examples on Fig. 2.9.

In the context of such transformations one can expect nontrivial con-
sequences for spectral duality. Consider the trivial case of gl chain on a
single site, which is dual to rank 1 chain on N sites, and apply the cyclic
twist along the longer side of a bipartite graph. In original picture this is
just a multiplication of a single N x N Lax operator by cyclic permutation
matrix. However in the dual setup, this results in passing from trivial gl;
chain to the Toda chain on the same number of sites, which can be verified
by comparing Fig. 2.9 and Fig. 2.3. After such procedure the number of
Casimirs drops by 2N — 2, while number of Hamiltonians jumps from 0
to N — 1.
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Figure 2.9. Examples of twisted gl, chains. Dashed lines bound fundamental
domains. We use different notations for zig-zags here, comparing to the pictures
above. Edges crossed by red arrows belong to v, zig-zag, orange arrows are for
a1. a,b) XXZ chain of rank two and its twisted cousin. Note that the twisted
twice chain is equivalent up to SL(2,Z) transformation A — Ay to the untwisted
chain, as Q% = w1, like in Remark 2.2.2. ¢,d) Making Toda chain by twisting
gly chain dual to gl; chain.

For supersymmetric theories such transformation turns the theory of a
single SU(N) hypermultiplet with only SU(N) x SU(N) flavor symmetry
into pure SU(V) gauge theory.

2.4 Discrete dynamics

The cluster mapping class group Go consists of sequences of mutations
and permutations of quiver vertices, which maps quiver to itself, but acts
in general non-trivially to the cluster variables (see Section 1.4 for details).
As a simplification one can restrict the action of Gg to the set of Casimirs
of the Poisson bracket. Each monomial Casimir maps to the monomial in
Casimir functions. When the necessary for integrability condition [[; z; =
1 is relaxed to []; x; = ¢ (which is called as deautonomization), these flows
act on the set of Casimirs, inducing non-trivial g—dynamics.

In [14] the cluster mapping class groups for the quivers, corresponding
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to Newton polygons with a single internal point, were identified with the
symmetry groups of q-Painlevé equations!?. Passing from X-cluster to
A-cluster variety, the g-Painlevé equations acquire bilinear form for the
tau-functions, and can be solved via the dual Nekrasov partition functions
for 5d supersymmetric SU(2) gauge theories [24, 14, 102, 16], which is a
natural ’5d uplift’ of ’4d’ isomonodromic/CFT correspondence [68]. In
[15] the cluster description was further applied to discrete dynamics of
relativistic Toda chains of arbitrary lengths, where the solutions of non-
autonomous versions are given by SU(N) partition functions with the
|k| < N Chern-Simons terms. Recently, cluster realization of generalized
g-Painlevé VI system was also observed in [153]. Note that for ¢ = 1 case
with trivial Casimirs solution of discrete dynamics for arbitrary bipartite
graph can be written in terms of #-functions [44].

Below in this section we discuss the cluster mapping class groups and
non-autonomous bilinear equations, arising for generic rectangle Newton
polygons. We present their explicit construction in the example, which
will illustrate the following results:

Structure of the group Go.
For the SA(2,Z)-class of N x M rectangular Newton polygon, the MCG
Go always contains a subgroup of the form

W (AR, x AR ) x W (4§, x 4§} ) x Z c Go. (2.87)

where W (Ag\l,ll X Ag\l,ll) is a co-extended double Weyl group (2.54).

The generators of each subgroup are naturally labeled by intervals on
sides of a Newton polygon, or subset of 'parallel’ zig-zag paths (in the
same homology class) on a bipartite graph:

g 1 1 .
W (Ag\f)fl x A§V)71> : {Sai,az‘-ﬂ}? {Sﬁz‘ﬂiﬂ}’ i € Z/NZ (2.88)

W (AG 1 %A s {svmannhs {S00sun}, @ €Z/MZ (289
where subscripts a, 3,7,6 label the corresponding group of paths, see
Fig. 2.6 middle and right. The group being extended by the additional

generator p contains lattice of the rank 2N + 2M — 3 of g—difference flows
of integrable system.

2Such relation for particular cases was earlier mentioned in [90, 146, 24, 147].
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Moreover, in special cases there is an obvious symmetry enhancement:
for example, for N = M an additional ’external’ generator appears, which
rotates the whole picture by m/2. However, sometimes this enhancement
is more essential: if any of the sides is of length 2, two rest Weyl groups
can be ’glued’ together by additional permutation, so the known subgroup
of Go becomes

W (A5 1) x W (A x 4(V) c gg (2.90)

This enhancement is closely related to the fact that spectral curves with
the IV x 2 rectangular Newton polygon can be mapped to the curves with
the triangular Newton polygon with the integer sides 2NV x 2 x 2 (see e.g.
(3.70) in [62]). If both N = M = 2 one finds the extra enhancement from

W(Agl) X Agl)) X VT/(A?) X Aﬁl)) to W(Dél)), see below.

Action on spin chain Casimirs.
Inhomogeneities, total spins, on-site Casimirs and twists of spin chain are
permuted under the action of different components of Go.

Inhomogeneities are given by single zig-zags p; = (;, while on-site
Casimirs are given by products of zig-zags (! = (a,ﬂi)%. So the well
defined transformation of them, which 'permutes sites’ of spin chain are
products of primitive permutations

SapaiSBofies | M fitts it = iy e gy e ¢ (2.91)

Permutations of twists s, = (4 /%)% and projections of spins (! =
(%6@)% by products

SYa,Ya41500,0a41 * a7 Hatl, Hatl b7 Ha, Cg = C:z]—i—l’ Cg—&—l = Cg
(2.92)
can be viewed as an action of the Weyl group by permutations on the
maximal torus of Lie group.

