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Chapter 2

Modeling two-dimensional elastic

surfaces

“I call our world Flatland, not because we call it so, but to make its nature clearer to

you, my happy readers, who are privileged to live in Space.”

A SQUARE, Flatland.



Monolayered curved crystals, the interface of emulsion droplets and tubulin
polymorphic assemblies can all be viewed as thin membranes of varying shape.
We model these systems as effectively two-dimensional elastic surfaces but still
embedded in our three-dimensional physical world, as they nonetheless bend,
stretch and curve. In the Introduction, we outlined some basic concepts such
as surface curvature and topology in a more intuitive way. To arrive to the me-
chanical description of surfaces we must however give formal definitions to these
concepts in the language of differential geometry. Having covered the basics,
we further explain how these definitions enter the models based on continuum
linear elasticity theory of thin plates. We end the chapter explaining the prac-
tical implementation of surface elasticity on triangulated surfaces used for the
three-dimensional computer modeling of thin membranes.

2.1 A story of 2D life in a 3D world
Basics on curvature and geometry

The geometrical study of surfaces is set upon a base described in the language of

differential geometry. In this section, we highlight those concepts which are necessary

for the mechanical description of the thin elastic systems which we study in the

remainder of the thesis. The basic concepts described here and further reading can

be found in several other references, including Refs. [2, 18, 64, 65].

2.1.1 Measuring length

Consider a two-dimensional curved smooth1 surface S of an arbitrary shape, which

is embedded in our familiar three-dimensional space. The parametrization of the

surface maps an appropriate two-coordinate system to the three-dimensional position

vectors of all points on that surface, r(x1, x2). In general, we will distinguish three-

dimensional vectors with bold letters, r, while components of vectors and tensors

defined on the two-dimensional surface carry index notation; for example, xi for

(i = 1, 2). At any given point on S, we can define the tangent vectors

ei =
∂r

∂xi
(i = 1, 2) . (2.1)

In general, ei are not unit vectors, nor are they necessarily orthogonal 2 . In fact, the

metric tensor of the surface, whose covariant components are defined by the inner

product of the tangent vectors,

gij = ei · ej , (2.2)

1In this thesis, we are exclusively concerned with ”well-behaved“ orientable surfaces where all the
descriptions on this chapter are applicable and allowed [65].

2However, the parametrization r(x1, x2) only defines a smooth surface if the tangent vectors ei
are linearly independent [65].
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encodes the correct description of distances on a particular surface. The contravariant

components of the metric tensor, gij , are defined such that

gijg
jk = δki =

{
1 if i = k

0 if i 6= k
, (2.3)

where δki is the Kronecker delta, or the components of the unit matrix. Consider

some vector on the tangent plane of S, expressed in the basis of the tangent vectors

a = akek
3 . Given the definition above, Eq. (2.3), the metric tensor can be used to

lower/raise indices, i.e., ai = gijaj and ai = gija
j . So, in general, the scalar product

of two vectors tangent to the surface can be written as a · b = gija
ibj .

The name choice for the metric tensor becomes more evident when calculating for

example the line element or the area element for a given coordinate system. The first

fundamental form on S is given by

ds2 = gijdx
idxj , (2.4)

where ds =
√
ds2 is the line element on the surface or the distance between a point P

and a pointQ on the surface which are infinitesimally close by. Taking the determinant

of the metric tensor g = |gij |, the area element on S can be expressed as

dA = |e1dx
1 × e2dx

2|= √g dx1dx2 . (2.5)

Figure 2.1: Local frame on
a two-dimensional surface S
embedded in three-dimensional
space. At any point P on the sur-
face, with position vector r(x1, x2),
we can calculate two tangent vectors
ei, and a normal unit vector n̂. For
a given coordinate system xi, we can
extract the local geometric properties
of interest from the metric tensor gij
and the extrinsic curvature tensor bij
of the surface.

