Universiteit

w4 Leiden
The Netherlands

Optimal decision-making under constraints and uncertainty
Latour, A.L.D.

Citation

Latour, A. L. D. (2022, September 13). Optimal decision-making under
constraints and uncertainty. SIKS Dissertation Series. Retrieved from
https://hdl.handle.net/1887/3455662

Version: Publisher's Version
Licence agreement concerning inclusion of doctoral
License: thesis in the Institutional Repository of the University
of Leiden

Downloaded from: https://hdl.handle.net/1887/3455662

Note: To cite this publication please use the final published version (if
applicable).


https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/3455662

Conclusion and outlook

Only a question has the capacity to
be flexible enough to be wisdom.

Dr. Hannah Gadsby

In this dissertation, we set out to develop solving methods for stochastic constraint
(optimisation) problems (SCPs) that strike a good balance between convenience,
generality and speed. We wanted our methods to solve real-world problems fast
enough to be useful, to not be dedicated to a particular problem but support
problem settings from a range of application domains, and to be easy to use and
accessible. We focused on solving single-stage SCPs that are formulated on prob-
abilistic networks. Our work was motivated by three key limitations of existing
methods for solving SCPs:

1. Most existing methods focus on scheduling and planning problems, and are
less suited for solving problems formulated on probabilistic networks.

2. There was no language for conveniently modelling stochastic constraint opti-

169



Conclusion and outlook

misation problems on probabilistic networks in particular.

3. There was no automatic pipeline for solving SCPs, once they are modelled.

Below, we discuss how we addressed these limitations and how we met our con-
venience, generality and speed goals, by answering the research questions stated
in Section 1.4. We also briefly discuss interesting remaining challenges that can be
addressed in future research, and end this chapter, and indeed this dissertation,
with some final closing remarks.

8.1 Research questions, revisited

We now revisit the main research questions that we formulated in Section 1.4, an-
swer them, and reflect on how our contributions addressed the above limitations
of existing SCP solving methods.

MRQ1 How can we conveniently model SCPs and specify them to a computer?

Our answer to this question is: SC-ProbLog. As described in Section 4.3, our newly
proposed SCP programming language SC-ProbLog provides a convenient way to
model the complex probability distributions that are generated by formulating
SCPs on probabilistic networks, because it is built on the probabilistic logic pro-
gramming language Problog [52, 64]. Additionally, it provides support for mod-
elling maximisation problems on both stochastic variables and decision variables,
because it is also built on ProbLog’s successor, DT-ProbLog. We extended DT-
ProbLog by adding functionality for both minimisation and maximisation prob-
lems, and by adding support for stochastic and linear constraints. It does not (yet)
support more complex constraints, such as the CoverSize constraint necessary for
modelling frequent itemset mining (FIM) problems.

We argued that, because of its declarative nature, we expect SC-ProbLog to
provide a very easy-to-learn and quick way for a user to specify highly complex
probability distributions, particularly those that arise from the probabilistic net-
works on which the SCPs that we study in this work, are formulated.

MRQ2 How can we leverage constraint programming (CP), mixed integer program-
ming (MIP) and knowledge compilation technology to solve SCPs?

In Chapters 5 and 6 we presented a number of SCP solving pipelines. Each
takes as input an SC-ProbLog model of an SCP, compiles the underlying proba-
bility distribution into either ordered binary decision diagrams (OBDDs) or sentential

170



8.1 Research questions, revisited

decision diagrams (SDDs), formulates a stochastic constraint on those decision dia-
grams (DDs) representations of the probability distributions, and feeds an encod-
ing of that constraint on the DDs into a CP or MIP solver.

Combining the benefits of knowledge compilation for tractable probabilistic
inference and CP and MIP solvers for efficient search is not a trivial task. It re-
quires a translation of a constraint on a DD representation of a probability distri-
bution into the appropriate solver in a manner that is not only efficient, but also
easy to use.