Bilinear equations.

Equations defining the action of each single generator of Go on A-cluster
variables (TZ?,TZ-—;) could be rewritten in the form of bilinear equations.
FEvolution of coefficients can be encapsulated into the transformations of
frozen variables {u,,,us,;, uy,,us,}, which are evolving in the same way
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as Casimirs in X -variables.

For example T-variables 7.°, %,j ., transformed under the action of gen-
erator sg, g, , satisfy bilinear equations

1 1
L Lo+ x _
(u5i+1 - qNuﬂi)(u(Su’Ya) NT 14Tit1,a =
M=t x L Sr=x ot
M ~iry1 M~
Bi+ 1Tz aTi a qNM u,Bi Ti,aTi,a

(2.93)
1 1
(uBiJrl - qNuﬂi)(u5/u5a) +1a+1 Titla =

1
1 1
4 Vi X
— ¢ VM U—aiM T+

1
“Ma=X -+
i,a+174a

Uq; i,a'1,a+1

for all @ € Z/MZ, where us =[], us,. Frozen variables are transforming
as

_ 1 1
S8;,6i41 -+ Ug; > q NUg, ,, Ug, ;> qNUg,. (2'94)

Bilinear equations for the action of generators sa; o, 1557470115 50a,6041 1€
similar.

2.4.1 Structure of Go

Now we present generators of Gg in terms of the quiver mutations'?

{15, ,uw} (in the vertices, initially assigned with {2, z}"}) and permu-

ij> Tij
tations of the vertices {s’\Ja,’C’l\b}. Consider for simplicity the (3, 2)-example,

which already illustrates how the explicit formulas look like in generic
case. Here 2(N 4+ M) = 10 generators (2.88) can be realized as

Aa;Ap L AaN
512,12 N11M11M12M12N11N11 Sas,a1 = 512,31 N32M11N12N31N11M32

581,82
582,83 = 525,’22 M21M21N22M22M21M21 San,az = 325,’11H12M21M22M11H21M12
_ Aade X X 4 X+ o AaXy 4+ X X+ X+
SB3,81 = 532,32 H31 43132321431 H31 Sag,az = S32 21 Hoat31 H32H21 H31H22
(2.95)

and

a)\b

862,61 = 53131H21N21M11M11H31N31M11M11H21N21 (2.96)

— /\a7>\b
Sy1,92 = Sa1 12M22M31N32H11M21M12N11H32M31M22

13For the definitions on cluster algebras see Section 1.4.
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o AaXy, 4+ X 4+ X X 4 X X

861,60 = 53232 hoollaa 12 H12H32 132 12412492 a2

_ Aare, + X 4+ X X+ X+ X+

Sya,1 T 522,11 Ha1 3231 12211 1231 32491
which are sequences of mutations in the vertices along zig-zags in the
forward and then backward directions. One can check that each generator
here is involution i.e. s? = 1, and acts by rational transformation on

X-cluster variables: e.g. for sz, g, = s959% fidy 1o 5okl lis i3, one can
explicitly write:

[$2Xza xg_l:x;l]
[5'32X1a 95;27 55;2]

+

X X X —+
T3y > X371 TooToy

X, rh, xk
, Tz x?é‘%l%é%, (2.97)
(239, T51, T3]

+ x4+ + x4+
A 1 ) (231, 231, T30 A BN ) (239, 232, T3]
21 X + X 47 22 X + X .+
T3 (733, 39, 73] T3 (731,731, 5]
X + X X + X
X s 1 ) (231, T35, T30 N 1 ) (239, T31, T3]
21 + X o+ X7 22 + X o+ X717
T3y (239,731, 73] T3 (231, 739, T3
+ x4 + X+
oy ot X gt (%32, 35, 731 oy g X gt (%21, T31, T3]
L11 L1 T1¥o1T ¥ x +10 L1277 T12 Tog¥oa T T o
21> T215 T2 225 225 Loy

while all the other variables remain unchanged. Here we have used the
notation

X1, 29, x| =14+z1 421 22+ .+ 21 oo Ty = (2.98)

=14+x1(1+z2(ccc. + 21 (1 +2p)...)).

Notice also that the result of zig-zag mutation sequences actually do not
depends on the point of the 'zig-zag strip’ one starts with the first mutation
and direction of the jumps along/across given zig-zag. Note that the [ |-
function possesses nice ’inversion’ property

(15 ey Tn) = 1o - [, oy 27 (2.99)

which allows to write equivalently, for example

25— R 31, 235, T3] _ L [(z3) 7", (235) 7", (x2x1)_1]' (2.100)
23y x5y, w3, 5y]  agy [(w5) 7Y (23) 7Y (25y)
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Each set of permutations s, with similar ¢ constitute affine Weyl

Git1
group of AM-type. The groups for different z are commuting, so they
satisfy usual relations

2 _
SCiCin = L,
(S<i7Ci+1S§i+1:§i+2)3 =1 (2.101)
S8CirCi+15¢ it = 5¢5,6+15¢ Cigrs li—jl>1
¢=a,B with i,j € Z/3Z
82 =1
C’ivca+1
¢ =7,0 with 4,5 € Z/2Z.

