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Chapter 4

Faceting and flattening of emulsion

droplets

This chapter is based on:

Ireth Garćıa-Aguilar, Piermarco Fonda, Eli Sloutskin, Luca Giomi. “Faceting

and flattening of emulsion droplets: A mechanical model”. Physical Review Letters,

126(3), 2021.



When cooled down, emulsion droplets stabilized by a frozen interface of alkane
molecules and surfactants have been observed to undergo a spectacular sequence
of morphological transformations: from spheres to faceted liquid icosahedra,
down to flattened liquid platelets. While generally ascribed to the interplay
between the elasticity of the frozen interface and surface tension, the physical
mechanisms underpinning these transitions have remained elusive, despite dif-
ferent theoretical pictures having been proposed in recent years. In this chapter,
we introduce a comprehensive mechanical model of morphing emulsion droplets,
which quantitatively accounts for various experimental observations, including
the size scaling behavior of the faceting transition. Our analysis highlights the
role of gravity and the spontaneous curvature of the frozen interface in deter-
mining the specific transition pathway.

4.1 Introduction: Deforming emulsion droplets

Despite liquid drops representing the quintessential realization of spherical geometry

across an extraordinary vast range of length scales, from stars down to micro and

nanoscale aerosols, a variety of faceted polyhedral shapes has been reported in sim-

ple oil-in-water emulsions [53] and recently investigated by Denkov et al. [37] and

Guttman et al. [38] (Fig. 4.1 and Fig. 4.2. Unlike typical emulsion droplets, these are

enclosed by an interfacially-frozen monolayer of mixed alkane molecules and surfac-

tants (see Fig. 4.1b). Upon cooling below the freezing temperature of the interface,

the droplets undergo a series of shape transformations: from spheres to icosahedra,

to hexagonal platelets (Fig. 4.1a), to even more exotic shapes featuring tentacle-like

protrusions [38]. The specific transition pathway is not universal, but depends on

several factors, such as the oil and surfactant chemical composition, the cooling rate

and the droplet size [37, 38, 90–92].

Whereas these fascinating experimental results are now reproducible (see Ref. [93]

for a recent overview), a convincing explanation of the physical mechanisms under-

pinning the sequence of shape transformations is still lacking, despite two alternative

scenarios having been proposed [37, 38, 84, 85, 90–92, 94–96]. The first, hereafter

referred to as rotator phase mechanism [37, 94], revolves around the existence of a

rotator phase in the proximity of the droplet’s surface, whose estimated thickness

ranges between 45 [96] and 300 nm [37], serving as a plastic scaffold for the observed

shape transformations, especially across different flat morphologies [94]. The second

scenario, proposed in Refs. [38, 85] and referred to as elastic buckling mechanism,

ascribes instead the transformations to a competition between the stretching elastic-

ity of the frozen interfacial monolayer and surface tension. As the former consists of

a triangular lattice [97] lying on a closed surface, its structure is geometrically frus-

trated and inevitably features topological defects, where the local sixfold rotational

symmetry of the lattice is broken [39] (see for example Fig. 4.1c). Furthermore, since

the elastic stress introduced by these defects can be relieved by increasing the local
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(a)

(b) (c)

Figure 4.1: Deforming emulsion droplets (a) Light microscopy snapshots of the volume-
conserving faceting and flattening of a single spherical droplet as temperature is lowered.
(b) A schematic of the frozen interface of the droplets shows a monolayer of mixed alkane
molecules and surfactants (with red heads) based on Ref. [38]. Below its freezing tem-
perature the interface crystallizes, while the bulk water and oil remain liquid, leading the
extended molecules to pack into a triangular lattice when viewed along the surface normal,
as illustrated in (c). The closed crystalline interface is forced to accommodate topologi-
cal disclinations, such as the one marked with a red pentagon, which introduce deforming
stresses.

curvature1 [52, 72], such a crystalline monolayer is generally prone to buckling and

faceting. The most prominent example of this mechanism is found in the context of

viral capsids. In these, the trade-off between in-plane stresses, originating from the

presence of twelve topologically required fivefold disclinations, and bending moments,

resulting from out-of-plane deformations, drives the buckling of spheres into icosa-

hedra [49, 75, 82]. The transition occurs at large values of the so called Föppl-von

Kármán number, Y R2/k, expressing the ratio between the stretching and bending

energy scale, with Y the two-dimensional Young modulus, R the system size (e.g. the

capsid radius prior to buckling) and k the bending rigidity. Thus, large viral cap-

sids are energetically favored to be icosahedral, while small capsids are preferentially

spherical.

