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Chapter 2

Cluster integrable systems
and spin chains

2.1 Introduction
In the seminal paper [172] Seiberg and Witten found ’exact solution’ to 4d
N = 2 super-symmetric gauge theory in the strong coupling regime. More
strictly, the IR effective couplings were constructed geometrically, from the
period integrals on a complex curve, whose moduli are determined by the
condensates and bare couplings of the UV gauge theory. Shortly after, it
has been also realized [72] that natural language for the Seiberg-Witten
theory is given by classical integrable systems. In such context the pure
supersymmetric gauge theories (with only N = 2 vector supermultiplets)
correspond to the Toda chains, while integrable systems for the gauge
theories with fundamental matter multiplets are usually identified with
classical spin chains of XXX-type.

The next important step was proposed in [164], where this picture has
been lifted to 5d. Then it has been shown that transition from 4d to 5d
(actually – four plus one compact dimensions) results in ’relativization’
of the integrable systems [143] (in the sense of Ruijsenaars [159]). In the
simplest case of SU(2) pure Yang-Mills theory, or affine Toda chain with
two particles, instead of the Hamiltonian

H4d = p2 + eq + Ze−q, (2.1)

corresponding to 4d theory, one has to consider

H5d = ep + e−p + eq + Ze−q, (2.2)
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or the Hamiltonian of relativistic Toda chain, which describes effective
theory for 5d pure SU(2) Yang-Mills 1. It has been also shown that 5d
theories with fundamental matter correspond to XXZ-type spin chains
(see e.g. [133] and references therein).

Relativistic Toda chains lead to natural relation of this story with the
integrable systems on the Poisson submanifolds in Lie groups, or more
generally to the cluster integrable systems – recently discovered class of
integrable systems of relativistic type [71, 128, 55]. Direct relation be-
tween cluster integrable systems and 5d gauge theories has been proposed
in [14]. It was shown there that for the case of Newton polygons with
single internal point, dynamics of discrete flow is governed by q-Painlevé
equations and their bilinear form is solved by Nekrasov 5d dual partition
functions (for other examples of 5d gauge theories the same phenomenon
was considered in [102, 16, 15])2.

Cluster integrable systems Any convex polygon ∆ with vertices in
Z2 ⊂ R2 can be considered as a Newton polygon of polynomial f∆(λ, µ),
and equation

f∆(λ, µ) =
∑

(a,b)∈∆
λaµbfa,b = 0. (2.3)

defines a plane (noncompact) spectral curve in C× × C×. The genus g
of this curve is equal to the number of integral points strictly inside the
polygon ∆.

According to [71],[55] a convex Newton polygon ∆, modulo action
of SA(2,Z) = SL(2,Z) n Z2, defines a cluster integrable system, i.e. an
integrable system on X-cluster Poisson variety X of dimension dimX = 2S,
where S is area of the polygon ∆. The Poisson structure can be encoded
by quiver Q with 2S vertices. Let εij be the number of arrows from i-th
to j-th vertex (εji = −εij) of Q, then logarithmically constant Poisson
bracket has the form

{xi, xj} = εijxixj , {xi} ∈
(
C×
)2S

. (2.4)
1The slightly misleading term ’relativistic’ appears here due to formal similarity

of momentum dependence to the rapidities of a massive relativistic particle in 1 + 1
dimensions.

2Other relations between 5d supersymmetric gauge theories and cluster integrable
systems (involving exact spectrum of quantized cluster integrable systems, BPS count-
ing and toric Calabi-Yau quantization) were discussed in [52], [62], [151] correspondingly.
They seem to be related to our case and we are going to return to these issues elsewhere.
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The product of all cluster variables ∏i xi is a Casimir for the Poisson
bracket ((2.4)). Setting it to be

q =
∏
i

xi = 1 (2.5)

and fixing values of other Casimirs, corresponding to the boundary points
of Newton polygon I ∈ ∆̄ (their total number is B−3, since equation (2.3)
is defined modulo multiplicative renormalization of spectral parameters λ,
µ and f∆(λ, µ) itself), one obtains symplectic leaf.

The properly normalized coefficients, corresponding to the internal
points, are integrals of motion in involution

{fa,b(x), fc,d(x)} = 0, (a, b), (c, d) ∈ ∆ (2.6)

w.r.t. the Poisson bracket (2.4). By Pick theorem one has

2S − 1 = (B − 3) + 2g (2.7)

where g is the number of internal points (or genus of the curve (2.3)), or
the number of independent integrals of motion. So the number of inde-
pendent integrals of motion is half of the dimension of symplectic leaf,
and the system is integrable. One of distinguished features of the cluster
integrable systems is that their integrals of motion are the Laurent poly-
nomials of (generally – fractional powers) in the cluster variables.

There are several different ways to get explicit form of the spectral
curve equation (2.3):

• Compute the dimer partition function (with signs) for a bipartite
graph on a torus. One possible form of it is a characteristic equation

detD(λ, µ) = 0 (2.8)

for the Kasteleyn-Dirac operator on a bipartite graph Γ ⊂ T2, de-
pending on two ’quasimomenta’ λ, µ ∈ C×;

• Alternatively, one can get the same equation (2.3) as a Lax-type
equation of a spectral curve, with the Lax operator coming from
affine Lie group construction, identifying cluster variety with a Pois-
son submanifold in the co-extended affine group.

Short exposition of the first construction of cluster integrable system, rel-
evant for this chapter, is contained Section 1.4.
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Classical integrable chains Integrability of classical glM chains of
XXZ type is based on the that their M × M Lax matrices satisfy the
following classical RLL relation

{L(λ)⊗ L(µ)} = κ[r(λ/µ), L(λ)⊗ L(µ)] (2.9)

with the classical (trigonometric) r-matrix 3

r(λ) = −λ
1/2 + λ−1/2

λ1/2 − λ−1/2

∑
i 6=j

Eii ⊗ Ejj + 2
λ1/2 − λ−1/2

∑
i 6=j

λ−
1
2 sijEij ⊗ Eji.

(2.10)
A classical chain of trigonometric type can be defined by the monodromy
operator

T (µ) = LN (µ/µN ) . . . L1(µ/µ1) ∈ End(CM ) (2.11)

where M is called ’rank’ of the chain. Integrability is guaranteed by
classical RTT-relation

{T (λ)⊗ T (µ)} = κ[r(λ/µ), T (λ)⊗ T (µ)] (2.12)

for the monodromy operator that follows from (2.9), and gives rise to
the integrals of motion, which can be extracted from the spectral curve
equation (2.3) given explicitly by the formula

f∆(λ, µ) = det (λQ− T (µ)) = 0. (2.13)

where Q - diagonal twist matrix with the constant entities. Relativistic
Toda system can be considered as certain degenerate case of generic XXZ
chain of rank M = 2 (of length N for N particles).

Examples of Newton polygons In what follows we mostly consider
cluster integrable systems, corresponding to the Newton polygons of the
following types:

• Quadrangles with four boundary points, where all internal points
are located along the same straight line, as on Fig. 2.1, left. This
is the case of relativistic Toda chains, studied in [14]. The corre-
sponding gauge theory is 5d N = 1 Yang-Mills theory with SU(N)

3See details of derivation of Lax matrix from quantum algebra and notations in
Section 1.3.
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Figure 2.1. From left to right Newton polygons for: Toda chain on three sites,
gl2 XXZ spin chain on three sites, gl2 spin chain on three sites with cyclic twist
matrix.

gauge group (for N − 1 internal points) without matter multiplets,
possibly with the Chern-Simons term of level |k| ≤ N – in such case
quadrangle is not a parallelogram.

• “Big” rectangles (modulo SA(2,Z) transform). For the N ×M rect-
angle (see Fig. 2.1, center) this can be alternatively described as a
glN spin chain on M sites (cf. with [21]), or vice versa. The corre-
sponding 5d gauge theories are given by linear quivers theories with
the SU(N) gauge group at each of M − 1 nodes: see Fig. 2.2.

maf

SU(N)M−1SU(N)i+1

mbif

SU(N)i

mbif

SU(N)i−1SU(N)1

mf

Figure 2.2. Linear quiver which defines multiplets for N = 1 gauge theory.
Circles are for gauge vector multiplets, boxes are for hypermultiplets.

• “Twisted rectangles”, or just the parallelograms, which are not SA(2,Z)-
equivalent to the previous class (see Fig. 2.1, right), they can be al-
ternatively formulated as spin chains with nontrivial twists. Gauge
theory counterpart for this class of polygons is not yet known, ex-
cept for the twisted glN chain on one site, leading back to the basic
class of Toda chains.

For all these families the spectral curve of an integrable system, deter-
mined by equation (2.3) is endowed with a pair of meromorphic differen-
tials

(
dλ
λ ,

dµ
µ

)
with the fixed 2πiZ-valued periods. One can also use this
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pair to introduce (the SL(2,Z)-invariant for our family) 2-form dλ
λ ∧

dµ
µ

on C× × C×, whose ’pre-symplectic’ form is the SW differential.

Structure of the Chapter The main aim is to extend the correspon-
dence between 5d theories and cluster integrable systems to wider class
of models. We find isomorphism between the classes of glN XXZ-like spin
chains onM sites, corresponding to 5d SU(N) linear quiver gauge theories
(see Fig. 2.2) [21], and cluster integrable systems with N ×M rectangular
Newton polygons.

We start from the brief overview of classical XXZ spin chains. We
illustrate with the simple example of relativistic Toda chain, how Lax
operators naturally arise from the Dirac-Kasteleyn operator of cluster in-
tegrable system. Then we do this for the general case of XXZ spin chain
of arbitrary length and rank. Spectral (or fiber-base) duality arises as an
obvious consequence of the structure of considered bipartite graph. Spin
chains with additional cyclic permutation twist matrix arise in the cluster
context naturally as well.

Then we explain structure of large subgroup of cluster mapping class
group GQ. We show that in case of general rank and length of chain it
contains subgroup (2.87) which act in autonomous q = 1 limit by permu-
tations of inhomogeneities and diagonal twist parameters of spin chain.
We also discuss issue of deautonomization and propose a way to define
action of GQ on zig-zags in q 6= 1 case. Then we derive bilinear equations
for the action of generators of GQ on A-cluster variables.

2.2 Spin chains

2.2.1 Relativistic Toda chain

Let us start with the case of relativistic Toda chain, which is known to be
related to Seiberg-Witten theory in 5d without matter [143]. Relativistic
Toda chains arise naturally on Lie groups [56], and therefore have cluster
description. A typical bipartite graph of affine relativistic Toda is shown
in Fig. 2.3. For the Toda system with N particles it has 2N vertices, 4N
edges and 2N faces. Corresponding Newton polygon is shown in Fig. 2.1,
left.

The cluster Poisson bracket (2.4) for the Toda face variables is

{x×i , x
×
j } = {x+

i , x
+
j } = 0, (2.14)
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{x×i , x
+
j } = (δi,j+1 + δi+1,j − 2δi,j)x×i x+

j , i, j ∈ Z/NZ
where in the non-vanishing r.h.s. one can immediately recognize the Car-
tan matrix of ŝlN . This Poisson bracket has obviously two Casimir func-
tions, which can be chosen, say, as4

q =
∏
j

(x×j x+
j ), κ1/κ2 =

∏
j

x+
j . (2.15)

However, in what follows we are going to use the edge variables (see Sec-
tion 1.4 for details), which do not have any canonical Poisson bracket, e.g.
since they are not gauge invariant, when treated as elements of C×-valued
gauge connection on the graph. Hence, following [128], we fix the gauge
and parameterize all edges by 2N exponentiated Darboux variables ξk, ηk

{ξi, ηj} = δijξiηj , {ξi,κa} = {ηi,κa} = 0, (2.16)

so that the face variables are expressed, as a products of oriented edge
variables (see Fig. 2.3, left) by

x×i = ξi+1
ξi

(κ2/κ1)δiN , x+
i = ηi

ηi+1
(κ1/κ2)δiN . (2.17)

In terms of the edge variables (2.16) the monodromies over zig-zag paths
(see Fig. 2.3, middle, right) can be expressed as follows

α = ζ/κ1, β = κ2/ζ, γ = κ1ζ, δ = 1/κ2ζ, ζ =
N∏
k=1

√
ξk
ηk

(2.18)

In the autonomous limit q = 1, there is a single independent Casimir
– diagonal twist of monodromy operator κ1/κ2 or coupling of the affine
Toda chain. Reduction from four zig-zags α, β, γ, δ to single Casimir κ1/κ2
is a reminiscence of the freedom λ → aλ, µ → bµ and the fact that
αβγδ = 1.