Our first approach, the decomposition method presented in Chapter 5, lever-
ages existing CP and MIP solving technology by simply decomposing the con-
straint on the DD into a multitude of local constraints, which are then fed to the
solver. It is straightforward to implement and can in principle be used in any
CP or MIP solver that supports variables with real domains, including Gurobi,
Gecode, CPLEX, and CPOptimizer. We can use both OBDDs and SDDs to encode
the probability distributions.

A downside of the decomposition method is that the search can be ineffi-
cient for CP implementations, since it does not guarantee generalised arc consis-
tency (GAC). We addressed this in Chapter 6 by developing a dedicated stochas-
tic constraint propagation algorithm, which does guarantee GAC, but can only
be applied to constraints on probability distributions that exhibit a certain mono-
tonic property. We call the corresponding constraint the stochastic constraint on
monotonic distributions (SCMD).

We reflect some more on the role that OBDDs and SDDs play in these meth-
ods, and on monotonic probability distributions, in our answer to MRQ3.

Note that, in our contributions that answer MRQ?2, we have presented an idea
that we expect to be useful in other contexts as well: solving SCPs by means of
a modular approach that decouples knowledge compilation from search. A key
benefit of this approach is that we need not reinvent (or rather: reimplement) the
wheel, and can use whichever tools are the current state of the art for each element
of the pipeline. This makes the resulting pipeline easy to keep up-to-date with
the latest developments, and allows for flexible tool-building, where the user can
choose between different tools that can fulfil the same role in pipeline. We reflect
some more on this in answering MRQ4.

MRQ3 How can we leverage the properties of SDDs and OBDDs for faster SCP
solving?

We provided two different answers to this question. In Chapter 5, we identified
a special property of SDDs that allows global constraints on probability distribu-

171



Conclusion and outlook

tions that are represented by SDDs with that property, to be decomposed into a
multitude of linear, instead of quadratic, constraints, making them faster to solve
by both CP and MIP solvers. We also implemented an SDD minimisation algo-
rithm that preserves this property.

All OBDDs already have that property, and thus always yield constraint de-
compositions that can be linearised. Studying OBDDs, however, we presented a
way to exploit the specific property of OBDDs that their internal nodes are la-
belled with variables, to develop a global constraint propagation algorithm, in
Chapter 6. A limitation of this algorithm is that it is only suitable for solving con-
straints on monotonic probability distributions (stochastic constraints on monotonic
distributions (SCMDs)).

However, as we have argued in Chapter 6, this limitation on the types of prob-
ability distributions that can be handled by the propagator is not very limiting in
practice, since real-life applications that exhibit these monotonic distributions are
plentiful. That being said, an interesting line of future work would be to inves-
tigate either more general GAC-guaranteeing propagators, or other specialised
propagators that guarantee GAC. We also see potential for future work in study-
ing SDDs more carefully to identify properties that may result in SCMD propaga-
tion algorithms that are even more efficient in practice than the ones presented in
Chapter 6, due to the fact that SDDs can be made to more succinct than OBDDs.

MRQ4 How can we fairly and informatively evaluate the running time perfor-
mance of complex solving pipelines on problems from different appli-
cation domains, and ultimately employ these pipelines for solving real-
world SCPs?

In Chapter 7, we applied the paradigm of programming by optimisation (PbO) [80]
to all our solving methods. In doing so, we attempted to take away any bias in
our analysis from design choices that favour certain problem types, as well as
find optimised parameter settings for problem instances from different applica-
tion domains, thus taking full advantage of the solving power of our SCP solv-
ing pipelines. Instead, we implemented many alternative design choices for the
different parts of our SCP solving pipelines. We then used automated algorithm
configuration (AAC) to automatically configure the resulting, highly configurable,
pipeline for different problem settings.