Although potentially plausible to justify the observed sequence of shape transfor-

mations, neither of these scenarios succeeds in explaining all the experimental obser-

vations. Recent cryo-transmission electron (CryoTEM) micrographs revealed that the

1As also discussed more in detail in our work in Chapter 3.
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(d)

(c)(b)(a)

Figure 4.2: Experimental insights in the shape transformations. (a) Typical con-
figuration of a polydispersed sample showing large spherical and small icosahedral droplets
(highlighted by arrows). (b) Icosahedral droplets and platelets are oriented with a flat face
orthogonal to the direction of gravity. (c) CryoTEM image of the interface of an icosahedral
droplet, revealing that the thickness of the crystalline structure is close to 3 nm, correspond-
ing solely to the interfacially-frozen monolayer. Reprinted and adapted with permission
from [84]. Copyright (2019) American Chemical Society. (d) Schematic of the phase dia-
gram of the droplets based on the experimental observations, with the triangulated surfaces
used in the numerical calculations of the energy (see Eq. (4.3)).

solid layer located at the oil-water interface of small icosahedral and other polyhedral

droplets is only a few nanometers thick (Fig. 4.2c and Refs. [84, 97, 98]), thus too thin

to support the rotator phase mechanism, at least in the experimental set up pioneered

by Guttman et al. [38, 84, 85, 90]. By contrast, the elastic buckling mechanism fails

to reproduce the observed size dependence of the sphere-icosahedron-platelet tran-

sition. Denkov et al. noted that while lowering the temperature, the smaller the

droplet, the more the shape changes before reaching the bulk oil freezing point, with

the largest droplets remaining spherical [37, 91]. Consistently, by imaging several

individual droplets upon slow cooling, Guttman et al. reported quantitatively that

small droplets undergo faceting at higher temperatures compared to large droplets

(see micrograph in Fig. 4.2a and the experimental data in Fig. 4.4b, taken from

Ref. [38], with slightly improved statistics). This cannot be explained either via the

classic virus buckling picture, whose size-dependence is in fact opposite to that ob-

served in icosahedral droplets [75], nor by postulating a similar interplay between
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defect-driven stretching elasticity and surface tension. As both the stretching and the

surface energy scale like R2, the latter implies that, depending on the ratio between

Y and the surface tension γ, at a given temperature, droplets are either always spher-

ical (for small Y/γ values) or always icosahedral (for large Y/γ values), regardless

of their size. Furthermore, in order for the elastic buckling mechanism to account

for the icosahedra-platelets transition, one must assume k ≈ 10−1 kBT [95], orders of

magnitude smaller than the value 103 kBT estimated in Ref. [38].

We resolve this dilemma by demonstrating that elastic buckling can, in fact, ex-

plain not only the sphere-icosahedron-platelet transition, but also the size dependence

observed in experiments, provided it is augmented with the following mechanisms: the

spontaneous curvature of the frozen alkane-surfactant monolayer and gravity.

4.2 The model

4.2.1 Mechanical energy of deforming emulsion droplets

The starting point of our approach is the following functional describing the energy

of a droplet of volume V and density ρoil enclosed by a crystalline monolayer and

suspended in water, namely:

E =
1

2

∫
dA

[
2γ0 + 4k(H −H0)2 + Y σ2 + g∆ρ z2Nz

]
, (4.1)

where σ = σii/Y is the trace of the covariant stress tensor σij arising in the interface

in response to stretching deformations, H is the droplet mean curvature taking H > 0

for a sphere, H0 the spontaneous curvature, g the gravitational acceleration, ∆ρ =

ρwater − ρoil the oil-water density difference and Nz the projection of the surface

normal vector along the z−direction. The first term in Eq. (4.1) corresponds to the

standard surface energy. The second term describes the energetic cost of bending,

in terms of the departure of the droplet mean curvature from its preferential value

H0. The latter arises in droplets as a consequence of the asymmetry of the adsorbed

surfactant molecules [99], and can be interpreted as a renormalization of the surface

tension, analogous to that caused by an inhomogeneous Tolman length [100]:

γ′ = γ − 4kH0H , (4.2)

where γ = γ0 + 2kH2
0 is the uniform part of the effective surface tension, inclusive

of the contribution arising from the spontaneous curvature H0. As we detail further

below, this renormalization is instrumental to the observed size dependence. Since

surface tension is the main restoring mechanism in spherical droplets, Eq. (4.2)

implies that for H0 > 0, the smaller the droplet the less it is prone to return to

a spherical shape once it is deformed. The third term accounts for the in-plane

stretching originating from the combined effect of the Gaussian curvature and the

topological defects. Finally, the last term in Eq. (4.1) describes the gravity-buoyancy

balance caused by the density difference ∆ρ, here expressed as a surface integral by

means of the divergence theorem.
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In the following, we assume that all the material parameters are uniform across the

surface and we search for the lowest energy configuration of the droplet as a function of

γ and for various k, H0, Y , and g∆ρ values. Consistently with experimental studies,

γ ∼ T is the only material parameter strongly affected by temperature within the

experimental range and can, therefore, be used as a proxy for temperature [85, 94]

(see also Appendix C). We compute the energy associated with three configurations

depicted in Fig. 4.1a by modeling surfaces via triangulated meshes with rounded

vertices and edges, specifically those shown in Fig. 4.7. The platelet, in particular,

has a height-to-width ratio of around 1/10 at the center, consistently with three-

dimensional electron microscopy reconstructions [101] (see also Fig. 4.6). Further

details on the discretized surfaces are included in Appendix A.

4.2.2 Dimensionless energy and independent parameters

Measuring energy in units of k and length in units of 1/H0, we numerically calculate

the dimensionless energy E = E/k for each surface as a function of the dimensionless

size r = H0R, with R = [V/(4π/3)]1/3. Namely:

E = EW − EHr + (ΓEC + ΥES)r2 + ΠEGr4 , (4.3)

where the terms on the right-hand side denote the dimensionless form of the bending

(EW , EH), capillary (EC), stretching (ES) and gravitational (EG) energies, obtained

from the numerical integration of the mechanical energy Eq. (4.1) on a triangular

discretization of the surface for each of the three droplet shapes studied. The various

contributions are normalized as follows:

EW = 2

∫
dA H2 , (4.4a)

EHR = 4

∫
dA H , (4.4b)

ESR2 =
1

2

∫
dA σ2 , (4.4c)

ECR2 =

∫
dA , (4.4d)

EGR4 =
1

2

∫
dA z2Nz . (4.4e)

The bending energy has been split into the so called Willmore functional, EW , and

the contribution associated with the spontaneous curvature, EHR. The numbers

Υ =
Y

kH2
0

, Γ =
γ

kH2
0

, Π =
g∆ρ

kH4
0

, (4.5)

quantify the energetic cost of stretching, capillarity and gravity in comparison to

bending, and they constitute the set of independent material parameters of the system.

With the exception of ES , all energy contributions depend exclusively on the shape

of the droplet and can be straightforwardly computed using our meshes (Table 4.1).
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The local curvatures are computed using the numerical methods described in Sec-

tion 2.3. Details about the calculation of the stretching energy are further discussed

below and in Appendix B.

4.2.3 Defect stress and stretching energy

In order to calculate the stretching energy in Eq. (4.4c), one needs to determine the

local stress induced by the non-vanishing curvature of the droplet and by the topo-

logical defects populating the interfacial monolayer, by solving the Poisson equation

∇2σ = η −K , (4.6)

where ∇2 is the Laplace-Beltrami operator, K the surface Gaussian curvature and

η is the topological charge density of the defect distribution [72]. On a sphere, the

latter consists of twelve topologically required, fivefold disclinations, positioned at the

vertices of an inscribed icosahedron due to elastic interactions. Each disclination is

surrounded by a “cloud” of topologically neutral dislocations, which ease the elastic

distortion introduced in the lattice, thereby reducing the elastic energy [30, 52].

Following our work in Chapter 3, we express η in terms of a discrete set of “seed”

disclinations, coupled with a continuous distribution of screening dislocations2. In

particular, we consider:

η =

V∑
α=1

(π
3
qα − Φ

)
δ(r − rα) +

Φ

F/V

F∑
β=1

δ(r − rβ) , (4.7)

where V and F represent, respectively, the number of vertices and faces of the poly-

hedral droplets, qα = 6−zα is the topological charge of a zα−fold disclination located

at position rα and Φ is the in-plane flux of the screening dislocation scars, originating

in proximity of the vertices and terminating at positions rβ in the bulk of the faces

of the polyhedral droplets, where K ≈ 0 (see Fig. 4.7). This construction guarantees

that
∫

dAη = 4π such that, consistently with the divergence and the Gauss-Bonnet

theorems, both sides of the stress equation vanish upon integration over the entire

surface. While faceting keeps the symmetry of the twelve qα = 1 disclinations in the

icosahedron, flattening brings pairs of disclinations close together, essentially lead-

ing to merging of defects [95]. We consider six qα = 2 disclinations in the case of

the hexagonal platelet, located at mid height close to the vertices of the hexagonal

projection. Fig. 4.7 shows the modelled configurations for each geometry.

