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Chapter 3

Defect screening in crystals with

spherical topology

This chapter is based on:

Ireth Garćıa-Aguilar, Piermarco Fonda, Luca Giomi. “Dislocation screening in

crystals with spherical topology”. Physical Review E, 101(6), 2020.



Whereas disclination defects are energetically prohibitive in two-dimensional
flat crystals, their existence is necessary in crystals with spherical topology,
such as viral capsids, colloidosomes or fullerenes. Such a geometrical frustration
gives rise to large elastic stresses, which render the crystal unstable when its
size is significantly larger than the typical lattice spacing. Depending on the
compliance of the crystal with respect to stretching and bending deformations,
these stresses are alleviated by either a local increase of the intrinsic curvature
in proximity of the disclinations or by the proliferation of excess dislocations,
often organized in the form of one-dimensional chains known as “scars”. The as-
sociated strain field of the scars is such to counterbalance the one resulting from
the isolated disclinations. Here, we develop a continuum theory of dislocation
screening in two-dimensional closed crystals without handles. Upon modeling
the flux of scars emanating from a given disclination as an independent scalar
field, we demonstrate that the elastic energy of closed two-dimensional crystals
with various degrees of asphericity can be expressed as a simple quadratic func-
tion of the screened topological charge of the disclinations, both at zero and
finite temperature. This allows us to predict the optimal density of the excess
dislocations as well as the minimal stretching energy attained by the crystal.

3.1 Introduction: Defects and curvature

Crystalline monolayers with spherical topology (i.e. with no boundaries nor handles)

form an especially interesting class of two-dimensional partially ordered structures,

owing to the impossibility of tiling the sphere with regular hexagons. This results

in the appearance of disclinations, i.e. lattice sites for which the local coordination

number z is different than six. The departure from the ideal sixfold coordinated

crystal is quantified via the topological charge,

q = 6− z . (3.1)

By virtue of Euler’s formula, Eq. (2.14), the total topological charge of any triangular

lattice constrained on a closed surface is fixed and proportional to its Euler character-

istic χ, namely: Q =
∑N
i=1(6− zi) = 6χ, where N =

∑∞
z=2Nz is the total number of

lattice sites and Nz the number of sites of coordination number z. For spherical topol-

ogy in particular, χ = 2, and such a constraint is generally fulfilled by introducing a

certain number of fivefold and sevenfold disclinations, such that N5−N7 = 12, within

an arbitrary number of sixfold coordinated lattice sites. The presence of disclinations

locally breaks the lattice symmetry group and induces a geometric frustration that

leads to non-trivial ground state structures [33, 71–73].

Spherical crystals featuring a low density of lattice sites preferentially organize in

icosadeltahedral structures [4], consisting of N5 = 12 isolated disclinations positioned

at the vertices of a regular icosahedron [52, 74]. Such a configuration maximizes the

distances between the disclinations, thus minimizing the induced stress resulting from

the distortion of the crystal. In denser spherical crystals, or in less regular geometries,
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defect structures are generally more involved as a consequence of the complex interplay

between the distribution of topological charges and the underlying curvature [39, 46].

In particular, two stress screening mechanisms1 have been extensively studied for

spherical geometries: out-of-plane deformations, leading to changes in curvature [47],

and in-plane deformations, with the creation of topologically neutral defects [26, 30].

The first mechanism is understood through the fundamental connection between

Gaussian curvature and the breaking of orientational order [39, 46]. It is well-known

that out-of-plane deformations can promote the formation of defect structures in oth-

erwise regular lattices [48]. Conversely, local intrinsic curvature around a disclination

can compensate for the angular deficit resulting from having zi 6= 6 [44]. For spherical

lattices, buckling around the topological defects leads to the global transformation of

the crystal into an icosahedral shape [47, 49, 75, 76].

The second mechanism is the spontaneous unbinding of dislocations, whose effect is

to delocalize the net topological charge of isolated disclinations, leading to an overall

stress relief. Dislocations can be regarded as a tightly-bound pair of disclinations

that carries no net topological charge, as illustrated in Fig. 3.1b. At equilibrium,

they are found in the vicinity of the disclinations or other large lattice distortions,

arranged in lines of alternating coordination number. These structures are known as

grain boundaries on planar crystals [50] and as scars on curved surfaces [26, 30, 33].

Contrary to dislocations on a plane, scars are found to terminate within the crystal.

Experiments [31, 34] and simulations [47, 77, 78] of closed crystals have revealed that,

at finite temperature, most dislocations surround disclinations and form extended

defect structures, of size much larger than the lattice spacing. Theoretical models of

crystals with uniform curvature have shown that the topological charge, sourcing the

elastic stress, is effectively lowered in these extended defects [79, 80].

These two mechanisms can act separately or simultaneously depending on the

ratio between the local radius of curvature R and the lattice spacing a. Spherical

crystals with a low density of sites (i.e. with R/a of order one) usually exhibit only

twelve isolated disclinations and have been observed to buckle into icosahedral shapes,

thus benefiting from curvature screening [75]. Conversely, large crystals with R� a,

tend to have scars. In fact, seminal experimental work [30] has shown that scars only

appear at some critical crystal size where then, the number of excess dislocations

scales linearly with size, consistent with theoretical predictions [27, 52].

In this chapter, we study how curvature and scars are both involved in the screen-

ing of disclination-induced stresses, and how these mechanisms are influenced by

the crystal size. Previous numerical works [47, 81] using particle-based simulations

of triangular lattices with spontaneous creation and annihilation of defects, have re-

ported a variety of post-buckling scenarios featuring extended disclination-dislocation

complexes, whose position and structure is correlated with the underlying Gaussian

curvature [47, 82]. These studies, however, have been restricted to particles number

in the order of colloidal assemblies. For denser crystals, simulations quickly become

computationally demanding and are thus unable to grasp the equilibrium configu-

ration of large structures. To overcome this limitation, here we adopt a continuum

1We refer the reader back to Chapter 1 and in particular Fig. 1.4 for a intuitive picture on these
mechanisms.
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approach, where the crystal ground state energy is calculated within the formalism

of classical elasticity theory.

Typically, in continuum models, disclinations are treated as discrete point-like

sources of stress and the crystal elastic energy depends uniquely upon their spatial

arrangement, the underlying Gaussian curvature and the system’s Young modulus

[72]. For spherical crystals with relatively few defects, this approach has proved to

be remarkably successful [27], but it becomes increasingly challenging with a growing

number of excess defects. Moreover, crystal dislocations may also be entropically

generated. Here we take a step further and model scars in terms of a smooth vector

field, keeping note of the topological constraint on the dislocation charge. The fact

that icosahedral shapes are observed in a large range of scales [38, 83, 84] is an

indication that the repulsion between disclination cores is always present, regardless

of the presence of scars. In the following, we refer to these twelve topologically required

fivefold disclinations as seed disclinations and we will assume they are fixed in the

icosahedral configuration. With this and a few more simple assumptions, we are able

to show that the stretching energy of a curved crystal with spherical topology of size

R takes the general quadratic form

Estretch =
1

2
Y a2

[
c0

(
R

a

)2

+ c1nd
R

a
+ c2n

2
d

]
,

where Y is the Young modulus and nd is a dimensionless parameter proportional to the

number of excess dislocations. The coefficients c1, c2 and c3, which we refer to as the

geometric coefficients, depend on the specific crystal shape and the distribution of the

disclinations and scars within the lattice. Interestingly, this expression disentangles

the dependence of the energy on the lattice architecture from the scar density and

crystal size. We emphasize that the equation above is valid for any two-dimensional

crystal of spherical topology. The calculation of the stretching energy for a specific

lattice architecture is therefore reduced to calculating the geometric coefficients, for

which we have developed a numerical method. This method has the advantage of

being scale-free, which allows a relatively easy implementation of additional energy

terms.