S8CiGi415¢,¢ L, T 8¢, S8GGiv

¢, (" =a,B,7,d such that ¢ # ¢’. There are two more ’external’ automor-
phisms preserving bipartite graph

. X X + +
Ay oz, = T

vasl ra-t (2.102)

T xix—l,a’ = xz—'i_—l,a

which satisfy obvious relations

ApAy = AAp, A2 =1, A3=1, (2.103)
AnS¢oGass = S¢amrcalhns for ¢ =7,9, (2.104)
Ans¢i oo =S¢t Ay, for ¢ = a, B, (2.105)
NS¢ ¢in = S¢1,¢ M, for (=o, 8, (2.106)
AoS¢aass = Satasi Doy for €=1,0 (2.107)

and promote affine Weyl groups to extended affine Weyl groups. There is
also one more generator of infinite order

DTS VAR VA M Apda + X X +
p=stlep st =Tpp,, s T e i, T T
1,a

(2.108)
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satisfying relations
PSa;_1,0; = Sa,ai41 P> PSBBit1 = SBiBit1 P (2.109)

PSyiyit1 = Sviciyi Py PS8i,6i11 = 865,841 Ps

so the cluster mapping class group contains
W (45 < A80) x W (Al < AY) % Z  Go. (2.110)

We conjecture that for general rectangular N x M Newton polygon, cluster
mapping class group contains subgroup (2.87). Construction of generators
for general N and M is straightforward, by ’jumps over zig-zags’ as in
example.

In the case N = M there is also an additional ’external’ generator
Ry /9 of order 4, which rotates bipartite graph by /2

Rejg: alg—aty,, i, xf (2.111)

In the case N = 2K or M = 2K there is another additional ’external’
generator, which flips the rectangle.

Discrete flows. The group Go contains lattice L of discrete flows of
rank B — 3, where B = 2N + 2M is the number of boundary integral
points of Newton polygon. It consists of four pairwise commuting lat-
tices contained in two copies of W(Ag\l,)_l) =ZN"1 % W(An_1) and two
copies of W(Ag\?fl) = ZM=1 W (Ap_1), and generator (p)'o™(V:M) where
lem(N, M) is the least common multiple of N and M. The lattice is gener-
ated by elements T¢, ¢,,, which take pair of adjacent strands, wind them
up in opposite directions over cylinder and put on the initial places, if
one imagine W(Ag\l,ll), W(Ag\b)fl) as a groups acting by permutations of
strands on cylinder. For (3,2) example (-piece of Go can be presented as
W(Aél)) = 7% x W(Ag) with Z? and W (As) generated by

Tﬁlﬁz = 5B1,82582,83583,81582,83 T,327/33 = 5B2,83583,81561,82583,61 (2'112)

and by
881,82 SBa,B3 (2.113)

correspondingly.
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One can find a homomorphism of the lattice L of the shifts (2.112) into
the group of discrete flows G)\ (defined as in [55] to be an additive group
of integral valued functions on boundary vertices of Newton polygon mod-
ulo sub-group A generated by the restrictions from Z? to the boundary
of Newton polygon of affine functions f(i,5) = ai + bj + ¢). For the case
of rectangular Newton polygons one can easily finds that G\ = 753,
Embedding of L to Gy actually comes from consideration of the action
of Go on zig-zags presented in the next section, and results in the image
ZB=3. However, the factor is Gi /L = Z/lem(N, M)Z ® Z/NZ & Z/MZ.
The non-trivial index appears due to the functions on the corners of New-
ton polygon. It can be also seen that the image of generator (p)lcm(N M)
coincides with the image of generator 7 from [55].

2.4.2 Monomial dynamics of Casimirs

According to [71] the lattice of Casimir functions z. is generated by zig-zag
paths'®
Z={yeH(IZ)]e(y,) =0} (2.114)

As the skew-symmetric form ¢ is intersection form on dual surface, this
condition is equivalent to being trivial in dual surface S homologies. In
order to be expressed in terms of cluster variables {z;, x:;} Casimir should
be also trivial in torus homologies, i.e. we are interested in subset

C={yeH(IZ) | [ =0€H(5,2), 1=0€eH(T*2)}. (2.115)

As zig-zags and faces are drawn on torus Z,F C H;y(I',Z), they are con-
strained by [[; ¢, = 1, where the product goes over all zig-zag paths
and [[; zy, = 1, where the product goes over all faces of bipartite graph
on torus. To obtain non-trivial ¢g-dynamic these constraints have to be
relaxed to [[; x5, = ¢ # 1 so that x, now is an element of extension
H,(I',Z) =Hy(I',Z) ® Q%W«”J) with the relations Y, fi =w, >,; i =®. In
multiplicative notations this reads

foi =4, HxCi =q (2.116)

where we have additionally defined g = z,, § = xg. Introduction of ¢ #£ 1
can be considered by lifting of bipartite graph to universal cover of T?
which is R2.

MFor details on definitions see Section 1.4.
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Any variable z, v € C can be expressed via face variables x,, which
are cluster variables, and can be mutated by usual rules (1.82). However,
there is no generic rule for mutation of variable associated with a single
zig-zag, except for mutation in four-valent vertex identified with a ’spider
move’ [71]. We propose here the generic rule for transformation of zig-
zags '° under the action of generators (2.94), namely, for the N x M
rectangle:

L _ 1
Sai,ai_;,_l : Oéi — qNaZ+17 al+1 — q Nai’

1 1
SB:.8ir1 - Bi > @ NBiy1, Bit1 NG,
1 L (2.117)
Svaryar: - Ya PP @M Ya41,  Yat+l 2 @ Mg,

_1 1
S6a,0as1 Og > @ MOgy1, Og+1 —> M0,

wherei=1,...,N,a=1,..., M. The group Gg acts on the elements of
C, embedded in multiplicative lattice generated by zig-zags, precisely as
Coxeter groups of Ax_1-type act on the root lattices embedded into Z#
(c.f. [153, 95]).

