
Optimal decision-making under constraints and uncertainty
Latour, A.L.D.

Citation
Latour, A. L. D. (2022, September 13). Optimal decision-making under
constraints and uncertainty. SIKS Dissertation Series. Retrieved from
https://hdl.handle.net/1887/3455662

Version: Publisher's Version

License:
Licence agreement concerning inclusion of doctoral
thesis in the Institutional Repository of the University
of Leiden

Downloaded from: https://hdl.handle.net/1887/3455662

Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/3455662

6
Global SCMD propagation

In this chapter, we first show that a weakness of the decomposition methods pre-
sented in the previous chapter is that they do not guarantee generalised arc consis-
tency (GAC). This may cause them to not prune parts of the search space that do
not contain any solutions. Here, we show why that is the case, and that a straight-
forward modification of these methods such that they do guarantee GAC, does
not notably improve solving times. For the specific case of stochastic constraint
(optimisation) problems (SCPs) on monotonic probability distributions (which are
the probability distributions on which stochastic constraint (optimisation) problems
on monotonic distributions (SCPMDs) are formulated), we propose an alternative
method: a new propagator for a global ordered binary decision diagram (OBDD)-
based constraint. We show that this propagator has a time complexity that is
linear in the size of the OBDD and maintains GAC. We experimentally evalu-
ate the effectiveness of this global constraint in comparison to decomposition-
based approaches, using problems from the data mining literature. We find that
the approach that uses this global stochastic constraint on monotonic distributions

117

Global SCMD propagation

(SCMD) propagator outperforms the constraint programming (CP)-based decom-
position methods and performs complementarily to the mixed integer program-
ming (MIP)-based decomposition method. This chapter is based on the following
publication:

� A.L.D. Latour, B. Babaki, S. Nijssen. ‘Stochastic Constraint Propagation for
Mining Probabilistic Networks’. In: IJCAI, ijcai.org. pp. 1137–1145. 2019.

6.1 Introduction

Recall the spread of influence and power grid reliability examples of SCPs de-
scribed in Section 1.1. We observe that, in the spread of influence problem, adding
a person to the set of people who receive a free product sample can never de-
crease the expected number of people that will become customers. Similarly, in
the power grid reliability problem, we observe that adding a power line to the set
of lines that are reinforced can never decrease the expected number of households
that still have power after a disaster.

Clearly, the probability distributions in these SCPs have a characteristic in
common: the probabilities and expectations are higher if more nodes or edges
are selected, which makes these probability distributions monotonic. This makes
them special cases of SCPs, namely stochastic constraint (optimisation) problems on
monotonic distributions (SCPMDs).

While this characteristic seems limiting, problems that have this property
are plentiful in network analysis; examples include the applications mentioned
above, but also the signalling-regulatory pathway inference problem described in
the bioinformatics literature [50, 133] and in Section 4.5.1, and a variant on the
landscape connectivity problem [185].

In this chapter we present an approach to solving SCPMDs (which can only be
applied to those, not to SCPs in general). We use OBDDs to model the probability
distributions and impose a stochastic constraint on the arithmetic circuit (AC) that
can be used to compute probabilities from these OBDD representations. Crucially,
we exploit structures in those OBDD representations that result from monotonic-
ity to obtain a global constraint propagation algorithm for solving SCMDs. Recall
from Section 3.3.3 that global constraints can have greater propagation and search
tree pruning power than local constraints, like the ones used in the decomposi-
tion method of Chapter 5. Thus, provided that the time and space complexity
of a global constraint are polynomial, global constraints can have an advantage
over local constraints by potentially pruning the search space better (by removing
more values from the domains of free variables during inference).

118

https://www.ijcai.org

6.1 Introduction

The main algorithmic contributions in this chapter are the following:

1. We show that the decomposition approach described in Section 5.2.1 is not
GAC, thus causing it to prune the search space insufficiently (Section 6.2), and
that a straightforward arc consistent modification of this approach does not
significantly improve performance (Section 6.5).

2. To address this inefficiency in the search, we introduce a global constraint on
OBDD representations of monotonic distributions, which we call the SCMD
(Section 6.3), and introduce a GAC-by-design propagation algorithm for this
constraint (Section 6.4).

In summary, the benefits of the decomposition methods described in Chapter 5
and Section 6.2 are:

• They are applicable to the more generic SCPs (Section 1.2).

• Different types of decision diagrams (DDs) can be used to represent the proba-
bility distributions (Sections 5.2.1 and 5.2.2).

• The implementation is straightforward and compatible with different off-the-
shelf CP or MIP solvers (Section 5.2.3).

Conversely, the benefits of our global constraint specifically for SCPMDs are:

• It guarantees GAC by design, contrary to decomposition methods that do not
guarantee GAC, and therefore traverses the search space more efficiently (Sec-
tion 6.4.1).

• Its space complexity is better than that of decomposition methods that do guar-
antee GAC (Sections 6.2 and 6.4.3).

• Its worst-case time complexity is O(m + n) with OBDD size m and n decision
variables (Section 6.4.3).

• It outperforms CP-based decomposition methods and complements MIP-
based methods, while scaling better with OBDD size than MIP-based methods
(Section 6.5).

The main feature that distinguishes our work from similar works on stochas-
tic constraint satisfaction and optimisation is that we exploit the structure of the
probability distribution in our global SCMD propagator. These structures arise
from the fact that SCPMDs are formulated on monotonic distributions. In exploiting
those structures, our method distinguishes itself from more general approaches
taken earlier [181], and from the majority of existing methods, which sample sce-
narios from a distribution, and hence ignore such structures [78].

119

Global SCMD propagation

The remainder of this chapter is organised as follows. First, in Section 6.2 we
revisit probabilistic inference with OBDD representations of probability distri-
butions, showing how the decomposition methods of Chapter 5 can be made to
guarantee GAC. We then define monotonic probability distributions and how
they relate to OBDDs in Section 6.3, using this monotonicity to define a SCMD.
Then, in Section 6.4, we describe three global SCMD propagation algorithms that
each preserve GAC by design: a naı̈ve algorithm with quadratic time complexity,
a more efficient algorithm with linear time complexity, and an incremental ver-
sion of that last algorithm that has the potential to be more efficient in practice.
In Section 6.5, we compare the performance of the linear-time global propaga-
tion algorithms to CP-based and MIP-based decomposition methods in solving
SCPMDs. We conclude this chapter in Section 6.6 with a brief summary of our
approach and results, and recommendations for future research.

6.2 OBDDs and generalised arc consistency

When using a CP solver to solve the decomposed constraint on the probability
distribution represented by an OBDD, we encounter the following problem:

Theorem 6.2.1. Propagation on the decomposed representation of the SCMD as de-
scribed in Section 5.2.1 is not GAC.

Proof. Assume that propagation in the decomposition method in Section 5.2.1 is
GAC (Section 3.3). Then, the following counterexample leads to a contradiction.

Consider the OBDD in Figure 5.1 and associated constraint P(φ | σ) ≥ 0.4.
Observe that the four possible strategies yield these conditional probabilities:

P(φ | X = Y = 0) = 0 P(φ | X = 1, Y = 0) = 0.3

P(φ | X = Y = 1) = 0.6 P(φ | X = 0, Y = 1) = 0.6

From this, we conclude that only those strategies in which Y = 1 holds can pos-
sibly satisfy the constraint. A propagator that ensures GAC on the Boolean vari-
ables will detect this before the start of the search and fix Y := 1.

Suppose a constraint propagator is called on the decomposed model in Fig-
ure 5.1, before the search starts. This propagator may start by trying to infer the
minimum value that ZY1 needs to take if ZX takes its maximum possible value.
To do this, the propagator assumes that ZX = 0.6 holds. Now it can infer that,
in order for the constraint to be satisfied, Zy1 ≥ (0.4− 0.9 · 0.6)/0.1 = −1.4 should
hold. Unfortunately, it already knew that dom(Y) = {0, 1} and thus does not in-
clude −1.4. Based on this, it cannot remove 0 from dom(Y). Repeating a similar

120

6.3 Monotonicity

procedure to determine a bound for ZX , ZY1 and ZY2 does not yield conclusive
evidence to deduce that Y must be fixed to 1, either.

As a result, the search tree of a CP system is unnecessarily large. One solution
may seem to create a decomposed representation that is GAC. We can achieve this
by means of two modifications to the decomposition method. First, we replace the
encoding of the score of OBDD node rD, v(rD) := v

(
r+D
)

if D = > and v(rD) :=
v
(
r−D
)

if d = ⊥, with v (rD) := max
(
d · v

(
r+D
)

, (1− D) · v
(
r−D
))

, because this
improves propagation in cases where D is yet unassigned. Additionally, we add
the (redundant) constraint v|D=0(root) < θ → D := 1 to the decomposition for
each decision variable d. Here, v|D=0(root) represents the expression at the root
of the diagram, as obtained from Equation 2.11, conditioned on D = ⊥. Note that
adding the extra constraint for each decision variable D requires us to make a
copy of the original diagram, only with D = ⊥.