The remainder of this chapter is organized as follows. In Sec. 3.2 we develop a

continuum description of the cloud of dislocation scars emanating from the seed discli-

nations and we provide generic expressions for the geometric coefficients. In Sec. 3.3

we apply this theory to three specific crystals geometries with spherical topology and

various degrees of asphericity. In Sec. 3.4 we incorporate into the picture entropi-

cally generated dislocations and demonstrate that the stretching energy preserves the

generic expression given above. Finally, Sec. 3.5 is devoted to conclusions.

3.2 Defect charge density in large crystals

3.2.1 General theory

Let us consider a crystalline monolayer with triangular lattice structure and lattice

spacing a, on a closed surface of size R. Since we deal with closed surfaces, we define

39



Chapter 3. Defect screening in crystals with spherical topology

C
h
a
p
t
e
r
3

the size from the enclosed volume V as R = [V/(4π/3)]1/3, so that for a sphere R

corresponds exactly to its radius. The elastic energy consists of two terms, penalizing

stretching and bending deformations respectively: i.e. E = Estretch + Ebend. The

relative magnitude of these deformation modes is quantified via the Fóppl-von Kármán

number Υ = Y R2/k, with k the bending rigidity. As demonstrated by Lidmar et

al. [75] in the context viral capsids, while the sphere remains the lowest energy

configuration for Υ . 102, for larger Υ values the crystal buckles and becomes faceted.

Since we are interested in large crystals, we restrict our discussion to minimizers of the

stretching energy, using the framework of linear continuum elasticity theory. Here we

introduce the main equations, but a more complete derivation and additional details

can be found e.g. in Refs. [39, 44].

For small deformations, the stretching energy is quadratic in the local strain field

uij . At equilibrium, the stress tensor σij must be covariantly divergence-free i.e.

∇jσ
ij = 0, with ∇j indicating covariant differentiation, Eq. (2.6). Consider the

dimensionless dimensionless scalar field σ = σii/Y , where σii = gijσ
ij is the trace of

the stress tensor, with gij the metric tensor of the surface. In particular, the in-plane

strain originated from a generic distribution of disclinations and dislocations can be

cast into the source term of the Poisson equation in Eq. (2.29) [72]. Namely:

∇2σ = ρdisc + ρdisl −K , (3.2)

where ∇2 = gij∇i∇j is the Laplace-Beltrami operator, ρdisc = ρdisc(r) and ρdisl =

ρdisl(r) are respectively the disclination and dislocation charge densities and K =

K(r) is the Gaussian curvature at the point r on the surface of the crystal. Note that

from a geometric perspective, Eq. (3.2) is purely intrinsic and insensitive to bending

contributions in the total energy.

The presence of lattice defects results in singularities in the displacement vector

field u, which we illustrate in Fig. 3.1. In particular, dislocations introduce a discon-

tinuity in u, disrupting the long-range translational order by an amount characterized

by the Burgers vector b. Considering a single dislocation as a tightly bound pair of

disclinations, this vector has a magnitude of the order of the lattice spacing a. By

contrast, single disclinations disrupt the bond angle field θ of the sixfold coordinated

crystal by an amount equal to (π/3)q, with q = 6−z the topological charge. Explicitly,

the two defect charge densities can be written as discrete sums in the corresponding

number of defects [44]

ρdisc(r) =
π

3

Ndisc∑
α=1

qα δ(r − rα) , (3.3a)

ρdisl(r) = ∇⊥ ×
Ndisl∑
β=1

bβδ(r − rβ) , (3.3b)

where Ndisc is the number of the single disclinations and Ndisl is the number of

dislocations. We indicate with ∇⊥× the two-dimensional curl of a tangent vector

i.e. ∇⊥ × v = εij∇ivj , where vi are the components of a generic vector v and εij is

the Levi-Civita symbol (i.e. ε12 = −ε21 =
√
g, with g the determinant of the metric
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(a) (b)

Figure 3.1: Discontinuities induced by topological defects in a sixfold coordi-
nated lattice. (a) Isolated disclinations disrupt the orientational order. The line integral
of the bond angle field θ around a closed loop surrounding the disclination (thick line) is the
disclinicity s = q 2π/6, where the charge is q = 1. The green area highlights the pentagonal
Voronoi region of the dislocation. Only a leg from the bond angle is shown for clarity (b) Dis-
locations instead, while keeping the orientational order, disrupt the translational order of the
crystal. In particular, integrating the displacement vector u over a closed loop surrounding
an isolated dislocation results in the Burgers vector b. The green and red area correspond
to the Voronoi area of the neighboring q = 1 and q = −1 disclinations respectively, together
forming a dislocation of total charge q = 0.

tensor, and ε11 = ε22 = 0). The Dirac delta functions in the expressions above are

normalized by the determinant of the metric tensor in such a way to preserve their

unit norm when integrated over the surface:
∫
dA δ(r) = 1. In a closed crystal with

spherical topology, the Gauss-Bonnet theorem implies that the integral of K over the

whole surface must be equal to 4π, which in Eq. (3.2) is entirely compensated by the

presence of disclinations. In other words, the integral of ρdisl over the whole crystal

must be zero.

For an incompressible crystal, i.e. with unit Poisson ratio, the stretching energy

depends only on the Young modulus and can be written in general as [52]

Estretch =
1

2
Y

∫
dAσ2 + Ecore (3.4)

where Ecore is the the defect core energy resulting from the regularization of the

continuum theory at distances of the order of the lattice spacing a. In practice, this

term can be safely neglected as Estretch � Ecore for R� a [52].

In the following sections, we will construct energy-minimizing defect configurations

on various surfaces with spherical topology. In particular, in Sec. 3.3 we focus on three

representative crystal shapes: the sphere S2, a round icosahedron IR and a sharp

icosahedron IS with different curvature at the vertices (see Fig. 3.2). We fix the value

of the lattice constant a and assume that any two crystals have the same size R/a when

they have the same volume (see e.g. Refs. [49, 82, 85]). Note that IS , although sharper

than IR, is not a perfect icosahedron, for the principal curvatures would diverge

at edges. We characterize the curvature differences between the shapes indirectly

through a single value of their asphericity Q, defined in Eq. (3.33), measuring the
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(a) (b) (c)

Figure 3.2: Continuum model of screening dislocations on crystals of spherical
topology. We study the energy of three different crystal shapes where the local Gaussian
curvature around the topological disclinations is varied: the sphere S2, a rounded icosahedron
IR and a sharper icosahedron IS . The degree of roundness is characterized by the asphericity
Q defined in Eq. (3.33). On the sphere, we show the schematic of our model for topological
defects screening: the scars (green lines) radiate from sources at the seed disclinations (red
circles) and terminate at sink positions located at the vertices of a dodecahedron (black
triangles).

mean square deviation of the radial distance from a perfect sphere, which clearly has

QS2 = 0. We have QIR ' 0.0012 for the rounded icosahedron and QIS ' 0.0020

for the sharper one. For reference, with this definition a perfectly sharp icosahedron

would have Q ' 0.0026. Further details on the characterization of the shapes and

how we construct these are found in Appendix B.1.