The optimal dislocation flux Φ for a given surface is found by minimizing the

energy ES [102], resulting in Eq. (4.9). We note however that all our results still hold

qualitatively under the assumption of little to no screening (i.e. Φ = 0) (see also

Appendix B). The stress field generated in each shape by the corresponding defect

density in Eq. (4.7) is plotted in Fig. 4.3.

2Specifically, in Appendix A.3 in the previous chapter, we discuss how the defect charge density
in our framework is generalized in a simple way for other geometries and different defect distribution
in the lattice. Applying Eq. (3.31) to the hexagonal platelet is then straightforward.
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(a) (b) (c)

Figure 4.3: Calculation of the defect-induced stress field at the interface of the
droplets Defect-induced stress field σ2 on the crystalline interface with screening disloca-
tions, computed from the charge density η in Eq. (4.7).

Energy Sphere Icosahedron Platelet
EW 25.4 49.2 209.6
EH 50.3 55.9 112.0
EC 12.6 12.9 34.6
ES 0.0028 0.0013 0.0016
EG 4.19 4.00 0.555

Table 4.1: Contributions to the dimensionless energy Eq. (4.3) for the spherical, icosahedral
and hexagonal droplets, calculated using Eqs. 4.4.

4.3 Results

Within this framework, we have numerically calculated and compared the energies

Esph, Eico and Epla of the spherical, icosahedral and platelet conformations. The

outcome of our analysis is summarized in Table 4.1 and in the phase diagram of

Fig. 4.4.

4.3.1 Faceting transition

First, we focus on the faceting transition (i.e. sphere-icosahedron), for which buoy-

ancy plays a marginal role (see EG in Table 4.1) and thus can be temporarily neglected.

In this case, the total energy is just a quadratic function of the dimensionless size r,

from which the corresponding phase boundaries can be easily computed as shown by

the dashed lines in Fig. 4.4a. The defect configuration that minimizes the stretch-

ing energy ES consists of twelve fivefold disclinations (i.e. qα = 1) approximately

located at the vertices of an icosahedron and surrounded by screening dislocations,

so that η ≈ K in their vicinity. In the absence of restoring mechanisms favoring

spherical shapes, as bending and capillarity, icosahedral shapes would be preferred

over spherical ones, for any temperature and droplet size. Since the icosahedron has

a larger area and bending energy compared to a sphere of the same volume (both

EW and EH diverge for a perfectly sharp icosahedron), these restoring mechanisms

render the icosahedral conformation energetically optimal only at low temperature,

where capillarity is sufficiently weak (i.e. the yellow region of panel a in Fig. 4.4).

Furthermore, as surface tension becomes effectively smaller for decreasing droplet size
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(b)

(a)

Figure 4.4: Phase diagram of the faceting and flattening of droplets (a) Morpho-
logical phase diagram in the (r, Γ)−plane obtained by comparing the energies of spherical,
icosahedral and platelet-shaped droplets calculated via Eq. (4.3). The bound values of Γ for
faceting, Eq. (4.8), are indicated with dotted lines. The dashed lines correspond to the phase
boundaries when buoyancy effects are ignored, while the solid ones are for Π = 10−8. In
this diagram, we use Υ = 4. (b) Experimental estimate and theoretical fit of the difference
between the surface tension at the sphere-icosahedron and icosahedron-platelet transitions,
∆γ = γsph−ico − γico−pla, as a function of droplet radius [38]. The values of Υ and Π used
to create (a) follow from the fitted model curve shown here. See Appendix C for details.

due to the spontaneous curvature (see Eq. (4.2)), smaller droplets generally undergo

the faceting transition at higher temperature than large droplets, consistently with

the experimental observations (Fig. 4.2a and Ref. [38]).