These rules basically come just from consistency with mutation trans-
formations for the elements of C. There is a two-parametric family of
transformations for zig-zag variables

¢+ Caldlpldle if [¢] = ([¢]a, [¢]B) — class of ¢ in H{(T?,Z)  (2.118)

which do not affect C, since C consists of the combinations of zig-zags with
zero class in torus homology. This ambiguity is fixed using the ’locality
assumption’ that zig-zags not adjacent to the transformed faces are not
changed.

Let us now demonstrate, how formulas (2.117) come for (N, M) =
(3,2) from consistency with transformations of C, where one can introduce
the following over-determined set of generators

_ X X _ X X _ X X
28y 0y = T11%19; 2By 05 = T31T99; ZBy,05 = T31T3,

NS S | SN B R | N B R |
Zoy o = (@11779) ™y Zanps = (¥21792) s Zas,pr = (T31732)

(2.119)

5We abuse notations, denoting x; = ¢ for zig-zags.



66 Chapter 2. Cluster integrable systems and spin chains

_ X X X \—1 o+ o+t
Zoy 51 = (211731731) 75 Zsy nn = T1oT55T 35,

(2.120)
Z’yz,52 = (xTZx;Qxi?:Q)ila Z52,’71 = xflxéi_lx;_l
satisfying
ZBLQIZBQ,OQZ,BS,OQZ'YL& Z’72,52 =1
Za1,522a2,532043,512517V2Z52,’71 =1 (2'121)

ZB1,Oc1Z62,Oc2ZB370¢3(Zal,ﬁzzazﬁszam,&)_1 =q=1

so that the number of independent Casimirs is seven. In the autonomous
limit, these Casimirs reduce to Z¢ ¢ = (- ¢, where ¢, ¢’ correspond to zig-
zags {a, 3,7, d}, expressed via the edge variables. The transformation, for
example, sg, 3, acts by

2527042 Zﬁhal

ZB1,a1 = Zalﬁz? Zﬁ2,0¢2 = 7
ai,B2

) Zﬁs,as = Zﬁs,as’

SB1.p2 * Zasﬁl Za1,52

28y 0
(2.122)
and substituting here Z¢ = (- ¢’ one finds that the action of sg, g,
reduces just to permutation of 5; and [, the same is true for the other
generators s¢; ¢,-
For ¢ # 1 consider the generators Tg, 5, , (2.112) which act trivially
on C at all in the autonomous limit. One gets now

Za1752 = ZBLCH’ Zoéz,ﬁs = Zaz,ﬁen Zas,ﬁl =

Zﬁ e = qilzﬁ ea ) Z/B e = qZB &
T51762 : 1,01 1,01 2,02 2,002 (2'123)

Zay,Bo ™ QZay Byy  Lag,pr q_1ZOC37/31
where ¢ = []; ; :czxjx,;;
the action of Ty, g, is equivalent to 81 — ¢ 151, B2 — ¢qB2. These formu-
las suggest that at ¢ # 1 one can express generators of C via zig-zags and

16
q by

Again, after expressing the Casimirs via zig-zags,

1 1 1
Zﬂl,oq = qﬁﬂlala Zﬁz,OtQ = q652a27 2637043 = qGﬁgOlg, (2124)

1 1 1
Zay By =4 80102, Zayps =q 60203, Zayp =q 6azfi

6The fractional powers of g in these formulas can be restored using the 'magnetic flux’
interpretation for ¢ # 1 in non-autonomous case. This interpretation is also consistent
with the fact that zig-zags with the different orientations collect fluxes of different signs.
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Zowos =0 M0, Doy = 10172, Zopsy =0 19202, Zspry = q100m
(2.125)

which are consistent with constraints (2.121) with q # 1 if one assumed”
araoas 1828371720102 = ¢ = 1. Comparison of transformation (2.122)
with (2.124) and (2.125) leads to the formulas (2.117) for (N, M) = (3,2).

The action of remaining generators is defined by

Ap: o= Bi Biy  Ya = Ya+1, 0a F* Oa+1,
Ay o= QG41, Bi — /Bi—i-ly Ya P Yas 0g 5(17

pr aim g Nais, B B Ve d%ar1, Sa b da
(2.128)
Remark 2.4.1. Specialities of N = 2 or M = 2 case.
It is well known (see e.g. [62], eq.(3.70)) that spectral curves with a
Newton polygon being 2 x N rectangle can be mapped to the ’triangle
ones’ with the catheti of lengths 2 and 2N (see Fig. 2.10) just by change
of variables. Namely, equation

S(A\, 1) = Py (1)A? + Py ()X + Py (1) = 0 (2.129)
under A — Py () - A7% than S(A, w) — A2 Py (1) LS(A, ) turns into
SOu) = X+ Py(A + PEGOPY () = 0. (2.130)

For a corresponding cluster integrable system the Poisson quiver from
Fig. 2.5 can be transformed into the form drawn at Fig. 2.11 — more com-
mon for ’triangular’ polygons ¥, studied in detail in [153]. This corre-

"One can incorporate § # 1 consistently modifying formulas (2.119) and (2.120) by

AL x ~L AL X x
Zﬁl:ul g5y 33127 Zgyar =G5 1‘22, ZBs,a3 = 5 T31 T3,
l AL

) 5

st +y-1 _ + 41
Zay,py =45 (I11x12 Zag,ps =4 ($21x22) v Zag,p = 45 (23,T3,)
(2.126)
At (eX X x -1 sttt
Zyy oy = 45 (201051231) s Zsyye = 45 T15T35T30, (2.127)
_ st x X o x -1 st o+ '
Zon 50 = G5 (B19%59%39) ", Zspn = ¢S5 2113, 25

However, as a meaning of this extension is not clear, we will assume § = 1 in the
following.