3.2.2 Effective defect charge

As reviewed in the Sec. 3.1, low-density spherical crystals consist of N5 = 12 isolated

fivefold disclinations, positioned at the vertices of a regular icosahedron, embedded

in an arbitrary N6 = N − 12 number of sixfold coordinated lattice sites [26, 52].

When R/a ∼ 10, however, scars start to appear [30]. Experiments and simulations

have shown that scars emanate from single disclinations and are typically oriented

towards the center of the triangle formed by three neighboring disclinations [30, 34].

Differently from infinite planar-like crystals, scars terminate within the crystal, thus

forming extended defect structures around each disclination which are isolated from

one another [34, 78]. For large crystals, it is expected that each dislocation line

becomes relatively straight [26] with even several scars branching out as the size

approaches the thermodynamic limit [77]. Based on this evidence, we assume that

in the limit of dense crystals, scars will emanate out of the twelve seed disclinations

and terminate somewhere on the surface away from the icosahedral vertices. In our

model we refer to these terminating lattice positions as scar sinks (see Fig. 3.2). Since

icosahedral crystals result from curvature screening around the disclinations [47, 75],

we further assume that, at equilibrium, any configuration of scars will fully conform
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(a)

(b) (c)

Figure 3.3: Effective charge
distribution for a cloud of
scars around a single seed
disclination. (a) Schematic of the
in-plane scar-induced charge distri-
bution in our model. The pres-
ence of scars can be effectively ac-
counted for by introducing an ad-
ditional negative charge −Φα at
sources, and, due to the icosahe-
dral symmetry of the disclination
distribution, five positive charges
Φα/5 at the sinks. The solutions
of Eq. (3.5) for a flat plane allow
us to find analytically the polar-
ization field P for the charge dis-
tribution in (a). The lower panels
show (b) its magnitude and (c) its
direction (note that the configura-
tion field is invariant under 2π/5
rotations, so we distinguish angles
only mod 2π/5).

to the icosahedral symmetry in all three shapes studied 2.

While the discrete nature of the disclination charge density Eq. (3.3a) is pro-

tected by the topological constraint, dislocations can be treated as a continuum field

in the limit R � a, where several long scar lines are expected. This is particu-

larly advantageous in the case of a large number of excess dislocations, for which

calculations based on a discrete description become intractable. With this picture

in mind, we express the dislocation density via a local Burgers vector density field

B = B(r) =
∑
β bβ δ(r − rβ) , as well as its perpendicular vector field P = P (r),

representing the dislocation polarization density (i.e. P i = εijBj). Thus:

ρdisl = ∇⊥ ×B = −∇ · P . (3.5)

The Burgers vector density must be invariant under the icosahedral symmetry and can

therefore be decomposed into the linear superposition of twelve distinct contributions,

each corresponding to a specific seed disclination: B =
∑
αBα. Eq. (3.5) implies that

ρdisl is an exact differential and thus its integral over the full surface vanishes. On

the other hand, integrating over a small crystal patch Dα centered around α and

not containing any other disclination, yields the flux of the outgoing scars across the

2Namely, the discrete symmetry group for these crystals is the full achiral icosahedral group Ih,
isomorphic to the direct product of the alternating group A5 with point inversions.
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boundary Cα = ∂Dα (see Fig. 3.3a):∫
Dα

dA∇⊥ ×B = −
∮
Cα

dsn · P = −Φα , (3.6)

where ds is the arc-length element along Cα and n the tangent vector normal to

Cα. Furthermore, since all scars source essentially from the seed disclination α, for

sufficiently small Cα the flux Φα will be a constant independent on the shape of

the contour. Such a field can be generated only by a curl which is singular at the

disclination, i.e. ∇⊥×Bα = −Φαδ(r−rα). We thus see that, in our description, the

main effect of scars is the screening of a seed disclination charge, resulting in a net

angular deficit π/3 q − Φα localized at rα.

Now, as the cloud of screening dislocations is topologically neutral over the scale

of the whole system (i.e.
∫
dAρdisl = 0), the flux of scars emanating from a given

seed disclination must eventually terminate somewhere. In our continuum picture,

this implies the existence of field sinks, whose position is denoted rγ , in proximity

of which ∇⊥ × Bγ = Φγδ(r − rγ). These sinks can be interpreted as the loci of

the terminating ends of scars and their effective charge counterbalances the excess

disclination screening.

If we assume that the icosahedral symmetry of the seed disclinations is inherited

by the scar distributions, we have Φα = Φ for all sources. Symmetry further imposes

a local fivefold rotational symmetry for the sink distribution. For simplicity we choose

five points distributed as in Fig. 3.3a. Furthermore, we consider that the screening

dislocation charge at each source is neutralized by the charges at the corresponding

scar sinks. For surfaces with positive Gaussian curvature, we expect that 0 < Φ <

(π/3)q, and hence the sinks γ would tend to be as far as possible from any given seed

disclination. We therefore assume that the scar sinks are located at the centroid of

the Delaunay triangles connecting each triplet of disclinations (see Fig. 3.2c). In a

perfect icosahedron these locations correspond to the centers of the flat faces. On

a sphere, these are equivalent to the vertices of an inscribed regular dodecahedron,

the dual solid of an icosahedron. As a consequence, the sinks at the faces are shared

between three neighboring seed disclinations, resulting in only 20 sinks on the crystal.

We note that this construction can be thought as a particular case of the so called

“pentagonal buttons” described in Refs. [27, 52].

With the model outlined above, we find a local effective screening of disclination

stress around the icosahedral vertices, at the price of generating excess defect charges

that introduce stress around the face centers. The resulting dislocation density is then

parametrized in terms of a single dimensionless quantity, the flux of screening scars

Φ. The topological charge density resulting from the cloud of dislocations screening

the twelve disclinations is thus:

ρdisl = Φ

[
3

5

20∑
γ=1

δ(r − rγ)−
12∑
α=1

δ(r − rα)

]
, (3.7)

where the first sum runs over the sink positions and the second over the seed disclina-

tions sourcing the scars. The additional factor in the first term of Eq. (3.7) originates
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from three sink charges, each having topological charge Φ/5 (see Fig. 3.3a), collapsing

onto a single point.

3.2.3 Form of the solutions

We can now rephrase the calculation of the dimensionless stress, Eq. (3.2), in terms of

the effective charge of the seed disclinations and additional charges at the scar sinks,

∇2σ =
π

3

12∑
α=1

qeff
α δ(r − rα) +

π

3

20∑
γ=1

qeff
γ δ(r − rγ)−K , (3.8)

where

qeff
α = 1− Φ

π/3
, (3.9a)

qeff
γ =

3

5

Φ

π/3
. (3.9b)

The equation above implies that σ depends linearly on the effective topological charges,

given that ∇2 is a linear operator. Since the stretching energy Eq. (3.4) is a quadratic

functional of the stress, then Estretch is necessarily a quadratic polynomial in Φ. In

fact, we can write the energy as

Estretch =
Y R2

2

(
c0 + c1Φ + c2Φ2

)
, (3.10)

where the cn constants are dimensionless and contain the explicit dependence on the

architecture of the lattice (size, shape and effective defect positions). We therefore

refer to these as the geometric coefficients of the crystal. The problem of finding

the stretching energy of a crystal is now translated into calculating the geometric

coefficients for specific scar sinks on a given surface. This enormously reduces the

level of complexity compared to explicitly considering many discrete dislocations.

