
Optimal decision-making under constraints and uncertainty
Latour, A.L.D.

Citation
Latour, A. L. D. (2022, September 13). Optimal decision-making under
constraints and uncertainty. SIKS Dissertation Series. Retrieved from
https://hdl.handle.net/1887/3455662

Version: Publisher's Version

License:
Licence agreement concerning inclusion of doctoral
thesis in the Institutional Repository of the University
of Leiden

Downloaded from: https://hdl.handle.net/1887/3455662

Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/3455662

7
Applying PbO to exact SCPMD

solving

In the previous two chapters we presented several stochastic constraint (optimisa-
tion) problem (SCP) solving pipelines, based on stochastic constraint decomposi-
tion (Chapter 5) and global stochastic constraint propagation (Chapter 6). How-
ever, we did not explore in much detail how parameter settings affect the perfor-
mance of our proposed methods, nor did we explore many alternatives for the
design choices we made in the process.

We address these two open ends in this chapter, by applying the paradigm
of programming by optimisation (PbO) to the methods described in the previous
two chapters. Specifically, we implement and expose myriad alternative design
choices for different elements of the solving pipelines, and then use automated al-
gorithm configuration (AAC) to find application-specific optimised configurations
of these pipelines. After configuration, we find that the global stochastic constraint
on monotonic distributions (SCMD) solving pipeline from Chapter 6 outperforms

151

Applying PbO to exact SCPMD solving

its closest competitor (a mixed integer programming (MIP)-based decomposition
pipeline from Chapter 5) on all test sets we considered by up to two orders of
magnitude in terms of PAR10 scores. This chapter is based on the following peer-
reviewed workshop paper and journal paper:

� D. Fokkinga, A.L.D. Latour, M. Anastacio, S. Nijssen, and H. Hoos. ‘Program-
ming a Stochastic Constraint Optimisation Algorithm, by Optimisation’. In:
Data Science meets Optimization workshop 2019 (DSO 2019), colocated with IJCAI
2019, Macao, 2019.

� A.L.D. Latour, B. Babaki, D. Fokkinga, M. Anastacio, H.H. Hoos, and S. Nijs-
sen. ‘Exact Stochastic Constraint Optimisation with Applications in Network
Analysis’. In: Artificial Intelligence, vol 304, 2022.

7.1 Introduction

As the results in Sections 5.3 and 6.5 show, different variants of solving meth-
ods behave differently on different problem instances. Based on this, we cannot
decide what the optimal configuration is for each pipeline, or accurately predict
how these or alternative configurations will behave on new problem types. Addi-
tionally, we largely relied on default parameter settings, with some minimal ex-
ploration of alternatives. Since generic solvers like Gurobi have many parameters,
their defaults are unlikely to be optimal for a specific type of problem. While this
might give us an indication of how well the decomposition method works ‘out
of the box’, to assess its true potential, we need to tune its parameters. Finally, by
learning which parameter settings yield shorter solving times for specific prob-
lems, we may also learn more about those problems and how to solve them more
efficiently, potentially sparking interesting ideas for future research.

To address these observations, we leverage the PbO paradigm [80], which we
briefly explained in Section 3.5. Specifically, in this chapter we make the following
contributions:

1. We develop several design alternatives for different parts of decomposition-
based and global constraint optimisation pipelines from Chapters 5 and 6 and
expose them as configurable parameters (Section 7.2).

2. We apply AAC [79] to these configurable algorithms and demonstrate their
effectiveness on benchmarks from two application domains (Section 7.3.3).

3. We then demonstrate how the optimised configurations of these methods gen-
eralise to harder problems and different problem settings (Section 7.3.4).

152

7.2 Design space of SCPMD solving pipelines

Automated optimisation techniques and tools such as SMAC [86] have been used
to solve optimisation problems in approximate probabilistic inference [149], con-
straint programming (CP) solving [99] and MIP solving [85]. However, to the best
of our knowledge, they have not yet been applied to the optimisation of the con-
figuration of exact probabilistic inference methods.

In the remainder of this chapter, we first describe how we have applied
the PbO paradigm to different elements of the stochastic constraint (optimisation)
problem on monotonic distributions (SCPMD) solving pipelines described in Sec-
tion 6.5.2. We then present our experiments in Section 7.3, and conclude this chap-
ter in Section 7.4.

