
Optimal decision-making under constraints and uncertainty
Latour, A.L.D.

Citation
Latour, A. L. D. (2022, September 13). Optimal decision-making under
constraints and uncertainty. SIKS Dissertation Series. Retrieved from
https://hdl.handle.net/1887/3455662

Version: Publisher's Version

License:
Licence agreement concerning inclusion of doctoral
thesis in the Institutional Repository of the University
of Leiden

Downloaded from: https://hdl.handle.net/1887/3455662

Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/3455662

5
Decomposition methods for

solving SCPs

Solving stochastic constraint (optimisation) problems (SCPs) requires efficient prob-
abilistic inference and search. In this chapter, we propose a pipeline for effective
SCP solving, which consists of two stages. In the first stage, we compile the un-
derlying probability distribution of the input SCP into decision diagrams (DDs)
(ordered binary decision diagrams (OBDDs) or sentential decision diagrams (SDDs),
specifically). These diagrams are converted into arithmetic circuits (ACs), which
are decomposed into models that are solved using constraint programming (CP)
or mixed integer programming (MIP) solvers in the second stage. We show that,
to yield linear constraints in those models, DDs need to be compiled in a specific
form. We introduce a new method for compiling small SDDs in this form (OBDDs
are naturally in this form). We evaluate the effectiveness of several variations of
this pipeline on test cases in viral marketing and bioinformatics, and find that
MIP-based methods outperform CP-based methods on all our test instances. This

97

Decomposition methods for solving SCPs

chapter is based on the following publication:

� A.L.D. Latour, B. Babaki, A. Dries, A. Kimmig, G. Van den Broeck, and S. Nijs-
sen. ‘Combining Stochastic Constraint Optimization and Probabilistic Pro-
gramming — From Knowledge Compilation to Constraint Solving’. In: CP,
Springer. pp. 495–511. 2017.

5.1 Introduction

Recall from Section 4.1 that this work is partially motivated by the observations
that most SCP-related literature focuses on scheduling and planning problems,
whereas SCPs formulated on probabilistic networks remain much less studied,
and that there exists no generic language for programming stochastic constraint
optimisation problems. We addressed both of these limitations in Chapter 4.

The aim of this chapter is to advance the state of the art in SCP solving on a
third dimension, observing:

• There is no automatic pipeline for solving SCPs written in the new SC-ProbLog

language.

We address this limitation by building a pipeline on technology that is taken both
from the probabilistic reasoning literature and CP literature. For the probabilistic
reasoning component, we leverage knowledge compilation technology, demon-
strating how both OBDDs [26] and SDDs [46] can be used in this context, namely:
by putting hard constraints on DD representations of probability distributions.
In this chapter, our focus is primarily on SDDs, since they are known to lead to
smaller representations of distributions than OBDDs [24] (see also Section 2.4).

We remark that, in this work, we study the use of compiling propositional for-
mulae to OBDDs [26] and SDDs [46] to facilitate tractable weighted model counting
(WMC), in the context of SCP solving. Note that, in the constraint programming
(CP) literature, both OBDDs and SDDs are often employed as compact represen-
tations for the satisfying assignments of a constraint [70, 77]. Here, we use these
diagrams differently.

Specifically, we propose to convert the DDs into ACs, as described in Sec-
tion 2.5, which we can use to compute conditional probabilities in a time that is
linear in the size of the underlying DD. Part of the novelty of our approach lies
in then formulating a hard constraint on the AC and decomposing that constraint
(and thus the AC) into a set of local constraints.

We do this so we can translate a global constraint for which no propagation
algorithm exists, into a set of constraints for which propagation algorithms have

98

5.2 Decomposing and solving stochastic constraints

been developed and optimised for decades, to see how much we can benefit from
these in the context of solving SCPs. Finally, we solve these constraints using CP
and MIP technology.