In our experiments, we found that the global constraint propagation approach
presented in Chapter 6 outperformed the decomposition methods from Chapter 5
in terms of running time. The experiments presented in Chapter 7 are also en-
couraging, because they indicate that configuration for specific applications is ef-

172



8.2 Future work

fective. Moreover, we find that the application-specific optimised configurations
tend to generalise well to larger (harder) instances from the same application do-
main. In addition, we found that, for the SCP solving pipeline that uses a MIP
solver in particular, the optimised configurations also generalise well between
application domains, at least for application domains whose SC-ProbLog models
have a similar structure.

A direction that we touched upon, yet remained relatively unexplored in the
work presented in Chapter 7 is that of parameter importance. Some AAC tools
provide functionality for analysing which parameters have a large influence on
the performance of an algorithm. While we identified some parameter settings
that seem to work universally well in our experiments (mostly related to search
heuristics and OBDD minimisation), we leave it to future research to analyse
these results more carefully. We believe that such an analysis can be useful to ex-
tract insights into specific properties of the solving methods as well as the specific
problems studied, which can serve as inspiration for the development of future
SCP solving methods.

8.2 Future work

Having answered our main research questions, some technical challenges remain.
We now discuss those, as well as other interesting directions for future research.

Having demonstrated the power of SC-ProbLog in modelling SCPs, we see a
number of ways in which this modelling language can be further developed to
extend its expressiveness. First and foremost, we note that SC-ProbLog’s support
for constraints and optimisation criteria is still limited to linear and stochastic
ones. It does not yet provide support for other constraints and optimisation func-
tions. Chief among them is a lack of support for the CoverSize constraint neces-
sary for modelling FIM problems, such as the top fake news distributors problem
described in Section 4.5.4. Another interesting direction of the further develop-
ment of ProbLog would be to add functionality for multi-objective optimisation
problems.

In addition, we see opportunities for extending SC-ProbLog’s support to also
include constraints relevant to scheduling and vehicle routing problems, since we
expect both those kinds of problems to have variants in which probability and
relations play a key role. This would include, e.g., interval constraints for speci-
fying the time window in which a task must be completed, or maybe constraints
for specifying ranked preferences of users for drivers. The work presented in this
dissertation shows that SC-ProbLog is an effective and convenient tool for mod-

173



Conclusion and outlook

elling SCPs, and has the potential to become a flexible and powerful modelling
tool for a wide range of applications. Extending SC-ProbLog’s syntax and seman-
tics to add support for the kinds of constraints as described above is a first, but
vital, step towards fulfilling that full potential.

Alternatively, future research may focus on the development of new ProbLog-
based languages. Much like SC-ProbLog was built on DT-ProbLog, we see poten-
tial for new languages to be developed based on, or inspired by, SC-ProbLog.

While the pipeline model used for our SCP solving methods has the advan-
tages of being flexible and easy to keep up-to-date with the latest technological
advances, it does require a significant effort from the user to make sure that all
components are installed correctly. An obvious direction of future work is to take
the lessons learnt in this work and to use them to create a dedicated solver for
SCPs, naturally still taking a PbO-based approach.

Another challenge is scalability. The experiments presented in Chapters 5 to 7
are performed on problem instances with at most a few hundred stochastic vari-
ables and decision variables. While problem instances of this size are not un-
common in real-world domains like the power grid reliability problem described
in Section 4.5.3 or the signalling regulatory pathway problem described in Sec-
tion 4.5.1, modern social networks typically contain millions, rather than hun-
dreds, of users.

For those applications we would need a different approach. Here, we see dif-
ferent possibilities. Firstly, we could simply ‘shrink’ the problem by sampling the
network or aggregating nodes, if possible. The network analysis community has
produced many effective network sampling techniques that could be applied to
the probabilistic networks that are integral to the problems studied in this work,
see, e.g., [72, 105]. While these methods are promising, their use requires some,
and perhaps even prohibitively much, expertise from the user, since different
sampling techniques should be used for different types of networks and different
sampling goals.