8For generic triangular Newton polygon each node of quiver is connected to six
arrows (and corresponding dimer lattice is hexagonal). However, in 2 x 2N case a
partial cancelation happens: the arrows directed from x;{ to x5 annihilate the arrows
from x5 to x{, and the same happens with x:rl and x;;, so only four arrows at each
node remain.
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Figure 2.10. Transformation from rectangle to triangle for (3,2) case.

-+ X -+ X -+ X
X32 X31 X922 X921 X12 X11

+ X + X =+ X
X31 X32 X921 X922 X11 X192

Figure 2.11. Quiver for (3,2) case represented in ’triangular’ form.

spondence results in the ’enhancement’ of the symmetry group '%: a pair
of commuting Weyl groups Ag\l,)_l X Ag\l,)_l is now embedded into larger
group Ag\),_l with the generators

— )‘bv)‘b )\b >\b _ )\ay)\a A A .
SaiBis1 = Sitie Ml i2s  SBia; = Sitae M Mg, t=1,...,N (2.131)

Embedding Ag\lfll X A%ll — Ag\)f—l is provided by

(2.132)

58:,8i+1 = SBiaiSaiBi+158icir  Say,aip1 = SaiBit15Bir1ir1 SaiBita

and commutativity of sy, a,,, and sg, g, , just follows form the relations
on ‘elementary’ generators sg,q,, Sq;8;,,- 1he generators of AS\)L1 also
commute with s, 5,.,, S4,4,.1- LThe generator p is also absorbed. Now it

is not a primitive one, but can be presented as a composition

N

p =My [T 50000 (2.133)
=1

19We are grateful to Y.Yamada for clarification of this point.
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where we used 'root’ from A,

Ay ozl af i xl, so Ay = (A,)? (2.134)

i—1,a° i,a°
so there are no extra ’dimensions’ in the lattice of the flows.
The action of the enhanced group on Casimirs can be constructed in

a way similar to generic case. For example, for the generator s,, g, in
(N, M) = (3,2) case from

23, a 1
zZ P L Z — ,
B1,01 Zal,Bg a1,B2 Zal,ﬂg
B2,02
Z > = Z. — Z Z. ,
Sar 8y B2,02 Za1732 71,01 a1,82 471,01 (2.135)

Z51772 = Zmﬁzz&ﬁz’ Z’Yz,52 = ZOéLﬁzZ’Yz,(Sz’

Zsy 1 7 Loy ,Bs Loam
one gets for the zig-zags

1 1 _1
Sange i 01 q6By ', Barrgiar’, el ¢ Sa1Bavale. (2.136)

which contains now ’inversion’ of zig-zag, since a; and 3; correspond to the
opposite classes in Hy(T?,Z). Generally, for the action of Agl) on zig-zags
one gets

1

. 1, 1 _1
Saifiy1 © Qi qs By, By qva; T, Yaba ¢ 60 fi11%a0a

1 I 1
gt i q 8B, Birr g varl, Yaba — 5 iBivada.
(2.137)
Remark 2.4.2. Further enhancement for N = M = 2 ’small square’.
The group Go for this case can be identified with the g-Painlevé VI sym-
metry group W(Dél)) (see e.g. [14]). It corresponds naively to the ’double’
symmetry enhancement
1) (1) (1 1) 1 1)
AP x A Al oAl xal) Al o (2.138)
but it turns out moreover that generators of the 'new’ extended groups
do not commute. For example the generators s,, g, and ss, -, satisfy

(Sar poSy.60)° = 1 (2.139)
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Sag,on Sai,az Sy1,72 Sy2,m Saq,a Sy1,72
Em—
562,81 5p1,82 561,62 562,61 561,82 561,62

Figure 2.12. Symmetry enhancement from W (Agl) X Agl) X Agl) X Agl)) to
1
w (D5,

and this non-commutativity results in gluing of Dynkin quivers as shown
on Fig. 2.12.

Another cluster realization of W (Dé1)> has been proposed in [14],
given by generators

— AN . VY — A Ab Ap A
50 = S11,225  S1 = S12.215 52 = S1112H11H12 (2.140)
AasAa AasAa AaAa Ao, Xa '

J— J— — as
S5 = Sa1,125 S84 = S11225 53 = S11.21 M1 H21

in terms of mutations of the same bipartite graph. In our notation this
generators are

80 = Sa182861715717256171 801820 81 = S B2861715616256171501 825 52 = Say B

55 = Sv1615a1 8258182801 82571815 54 = 541615a1 f28a1 2501 82571615 83 = Sy16;-
(2.141)
Two presentations can be mapped one to another by conjugation by

Sai 8287161 8a1 B2 -

2.4.3 Towards bilinear equations

Let us finally turn to the issue of bilinear equations for the cluster tau-
functions or A-cluster variables. We postpone rigorous discussion of this
issue for a separate publication, but demonstrate here, how Hirota bilinear
equations can arise in the systems, corresponding to rectangle Newton
polygons.