The Dirac-Kasteleyn operator here can be read of the left picture at
Fig. 2.3, and is given by N ×N matrix5:

D(λ, µ) =
N∑
i=1

(
(ξi + µ−1ηi)Eii − κδiN1

√
ξiηiEi,i+1 + κ−δiN2 µ−1√ξiηiEi+1,i

)
(2.19)

4Only the ratio of κ’s is actually independent Casimir, but we introduce both of
them for convenience in what follows.

5The spectral parameters or quasimomenta λ and µ appear due to intersection of
the edge with the blue and purple cycles in H1(T2,Z), and minuses arise due to discrete
spin structure.
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Figure 2.3. Left: Bipartite graph for the Toda chain. Center, right: zig-zag
paths α, β, γ, δ.

where we have additionally defined

EN,N+1 = λEN,1, EN+1,N = λ−1E1,N (2.20)

and it almost coincides here [39] with the standard N ×N formalism for
the spectral curve of relativistic Toda chain

det D(λ, µ) = 0 ⇔ ∃ D(λ, µ)ψ = 0 (2.21)

with Baker-Akhiezer function ψ ∈ CN .
Now, to illustrate what is going to be done for the spin chains, let us

rewrite this equation in terms of the well-known 2× 2 formalism for Toda
chains, but not quite in a standard way. In order to do that, we first add an
additional black (white) vertex to each top (bottom) edge in left Fig. 2.3,
and draw it in deformed way as in Fig. 2.4. Such operation obviously
does not change the set of dimer configurations, and new dimer partition
function differs from the old one only by total nonvanishing factor.
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Figure 2.4. Extended and deformed bipartite graph for the Toda chain.
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The Dirac-Kasteleyn matrix, read from the Fig. 2.4, can be written in
the block form

D(λ, µ) =
N∑
i=1

(
Eii ⊗Ai + Ei,i+1 ⊗ CiQδi,N

)
= (2.22)

=
N∑
i=1

(
(ξi + µ−1ηi)Eii ⊗ E11 + Eii ⊗ E12 +

√
ξiηiEii ⊗ E21−

−κδi,N1
√
ξiηiEi,i+1 ⊗ E11 − µκ

δi,N
2 Ei,i+1 ⊗ E22

)
with

Ai =

 ξi + µ−1ηi 1
√
ξiηi 0

 , Ci =

 −√ξiηi 0

0 −µ

 , Q =

 κ1 0

0 κ2

 .
(2.23)

The first factor in the tensor product corresponds to the number of the
particle (or of the ’site’), arising naturally in the framework of 2 × 2
formalism for Toda systems and spin chains below, while the second –
to position of a vertex inside the ’site’. For the ’extended’ (compare to
(2.19)) operator (2.22) one gets the same equation (2.21), but now with
ψ ∈ C2N , which can be written as:

ψ =
N∑
i=1

ei ⊗

 ψi,1

ψi,2

 =
N∑
i=1

ei ⊗ ψi. (2.24)

For the coefficients of this expansion (2.21) gives ψk+1 = Lk(µ)ψk
ψN+1 = λQψ1

(2.25)

or the system of finite-difference equations on Baker-Akhiezer functions
with the quasi-periodic boundary conditions, where the 2× 2 Lax matrix

Li(µ) = −C−1
i (µ)Ai(µ) = µ−

1
2

 µ
1
2

√
ξi
ηi

+ µ−
1
2

√
ηi
ξi

µ
1
2

√
ηiξi

µ−
1
2
√
ξiηi 0

 (2.26)
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is equivalent to the standard Lax matrix for relativistic Toda chain (see
e.g. [128]) up to conjugation by permutation matrix, and redefinition of
the variables

ξ 7→ η, η 7→ ξ−1, µ 7→ µ−1. (2.27)

This Lax operator satisfies classical RLL relation

{Li(λ)⊗ Lj(µ)} = δij [r(λ/µ), Li(λ)⊗ Lj(µ)] (2.28)

with the classical (trigonometric) r-matrix (2.10) 6. Compatibility condi-
tion of (2.25) gives spectral curve equation in the form

det (λQ− LN (µ)...L1(µ)) = 0 (2.29)

where Q = diag (κ1,κ2) is extra twist matrix7, and inhomogeneities {µi},
which appear in the case of generic XXZ chain, are absorbed here into
redefinition of dynamical variables.

2.2.2 Spin chains of XXZ type

Let us now apply the same arguments, which we used for the Toda chain,
to the following class of chains: the rankM chains onN cites of XXZ-type,
which means that the Poisson structure (2.28) is defined by trigonometric
r-matrix. Such systems naturally arise in q → 1 limit of Uq(glM ), see
Appendix 1.3. We claim that such classical spin chain can be alternatively
described as cluster integrable systems, constructed from ’big rectangles’
of the size N ×M .

For a cluster integrable system with such Newton polygon (see Fig. 2.5,
left) one gets a bipartite graph, drawn at Fig. 2.6. According to [71] this
graph is drawn on torus T2, i.e. left side is glued with the right side, and
top - with the bottom, we will call such graphs as N ×M ’fence nets’.

The cluster coordinates x×ia, x+
ia, now associated with the faces of graph

at Fig. 2.6, satisfy the following Poisson bracket relations

{x×ia, x
+
jb} = (−δijδab + δi,j+1δab + δijδa+1,b − δi,j+1δa+1,b)x×iax+

jb, (2.30)

{x×ia, x
×
jb} = {x+

ia, x
+
jb} = 0, i, j ∈ Z/NZ, a, b ∈ Z/MZ

6Up to numeric rescaling, see Section 1.3 for discussion.
7Note that constant diagonal matrices Q satisfy [r,Q⊗Q] = 0, and therefore can be

also used in construction of monodromy operators.
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(0,0) (N,0)

(0,M) (N,M)

x+
11

x×11

x+
12

x×12

x+
21

x×21

x+
22

x×22

x+
31

x×31

x+
32

x×32

Figure 2.5. Left: Newton polygon for (N,M) = (3, 2). Zig-zags from Fig. 2.6
as elements of torus first homology group are drawn by colored arrows. Right:
Poisson quiver. It is drawn on the torus, so vertices lying on left-right and up-
down sides have to be identified.

with two kinds of indices living ’on circles’: i, j enumerating rows of bipar-
tite graph and a, b enumerating columns. Corresponding quiver is drawn
at Fig. 2.5, right. As in Toda case, ’fixing’ a gauge, we pass now to the
edge variables

x×ia = η2
ia

ξ2
ia

, x+
ia = ξiaξi+1,a−1

ηi+1,aηi,a−1
(σi+1/σi)δa,1(κa−1/κa)δi,N . (2.31)

with the Poisson bracket

{ξia, ηjb} = 1
2δijδabξiaηjb, i, j ∈ Z/NZ, a, b ∈ Z/MZ (2.32)

Extra parameters in (2.31) are the Casimir functions of the bracket (2.30),
together with

ζhi =
M∏
b=1

ξib
ηib
, ζva =

N∏
j=1

ξja
ηja

, {x×, ζh,v} = {x+, ζh,v} = 0. (2.33)

It is useful to re-express them via the zig-zag variables (see the zig-zag
paths on Fig. 2.6, middle and right)

αi = σi/ζ
h
i , βi = 1/ζhi σi, i = 1, . . . , N (2.34)
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γa = ζva/κa, δa = ζvaκa, a = 1, . . . ,M (2.35)

These formulas relate convenient generators of the center of cluster Poisson
algebra with inhomogeneities {µk = 1/σkζhk = βk}, twists {κa}, ’on-site’
Casimirs ζhi = (αiβi)

1
2 and ’projections of spins’8 ζva = (γaδa)

1
2 of the

chain.
Our main statement here is that the classical spin variables (for defi-

nition see Section 1.3) associated with single site of the chain could also
be expressed via the edge variables ξ, η by

eS
0
a = z2

a, Sab = 1
2z
−2
b (z2

a+z−2
a )τa

τb
, a < b, Sab = −1

2z
2
a(z2

a+z−2
a )τa

τb
, a > b,

(2.36)
where9

za =
√
ξa/ηa, τa =

√
ξaηa

M∏
b=1

z
sgn(b−a)
b (2.37)

and the ’site index’ i = 1, . . . , N is omitted here. Spin-variables cannot
be directly expressed through the cluster variables in a natural way, but
rather as a product of edge variables over some non-closed paths. However
it is possible to express cluster variables via the spin variables on two
adjacent sites by

x×i,a = e−2(S0
a)i , (2.38)

x+
i,a = −

e(S0
a)i+1+(S0

a−1)i(S+
a−1)i+1(S−a−1)i

cosh (S0
a−1)i+1 cosh (S0

a)i

(
σi+1
σi

)δa,1 (κa−1
κa

)δi,N
(2.39)

where index outside brackets of spin variables enumerates number of site.
The spectral curve again can be given by determinant of the Dirac-

Kasteleyn operator, which is the weighted adjacency matrix of the bipar-
tite graph. For generic (N,M) system it has the form:

D(λ, µ) =
N∑
i=1

M∑
a=1

ξia(Ei,i ⊗ Ea,a − κδi,1a σ
δM,a
i Ei,i−1 ⊗ Ea+1,a)+

+ηia(κ
δ1,i
a Ei,i−1 ⊗ Ea,a + σ

δM,a
i Ei,i ⊗ Ea+1,a)

(2.40)

8Notice that spin’s projections are not originally the Casimir functions for spin’s
brackets, but rather ’trivial’ integrals of motion – like the total momentum of particles
in Toda chains.

9This is basically standard bosonization formulas for the spin variables, cf. for
example with [23],[134].
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Figure 2.6. Left: bipartite graphs with labeled edges and faces: each edge,
crossing purple cycle has to be multiplied by µ, each edge, crossing blue cycle –
by λ. Center: horizontal zig-zag paths. Right: vertical zig-zag paths.

where the summand Eij ⊗Eab is corresponding to the edge between black
and white vertices10 (i, a) → (j, b), and those matrices Eij which get out
of fundamental domain are promoted to the elements of the ’loop algebra’,
with the ’loop’ parameters (λ, µ):

E1,0 ≡ λE1,N , EM+1,M ≡ µE1,M . (2.41)

Remark 2.2.1. The operator (2.40) as an element of End(CN )[[λ−1]] ⊗
End(CM )[[µ−1]] can be naturally embedded into tensor product of evalu-
ation representations of the loop algebras g̃lN ⊗ g̃lM , i.e.

D(λ, µ) =
N∑
i=1

M∑
a=1

ξia(hi ⊗ ha − κδi,1a σ
δM,a
i fi−1 ⊗ fa)+

+ηia(κ
δ1,i
a fi−1 ⊗ ha + σ

δM,a
i hi ⊗ fa)

(2.42)

10Signs ’−’ in D arise in a standard way [71] due to choice of Kasteleyn marking or
discrete spin structure on T2.
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for two evaluation representations g̃lK → End(CK)[[ζ]]:

ei = Ei,i+1, 1 ≤ i ≤ K − 1, e0 = eK = ζEK,1

fi = Ei+1,i, 1 ≤ i ≤ K − 1, f0 = fK = ζ−1E1,K

hi = Eii, 1 ≤ i ≤ K.