The downside of this approach is that we need to add a large number of linear
constraints to the model, resulting in a space complexity of O(|D| · |OBDD| · τ)
for this approach, where D is the set of decision variables, |OBDD| the number
of nodes in the OBDD, and τ the depth of the search tree. We demonstrate the
practical inferiority of this approach in Section 5.3.

6.3 Monotonicity

A special case of the constraint in Equation 1.1 is one where we require each
probability distribution P (φ|σ) to be monotonic.

6.3.1 Monotonic probability distributions

Intuitively, taking the spread of influence problem as an example, monotonic-
ity means that adding a person to the set of people who receive a free prod-
uct sample, cannot decrease the expected number of eventual customers (Ex-
ample 4.2.1). Likewise, taking the power grid reliability problem as an example,
adding a power line to the set of lines that receive maintenance cannot decrease
the expected number of households that still have power after a natural disaster
(Example 4.2.2).

We formally define a monotonic probability distribution as follows:

Definition 6.3.1. Let φ(D, T) be a propositional formula on Boolean decision variables
D and Boolean stochastic variables T, as defined in Section 1.2. We call the probability
distribution P(φ|σ) a monotonic distribution if, for all strategies σ and each D ∈ D,

121

Global SCMD propagation

the following holds:
P (φ|σD=⊥) ≤ P (φ|σD=>) , (6.1)

where strategies σD=⊥ and σD=> only differ in the truth values that they assign to D (⊥
and >, respectively).

6.3.2 Local monotonicity

For OBDD representations of probability distributions, we also define the concept
of local monotonicity:

Definition 6.3.2. Let φ(D, T), σ and P(φ|σ) be defined as in Section 1.2. We call an
OBDD representation of a probability distribution whose score at the root equals P(φ|σ)
locally monotonic, iff the following holds for any projected σ (see Section 2.5.1):

v
(
r−D
)
≤ v

(
r+D
)

(6.2)

for each OBDD node rD labelled with decision variable D ∈ D, using Equation 2.11
(page 39) to compute v

(
r−D
)

and v
(
r+D
)
.

Theorem 6.3.1. If a probability distribution P(φ|σ) can be represented by a locally
monotonic OBDD as defined in Definition 6.3.2, then it is a monotonic distribution,
as per Definition 6.3.1.

Proof. In the following, we use v (r|σD=⊥) to denote the score of an OBDD node r,
computed using Equation 2.11, for an OBDD with strategy σ, in which decision
variable D = ⊥, and analogously for D = >. Since the root of the OBDD is
an OBDD node, the task is to prove that, for any node r in a locally monotonic
OBDD, it holds that v (r|σD=⊥) ≤ v (r|σD=>). Here, σD=⊥ and σD=> only differ in
the truth assignment of D. We prove this by induction.

The inequality holds trivially if r is a leaf, and is in fact an equality in this
case. We now assume that the inequality holds for all descendants of a node r,
and distinguish the following cases:

1. Node r is labelled with decision variable D.

2. Node r is labelled with a decision variable other than D.

3. Node r is labelled with a stochastic variable.

For the first case, the inequality holds by Definition 6.3.2. For the second case, v(r)
is determined by only one child, because σ assigns a truth value to each decision
variable, which fixes w(r) to either 0 or 1 in Equation 2.11. Since the inequality
holds for this one child, it also holds for r. For the third case, the inequality holds

122

6.3 Monotonicity

P(φ1)

T′

D D

T T

01

not locally
monotonic

p′ 1− p′

p 1− p
p

1− p

(a) An OBDD representation of φ1 = (D ∧ T′) ∨
(¬D ∧ T). Probabilities are such that 0 < p <

p′ < 1.

P(φ2)

S

D

T

01

pS

1− pS

p 1− p

(b) An OBDD representation of φ2 = (D ∧ S) ∨
T. Here, pS = (p′ − p)/(1− p), and 0 < p < pS <

p′ < 1.

Figure 6.1: Two different OBDD representations of the same probability distribution.

for the two children. Since v(r) is the weighted sum of those two children, the
inequality also holds for r.

It is yet unknown if the reverse of Theorem 6.3.1 holds. Ensuring that dis-
tributions are monotonic is relatively easy in the weighted model counting (WMC)
approach: for any representation written using ProbLog [52, 64] (and thus in SC-

ProbLog) without negation, the resulting OBDD representation is locally mono-
tonic, which renders the probability distribution monotonic. Note that this does
not represent a strong limitation, since all problems discussed earlier can be writ-
ten in this form.

The following example illustrates why distributions encoded using negation
do not always yield locally monotonic OBDDs.

Example 6.3.1 (An OBDD that is not locally monotonic). Recall the power grid reli-
ability problem of Example 4.2.4, and let us focus on encoding the survival probability of
a single power line. The decision to reinforce this power line or not, is denoted by Boolean
decision variable D. Following the notation used in Example 4.2.4, we denote its survival
probability when it is not reinforced p, and its survival probability when it is reinforced
with p′, such that 0 < p < p′ < 1. The associated stochastic variables are T and T′,
which take value > if the line survives and the value ⊥ if it does not. We then encode the
event φ1 of survival of this power line, with the following formula:

φ1 = (D ∧ T) ∨
(
¬D ∧ T′

)
. (6.3)

123

Global SCMD propagation

When we fix D := >, this formula has two models: {T = >, T′ = ⊥} (with probability
p · (1 − p′)) and {T = T′ = >} (with probability p · p′), yielding a total success
probability of P(φ1|D=>) = p. Similarly, we can show that P(φ1|D=⊥) = p′. Since
p′ > p by assumption, flipping D’s truth value from ⊥ to > does not decrease the
survival probability of the power line, and thus the distribution is monotonic, according
to Definition 6.3.1.

An example OBDD encoding of this formula is shown in Figure 6.1a. Consider the
decision node on the right. If we set D := ⊥, the score of that node is p. However, if we set
D := >, then the score in that node is 0. Consequently, flipping the value of D from⊥ to
> is not locally monotonic (see Definition 6.3.2), even though the behaviour in the root
of the OBDD remains monotonic. This local non-monotonic behaviour is directly due to
the fact that we can falsify φ1 by fixing D := >, because of the second clause.

The following example shows how we can construct a monotonic probability
distribution that does yield a locally monotonic OBDD.

Example 6.3.2 (A locally monotonic OBDD). Taking the same example of computing
the survival probability of a single power line, consider this alternative encoding:

φ2 = (D ∧ S) ∨ T, (6.4)

again with decision variable D, and stochastic variable T corresponding to survival of a
power line that is not reinforced, with corresponding probability p. We associate a prob-
ability pS = (p′ − p)/(1− p) with stochastic variable S, which exists to encode the prob-
abilistic survival of the power line if it is reinforced. Note how Equation 6.4 does not
contain negation. If we fix D = >, the corresponding models of the residual formula are
{S = >, T = ⊥} (with probability pS · (1 − p)), {S = T = >} (with probability
p · pS) and {S = ⊥, T = >} (with probability (1− pS) · p), bringing the total survival
probability to

P (φ2|D=>) =
p′ − p
1− p

· (1− p) + p · p′ − p
1− p

+

(
1− p′ − p

1− p

)
· p

= (p′ − p) + p ·
(

p′ − p
1− p

+ 1− p′ − p
1− p

)
= p′ − p + p = p′

Similarly, we can show that P (φ2|D=⊥) = p. Again, since p′ > p by assumption, this
distribution is monotonic, according to Definition 6.3.1.

An example of an OBDD encoding of this formula is shown in Figure 6.1b. Note
that the decision node in this OBDD displays locally monotonic behaviour, and thus the
OBDD itself is locally monotonic, according to Definition 6.3.2.

124

6.4 Global SCMD propagation

We will use the notion of local monotonicity to define a global propagation
algorithm for SCMDs that guarantees GAC by design, in Section 6.4 .

6.3.3 Stochastic constraint on monotonic distributions

Using the notion of local monotonicity, we now define a corresponding SCMD as
follows:

Definition 6.3.3. For a set of propositional formulae Φ, threshold θ ∈ R+ and utilities
ρφ ∈ R+, we call

∑
φ∈Φ

ρφ · P(φ|σ) > θ (6.5)

a stochastic constraint on monotonic distributions if, and only if, all P(φ|σ) can be
represented by locally monotonic OBDDs.

Given a partial strategy σ, a GAC-guaranteeing propagator for the SCMD will,
for each unbound decision variable D ∈ D, remove value false from dom(D) if,
and only if,

∑
φ∈Φ

ρφ · P (φ|σ′) ≤ θ (6.6)

holds for each possible extension of partial strategy σ to a full strategy σ′ that
includes D = ⊥.

6.4 Global SCMD propagation

We propose three global SCMD propagation algorithms that operate on the
OBDD representations of monotonic probability distributions directly, and guar-
antee GAC by design. First, we describe a naı̈ve version of such an algorithm,
which has a time complexity that is quadratic in the size of the OBDD on which
it operates. We then show how to improve this algorithm to make its complex-
ity linear, instead. Then, we propose some optimisations to make this algorithm
potentially even faster in practice. We end this section with a brief overview of a
corresponding SCPMD solving pipeline.