Note that this modular approach to building an SCP solver has the advantage
of allowing us to use the best building blocks for the pipeline that are on offer,
instead of having to integrate different elements into one single solver. By us-
ing knowledge compilation as part of this pipeline, part of the model counting
problem can be solved in a preprocessing phase, by the knowledge compiler. The
resulting DD can then be passed on to the next phase, where it is used to enable
repeated querying, which is useful in finding an optimal strategy, or finding a
strategy that respects a certain constraint.

Another key technical contribution of this work is that we show that SDDs
need to satisfy strict criteria in order for them to yield linear representations
of probabilistic constraints. We introduce a new algorithm for minimising SDDs
within this normal form. This allows us to reduce the size of the resulting ACs,
while keeping the resulting constraint optimisation model linear, rather than
quadratic, and thus easier to solve for MIP solvers.

The remainder of this chapter is organised as follows. In Section 5.2, we
demonstrate how stochastic constraints on OBDD- and SDD-representations of
probability distributions can be decomposed for solving with CP or MIP technol-
ogy. In that section we also introduce the aforementioned normal form and our
new SDD minimisation algorithm, as well as a solving pipeline based on DD de-
composition. We present an experimental evaluation in Section 5.3, and conclude
this chapter in Section 5.4.

5.2 Decomposing and solving stochastic constraints

In this section we describe the pipeline that we propose in this chapter in more
detail.

Recall from Section 2.5 that, once we have compiled a probability distribu-
tion into a DD, we can transform that DD into an ACs to compute conditional
probabilities. Specifically, we can use ACs to compute the success probabilities
of residual probability-weighted propositional formulae φ|σ. A key observation
is that the constraint in Equation 1.1 essentially is a constraint on the strategy σ.
Recall that we encode probability distributions using DDs. Taking OBDDs as an
example, we encode a strategy by adding weights to the outgoing arcs of the de-
cision nodes. Thus, we can see Equation 1.1 as a constraint on the outcome of the
AC that encodes P (φ|σ), given the weights on the outgoing arcs of the probabilis-

99

Decomposition methods for solving SCPs

tic nodes of the underlying OBDD. We can also see Equation 1.1 as a constraint
the weights we can put on the outgoing arcs of the decision nodes in that OBDD,
to reflect a strategy. Because σ specifies value assignments to Boolean variables,
we can cast solving Equation 1.1 as a discrete constraint satisfaction problem.

In this section, we demonstrate how we can decompose a constraint on an
AC representation of a probability distribution into a (linear) program that can
be solved by a CP or MIP solver. We first show how this can be done for ACs ob-
tained from OBDDs, and then describe how we can do the same for ACs obtained
from SDD representations. For the sake of brevity, we will often refer to “decom-
posing a constraint on an AC derived from a DD representation of a probability
distribution” as “decomposing a DD“.

We close this section with a proposal for a SCP solving pipeline that uses these
DD decompositions.

5.2.1 Decomposing a stochastic constraint on an OBDD

Recall from Section 2.5.1 that we represent a specific strategy by labelling the
outgoing arcs of OBDD nodes labelled with decision variables with the values 0
and 1. Our aim is to solve Equation 1.1, which we interpret as a constraint on the
values we can use to label those arcs. Therefore, we can interpret Equation 1.1
as a constraint on the AC induced by the OBDD that describes the probability
distribution of an SCP.

Decomposition of a global constraint on an OBDD

We now show how we can decompose this global constraint on the OBDD into a
multitude of smaller, local constraints.

Example 5.2.1 (Decomposition of a constraint on an OBDD representation of a
probability distribution). Figure 5.1 shows an example of an OBDD representation of
a formula φ. We impose the constraint P(φ|σ) ≥ 0.4. Figure 5.1 also shows an example
of a decomposition of P(φ|σ) ≥ 0.4 on the whole OBDD, adding auxiliary variables ZY1 ,
ZY2 and ZX , whose domains include real numbers. This decomposition represents a CP
or MIP model of the constraint P(φσ) ≥ 0.4.