(2.43)

Let us now, breaking M ↔ N symmetry, collect the terms, corre-
sponding to Eii and Ei,i−1 in the first tensor factor, i.e. rewrite (2.40)
as:

D(λ, µ) =
N∑
i=1

Ei,i ⊗Ai + Ei,i−1 ⊗ Ci(Q)δ1,i (2.44)

with

Ai =
M∑
b=1

(
ξibEb,b + ηibσ

δM,b
i Eb+1,b

)
, Ci =

M∑
b=1

(
ηibEb,b − ξibσ

δM,b
i Eb+1,b

)
,

(2.45)

Q =
M∑
b=1

κbEbb

From the spectral curve equation detD(λ, µ) = 0 one finds for

ψ =
N∑
i=1

ψiei =
N∑
i=1

M∑
a=1

ψiaei ⊗ ea ∈ CMN : D(λ, µ)ψ = 0. (2.46)

that

Aiψi + Ci(Q)δi,1ψi−1 = 0, i = 1, . . . , N, ψ0 ≡ λψN . (2.47)

Solving these equations recursively for the vectors ψi =
M∑
a=1

ψiaea, one
finally gets (

λQ− (−1)NC−1
1 A1...C

−1
N AN

)
ψN = 0 (2.48)

with consistency condition

det
(
λQ− L1

(
σ1ζ

h
1µ
)
...LN

(
σNζ

h
Nµ
))

= 0 (2.49)

of the form (2.13), with the Lax matrices

Li
(
σiζ

h
i µ
)

= −C−1
i Ai, i = 1, . . . , N. (2.50)
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Hence, the spectral curve detD(λ, µ) = 0 is represented in the form
(2.11), common for the classical integrable chains with inhomogeneities
µi = 1/σiζhi = βi and twist Q = ∑

a κaEaa = ∑
a

√
δa/γaEaa. There are

also two sets of Casimirs related to spin variables: total projections of spin
ζva = ∏

i e
S0
ia and single non-trivial on-site Casimirs ζhi . The Lax operators

(2.50) on different sites satisfy classical RLL-relations

{Li(µ)⊗ Lj(µ′)} = 1
2δij [r(µ/µ

′), Li(µ)⊗ Lj(µ′)] (2.51)

which coincide with (1.43) arising from the classical limit of Uq(glM ) with
q = e−~ and κ = 1

2 in (1.31), see Section 2.6 for details. In such way one
gets explicit formulas (with the sign-factors (1.5)

(Li)ab(µ) = 1
µ

1
2 − µ−

1
2


a = b, µ

1
2 z−2
ia + µ−

1
2 z2
ia

a 6= b, µ−
sab

2 (z2
ib + z−2

ib ) τib
τia

, (2.52)

for the Lax operators (2.50) on the sites i ∈ 1, ..., N in terms of variables
introduced in (2.37).

Comparing L-operator (2.52) with (1.44) one comes to the formulas
(2.36), expressing the ’spin operators’ on each site in terms of the edge
variables. Expressions (2.36) satisfy all the relations of the classical limit
of Uq(glM ) with κ = 1

2 . Note that this Lax operator is belonging to the
lowest rank Kirillov orbit.
Remark 2.2.2. An equivalent construction of the cluster integrable systems
is based on the Poisson submanifolds or double Bruhat cells in P̂GL,
endowed with the usual r-matrix Poisson structure [49, 55]. For the family
of systems we consider here, given by the SA(2,Z)-orbit of rectangular
N ×M Newton polygons, one gets in such way a double Bruhat cell of
P̂GL(N +M), given by the word

u = (sMsM ... s1s1Λ)N (2.53)

in the co-extended double Weyl group W̃ (A(1)
K × A

(1)
K ) (here with K =

N +M) with the generators si, si,Λ satisfying relations

s2
i = 1, (sisi+1)3 = 1, sisj = sjsi, for |i− j| > 1

s̄2
i = 1, (s̄is̄i+1)3 = 1, s̄is̄j = s̄j s̄i, for |i− j| > 1

ΛK = 1, Λsi+1 = siΛ, Λs̄i+1 = s̄iΛ

i, j = 1, . . . ,K

(2.54)
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s2 s̄2 s1 s̄1 Λ s2 s̄2 s1 s̄1 Λ s2 s̄2 s1 s̄1 Λ

x×12

x×11

x+
12

x+
11

x×22

x×21

x+
22

x+
21

x×32

x×31

x+
32

x+
31

Figure 2.7. Thurston diagram in the (3, 2) case, which appears from u =
(s2s̄2s1s̄1Λ)3.

We are not going to repeat here all steps of the construction in detail,
and just present the main ingredient – the Thurston diagram for (2.53),
drawn for (N,M) = (3, 2) at Fig. 2.7. The corresponding bipartite graph
(see Fig. 2.7) differs from the discussed above ’fence-net’ by additional
horizontal twist of the cylinder by 2π, which does not affect an integrable
system, since it corresponds to the SL(2,Z) transformation of the spectral
parameters (λ, µ)→ (λ, µλ−1).

Example. SU(2) theory with Nf = 4 The most well-known case of
the system we consider here corresponds to the five-dimensional supersym-
metric gauge theory with the SU(2) gauge group and Nf = 4 fundamental
multiplets. The corresponding Newton polygon is a square with sides of
length N = M = 2 (see Fig. 2.8), and as a spin chain this is just common
XXZ-model on two sites with the Lax operator11 (see e.g. [133])

L(µ) =

 µeS
0 − µ−1e−S

0 2S−

2S+ µe−S
0 − µ−1eS

0

 , Q =

 κ 0

0 κ−1

 .
(2.55)

Spectral curve for the system is given by

det (L (µ/µ1)L (µ/µ2)Q− λ) = 0. (2.56)
11This form is slightly different from (1.52) arising from the classical limit of Uq(gl2).

However, in 2× 2 case these two forms are equivalent.
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The Poisson brackets of spin operators are given by classical trigonometric
r-matrix and written as:

{S0, S±} = ±S±, {S+, S−} = sinh 2S0 (2.57)

for the S-variables on the same site, and zero for the variables on the
different sites. Such bracket has one natural Casimir function

K = −ζh − (ζh)−1 = 1
2 cosh 2S0 + S+S−. (2.58)

Figure 2.8. Newton polygon for (N,M) = (2, 2).

As a cluster integrable system it lives on X-variety with the quiver
corresponding to A(1)

3 -type system from figure 2 in [14], and its deautono-
mization leads to the Painlevé VI equation, solvable by conformal blocks,
or equivalently topological strings amplitudes [102]. We derive Lax opera-
tor for this system from Kasteleyn operator in details in the next example,
which is simply generalization of this example to three sites.

Example. SU(3) theory with Nf = 6. This case is corresponding to
the word u = (22̄11̄Λ)3 in double Weyl group of P̂GL(5). Bipartite graph
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is drawn on Fig. 2.6. Kasteleyn operator is 6× 6 matrix

D =

bw 11 12 21 22 31 32

11 ξ11 µσ1η12 0 0 λκ1η11 −λµκ2σ1ξ12

12 η11 ξ12 0 0 −λκ1ξ11 λκ2η12

21 η21 −µσ2ξ22 ξ21 µσ2η22 0 0

22 −ξ21 η22 η21 ξ22 0 0

31 0 0 η31 −µσ2ξ32 ξ31 µσ2η32

32 0 0 −ξ31 η32 η31 ξ32

=

(2.59)

=


A1 0 λC1Q

C2 A2 0

0 C3 A3

 .
Spectral curve is given by condition

detD(λ, µ) = 0 ⇔ ∃ ψ =


ψ1

ψ2

ψ3

 : (2.60)

D(λ, µ)ψ = 0 ⇔


λQψ3 = L1(σ1ζ

h
1µ)ψ1

ψ1 = L2(σ2ζ
h
2µ)ψ2

ψ2 = L3(σ3ζ
h
3µ)ψ3

Li(µ) = 1
µ

1
2 − µ−

1
2


µ−

1
2
ξi1
ηi1

+ µ
1
2
ηi1
ξi1

µ
1
2
ηi2
ξi1

(
ξi2
ηi2

+ ηi2
ξi2

)
µ−

1
2
ξi1
ηi2

(
ξi1
ηi1

+ ηi1
ξi1

)
µ−

1
2
ξi2
ηi2

+ µ
1
2
ηi2
ξi2


(2.61)

ζhi = ξi1ξi2
ηi1ηi2

, Q =

 κ1 0

0 κ2
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which could be rewritten using monodromy operator(
λQ− T 2×2

3 (µ)
)
ψ3 = 0 ⇔ det

(
λQ− T 2×2

3 (µ)
)

= 0,

T 2×2
3 (µ) = L1(σ1ζ

h
1µ)L2(σ2ζ

h
2µ)L3(σ3ζ

h
3µ).

(2.62)

Lax operator (2.61) is of gl2 type, so can be mapped to (1.52). To trans-
form it in sl2 form (2.55) we have to apply transformations like (1.54)

µ 7→ −µ ξ1ξ2
η1η2

, (2.63)

L(µ) 7→
(√

ξ1ξ2
η1η2

µ
1
2 −

√
η1η2
ξ1ξ2

µ−
1
2

) µ−1/2 0

0 1

 · L(µ) ·

 µ1/2 0

0 1


so it becomes

L(µ) =


µ

1
2

√
η1ξ2
ξ1η2

− µ−
1
2

√
ξ1η2
η1ξ2

√
ξ2η2
ξ1η1

(
ξ2
η2

+ η2
ξ2

)

−
√
ξ1η1
ξ2η2

(
ξ1
η1

+ η1
ξ1

)
µ

1
2

√
ξ1η2
η1ξ2

− µ−
1
2

√
η1ξ2
ξ1η2

 . (2.64)

Defining classical sl2 spin variables by

S− = 1
2

√
ξ2η2
ξ1η1

(
ξ2
η2

+ η2
ξ2

)
, S+ = −1

2

√
ξ1η1
η2ξ2

(
ξ1
η1

+ η1
ξ1

)
, eS

0 =
√
ξ1η2
η1ξ2

(2.65)
we see that Lax operator (2.64) coincides with the (2.55) up to replacement
µ1/2 → µ and S0 7→ −S0. The latter is a consequence of the fact that
(2.64) is coming from q = e−~ prescription, but (2.55) - from the usual
q = e~. Poisson brackets of spin variables coming from edge variables
bracket {ξi, ηj} = 1

2δijξiηj are

{S0, S±} = ±1
2 S
±, {S+, S−} = 1

2 sinh 2S0 (2.66)

which differs from (2.57) by factor 1/2, appearing from κ = 1
2 in the pre-

scription for the classical limit of commutators (1.31). For details see Sec-
tion 1.3. Spectral curve (2.56) could be obtained from (2.49) by transfor-
mation λ 7→ λ(κ1κ2)− 1

2 with identification of parameters κ = (κ1/κ2) 1
2 ,

µi = (κ1κ2) 1
2 (σiζhi )−1.
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2.3 Dualities and twists

2.3.1 Spectral duality

For some integrable chains special kind of duality could be observed both
on the classical and on the quantum level: namely system withN -dimensional
auxiliary space on M sites share Hamiltonians with some other system
withM -dimensional auxiliary space onN sites. Under duality spectral pa-
rameter which monodromy operator depends on, and spectral parameter
of characteristic equation exchange, so this duality is often called spectral
duality (however, sometimes referred as ’level-rank’ or ’fiber-base’ duality,
see [134] and references therein).

In the case of our interest, system doesn’t change its type: XXZ clas-
sical spin chain of glM type on N sites is dual to the XXZ chain of the glN
type onM sites [134], [23]. Looking atM×N fence-net bipartite graph, it
becomes obvious: graph keeps its structure under 90-degree rotation. On
the level of Kasteleyn operator, this corresponds to exchange of factors in
tensor product, and using different expressions for spin variables.