2.1.2 The covariant derivative

Say that we are interested in the directional derivative of the vector field a = akek
along the surface coordinate xi. Unlike the friendly Cartesian system of flat space,

the basis ek itself also depends on the local coordinates. The covariant derivative

3Here and for the rest of the chapter, we follow the commonly used Einstein convention for
summation: having the same dummy index twice in a given term, once as a subscript (covariant)
and once as a superscript (contravariant), implies summing over this index, i.e. aibi =

∑
i a
ibi.
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∇i, is the operator acting as the correct generalization of directional derivation on a

curved space defined as

∇iak =
∂ak

∂xi
+ ajΓkij , (2.6a)

∇iak =
∂ak
∂xi
− ajΓjik , (2.6b)

where Γkij is called the Christoffel symbol, given by Γkij = gklΓijl, and

Γijl =
∂ei
∂xj
· el . (2.7)

This expression emphasizes how the Christoffel symbols contain the variation of the

tangent basis vectors as one moves along the surface. The covariant derivative en-

sures that the directional derivation of a field on the surface does not depend on the

coordinate system used. In other words, the derivative in Eq. (2.6) do transform as a

tensor under a change of coordinates. It is therefore the relevant operator for physics

on two-dimensional curved surfaces for which the metric is different than the unit

matrix4.

2.1.3 Measuring curvature

To quantify the curvature at some point P , we need to look at how the two-dimensional

surface is embedded in three-dimensional space. Consider the normal vector to the

surface,

n̂ =
e1 × e2

|e1 × e2|
. (2.8)

Another important tensor for the geometrical description of a two-dimensional

surface is that defined in the second fundamental form on S,

2h = bijdx
idxj , (2.9)

where bij are the covariant components of the extrinsic curvature tensor, defined by

bij = ei ·
∂n̂

∂xj
. (2.10)

The invariant h can be interpreted as the distance to the tangent plane at a point P of

a point Q on the surface which is infinitely close by [2] or, in other words, how much

the surface is pulled along the normal direction. While the metric tensor describes

distances on the surface itself, the extrinsic curvature tensor encodes how the surface

is embedded in three-dimensional space. Since n̂ is a unit vector, bij keeps track of

how the normal vector changes orientation as one moves tangentially to the surface.

Standing on P , there are an infinite number of tangent directions to the surface.

Take one of these, described by the unit vector t = tiei. The normal curvature of the

4For example, the additional term in the covariant derivative ensures that when transporting
along a surface a vector that lives in the tangent plane, the vector remains tangent to the surface.
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surface for that direction, given by the inverse radius of the osculating circle along

the surface projection on the plane t and n̂ is given by

κn = bijt
itj . (2.11)

We note that the positive sign in Eq. (2.10) is a convention that defines the sign of the

curvature value. Under this convention, a sphere –which has constant normal curva-

ture everywhere– has positive curvature (see Fig. 2.2). The two directions for which

the normal curvature of the surface is extremal are called the principal directions and

they correspond to the eigenvectors of the extrinsic curvature tensor [64]. Since bij is

symmetric, the principal directions are orthogonal to each other. The eigenvalues are

called the principal curvatures of the surface, κ1 and κ2.

Given the principal curvatures, we further define three scalars as measures of the

curvature of surface S:

H =
κ1 + κ2

2
Mean curvature, (2.12a)

Ω =
|κ1 − κ2|

2
Warp or Deviatoric curvature, (2.12b)

K = κ1κ2 Gaussian curvature. (2.12c)

These three quantities describe the local curvature at P and are invariant under

reparametrizations of the surface.

(a) (b) (c)