The next step to solving the global constraint, is to simply feed this set of
smaller, local constraints to a CP or MIP solver. However, the decomposition in
Figure 5.1 contains quadratic constraints, as illustrated in the following example,
which are hard to solve for MIP solvers and CP solvers.

100

5.2 Decomposing and solving stochastic constraints

P(φ)

X

Y1 Y2

0 1

0.9
0.1

0.4
0.6

0.7
0.3

P(φ | σ) ≥ 0.4

0.1 · ZY1 + 0.9 · ZX ≥ 0.4

ZX := (1− X) · ZY1 + X · ZY2

ZY1 := 0.6 ·Y
ZY2 := 0.6 ·Y + 0.3 · (1−Y)

X, Y ∈ {0, 1}
0 ≤ P(φ|σ) ≤ 0.6

0 ≤ ZX ≤ 0.6

0 ≤ ZY1 ≤ 0.6

0.3 ≤ ZY2 ≤ 0.6

Figure 5.1: A small OBDD (left) with three stochastic variables (circular nodes) and two
decision variables X and Y (rectangular nodes). The two nodes corresponding to decision
variable Y are indexed for clarity. The decomposition on the right is constructed using
Equation 2.11 (page 39).

Example 5.2.2 (Quadratic constraint). Figure 5.2 shows a graphical representation of
the constraint in Example 5.2.1. It particularly shows a relaxation (recall the discussion
of MIPs in Section 3.4) of the constraint. The coloured lines, labelled with values 0.0 to
0.7 represent contours on which the combination of (relaxed) X and Y values yield those
particular values for 0.1 · ZY1 + 0.9 · ZX , and thus for P(φ | σ).

We have added the extra constraint of ∑D∈{X,Y} D ≤ 1 to the figure, resulting in a
SCP that corresponds to the constraint satisfaction problem (CSP) in Example 3.3.2,
and shaded the feasible region. It is easy to read from the figure that the only solution is
(X = 0, Y = 1), with value 0.6, as in Example 3.3.2

Linearising quadratic constraints

Note that, while we can easily read the only solution to the SCP described above
directly from Figure 5.2, the curved lines, due to the quadratic constraint, make it
harder for the MIP solvers in particular to apply techniques such as branch-and-
bound and cutting planes to narrow down the search towards integer solutions.

We therefore linearise this decomposition, for easier solving. A constraint of
the form A = B · C can be linearised in the following cases:

1. At least one of the two variables in {B, C} is a constant.

2. At least one of the two variables in {B, C} is a Boolean variable.

101

Decomposition methods for solving SCPs

0.0 0.2 0.4 0.6 0.8 1.0 1.2

X

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Y

(0,0)

(0,1)

(1,0)

(1,1)

X ≥ 0

Y ≥ 0

X + Y ≤ 1

Quadratic constraint

0.0

0.1
0.2

0.3

0.4

0.5

0.6

0.7

Figure 5.2: Visualisation of the quadratic constraint 0.1 · ZY1 + 0.9 · ZX ≥ 0.4 from Fig-
ure 5.1, as function of the values of X and Y. The added constraint X + Y ≤ 1 makes this
SCP correspond to the one described in Example 3.3.2.

We obtain constraints that encode the OBDD by simply applying Equa-
tion 2.11, which we repeat here, for convenience:

v(r) := w(r) · v
(
r+
)
+ (1− w(r)) · v

(
r−
)

,

to all (internal) nodes of the OBDD. An OBDD node r can be labelled either with a
decision variable, or with a stochastic variable. If r is labelled with a decision vari-
able, we can apply the big-M method [127] (with M ≤ 1, because all real values
are probabilities) to linearise the constraint expressed by Equation 2.11. If r is la-
belled with a stochastic variable, the arguments on either side of the ‘+’-sign each
consist of a real number (w(r) or 1−w(r)), multiplied by an expression (v(r+) or
v(r−)). If an expression is linear, multiplication with a real number preserves lin-
earity. Summing two linear expressions yields another linear expression, making
the constraint obtained by applying Equation 2.11 linear if r is labelled with a
stochastic variable. Consequently, one of the above two cases always holds for
all multiplications in the decomposition of a stochastic constraint on an OBDD
representation of a probability distribution.