SU(2) theory with Nf = 4 and one bi-fundamental multiplet.
We start discussion of spectral duality in our context from simplest non-
trivial example. Let us consider gl3 spin chain on two sites, which is dual
to gl2 chain on three sites, considered in Section 2.2.2. To derive dual
Lax operators, we should permute some rows and columns of Kasteleyn
operator (2.59), which is exchanging of factors in tensor product End(C2⊗
C3) = End(C3 ⊗ C2):

D =

11 21 31 12 22 32

11 ξ11 0 λκ1η11 µσ1η12 0 −λµκ2σ1ξ12

21 η21 ξ21 0 −µσ2ξ22 µσ2η22 0

31 0 η31 ξ31 0 −µσ3ξ32 µσ3η32

12 η11 0 −λκ1ξ11 ξ12 0 λκ2η12

22 −ξ21 η21 0 η22 ξ22 0

32 0 −ξ31 η31 0 η32 ξ32

=

(2.67)
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=

 Ã1 µQ̃C̃2

C̃1 Ã2


Spectral curve is given by condition

detD(λ, µ) = 0 ⇔ ∃ ψ̃ =
(
ψ̃1 ψ̃2

)
: (2.68)

ψ̃D(λ, µ) = 0 ⇔

 ψ̃2 = ψ̃1L̃1(κ1ζ
v
1λ)

µψ̃1Q̃ = ψ̃2L̃2(κ2ζ
v
2λ)

L̃k(λ) = 1
λ

1
2 − λ−

1
2
· (2.69)

·



λ−
1
2 ξ1k
η1k

+ λ
1
2 η1k
ξ1k

λ
1
2 η1k
ξ2k

(
ξ1k
η1k

+ η1k
ξ1k

)
λ

1
2 η1kη2k
ξ2kξ3k

(
ξ1k
η1k

+ η1k
ξ1k

)
λ−

1
2 ξ2k
η1k

(
ξ2k
η2k

+ η2k
ξ2k

)
λ−

1
2 ξ2k
η2k

+ λ
1
2 η2k
ξ2k

λ
1
2 η2k
ξ3k

(
ξ2k
η2k

+ η2k
ξ2k

)
λ−

1
2 ξ2kξ3k
η1kη2k

(
ξ3k
η3k

+ η3k
ξ3k

)
λ−

1
2 ξ3k
η2k

(
ξ3k
η3k

+ η3k
ξ3k

)
λ−

1
2 ξ3k
η3k

+ λ
1
2 η3k
ξ3k



ζvk = ξ1kξ2kη3k
η1kη2kη3k

, Q̃ =


σ1 0 0

0 σ2 0

0 0 σ3

 (2.70)

which could be rewritten using monodromy operator

ψ̃1
(
µQ̃− T̃ 3×3

2 (λ)
)

= 0 ⇔ det
(
µQ̃− T̃ 3×3

2 (λ)
)

= 0, (2.71)

T̃ 3×3
2 (λ) = L̃1(κ1ζ

v
1λ)L̃2(κ2ζ

v
2λ).

It is indeed spectral dual to the curve (2.62). One can check by direct
calculation that

(1− κ1ζ
v
1λ)(1− κ2ζ

v
2λ)det

(
µQ̃− T̃ 3×3

2 (λ)
)

=

= (1− σ1ζ
h
1µ)(1− σ2ζ

h
2µ)(1− σ3ζ

h
3µ)det

(
λQ− T 2×2

3 (µ)
)
.

(2.72)
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General case. If the order of factors in tensor product in (2.44) had
been chosen in the other way, we would get M matrices Ak and Ck of size
N ×N :

D(λ, µ) =
M∑
m=1

Ãm ⊗ Em,m + (Q̃)δM,mC̃m ⊗ Em+1,m (2.73)

Ãm =
N∑
n=1

ξnmEn,n+ηnmκδ1,n
m En,n−1, C̃m =

N∑
n=1

ηnmEn,n−ξnmκ
δn,1
m En,n−1,

(2.74)

Q̃ =
N∑
n=1

σnEnn.

Again, we present spectral curve as condition

∃ ψ̃ =
N∑
n=1

M∑
m=1

ψ̃nmen ⊗ em ∈ CMN : ψ̃D(λ, µ) = 0 (2.75)

which gives for the spectral curve

det (L̃1(κ1ζ
v
1λ)...L̃M (κMζvMλ)− µQ̃) = 0, L̃k(κkζvkλ) = −ÃkC̃−1

k .
(2.76)

Using variables (2.37) we can write dual Lax operator

(L̃m)ij(λ) = 1
λ

1
2 − λ−

1
2


i 6= j, λ−

sij
2 (z2

im + z−2
im ) τ̃im

τ̃jm

i = j, λ
1
2 z−2
im + λ−

1
2 z2
im

, (2.77)

τ̃nm = wnm

N∏
i=1

z−sinim .

We can relate them to L-operators (2.52) of the same size

L(z, w, µ) = L̃(z → z−1, w, λ→ µ−1)>. (2.78)

Noting that for the classical r-matrix

r(a−1)> = −r(a) (2.79)

where transposition is taken in each tensor multiplier, we can deduce from
(2.51) that

{L̃(λ)⊗ L̃(µ)} = 1
2[L̃(λ)⊗ L̃(µ), r(λ/µ)]. (2.80)
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To obtain explicit relation for the dual spectral curves, we have to come
back to the Kasteleyn operator of the system, and consider its determi-
nant. In terms of M ×M blocks Ak, Ck defined by (2.74) spectral curve
is given by

det D(λ, µ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

A1 0 ... 0 λC1Q

C2 A2 ... 0 0

... ... ... ... ...

0 0 ... AN−1 0

0 0 ... CN AN

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= (2.81)

=
∏
i

(detCi) ·

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

C−1
1 A1 0 ... 0 λQ

1 C−1
2 A2 ... 0 0

... ... ... ... ...

0 0 ... C−1
N−1AN−1 0

0 0 ... 1 C−1
N AN

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

= ... =
∏
i

(detCi) ·

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 ... 0 λQ

1 1 ... 0 0

... ... ... ... ...

0 0 ... 1 0

0 0 ... 1 (−1)NTM×MN

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

TM×MN = L1...LN , Lk = −C−1
k Ak,

and subtracting consequentially lines from first to last

det D(λ, µ) = (−1)NMdet (C1...CN ) det (TM×MN (µ)− λQ). (2.82)

Acting in the same way, we get for the dual spectral curve

det D(λ, µ) = (−1)NMdet
(
C̃1...C̃M

)
det (T̃N×NM (λ)− µQ̃), (2.83)

T̃N×NM = L̃1...L̃M , L̃k = −ÃkC̃−1
k
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so, precise relation between curves is

det (C1...CN ) det (TM×MN (µ)−λQ) = det
(
C̃1...C̃M

)
det (T̃N×NM (λ)−µQ̃)

(2.84)
Note that the relation of pre-factors is Casimir of the bracket

det (C1...CN )
det

(
C̃1...C̃N

) = µ
N
2

λ
M
2

(
σ1...σN
κ1...κM

)1/2
N∏
n=1

(σnζhnµ)−1/2 − (σnζhnµ)1/2

M∏
m=1

(κmζvmλ)−1/2 − (κmζvmµ)1/2
.

(2.85)

2.3.2 Twisted chains

A diagonal twist matrix is not the only one, commuting with r-matrices.
A cyclic twist

QΛ(λ) =
N∑
i=1

Ei+1,i =
N−1∑
i=1

Ei+1,i + λE1,N (2.86)

also satisfies [r(λ/µ), QΛ(λ)⊗QΛ(µ)] = 0. In terms of bipartite graphs it
corresponds to the twist on a cycle of the torus, where the bipartite graph
is drawn on, or the gluing condition for the sides of fundamental domain,
see Fig. 2.6. Such twist also changes a Poisson quiver, even though the
edge variables are not affected themselves.

The twist of a bipartite graph results further in change of the zig-zag’s
structure. Several parallel zig-zags now join into ’longer sequences’ with
non-trivial winding so that rectangle Newton polygon undergoes a ’shear
shift’ – see examples on Fig. 2.9.

In the context of such transformations one can expect nontrivial con-
sequences for spectral duality. Consider the trivial case of glN chain on a
single site, which is dual to rank 1 chain on N sites, and apply the cyclic
twist along the longer side of a bipartite graph. In original picture this is
just a multiplication of a single N×N Lax operator by cyclic permutation
matrix. However in the dual setup, this results in passing from trivial gl1
chain to the Toda chain on the same number of sites, which can be verified
by comparing Fig. 2.9 and Fig. 2.3. After such procedure the number of
Casimirs drops by 2N − 2, while number of Hamiltonians jumps from 0
to N − 1.
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a)

3, 2 3, 1 3, 2 3, 1

1, 2 1, 1 1, 2 1, 1

2, 2 2, 1 2, 2 2, 1

3, 2 3, 1 3, 2 3, 1

1, 2 1, 1 1, 2 1, 1

b)

3, 1 3, 2 3, 1 3, 2

1, 2 1, 1 1, 2 1, 1

2, 2 2, 1 2, 2 2, 1

3, 2 3, 1 3, 2 3, 1

1, 1 1, 2 1, 1 1, 2

c)

1 1 1

2 2 2

3 3 3

1 1 1

d)

2 1 3

3 2 1

1 3 2

2 1 3

Figure 2.9. Examples of twisted gl2 chains. Dashed lines bound fundamental
domains. We use different notations for zig-zags here, comparing to the pictures
above. Edges crossed by red arrows belong to γ2 zig-zag, orange arrows are for
α1. a,b) XXZ chain of rank two and its twisted cousin. Note that the twisted
twice chain is equivalent up to SL(2,Z) transformation λ→ λµ to the untwisted
chain, as Q2

Λ = µ1, like in Remark 2.2.2. c,d) Making Toda chain by twisting
glN chain dual to gl1 chain.

For supersymmetric theories such transformation turns the theory of a
single SU(N) hypermultiplet with only SU(N)× SU(N) flavor symmetry
into pure SU(N) gauge theory.

2.4 Discrete dynamics

The cluster mapping class group GQ consists of sequences of mutations
and permutations of quiver vertices, which maps quiver to itself, but acts
in general non-trivially to the cluster variables (see Section 1.4 for details).
As a simplification one can restrict the action of GQ to the set of Casimirs
of the Poisson bracket. Each monomial Casimir maps to the monomial in
Casimir functions. When the necessary for integrability condition ∏i xi =
1 is relaxed to ∏i xi = q (which is called as deautonomization), these flows
act on the set of Casimirs, inducing non-trivial q−dynamics.

In [14] the cluster mapping class groups for the quivers, corresponding
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to Newton polygons with a single internal point, were identified with the
symmetry groups of q-Painlevé equations12. Passing from X-cluster to
A-cluster variety, the q-Painlevé equations acquire bilinear form for the
tau-functions, and can be solved via the dual Nekrasov partition functions
for 5d supersymmetric SU(2) gauge theories [24, 14, 102, 16], which is a
natural ’5d uplift’ of ’4d’ isomonodromic/CFT correspondence [68]. In
[15] the cluster description was further applied to discrete dynamics of
relativistic Toda chains of arbitrary lengths, where the solutions of non-
autonomous versions are given by SU(N) partition functions with the
|k| ≤ N Chern-Simons terms. Recently, cluster realization of generalized
q-Painlevé VI system was also observed in [153]. Note that for q = 1 case
with trivial Casimirs solution of discrete dynamics for arbitrary bipartite
graph can be written in terms of θ-functions [44].

Below in this section we discuss the cluster mapping class groups and
non-autonomous bilinear equations, arising for generic rectangle Newton
polygons. We present their explicit construction in the example, which
will illustrate the following results:

Structure of the group GQ.
For the SA(2,Z)-class of N ×M rectangular Newton polygon, the MCG
GQ always contains a subgroup of the form

W̃
(
A

(1)
N−1 ×A

(1)
N−1

)
× W̃

(
A

(1)
M−1 ×A

(1)
M−1

)
o Z ⊂ GQ. (2.87)

where W̃
(
A

(1)
N−1 ×A

(1)
N−1

)
is a co-extended double Weyl group (2.54).

The generators of each subgroup are naturally labeled by intervals on
sides of a Newton polygon, or subset of ’parallel’ zig-zag paths (in the
same homology class) on a bipartite graph:

W̃
(
A

(1)
N−1 ×A

(1)
N−1

)
: {sαi,αi+1}, {sβi,βi+1}, i ∈ Z/NZ (2.88)

W̃
(
A

(1)
M−1 ×A

(1)
M−1

)
: {sγa,γa+1}, {sδa,δa+1}, a ∈ Z/MZ (2.89)

where subscripts α, β, γ, δ label the corresponding group of paths, see
Fig. 2.6 middle and right. The group being extended by the additional
generator ρ contains lattice of the rank 2N +2M −3 of q−difference flows
of integrable system.