At a fixed Γ value, the critical size at which the transition takes place is found

by solving the equation Eico = Esph with respect to r > 0. These solutions yield the

range of parameters in which spherical and icosahedral droplets coexist, namely:

0 < Γ + Υ
∆ES
∆EC

<
∆E2

H

4∆EW∆EC
, (4.8)

where ∆Ei (i = S, C, H, W ) labels the various contribution of the Eico−Esph energy

difference. The upper bound of this inequality, Γupper corresponds to the peak of the

yellow region in Fig. 4.4a, above which capillarity dominates and droplets are always
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spherical regardless of their size. The abscissa of the peak of the sphere-icosahedron

phase boundary, r = 2∆EW /∆EH , approximates the minimal droplet radius rmin at

which icosahedral droplets can be found. For r < rmin, the Gaussian curvature of

the sphere is sufficiently large to accommodate the angular deficit introduced by the

fivefold disclinations and faceting does not occur, except in the limit of vanishing

bending rigidity. The lower limit Γlower = −Υ∆ES/∆EC in Eq. (4.8), defines a lower

critical surface tension, indicated in Fig. 4.4, below which all droplets of size r > rmin

are icosahedral.

We now look at the effect of buoyancy in the faceting transition, which only affects

the large−r region of the phase diagram by favoring icosahedra over spheres (see also

Table 4.2 —color boundary in Fig. 4.4a). In general, the gravitational energy can be

lowered by reducing the distance between the droplet center of mass and the top wall

of the sample container. In particular, for regular polyhedra with Dnh and Dnd point

group, EGR = (4π/3)h/2 with h the height of the droplet, and this can be achieved

by aligning one of the flat faces orthogonally to the z−direction. As h/2 < R in the

faceted droplets of conserved volume, buoyancy widens the icosahedral phase at large

r values.

4.3.2 Flattening transition

Next we focus on the flattening transition (i.e. icosahedron-platelet). Experimentally,

this is observed at ultra-low (or even transiently negative) values of the surface tension

[85]. In this regime, the system lacks of the main restoring mechanism favoring

spherical shapes and the icosahedral configuration represents the absolute minimum

of the elasto-capillary energy for large Υ values. As the area of a platelet is larger than

that of an icosahedron with the same volume, in the absence of spontaneous curvature

and/or gravitational effects, the droplet flattening can only occur at negative Γ values.

A positive spontaneous curvature, by contrast, favors platelets over icosahedra at

small r values as a consequence of the larger mean curvature at the edges and vertices.

Furthermore, upon orienting orthogonally with respect to the z−direction, platelets

can raise their center of mass to reduce their gravitational energy to arbitrarily small

values, at the cost of increasing the stretching energy by pairwise merging the twelve

fivefold disclinations into six fourfold disclinations (i.e. with charge qα = 2). This

causes icosahedral droplets to morph into hexagonal platelets, where the Gaussian

curvature at the vertices is sufficiently large to compensate for the elastic distortion

introduced by the higher topological charge, resulting in a modest increase of the

stretching energy (see Table 4.1). Because of spontaneous curvature at smaller scales

and buoyancy at larger ones, flattening is possible at low but still positive surface

tension values (see Fig. 4.4), consistently with experimental observations.

4.3.3 Energy contributions at different scales

In Table 4.2, we report the magnitude of the dimensionless energy differences, ∆E =

Eico−Esph = 0, which determines the faceting phase boundary in Fig. 4.4a, at different

size scales. We fix Γ = 0.1. Since each energy term scales differently with r, their
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relative magnitude varies with the droplet size. At the smallest sizes, it is the bending

term, including the spontaneous curvature, which plays a leading role in the observed

size-dependent behavior of the faceting. For droplets of r ≈ 500, we find that elasticity

competes with the surface tension, while buoyancy is the main deforming component

at the large scale.

r |∆EW | |∆EH | r |Γ∆EC + Υ∆ES | r2 Π|∆EG| r4 Leading term
≈ 5× 10 24 300 60 0.01 Bending
≈ 5× 102 24 3000 6000 100 Stretching
≈ 5× 103 24 3× 104 6× 105 106 Gravitational

Table 4.2: Estimate of the energy contributions at different scales during faceting. The
transition is determined by the difference in the dimensionless energy, Eq. (4.3), between
a spherical droplet and an icosahedral one, ∆E = Eico − Esph. The dimensionless material
parameters here are taken as Γ = 0.1, Υ = 4 and Π = 10−8.

A similar analysis holds for the flattening at Γ = 0.01, where one expects large

icosahedral droplets and small platelets (see Fig. 4.4). In this second transition, the

stronger influence of gravity is reflected quantitatively in a larger ∆EG.