We stress that Eq. (3.10) is generally valid for dense crystals of spherical topology,

so that dislocations, whether scattered or linked together in the form of scars, could

be modeled in terms of a continuous density field. Furthermore, we assume that each

seed disclination is screened by a topologically neutral “cloud” of scars emanating

from it. In addition, we assume that scars terminates sufficiently far away from the

seed disclinations, in such a way that the dislocation flux Φα, defined in Eq. (3.6), is

approximately position-independent. Note that for Eq. (3.10) to be valid, there is no

need to assume any specific symmetry for the charge distributions (see also Appendix

A.3). Finally, our model assumes the spherical crystal to be fully assembled and

does not account for effects related with the crystallization dynamics, such as those

reported by Meng et al. in Ref. [86].

By expressing the energy in terms of the solutions to Eq. (3.8), we find that the

coefficients cn can be computed from the Laplace-Beltrami spectrum of the manifold
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(see Appendix A.1 for an explicit derivation), namely:

c0 =
A

R2

∑
n≥1

1

λ2
n

∣∣∣∣∣ π3A
12∑
α=1

ψn(rα)− kn

∣∣∣∣∣
2

, (3.11a)

c1 =
1

R2

∑
n≥1

1

λ2
n

[(
3

5

20∑
γ=1

ψn(rγ)−
12∑
α=1

ψn(rα)

)(
π

3A

12∑
α=1

ψ∗n(rα)− k∗n

)]
, (3.11b)

c2 =
1

AR2

∑
n≥1

1

λ2
n

∣∣∣∣∣35
20∑
γ=1

ψn(rγ)−
12∑
α=1

ψn(rα)

∣∣∣∣∣
2

, (3.11c)

where λn are the Laplace-Beltrami eigenvalues, ψn its eigenfunctions and kn the

projection of the Gaussian curvature onto these. The screening of disclination stress

by scars for a particular geometry is now fully reflected in the behavior of the energy

Eq. (3.10) with the single free parameter Φ. Having an analytical solution for the

geometric coefficients allows us to study this screening mechanism more in detail.

The stretching energy has a minimum for a positive c2, which is always the case for

a closed crystal as seen from Eq. (3.11c), and it occurs at Φmin = −c1/2c2. Given the

sign convention in Eq. (3.6), Φ is defined such that only positive values will effectively

screen the disclinations. This implies that the energy will indeed be lowered in the

presence of scars if c1 < 0. The energy, in fact, attains the minimum value

Emin
stretch =

Y R2

2

(
c0 −

c21
4c2

)
, (3.12)

where c0 determines the energy in the absence of excess dislocations. Furthermore,

the equilibrium value for the effective charges at sources and sinks are respectively

qeff
α = 1 − (3/2π)(|c1|/c2) and qeff

γ = (9/10π)(|c1|/c2), and are thus both determined

solely by the ratio c1/c2.

3.3 Screening of topological defects

Having found the expressions for a generic closed crystal, it remains to calculate the

geometric coefficients for the three shapes of interest (Fig. 3.2). We can then study

how a particular scar configuration can effectively screen the disclinations and how

this is affected by local curvature.

For a generic parametric surface, the spectrum of the Laplace-Beltrami operator

can be calculated using isothermal (or conformal) coordinates [72]. This is particularly

straightforward in the case of simple geometries like the sphere, where the calculation

is further simplified by the fact that the Gaussian curvature is constant everywhere.

In this case, an analytical solution of Eq. (3.8) can be found using the spherical

harmonics, as described in Appendix A.2 (see also Ref. [52]).

For the icosahedral shapes, and in general for any shape that cannot be expressed

parametrically, we have instead to rely on numerical results. Numerical solutions of

Eq. (3.2) are found via a gradient minimization on a triangulation of the surface (for
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c2 c1 c0 c0 − c21/4c2
Sphere (S2)
Q = 0
Analytical L = 6 0.08991 -0.1211 0.04075 0.0
Analytical L→∞ 0.1031 -0.1368 0.05270 0.00732
Numerical fit 0.0925 -0.1228 0.04628 0.00557
Rounded ico. (IR)
Q = 0.0012
Numerical fit 0.1088 -0.0386 0.00612 0.00268
Sharp ico. (IS)
Q = 0.0020
Numerical fit 0.1243 -0.00534 0.00048 0.00042

Table 3.1: Geometric coefficients of the stretching energy Eq. (3.10) for the three shapes
studied. The coefficients of the sphere can be calculated analytically with arbitrary precision
from Eq. (3.30) by truncating the summation up to mode ` = L. We show both the L = 6
and L → ∞ values. The numerical results are obtained as described in Appendix B and
correspond to an average of the fitted coefficients for five different crystal sizes. The last
column shows the numerical value of the minimal energy Eq. (3.12).

more technical details see Appendix B). We use the analytical results for the sphere as

a benchmark for our numerical implementation. The calculated geometric coefficients

for these shapes are shown in Table 3.1.

3.3.1 Screening by curvature

We briefly comment on the scenario where there are no excess dislocations in the

crystal, i.e. with Φ = 0. In this case, the stretching energy is simply given by

Emin
stretch = Y R2 c0/2, depending on only one geometric coefficient. The screening of

stress by curvature is evident in Table 3.1, from the decrease of c0 with increasing

Gaussian curvature around the seed disclinations, reflected by Q. Indeed, stress

is relieved by non-spherical shapes [47, 75, 82]. For the sharp IS , the energy is

even reduced by two orders of magnitude compared to the sphere S2, confirming the

important role of curvature in reducing disclination-induced strain.

3.3.2 Screening by dislocation scars

Consider now a crystal with dislocation scars and parametrized by Φ 6= 0. For all

three geometries studied, we find that c1 < 1, showing that disclination stress can

be screened out by the particular scar configuration outlined above. Recall that Φ is

proportional to the number of scars and hence to the number of excess dislocations.

In Fig. 3.4 we show the effect on the local stress and the energy Eq. (3.10), as more

defects are added to the lattice for two particular geometries of the same size: the

sphere S2 and the rounded icosahedron IR. In the upper panels (a-f), we plot onto

the surface an intensity map of the stretching energy density σ2 [see Eq. (3.4)] for

three different values of Φ: (a, d) no scars, Φ = 0; (b, e) equilibrium, Φ = Φmin; and
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//
(a) (b) (c) (d) (e) (f)

(g) (h)

Figure 3.4: Screening of disclination stress by dislocation scars in S2 and IR of
the same size. The upper panels show the local energy density on S2 (a-c) and IR (d-f)
for different values of scar density. The lower panels (g,h) show the energy landscape for
the two surfaces, with the blue markers corresponding to the snapshots (a-f) and the gray
markers the numerical solutions. The solid black line is the best fitting parabola to these
values. For the sphere we also show the analytic solution L→∞ of Eq. (3.30) as a dashed
line in panel (g). Note the significant decrease of stress at the seed disclinations for (b),
where all effective charges become equal. Conversely, the minimum-energy configuration for
IR has still a significant difference of charges between sources and sinks.