Figure 2.2: Local surface curvatures at point P . (a) The normal curvature for a given
direction t, Eq. (2.11), is determined by the projection of the surface onto the plane described
by t and the normal vector n̂, colored in blue. The curvature κ is the inverse radius of the
osculating circle at P , and it is defined positive for a line curving away from the surface
normal. (b) The projected maximal and minimal values are the principal curvatures of the
surface κ1 and κ2. A symmetric saddle has principal curvatures of the equal magnitude but
opposite sign, and therefore the surface at P has negative Gaussian curvature and no mean
curvature. (c) A sphere instead, for which all surface curvatures are positive and have the
same magnitude, has no deviatoric curvature and positive Gaussian curvature everywhere.
The saddle and the sphere illustrate two independent modes of curvature: a pure elliptical
one quantified by H, and a hyperbolic one Ω.
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Figure 2.3: Curvature decomposition of
a meandering curve C on surface S. As
seen extrinsically, the white curve has two
components to the line curvature κ at point
P : a term along the surface κtn̂ which is pre-
cisely the normal curvature of the surface it-
self; and a tangential term along l called the
geodesic curvature κg. A plain open surface
can also have some geodesic curvature at the
boundary (imagine creating a new boundary
by cutting the cylinder along the white line).
However, the integral of the Gaussian curva-
ture on S and the integral of the geodesic
curvature along ∂S are topologically related
through χ, as seen from Gauss-Bonnet theo-
rem in Eq. (2.15).

Finally, we define the geodesic curvature of a curve on a surface S which, in this

thesis, becomes relevant for surfaces with boundaries. Imagine some curve C drawn

meandering on the surface S, such as the white curve in Fig. 2.3. The way this line

curves in space is partially due to being forced to follow the natural bending of the

surface, highlighted by the dash line, and partially because of the curvature of the

line itself. The first contribution is precisely the normal curvature of the surface along

the tangent to C, κt given in Eq. (2.11). The latter instead is the geodesic curvature

and it is independent of surface curvature. In other words, if t is the tangent vector

to the curve C at some point, the line curvature vector of C, κ is

κ = κtn̂+ κgl , (2.13)

where l = n̂× t. A curve which exactly follows the normal curvature of the surface is

called a geodesic and it has κg = 0 5. In an open surface, the curvature at its boundary

is quantified by its geodesic curvature. For example, the solid black boundary of the

cylinder in Fig. 2.3 has κg = 0. Yet, cutting the cylinder along the white line results

in a boundary with κg 6= 0.

2.1.4 Developable surfaces

As opposed to the extrinsic curvature, defined as 2H, the Gaussian curvature is in

fact an intrinsic property of the surface and does not depend on the specific embed-

ding, even though K is also extracted from the extrinsic curvature tensor bij . This

surprising result was derived by Gauss, which he called the Theorema Egregium, or

remarkable theorem 6. The Gaussian curvature instead is solely connected to the

metric. So long as a surface is not stretched or compressed, one can bend it in dif-

ferent ways, thus locally changing the mean and deviatoric curvatures, H and Ω, but

keeping K unchanged.

5The distance between two points on S is shortest along the surface geodesic.
6Also translated as “brilliant” or “outstanding” depending on the reference
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To illustrate this, imagine bending some surface that does not really allow for

stretching, such as a flat sheet of paper (see Fig. 2.4). Bending it into a cylinder of

radius R will keep the area element (Eq. (2.5)) unchanged but it will clearly change

the local curvature. However, while H = Ω = 1/(2R) everywhere, the cylinder has

no Gaussian curvature, as the surface is essentially flat along one of the principal

direction. In fact, this is true for any other continuous deformation which preserves

the measure of distance on the surface, also called isometric deformations. We use the

distinction here that bending relates to isometric deformations while curving changes

the Gaussian curvature of the surface 7. Formally, a smooth surface which has zero

Gaussian curvature everywhere is called a developable surface.

(a) (b) (c)

Figure 2.4: Developable surfaces. (a) Isometric, or distance-preserving, deformations
bend a flat plane, similar to bending a rigid piece of paper. The surface remains developable,
as K = 0 everywhere. Open sheets can bend into other developable geometries such as (b)
cylinders and (c) helical ribbons.

2.1.5 Connecting geometry to topology

As first described by Leonhard Euler in 1758, for any convex polyhedron, the number

of faces F , the number edges E and the number of vertices V are related through a

single constant: F − E + V = 2 [66]. In fact, the Euler formula can be generalized

for other surfaces when described through some polygonization, as

F − E + V = χ , (2.14)

where the particular constant χ, called Euler characteristic, is determined by the

topology of the surface. Indeed, for any closed shape that can be continuously de-

formed into a sphere, such as a polyhedron, the Euler characteristic is χ = 2 (see also

Fig. 1.1).