7.2 Design space of SCPMD solving pipelines

In Chapters 5 and 6 we described several approaches to solving SCPMDs. Fig-
ure 7.1 shows these different methods schematically, and visualises how they
relate to each other. As we discussed above, in this chapter we apply the PbO
paradigm on these methods. In this section we describe the different design
choices that arise in the last three steps of the methods.

In this section we describe how we implemented alternative design choices
where necessary, and how the addition of these design choices influences the size
of the parameter space. As an illustration of the size of the parameter space in
each step of the methods, Figure 7.1 shows the number of tuneable parameters,
and their domain types, where applicable.

Note that we differ in our approach from earlier AAC approaches [85] by
separating ‘special values’ of parameters from their regular domains. Parameters
may have, for example, the domain of N+, but are turned off or tuned auto-
matically when they take value 0. Contrary to earlier approaches, we split these
parameters into a switch parameter and the normal parameter; the former turns the
latter on or off, and the latter is only configured if the switch is on.

In the remainder of this section we discuss the different design choices avail-
able to us, or added by us, for the different solving methods in Figure 7.1. Note
that Figure 7.1 shows the three pipelines as described in Section 6.5.2, with the
one difference that the decomposition-based pipelines can now also compile the
probability distributions to sentential decision diagrams (SDDs), instead of only to
ordered binary decision diagrams (OBDDs). Details on the exact domains and the
default values can be found at github.com/latower/SCPMD-solving.

153

https://github.com/latower/SCPMD-solving

Applying PbO to exact SCPMD solving

model

problem

encode into

SC-ProbLog

program

ground into

propositional

formulae

compile

into DD

encode as

CP or MIP

model

solve

a

b

c d0.4
0.8

0.1
0.3

maximise ∑φ∈Φ ρφ · P (φ | σ),

subject to ∑D∈D D ≤ k

person(alexa). person(claire). 0.4:: dir(alexa ,behrouz). 0.8:: dir(alexa ,claire).

person(behrouz). person(daniel). 0.1:: dir(behrouz ,claire). 0.3:: dir(claire ,daniel).

?:: gets_free_sample(P) :- person(P).

influences(X,Y) :- dir(X,Y). buys(X) :- gets_free_sample(X).

influences(X,Y) :- dir(Y,X). buys(X) :- influences(X,Y), buys(Y).

{ gets_free_sample(P) => 1 :- person(P). } k. #maximise { buys(P) => 1 :- person(P). }.

φa = Da ∨ (Db ∧ (Tab ∨ (Tbc ∧ Tac))) ∨ (Dc ∧ (Tac ∨ (Tab ∧ Tbc))) ∨ (Dd ∧ Tcd ∧ (Tac ∨ (Tab ∧ Tbc)))

...

φd = Dd ∨ (Dc ∧ Tcd) ∨ (Db ∧ Tbc ∧ Tcd) ∨ (Da ∧ Tac ∧ Tcd) ∨ (Db ∧ Tba ∧ Tac ∧ Tce) ∨ (Da ∧ Tab ∧ Tbc ∧ Dcd)

SDD

×8

×5

×4
×3

OBDD

×2

×1

×2

×1

×1

CP

solver

OscaR

×2

×1

×2

MIP

solver

Gurobi

×49

×11

×10

×37

×5

CP

solver

Gecode

×2

×3

×3

×1

Figure 7.1: Overview of the different SCPMD solving methods that we evaluate in this
chapter, along with an indication of the number of parameters that we configure in each
step, with switch, Boolean, categorical, integer, and real domains.

154

7.2 Design space of SCPMD solving pipelines

7.2.1 Knowledge compilation step

The algorithms described in Chapter 5 take constraints on OBDD or SDD rep-
resentations of probability distributions and decompose them into CP or MIP
models. The algorithms proposed in Chapter 6 only operate on OBDDs represen-
tations. We summarise the parameters for the knowledge compilation step of our
pipelines in Table 7.1.

Specifically, Table 7.1a shows the Diagram parameter, which we use to
let the configurator choose between OBDD and SDD representations in the
decomposition-based pipelines. For both types of decision diagrams (DDs), we let
the configurator tune if the knowledge compiler should attempt to minimise the
diagram during compilation. Finally, the configurator can also tune whether the
compilation algorithm should try to minimise the algorithm after compilation.