(c, f) large Φ for which the energy is higher than having no dislocations at all. Note

that red denotes regions of high stress, keeping in mind that the color scale is the

same for all three plots within each geometry. In panels (g, h) we plot the stretching

energy, Eq. (3.10) versus the dislocation flux and highlight with blue markers the

three systems in the upper panel. The horizontal dotted line in this plot corresponds

to the value of the energy at Φ = 0, namely when there are no scars. In the case of

the sphere, the dashed line in Fig. 3.4g corresponds to the solution for the analytically

calculated coefficients Eq. (3.11).

Both curves show the same behavior, with a small deviation due to the numerical

approximation for the delta functions (details in Appendix B.2). Interestingly, the

ratio c1/c2 is the same for both solutions and thus Φmin is too. This is also shown

in Fig. 3.5, where we plot the effective charge at the minimum for all shapes. In

particular for the sphere, it is worth noticing that the minimal energy is attained for

Φmin = 5π/24, i.e. the value for which the effective charge at the disclinations and at

the sinks become identical. Since the energy is quadratic in the charges and the crystal

has a uniform Gaussian curvature, the stress is equally distributed between sources

and sinks. This equilibrium configuration is equivalent to a crystal with 32 point
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Figure 3.5: Effective defect charge at the scar sources α and sinks γ for the three
shapes considered. The elastic energy Eq. (3.11) on the sphere is minimized when the 32
defects sitting at the vertices of a rhombic triacontahedron have the same charge qeff = 3/8.
The flat faces of the icosahedral geometries penalize the sinks, resulting in a higher charge
at the vertices.

disclinations of charge qeff = 3/8, located at the vertices of the inscribed rhombic

triacontahedron (which still has the same symmetry group of an icosahedron). The

screening is also clearly seen in the surface plot of the energy density in Fig. 3.4b.

Instead, icosahedral crystals have very different effective charges at the seed discli-

nations and at the sinks for the minimum energy configuration, as shown in Fig. 3.5.

The higher Gaussian curvature at the vertices can screen more effectively the charges

at the sources as compared to the high cost of the charges of the sinks at the flat-

ter faces (see for example Fig 3.4f). The effect of higher curvature is also clearly

seen in the values of Φ at the minimum: for IR, Φmin ' 0.17, a value much smaller

than 5π/24 ' 0.65 at the sphere. Even less excess dislocations are expected to form

for sharper geometries (for IS the equilibrium defect charge is essentially zero when

compared to the other geometries), indicating that scars then become less important

as a screening mechanism of elastic stress. Notice further that the magnitude of the

energy itself is much smaller in the icosahedron, evident in the scale of the vertical

axes of Fig. 3.4g and h.

3.3.3 The role of crystal size

Looking back at the scaling behavior of the equation for the dimensionless stress,

Eq. (3.2), we see that the Laplacian term, ρdisc and K all scale as an inverse area,

namely ∼ 1/R2. Conversely, since the Burgers vector b is expected to be of the order

of the lattice spacing a, we must have the scaling of ρdisl as a/R3 [see Eq. (3.3b)].

Consistently, we can factor out this scaling from the dislocation flux by defining

Φ ≡ nda/R, where the dimensionless quantity nd is proportional to the number of

excess dislocations Ndisl. In the following, we will refer to it as the dislocation number
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(a) (b)

Figure 3.6: Equilibrium dislocation number and energy as a function of crystal
size. (a) The number of excess dislocations at the energy minimum grows linearly with
the crystal size. This has been previously observed experimentally [30]. Dislocations are
less relevant for IR and even less so for IR. (b) The quadratic dependence of the stretching
energy on the effective charges is translated in a quadratic dependence on crystal size.

parameter. We can express the energy Eq. (3.10) as a function of nd, obtaining the

general result

Estretch =
Y a2

2

[
c2n

2
d + c1nd

R

a
+ c0

(
R

a

)2
]
, (3.13)

which is the main result of this section, as already outlined in the Introduction. This

expression holds for any closed crystal of spherical topology and it explicitly shows

the size dependence of each term, provided the magnitude of the Burgers vector field

is independent of the overall crystal size.

Following from the results discussed in the previous section, the dislocation number

parameter at the minimum is given by

nd =
|c1|
2c2

R

a
. (3.14)

We thus find that the number of excess defects forming scars grows linearly with

the crystal size. This behavior had been previously reported for spherical crystals

in [30, 52]. Eq. (3.14) shows that this in fact applies to any crystal of spherical

topology. We note that, although nd is proportional to the number of scars, thus

to the number of excess disclinations Ndisl, it is not possible to calculate the exact

proportionality coefficient within the framework of our model. In order to obtain

Ndisl, it is necessary to know the exact length of the scars and the distance between

dislocations within a single one, whereas both these quantities are unavailable in our

coarse-grained approach. However, if calibrated with experimental measures of Ndisl,

for a specific size R, and the lattice spacing a, our model allows one to predict the

number of excess dislocation for arbitrary R values.
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The energy at the minimum then reads

Emin
stretch =

Y a2

2

[
c0 −

c21
4c2

](
R

a

)2

. (3.15)

Note that the presence of scars does not affect the quadratic scaling of the energy

obtained for a crystal having 12 disclinations and no dislocations [52].

The results for the size-dependence of nmin
d and Emin

stretch are shown in Fig. 3.6 for

the three shapes. For IR and IS the number of dislocations at equilibrium is much

lower than for the sphere. Note however that not even the most curved vertices in IS
perfectly screen out the disclination angular deficiency. A finite number of scars are

still expected in large icosahedral crystals, even at zero temperature. On the other

hand, scars are the most important screening mechanism for the spherical crystal,

reflected in the high slope for S2. The differences in the quadratic scaling of the

stretching energy Eq. (3.15) are plotted in Fig. 3.6b, where we now see clearly the

strong effect of curvature as a screening mechanism. In the absence of other energetic

terms, closed crystals will always tend towards more icosahedral shapes. In principle,

the energy of the spherical crystal could potentially be further lowered by changing

the position of the sinks or sources. However, we find this unlikely since we consider

a symmetry of scars previously found to be very effective in relieving the stress on

spherical crystals. The energy difference between the sphere and the icosahedral

shapes implies that a crystal with a low bending modulus would most likely buckle,

even in the presence of scars in the lattice. This could explain why buckling has

been observed for very large crystals, even when it has typically been identified as a

screening mechanism for small ones [47, 85].

3.4 Dislocation screening at finite temperature

In this section, we consider the effect of finite temperature T in the organization of

the cloud of screening dislocations for the continuum model presented in Sec. 3.2.

The thermodynamic free energy of a closed crystal is given by F = Estretch − TS,

where S is the configurational entropy relative to all possible arrangements of the

defects in the crystal. As the number and positions of the seed disclinations is fixed,

their associated entropy is constant and equal to S0 = kB log 12!≈ 20 kB . Evidently

this contribution has no effect on the configuration of the excess dislocations, thus

will be neglected in the following. Furthermore, it is safe to assume that only defects

which are part of scars will contribute to the free energy. We therefore also neglect the

contribution to the entropy from other isolated dislocations that could be thermally

induced. In addition, the number of dislocations is very small compared to the total

number of lattice points as N ∼ R2 (see e.g. Fig. 3.6).