We introduce here the Euler characteristic in order to highlight an exceptional

connection between surface topology and the global nature of its intrinsic curvature.

7As explained further below, the latter also implies stretching.
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The Gauss-Bonnet theorem in two dimensions for a surface S is expressed as:∫
S

KdA +

∫
∂S

κg dl = 2πχ , (2.15)

relating the topological constant χ to the integral of the Gaussian curvature K over

the surface and the integral of the geodesic curvature κg of the boundary of said

surface.

Note that for surfaces without a boundary, such as those of spherical topology,

the Gauss-Bonnet theorem states that for any continuous deformation, the integral of

the Gaussian curvature remains a constant. In other words, if the surface is deformed

locally increasing K somewhere, the deformation is accompanied by a decrease of the

local curvature somewhere else 8. In the case of surfaces with boundaries, such as a

rectangular sheet, such K-increasing deformations can also be translated in changes

of the geodesic curvature of its boundary.

The Gauss-Bonnet theorem, as expressed in Eq. (2.15), must be slightly modified

when the boundary of S has sharp corners or points where the tangent vector varies

discontinuously along the contour ∂S:∫
S

KdA +

∫
∂S

κg dl +

corners∑
i

αi = 2πχ , (2.16)

where αi is called the jump angle at a given corner. This is the angle difference

between the tangent vectors at the corner. The integral of κg is then only along the

continuous bits of the boundary.

2.2 Mechanical energy of an elastic thin sheet

In the absence of external forces, the mechanics of an elastic solid is governed by

internal stresses sourced by deformations from a reference state. In general for three-

dimensional solids, small strains in the material lead to small deformations. However,

in the case of thin sheets, the material can have large bending deformations from

small planar strains when deformed along the thin dimension. For effectively vanishing

thickness, such as for the two-dimensional surfaces we study in the following chapters,

the elastic energy can be expressed as the sum of two contributions: the stretching

energy rising from tangential deformations, and the bending energy quantifying out-

of-plane deformations along the surface normal:

E = Ebend + Estretch . (2.17)

In the rest of this section we expand on how we calculate these two terms for a curved

elastic surface. We highlight an implicit interplay between stretching and curving of

the surface which we further explore in Chapter 3. The explicit competition between

the bending and stretching energy terms is relevant in Chapter 4 and Chapter 5.

8In a deformation of a sphere into a icosahedron, for example, the constant Gaussian curvature
gets re-destributed into vertices with much larger K but flatter faces with vanishing K. This will be
relevant in Chapter 3.
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2.2.1 Bending energy

Helfrich energy

In 1973, Helfrich proposed an expression for the bending energy of a thin membrane

as an expansion on the surface curvature scalars in Eq. (2.12), which also takes into

account the spontaneous curvature [15]. The Helfrich bending energy is

Ebend =

∫
dA

[
2k (H −H0)

2
+ k̃K

]
, (2.18)

where H0 is the mean spontaneous curvature9, and the material moduli are often

referred to as the bending rigidity k and the saddle splay modulus k̃. We take H0

to be constant, as originally proposed, since this is expected in single component

systems.

Helfrich formulated Eq. (2.18) in the context of lipid membranes where the bending

energy is the only component in the elastic energy. This expression is often also found

without the second term on the right hand side, especially in closed systems without

boundaries. As we see from the Gauss-Bonnet theorem in Eq. (2.15), upon integration

of the energy density over the surface, the Gaussian curvature integral results in a

topological constant plus a boundary integral. The latter is zero for closed surfaces

or simply a constant for open topologies whose boundaries remain fixed, and can

therefore be neglected in these cases.