Table 7.1b shows the parameters related to minimisation in the CUDD

3.0.0 [168] compiler. In particular, we allow the configurator to exploit different
minimisation algorithms: Sifting (Sif) [156], Symmetric Sifting (SymSif) [136], Group
Sifting (GSif) [135], Window Permutation (WP) [89], a Simulated Annealing (SA) ap-
proach similar one from literature [21], a Genetic Algorithm (GA) inspired by one
from the literature [58] and a randomised variable reordering algorithm based on
the Sifting algorithm (Rand). They can be applied either to dynamic minimisation
during the OBDD compilation, or we can make a call to a minimisation algorithm
after compiling the OBDD.

The resulting parameter space for OBDD minimisation consists of two cate-
gorical parameters, one Boolean parameter, two integer-valued parameters and
one real-valued parameter.

We use the SDD minimisation algorithm proposed in Section 5.2.2 as the only
option for SDD compilation, as we must make sure that the resulting decom-
posed constraints can be linearised, for Gurobi to be able to find a solution in all
cases. Otherwise, we expose all available parameters for configuration, resulting
in eight Boolean parameters, five integer- and four real-valued parameters that
can be tuned for the SDD minimisation.

One of these parameters, ConvThreshold, is used to define convergence: if the
relative size reduction of the diagram is below this threshold, the algorithm has
converged. All other parameters either limit the size of intermediate results, or
the time that it takes to execute them, for the three vtree operations described in
Section 5.2.2. Details are shown in Table 7.1c.

Combining these with the parameters in Table 7.1 results in a total of six cat-
egorical parameters, eight switch parameters, ten integer- and five real-valued
parameters for the configuration of the compilation phase.

155

Applying PbO to exact SCPMD solving

Table 7.1: The configuration space of the knowledge compilation step of our pipelines, in
which the probability distributions are compiled into DDs. Note that some of the param-
eters are conditional on the value of other parameters. For brevity, we denote the Boolean
domain of {True, False} with B, and use k, M and B to indicate thousands, millions and
billions, respectively.

(a) Parameters for compilation in general.

parameter domain description

Diagram {OBDD, SDD} Compile φ(D, T) into an OBDD or SDD.
DynMinimise B Use dynamic minimise during compilation

(if Minimise = True).
Minimise B Minimise DD after compilation or not.

(b) Parameters for OBDD compilation with CUDD, all conditioned on Diagram = OBDD and
(Minimise = True or DynMinimise = True).

parameter domain description

VarOrder {Sif, SymSif,
GSif, WP, SA,
GA, Rand}

Variable reordering algorithm used for
OBDD minimisation.

Converging B Repeat variable reordering algorithm until
no improvement on OBDD size is found (if
VarOrder ∈ {Sif, SymSif, GSif, WP}).

MaxSwap [1, 3M] Upper bound on number of times two vari-
ables can be swapped in the variable order
(if VarOrder ∈ {Sif, SymSif, GSif}).

MaxSift [1, 3k] Upper bound on number of variables that
are sifted, i.e., moved up or down in the
variable order (if VarOrder ∈ {Sif, SymSif,
GSif}).

MaxGrowth [0.0, 2.0] Upper bound on relative OBDD size in-
crease during minimisation (if VarOrder ∈
{Sif, SymSif, GSif}).

WSizes {2, 3, 4} Evaluate permutations of WSizes consecu-
tive variables in the variable order at a time
(if VarOrder = WP).

156

7.2 Design space of SCPMD solving pipelines

(c) Parameters for for SDD compilation with the SDD package, all conditioned on Diagram = SDD
andand (Minimise = True or DynMinimise = True).

parameter domain description

ConvThreshold [0.0, 50.0] Vtree convergence threshold.
RRCartProdLimOn B Turn Cartesian product limit for right-rotate op-

erations on.
RRCartProdLim [1, 65 536] Maximum allowed size of a Cartesian prod-

uct created by right-rotate operation (if
RRCartProdLimOn = True).

SWCartProdLimOn B Turn Cartesian product limit for swap opera-
tions on.