As a first approximation, we calculate the entropy from the number of possible

ways to independently place Ndisl individual dislocations, ignoring the fact that they

form scars. For a small number of defects this yields a higher entropy value, but does

not change the general observation that the proliferation of dislocations is entropically

favorable. The entropy is then given by S = kB Ndisl log Ω, where the number of
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accessible microstates per dislocation is Ω = A/Ad, where A =
∫
dA is the area of

the crystal and Ad ∼ a2 is the area spanned by each dislocation. Now, for the closed

surfaces considered here, A = ζR2, with ζ a shape-specific coefficient; in particular

ζS2 = 4π, ζIR = 4.09π and ζIS = 4.18π. Thus, the shape of the crystals contributes

with a kB log ζ term to the total entropy. These three contributions being small and

approximately equal to one another, they will be neglected in the following. As a

result, we can write the free energy as

F =
Y a2

2

[
c2 n

2
d + c1nd

R

a
+ c0

(
R

a

)2
]
− csT nd log(R/a) , (3.16)

by taking the stretching energy in Eq. (3.13) and recalling that the number of dis-

locations is proportional to our model parameter nd. We collect this proportionality

and 2kB into a single constant, cs.

3.4.1 Equilibrium crystal configuration

Because the entropy also depends on the number of dislocations in the crystal, now

the equilibrium value of nd is determined by the minimum of the free energy. As com-

pared to the zero temperature minimum Eq. (3.14), we find an additional sublinear

contribution, namely

nmin
d = − c1

2c2

R

a
+

1

c2

csT

Y a2
log (R/a) . (3.17)

An addition of a dislocation in the lattice will incur in an elastic cost that opposes

the entropic gain. Hence an increase nd is weighted by the ratio T/Y . Also note

the geometric coefficient c2 in the second term, hinting at an implicit dependence of

the equilibrium configuration on the crystal shape, even when these factors were not

explicitly considered in the entropy. For low temperatures, the number of excess dis-

location is enough to minimize the stretching energy. We expect the Young modulus

to decrease or at least stay roughly constant with increasing temperature, allowing

thermally induced dislocations.

Replacing nmin
d back in Eq. (3.16), we find the following free energy at the mini-

mum

Fmin =
Y a2

2

[
c0 −

c21
4c2

](
R

a

)2

−csT log (R/a)

[
1

c2

csT

Y a2
log (R/a)− c1

2c2

R

a

]
. (3.18)

The first term in the sum can be identified as the stretching energy minimum at

T = 0, see Eq. (3.15). The expression in the squared brackets in the second term has

exactly the same form of the equilibrium dislocation number parameter, Eq. (3.17),

but with lower temperature T → T/2. We label this as ñmin
d , which we can use to

express Eq. (3.18) in a more compact form:

Fmin = ET=0
stretch − csT ñmin

d log (R/a) . (3.19)

Once again, we observe the differences between the three shapes with increasing curva-

ture screening around the disclinations. The results are plotted as a function of size in
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(a) (b)

Figure 3.7: Equilibrium dislocation number and free energy as a function of
crystal size for finite temperature. For comparison, the expressions for a system at
Y a2/(csT ) = 6.0 are plotted for the same range of crystal sizes presented in Fig. 3.6. (a)
The behavior of the number of excess dislocations at the minimum is only changed from
the system at zero temperature for very small crystal sizes and barely noticeable. (b) How-
ever, there is a remarkable difference in the free energy for small crystal sizes where now
dislocations are the main screening mechanism, instead of the increased curvature of the
icosahedra.

Fig. 3.7, for the same range of values studied for T = 0. Looking back at Table 3.1, we

see that the inverse 1/c2 decreases for sharper vertices. This means that for the same

temperature, the entropy induces a relatively larger number of additional dislocations

on a sphere than it does on an icosahedron. In contrast with the scaling behavior of

the equilibrium dislocation number, we find that the entropy has a strong effect on the

equilibrium free energy (see Fig. 3.7b). At large sizes, stretching plays the main role

in the equilibrium configuration and hence curvature is still the most efficient stress

screening mechanism. However, for intermediate crystal sizes, icosahedral shapes pay

a much higher toll for the additional temperature-induced dislocations. Contrary to

Fig. 3.6 where high curvature yields always the lowest energy, at finite temperatures

dislocation scars are preferred. Hence, for intermediate sizes, spherical crystals with

dense dislocation scars are better at screening out the disclination stress compared to

buckled icosahedra.

3.5 Conclusions

In this chapter, we introduced a continuum model for dislocation screening in crys-

talline monolayers with spherical topology. As a consequence of their topology, these

systems necessarily feature a number of disclinations, which in turn, give rise to long-

ranged elastic stresses, resulting from the departure of the local coordination number

from the ideal sixfold configuration of a perfect triangular lattice [39]. Although never

exactly canceled, these stresses can be relieved in two different ways, depending on

the density of the underlying lattice, namely the ratio between the typical lattice
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spacing a and the system size R. For spherical crystals with a ≈ R, the Gaussian

curvature alone is sufficient to compensate for the angular deficit associated to each

disclination and the lowest energy configuration consists of twelve isolated fivefold

defects placed at the vertices of a regular icosahedron. As the lattice size increases,

crystals have been observed to buckle to increase the curvature screening [75]. Con-

versely, for a � R, the crystal is essentially flat at the length scale of the lattice

spacing and the underlying Gaussian curvature is no longer sufficient. Note however

that buckled geometries have been observed even at this scale [38, 47]. Additional

screening can instead be achieved by the proliferation of “clouds” of dislocations,

whose effect is to delocalize the net topological charge of an isolated disclination on

a larger area [52, 79]. Screening dislocations are themselves organized in scars, i.e.

chains of alternating five and sevenfold disclinations radiating from a given “seed”

disclination [30, 34].

Unlike grain boundaries in planar crystals that propagate across an infinite length

in open systems, scars in boundaryless, closed crystals starting in the proximity of

seed disclinations terminate within the lattice. This peculiarity gives rise to fluxes

of outgoing and incoming 5 − 7 dislocation dipoles in specific regions of the crystal,

depending on the location of the seed disclinations. The approach proposed here takes

advantage of this property to capture the effect of dislocation screening of the stress in

a coarse-grained fashion. Upon treating the dislocation flux itself as an independent

degree of freedom, we have demonstrated that the calculation of the stretching energy

of the crystal can be significantly simplified and reduced to the evaluation of just three

geometric coefficients, solely related with the geometry of the underlying surface via

the spectrum of the Laplace-Beltrami operator and the projection of the Gaussian

curvature.