In the general case, different propositional formulae can be encoded in one
OBDD with multiple roots (one for each formula), avoiding redundancy if they
share sub formulae (as discussed in Section 2.4). For simplicity of discussion and
notation, we will only consider constraints over one propositional formula φ in
this section, and thus only single-rooted OBDDs. This makes the corresponding
utility ρ irrelevant in the discussion and limits the domain of threshold θ to (0, 1),
to which we compare a probability rather than an expectation.

125

Global SCMD propagation

6.4.1 Naı̈ve SCMD propagation

For maintaining GAC, a key observation is that our scoring function (the expected
utility in Equation 6.5) is monotonic; hence, the largest possible score is obtained
by assigning the value true to all unbound decision variables. Given an OBDD
representation of φ(D, T), mapped to an AC, the following process for each un-
bound decision variable D ∈ D would be GAC:

Step 1: Fix variable D to the value ⊥.

Step 2: Fix all remaining unbound variables to the value >.

Step 3: Calculate the root node score for the resulting assignment with Equa-
tion 2.11.

Step 4: If the score is lower than or equal to threshold θ, remove⊥ from dom(D).

Fixing all unbound variables to > in Step 2 ensures that we compute an upper
bound on the score given the current partial assignment and D := ⊥ in Step 3,
because of the local monotonicity of the OBDD, as defined in Definition 6.3.2.
Consequently, if that upper bound is lower than θ, we know that extending the
current partial assignment to decision variables with D := ⊥, results in a partial
assignment that cannot be extended with assignments to the unbound variables
into a solution whose score exceeds θ. Thus, we update D’s domain in Step 4
to guarantee GAC. This algorithm does not require us to put constraints on the
variable order of the OBDD to obtain the strict bound in Step 3, in contrast to pre-
vious work using sentential decision diagrams (SDDs) and deterministic decomposable
negation normal forms (d-DNNFs) [145].

Let n be the number of unbound decision variables, and let m be the size
of the OBDD (the number of nodes in the OBDD). Then the complexity of this
naı̈ve SCMD propagator is O(m · n): for every unbound variable, we perform a
bottom-up traversal of the OBDD. Since propagation is the most computationally
intensive part of search algorithms under our constraint, it is important to obtain
better performance. Therefore, will show now how to improve this complexity to
O(n + m).

6.4.2 A full-sweep SCMD propagator

The key idea behind improving the naı̈ve propagator is that we calculate a partial
derivative

∂ f (D, σ′ \ {D})
∂D

= f
(
σ′
)
− f

(
D = ⊥, σ′ \ {D}

)
(6.7)

126

6.4 Global SCMD propagation

for each unbound decision variable D. The function f represents the scoring func-
tion defined by Equation 2.11 on the root of the OBDD. The strategy σ′ represents
an assignment to all decision variables obtained by taking a partial assignment σ

and extending it by assigning true to each unbound decision variable in D.
We use the derivative to remove the value false from the domains of variables

that do not meet the following condition:

f (σ′)− ∂ f (D, σ′ \ {D})
∂D

> θ. (6.8)

The main question becomes how to calculate the partial derivative for all un-
bound variables efficiently. Here, we build on ideas introduced by Darwiche [42,
44] to build a linear algorithm that can furthermore maintain derivatives incre-
mentally. We first need to define the concept of path weight:

Definition 6.4.1. Let rm be a node labelled with variable Xm in an OBDD with variable
order X1 ≺ . . . ≺ Xn. We define the path weight of rm with respect to root r as

π(rm) := ρr ∑
`∈Lrm

∏
ri∈`

u(i), (6.9)

where ` is a path from the root of the OBDD to rm, ρr is the reward associated with the
query at root r, and Lrm is the set of all such paths that are valid. A path is valid if it
does not include the hi (respectively, lo) arc from a node labelled with a decision variable
that is false (true or unbound, respectively).

We define u(i) as follows. For the outgoing arcs of decision nodes that can be part of a
valid path, we use u(i) := 1; for outgoing arcs that cannot be part of a valid path, we use
u(i) := 0. For the outgoing arcs of stochastic nodes labelled with a stochastic variable Xi

that has weight w(i), we use:

u(i) :=

w(i) if we take the hi arc of ri;

1− w(i) if we take the lo arc of ri.
(6.10)

The path weight π(rm) is expressed in terms of variables Xi ≺ Xm only. In
the general case, the path weights are initialised at the roots of the diagram (one
root for each query) using the corresponding utility ρ. Because, for simplicity, we
assume the diagram to have just a single root in this section, ρ is irrelevant and
the path weight at the root is initialised to 1. In the case of a multi-rooted OBDD,
we simply sum all the πr(rm)’s for each root r that is an ancestor of rm.

Our global SCMD propagation algorithm is based on the following:

127

Global SCMD propagation

Theorem 6.4.1. The partial derivative of the OBDD with respect to an unbound decision
variable D can be calculated as follows:

∂ f (D, σ′ \ {D})
∂D

= ∑
rD∈OBDDD

π(rD)
(
v(r+D)− v(r−D)

)
, (6.11)

where OBDDD is the set of OBDD nodes labelled with decision variable D.

Proof. Observe that Equation 6.7 can be read as:

∂ f (D, σ′ \ {D})
∂D

= v|σ′\{D},D=>(r)− v|σ′\{D},D=⊥(r) (6.12)

=
(

ur→r+ · v|σ′\{D},D=>(r
+) + ur→r− · v|σ′\{D},D=>(r

−)
)
−(

ur→r+ · v|σ′\{D},D=⊥(r
+) + ur→r− · v|σ′\{D},D=⊥(r

−)
)

,

(6.13)

where r denotes the root of the OBDD and v|σ′\{D},D=⊥(r) the score at root r
(calculated using Equation 2.11), conditioned on partial strategy σ, extended by
fixing D to ⊥ and all other unbound decision variables to >.

The expression in Equation 6.12 states that the partial derivative of f equals
the difference of the score of Equation 2.11 taken at the root of the OBDD, condi-
tioned on σ′ and either D = > or D = ⊥. In Equation 6.13, we have expanded the
expressions on each side of the ‘−’-sign according to Equation 2.11. Here, r+ and
r− represent the hi and lo children of the OBDD root r, respectively, and ur→r+

and ur→r− are the corresponding weights of the outgoing arcs, according to the
definition above.

We can continue this expansion recursively, until we find the v|σ′\{D},D=>(rD)

or v|σ′\{D},D=⊥(rD) terms, where we are computing Equation 2.11 in a node rD

labelled with the unbound decision variable D for which we are computing the
derivative. The result is an expression that contains the following types of terms:

1. Constant terms, where we have expanded until we found either the ‘0’ or the
‘1’ leaf of the OBDD and replace the corresponding term accordingly.

2. Terms with v(r+D) (from expansions of the v|σ′\{D},D=>(r) term in Equa-
tion 6.12).

3. Terms with v(r−D) (from expansions of the v|σ′\{D},D=⊥(r) term in Equa-
tion 6.12).

The terms of type 1 correspond to paths from the OBDD root to a leaf that do not
contain an OBDD node labelled with D. Therefore, the terms on the right of the
‘−’-sign in Equation 6.13 cancel out those on the left.

128

6.4 Global SCMD propagation

Given a particular node rD in the OBDD, we have at least two terms for this
node in the remaining expression: ur→r+ · . . . · urD→r+D

· v(r+D) and −ur→r− · . . . ·
urD→r−D

· v(r−D). These two terms correspond to the same node rD and the same
path ` from the root r to rD. Hence, we can rewrite these terms as follows:

ur→r+ · . . . · urD→r+D
· v(r+D)− ur→r− · . . . · urD→r−D

· v(r−D)

= ur→r+ · . . . · urD→r+D
·
(
v(r+D)− v(r−D)

)
,

(6.14)

where we use that urD→r+D
= urD→r−D

= 1 for outgoing arcs of unbound deci-
sion nodes. Note that for all valid paths from the root to nodes labelled with D,
we find at least one such term in the expanded expression for ∂ f (D, σ′ \ {d})/∂D.
Hence, for a particular node rD, we can group all terms together, obtaining
π(rD) ·

(
v(r+D)− v(r−D)

)
. Summing over all particular nodes rD yields Equa-

tion 6.11.

We use the observation above to create an O(m + n) algorithm for calculating
all derivatives in two stages:

1. A top-down pass over the complete OBDD for calculating all path weights.

2. A bottom-up pass for calculating the values for all nodes in the complete
OBDD, calculating the derivatives for each variable in the process.

The top-down pass operates as follows. We initialise the path weight π(r) of each
internal node with 0, and the path weights of the roots are initialised with the
utilities of the corresponding queries. We update the path weight of its children
r+ and r− as follows if r is labelled with a decision variable d:

π
(
r+
)

:= π
(
r+
)
+ π(r) if D is unbound or true;

π
(
r−
)

:= π
(
r−
)
+ π(r) if D is false;

(6.15)

If r is labelled with a stochastic variable with weight w, we assign π (r+) + w ·
π(r) to π (r+) and π (r−) + (1− w) · π(r) to π (r−).

We compute the node values in a bottom-up pass, using Equation 2.11 with
w(r) = 0 if r corresponds to a decision variable that is false, and w(r) = 1 other-
wise.