SWCartProdLim [1, 65 536] Maximum allowed size of a Cartesian prod-
uct created by right-rotate operation (if
SWCartProdLimOn = True).

RRTimeLimOn B Turn time limit for right-rotate operations on.
RRTimeLim [1, 25B] Time limit on right-rotate operation (if

RRTimeLimOn = True).
SWTimeLimOn B Turn time limit for swap operations on.
SWTimeLim [1, 25B] Time limit on swap operation (if SWTimeLimOn =

True).
LRTimeLimOn B Turn time limit for left-rotate operations on.
LRTimeLim [1, 25B] Time limit on left-rotate operation (if

LRTimeLimOn = True).
RRSizeLimOn B Turn size growth limit for right-rotate opera-

tions on.
RRSizeLim [1.0, 2.0] Size growth limit on right-rotate operation (if

RRSizeLimOn = True).
SWSizeLimOn B Turn size growth limit for swap operations on.
SWSizeLim [1.0, 2.0] Size growth limit on swap operation (if

SWSizeLimOn = True).
LRSizeLimOn B Turn size growth limit for left-rotate operations

on.
LRSizeLim [1.0, 2.0] Size growth limit on left-rotate operation (if

LRSizeLimOn = True).

157

Applying PbO to exact SCPMD solving

7.2.2 Encoding step

We consider two main ways of encoding stochastic constraints. One is the de-
composition approach presented in Chapter 5, the other is the global approach
presented in Chapter 6.

For the decomposition approach, we take a constraint on a SDD or OBDD rep-
resentation of the probability distribution, and either encode it into a MIP-model
or a CP-model. For the CP-encoding of OBDDs specifically, we consider two vari-
ants: one that guarantees generalised arc consistency (GAC) (Section 6.2) and one
that does not (Sections 5.2.1 and 5.2.2). Since one of the goals in this work is to de-
velop an efficient SCMD propagation algorithm that guarantees GAC and uses an
OBDD for the probability distribution encoding, we consider developing a GAC-
guaranteeing CP encoding of stochastic constraints on probability distributions
represented by SDDs to be outside the scope of this work.

The other main encoding approach is to keep the stochastic constraint as a
global constraint on the OBDD representation of the probability distribution. For
now, we consider only one such encoding. The accompanying propagation algo-
rithm (Section 6.4) guarantees GAC by design.

Consequently, the encoding step actually only has one parameter, and only if
we choose to model the probability distributions with OBDDs and then use the
CP-based decomposition method to solve the problem: it determines whether we
use the GAC-preserving encoding in this case, or not.

7.2.3 Solving step

In the following, we will briefly discuss the parameter spaces of the three solvers
that we use in this work: Gecode, Gurobi and OscaR.

Solving with the decomposition method

For the methods that make use of Gecode and Gurobi to solve a linear program1

obtained by decomposing a stochastic constraint on probability distributions (SCPD),
we enable the configuration of all parameters that are relevant for the speed of
solving the problem exactly. We base the choices for domains and default values
on earlier work on the automated configuration of Gurobi [85] and Gecode [99].
Considering the fact that Gecode and Gurobi already offer a wide range of branch-
ing heuristics, we refrained from exploring additional heuristics for these solvers.

1Even though Gurobi can handle quadratic constraints, we limit ourselves to linearised decompo-
sitions, as described in Section 7.2.1.

158

7.2 Design space of SCPMD solving pipelines

Table 7.2: The configuration space of OscaR, when using the global SCMD propagator
from Section 6.4. Some of the parameters are conditional on the value of other parameters.

parameter domain description

Sweep {Full, Partial} Full or partial-sweep propagator.

VarSelHeur {Top, Bottom, Derivative,
Degree, Influence,
Triangle, Similarity,
Simmelian, ForestFire,
Betweenness, Random}

Heuristics to select which variable to
branch on next.

ValSelHeur B Heuristics to select which value to
branch on first.

TimeSteps [1, 1k] If VarSelHeur = Influence.

NumSamples [1, 100] If VarSelHeur = Betweenness.

FireProb [0.0, 1.0] If VarSelHeur = ForestFire.

EdgesBurnt [0.0, 1.0] If VarSelHeur = ForestFire.