A perhaps more obvious approach would be to simply not solve the SCP ex-
actly, but rather approximately. Throughout this dissertation, we have assumed
that the probabilities are given, but we have never questioned the accuracy of
those probabilities (and rightly so, because that is out of the scope of the work
here presented). However, it is fair to ask what it really means that someone “has
a 30% chance of influencing their friend”? And how do we know that it is 30%
and not 25% or even 50%? How much does it matter? How much precision in the
exact probability makes sense here? Given these questions, it may seem strange
that we are solving SCPs exactly, and with arbitrary precision. Additionally, in

174



8.2 Future work

practice we likely do not need arbitrary precision, although exact methods can be
very useful when evaluating the precision of approximate methods.

We now briefly list some ideas on how to incorporate approximations in SCP
solving techniques. A first class of methods would maintain the steps in the
pipelines as presented in this work.

One first alternative to the exact solving pipelines is an anytime solving
pipeline. When we use the SCMD propagators presented in Chapter 6 to solve
problems with a stochastic optimisation criterion, we can simply treat the con-
straint optimiser as an anytime solver. The longer it runs, the better the solu-
tion, but the user can stop the process at any time if they are satisfied with the
best-found solution thus far. In this context, an interesting line of future research
would be to develop branching heuristics aimed at finding a very good solution
very quickly, even if finding the optimal solution takes longer.

In addition, we could investigate the use of local search and sampling in the
solving of the SCP, finding local optima in the search space and losing the guar-
antees of exact optimisation. Stochastic local search techniques and decomposi-
tion techniques for approximation have been used widely in constraint satisfaction
problem (CSP) solving and probabilistic inference alike [78, 154]. We expect that all
methods described in this work are, or can easily be made, compatible with these
techniques. Similarly, we could further explore, e.g., local search and sampling al-
gorithms for the minimisation of DD representations of probability distributions,
or continue our search for minimisation algorithms that yield DDs with specific
properties that can be effectively exploited for faster SCP solving.

In Sections 2.4 and 2.5, we argued that a knowledge compilation approach
to probabilistic inference has many advantages, especially in a context in which
we may want to re-evaluate certain probabilities. A downside of this approach,
however, is that knowledge compilation may require amounts of memory that
are exponential in the input size of the problem, which can become prohibitive
when problems are too large. Additionally, compiled diagrams contain all the
information needed for exact inference, but, as we argued above, this might not
be needed or necessary. An interesting line of future research would therefore
ask how to compile “approximate” DDs, that only contain all information needed
to compute probabilities within a certain, pre-specified precision. Alternatively,
maybe these diagrams could be compiled as much as the solver expects is needed
to verify if a stochastic constraint is satisfied, or even iteratively refined if need be
during the solving process. All these forms of approximate compilation could be
part of an SCP solving pipeline like the ones presented in this dissertation.

We also have some ideas on approximate SCP solvers that move away from

175



Conclusion and outlook

the pipelines presented in this work. For example, we consider an interesting line
of research to be one in which we do not use knowledge compilation, but instead
go back to the model counters on which most knowledge compilers are based.
Contrary to knowledge compilers, most (weighted) model counters give the user
the option to limit their memory use, thus guaranteeing that probabilities can be
computed without exceeding the memory of the machine. There is a wide range
of exact and approximate (weighted) model counters that can be employed as
part of a SCP solving system, e.g., [29, 63, 74, 75, 128, 134, 166, 169, 173]. Note
that, in this approach, we would let go of the pipeline model and instead focus
on developing a dedicated solver.

Perhaps more interestingly, we could modify modern DPLL-based (weighted)
model counters to obtain a solver similar to Littman ef al.’s algorithm for solving
extended SSAT (XSSAT) [111]. This system would solve SCPs by encoding them
in conjunctive normal form (CNF) and combining DPLL with branch-and-bound,
in order to not have to traverse the entire search tree, but still be able to find an
optimal value for a stochastic objective function or check if a stochastic constraint
is satisfied. Naturally, this could also come in the form of an anytime algorithm,
or the form of another kind of approximation algorithm.