Fischer energy

In 1992, Fischer proposed a different expression for the bending energy [67], consid-

ering the fact that, following Eq. (2.12), the Gaussian curvature can be decomposed

in terms of the (isotropic) mean curvature and the deviatoric curvature:

K = H2 − Ω2 =
(κ1 + κ2)

2

4
− (κ1 − κ2)

2

4
. (2.19)

Based on this decomposition, Fischer suggests a more intuitive expression of bending

energy using H and Ω as two independent curvature modes [67]:

Ebend =

∫
dA

[
kH

(
H −H(F )

0

)2

+ kΩ (Ω− Ω0)
2

]
, (2.20)

where the material moduli kH and kΩ are the coupling energy constants respectively.

The two modes are best illustrated by the spherical surface and the symmetric saddle

in Fig. 2.2. At the saddle point in panel b, the two principal curvatures have the

same absolute value but opposite sign because of their orientation with respect to

the normal n̂, and thus the H = 0. Conversely, on top of the spherical cap in panel

c, the principal curvatures have the same sign, so Ω = 0. The actual curvature at

a point of a generic surface is a superposition of these two independent modes, and

9To be more precise, Helfrich proposed his model considering the extrinsic curvature 2H and
therefore using a spontaneous curvature C0 = 2H0
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in a similar way, so is the spontaneous curvature in general. The energy Eq. (2.20)

therefore contains not only the spontaneous mean curvatureH0 but also a spontaneous

deviatoric curvature Ω0.

From Eq. (2.19) we read that the deviatoric component is larger for a point with

negative Gaussian curvature. Since K = κ1κ2, this translates into bending the surface

in opposite directions along perpendicular orientations, generating a twist – or warp.

In general, we refer to H0 as the spontaneous mean curvature and to Ω0 as the

spontaneous warp. In the absence of spontaneous warp, just like assumed by Helfrich,

both energy formulations are equivalent up to a combination of the material constants

[68], for

kH = k + k̃ , kΩ = −k̃ . (2.21)

In Eq. (2.20), we make the distinction between the spontaneous mean curvature H
(F )
0

and that in the Helfrich model, Eq. (2.18), as these differ by a scaling factor

H
(F )
0 = H0

k

k + k̃
, (2.22)

when Ω0 = 0. Unless necessary due to context, we further drop the superscript for

the spontaneous curvature in the Fischer formalism.

To Helfrich or to Fischer?

In chapter 4 we are concerned with the mechanics of the elastic interface of emulsion

droplets. These are essentially surfaces of spherical topology for which, having no

boundary, the integral of the Gaussian curvature over the whole surface simply inte-

grates to 4π. We therefore use the Helfrich formalism for the bending energy in this

chapter, considering only the first term in Eq. (2.18), related to the mean curvature.

Moreover, the monolayer interfaces studied in this chapter are composed of surfac-

tant molecules which are rotational symmetric along the surface normal. Because of

similar to arguments used for lipid vesicles in Refs. [67, 68], in this system Ω0 ≈ 0,

and so both formalisms for the bending energy are equivalent.

In chapter 5 instead, we use the Fischer expression in order to account for observed

mechanical anisotropy in tubulin assemblies. Insights from the study of microtubule

dynamics suggest that the molecular architecture of tubulin can be tuned by assisting

proteins or ions in cells which could give rise to saddle-like curvatures. Additionally,

for open disk topologies the integral of the Gaussian curvature is no longer always a

constant energy shift, as there are additional boundary terms.

2.2.2 Stretching energy

The stretching contribution in Eq. (2.17) comes from tangential deformations which

cannot be relaxed and therefore have some energy cost. In continuum elasticity the-

ory, the deviation of the surface from a reference state r(x1, x2) into a deformed state

r′(x1, x2) is quantified by the deformation vector field u = r′ − r. Tangential defor-

mations lead to changes in the distances between points on the surface, or as seen
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from the fist fundamental form Eq. (2.4), changes in the metric tensor for a given

coordinate system. The strain tensor contains the information of this change,

uij =
1

2
(g′ij − gij) , (2.23)

where gij is given in Eq. (2.2), and g′ij is the metric for the deformed state:

g′ij =
∂r′

∂xi
· ∂r

′

∂xj
, (2.24)

Expressing the deformation vector in the basis of the tangent vectors u = uiei, the

strain tensor is written in a way more familiar to the general theory of elasticity of

solids [1],

uij = ∇jui +∇iuj +∇iuk∇juk , (2.25)

but in terms of the covariant derivative Eq. (2.6), appropriate for our curved surfaces.