4.3.4 Model fit to experimental data

To assess the significance of our predictions, we have fitted the difference ∆γ =

γsph−ico−γico−pla between the surface tension at the sphere-icosahedron and icosahedron-

platelet transitions as a function of the droplet radius, to the experimental data shown

in Fig. 4.4b. The black markers correspond to averaged measurements of droplets of

different initial size, which are imaged as they undergo faceting and flattening (see

Ref [38] and Appendix C for further explanation). Using the dimensionless energy

contributions for every shape in Table 4.1, from the expression for the total energy we

calculate the phase boundaries for each transition as a function of size, in terms of the

material constants k, H0, Y and ∆ρ (see Eq. (4.10). Upon fixing ∆ρ = 0.25 g/cm3

[90, 95] and k = 103 kBT [38], we fit the model ∆γ(R) and obtain Y ≈ 4.4 mN/m

and H−1
0 ≈ 58 nm, consistently with current knowledge (see Appendix C for details).

The fit is shown as the red curve shown in Fig. 4.4b.

The dimensionless parameters used in the morphological phase diagram in Fig. 4.4a

correspond to the fitted material constants. In particular, we adopt Υ = 4 and

Π ≈ 10−8. Note that a small variation in γ, such as those reported in Ref. [90], would

not change the results, provided that the dimensionless values of Υ, Γ and Π are kept

the same, which can be achieved by a small variation of k, H0 and Y .

4.3.5 Predictions for different material parameters

We look at the effect of the mechanical properties of the frozen interfacial monolayer,

embodied in the number Υ, for both transitions. Assuming Γ fixed, we solve the equa-

tions Esph = Eico and Eico = Epla with respect to the r and Υ in the proximity of the

sphere-icosahedron and icosahedron-platelet phase boundaries. The corresponding

72



4.4. Conclusions

C
h
a
p
t
e
r
4

solutions are displayed in Fig. 4.5 for Γ = 0.33 and Γ = 0.056. These are intermedi-

ate values from the range in Eq. (4.8) when Υ = 4, where we observe the coexistence

of different shapes for differently sized droplets, as in experiments.

(a) (b)

Figure 4.5: Shape transitions for other values of material parameters. Critical
size for the faceting (a) and flattening (b) transitions, obtained by solving the equations
Esph = Eico and Eico = Epla with respect to r, versus the Υ parameter. Note in (a) that
for each Π, there is a maximal Υ beyond which no critical radius exist for faceting, as all
droplets are icosahedral.

In the case of the faceting transition, an increase in Υ corresponds to a shift of

the phase boundary to higher values of surface tension due to the lower stretching

energy of icosahedral droplets. Therefore, at a given Γ, the critical droplet size asso-

ciated with the faceting transition increases with Υ, until a limiting value where all

droplets are icosahedral at any r > rmin. For Π = 0, this value corresponds to the

dashed vertical line in Fig. 4.5a. By contrast, the critical radius associated with the

flattening transition (Fig. 4.5b) is a slowly decreasing function of Υ, due to the higher

stretching in the platelet. It is only at smaller sizes, where bending dominates (see

Table 4.2), that the curvature gain in the platelet is enough to compensate for this

slight energy increase. Decreasing Υ, however, narrows the gap between the faceting

and flattening transition by reducing the range of the icosahedral phase. As Υ → 0,

the two critical radii are comparable in magnitude, and the temperature range at

which spheres coexist with platelets is widened.

Finally, both critical radii increase under the effect of gravity, as this facilitates

departure from isotropic shapes. Also a consequence of this, the limiting Υ value

where droplets of all sizes are icosahedral, decreases for increasing Π values, as seen

in panel (a) of Fig. 4.5.

4.4 Conclusions

We theoretically addressed the mechanical origin of the faceting and flattening transi-

tions that, starting from the pioneering work of Denkov [37] and Guttman et al. [38]

have been systematically reported in emulsion droplets stabilized by a frozen layer of
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alkane molecules and surfactants. Using a combination of continuum mechanics and

three-dimensional computer modeling, we demonstrated that both transitions origi-

nate from the fourfold interplay between defect-driven stretching, bending elasticity,

capillarity and gravity.