Consistent with experimental observations [30, 31], we found that the number of

excess dislocations increases linearly with the system size, and that this is a general

feature of any crystal with spherical topology. While the latter result can also be

obtained from simple scaling arguments, our approach allows to estimate how these

prefactors vary for crystals of different shapes. However, given the continuous na-

ture of the model, the detailed distribution of dislocations within individual scars is

overlooked and the exact proportionality constants can not be derived directly. Nev-

ertheless, the model does capture differences in the expected number of defects for

different shapes and thus the effect of geometry. This is particularly useful for crys-

tals where the lattice structure can not be resolved. We can therefore investigate the

effect of curvature, focusing on the performance of dislocation screening. We demon-

strate that, for any finite curvature, dense icosahedral crystals will always feature a

cloud of screening dislocation in proximity of the topologically required seed disclina-

tions. Additionally, we study the effect of entropy on the equilibrium configuration

of crystals at finite temperature. We show that this equilibrium can be expressed as

the zero temperature minimum plus a single temperature-dependent term. We find

that although entropy tends to always favor denser scars, temperature induces new

dislocations on a crystal in a geometry-dependent fashion.

We present a method to calculate the minimal dimensionless stretching for a pre-

scribed shape and a fixed distribution of scar sinks and sources. We note that this

54



3.5. Conclusions

C
h
a
p
t
e
r
3

approach does not however ensure that that specific lattice structure does yield a

global minimum in the stretching. Nonetheless, our approach offers evident advan-

tages compared to the traditional discrete treatment of individual dislocation dipoles

[52]. For dense systems, where the number of screening dislocations is large, a discrete

treatment becomes computationally prohibitive, whereas our method highly reduces

the degrees of freedom from all individual defect positions to only those of the seed

disclinations and the terminating end of the scars. The calculation of the lowest energy

configuration and their associated stretching energy is simplified to the computation

of three geometric coefficients, for which we outline a numerical implementation that

can be used, in principle, for arbitrary shapes. These coefficients do not depend

on the density of dislocation scars nor on the crystal size. Therefore, our method

allows to readily analyze systems of different sizes and with varying number of ex-

cess dislocations, starting from a single well-invested calculation. Furthermore, other

contributions to the total elastic energy, such as bending, can be straightforwardly

incorporated into the model without compromising the simplicity of this approach.

Finally, to assess the efficiency of our method, we have considered three examples

of crystals of spherical topology: a sphere and two rounded icosahedra with different

sharpness at corners and edges. When the bending cost in the crystal is negligible

we find that curvature is the main screening mechanism of disclination stress, at zero

temperature, therefore resulting in buckled geometries. However, at finite tempera-

tures entropy leads to denser dislocations scars in spherical crystals compared to the

icosahedral shapes, which in turn can stabilize the spherical shape at intermediate

crystal sizes. For sake of the presentation, we considered the simplest case of crystals

with icosahedral symmetry, for which the flux of screening disclinations is uniform

across the surface and could ultimately be modeled in terms of a single dimensionless

number, Φ. For less regular geometries, Φ is a generic scalar field, whose equilibrium

configuration could be found upon minimizing the total elastic energy.
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3.6 Appendices

Appendix A Closed crystals with arbitrary sinks and
sources

A.1 Solutions

The resulting equation for the dimensionless stress σ for our model, Eq. (3.8) can be

written in the more general form

∇2σ(r) =
π

3

∑
j

qeff
j δ(r − rj)−K(r) , (3.20)

for an arbitrary distribution of disclinations of topological charge qeff
j . Every scalar

function on a compact manifold can be expressed as a unique linear combination of the

countable eigenfunctions of the Laplace-Beltrami operator, generalizing the notion of

Fourier and spherical harmonics to arbitrary (closed) manifolds (i.e. Sturm-Liouville

decomposition). Thus one can write

σ(r) =
∑
n≥0

σnψn(r) , (3.21)

where σn are the Sturm-Liouville coefficients for the stress and ψn are the eigenfunc-

tions, for which

∇2ψn(r) = λnψn(r) . (3.22)

In general, the spectrum of eigenvalues is degenerate (as for the sphere). Nonetheless,

the eigenfunctions ψn are mutually orthogonal and can be normalized in such a way

that
1

A

∫
dAψnψ

∗
m = δnm , (3.23)

with A =
∫
dA the total area of the crystal. This expression implies that the eigen-

functions are dimensionless quantities. We also write the decomposition of the Gaus-

sian curvature

K(r) =
∑
n≥0

knψn(r) . (3.24)

Note that the eigenvalues are all non-negative, with a single λ0 = 0 and ψ0 a constant

function. The zero-th mode of (the trace of) the stress is associated to the amount

of stretching due to pre-existing incompatibility in the crystal (i.e. in absence of

defects). We assume that, at equilibrium, this pre-stress is vanishing, i.e.

σ0 = 0 . (3.25)

The existence of the constant mode and the mutual orthogonality of all other eigen-

functions implies that all ψn≥1 have vanishing expectation value over the manifold.

It is then easy to solve for every n, finding

σn =
1

λn

 π

3A

∑
j

qeff
j ψn(rj)− kn

 , (3.26)
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for n ≥ 1. The equation for n = 0 (for which ψ0 = 1 in our normalization) simply

restates the topological identity

Ak0 =
π

3

∑
j

qeff
j , (3.27)

which also follows from k0 = 6χ/A, with χ the Euler characteristic. The total energy

at equilibrium can be written as

Estretch =
Y A

2

∑
n≥1

1

λ2
n

∣∣∣∣∣∣ π3A
∑
j

qeff
j ψn(rj)− kn

∣∣∣∣∣∣
2

, (3.28)

which proves that Estretch is quadratic in the topological charges.

For the effective charges considered in Eq. (3.9), the geometric coefficients can be

evaluated explicitly. By expanding the solution above and rewriting it in powers of

the effective charge Φ, we find the expressions in Eq. (3.11) in the main text.

A.2 Spherical harmonics

For a perfectly spherical crystal with radius R, we have that K = 1/R2 and thus

kn≥1 = 0. Furthermore, the degeneracies of the spectrum are well understood. The

eigenfunctions are the spherical harmonics Y m` (θ, φ) (with θ and φ the usual azimuth

and longitudinal angles), with eigenvalues `(` + 1)/R2, with ` ∈ N. The degeneracy

of each eigenvalue is then (2` + 1)−fold. Explicitly, the spherical harmonics can be

written in terms of Legendre polynomials as

Y m` (θ, φ) =

√
(2`+ 1)

(`−m)!

(`+m)!
Pm` (cos θ)eimφ , (3.29)

where the normalization (the so-called geodesic convention) is chosen such that Eq. (3.23)

is satisfied. With this basis, we have ψ`(θ, φ) =
∑`
m=−` Y

m
` (θ, φ). It is then straight-

forward to prove that the stretching energy Eq. (3.28) takes the form

Estretch =
πY R2

72

∞∑
`=1

2`+ 1

`2(`+ 1)2

∑̀
m=−`

(`−m)!

(`+m)!

∣∣∣∣∣∣
∑
j

qeff
j Pm` (cos θj)e

imφj

∣∣∣∣∣∣
2

, (3.30)

when evaluated on defect distributions invariant under the icosahedral group Ih. This

solution matches with previous results reported for a crystal with only twelve 5−fold

disclinations [52], for which in our expression it would be equivalent to qeff
j = 1.