The simplest example of bilinear equations is provided by spider moves,
or mutations in a four-valent vertex of the Poisson quiver, see also Fig. 1.5
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in Appendix for the transformation of corresponding piece of a bipartite
graph. Such transformation induce the only change in 7-variables, which
(for all unit coefficients)
_ T1T3 + ToT4 _
Tor> To = —————— OI ToTp = T173 + T2T4. (2.142)
70

obviously leads to bilinear equation. However, there is no a priori reason
to get bilinear equations from generic action by an element of Ggo. For
example, a single mutation in a six-valent vertex rather leads to relation,
which symbolically has form

r=7 47 (2.143)

instead of bilinear. Sometimes one can get nevertheless a bilinear relation
for a sequence of mutations without no a priori reason for them to hold, see
e.g. Section. 2.8 of [15]. We are going to show in this section that the same
happens for the transformations, induced by the zig-zag permutations (e.g.
{88:,8:41} OF {Sy4,7a41 1), constructing their explicit action on tau-variables.

For A-cluster algebras?® the role of Casimir functions is played by
‘coefficients’ [59], taking values in some tropical semi-field P, see also dis-
cussion in [15]. For the case of rectangle Newton polygons we label the
generators of P by zig-zags (together with ¢), i.e.

P= Trop(q, {uam Ug, }iil,...,N; {uva » U, }iil,...,M)- (2144)

so that the coefficients are expressed by

e { )7 o (W Us,4)
1 (Uq,ug, 1 a W
v = qwm Py g e et

T (2.145)
(u’m u5a) N (uaiuﬁwrl)

g~ =~

The action of transformations s¢, ¢, , on coefficients in this basis is equiv-
alent to the action on generators of P like in (2.117) on zig-zags, i.e.

1 _ 1
Sag,ai41 ¢+ Wy 77 qN Uy Uy 7 @ NUg;,
_ 1 1
86i,8i41 - Ug, —¢q Nug,.,, Ug.,., —qNUg, (2 146)
1 _ 1 :
Svavatrr ¢ Uyg PP @MUy, 4 Uy, 7 G MUy,
_ 1 1
85a76a+1 : uéa = q M u5a+17 u6a+1 = ql\l uéa'

20For the definition of A-cluster algebra with coefficients and transition from X to
A-cluster algebra see Section 1.4.3.
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Coefficients could be encoded by ’frozen’ vertices of quiver. This sug-
gests principle that we assign frozen variables to faces of dual surface,
corresponding to zig-zag variables, while mutable variables - to faces of
original torus.

Let us now present an example of the action of the generator sg, g, on
T-variables in (IV, M) = (3,2) case. An explicit computation gives

7'11 % 1 1 2 % 3 M
= ul, qu(usug)r ghui o giiug, S
T q%ué u q%u% ql%(u u )% T32To1

~ Bo B1 U532 +
mo| 81 B2 .| ™2™
7,_1+2 P N 1 1 1 7'3+27'2X2
F qiTug q1zug, ug, qr2 (uﬂl uﬂz) 2 W
5 12712
_x 1 1 R
7 11 2 1 3 1 731722
12 qizuj, 12 (uBﬂle)Q qrruj ug, -
™5 T11712

(2.147)

. 14 1 14 1
where C' = diag ((u,ylu(;):s ,us, (us/us,)3, (uypus)3,us, (us/us,)3 |, us =

us, us,. The main point is that the matrix in the r.h.s. is nicely invertible
so that these equations can be rewritten in bilinear form

1 1 1 1 1
3 3+ X _ 12 =+ X 5112 =X T
(ug, — q3up,)(usuy, )373179 = Uz, T17T11 — 41243 T1171

1 1 1 1 -1
(up, — g3up,)(U5/U5,)3TH ) = Ua? 71715 — 42 Ua Tih 71
. (2.148)
i Lo+ X 3 =+ x S2 =X+
(ug, — g3ug, ) (usuy,)3 73570 = Uj,T12T12 — 412 U3 T19T12

1 1 _1 1 _1
5 = _+_xX _ 2 =X __+ ey 2=+, X
(ug, — g3ug, ) (us/us,) 3731 7oy = Ua > ToT] — 12U/ 71177y

This is actually a generic phenomenon for the zig-zag generators: the same
happens, for example, for the generator ss, 5, from another component of
Go. One gets explicitly for the transformation of A-cluster variables

t1=C1-Cy- to, (2.149)
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where
T
=X —+ =X —+ =X
t T3z T2 To2 T2 Ti2
- X + X + X
Tza  To2 Tog T2 Ti2 (2.150)
X + X + X + X + X
to 721731 721721 T11T21 "11T11 731711
- + X + X + X + X
ToaT3a  To2T22  Ti2T2g  T12T12 732712
12 2 o 1 3 1 1 5 2
qrug, ¢ (usud,)5 ¢ (usug,)5 g1 (udug,)s qrzuj,
2 1 1 2 1 3 1 4 2
u§2 qﬁ(utﬁui)i qﬁ(u§IU§2)7 qﬁ<u§1u§2)75 qﬁu(sﬁ
1 5 2 12 1 3 1
c qn‘(u(s ug,)3 qrEug) s, q2ug, 1112(11511152)R q12 (us,uf,)s
e 2 1 4 2 5 2 El 2 1 2
q12 (uf us,)3 qrEug q12ug, ug, q12 (us,u5,)3 g2 (us ug,)3
3 1 4, . 1 5 2 12
qu(ubluéz qﬁ(u,;lu(gz)i qﬁ(u(é]uéz)g qﬁugl Us, qﬁugz
1 2 1 3 1 4 2 5 2
q7(u61u52)3 qiz(utﬁuéz)? qﬁ(ugluéz)i qﬁugl q12us, u§2
(2.151)