12Such relation for particular cases was earlier mentioned in [90, 146, 24, 147].
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Moreover, in special cases there is an obvious symmetry enhancement:
for example, for N = M an additional ’external’ generator appears, which
rotates the whole picture by π/2. However, sometimes this enhancement
is more essential: if any of the sides is of length 2, two rest Weyl groups
can be ’glued’ together by additional permutation, so the known subgroup
of GQ becomes

W̃
(
A

(1)
2N−1

)
× W̃

(
A

(1)
1 ×A

(1)
1

)
⊂ GQ (2.90)

This enhancement is closely related to the fact that spectral curves with
the N × 2 rectangular Newton polygon can be mapped to the curves with
the triangular Newton polygon with the integer sides 2N × 2× 2 (see e.g.
(3.70) in [62]). If both N = M = 2 one finds the extra enhancement from
W̃ (A(1)

1 ×A
(1)
1 )× W̃ (A(1)

1 ×A
(1)
1 ) to W̃ (D(1)

5 ), see below.

Action on spin chain Casimirs.
Inhomogeneities, total spins, on-site Casimirs and twists of spin chain are
permuted under the action of different components of GQ.

Inhomogeneities are given by single zig-zags µi = βi, while on-site
Casimirs are given by products of zig-zags ζhi = (αiβi)

1
2 . So the well

defined transformation of them, which ’permutes sites’ of spin chain are
products of primitive permutations

sαi,αi+1sβi,βi+1 : µi 7→ µi+1, µi+1 7→ µi, ζhi 7→ ζhi+1, ζ
h
i+1 7→ ζhi . (2.91)

Permutations of twists κa = (δa/γa)
1
2 and projections of spins ζva =

(γaδa)
1
2 by products

sγa,γa+1sδa,δa+1 : κa 7→ κa+1, κa+1 7→ κa, ζva 7→ ζva+1, ζ
v
a+1 7→ ζva .

(2.92)
can be viewed as an action of the Weyl group by permutations on the
maximal torus of Lie group.

Bilinear equations.
Equations defining the action of each single generator of GQ on A-cluster
variables (τ×ij , τ+

ij ) could be rewritten in the form of bilinear equations.
Evolution of coefficients can be encapsulated into the transformations of
frozen variables {uαi ,uβi ,uγa ,uδa}, which are evolving in the same way
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as Casimirs in X -variables.

For example τ -variables τ̄×k,a, τ̄
+
k,a transformed under the action of gen-

erator sβi,βi+1 satisfy bilinear equations

(uβi+1 − q
1
N uβi)(uδuγa) 1

N τ+
i−1,aτ

×
i+1,a =

= u
1
M
βi+1

τ̄+
i,aτ
×
i,a − q

1
NM u

1
M
βi
τ̄×i,aτ

+
i,a

(uβi+1 − q
1
N uβi)(uδ/uδa) 1

N τ+
i−1,a+1τ

×
i+1,a =

u−
1
M

αi τ̄×i,aτ
+
i,a+1 − q

1
NM u−

1
M

αi τ̄+
i,a+1τ

×
i,a

(2.93)

for all a ∈ Z/MZ, where uδ = ∏
a uδa . Frozen variables are transforming

as
sβi,βi+1 : uβi 7→ q−

1
N uβi+1 , uβi+1 7→ q

1
N uβi . (2.94)

Bilinear equations for the action of generators sαi,αi+1 , sγa,γa+1 , sδa,δa+1 are
similar.

2.4.1 Structure of GQ
Now we present generators of GQ in terms of the quiver mutations13

{µ×ij , µ
+
ij} (in the vertices, initially assigned with {x×ij , x+

ij}) and permu-
tations of the vertices {sλa,λbij,kl }. Consider for simplicity the (3, 2)-example,
which already illustrates how the explicit formulas look like in generic
case. Here 2(N +M) = 10 generators (2.88) can be realized as

sβ1,β2 = sλa,λb12,12µ
+
11µ
×
11µ
×
12µ

+
12µ
×
11µ

+
11 sα3,α1 = sλa,λb12,31µ

+
32µ
×
11µ
×
12µ

+
31µ
×
11µ

+
32

sβ2,β3 = sλa,λb22,22µ
+
21µ
×
21µ
×
22µ

+
22µ
×
21µ

+
21 sα1,α2 = sλa,λb22,11µ

+
12µ
×
21µ
×
22µ

+
11µ
×
21µ

+
12

sβ3,β1 = sλa,λb32,32µ
+
31µ
×
31µ
×
32µ

+
32µ
×
31µ

+
31 sα2,α3 = sλa,λb32,21µ

+
22µ
×
31µ
×
32µ

+
21µ
×
31µ

+
22

(2.95)
and

sδ2,δ1 = sλa,λb31,31µ
+
21µ
×
21µ

+
11µ
×
11µ
×
31µ

+
31µ
×
11µ

+
11µ
×
21µ

+
21 (2.96)

sγ1,γ2 = sλa,λb21,12µ
+
22µ
×
31µ

+
32µ
×
11µ
×
21µ

+
12µ
×
11µ

+
32µ
×
31µ

+
22

13For the definitions on cluster algebras see Section 1.4.
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sδ1,δ2 = sλa,λb32,32µ
+
22µ
×
22µ

+
12µ
×
12µ
×
32µ

+
32µ
×
12µ

+
12µ
×
22µ

+
22

sγ2,γ1 = sλa,λb22,11µ
+
21µ
×
32µ

+
31µ
×
12µ
×
22µ

+
11µ
×
12µ

+
31µ
×
32µ

+
21

which are sequences of mutations in the vertices along zig-zags in the
forward and then backward directions. One can check that each generator
here is involution i.e. s2 = 1, and acts by rational transformation on
X-cluster variables: e.g. for sβ2,β3 = sλa,λb22,22µ

+
21µ
×
21µ
×
22µ

+
22µ
×
21µ

+
21 one can

explicitly write:

x×31 7→ x×31 ·x
+
22x
×
21

[x×22, x
+
21, x

×
21]

[x×21, x
+
22, x

×
22]
, x×32 7→ x×32 ·x

+
21x
×
22

[x×21, x
+
22, x

×
22]

[x×22, x
+
21, x

×
21]
, (2.97)

x+
21 7→

1
x×21
· [x+

21, x
×
21, x

+
22]

[x+
22, x

×
22, x

+
21]
, x+

22 7→
1
x×22
· [x+

22, x
×
22, x

+
21]

[x+
21, x

×
21, x

+
22]
,

x×21 7→
1
x+

22
· [x×21, x

+
22, x

×
22]

[x×22, x
+
21, x

×
21]
, x×22 7→

1
x+

21
· [x×22, x

+
21, x

×
21]

[x×21, x
+
22, x

×
22]
,

x+
11 7→ x+

11 · x
×
21x

+
21

[x+
22, x

×
22, x

+
21]

[x+
21, x

×
21, x

+
22]
, x+

12 7→ x+
12 · x

×
22x

+
22

[x+
21, x

×
21, x

+
22]

[x+
22, x

×
22, x

+
21]
,

while all the other variables remain unchanged. Here we have used the
notation

[x1, x2, .., xn] = 1 + x1 + x1 · x2 + ...+ x1 · ... · xn = (2.98)

= 1 + x1(1 + x2(....+ xn−1(1 + xn)...)).

Notice also that the result of zig-zag mutation sequences actually do not
depends on the point of the ’zig-zag strip’ one starts with the first mutation
and direction of the jumps along/across given zig-zag. Note that the [ ]-
function possesses nice ’inversion’ property

[x1, ..., xn] = x1...xn · [x−1
n , ..., x−1

1 ] (2.99)

which allows to write equivalently, for example

x×21 7→
1
x+

22
· [x×21, x

+
22, x

×
22]

[x×22, x
+
21, x

×
21]

= 1
x+

21
· [(x×22)−1, (x+

22)−1, (x×21)−1]
[(x×21)−1, (x+

21)−1, (x×22)−1]
. (2.100)
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Each set of permutations sζi,ζi+1 with similar ζ constitute affine Weyl
group of A(1)-type. The groups for different z are commuting, so they
satisfy usual relations

s2
ζi,ζi+1

= 1,

(sζi,ζi+1sζi+1,ζi+2)3 = 1

sζi,ζi+1sζj ,ζj+1 = sζj ,ζj+1sζi,ζi+1 , |i− j| > 1

(2.101)

ζ = α, β with i, j ∈ Z/3Z
s2
ζi,ζa+1 = 1

ζ = γ, δ with i, j ∈ Z/2Z.

sζi,ζi+1sζ′j ,ζ′j+1
= sζ′j ,ζ′j+1

sζi,ζi+1 ,

ζ, ζ ′ = α, β, γ, δ such that ζ 6= ζ ′. There are two more ’external’ automor-
phisms preserving bipartite graph

Λh : x×ia 7→ x×i,a−1, x+
ia 7→ x+

i,a−1

Λv : x×ia 7→ x×i−1,a, x+
ia 7→ x+

i−1,a

(2.102)

which satisfy obvious relations

ΛhΛv = ΛvΛh, Λ2
h = 1, Λ3

v = 1, (2.103)

Λhsζa,ζa+1 = sζa−1,ζaΛh, for ζ = γ, δ, (2.104)

Λhsζi,ζi+1 = sζi,ζi+1Λh, for ζ = α, β, (2.105)

Λvsζi,ζi+1 = sζi−1,ζiΛv, for ζ = α, β , (2.106)

Λvsζa,ζa+1 = sζa,ζa+1Λv, for ζ = γ, δ , (2.107)

and promote affine Weyl groups to extended affine Weyl groups. There is
also one more generator of infinite order

ρ = sλbλaµλb : µλb = ∏
i,a
µλbia , sλbλa : x+

ia 7→ x×ia, x×ia 7→ x+
i−1,a+1,

(2.108)
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satisfying relations

ρ sαi−1,αi = sαi,αi+1 ρ, ρ sβi,βi+1 = sβi,βi+1 ρ, (2.109)

ρ sγi,γi+1 = sγi−1,γi ρ, ρ sδi,δi+1 = sδi,δi+1 ρ,

so the cluster mapping class group contains

W̃
(
A

(1)
2 ×A

(1)
2

)
× W̃

(
A

(1)
1 ×A

(1)
1

)
o Z ⊂ GQ. (2.110)

We conjecture that for general rectangularN×M Newton polygon, cluster
mapping class group contains subgroup (2.87). Construction of generators
for general N and M is straightforward, by ’jumps over zig-zags’ as in
example.

In the case N = M there is also an additional ’external’ generator
Rπ/2 of order 4, which rotates bipartite graph by π/2

Rπ/2 : x×i,a 7→ x+
−a,i, x+

i,a 7→ x×1−a,i. (2.111)

In the case N = 2K or M = 2K there is another additional ’external’
generator, which flips the rectangle.

Discrete flows. The group GQ contains lattice L of discrete flows of
rank B − 3, where B = 2N + 2M is the number of boundary integral
points of Newton polygon. It consists of four pairwise commuting lat-
tices contained in two copies of W (A(1)

N−1) = ZN−1 oW (AN−1) and two
copies ofW (A(1)

M−1) = ZM−1oW (AM−1), and generator (ρ)lcm(N,M) where
lcm(N,M) is the least common multiple of N andM . The lattice is gener-
ated by elements Tζi,ζi+1 which take pair of adjacent strands, wind them
up in opposite directions over cylinder and put on the initial places, if
one imagine W (A(1)

N−1),W (A(1)
M−1) as a groups acting by permutations of

strands on cylinder. For (3, 2) example β-piece of GQ can be presented as
W (A(1)

2 ) = Z2 oW (A2) with Z2 and W (A2) generated by

Tβ1,β2 = sβ1,β2sβ2,β3sβ3,β1sβ2,β3 , Tβ2,β3 = sβ2,β3sβ3,β1sβ1,β2sβ3,β1 (2.112)

and by
sβ1,β2 , sβ2,β3 (2.113)

correspondingly.
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One can find a homomorphism of the lattice L of the shifts (2.112) into
the group of discrete flows G′∆ (defined as in [55] to be an additive group
of integral valued functions on boundary vertices of Newton polygon mod-
ulo sub-group A generated by the restrictions from Z2 to the boundary
of Newton polygon of affine functions f(i, j) = ai+ bj + c). For the case
of rectangular Newton polygons one can easily finds that G′∆ = ZB−3.
Embedding of L to G′∆ actually comes from consideration of the action
of GQ on zig-zags presented in the next section, and results in the image
ZB−3. However, the factor is G′∆/L = Z/lcm(N,M)Z ⊕ Z/NZ ⊕ Z/MZ.
The non-trivial index appears due to the functions on the corners of New-
ton polygon. It can be also seen that the image of generator (ρ)lcm(N,M)

coincides with the image of generator τ from [55].