The resulting configuration space for solving linear program encodings of
SCPs with Gecode consists of two Boolean parameters, three categorical param-
eters, three integer- and one real-valued parameter. The configuration space of
solving linear program encodings of SCPs with Gurobi consists of 49 switch pa-
rameters, 11 Boolean parameters, 10 categorical parameters, 37 integer- and 5
real-valued parameters. For practical reasons, we do not list the specific parame-
ters here, but refer the reader to the above-mentioned repository for more details.

Solving with the global SCMD propagation method

Our experiments in Section 6.5 showed that branching order has an important
impact on search efficiency. Because we study a variety of problems with different
properties (Section 4.5), we decided to add a range of problem-specific branching
heuristics to explore this result in more detail.

Table 7.2 shows the parameters for the global SCMD solving algorithm. Aside
from the parameter to choose between using the full or partial-sweep algorithm,
all parameters are directly related to branching.

The Top, Bottom and Derivative variable branching heuristics (with correspond-
ing value branching heuristics) are described in Section 6.4.3. These heuristics are

159

Applying PbO to exact SCPMD solving

derived from the topology of the OBDD (in the case of Top and Bottom) or dynam-
ically determined during the search (in the case of Derivative).

We propose seven new heuristics that take a different approach: they are de-
rived directly from the probabilistic network on which the SCPMD is defined. An
eighth new heuristic branches on variables that are selected uniformly at random.

In problems where decision variables are associated with nodes in a network
(e.g., Example 4.2.1), the Degree heuristic branches based on the unweighted,
undirected degree of the nodes. Similarly, Influence estimates the influence of
nodes in order to quickly find a high-quality solution, inspired by work on social
influence [23]. We translate the influence heuristic to problems with decision vari-
ables associated with the edges in the underlying network (e.g., Example 4.2.2),
by taking for each edge the sum of the influence scores of its endpoints. We com-
pute a degree-based score for edges using the local-degree measure from [109].

We observe that problems such as the theory compression problem of the
spine problem instances or the power grid reliability problem of Example 4.2.2
are very similar to graph sparsification problems. We therefore derived the Trian-
gle, Similarity, Simmelian and ForestFire heuristics from recent work on this prob-
lem [109, 163]. For the Triangle heuristic, we simply take the number of triangles
that a node or edge is part of (not taking into account weights or directionality),
to create versions of this heuristic that are suitable for problems with decision
variables on nodes or edges, respectively. We translated the Similarity, Simmelian
and ForestFire heuristics to problems with decision variables associated with the
nodes in the underlying network (e.g., Example 4.2.1), by summing the scores of
all incident edges on a node (not taking into account their weights or directional-
ity). Finally, we use an estimate of either node or edge betweenness centrality as
a proxy for the importance of a decision variable in the Betweenness heuristic.

Note that some branching heuristics incur preprocessing time, and that the
computational complexity of this preprocessing as well as the quality of the re-
sulting heuristic may depend on additional parameters. We mention these pa-
rameters in Table 7.2, but discussing them in detail is beyond the scope of this
work. The resulting parameter space of the global SCMD propagator, consists of
two Boolean parameters, one categorical parameter, two integer-valued parame-
ters and two real-valued parameters.

7.3 Experimental evaluation

In this section, we report on experiments using AAC to determine which pipeline
outperforms the others on two sets of problem instances, and to gauge how much

160

7.3 Experimental evaluation

each pipeline benefits from being automatically configured for these specific sets
of problem instances. We first discuss the specific research questions that we are
trying to answer. Next, we provide some details on the experimental setup in
Section 7.3.2. Finally, we analyse the results of our experiments in Section 7.3.3,
to answer the questions.

7.3.1 Research questions

The experiments in this section were designed to answer the following questions:

Q1 How much can we improve the performance of the decomposition methods
and the global SCMD method on different real-world problems by automat-
ically configuring these methods for those specific instance sets?

Q2 Which automatically configured method solves these problems best?

Q3 What can we learn about these solvers from the configuration results?

Q4 How do our optimised configurations generalise to harder instances of the
same problem type and to instances of a different problem type?

7.3.2 Experimental setup

We briefly review the software, hardware and problem instances that we used
for our experiments. In addition to the results in this section, the reader can find
more, and more detailed, results at github.com/latower/SCPMD-solving.