During this bottom-up pass, we can recompute the derivatives for all decision
variables that are still unbound using Equation 6.11, and evaluate Equation 6.8 for
each of those to see if we can remove false from their domain.

Clearly, the overall calculation can be completed in time O(n + m).

129

Global SCMD propagation

6.4.3 A partial-sweep SCMD propagator

We now explore whether we can further reduce the empirical running time of the
algorithm above, by avoiding the unnecessary traversal of parts of the OBDD.
The following observations allow for potentially more efficient propagation:

O1 As noted before, the expression for the path weight of an OBDD node la-
belled with variable Xm (Equation 6.9) only contains variables Xi < Xm. We
conclude that fixing a decision variable D can only affect the path weights of
nodes below the nodes labelled with that variable D.

O2 Path weights below unbound decision nodes are not changed when we fix
an unbound decision node to true. Therefore, our propagator only needs to
update path weights if we fix a decision variable to false.

O3 Similarly, fixing a variable can only affect the scores of the nodes labelled with
that variable, and of those above them in the OBDD. Again, only fixing a vari-
able to false requires the propagator to update scores.

O4 We do not need to maintain the scores for any of the ancestors of the decision
nodes that are closest to the root of the OBDD. For each of these ancestors r,
it holds that there is no path from the root to r that passes through a deci-
sion node. Therefore, we will never need to calculate the derivative for any
variable in that part of the diagram.

O5 Similarly, we do not need to maintain path weights for the descendants of the
decision nodes closest to the leaves. For each of these descendants, it holds
that there is not path from it to one of the leaves that passes through a deci-
sion node. Therefore, we will never need to calculate the derivative for any
variable in that part of the diagram.

It can be shown that by only maintaining the part of the OBDD between two
borders of unbound decision variables (the active part of the OBDD), one can
calculate the derivatives exactly, as well as calculate the score of the solution.

O6 Some parts of the OBDD will no longer be connected to the root as a conse-
quence of partial assignments. We thus do not need to update those parts of
the OBDD.

O7 We can exploit partial derivatives as well as O4 and O5 in branching heuris-
tics to guide the search. For example: if we always branch on the variable with
the largest derivative, we are likely to find failing partial strategies quickly.
Alternatively, by branching on the highest or lowest decision variable (ap-
plying O4 and O5, respectively), we reduce the size of the active part of the
OBDD.

130

6.4 Global SCMD propagation

We improve the full-sweep OBDD propagation algorithm by addressing these
observations. Here, we give a short overview of how we do so; we refer the reader
to Chapter A for the pseudocode of the resulting partial-sweep algorithm.

O1 to O3 are addressed by using priority queues; we initialise and update
them such that we start traversing the OBDD downwards (upwards) at the places
where path weights (scores) may change due to decision variable assignments.

In our implementation of the partial-sweep algorithm, we maintain for each
OBDD node r three counters, addressing O4 to O6. Maintaining these counters
requires two extra passes through part of the OBDD each time the propagator is
called. However, they allow us to traverse an ever-decreasing part of the OBDD
in each pass.

We call the first counter FreeIn[r]. It indicates the number of parents r′ of r
for which there is at least one valid path from an unbound decision node above
r′ to r′. If FreeIn[r]=0, we need not update scores of nodes above r if the score
of r changes (O4).

The second indicates the number of children r′ for which there is at least one
valid path from r′ to an unbound decision node below r′; we call this counter
FreeOut[r]. If its value is 0, any changes in r’s path weight need not be propa-
gated down from r, because of O5.

Because of O6, we use a third counter, which we call Reachable[r].
It counts the number of parents of r through which there is a valid path from

the root to r, thus counting through how many of its parents r is reachable from
the root. If there is no valid path from the root to r, r’s path weight is 0, and
changes in its score need not be propagated. Note that we need the Reachable[r]
counter despite the fact that we have the FreeIn[r] counter, because it can hap-
pen that a part of the OBDD becomes disconnected from the root while there are
still free decision nodes in that part. If those decision nodes are ancestors of r,
we would keep updating their scores if we only rely on the FreeIn[r] counter
to stop that upwards traversal through the OBDD for that part. Note that for a
multi-rooted OBDD, Reachable[r] counts the number of parents of r through
which r is reachable from at least one of the roots.

Note that, as observed in O6, some decision nodes labelled with free decision
variables may become disconnected from the root. Consequently, we do not use
their scores to compute the derivative in Equation 6.11. If the OBDD represen-
tation of the probability distribution is not locally monotonic (Definition 6.3.2),
it may happen that the contributions of the active nodes cause us to compute a
negative partial derivative. Consequently, the algorithm is no longer be able to
guarantee GAC, and may even compute a wrong score for the optimal solution.

131

Global SCMD propagation

P(φd) > 0.2

Tbc

Dc Dc

Tcd Tcd Tcd

Da Da

Db Db Db

Tac Tac Tac

Dd

Dd

Tab

0 1

s = 1
π = 1

s = 1
π = 0.9

s = 1
π = 0.1

s = 1
π = 0

s = 1
π = 1

s = 1
π = 0

s = 1
π = 0

s = 1
π = 0

s = 1
π = 0

s = 1
π = 0

s = 1
π = 0

s = 1
π = 0

s = 1
π = 0

s = 1
π = 0

s = 1
π = 0.7s = 1

π = 0

s = 0.4
π = 0

0.1 0.9

0.3

0.7

0.3

0.7

0.3

0.7

0.8

0.2
0.8

0.2 0.2

0.8

0.6 0.4

(a) Iteration 0: just after initialisation.

P(φd) > 0.2

Tbc

Dc = ⊥ Dc = ⊥

Tcd Tcd Tcd

Da Da

Db Db Db

Tac Tac Tac

Dd

Dd

Tab

0 1

π = 0.9π = 0π = 0.1

π = 0.27π = 0.03

π = 0.03

π = 0.27

π = 0.754

(b) Iteration 1: we branched on Dc := ⊥.

P(φd) > 0.2

Tbc

Dc = ⊥ Dc = ⊥

Tcd Tcd Tcd

Da Da

Db = ⊥ Db = ⊥ Db = ⊥

Tac Tac Tac

Dd

Dd

Tab

0 1

π = 0.03

π = 0.006

(c) Iteration 2: we branched on Db := ⊥.

P(φd) > 0.2

Tbc

Dc = ⊥ Dc = ⊥

Tcd Tcd Tcd

Da Da

Db = ⊥ Db = ⊥ Db = ⊥

Tac Tac Tac

Dd = ⊥
Dd = ⊥

Tab

0 1

s = 0.8s = 0.88

s = 0s = 0s = 0.88

s = 0.8s = 0.88

s = 0
s = 0.4

(d) Iteration 3: we branched on Dd := ⊥.

Figure 6.2: Illustration of the partial-sweep propagator on an OBDD representation of
Equation 2.10.

132

6.4 Global SCMD propagation

Example 6.4.1 (Partial-sweep propagation). Figure 6.2 shows an example of an ex-
ecution of the partial-sweep algorithm on an OBDD representation of Equation 2.10.
When unbound decision nodes become fixed, we remove one of their outgoing arcs to in-
dicate their truth assignment. This may cause nodes to become no longer reachable from
the root. Nodes that are inactive because of this, or because they are not on a path from one
unbound decision node to another, are coloured grey. Note that there is no need to update
the scores and path weights of nodes that have been greyed out, because of O4 to O6. In
each iteration of the algorithm, we use the partial derivatives to check if the upper bound
on the score in the root of the diagram is still high enough to satisfy the constraint on the
probability. Next to each node, we indicate its current score s and current path weight π.
We only show the scores and path weights that change in an iteration. The Reachable,
FreeIn and FreeOut counters are not shown in the figure. Suppose we have to find a
strategy σ, such that P(φd|σ) > 0.2 holds.

Figure 6.2a shows the state of this OBDD just after initialisation. The current partial
strategy is σ′ = ∅, since no assignments to decision variables have been made. The partial
derivatives are: ∂ f/∂Da = 0, ∂ f/∂Db = 0, ∂ f/∂Dc = 0 and ∂ f/∂Dd = 0.7. Since Equation 6.7
holds for all derivatives, we cannot fix any decision variables to true. The upper bound
on the score of the diagram is s(root) = 1.

Suppose we now branch on Dc := ⊥ in Figure 6.2b. Because there are no active
nodes above the nodes labelled with Dc, no scores will change in this iteration. However,
there are active nodes below the nodes labelled with Dc, causing some of the path weights
to change. Note that the middle node labelled with Tcd becomes unreachable. While its
Reachable counter was 2 in Figure 6.2a, now it equals 0. Similarly, the FreeIn counters
of all nodes labelled with Tcd or Dc become 0.

We now update the upper bound on the score of the diagram to P
(

φe|{Dc=⊥}

)
=

P (φe|∅) − ∂ f/∂Dc = 1 − 0 = 1, and compute new partial derivatives: ∂ f/∂Da = 0,
∂ f/∂Db = 0 and ∂ f/∂Dd = 0.754. Again, this is not enough to infer that a specific decision
variable must be fixed to true.