2.4.2 Monomial dynamics of Casimirs

According to [71] the lattice of Casimir functions xγ is generated by zig-zag
paths14

Z = {γ ∈ H1(Γ,Z) | ε(γ, ·) = 0}. (2.114)

As the skew-symmetric form ε is intersection form on dual surface, this
condition is equivalent to being trivial in dual surface Ŝ homologies. In
order to be expressed in terms of cluster variables {x×ij , x+

ij} Casimir should
be also trivial in torus homologies, i.e. we are interested in subset

C = {γ ∈ H1(Γ,Z) | [γ] = 0 ∈ H1(Ŝ,Z), [γ] = 0 ∈ H1(T2,Z)}. (2.115)

As zig-zags and faces are drawn on torus Z,F ⊂ H1(Γ,Z), they are con-
strained by ∏i xζi = 1, where the product goes over all zig-zag paths
and ∏i xfi = 1, where the product goes over all faces of bipartite graph
on torus. To obtain non-trivial q-dynamic these constraints have to be
relaxed to ∏i xfi = q 6= 1 so that xγ now is an element of extension
H1(Γ̃,Z) = H1(Γ,Z)⊕Q2

〈ω,ω̂〉 with the relations ∑i fi = ω,
∑
i ζi = ω̂. In

multiplicative notations this reads∏
i

xfi = q,
∏
i

xζi = q̂ (2.116)

where we have additionally defined q = xω, q̂ = xω̂. Introduction of q 6= 1
can be considered by lifting of bipartite graph to universal cover of T2

which is R2.
14For details on definitions see Section 1.4.
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Any variable xγ , γ ∈ C can be expressed via face variables xfi , which
are cluster variables, and can be mutated by usual rules (1.82). However,
there is no generic rule for mutation of variable associated with a single
zig-zag, except for mutation in four-valent vertex identified with a ’spider
move’ [71]. We propose here the generic rule for transformation of zig-
zags 15 under the action of generators (2.94), namely, for the N × M
rectangle:

sαi,αi+1 : αi 7→ q
1
N αi+1, αi+1 7→ q−

1
N αi,

sβi,βi+1 : βi 7→ q−
1
N βi+1, βi+1 7→ q

1
N βi,

sγa,γa+1 : γa 7→ q
1
M γa+1, γa+1 7→ q−

1
M γa,

sδa,δa+1 : δa 7→ q−
1
M δa+1, δa+1 7→ q

1
M δa,

(2.117)

where i = 1, . . . , N , a = 1, . . . ,M . The group GQ acts on the elements of
C, embedded in multiplicative lattice generated by zig-zags, precisely as
Coxeter groups of AK−1-type act on the root lattices embedded into ZK
(c.f. [153, 95]).

These rules basically come just from consistency with mutation trans-
formations for the elements of C. There is a two-parametric family of
transformations for zig-zag variables

ζ 7→ ζa[ζ]Ab[ζ]B , if [ζ] = ([ζ]A, [ζ]B)− class of ζ in H1(T2,Z) (2.118)

which do not affect C, since C consists of the combinations of zig-zags with
zero class in torus homology. This ambiguity is fixed using the ’locality
assumption’ that zig-zags not adjacent to the transformed faces are not
changed.

Let us now demonstrate, how formulas (2.117) come for (N,M) =
(3, 2) from consistency with transformations of C, where one can introduce
the following over-determined set of generators

Zβ1,α1 = x×11x
×
12, Zβ2,α2 = x×21x

×
22, Zβ3,α3 = x×31x

×
32,

Zα1,β2 = (x+
11x

+
12)−1, Zα2,β3 = (x+

21x
+
22)−1, Zα3,β1 = (x+

31x
+
32)−1

(2.119)
15We abuse notations, denoting xζ = ζ for zig-zags.
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Zγ1,δ1 = (x×11x
×
21x
×
31)−1, Zδ1,γ2 = x+

12x
+
22x

+
32,

Zγ2,δ2 = (x×12x
×
22x
×
32)−1, Zδ2,γ1 = x+

11x
+
21x

+
31

(2.120)

satisfying

Zβ1,α1Zβ2,α2Zβ3,α3Zγ1,δ1Zγ2,δ2 = 1

Zα1,β2Zα2,β3Zα3,β1Zδ1,γ2Zδ2,γ1 = 1

Zβ1,α1Zβ2,α2Zβ3,α3(Zα1,β2Zα2,β3Zα3,β1)−1 = q = 1.

(2.121)

so that the number of independent Casimirs is seven. In the autonomous
limit, these Casimirs reduce to Zζ,ζ′ = ζ · ζ ′, where ζ, ζ ′ correspond to zig-
zags {α, β, γ, δ}, expressed via the edge variables. The transformation, for
example, sβ1,β2 acts by

sβ1,β2 :
Zβ1,α1 7→ Zα1,β2 , Zβ2,α2 7→

Zβ2,α2Zβ1,α1

Zα1,β2

, Zβ3,α3 7→ Zβ3,α3 ,

Zα1,β2 7→ Zβ1,α1 , Zα2,β3 7→ Zα2,β3 , Zα3,β1 7→
Zα3,β1Zα1,β2

Zβ1,α1

.

(2.122)
and substituting here Zζ,ζ′ = ζ · ζ ′ one finds that the action of sβ1,β2

reduces just to permutation of β1 and β2, the same is true for the other
generators sζ1,ζ2 .

For q 6= 1 consider the generators Tβi,βi+1 (2.112) which act trivially
on C at all in the autonomous limit. One gets now

Tβ1,β2 :
Zβ1,α1 7→ q−1Zβ1,α1 , Zβ2,α2 7→ qZβ2,α2

Zα1,β2 7→ qZα1,β2 , Zα3,β1 7→ q−1Zα3,β1

(2.123)

where q = ∏
i,j x

×
ijx

+
ij . Again, after expressing the Casimirs via zig-zags,

the action of Tβ1,β2 is equivalent to β1 7→ q−1β1, β2 7→ qβ2. These formu-
las suggest that at q 6= 1 one can express generators of C via zig-zags and
q by 16

Zβ1,α1 = q
1
6β1α1, Zβ2,α2 = q

1
6β2α2, Zβ3,α3 = q

1
6β3α3,

Zα1,β2 = q−
1
6α1β2, Zα2,β3 = q−

1
6α2β3, Zα3,β1 = q−

1
6α3β1

(2.124)

16The fractional powers of q in these formulas can be restored using the ’magnetic flux’
interpretation for q 6= 1 in non-autonomous case. This interpretation is also consistent
with the fact that zig-zags with the different orientations collect fluxes of different signs.
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Zγ1,δ1 = q−
1
4γ1δ1, Zδ1,γ2 = q

1
4 δ1γ2, Zγ2,δ2 = q−

1
4γ2δ2, Zδ2,γ1 = q

1
4 δ2γ1

(2.125)
which are consistent with constraints (2.121) with q 6= 1 if one assumed17

α1α2α3β1β2β3γ1γ2δ1δ2 = q̂ = 1. Comparison of transformation (2.122)
with (2.124) and (2.125) leads to the formulas (2.117) for (N,M) = (3, 2).
The action of remaining generators is defined by

Λh : αi 7→ αi, βi 7→ βi, γa → γa+1, δa 7→ δa+1,

Λv : αi 7→ αi+1, βi → βi+1, γa 7→ γa, δa 7→ δa,

ρ : αi 7→ q−
1
N αi−1, βi 7→ βi, γa → q

1
M γa+1, δa 7→ δa.

(2.128)
Remark 2.4.1. Specialities of N = 2 or M = 2 case.
It is well known (see e.g. [62], eq.(3.70)) that spectral curves with a
Newton polygon being 2 × N rectangle can be mapped to the ’triangle
ones’ with the catheti of lengths 2 and 2N (see Fig. 2.10) just by change
of variables. Namely, equation

S(λ, µ) = P+
N (µ)λ2 + PN (µ)λ+ P−N (µ) = 0 (2.129)

under λ 7→ P−N (µ) · λ−1 than S(λ, µ) 7→ λ2P−N (µ)−1S(λ, µ) turns into

S(λ, µ) = λ2 + PN (µ)λ+ P+
N (µ)P−N (µ) = 0. (2.130)

For a corresponding cluster integrable system the Poisson quiver from
Fig. 2.5 can be transformed into the form drawn at Fig. 2.11 – more com-
mon for ’triangular’ polygons 18, studied in detail in [153]. This corre-

17One can incorporate q̂ 6= 1 consistently modifying formulas (2.119) and (2.120) by

Zβ1,α1 = q̂
1
5 x×11x

×
12, Zβ2,α2 = q̂

1
5 x×21x

×
22, Zβ3,α3 = q̂

1
5 x×31x

×
32,

Zα1,β2 = q̂
1
5 (x+

11x
+
12)−1, Zα2,β3 = q̂

1
5 (x+

21x
+
22)−1, Zα3,β1 = q̂

1
5 (x+

31x
+
32)−1

(2.126)
Zγ1,δ1 = q̂

1
5 (x×11x

×
21x
×
31)−1, Zδ1,γ2 = q̂

1
5 x+

12x
+
22x

+
32,

Zγ2,δ2 = q̂
1
5 (x×12x

×
22x
×
32)−1, Zδ2,γ1 = q̂

1
5 x+

11x
+
21x

+
31

(2.127)

However, as a meaning of this extension is not clear, we will assume q̂ = 1 in the
following.

18For generic triangular Newton polygon each node of quiver is connected to six
arrows (and corresponding dimer lattice is hexagonal). However, in 2 × 2N case a
partial cancelation happens: the arrows directed from x×i1 to x×i2 annihilate the arrows
from x×i2 to x×i1, and the same happens with x+

i1 and x+
i2, so only four arrows at each

node remain.
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Figure 2.10. Transformation from rectangle to triangle for (3, 2) case.

x+
31

x+
32

x×32

x×31

x+
21

x+
22

x×22

x×21

x+
11

x+
12

x×12

x×11

Figure 2.11. Quiver for (3, 2) case represented in ’triangular’ form.

spondence results in the ’enhancement’ of the symmetry group 19: a pair
of commuting Weyl groups A(1)

N−1 × A
(1)
N−1 is now embedded into larger

group A(1)
2N−1 with the generators

sαiβi+1 = sλb,λbi1,i2 µλbi1 µ
λb
i2 , sβiαi = sλa,λai1,i2 µλai1 µ

λa
i2 , i = 1, . . . , N (2.131)

Embedding A(1)
N−1 ×A

(1)
N−1 → A

(1)
2N−1 is provided by

sβi,βi+1 = sβiαisαiβi+1sβiαi , sαi,αi+1 = sαiβi+1sβi+1αi+1sαiβi+1 (2.132)

and commutativity of sαi,αi+1 and sβi,βi+1 just follows form the relations
on ’elementary’ generators sβiαi , sαiβi+1 . The generators of A(1)

2N−1 also
commute with sδi,δi+1 , sγi,γi+1 . The generator ρ is also absorbed. Now it
is not a primitive one, but can be presented as a composition

ρ = ΛhΛ̃v
N∏
i=1

sαi,βi+1 (2.133)

19We are grateful to Y.Yamada for clarification of this point.
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where we used ’root’ from Λv

Λ̃v : x×ia 7→ x+
i−1,a, x+

ia 7→ x×i,a, so Λv = (Λ̃v)2 (2.134)

so there are no extra ’dimensions’ in the lattice of the flows.