Because of the scaling behavior of various energy contributions, the shape defor-

mations are influenced by the initial volume of the spherical droplets. In particular,

we highlighted the importance of the positive spontaneous curvature of the interface

monolayer for small droplets, that, by effectively hindering the magnitude of capillary

forces, allows one to reproduce the counterintuitive size-dependence observed in the

experiments. At intermediate sizes, the faceting of spherical droplets into icosahedral

shapes is strongly driven by the elasticity of the interfacially-frozen monolayer, acting

against the area-minimizing capillary forces. The buckling of the interface screens

the stress introduce by the twelve fivefold topological disclinations. The flattening

of icosahedral droplets into platelets causes pairs of defects to come into closer con-

tact, for which the increase of stress is further screened by a higher curvature in the

vicinity of the hexagonal vertices. Buoyancy however drives the flattening in larger

droplets. We showed that both the icosahedral droplets and the hexagonal platelets

progressively reduce their gravitational energy, upon orientation of one of the flat

faces orthogonally to the direction of gravity, precisely as observed in experimental

micrographs.

Additionally, we quantitatively compare the results from our mechanical model

against experimental measurements of the faceting and flattening surface tension for

droplets across a wide range of sizes, to which we find a remarkable agreement. We

showed that the same qualitative phase behavior holds for emulsion systems with dif-

ferent material properties, generally resulting in differences in the critical temperature

and the critical size at which faceting and flattening occur.

In short, our model shows that the faceting of emulsion droplets with an interfacially-

frozen monolayer against capillary forces is governed by the spontaneous curvature

of the interface and defect-elasticity. The consequential flattening of the icosahedral

droplets into hexagonal platelets, despite the large area increase, is allowed at positive

values of surface tension due to buoyancy and spontaneous curvature. While more

advanced theoretical models may be needed to describe the behavior of multicompo-

nent droplets [93], our present work provides the basis for these more complex future

models.
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4.5 Appendices

Appendix A Droplet geometries

All triangulated surfaces were constructed using the software Surface Evolver [87].

The rounded icosahedron was obtained starting from the sharp one with perfectly

flat faces, which were refined to have around 2×104 mesh points. Using the software,

we allowed an area-minimizing relaxation of the icosahedron into a sphere. The

icosahedral shape used for this study is an intermediate stage of the relaxation with

rounded edges and vertices of finite curvature, while the sphere is the final shape (see

B.1 in Chapter 3 for more details). Similarly, the hexagonal platelet was initialized as

a perfectly sharp polyhedron with ≈ 2 × 104 mesh points and its edges and vertices

were rounded with a smoother relaxation and further regularization. The rounded

edges of the icosahedron and the platelet have on average an approximate mean

curvature of H̄2
icoR

2 = 3.2 and H̄2
plaR

2 = 21.9 respectively, in contrast to that of the

sphere H̄2
spR

2 = 1.

Figure 4.6: Geometry of a flattened
droplet. Focused Ion Beam (FIB) slicing
through a polymerized hexagonal platelet,
evincing the approximate height-to-width ra-
tio in these droplets to be of the order of 1 :10.
Taken and modified with permission from the
Supplementary Information in Ref. [101].

The height of the resulting platelet, measured along the direction of gravity is 7%

the width of the hexagonal face, consistent with scanning electron microscopy of these

droplets [101]. See for example in Fig. 4.6 a 3D cross-section of a hexagonal platelet.

Appendix B Defect stress and stretching energy

As outlined in the main text, the stretching energy ES = Y/2
∫
dAσ2, where Y is the

Young’s modulus, requires finding the stress field σ by solving the equation

∇2σ = η −K , (4.6 revisited)

where ∇2 is the Laplace-Beltrami operator, K is the Gaussian curvature and η is

the topological charge density of the defects, and it therefore depends on the specific

lattice structure of the frozen interface of the droplets. More specifically, it depends

on the number, charge and position of the lattice defects.

Given the nanoscopic nature of the surfactant-alkane structure at the interface,

and the microscopic scale of the droplets themselves, the crystalline monolayer is

expected to have a high density of lattice sites. We therefore take the continuous

approach described in Chapter 3 for dense crystals, which takes into account possi-

ble screening of dislocation structures in the vicinity of the topological disclinations.
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Within this framework, η can be expressed in terms of the topological charge density

of twelve topologically required disclinations plus the effective charge density result-

ing from a continuous distribution of screening dislocations, i.e. Eq. (4.7) in the main

text. The latter is described by two sets of discrete defects with different charge:

defects screening out the disclination-induced stress in the vicinity of the disclination

positions rα, and additional defects located close to the far end of these dislocation

structures, in positions rβ .

x

y

z

Figure 4.7: Modeled droplet shapes for the calculation of the energy. These are to
scale according to a fixed size R, and here viewed along the direction of gravity. Each surface
is marked with the positions of the “seed” disclinations rα (black) and the terminating
positions of the dislocation flux rβ (white) assumed in the calculation of Eq. (4.7). The
markers have been magnified and do not reflect the underlying discretization of the surface.