In Figure 6.2c we branch on Db := ⊥ next. Note that the nodes labelled with Db re-
main active, as they are on paths from unbound decision nodes to other unbound decision
nodes, and therefore, their FreeIn and FreeOut counters remain larger than 0. Since the
scores of the nodes labelled with Db happen to not change in this case, we do not need to
update the scores of the active nodes above them in the OBDD. However, we do need to up-
date the path weight of one of the nodes below them. We can update the upper bound on the
score of the diagram to P

(
φd|{Db=Dc=⊥}

)
= P

(
φe|{Dc=⊥}

)
− ∂ f/∂Db = 1− 0 = 1.

We compute the new partial derivatives: ∂ f/∂Da = 0 and ∂ f/∂Dd = 0.7576. Again, this
does not give us reason to fix any remaining decision variables to true.

Next, we branch on Dd := ⊥ (see Figure 6.2d). There are no active nodes below those

133

Global SCMD propagation

nodes labelled with Dd (their FreeOut counters equal 0), so no path weights are updated
in this iteration. However, many scores do change. The upper bound on the score for
the root of the diagram also changes: P

(
φd|{Db=Dc=Dd=⊥}

)
= P

(
φe|{Db=Dc=⊥}

)
−

∂ f/∂Dd = 1− 0.7576 = 0.2424.
The last remaining partial derivative is: ∂ f/∂Da = 0.2424. Now we know that this

decision variable must be fixed to true, because P
(

φe|{Db=Dc=Dd=⊥}

)
− ∂ f/∂Da =

(0.2424 − 0.2424) < 0.2. We therefore fix Da = > and conclude that σ = {Da =

>, Db = Dc = Dd = ⊥} is a solution to the constraint P (φd|σ) > 0.2, and one with
value P (φd|σ) = 0.2424.

Note that in the example above we fix only one decision variable per iteration.
Our implementation also allows multiple decision variables to be fixed at the
same time, for example by another constraint, such as a linear constraint on the
cardinality of the solution, as would be the case in Examples 4.2.1 and 4.2.2.

Finally, we address O7 by implementing different variable branching heuristics:
Top, which always branches on the unbound variable highest in the OBDD, and
its counterpart, Bottom. Each can be combined with a value branching heuristics:
either branch first on value 0, or on value 1. These heuristic are static during the
search and depend on the variable order underlying the OBDD. We also imple-
ment two regret-based [27] branching heuristics that use the calculated deriva-
tives: Derivative-1 and Derivative-0. The former (latter) selects the unbound deci-
sion variable with the largest (smallest) absolute derivative and first branches on
1 (0). These heuristics are dynamically computed during the search, but do not
present much overhead, since we need to compute the derivatives anyway.

Note that the space complexity of this approach is only O(|OBDD| · τ), where
τ is the depth of the search tree. This is less than that of the GAC-guaranteeing
decomposition method from Section 6.2.

Relation to cost-multi-valued decision diagram (MDD) propagators. Our
partial-sweep propagation algorithm bears some resemblance to cost-MDDs
propagation algorithms in general [55, 69], and a recently proposed optimisa-
tion to such an algorithm in particular [142]. Both algorithms have a notion of
“up” and “down” scores that they update and use for maintaining arc consis-
tency. Both algorithms’ implementations avoid unnecessary work by being smart
about which nodes really need their scores updated. However, there are some
important differences. Cost-MDDs are used to encode constraints, while we use
DDs to encode probability distributions on which we formulate a constraint. In cost-
MDDs, each path from the root to the “true” leaf corresponds to a valid solution
to the constraint. However, in this dissertation, a valid solution consists of vari-

134

6.4 Global SCMD propagation

able assignments such that a weighted sum computed over several paths in the
OBDD exceeds a certain threshold value. This is reflected in the scores that are be-
ing maintained for each node. In cost-MDDs propagators, these scores are sums
over single paths, whereas in our propagator, these scores are weighted sums
over multiple paths. A second difference is that in our algorithm, a node that be-
comes inactive (such that its scores are no longer updated) remains inactive un-
til it might be reactivated due to backtracking, and due to backtracking only. In
cost-MDDs propagators, on the other hand, as the branch-and-bound algorithm
traverses deeper into the search tree, the values of a node may not be updated in
one iteration, and then be updated again in the next. The final difference is in how
nodes are selected for having their values updated. In the cost-MDD propagator,
node values are updated if they may change due to arc removal. In our propa-
gator there are cases in which we do not update node values, even though they
change, because we do not need their values to compute the partial derivatives.

6.4.4 A global constraint SCPMD solving pipeline

In the previous two sections we described global SCMD solving algorithms. Re-
calling Section 5.2.3, we now give a brief summary of how these algorithms fit
into a pipeline for solving SCPs.

Figure 6.3 shows this pipeline. The first three steps are exactly the same as the
pipeline described in Section 5.2.3, except that we have the extra requirement on
the input problems that the probability distributions involved in the stochastic
constraint or optimisation criterion, must be locally monotonic (Definition 6.3.2):

Step 1: Model the problem using a probabilistic network and (stochastic) con-
straint(s) or optimisation criterion that involves a monotonic probability
distribution.

Step 2: Model the problem using SC-ProbLog, without using negation.

Step 3: Ground the program for the queries present in the optimisation criterion
of the SCP into a set of propositional formulae Φ.

Step 4: Compile a multi-rooted OBDD, such that each root encodes the condi-
tional success probability P (φ|σ) of one of the queries φ ∈ Φ.

The pipeline differs from our earlier one in the next steps:

Step 5: Create a global stochastic constraint or stochastic optimisation criterion
based on the OBDD encoding of the probability distribution, using either
the full-sweep or partial-sweep implementation of the SCMD propagator.

135

Global SCMD propagation

model problem

(Step 1)

encode into

SC-ProbLog

program

without

negation

(Step 2)

ground into

propositional

formulae

(Step 3)

compile

into OBDD

(Step 4)

create global

constraint, with either

full- or partial-sweep

propagation algorithm,

add other constraints
(Steps 5 and 6)

solve with

CP solver OscaR

(Step 7)

a

b

c d0.4
0.8

0.1
0.3

maximise ∑φ∈Φ ρφ · P (φ|σ),

subject to ∑D∈D D ≤ k

person(alexa). person(claire). 0.4:: dir(alexa ,behrouz). 0.8:: dir(alexa ,claire).

person(behrouz). person(daniel). 0.1:: dir(behrouz ,claire). 0.3:: dir(claire ,daniel).

?:: gets_free_sample(P) :- person(P).

influences(X,Y) :- dir(X,Y). buys(X) :- gets_free_sample(X).

influences(X,Y) :- dir(Y,X). buys(X) :- influences(X,Y), buys(Y).

{ gets_free_sample(P) => 1 :- person(P). } k. #maximise { buys(P) => 1 :- person(P). }.

φa = Da ∨ (Db ∧ (Tab ∨ (Tbc ∧ Tac))) ∨ (Dc ∧ (Tac ∨ (Tab ∧ Tbc))) ∨ (Dd ∧ Tcd ∧ (Tac ∨ (Tab ∧ Tbc)))

...

φd = Dd ∨ (Dc ∧ Tcd) ∨ (Db ∧ Tbc ∧ Tcd) ∨ (Da ∧ Tac ∧ Tcd) ∨ (Db ∧ Tba ∧ Tac ∧ Tce) ∨ (Da ∧ Tab ∧ Tbc ∧ Dcd)

OBDD

full or partial

CP

solver

OscaR

Figure 6.3: Overview of the global constraint SCP solving pipeline we propose in this
chapter.

136

6.5 Experimental evaluation

Step 6: Add any other constraints and optionally an optimisation criterion to the
CP model.

Step 7: Solve using a CP solver.

6.5 Experimental evaluation

We experimentally evaluate the performance of CP-based and MIP-based OBDD
decomposition methods (described in Sections 5.2.1 and 6.2), as well as the full-
sweep and partial-sweep global SCMD propagators on OBDDs (described in Sec-
tions 6.4.2 and 6.4.3).

The remainder of this section is organised as follows. First, we formulate our
research questions. We then provide details on experimental setup, hardware and
software we use in Section 6.5.2, as well as an overview of the different pipelines
evaluated. Finally, we report and analyse the results we obtained in our experi-
ments, answering our questions in Section 6.5.3.

6.5.1 Research questions

In the work presented in this chapter, we leverage techniques from knowledge
compilation (with a focus on OBDDs) in combination with readily available CP
and MIP solvers for efficient SCP solving. The experiments in this section are de-
signed to evaluate the efficiency of decomposition methods and global constraint
methods that use these elements. Specifically, we aim to answer the following
questions:

Q1 How do solving times depend on the CP encoding of the constraint (decom-
posed versus our new global constraint)?

Q2 How do branching heuristics (Section 6.4.3) affect solving times for the global
constraint?

Q3 How do solving times for the global SCMD constraint compare to those of a
decomposed constraint solved with a MIP solver?

Q4 How do the performances of decomposed and global approaches depend on
OBDD size?

Q5 How effective is the partial-sweep propagation algorithm compared to the
full-sweep algorithm in practice?

Q6 How does our propagator perform in combination with other constraints?