1
Cy = diag ((ua/uas)% uy,, (uauﬂa) 7(“&/“&2)

(us,
(us,
(us,
(us,
(us,

(u52

—q2ug, ) (uaup, )2 7 7o

N\H

1 1 1
5 s+t X 13 =X _+
—q2us,)(Uaup, )27 75 = U5, T32Tog — q121

1

1 -1
— q2u5,) (U /U0, ) 2 To1 o) = Wag® T T

1
1 Y
+ X _ .03 =X _+
= U5, To2T12 —

1 1 -1
—q2us,)(Ua /g, ) 2T 7] = WY, TlJETlxz

\ =

+

1 X % —X_+
—q2ug,)(Ualig, )2 75 Ty = U5, T12T3 —

1

1 =
= _J’_ X
61 T22732

1 1 11 1
73 (uau/ﬁ'z) 2, (ua/uﬂl ) 2 u732’ (uauﬁl ) 2

(2.152)
with u, = uy, ug,Uqy. Again, inverting matrix C7 we end up with the set
of bilinear equations

1 1 _1 1 _1
5 5+ .-X _ 3=+ X = 3=X_+
—q215,)(Ua/Uay) 2 T31 T3 = Uy’ T3hTsn — @12 Uy,° T35735

1
1 Y 3

U3 TR

q12 Y2 122722

1

1 Y
15113 =+ X
g12us T197o9

(2.153)

1

1 1
—_ 3 =X +
q12 U, 12712

1
—_ _+ X
q 2“5 T32T12

It remains yet unclear, how to derive bilinear equations systematically
for compositions of elements of Gg. We are going to return to this issue
together with discussion of their solutions elsewhere.
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2.5 Conclusion

In this chapter we have presented extra evidence that cluster integrable
systems provide convenient framework for the description of 5d super-
symmetric Yang-Mills theory. It has been shown that cluster integrable
systems with the Newton polygons SA(2,Z)-equivalent to the N x M
rectangles are isomorphic to the XXZ-like spin chains of rank M on N
sites (or vice versa) on the "lowest orbit’. Due to special symmetry of the
Kasteleyn operators, defining spectral curves of these systems, it turns to
be possible to express the Lax operators of spin chain in terms of the X-
cluster variables. Inhomogeneities and twists of the chain can be expressed
via (part of) the zig-zag paths on the Goncharov-Kenyon bipartite graphs.

Rectangle Newton polygons generally correspond to linear quiver gauge
theories [21] so that inhomogeneities, ’on-site’ Casimirs and twists define
the fundamental and bi-fundamental masses together with the bare cou-
plings on the Yang-Mills side. The proposed cluster description possesses
obvious symmetry between the structure in horizontal and vertical direc-
tions so that one gets a natural spectral (or fiber-base or length-rank)
duality, interchanging also the rank and length of spin chains. Shear shift
of one side of a Newton polygon to the shape of N x M parallelogram
results in the multiplication of the monodromy operator of the spin chain
by the cyclic twist matrix.

We have found that the cluster mapping class group Go for the ’spin-
chain class’ always contains a subgroup isomorphic to

W 1 1 - 1 1
w (ASV)—LQ X AEV)—I,ﬁ) x W (Agw)—m x AE\/I)—l,é) X7 (2.154)

whose generators act on zig-zag paths by permutations. Moreover, their
action on the A-cluster variables gives rise to the g—difference bilinear
relations. The symmetry enhancement happens in the case N = 2 (or
M = 2) and results in ’gluing’ of two copies of Ag\l,ll into Ag\),fl. If
both N = M = 2 the symmetry IV (A" x A1) x W (A{Y x A(V) x 2

enhances to the Dél) symmetry group of q-PVI equation.

Our first results in this direction actually produce more question than
give answers. The following obvious questions (at least!) can be addressed
for the further investigations:

e Trivial rank-N spin chain on a single site once twisted becomes spec-
trally dual to relativistic Toda chain, see Section 2.3.2. Can we sim-
ilarly identify the spectral duals of the twisted chains of arbitrary
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lengths and twists, whose Newton polygons are generic parallelo-
grams — or even extend this to generic four-gons? This question is
also very interesting on the gauge-theory side, where by now only
the hyperelliptic case of ’generalized Toda’ (four boundary points
and all internal points are lying on one line — pure SU(N) theory
with the CS term) was studied in [15].

e We have derived in Section 2.4.3 the bilinear relations, coming out
of the action of a single 'permutation’ generator of Gg on A-cluster
variables, acting by transpositions on zig-zags. Is there any system-
atic principle to derive bilinear equations for compositions of such
transformations?

o In [24], [14], [102], [15], [25] and [136] the solutions for g-difference
bilinear equations and their degenerations, arising from certain clus-
ter integrable systems, were found in terms of Fourier-transformed
Nekrasov functions for the corresponding 5d gauge theories. As
partition functions for the 5d linear quiver gauge theories are well
known, a natural further step is to show that they solve the bilinear
equations found here (and their hypothetical generalizations!).