The action of the enhanced group on Casimirs can be constructed in
a way similar to generic case. For example, for the generator sα1,β2 in
(N,M) = (3, 2) case from

sα1,β2 :

Zβ1,α1 7→
Zβ1,α1

Zα1,β2

Zα1,β2 7→
1

Zα1,β2

,

Zβ2,α2 7→
Zβ2,α2

Zα1,β2

Zγ1,δ1 7→ Zα1,β2Zγ1,δ1 ,

Zδ1,γ2 7→ Zα1,β2Zδ1,γ2 , Zγ2,δ2 7→ Zα1,β2Zγ2,δ2 ,

Zδ2,γ1 7→ Zα1,β2Zδ2,γ1

(2.135)

one gets for the zig-zags

sα1,β2 : α1 7→ q
1
6β−1

2 , β2 7→ q
1
6α−1

1 , γaδa 7→ q−
1
6α1β2γaδa. (2.136)

which contains now ’inversion’ of zig-zag, since αi and βi correspond to the
opposite classes in H1(T2,Z). Generally, for the action of A(1)

5 on zig-zags
one gets

sαiβi+1 : αi 7→ q
1
6β−1

i+1, βi+1 7→ q
1
6α−1

i , γaδa 7→ q−
1
6αiβi+1γaδa

sβiαi : αi 7→ q−
1
6β−1

i , βi 7→ q−
1
6α−1

i , γaδa 7→ q
1
6αiβiγaδa.

(2.137)
Remark 2.4.2. Further enhancement for N = M = 2 ’small square’.
The group GQ for this case can be identified with the q-Painlevé VI sym-
metry groupW (D(1)

5 ) (see e.g. [14]). It corresponds naively to the ’double’
symmetry enhancement

A
(1)
1,α ×A

(1)
1,β → A

(1)
3,α,β, A

(1)
1,γ ×A

(1)
1,δ → A

(1)
3,γ,δ. (2.138)

but it turns out moreover that generators of the ’new’ extended groups
do not commute. For example the generators sα1β2 and sδ1γ2 satisfy

(sα1,β2sγ1,δ1)3 = 1 (2.139)
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sα1,α2sα2,α1

sβ1,β2sβ2,β1

sγ1,γ2 sγ2,γ1

sδ1,δ2 sδ2,δ1

sα1,α2

sα1,β2

sβ1,β2

sγ1,γ2

sγ1,δ1

sδ1,δ2

Figure 2.12. Symmetry enhancement from W
(
A

(1)
1 ×A

(1)
1 ×A

(1)
1 ×A

(1)
1

)
to

W (D(1)
5 ).

and this non-commutativity results in gluing of Dynkin quivers as shown
on Fig. 2.12.

Another cluster realization of W
(
D

(1)
5

)
has been proposed in [14],

given by generators

s0 = sλb,λb11,22 , s1 = sλb,λb12,21 , s2 = sλb,λb11,12µ
λb
11µ

λb
12

s5 = sλa,λa21,12 , s4 = sλa,λa11,22 , s3 = sλa,λa11,21 µ
λa
11µ

λa
21

. (2.140)

in terms of mutations of the same bipartite graph. In our notation this
generators are

s0 = sα1β2sδ1γ1sγ1γ2sδ1γ1sα1β2 , s1 = sα1β2sδ1γ1sδ1δ2sδ1γ1sα1β2 , s2 = sα1β2

s5 = sγ1δ1sα1β2sβ1β2sα1β2sγ1δ1 , s4 = sγ1δ1sα1β2sα1α2sα1β2sγ1δ1 , s3 = sγ1δ1 .

(2.141)
Two presentations can be mapped one to another by conjugation by

sα1β2sγ1δ1sα1β2 .

2.4.3 Towards bilinear equations

Let us finally turn to the issue of bilinear equations for the cluster tau-
functions or A-cluster variables. We postpone rigorous discussion of this
issue for a separate publication, but demonstrate here, how Hirota bilinear
equations can arise in the systems, corresponding to rectangle Newton
polygons.

The simplest example of bilinear equations is provided by spider moves,
or mutations in a four-valent vertex of the Poisson quiver, see also Fig. 1.5
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in Appendix for the transformation of corresponding piece of a bipartite
graph. Such transformation induce the only change in τ -variables, which
(for all unit coefficients)

τ0 7→ τ̄0 = τ1τ3 + τ2τ4
τ0

or τ0τ̄0 = τ1τ3 + τ2τ4. (2.142)

obviously leads to bilinear equation. However, there is no a priori reason
to get bilinear equations from generic action by an element of GQ. For
example, a single mutation in a six-valent vertex rather leads to relation,
which symbolically has form

τ τ̄ = τ3 + τ3 (2.143)

instead of bilinear. Sometimes one can get nevertheless a bilinear relation
for a sequence of mutations without no a priori reason for them to hold, see
e.g. Section. 2.8 of [15]. We are going to show in this section that the same
happens for the transformations, induced by the zig-zag permutations (e.g.
{sβi,βi+1} or {sγa,γa+1}), constructing their explicit action on tau-variables.

For A-cluster algebras20 the role of Casimir functions is played by
’coefficients’ [59], taking values in some tropical semi-field P, see also dis-
cussion in [15]. For the case of rectangle Newton polygons we label the
generators of P by zig-zags (together with q), i.e.

P = Trop(q, {uαi ,uβi}i=1,...,N , {uγa ,uδa}i=1,...,M ). (2.144)

so that the coefficients are expressed by

y×ia = q
1

NM
(uαiuβi)

1
M

(uγauδa) 1
N

, y+
ia = q

1
NM

(uγauδa−1) 1
N

(uαiuβi+1) 1
M

. (2.145)

The action of transformations sζi,ζi+1 on coefficients in this basis is equiv-
alent to the action on generators of P like in (2.117) on zig-zags, i.e.

sαi,αi+1 : uαi 7→ q
1
N uαi+1 , uαi+1 7→ q−

1
N uαi ,

sβi,βi+1 : uβi 7→ q−
1
N uβi+1 , uβi+1 7→ q

1
N uβi ,

sγa,γa+1 : uγa 7→ q
1
M uγa+1 , uγa+1 7→ q−

1
M uγa ,

sδa,δa+1 : uδa 7→ q−
1
M uδa+1 , uδa+1 7→ q

1
M uδa .

(2.146)

20For the definition of A-cluster algebra with coefficients and transition from X to
A-cluster algebra see Section 1.4.3.
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Coefficients could be encoded by ’frozen’ vertices of quiver. This sug-
gests principle that we assign frozen variables to faces of dual surface,
corresponding to zig-zag variables, while mutable variables - to faces of
original torus.

Let us now present an example of the action of the generator sβ1,β2 on
τ -variables in (N,M) = (3, 2) case. An explicit computation gives



τ̄+
11
τ+

11
τ̄×11
τ×11
τ̄+

12
τ+

12
τ̄×12
τ×12


=



u
1
2
β2

q
1

12 (uβ1uβ2) 1
2 q

2
12 u

1
2
β1

q
3

12 uβ1

q
3

12 u
1
2
β1

uβ2 q
1

12 u
1
2
β2

q
2

12 (uβ1uβ2) 1
2

q
2

12 u
1
2
β1

q
3

12 uβ1 u
1
2
β2

q
1

12 (uβ1uβ2) 1
2

q
1

12 u
1
2
β2

q
2

12 (uβ1uβ2) 1
2 q

3
12 u

1
2
β1

uβ2


·C·



τ+
31τ
×
21

τ+
11τ
×
11

τ+
32τ
×
21

τ+
12τ
×
11

τ+
32τ
×
22

τ+
12τ
×
12

τ+
31τ
×
22

τ+
11τ
×
12


(2.147)

where C = diag
(

(uγ1uδ)
1
3 ,u

1
2
α1(uδ/uδ1) 1

3 , (uγ2uδ)
1
3 ,u

1
2
α1(uδ/uδ2) 1

3

)
, uδ =

uδ1uδ2 . The main point is that the matrix in the r.h.s. is nicely invertible
so that these equations can be rewritten in bilinear form



(uβ2 − q
1
3 uβ1)(uδuγ1) 1

3 τ+
31τ
×
21 = u

1
2
β2
τ̄+

11τ
×
11 − q

1
12 u

1
2
β1
τ̄×11τ

+
11

(uβ2 − q
1
3 uβ1)(uδ/uδ1) 1

3 τ+
32τ
×
21 = u−

1
2

α1 τ̄
×
11τ

+
12 − q

1
12 u−

1
2

α1 τ̄
+
12τ
×
11

(uβ2 − q
1
3 uβ1)(uδuγ2) 1

3 τ+
32τ
×
22 = u

1
2
β2
τ̄+

12τ
×
12 − q

1
12 u

1
2
β1
τ̄×12τ

+
12

(uβ2 − q
1
3 uβ1)(uδ/uδ2) 1

3 τ+
31τ
×
22 = u−

1
2

α1 τ̄
×
12τ

+
11 − q

1
12 u−

1
2

α1 τ̄
+
11τ
×
12

. (2.148)

This is actually a generic phenomenon for the zig-zag generators: the same
happens, for example, for the generator sδ1,δ2 from another component of
GQ. One gets explicitly for the transformation of A-cluster variables

t1 = C1 · C2 · t2, (2.149)
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where

t1 =
(
τ̄+

32
τ+

32

τ̄×32
τ×32

τ̄+
22
τ+

22

τ̄×22
τ×22

τ̄+
12
τ+

12

τ̄×12
τ×12

)T

t2 =
(
τ+

31τ
×
31

τ+
32τ
×
32

τ+
21τ
×
31

τ+
22τ
×
32

τ+
21τ
×
21

τ+
22τ
×
22

τ+
11τ
×
21

τ+
12τ
×
22

τ+
11τ
×
11

τ+
12τ
×
12

τ+
31τ
×
11

τ+
32τ
×
12

)T (2.150)

C1 =



uδ2 q
1

12 u
2
3
δ2

q
2

12 (uδ1u2
δ2

) 1
3 q

3
12 (uδ1uδ2) 1

3 q
4

12 (u2
δ1

uδ2) 1
3 q

5
12 u

2
3
δ1

q
5

12 uδ1 u
2
3
δ2

q
1

12 (uδ1u2
δ2

) 1
3 q

2
12 (uδ1uδ2) 1

3 q
3

12 (u2
δ1

uδ2) 1
3 q

4
12 u

2
3
δ1

q
4

12 (u2
δ1

uδ2) 1
3 q

5
12 u

2
3
δ1

uδ2 q
1

12 u
2
3
δ2

q
2

12 (uδ1u2
δ2

) 1
3 q

3
12 (uδ1u2

δ2
) 1

3

q
3

12 (u2
δ1

uδ2) 1
3 q

4
12 u

2
3
δ1

q
5

12 uδ1 u
2
3
δ2

q
1

12 (uδ1u2
δ2

) 1
3 q

2
12 (uδ1uδ2) 1

3

q
2

12 (uδ1u2
δ2

) 1
3 q

3
12 (uδ1uδ2) 1

3 q
4

12 (u2
δ1

uδ2) 1
3 q

5
12 u

2
3
δ1

uδ2 q
1

12 u
2
3
δ2

q
1

12 (uδ1u2
δ2

) 1
3 q

2
12 (uδ1uδ2) 1

3 q
3

12 (u2
δ1

uδ2) 1
3 q

4
12 u

2
3
δ1

q
5

12 uδ1 u
2
3
δ2


(2.151)

C2 = diag
(

(uα/uα3) 1
2 u

1
3
γ2 , (uαuβ3) 1

2 , (uα/uα2) 1
2 u

1
3
γ2 , (uαuβ2) 1

2 , (uα/uα1) 1
2 u

1
3
γ2 , (uαuβ1) 1

2

)
(2.152)

with uα = uα1uα2uα3 . Again, inverting matrix C1 we end up with the set
of bilinear equations

(uδ2 − q
1
2 uδ1)(uα/uα3) 1

2 τ+
31τ
×
31 = u−

1
3

γ2 τ̄
+
32τ
×
32 − q

1
12 u−

1
3

γ2 τ̄
×
32τ

+
32

(uδ2 − q
1
2 uδ1)(uαuβ3) 1

2 τ+
21τ
×
31 = u

1
3
δ2
τ̄×32τ

+
22 − q

1
12 u

1
3
δ1
τ̄+

22τ
×
32

(uδ2 − q
1
2 uδ1)(uα/uα2) 1

2 τ+
21τ
×
21 = u−

1
3

γ2 τ̄
+
22τ
×
22 − q

1
12 u−

1
3

γ2 τ̄
×
22τ

+
22

(uδ2 − q
1
2 uδ1)(uαuβ2) 1

2 τ+
11τ
×
21 = u

1
3
δ2
τ̄×22τ

+
12 − q

1
12 u

1
3
δ1
τ̄+

12τ
×
22

(uδ2 − q
1
2 uδ1)(uα/uα1) 1

2 τ+
11τ
×
11 = u−

1
3

γ2 τ̄
+
12τ
×
12 − q

1
12 u−

1
3

γ2 τ̄
×
12τ

+
12

(uδ2 − q
1
2 uδ1)(uαuβ1) 1

2 τ+
31τ
×
11 = u

1
3
δ2
τ̄×12τ

+
32 − q

1
12 u

1
3
δ1
τ̄+

32τ
×
12

(2.153)

It remains yet unclear, how to derive bilinear equations systematically
for compositions of elements of GQ. We are going to return to this issue
together with discussion of their solutions elsewhere.
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2.5 Conclusion
In this chapter we have presented extra evidence that cluster integrable
systems provide convenient framework for the description of 5d super-
symmetric Yang-Mills theory. It has been shown that cluster integrable
systems with the Newton polygons SA(2,Z)-equivalent to the N × M
rectangles are isomorphic to the XXZ-like spin chains of rank M on N
sites (or vice versa) on the ’lowest orbit’. Due to special symmetry of the
Kasteleyn operators, defining spectral curves of these systems, it turns to
be possible to express the Lax operators of spin chain in terms of the X-
cluster variables. Inhomogeneities and twists of the chain can be expressed
via (part of) the zig-zag paths on the Goncharov-Kenyon bipartite graphs.