The stretching energy is given by an expansion in the strain tensor [1],

Estretch =

∫
dA

(
1

2
λuii

2
+ µuiju

ij

)
, (2.26)

where λ and µ are the Lamé coefficients in two dimensions. These can be expressed

in terms of the two-dimensional Young’s modulus Y and the Poisson ratio ν,

λ =
Y ν

1− ν2
, (2.27a)

µ =
Y

2(1 + ν)
. (2.27b)

In linear elasticity theory, deformations are assumed to come from small strains,

for which uij ≈ ∇jui + ∇iuj . The internal forces generated by the distortion are

contained in the stress tensor, σij , found from the minimization of Eq. (2.26) in the

absence of body forces. We then write Hooke’s law as

σij =
Y

(1 + ν)
uij +

Y ν

1− ν2
giju

k
k . (2.28)

From Hooke’s law, a Poisson equation can be derived for the trace of the stress tensor,

σ = σii [69]. For an incompressible curved sheet, i.e. ν = 1, the equation becomes

∇2σ = −Y δK , (2.29)

where

∇2 = gij∇i∇j (2.30)

is the Laplace-Beltrami operator, the generalization of the Laplacian operator for

curved manifolds. Analogously to the Gauss’s law in electrostatics, here the variation

of the Gaussian curvature acts as a source term to the surface stress, taking us back to

the connection between the intrinsic curvature and the metric tensor. This variation

can be due to curving of the surface itself, as we see for the open elastic sheets in
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Chapter 5. The source term can also include additional in-plane deformations from

the breaking of the orientational or the translational order in regular two-dimensional

crystals. In this case, the presence of topological defects is expressed into the right-

hand side of Eq. (2.29), as we elaborate further in Chapter 3 where we look at the

connection between defect stretching and the intrinsic curvature for closed crystals.

Finally, for incompressible surfaces, the stretching energy depends only on the two-

dimensional Young modulus and is written in general as

Estretch =
1

2
Y

∫
dA σ̂2 , (2.31)

where we consider the dimensionless stress tensor σ̂ = 1
Y σ.

2.3 Elasticity on a discretized surface

So far we have made an important assumption that the thin sheet systems which we

are interested in, can be essentially modeled as two-dimensional elastic surfaces. Using

concepts from differential geometry as a basis, we built up towards an expression of the

mechanical energy suitable for curved thin sheets, with the surface parametrization

r(x1, x2) as the starting point. The bad news is that for most geometries, calculating

all geometric quantities that trickle down from this is either not an easy task or there

is no parametrization at all to begin with (there is a reason why cows are modeled

as spheres). The good news is that it is possible to calculate the geometric fields

introduced in Section 2.1 on discretized versions of the elastic surface of interest,

and in particular on triangulated meshes, such as that in Fig. 2.5a. Except on the

rare occasion, in this thesis we work with triangulated versions of the various surface

geometries.

2.3.1 Geometric fields on a triangulated surface

A triangulated mesh with Nv vertices is described by the position vectors of these

vertices rv, and their connectivity, given by a list of index triplets defining the trian-

gular faces making up the surface. For all surfaces, we keep the topology of the mesh

fixed.

The geometric fields of interest, such as the local curvatures in Eq. (2.12), are

numerically calculated at each vertex. Discrete methods for triangulated surfaces is

a field of its own but we make use of the geometric differential operators presented

in Ref. [70]. In this framework, the various geometric quantities at some vertex

are approximated as spatial averages around it and restricted only to its immediate

neighbors 10. So, for a vertex i and its neighborhood (such as illustrated in Fig. 2.5b),

these quantities are given as sums over the neighboring vertices. Since the mesh

topology is fixed, we rewrite the expressions in Ref. [70] as sums over the neighboring

triangles instead. In other words, we consider sums over the triangles t consisting

of those triplets t = {i, j, k} containing i. For the triangle-based calculation of the