2.6 Appendix. Proof of the RLL relation for clus-
ter L-matrices

Here some details of proof of (2.51) are collected. Recall the definitions
(2.52) (here and below i,j =1,..., M)

1 | =g wee ez L
Ly =—1——=19 ., _m , o1 m=w]lH"
e N N A G k=1
K3
(2.155)

where the variables z;, w; have Poisson brackets
1
{zi,wj} = Zéijziwj, {Zi, Zj} = {wi, ’LUj} = 0. (2.156)
It is useful to note that

1 1
{zi, 75} = Z%'Zﬂja {mi, 7} = —55iTiTj- (2.157)
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In addition to the sign-factors (1.5) we also introduce 2!
+1, ke (ij)
sk =14 —1, ke (i) (2.158)
0, k=1,7
which satisfies
sfj = —sfi, sfj = s;'-k, sfj = 5ij + Sk + Ski- (2.159)

From definitions (2.155)
o DoV LuvA o e/ VB = D () [V

; N =u/x NEVITERVITR) 2160
L\ Lia(p) = N5t 8sm 3 Ly () L (N), i, b # 1L

We take an anzatz

Z f1(@)Er @ B+ Y G (0) Emn @ Epp, (2.161)

m#n
and show that one can choose fi and g, such that equation
{L(A) @ L(p)} = [F(A ), LX) @ L(p)] (2.162)
holds. By direct computation it can be shown that (a # i # j # k #1):

a. {L(A) ® L(p)} b. [F(A/p), L(A) @ L(p)]
L. E;@Ej; |0 0
2. E,a®Ey |0 JaiLia(N) Laj (1) = GjaLaj(N) Lia(p)
3. Eaq ® Eqj ALaa(A)La (1) = BajLaj(MLaa(1t)  faLaa(N) Laj(t) = gjaLaj(N) Laa (1)
4. Eaq ® Eiq Laa(N) Lia(1t) + BiaLia(\) Laa(t)  —faLaa(N)Lia(tt) + gaiLia(A) Laa (1)
5. By ® Eji | Bji(Ljj(A)Lus(p) = Lis(A)Lj; (1) i3 L3 (M) Lai (1) = gij Lis (A L5 (1)
6. Eij @ Eyy %( K+ sh ) Lig () L (1) it L (M) Lt (1) — gig Lt (N) Ligy (1)
7.Eij®Eia | —% 88, Lij (M) Lia(pt) fiLij(N) Lia () — gajLia(N) Lij (1)
8. Eij ® Eaj | 38%Lij(A) Laj(1) —fiLij(N) Laj () + giaLaj (M) Lij (1)
9. Eij ® Eja | BjiLjj(M) Lia(1t) — BjaLia(A)Ljj (1) 9i5L55(N) Lia (1) — gajLia(A) Ly (1)

10. Eij ® Eqi | —BjiLii(N) Laj(1t) + BaiLaj(N) Lii(1) - =i Lii(N) Laj (1) + GiaLaj () Lii(12)
(2.163)

2INotation k € (i) means that we consider 4,4, k on the circle Z/MZ, with k in the
oriented interval from i to j.



2.6 Appendix. Proof of the RLL relation for cluster L-matrices 77

with

(\/V VA a+ VA - (W) YOS
2N —ux VA \/2%4)
Computations in 1,2,7.8.a) are straightforward. In 3, 4, 5.a) relation
(2.160) has to be used. 9,10.a) can be obtained by application of (2.160)
and (2.159):

{Lij(A), Lja(p) } = (2.165)

1,1, 1.7, _9 _ ) _
— A B )R )+ (- 5 ) =

1
= A ) (s + 1) (5~ 1)) =

7

_o\Ta 23
_—8 )\ QS”M zsja(z -I—Z 2) Z] _
Ti

)\ 2513+ Szapb é [L()\)M%sffj _L(M))\%S?J} _
VA — W v v
_ VW) L (N Lia() — (A1) 2 Lia (V) L (1)
AN p— /A

Looking at the table (2.163) we can suggest that the last two columns are
equal, if we put

— AGSMR), g5 = Bily/Mn) (2.166)

For 1-5 and 9-10 it is obvious. For 6, 7, 8 it is easier to move from the
right to the left. For 6, using (2.159):

ik L (N) Lt (1) — g1 Lir(A) Ligj () = (2.167)
1 1 1
B AT 3SR Sk TSk S \ T 38T %y~ 585 QSkJT 7 2 _ov
] VAT~ JTA o (5T =

1 s sk
)\szMQk )\QZJIU,2JZ

VA= i/

Lij(A) L ()
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All possible relative positions of the indices i, 7, k, [ can be encoded in the
table

J l i k k l
Sik Sk Slj SjI S;: + S

+1 41 41 +1 0
+1 -1 +1 -1 0
+1 -1 -1 41| =2 (2.168)
~1 41 -1 +1 0
—1 41 41 —1| +2
1 -1 -1 -1 0

which shows that 6.a) and 6.b) from (2.163) are equal. For 7.b):

fiLij(N) Lia (1) — gajLia(N) Lij(p) = (2.169)
\W+ VNN T T 5 g\ 3 e 3% 5%
VA WL/A
LG ) E ) =
ERSVAYIERN. 2N/ 1)~ 7% 1
=3 I +\/VM/ \/IT/M Lij(A)Lia(p) = _is%Lij(/\)Lia(ﬂ)

which is equal to 7.a). Similarly for 8 a) and b). To show that (2.161) is
equal to (1.32) multiplied by %, we have to note that

M
S En®Eg=191-)Y E;®E); (2.170)
k=1 i#]

and 1 ® 1 is commuting with anything, so can be always added to the r-
matrix with the arbitrary coefficient, without any change of the relations.