Software and hardware

For our configuration experiments, we mostly used the software as described
in Section 6.5.2. We used the NetworkX 2.2 and NetworKit 5.0.1 Python toolkits
for computing the scores used for variable branching heuristics, as described in
Section 7.2.3.2

SDDs were compiled using a version of the sdd 1.1.1 package [36] we adapted
to generate SDDs that can be decomposed into linear programs, as described in
Section 5.2.2.3

Because of the nature of the parameters described in Section 7.2, we expect
that a model-based search process for optimal configurations will yield the best

2Available at networkx.github.io and networkit.github.io.
3Available at reasoning.cs.ucla.edu/sdd/ and

github.com/ML-KULeuven/problog/tree/sc-problog.

161

https://github.com/latower/SCPMD-solving
https://networkx.github.io
https://networkit.github.io
http://reasoning.cs.ucla.edu/sdd/
https://github.com/ML-KULeuven/problog/tree/sc-problog

Applying PbO to exact SCPMD solving

Table 7.3: Summary of characteristics of the benchmark sets we used in our experiments.
We provide the range of sizes of the set of interest |Φ|, numbers of stochastic variables |T|,
numbers of decision variables |D|, OBDD sizes |OBDD| and the sizes of the training and
test sets.

name problem type |Φ| |T| |D| |train| |test|

facebook spread of infl. 15–30 16–107 15–30 412 411
high-voltage power grid rel. 6–39 30–300 15–150 51 50

results. For our configuration experiments, we chose the general-purpose config-
urator SMACv3 [86], because it is one of the best-performing configurators that
are model-based and freely available.

All experiments in this section were performed on GRACE, a cluster with 32
nodes, each equipped with 94 GB of RAM and two Intel Xeon E5-2683 CPUs
with 16 cores, a cache size of 40 MB, running at 2.10 GHz using CentOS Linux
7.7.1908. Running times were measured in CPU seconds. We report on aggregated
results by using penalised average runtime with penalty factor 10 (PAR10) values as a
measure for running time performance.

In our experiments, we chose default values for compilation, CUDD, Gecode
and Gurobi based on the literature [85, 99], on the results from Section 5.3, and on
their own default settings. The default settings for OscaR were chosen based on
the experiments in Section 6.5.3.

Benchmark sets

For automated algorithm configuration, we require a large set of instances. This is
because we need disjoint training and testing of sufficient size for the configura-
tor to learn from different instances (training) and then validate its performance
on a sufficiently varied set of instances (testing). We created these instances us-
ing the processes described in Section 4.5 and summarise them in Table 7.3. All
of the SCPMD instances we formulate on these problems are of Variant 1 (see
Section 4.5).

For the facebook benchmark set, we select all nodes in a problem instance
as our set of interest. We choose the upper bound on the cardinality of the solu-
tion to be constant in these examples. Specifically, we use k = 10, because it can
be expected to yield challenging problems, as seen in our results in Section 6.5.
Additionally, fixing this threshold to one value, even for problems with different
sizes, is a realistic choice for real-life applications in this setting. After all, com-

162

7.3 Experimental evaluation

Table 7.4: PAR10 values in CPU seconds for the default (def.) and optimised (opt.) config-
urations of the three solving methods, for both the training set and the test set. We indicate
in brackets the number of examples that hit our cutoff time (600 CPU s). We highlight the
smallest PAR10 values on the test sets in bold.

CP-decomposition MIP-decomposition global SCMD
train test train test train test

facebook (412 training instances, 411 test instances)
def. 4 338 (295) 4 270 (289) 1 888 (124) 1 664 (108) 797 (52) 782 (51)
opt. 2 518 (168) 2 615 (174) 594 (39) 627 (41) 751 (49) 682 (44)

high-voltage (51 training instances, 50 test instances)
def. 4 386 (37) 4 351 (36) 3 686 (31) 3 989 (33) 2 379 (20) 2 782 (23)
opt. 4 379 (37) 4 452 (37) 3 188 (27) 3 031 (25) 2 260 (19) 2 669 (22)

panies likely have a marketing budget that does not depend very directly on the
size of the social network data they have access to.