As explained in section 3.3 in Chapter 3,the resulting stretching energy is found

to have a quadratic scaling with the droplet size and can be expressed as

ES = Y ESR2 =
Y

2

[
c0 −

c21
4c2

]
R2 , (4.9)

where c0, c1 and c2 are called the geometric coefficients, as depend on the partic-

ular surface geometry and the distribution of defects for the charge density η in

Eq. (4.7). For more details on this calculation we refer the reader to the work leading

to Eq. (3.15). In particular, we use here the coefficients calculated in this chapter for

the sphere and the rounded icosahedron (see Table 3.1). In the case of the platelet,

we calculate the coefficients for a lattice having six seed disclinations with charge

qα = 2 located at mid height by the hexagonal vertices and two scar sinks at the

center of each hexagonal faces, as seen in Fig. 4.7. We show the resulting geometric

coefficients for all three droplet geometries in Table 4.3. Finally, we note that in the

case of little to no screening, Φ = 0 in Eq. (4.7), the coefficients c1 = 0 and c2=0,

therefore equivalent to a rescaling of the coupling parameter Y (and hence Γ), which

is different for every shape.

Appendix C Experimental validation

The experimental data shown in Fig. 4.4b of the main text were taken with permission

from Fig. S4 in Ref. [38], used in this work with slightly improved statistics (see text

Ref. [38] for more details). In these experiments, droplets of various initial sizes are

imaged at slow cooling, in order to identify the temperatures at which the individual
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Shape c0 c1 c2
Sphere 0.046 -0.12 0.093
Icosahedron 0.0061 -0.039 0.11
Platelet 0.0032 -0.042 8.2

Table 4.3: Coefficients of the stretching energy, Eq. (4.9), for the spherical, icosahedral and
hexagonal geometries, calculated using the framework described in Chapter 3.

droplets first facet and further flatten, and use these to measure the surface tension

then. Given the scatter in the measurements for different droplets, it is convenient to

take the difference between the surface tension at the sphere-icosahedron transition

γsph−ico and the icosahedron-platelet transition γico−pla, denoted as ∆γ(R), where

R is the radius of the spherical droplet before faceting. We consider the results for

droplets of sizes in the range R = 2.2− 133µm, and further bin these data to reduce

dispersion.

The value of the surface tension γ is estimated under the assumption that this is the

only material parameter significantly affected by temperature within the experimental

range [38]. This is justified by the fact that the bulk modulus is related, through

the Grüneisen constant, to the heat capacity and the thermal expansion [103]. The

thermal expansion for similar interfacial crystals was measured to be temperature-

independent in the relevant range of temperatures [51]. Moreover, since dS/dT of the

interfacial crystal is constant, up to its melting point [90], the temperature-variation

of the heat capacity C = T (dS/dT ) should be ∼ 0.3%/◦C. Thus, the bulk modulus

does not significantly change in the relevant range of temperatures. Similar arguments

allow the assumed temperature-independence of the other moduli to be justified [104].

We obtain the model prediction for ∆γ(R) starting from the energy functional

proposed in Eq. (4.3) of the main text. Using the dimensionless energy terms intro-

duced in Eq. (4.4) and whose values are be found in Table 4.1 for the three shapes

studied, we can write the energy as

E = kEW − kH0EHR+ (γEC + Y ES)R2 + g∆ρEGR4 , (4.10)

in terms of the material constants k, γ, Y , and the density difference between the

oil and water. We solve the equations Esph = Eico and Eico = Epla to find the

critical surface tension as a function of size γ(R), at the faceting and the flattening

respectively. We can then compare the experimental measurements to the model

prediction for ∆γ = γsph−ico − γico−pla. Taking ∆ρ = 0.25 g/cm
3

[90, 95] and κ =

103kBT [38], we fit ∆γ(R) to the experimental measurements, considering Y and

H0 as free fitting parameters. Using non-linear least squares fitting, we find the

solid red curve shown in Fig. 4.4b, for which H−1
0 ≈ 58 nm, and Y ≈ 4.4 mN/m.

For an interface of thickness 2 nm [38], this roughly corresponds to a 3D Young’s

modulus of Y3D = 2 MPa. Using the material constants above, we get an estimate

for the dimensionless model parameters. In particular, Eq. (4.5) results in Υ = 4 and

Π ≈ 10−8, which we take to construct the phase diagram in Fig. 4.4a. The effect of

varying these values is discussed in Section 4.3.5.
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