Rectangle Newton polygons generally correspond to linear quiver gauge
theories [21] so that inhomogeneities, ’on-site’ Casimirs and twists define
the fundamental and bi-fundamental masses together with the bare cou-
plings on the Yang-Mills side. The proposed cluster description possesses
obvious symmetry between the structure in horizontal and vertical direc-
tions so that one gets a natural spectral (or fiber-base or length-rank)
duality, interchanging also the rank and length of spin chains. Shear shift
of one side of a Newton polygon to the shape of N ×M parallelogram
results in the multiplication of the monodromy operator of the spin chain
by the cyclic twist matrix.

We have found that the cluster mapping class group GQ for the ’spin-
chain class’ always contains a subgroup isomorphic to

W̃
(
A

(1)
N−1,α ×A

(1)
N−1,β

)
× W̃

(
A

(1)
M−1,γ ×A

(1)
M−1,δ

)
o Z (2.154)

whose generators act on zig-zag paths by permutations. Moreover, their
action on the A-cluster variables gives rise to the q−difference bilinear
relations. The symmetry enhancement happens in the case N = 2 (or
M = 2) and results in ’gluing’ of two copies of A(1)

N−1 into A
(1)
2N−1. If

both N = M = 2 the symmetry W̃
(
A

(1)
1 ×A

(1)
1

)
× W̃

(
A

(1)
1 ×A

(1)
1

)
o Z

enhances to the D(1)
5 symmetry group of q-PVI equation.

Our first results in this direction actually produce more question than
give answers. The following obvious questions (at least!) can be addressed
for the further investigations:

• Trivial rank-N spin chain on a single site once twisted becomes spec-
trally dual to relativistic Toda chain, see Section 2.3.2. Can we sim-
ilarly identify the spectral duals of the twisted chains of arbitrary
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lengths and twists, whose Newton polygons are generic parallelo-
grams – or even extend this to generic four-gons? This question is
also very interesting on the gauge-theory side, where by now only
the hyperelliptic case of ’generalized Toda’ (four boundary points
and all internal points are lying on one line – pure SU(N) theory
with the CS term) was studied in [15].

• We have derived in Section 2.4.3 the bilinear relations, coming out
of the action of a single ’permutation’ generator of GQ on A-cluster
variables, acting by transpositions on zig-zags. Is there any system-
atic principle to derive bilinear equations for compositions of such
transformations?

• In [24], [14], [102], [15], [25] and [136] the solutions for q-difference
bilinear equations and their degenerations, arising from certain clus-
ter integrable systems, were found in terms of Fourier-transformed
Nekrasov functions for the corresponding 5d gauge theories. As
partition functions for the 5d linear quiver gauge theories are well
known, a natural further step is to show that they solve the bilinear
equations found here (and their hypothetical generalizations!).

2.6 Appendix. Proof of the RLL relation for clus-
ter L-matrices

Here some details of proof of (2.51) are collected. Recall the definitions
(2.52) (here and below i, j = 1, . . . ,M)

Lij(µ) = 1
µ

1
2 − µ−

1
2


i = j, µ

1
2 z−2
i + µ−

1
2 z2
i

i 6= j, µ−
sij
2 (z2

j + z−2
j )τj

τi

, τi = wi

M∏
k=1

zskik .

(2.155)
where the variables zi, wi have Poisson brackets

{zi, wj} = 1
4δijziwj , {zi, zj} = {wi, wj} = 0. (2.156)

It is useful to note that

{zi, τj} = 1
4δijziτj , {τi, τj} = −1

2sijτiτj . (2.157)
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In addition to the sign-factors (1.5) we also introduce 21

skij =


+1, k ∈ (ij)

−1, k ∈ (ji)

0, k = i, j

(2.158)

which satisfies
skij = −skji, skij = sijk, skij = sij + sjk + ski. (2.159)

From definitions (2.155)

z2
k = −

Lkk(λ)√µ− Lkk(µ)
√
λ√

λ/µ−
√
µ/λ

, z−2
k =

Lkk(λ)/√µ− Lkk(µ)/
√
λ√

λ/µ−
√
µ/λ

(2.160)
Lij(λ)Lkl(µ) = λ−

1
2 sij+

1
2 sklµ

1
2 sij−

1
2 sklLij(µ)Lkl(λ), i 6= j, k 6= l.

We take an anzatz

r̃(a) =
M∑
k=1

fk(a)Ekk ⊗ Ekk +
∑
m 6=n

gmn(a)Emn ⊗ Enm (2.161)

and show that one can choose fk and gmn such that equation
{L(λ)⊗ L(µ)} = [r̃(λ/µ), L(λ)⊗ L(µ)] (2.162)

holds. By direct computation it can be shown that (a 6= i 6= j 6= k 6= l):

a. {L(λ)⊗ L(µ)} b. [r̃(λ/µ), L(λ)⊗ L(µ)]

1. Eii ⊗ Ejj 0 0

2. Eaa ⊗ Eij 0 gaiLia(λ)Laj(µ)− gjaLaj(λ)Lia(µ)

3. Eaa ⊗ Eaj ALaa(λ)Laj(µ)−BajLaj(λ)Laa(µ) faLaa(λ)Laj(µ)− gjaLaj(λ)Laa(µ)

4. Eaa ⊗ Eia −ALaa(λ)Lia(µ) +BiaLia(λ)Laa(µ) −faLaa(λ)Lia(µ) + gaiLia(λ)Laa(µ)

5. Eij ⊗ Eji Bji(Ljj(λ)Lii(µ)− Lii(λ)Ljj(µ)) gijLjj(λ)Lii(µ)− gijLii(λ)Ljj(µ)

6. Eij ⊗ Ekl 1
2(skij + slji)Lij(λ)Lkl(µ) gikLkj(λ)Lil(µ)− gljLil(λ)Lkj(µ)

7. Eij ⊗ Eia −1
2s
a
ijLij(λ)Lia(µ) fiLij(λ)Lia(µ)− gajLia(λ)Lij(µ)

8. Eij ⊗ Eaj 1
2s
a
ijLij(λ)Laj(µ) −fjLij(λ)Laj(µ) + giaLaj(λ)Lij(µ)

9. Eij ⊗ Eja BjiLjj(λ)Lia(µ)−BjaLia(λ)Ljj(µ) gijLjj(λ)Lia(µ)− gajLia(λ)Ljj(µ)

10. Eij ⊗ Eai −BjiLii(λ)Laj(µ) +BaiLaj(λ)Lii(µ) −gijLii(λ)Laj(µ) + giaLaj(λ)Lii(µ)
(2.163)

21Notation k ∈ (ij) means that we consider i, j, k on the circle Z/MZ, with k in the
oriented interval from i to j.



2.6 Appendix. Proof of the RLL relation for cluster L-matrices 77

with

A = A(
√
λ/µ) = 1

2

√
λ/µ+

√
µ/λ√

λ/µ−
√
µ/λ

, Bij = Bij(
√
λ/µ) = (λ/µ) 1

2 sij√
λ/µ−

√
µ/λ

.

(2.164)
Computations in 1,2,7,8.a) are straightforward. In 3, 4, 5.a) relation
(2.160) has to be used. 9,10.a) can be obtained by application of (2.160)
and (2.159):

{Lij(λ), Lja(µ)} = (2.165)

= −1
2λ
− 1

2 sijµ−
1
2 sja

τa
τi

(saij(z2
j + z−2

j )(z2
a + z−2

a ) + (z2
j − z−2

j )(z2
a + z−2

a )) =

= −1
2λ
− 1

2 sijµ−
1
2 sja(z2

a + z−2
a )τa

τi
((saij + 1)z2

j + (saij − 1)z−2
j )) =

= −saijλ−
1
2 sijµ−

1
2 sja(z2

a + z−2
a )τa

τi
z

2saij
j =

= λ−
1
2 sij+

1
2 siaµ−

1
2 sja√

λ/µ−
√
µ/λ

Lia(λ)
[
Ljj(λ)µ

1
2 s
a
ij − Ljj(µ)λ

1
2 s
a
ij

]
=

= (λ/µ) 1
2 sjiLjj(λ)Lia(µ)− (λ/µ) 1

2 sjaLia(λ)Ljj(µ)√
λ/µ−

√
µ/λ

Looking at the table (2.163) we can suggest that the last two columns are
equal, if we put

fi = A(
√
λ/µ), gij = Bji(

√
λ/µ) (2.166)

For 1-5 and 9-10 it is obvious. For 6, 7, 8 it is easier to move from the
right to the left. For 6, using (2.159):

gikLkj(λ)Lil(µ)− gljLil(λ)Lkj(µ) = (2.167)

= λ−
1
2 sik−

1
2 skjµ−

1
2 ski−

1
2 sil − λ−

1
2 slj−

1
2 silµ−

1
2 sjl−

1
2 skj√

λ/µ−
√
µ/λ

τj
τk

τl
τi

(z2
j+z−2

j )(z2
l +z−2

l ) =

= λ−
1
2 s
j
ikµ−

1
2 s
l
ki − λ−

1
2 s
i
ljµ−

1
2 s
k
jl√

λ/µ−
√
µ/λ

Lij(λ)Lkl(µ)
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All possible relative positions of the indices i, j, k, l can be encoded in the
table

sjik slki silj skjl skij + slji

+1 +1 +1 +1 0

+1 −1 +1 −1 0

+1 −1 −1 +1 −2

−1 +1 −1 +1 0

−1 +1 +1 −1 +2

−1 −1 −1 −1 0

(2.168)

which shows that 6.a) and 6.b) from (2.163) are equal. For 7.b):

fiLij(λ)Lia(µ)− gajLia(λ)Lij(µ) = (2.169)

= 1
2

(
√
λ/µ+

√
µ/λ)λ− 1

2 sijµ−
1
2 sia − 2λ− 1

2 saj−
1
2 siaµ−

1
2 sja−

1
2 sij√

λ/µ−
√
µ/λ

·

·τj
τi

τa
τi

(z2
j + z−2

j )(z2
a + z−2

a ) =

= 1
2

√
λ/µ+

√
µ/λ− 2(λ/µ)− 1

2 s
j
ia√

λ/µ−
√
µ/λ

Lij(λ)Lia(µ) = −1
2s

a
ijLij(λ)Lia(µ)

which is equal to 7.a). Similarly for 8 a) and b). To show that (2.161) is
equal to (1.32) multiplied by 1

2 , we have to note that

M∑
k=1

Ekk ⊗ Ekk = 1⊗ 1−
∑
i 6=j

Eii ⊗ Ejj (2.170)

and 1⊗ 1 is commuting with anything, so can be always added to the r-
matrix with the arbitrary coefficient, without any change of the relations.