We choose the threshold values for the high-voltage benchmark set differ-
ently. For these examples, we use k = b |D|/2e, such that we can reinforce at most
half of the total number of power lines in any given problem instance. We believe
this to be realistic for real-life applications, since we can assume that the mainte-
nance budgets for power grids might be roughly proportional to their size.

7.3.3 Configuration results

To address Q1 to Q3, we performed fifteen independent 48-hour runs of SMAC on
each solving pipeline (Section 7.2), on the two training sets in Table 7.3, minimis-
ing the PAR10 (penalised average running time with penalty factor 10) and using
a cutoff time of 600 CPU seconds. Then, for each method and each dataset, we
evaluated the final incumbent (the configuration with the smallest PAR10 value)
on the appropriate test set.

The results in Table 7.4 show that the MIP-decomposition method makes the
largest relative improvement after configuration, which answers Q1. We explain
this by noting that Gurobi has a relatively large configuration space (which gives
many options for improvement), compared to Gecode and OscaR, and by noting
that we used default settings for Gurobi as our default configuration, while we
chose our default configuration of OscaR based on our results in Section 6.5.

We also observe that, even with configuration, the CP-decomposition method
is not competitive with the MIP-decomposition method and global SCMD

163

Applying PbO to exact SCPMD solving

method, similar to what we see in Figure 6.4. Interestingly, for the CP-
decomposition method, the automated configurator chooses the encoding that
does not guarantee GAC for both the facebook and the high-voltage dataset.
Once more, it appears that, for CP encodings of SCMDs, a global encoding is
more favourable than a decomposed one. However, we see that the performance
of the MIP-decomposition method and global SCMD method are comparable and
complimentary after configuration, similar to what we see in Figure 6.5: on the
facebook instances, MIP works better, while on the high-voltage datasets, the
global constraint works better; this answers Q2.

We provide the optimised configurations obtained from these experiments on-
line at github.com/latower/SCPMD-solving. To answer Q3, we first note that for
the CP-decomposition and MIP-decomposition pipelines, SMAC always chooses
to encode the probability distributions as OBDDs, rather than SDDs. Further-
more, here and in the global SCMD propagation pipeline, SMAC tends to favour
the group sifting algorithm for OBDD minimisation, which is CUDD’s default
minimisation algorithm. Remarkably, the optimised configurations for the face-
book and high-voltage sets agree on all parameter choices for OscaR: SMAC

chooses to use the full-sweep version of the propagator, combined with the
Derivative-1 branching heuristic. We believe that further, detailed analysis of these
and similar results of configuration experiments could provide useful directions
for improvements to SCMD solving pipelines and see this as a promising direc-
tion for future work.

Finally, we note that the improvement in running time on the high-voltage
benchmark set is less impressive (and even negative, in the case of CP-
decomposition) than on the facebook benchmark set. We explain this by noting
that the high-voltage example set is much smaller than the facebook set (and
thus has fewer examples to learn from), while the problems tend to be larger (see
Table 7.3), causing relatively many examples to hit the cutoff time.

7.3.4 Generalisation of automated configuration results

We addressed Q4 by running the default and optimised configurations obtained
from Section 7.3.3 on the examples in Table 7.3 that were not solved by any solver
during the configuration experiment in Section 7.3.3 and therefore represent the
hardest instances in the training and test sets. In this new experiment, however,
we used a cutoff time of 3 600 CPU seconds instead of 600. Rather than using
just one threshold k per problem instance, we ran each configuration with nine
different thresholds per example, like we did for the experiments in Section 6.5.

In the configuration experiments, 19 of the high-voltage examples in the train-

164

https://github.com/latower/SCPMD-solving

7.4 Conclusion

ing set were never solved. Since we now use these examples again to evaluate the
generalisation results, there is some leakage of information. However, since this
is only 19

351 and thus roughly 5% of the instances, we do not expect this to affect
the results much. For the facebook set there are 5 such instances, which is less
than 1%.

Similarly, we ran the optimised configuration obtained on the facebook
dataset on the hepth and facebook examples described in Table 6.1, since these
are spread-of-influence problems. Finally, we ran the optimised configurations
obtained on the high-voltage dataset on the spine and high-voltage examples,
because of their similarity. Note that, for practical reasons, there is a small overlap
(at most 5%) in the instances used for training in Section 7.3.3 and the facebook
and high-voltage test sets we are using in this experiment. We present the results
in Table 7.5 and observe patterns similar to those in Table 7.4.