Although this sum is infinite, each addend can be calculated analytically, so that

estimates with arbitrary precision are possible. Interestingly, not every harmonic

degree contributes to Estretch; it was already argued in Ref. [52] that only irreducible

representations of SO(3) that contain the trivial representation of Ih give a non-zero

contribution to the energy. Furthermore, in Ref. [52], it was found that all odd l never

contain the trivial irreducible representation, and the first four non-trivial modes are

` = 6, 10, 12, 16.
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For our model with dislocations, the sum in j splits into 12 α−terms at the

icosahedral symmetry and 20 γ−terms at the dodecahedral symmetry [see Eq. (3.9)].

We calculate the analytical geometric coefficients for the sphere shown in Table 3.1

with the expansion above up to some cut off ` = L. The value for L→∞ corresponds

to L = 500.

A.3 More general crystal architectures

Since we are interested in investigating curvature and scars as screening mechanisms,

in the main text we focus on crystals with icosahedral shapes and also icosahedral

symmetry in the lattice. However, we can consider more general configurations of

crystal defects and show that our main result for the stretching energy Eq. (3.10) still

holds. We still consider individual extended defect cores (each scar is connected to

a single disclination), where the corresponding scar sinks neutralize the dislocation

charge at the source. More specifically we generalize the following points: i) The

positions of the dislocations do not necessarily have icosahedral symmetry; ii) scars

for neighboring disclination cores do not share the same sink positions; iii) scars do

not inherit the icosahedral symmetry.

In particular, we keep the general assumption that all scars are sourced from

Ndisc disclination positions at rα. We still consider each source to have the same

flux Φα = Φ. However, we allow each extended defect to have a different number of

sinks. In other words, we consider N
(α)
γ sinks per disclination, each at positions rγ

with no particular symmetry. We can write a similar equation to Eq. (3.8) for the

dimensionless stress,

∇2σ(r) =
π

3

Ndisc∑
α

qeff
α δ(r − rα) +

π

3

Nsink∑
γ

qeff
γ δ(r − rγ)−K(r) , (3.31)

with charge densities given by

qeff
α = qα −

Φ

π/3
, (3.32a)

qeff
γ =

1

N
(α)
γ

Φ

π/3
. (3.32b)

Having the same scaling in the flux, we expect the general solution for the stress

and the energy to hold for this generic lattice architecture too. For extended defects

with equal number of sinks we have N
(α)
γ = Nsink/Ndisc, recovering the model in

the main text for 20 sinks. The number and positions of disclination sources and

of scar sinks changes the values of the geometric coefficients cn, hence changing the

stretching energy of the crystal. Recall for example, that the sign of c1 for a par-

ticular configuration determines whether dislocations indeed screen the disclination

stress. Nonetheless, the analytical expressions in Eq. (3.11) can still be used with the

appropriate sums in α and γ. Therefore the results on the size scaling of the energy

and of the number of excess dislocations remain valid also in this case.
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Figure 3.8: Triangulation of
the sphere and disclination
core size. The mesh consists of
22879 vertices (this number is not
related to the number of lattice
points in the physical crystal). The
tiny white sphere shows the discli-
nation core size used in the nu-
merical solutions. We approximate
the Dirac deltas as Gaussian func-
tions of variance r2

0. The color code
shows the the local source terms
for the stress on the sphere, where
Φ = 0 and r0/R = 0.04. -2.68 103.0

Appendix B Numerical methods

Lacking an explicit parametrization for IR and IS , the Laplace-Beltrami spectrum

for these shapes is impossible to obtain analytically. We have to solve numerically

the equation for the stress Eq. (3.8) via a gradient minimization. We calculate the

geometric coefficients by fitting the quadratic energy as a function of different values

of the effective charge Φ. This method can be used to study the mechanics crystals

with other closed convex shapes that can be similarly discretized.

B.1 Meshed geometries for numerical integration

The discretization of the sphere and the icosahedra was done using the software

Surface Evolver [87]. We built a perfectly sharp icosahedron with the 12 vertices

connected by straight lines and hence perfectly flat faces, which was refined to have

∼ 2 × 104 mesh points. Using the software, we allow an area-minimizing relaxation

of the icosahedron into a sphere, subjected to volume conservation. The icosahedral

shapes used in this work, IS and IR are intermediate shapes in this evolution, while

the sphere S2 is the final shape obtained. The size R of crystal is given by the radius

of this last geometry.

Note that the triangulation obtained is generally irregular. However the mesh was

adjusted in such a way that all triangles have roughly equally long edges with length

dispersion (lmax− lmin)/〈l〉 = 0.48, 0.54 and 0.55 for S2, IR and IS respectively. Since

the area variation is not too large, all meshes obtained still have on the order of 104

points. It is important to remark that this discretization is absolutely not linked to the

underlying crystal structure. In fact, the triangulation is coarse-grained with respect

to the actual lattice so that each triangle encloses a large number of lattice sites. See

Fig. 3.8 for an explicit representation of the triangulation used for the sphere.

The three shapes are characterized by their asphericity, which can be defined as

Q =
〈∆R2〉
〈R2〉

=
1

Nvert

Nvert∑
v=1

(Rv − 〈R〉)2

〈R2〉
, (3.33)
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with Rv being the radial distance between each mesh point (or vertex) v to the

geometric center, and 〈R〉 = 1/N
∑N
v Rv. For the particular shapes obtained with

Surface Evolver we calculated: for S2, Q = 9× 10−9; for the round IR, Q = 0.0012;

and for the sharp IS , Q = 0.0020. For reference, a perfectly round sphere has zero

asphericity and the initial perfectly sharp icosahedron (all flat faces and diverging

mean curvature at vertices and edges) has Q = 0.0026.

B.2 Numerical integration

We solve a discretized version of Eq. (3.8) on each mesh point v of surface, given in

general by

∇2
vσv =

∑
i=1

qeff
j ∆(rj,v)−Kv , (3.34)

where ∆(ri,v) is an approximation to the Dirac delta-functions of the original equation

that depends only on the geodesic distance between the vertex v and the i−th effective

disclination, given by ri,v = |rj − rv|. We take ∆(ri,v) to be a Gaussian function,

∆(ri,v) = f(r0) exp
(
−r2

i,v/r
2
0

)
, (3.35)

where we refer to the parameter r0 as the core size and we take r0 & lmax (see

Fig. 3.8). For all three meshes, we took r0/R = 0.04. The Gaussian is normalized

by a factor f(r0) so that the topological constraint in the total defect charge is met,

i.e.
∑
v

∑
j q

eff
j ∆(rα,v)Av = 4π. The area Av of each point is given by the Voronoi

tessellation of the mesh. The numerical solver based on gradient minimization was

built in-house, using C++. The calculation of the geodesic distances on a mesh was

done by an implementations of the algorithm [88] available at [89].

We then simply integrate the stretching energy as Estretch =
∑
v σ

2
vAv. For a given

shape of size R, we calculate the energy for several different values of qD while keeping

the position of the defect cores and r0 fixed (see for example the light gray markers

in Fig. 3.4). The discretized energy E(nd) is then fitted with a polynomial of order

two, consistent with Eq. (3.13). Note however that the parameters obtained from the

fitting, which we denote c′n, will vary for different R/a. The size-dependence is then

divided out in order to get the geometric coefficients for that particular geometry.

The cn coefficient for a given shape (shown in Table 3.1) is the average of the fitted

values over different sizes R, thus cshape
n = 〈c′n/R2−n〉R.
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