137

Global SCMD propagation

6.5.2 Experimental setup

The implementations of our propagation algorithms are available at
github.com/latower/SCMD-solving.

Software and hardware

For modelling the probability distributions, we used the SC-ProbLog language
proposed in Section 4.3, which is based on ProbLog 2.1 [59] and DT-ProbLog [178],
running in Python 3.6.9.1 We use the Cython binding of the dd 0.5.4 library to
CUDD 3.0.0 [168] for OBDD compilation, and use its implementation of the Sifting
algorithm [156] for dynamic minimisation.2

We implemented the MIP-based decomposition methods by building and
solving MIP models with Gurobi 9.0.0, because it is freely available to academics
and provides a convenient modelling interface through gurobipy.3 The CP-based
decomposition was implemented in Gecode 6.0.1, because it is a well-known,
well-performing, open source solver that is used by industry.4

We implemented the global OBDD propagators proposed in Sections 6.4.2
and 6.4.3 in the Scala 2.12 library OscaR 4.0.0 [132]. This library contains a state-
of-the-art implementation of the CoverSize constraint [164], which we needed to
answer Q6.5 Since OscaR does not support floating point variables, we could not
implement the decomposition methods in OscaR.

Our experiments in Section 6.5.3 were run on two different machines, for rea-
sons of availability. The first, which we refer to as PASCALINE, is equipped with
24GB of RAM and eight Intel Xeon E5540 CPUs, each with four cores and 8192
KB of cache, running at 2.53 GHz, under CentOS Linux 7.4.1708. The second,
GRACE, is a cluster with 32 nodes, each equipped with 94GB of RAM and two In-
tel Xeon E5-2683 CPUs with 16 cores, a cache size of 40MB, running at 2.10 GHz
under CentOS Linux 7.7.1908. Unless indicated otherwise, all experiments in Sec-
tion 6.5.3 were run on PASCALINE. Note that whenever running times need to
be compared directly, they were obtained from experiments that ran on the same
machine. Running times were measured in wall clock time, using the solver’s re-
ports on their running times, which exclude time for reading in or constructing
the models and thus measure solving time alone.

1Available at github.com/ML-KULeuven/problog/tree/sc-problog.
2Available at pypi.org/project/dd.
3Available at www.gurobi.com.
4Available at www.gecode.org.
5Available at sites.uclouvain.be/cp4dm/fim.

138

https://github.com/latower/SCMD-solving
https://github.com/ML-KULeuven/problog/tree/sc-problog
https://pypi.org/project/dd/
www.gurobi.com
www.gecode.org
https://sites.uclouvain.be/cp4dm/fim/

6.5 Experimental evaluation

Overview of solving methods

We briefly outline the different solving methods evaluated in this section. As de-
scribed in Sections 5.2.3 and 6.4.4, a full SCPMD solving pipeline starts with mod-
elling the problem in SC-ProbLog (as demonstrated in Section 4.3) and ground-
ing the resulting logical program into propositional formulae φi on Boolean de-
cision variables and Boolean stochastic variables (see examples in Section 4.2).
We then use knowledge compilation to compile these formulae into OBDDs and
impose the stochastic constraint of Equation 1.1 on the probability distributions
encoded by those OBDDs. We then either decompose the resulting constraint on
the OBDDs into a set of smaller, local constraints, or keep it as a global constraint.
We then solve this model with a CP or MIP solver. In the experiments in this
section we only evaluate the solving part of the pipelines, which starts after the
model has been loaded into the solver. We evaluate the entire pipeline in the ex-
periments presented in Chapter 6.

CP-based decomposition. In Sections 5.2.1 and 5.2.2, we described how con-
straints on probability distributions modelled by OBDDs and SDDs can be
decomposed into linear programs. Using this decomposition, we proposed a
method that uses Gecode to solve a CP encoding of the stochastic constraint on
a multi-rooted OBDD that does not guarantee GAC (Sections 3.3 and 5.2.1). We
therefore refer to the solving step in this pipeline as no-GAC CP decomposition. In
Section 6.2, we briefly discussed how we can turn this CP encoding into one that
does guarantee GAC. We also solve the resulting CP programs from this encoding
with Gecode, and refer to this pipeline as GAC CP decomposition.

MIP-based decomposition. Since MIP solvers have been shown to be very ef-
fective in solving linear programs, we also evaluate an OBDD variant of the MIP-
based pipeline described in Chapter 5. The OBDD-to-MIP pipeline converts the
propositional formulae φi into a multi-rooted OBDD, and converts this OBDD,
and the stochastic constraint imposed on it, into a linear program that is then
solved using Gurobi.

Global SCMD propagation. Finally, we evaluate the two variants of the new
global SCMD propagator on probability distributions represented by OBDDs, im-
plemented in OscaR: full-sweep (Section 6.4.2) and partial-sweep (Section 6.4.3).

139

Global SCMD propagation

Table 6.1: Characteristics of our set of 52 problem instances, including their range of size
of the set of interest |Φ|, number of stochastic variables |T|, number of decision variables
|D| and the number of test instances of each type.

name problem type |Φ| |T| |D| # instances

spine sparsification 13–23 33–60 33–60 3
hep-th spread of influence 20–33 51–90 20–33 2
facebook spread of influence 10–18 40–98 20–30 11
high-voltage power grid reliability 2–20 32–154 15–45 36

Parameter settings

While, in the next chapter, we will do a thorough analysis of the influence of pa-
rameter settings on the performance of our methods, in these first experiments,
we use the default settings for all software, unless indicated otherwise. In the
experiments to answer Q1, we constrain both CP solvers to branch on the vari-
ables in lexicographical order, branching first on false and then on true. In doing
so, we fix the branching order in an attempt to take the influence of branching
heuristics out of the equation, and thus to compare only the speed and effect of
propagation. For the other experiments, the global SCMD propagators use the
branching heuristic Derivative-1 (Section 6.4.3), because it seems to outperform
the other branching heuristics, as is shown in Table 6.3.

Problem instances

For our experiments we consider a total of 52 instances from the spine [133],
hepth [131], facebook [180] and powergrid [183] data sets described in Sec-
tion 4.5. For all these instances, we choose a problem setting of Variant 1 (see
Section 4.5). We summarise some characteristics of these instances in Table 6.1.

For presentation purposes we selected a representative subset of ten instances
from this set, for which we will show our results in this work. We provide some
characteristics of the instances in this subset in Table 6.2.

For each problem instance, we select a constraint threshold in the form of an
upper bound on the cardinality of the solution k. Specifically, we run each exam-
ple for nine values of k, based on the number of decision variables in the problem
instance. For sparsification problems, k represents an upper bound on the size of
the network that we extract. For spread-of-influence problems, k represents an
upper bound on the number of people to whom we can give a free sample of the
product. Finally, for power grid reliability problems, we make the simplifying as-

140

6.5 Experimental evaluation

Table 6.2: Some characteristics of the test instances we use in Section 6.5.3. In particular:
what entities the decision variables are associated with, the size of the set of interest |Φ|,
the number of stochastic variables |T| and the number of decision variables |D|, the OBDD
size without minimisation (|OBDDnm|) and with dynamic minimisation (|OBDDdm|) [156]
during the compilation, the OBDD compilation time without minimisation tnm, the dif-
ference in compilation times ∆t for these two compilation methods (compilation with dy-
namic minimisation always takes longer than compilation without minimisation).

instance |Φ| |T| |D| |OBDDnm| |OBDDdm| tnm [s] ∆t [s]

sparsification
spine16 23 33 33 80 80 0.09 0.01
spine27a 13 60 60 1 898 266 0.08 0.03
spine27b 13 55 55 9 350 476 0.08 1.13

spread of influence
hep-th47 20 51 20 10 815 3 658 0.12 0.59
hep-th5 33 90 33 14 555 8 865 0.43 13.25
facebook12 12 61 23 7 836 794 0.09 0.07
facebook25 25 72 25 6 981 2 198 0.10 0.22

power grid reliability
croatia 6 66 21 4 873 429 0.20 0.13
illinois 20 96 32 68 019 3 040 0.37 0.60
russia 16 94 34 1 616 947 0.42 0.55

sumption that the cost of reinforcing power lines is uniform, such that we can
replace the budget β by an upper bound on the number of power lines we can
reinforce, k. We do this to avoid overcomplicating the experiments.

For our experiments on the frequent itemset mining (FIM) problem setting, in
which we aim to detect top fake news distributors, we used communities in the
facebook dataset. We generated 25 OBDDs, which we combined with different
minimum expectation thresholds θ and different minimum support thresholds κ

to create FIM problem instances. The problems have sets of interest of size 50–65
and the same numbers of decision variables. The numbers of stochastic variables
range from 151–225, and the databases contain 33–52 transactions. Finally, the
OBDD sizes range from roughly 20 thousand to 2.5 million nodes.