From Table 7.5a, we see that the results for the harder examples with the larger
cutoff time are very similar to the ones shown in Table 7.4 and conclude that
our configuration results translate predictably to harder instances of the same
problem type, answering part of Q4.

Table 7.5b shows very similar results for the facebook and high-voltage prob-
lem instances. This is unsurprising, since they are taken from the same datasets
and represent the same problem types as the ones used for the configuration ex-
periments. For the spine and hepth examples, we notice dramatic improvement
in the performance of the MIP-decomposition pipeline, but not so much for the
global SCMD pipeline, with negative results for hepth. Still, the global SCMD
pipeline outperforms the MIP-decomposition pipeline on these examples, with
both the default and the optimised configurations. We conclude that the results
obtained in Section 7.3.3 translate reasonably to problem instances of different
types, with a small advantage for the global SCMD approach, answering the re-
mainder of Q4.

7.4 Conclusion

In order to make a fair comparison between the SCMD solving pipelines pro-
posed in Chapters 5 and 6, we applied the paradigm of PbO to these pipelines.
This resulted in three highly configurable pipelines, with alternative design
choices for the knowledge compilation, encoding and solving components. We
used AAC to automatically configure these pipelines for instances from two dif-
ferent real-world application domains.

Our findings indicate that after configuration, the pipeline that encodes proba-

165

Applying PbO to exact SCPMD solving

Table 7.5: PAR10 values in CPU seconds for the default and optimised configurations on
two test sets. We indicate in brackets the total number of (problem, k) combinations in the
first column. In the other columns, we indicate in brackets how many of those combina-
tions reached the cutoff time of 3 600 CPU seconds. For each problem set, we highlight the
lowest PAR10 value for the optimised configurations in bold.

(a) Results for the problems in the benchmark sets in Table 7.3, that were not solved by any of the
solvers in the configuration experiment of Section 7.3.3.

CP-decomp. MIP-decomp. global SCMD

facebook (558)
def. 35 398 (548) 28 780 (441) 11 330 (168)
opt. 32 607 (504) 18 528 (278) 10 716 (158)

high-voltage (351)
def. 34 325 (334) 33 523 (326) 29 300 (285)
opt. 32 597 (317) 31 302 (304) 29 186 (284)

(b) Results on the full set of 52 examples in Table 6.1, with 9 threshold values for each example.

CP-decomp. MIP-decomp. global SCMD

spine (27)
def. 12 308 (9) 569 (0) 17 (0)
opt. 16 220 (12) 35 (0) 17 (0)

hepth (18)
def. 30 177 (15) 6 493 (3) 65 (0)
opt. 26 254 (13) 568 (0) 68 (0)

facebook (99)
def. 19 100 (52) 4 428 (11) 58 (0)
opt. 15 482 (42) 791 (2) 51 (0)

high-voltage (324)
def. 8 808 (77) 8 410 (74) 55 (0)
opt. 8 538 (75) 4 447 (39) 52 (0)

bility distributions as OBDDs and then solves the SCPMD using the global SCMD
propagator proposed in Chapter 6 tended to outperform the other pipelines. This
effect was particularly noticeable in the experiments in which we tested how well
the optimised configurations generalise to larger instances, and to instances from
different application domains. Note that this is also the pipeline that can only be
applied to solving SCPMDs, and not to SCPs in general.

We also found that pipelines tended to favour OBDD representations of prob-
ability distributions over SDD representations and that a regret-based branching
heuristic is always favoured for the SCMD propagation algorithm.

We applied AAC in the current study with a focus on running time minimi-
sation. Other criteria can be of interest as well. For example, the memory use of
knowledge compilers can be prohibitively large, so optimising solving methods

166

7.4 Conclusion

to use less memory could increase the applicability of those methods. Further-
more, to the best of our knowledge, this work represents the first use of AAC in
exact probabilistic inference. The configuration results we presented in this work
encourage us to expect automated solver configuration to also be beneficial for
optimisation solvers for other exact probabilistic inference tasks than the ones
discussed in this work.

167