10Also referred as the 1-ring neighborhood
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(a) (b)

Figure 2.5: Surface discretization and relevant geometric quantities. In practice,
we work with triangulated surfaces of the two-dimensional geometries that we study. a) A
smooth helix is approximated by a mesh of Nv = 369 vertices. The number of vertices
varies according to how computational demanding is the specific energy implementation.
The geometric quantities are defined at each vertex i and calculated from spatial averages in
the nearest neighborhood, such as the one illustrated in b). These averages can be rewritten
as a sum on the neighboring triangles t = {i, j, k}, or those triplets containing vertex i, and
the normal direction is encoded in the triplet permutation. Each vertex is assigned a portion
of the area of the neighboring triangles within dashed lines, which is either the Voronoi
region for non-obtuse triangles (yellow region), or a fixed fraction if the triangle is obtuse
(blue region), as seen in Eq. (2.32).

different terms, it is useful to keep in mind the schematic in Fig. 2.5b. This shows

the neighborhood of a vertex i, and the relevant quantities for a particular triangle

t defined by i at position ri, and the neighboring vertices j and k at rj and rk. In

particular, all quantities can be described in terms of the edge vectors eab = ra − ra,

their magnitudes rab = |eab|, and the internal angles of the triangle θi, θj and θk.

Vertex area

Each vertex i is assigned an area patch Ai =
∑
tA

(t)
i in a way that all vertex patches

in the mesh perfectly tile the whole surface. Commonly, the Voronoi tessellation is

used to determine A
(t)
i , which consists of the region of points in triangle t which are

closest to i as opposed to j or k. In Fig. 2.5b for example, the region colored in yellow

is the Voronoi area of i for that specific triangle. The Voronoi area per triangle can

be calculated from the cotangent weights used to approximate the discrete Laplace-

Beltrami operator [70]. However, if the neighboring triangle to i is obtuse, this can

yield negative values. A mixed scheme is used where a fixed fraction of the triangle
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area is used when it has an obtuse angle:

A
(t)
i =


(
r2
ji cot θk + r2

ki cot θj
)
/8 if triangle t is acute

At/2 if θi is obtuse

At/4 if any of the other angles is obtuse,

(2.32)

where At is the area of triangle t, given by At = 1
2rjkrki sin θk. An example of the

area region used when θi obtuse is shown in blue in Fig. 2.5.

Vertex extrinsic curvature

Consider the curvature normal vector, H = Hn̂ = ∇2r, where n̂ is the normal vec-

tor to the surface and the second expression is the Laplace-Beltrami of the surface

parametrization. The mean curvature can then be calculated from the cotangent

weights11 of the discretization of the ∇2-operator [70]. Given as a sum in neighboring

triangles,

Hi =
1

4Ai

∑
t

(cot θk eij + cot θj eik) . (2.33)

The mean curvature is given up to a sign as Hi = s|Hi|, where the sign s is determined

through the pre-defined orientation of the surface. This orientation is imprinted in

the fixed orientations of each triangular face, for which vertex triplets t = {i, j, k}
are ordered such that the edge vectors determine the “outward normal” following the

right-hand rule. In other words,

s = sign [(eji × eki) ·H] (2.34)

Naturally, it follows that the normal to the surface is n̂i = sHi/|H|.

Vertex intrinsic curvature

The discrete Gaussian curvature at vertex i is given by

Ki =
1

Ai

[
2π −

∑
t

θ
(t)
i

]
, (2.35)

where θ
(t)
i is the angle adjacent to vertex i in the triangle t of the neighborhood of

i. This expression stems from the Gauss-Bonnet formula, Eq. (2.16) applied to the

area patch Ai for which χ = 1, and noting that there is no geodesic curvature on the

straight boundaries of the vertex area element [70].

2.3.2 Numerical bending energy

It is straightforward to write an expression of the bending energy of the triangulated

surfaces from the discretized equations introduced above to calculate the vertex area,

and the mean and Gaussian curvatures. However, we first make a distinction between

11Without any concern for obtuse triangles in this case.