141

Global SCMD propagation

0 20

10−1

100

101

102

103

ti
m

e
[s

]

spine16

0 50

100

101

102

103

spine27a

0 50

100

101

102

103

spine27b

0 10 20

100

101

102

103

hep-th47

0 20

101

102

103

hep-th5

0 20

100

101

102

103

ti
m

e
[s

]

facebook12

0 20

100

101

102

103

facebook25

0 20
10−1

100

101

102
croatia

0 20
100

101

102

103

illinois

0 20

100

101

102

103

russia

constraint threshold k (strict ↔ loose)

GAC decomp. no GAC decomp. full-sweep partial-sweep

Figure 6.4: Solving times of CP-decomposition methods and global SCMD methods. Cut-
off time is 3 600 s (1 hour). Vertical axes are log scale.

6.5.3 Results

We study how the decomposition methods (Sections 5.2.1 and 5.2.2) compare to
the global SCMD propagators (Sections 6.4.2 and 6.4.3) in terms of solving time,
which we measure by using the wall-clock time reported by the different solvers
as the time actually spent on solving (and not on I/O). We aggregate some of our
results by computing the penalised average runtime with penalty factor 10 (PAR10)
values of solving times.

Comparison of CP solvers. We address Q1 by comparing the solver search
times of the implementations of the full-sweep (Section 6.4.2) and partial-sweep
(Section 6.4.3 versions of our propagator with two decomposed approaches in
Gecode: the GAC CP composition method and the no GAC CP decomposition
method (Sections 5.2.1 and 5.2.2). We keep the branching order for the search
process fixed to a lexicographical one, branching first on false and then on true.
This allows us to directly compare the propagation strength and speed on these
CP methods, because the ones that guarantee GAC have the same search trees.
The constraint threshold k indicates the maximum allowed cardinality of the so-
lution: from small (strict) to large (loose). We run these propagators on OBDDs
that are obtained using dynamic minimisation. Figure 6.4 shows that the global
SCMD propagators outperform both decomposition methods on our set of test in-
stances. While the full-sweep version of the SCMD propagator outperforms the
partial-sweep version, this difference is less pronounced.

142

6.5 Experimental evaluation

Table 6.3: PAR10 values in seconds for six branching heuristics used by the full-sweep
propagation algorithm on 52 test instances. Cutoff time is 3 600 s.

Top-0 Top-1 Bottom-0 Bottom-1 Derivative-0 Derivative-1

1 502 1 575 1 526 1 385 2 412 27

0 20

100

10−1

100

101

102

ti
m

e
[s

]

spine16

0 50

100

10−1

100
spine27a

0 50

100

10−1

100

101

spine27b

0 10 20

100100

101

102

hep-th47

0 20

100100

101

102
hep-th5

0 20

100

10−1

100

ti
m

e
[s

]

facebook12

0 20

100100

101

102

103
facebook25

0 20

100

10−1

croatia

0 20

100100

101

102

illinois

0 20

100

10−1

100

101

russia

constraint threshold k (strict ↔ loose)

OBDD-to-MIP full-sweep partial-sweep

Figure 6.5: Solving times of MIP-based OBDD decomposition method, compared to the
full-sweep and partial-sweep methods. Cutoff time is 3 600 s (1 hour). Vertical axes are log
scale.

Branching heuristics. We answer Q2 by evaluating the performance of the six
branching heuristics described in Section 6.4.3. We ran the full-sweep and partial-
sweep propagation algorithm on our set of 52 instances described in Table 6.1,
using an upper bound of k = b |D|/2e on the cardinality of the solution, where |D|
denotes the number of decision variables of the given instance. We repeated this
for the six branching heuristics from Section 6.4.3, using a cutoff time of 3 600 s,
and compute the PAR10. We present the results in Table 6.3. Clearly, Derivative-1
seems to be the most efficient branching heuristic for the full-sweep propagator
on our set of test instances.

Comparison of global CP and decomposed MIP encoding. Figure 6.5 com-
pares the performance of the full-sweep and partial-sweep OBDD propagators to
that of the OBDD decomposition method using Gurobi for solving the problem
(OBDD-to-MIP). For the global propagators, we have used branching heuristic
Derivative-1. We observe that the global SCMD propagators perform comparably,

143

Global SCMD propagation

0 20

10−1

100

101

102

ti
m

e
[s

]

R = 1

spine16

0 50

10−1

100

R = 7

spine27a

0 50
10−1

100

101

102

103
R = 20

spine27b

0 10 20

100

101

102

103
R = 3

hep-th47

0 20

100

101

102

103
R = 2

hep-th5

0 20
10−1

100

101

102

ti
m

e
[s

]

R = 10

facebook12

0 20

100

101

102

103 R = 3

facebook25

0 20

10−1

100

101
R = 11

croatia

0 20

100

101

102

103 R = 22

illinois

0 20
10−1

100

101 R = 2

russia

constraint threshold k (strict ↔ loose)

OBDD-to-MIP (not minimised)

OBDD-to-MIP (dyn. minimised)

partial-sweep (not minimised)

partial-sweep (dyn. minimised)

full-sweep (not minimised)

full-sweep (dyn. minimised)

Figure 6.6: Solving times of OBDD-to-MIP and global SCMD propagators on OBDDs of
different sizes: either obtained without minimisation, or by using dynamic minimisation
during compilation. Cutoff time is 3 600 s (1 hour). Vertical axes are log scale. R indicates
the size ratio |OBDDnm |/|OBDDdm |.

and often complementarily, to the OBDD-to-MIP method, answering Q3.

Scaling. We address Q4 in Figure 6.6, where we show how the full and partial-
sweep SCMD propagators scale for OBDDs of different size, obtained by run-
ning an OBDD compiler with and without minimisation for the same set of prob-
lems. Note that the SCMD propagators have the same search tree regardless of
the shape and size of the OBDD they operate on. We observe that the global
SCMD propagators seem to scale much more favourably with OBDD size than
the OBDD-to-MIP decomposition method. For example, on facebook12, the min-
imised OBDD is one order of magnitude smaller than the non-minimised OBDD.
Both full-sweep and partial-sweep propagators seem to indeed scale linearly with
that difference in size. However, the solving times for the OBDD-to-MIP decom-
position method increase by over two orders of magnitude when the OBDD size
increases by one order of magnitude.

Full-sweep versus partial-sweep. Recall that the full-sweep algorithm tra-
verses the entire OBDD twice per iteration of the propagator, while the partial-
sweep algorithm is designed to traverse only part of the OBDD in each propa-
gation. This renders the partial-sweep algorithm potentially more efficient than

144

6.5 Experimental evaluation

10−2 10−1 100 101 102 103

partial-sweep

10−2

10−1

100

101

102

103

fu
ll
-s

w
ee

p
Derivative-1 [s]

10−2 10−1 100 101 102 103

partial-sweep

10−2

10−1

100

101

102

103

fu
ll
-s

w
ee

p

Top-0 [s]

102

103

104

105

106

O
B

D
D

size

Figure 6.7: Solving times of the full-sweep and partial-sweep SCMD propagators on dy-
namically minimised and non-minimised OBDDs, for 52 instances (Table 6.1). We compare
two branching heuristics: Derivative-1 and Top-0. Cutoff time is 3 600 s (1 hour).

the full-sweep version, especially for branching strategies that work to reduce
the active part of the OBDD. While this comes at the price of some overhead,
we expect the overhead to become less important as OBDD size increases, since
for larger OBDDs, the benefits of not traversing the entire OBDD become more
pronounced.

To answer Q5, we therefore ran both propagators on the dynamically min-
imised and non-minimised OBDDs of all 52 test instances from Table 6.1. We ran
each solver on each OBDD, using nine constraint thresholds k. We performed
this experiment using two different branching heuristics: Derivative-1 and Top-0.
Figure 6.7 and Table 6.4 summarise our results.

Looking at the left plot in Figure 6.7, we observe that the full-sweep propaga-
tor tends to solve instances faster than partial-sweep when using the Derivative-1
branching heuristic. This is also reflected in the results in Table 6.4, where we see
that the PAR10 value for the partial-sweep propagator is 1.6 times that of the full-
sweep propagator. However, when we look at the top 5% largest OBDDs only,
these PAR10 values are more similar.

This effect is stronger when we use the Top-0 branching heuristic. Recall that
this heuristic attempts to reduce the size of the active part of the OBDD during
the search, by always branching on the free decision variable that is highest in the
OBDD. The right plot in Figure 6.7 shows that, when using the Top-0 branching
heuristic, the partial-sweep propagator outperforms the full-sweep algorithm on
many instances. This is also reflected in the PAR10 values in Table 6.4: on the
full set of OBDDs, the PAR10 value of partial-sweep is now only 1.2 times higher

145

Global SCMD propagation

Table 6.4: PAR10 values (cutoff time of 3 600 s) for full-sweep and partial-sweep SCMD
propagators on dynamically minimised and not minimised OBDDs, for 52 instances (Ta-
ble 6.1), and the top 5% largest OBDDs in this set. We ran them on nine values of threshold
k per OBDD, and compare two branching heuristics: Derivative-1 and Top-0. We indicate
in parentheses the total number of instances, and how many times out of the total number
of instances a solver timed out. We also indicate the partial/full ratio of the PAR10 values.