Alternatively, it could be used to, e.g., find bounds on the value of the objec-
tive function. Note that this approach would require all constraints to be encoded
into a CNF, which may not be possible for all constraints, or make the CNF blow
up too much to be feasible. In addition, algorithms of this kind put strong con-
straints on the order in which the DPLL algorithm branches on the variables,
which hinders the solver’s ability to keep the search tree small. Much like bucket
elimination-style algorithms, these constraints on the branching order can be re-
laxed to find approximations rather than exact solutions.

Finally, we believe that the methods we presented can also be applied in other
contexts than those studied here. Many possibilities particularly remain for the
further integration of CP and probabilistic programming, given the limitations on
the types of constraints and probabilistic models studied in this work. As men-
tioned in the discussion of MRQ1, extending SC-ProbLog’s syntax and semantics
to include support for a wider variety of constraints would go a long way towards
achieving this, but we also imagine that other types of stochastic constraints, and
the implementation of their propagators, would be a valuable contribution to-
wards making the techniques presented in this work more widely applicable.
We hope that future researchers will specifically take a GAC-by-design approach
to propagator development when crafting new, or improved, propagation algo-
rithms for constraints on probability distributions, like we did in Chapter 6.

176



8.3 Conclusion

Additionally, it is our hope that Chapter 7 serves as inspiration for future re-
searchers. We not only believe that a PbO-based approach to algorithm develop-
ment can aid in unlocking the full potential of solving methods, we also believe
that an AAC-based approach to evaluating the resulting methods is a good anti-
dote against the cherry picking of results. We believe that a thorough, AAC-based
evaluation of solving methods for any problem, but A"P-hard ones in particular,
provides the reader with an honest and nuanced insight into the strengths and
weaknesses of these methods. It is our hope that this work contributes to nurtur-
ing a scientific work ethic that includes PbO and AAC as standard elements in
algorithm design and software development.

8.3 Conclusion

Scientists [133], policy makers [185] and companies [7, 150, 181] have to make
decisions under constraints and uncertainty on a daily basis. When the stakes are
high, e.g., because they must allocate large sums of money or take decisions that
influence the lives of people, we want those decisions to be optimal with respect
to some kind of objective. Even if the stakes are lower, we want our decisions to
be as good as possible.

In this work we focused on developing exact methods for solving single-stage
stochastic constraint (optimisation) problems (SCPs) that are formulated on proba-
bilistic networks. We chose to focus on this particular subset of SCPs because
we found that the literature lacked tools for solving such problems, despite their
ubiquity. We believe that we presented the reader with encouraging results, and
thus motivation for further research into this topic.

We also believe that the way in which we performed our research is exem-
plary of what we believe should be the standard in computer science research
in general: by taking a PbO-based approach to algorithm development, and an
AAC-based approach to evaluating our methods and exploiting their full poten-
tial. While AAC has already shown its power in the realm of MIP and CP solving
to some extent already [85, 99], to the best of our knowledge, this work presents
the first attempt at applying PbO and AAC to the development of exact proba-
bilistic inference methods. It is our hope that this work establishes the use of PbO
and AAC as a new best practice in the probabilistic inference community.

We conclude this chapter by observing that, in answering the four main re-
search questions listed in Section 1.4, we have addressed the three key limitations
of the existing work on SCP solving listed at the beginning of this chapter. Our
goal was to develop SCP solving methods that strike a good balance between con-

177



Conclusion and outlook

venience, generality and speed. As discussed above, we indeed sometimes had
to make choices that sacrificed generality over speed, speed over convenience, or
convenience over generality, demonstrating once again that there is no such thing
as a free lunch. We do, however, believe that we explored the trade-offs between
these three goals, and struck a reasonable balance, resulting in practical tools. The
above demonstrates that, even though we made significant progress in SCP solv-
ing in the work presented in this dissertation, our work also opens many avenues
to future research in both exact and approximate methods.

We thus believe that we have made a significant and promising contribution
to helping humans in science and society make better choices, even when faced
with limitations and an uncertain universe.

178