33



Chapter 2. Modeling two-dimensional elastic surfaces

C
h
a
p
t
e
r
2

bulk and boundary vertices of the meshed surface S, since only the former contribute

to the bending energy. The bulk vertices v are those with a closed 1-ring neighbor-

hood, i.e. where every neighboring vertex to v is part of exactly two of the adjacent

triangular faces to v (for example the blue and gray vertices in Fig. 2.5a). In open

topologies, such as the rectangular sheets in Chapter 5, the subset of boundary ver-

tices, v′ ∈ ∂S have no associated mean nor Gaussian curvature (for example, the red

vertices).

We consider here the Fischer model in Eq. (2.20), since the terms for the Helfrich

energy on spherical topologies are contained in these set of equations. The discrete

Fischer integral is given by the sum of the energy of each vertex

Ebend =
∑
v∈S

Evbend =
∑
v∈S

Av

[
kH (Hv −H0)

2
+ kΩ (Ωv − Ω0)

2
]
, (2.36)

with the warp given by Ω2
v = H2

v −Kv. Because of the numerical inaccuracies of the

discretization, the latter expression can result in negative values, in which case we set

the warp to zero. The area Av, the mean curvature Hv and the Gaussian curvature

Kv are calculated as described in Section 2.3.1.

2.3.3 Numerical stretching energy

We take two different approaches to determine the stretching energy Eq. (2.31): (i)

In Chapters 3 and 4, we use numerical integration of the Poisson equation for the

stress Eq. (2.29) on the triangulated surface, from which the stretching energy is then

calculated from the stress field at each vertex; (ii) In Chapter 5 we use an alternative

discrete expression to the energy integral Eq. (2.31) based on a mesh of Hookean

springs (see e.g. Ref. [44]). Here we give a rough outline of the two approaches but

more details are found in the corresponding chapters. It is important to note that for

either of these two approaches, the triangulated surface is not linked to the underlying

molecular structure of the physical system in question.

Discrete Hookean mesh

In the spirit of the stress coming from tangential deformations on the surface, the

stretching energy can be approximated from spring-like interactions between the ver-

tices on the triangulated surface. Following linear elasticity, the stretching energy at

vertex v is given by a sum in its neighboring vertices {w},

Estretch =
1

2
cs
∑
v

∑
w nn v

(|rv − rw|−l0)
2
, (2.37)

where cs is the energy coupling constant, proportional to the Young’s modulus, and

the rest length l0 is a constant parameter. The rest length can set as the averaged edge

length l0 =< rvw > over all edges of the mesh. Using this approach is considerably

less computationally expensive which is advantageous for the energy-minimization

algorithm used to study of tubulin assemblies of Chapter 5. Furthermore, since we

are precisely interested in shape deformations, it is possible to get rid of any pre-stress

introduced when using an averaged edge value as a constant rest length.
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Numerical integration

Just like we did for the surface curvatures, we can calculate the stress field at each

vertex in the meshed surface. In this case, this is done by finding numerical solutions

to the Poisson equation for the stress. In particular, consider the dimensionless stress

function at vertex v,

∇2
vσ̂v = −δKv . (2.38)

Using the discrete cotangent formula for the Laplace-Beltrami operator discussed

above and in Ref. [70], we can integrate this equation for a given the source term

δKv. The stretching energy trivially follows as

Estretch =
Y

2

∑
v

Avσ̂
2
v . (2.39)

We use this approach for the closed crystalline systems in Chapters 3 and 4, as

the physical system has an inaccessibly large number of lattice sites. In this case, the

underlying structure is coarse grained as the triangulated mesh, such that each vertex

patch corresponds to a large number of lattice sites.

The numerical integration of the stress has the further advantage that we do

not need to make any assumptions about the rest length on the mesh, and thus

the triangulation can be arbitrarily irregular. This is convenient for systems where

we keep the surface shapes fixed, since it prevents introducing any pre-stress when

constructing the mesh (see Section B.1 in Chapter 3 for more details).
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