All OBDDs (936) Top 5% largest OBDDs (45)
Derivative-1 Top-0 Derivative-1 Top-0

full 847 s (21) 2 366 s (59) 13 817 s (17) 21 028 s (26)
partial 1 373 s (33) 2 470 s (61) 16 389 s (20) 19 585 s (24)

partial/full 1.6 1.0 1.2 0.9

than that of full-sweep. Again, partial-sweep has a smaller PAR10 value than full-
sweep on the largest 5% of OBDDs.

These results confirm that branching heuristics that aim to minimise the size
of the active part of the OBDD can indeed give partial-sweep the edge over full-
sweep for large OBDDs. Derivative-1, on the other hand, leads to smaller search
trees. As the active part of OBDDs in this case does not get much smaller, the par-
tial sweep algorithm entails an overhead compared to the full-sweep approach,
and partial sweep does not offer substantial benefits. Nevertheless, even with a
branching heuristic that aims to minimise the size of the search tree (Derivative-1),
we see an indication that partial-sweep becomes competitive with full-sweep, as
OBDD size increases.

Interaction with other constraints. We conclude our evaluation of the global
constraint propagation algorithm with experiments on FIM instances, which we
performed on GRACE. In all earlier experiments, we combined the stochastic con-
straint with a cardinality constraint. To answer Q6, in this experiment, we have
evaluated the interaction of the global propagator with a CoverSize constraint.
We note that, in contrast with the other experiments reported in this section, this
is a constraint solving rather than a constraint optimisation setting. Note also that
we enumerate all solutions to the constraint solving problem.

We looked at the solving time of the top fake news distributors problem in-
stances for different minimum support thresholds κ and minimum expected in-
fluence thresholds θ. We present the results for a typical example problem in-
stance in Figure 6.8a, which shows the running time for the full-sweep propa-
gator with branching heuristic Derivative-1 for different combinations of θ and κ.

146

6.6 Conclusion

5 10
min. sup. κ

100

101

102

so
lv

in
g

ti
m

e
[s

]
CoverSize constraint

E = 2
E = 4
E = 6
E = 8

0 5 10
min. exp. infl. E

100

101

102

Stochastic constraint

κ = 2
κ = 4
κ = 6
κ = 8
κ = 10

(a) Solving times as a function of minimum support thresh-
old κ and minimum expected influence threshold θ, for a
typical example with the following characteristics: |Φ| =
65, |D| = 65, |T| = 225, |OBDD| = 493 241, and 52 trans-
actions in the database.

10−2 100 102

partial-sweep

10−2

100

102

fu
ll

-s
w

ee
p

Solving times [s]

2

4

6

8

10

12

m
in

.
su

p
.
κ

(b) Solving times of 25 top fake
news distribution problem instances,
for different (instance, κ, E) combina-
tions, using the full- and partial-sweep
propagators. Colour indicates mini-
mum support threshold κ.

Figure 6.8: Experimental results on the top fake news distributors problem setting (Sec-
tion 4.5).

Lower values of θ and κ correspond to looser constraints. As expected, we see
that solving times decrease as the constraints become stricter.

In Figure 6.8b, we compare the solving times of the full-sweep and partial-
sweep propagators (using branching heuristic Derivative-1) on the full set of 25
FIM problem instances, each combined with different (κ, θ) combinations. The
colour indicates the minimum support threshold κ. We observe that the full-
sweep propagator outperforms the partial-sweep version on almost all instances.
However, for large values of κ, we see that the partial-sweep propagator becomes
more competitive with, and in some cases even faster than, the full-sweep prop-
agator. We explain this by observing that for large values of κ, itemsets whose
support meet the threshold will likely be small. In the CoverSize algorithm, this
means that most decision variables will be fixed early in the search. Since in the
partial-sweep algorithm, the size of the active part of the OBDD tends to decrease
when decision variables are fixed, the active part likely shrinks dramatically early
on in the search. The benefits of the reduction in size then start to outweigh the
larger overhead.

6.6 Conclusion

In this chapter, we identified a problem with the decomposition approach to solv-
ing stochastic constraint (optimisation) problems (SCPs) as described in Chap-

147

Global SCMD propagation

ter 5: it does not guarantee generalised arc consistency (GAC) and may therefore
traverse the search space inefficiently. Instead, we proposed a new method that
guarantees GAC by design and is specifically suited for solving global stochastic
constraints on monotonic distributions (SCMDs). It operates on OBDD encod-
ings of probability distributions, leveraging the monotonicity of the underlying
probability distributions.

We gave an extensive description of two implementations of this global SCMD
constraint propagator, and showed that their incremental way of propagating re-
sults in linear time complexity. The benefit of the partial sweep implementation
is that it does not need traverse the complete OBDD in all cases; however, addi-
tional data structures are required to make this possible; the full sweep propaga-
tor always considers the full OBDD, but incurs a smaller overhead in its passes
through the OBDD.

We implemented both versions in the CP solver OscaR [132]. In an initial set
of experiments on a set of 52 examples problems from four different domains,
we demonstrated that our global SCMD propagation method is superior to a CP-
decomposition method. However, when comparing the global SCMD approach
in its two variations with the MIP-decomposition approach, we found that the
approaches perform complementarily, with none of the approaches consistently
outperforming the other. Small trends can however be observed.

Specifically, the global SCMD propagators scale better with the size of the
OBDD than the MIP-decomposition method. For smaller OBDDs, the full-sweep
implementation of the global SCMD propagator outperforms the partial-sweep
version, while this is less pronounced for larger OBDDs. The branching heuristics
in CP are important; a branching order that focuses on reducing the size of the
active part of the OBDD, leads to more efficient propagation for the partial-sweep
implementation, but also to larger search trees. Overall, the choice of parameter
settings is important to obtain good performance for both the SCMD and MIP
methods.

We also presented results that suggest that for larger OBDDs, the partial-
sweep algorithm becomes competitive with and might even outperform the full-
sweep algorithm. The bottleneck for creating larger OBDDs for our experiments
was ProbLog’s speed in grounding the probabilistic programs. Perhaps with dif-
ferent tools, we could create larger monotonic OBDDs. Recently, promising ef-
forts have been made towards opening up that grounding bottleneck [175], which
opens up a concrete avenue for future work on exploring the performances of the
full-sweep and partial-sweep algorithms further.

In this dissertation in general and this chapter in particular, we have limited

148

6.6 Conclusion

our attention to applications in network analysis, because such problems are com-
plex and have interesting monotonicity properties, and to applications that re-
quire maximisation of an expected value. It would be interesting to study how
well these approaches work in other types of problems. For example, we believe
our constraint propagation algorithm to be easily modifiable such that it can be
applied to problems where we require a lower bound on an expected value and
minimise the cardinality of the solution. We also expect our methods to find pos-
sible applications in the domains of FIM and in scheduling and vehicle routing
problems. Here we can exploit the fact that it is easy to combine our constraint
with other constraints in CP.

Naturally, some questions remain. While the theoretical asymptotic worst-
case time complexity of the partial-sweep propagator is the same as that of the
full-sweep propagator, in practice we find that the overhead of this propagator is
large. Based on our experiments, the cost of the overhead does not outweigh the
benefits of traversing a smaller part of the diagram, except for sufficiently large
instances and branching orders that reduce the size of the active part of the dia-
grams. Even so, whether an alternative approach can be developed with a smaller
overhead remains an open question.

A first step towards answering that question may be to take a careful look at
the observations presented in Section 6.4.2. Notice that addressing the first three
observations does not require the addition of much extra overhead; they could
all be dealt with by using priority queues. An obvious next step may therefore be
to implement a version of the SCMD propagator that is somewhat in between the
full-sweep and the partial-sweep propagator. For example: one that only imple-
ments the optimisations implied by O1 to O3, or a subset thereof.

Another direction of interest is to generalise the concept of monotonicity to
SDDs, and to develop a corresponding propagation algorithm. The partial-sweep
OBDD propagation algorithm that we presented in this chapter heavily relies on
the fact that OBDD nodes split on variable values. In SDDs however, nodes split
on how entire sub formulae, and thus on the values of sets of variables. Hence the
generalisation of our partial-sweep propagation algorithm to SDDs is not trivial.
Since SDDs can be made more succinct than OBDDs, we do think that this could
be an interesting line of future research.

We implemented our SCMD propagation algorithm in OscaR, so it is avail-
able to any OscaR user. However, for the benefit of those unfamiliar with OscaR

or those unwilling or unable to use OscaR, it would be good to implement ver-
sions of this propagation algorithm in other CP solvers as well. A key feature of
OscaR is its use of reversible data structures, providing convenient and efficient

149

Global SCMD propagation

support for backtracking. It would be interesting to know if and how our SCMD
propagation algorithms can be implemented efficiently in other CP systems.

A different question is whether we can develop stochastic constraint propa-
gators that do not require that the probability distribution be monotonic. These
constraints may either be more general, or also especially designed to work on
probability distributions with specific properties. Another interesting line of pos-
sible future work is to ask if we can develop propagation algorithms that operate
on SDDs rather than OBDDs. After all, SDDs can be more compact than OBDDs
and thus maybe yield propagation algorithms that are more efficient in practice.
We believe that the performance of the SCMD propagator, as presented in this
chapter, should provide sufficient encouragement to a future researcher to ex-
plore the research directions outlined above.

150