We illustrate this with the following example:

Example 5.2.3 (Linearising a quadratic stochastic constraint). The quadratic con-

102

5.2 Decomposing and solving stochastic constraints

straint ZX := (1− X) · ZY1 + X · ZY2 in Figure 5.1 (where X is a Boolean, as shown in
Figure 5.1) can be linearised as follows:

ZX := ZX> + ZX⊥

0 ≤ ZX> ≤ 1

0 ≤ ZX⊥ ≤ 1

ZX> ≤ X

ZX> ≤ ZY2 + (1− X)

ZX> ≥ ZY2 − (1− X)

ZX⊥ ≤ 1− X

ZX⊥ ≤ ZY1 + X

ZX⊥ ≥ ZY1 − X

(5.1)

We linearise the model by repeating this method for all quadratic constraints.

5.2.2 Decomposing a stochastic constraint on an SDD

The decomposition of a constraint on a probability distribution represented by
an SDD is very similar to that of a constraint on a probability distribution that
is represented by an OBDD. One important difference is that not every SDD can
be decomposed into a linear program. In the general case, SDDs yield quadratic
programs, which are typically harder or impossible to solve for MIP solvers than
linear programs. As we expect these constraints to be nonpositive semidefinite in
the general case, we expect that we cannot apply quadratically constrained quadratic
program (QCQP) solvers, either. We delegate the finding of a proof for this hunch
to future work.

We first show why SDDs cannot be decomposed into linear models in the
general case . Then, we identify a specific property of SDDs that does allow SDDs
with that property to be decomposed into linear programs. Finally, we show how
we can create an SDD minimisation algorithm for SDDs with this property.

From SDD to CP or MIP model

To see why we cannot linearise any decomposed constraint on an SDDs, recall
the method for creating a linear model out of a constraint on an OBDD represen-
tation of a probability distribution as described in Section 5.2.1, and observe the
difference between Equation 2.11 and Equation 2.12, which we repeat here for
convenience:

Equation 2.11: v(r) := w(r) · v
(
r+
)
+ (1− w(r)) · v

(
r−
)

, (OBDD node), and

Equation 2.12: v(r) := v
(

p`
)
· v
(

s`
)
+ v (pr) · v (sr) (SDD node).

While constraints generated with Equation 2.11 can always be linearised (be-
cause w(r) and (1−w(r)) are either constants or Booleans), this is not the case for
constraints generated with Equation 2.12. In that equation, the two arguments on
either side of the ‘+’-sign are each a product of two expressions, e.g., v

(
p`
)

and

103

Decomposition methods for solving SCPs

v
(

s`
)

on the left-hand side of the ‘+’. Even if those two expressions are them-
selves linear, their product can only be linearised efficiently if at least one of the
expressions is constructed using only constants (i.e., weights corresponding to
stochastic variables, in which case the product is trivially linear), or using only
decision variables (in which case the product can be linearised using the big-M
method).

We now identify a class of SDDs whose decompositions can be linearised.

Single-mixed path vtrees

Recall the description of vtrees in Section 2.4.3, and recall that they generalise
the concept of variable order. Recall also that, while SDDs do not require a total
order, we can derive a total order O from a vtree by traversing it in a left to right
manner, noting the variables that label the leaves in the order in which they are
encountered in this traversal. Different vtrees can thus correspond to the same
total order O.

We now show that it suffices to constrain the vtrees to ensure that the decom-
position of the SDDs that respect them can be linearised. Recall that for each SDD
decomposition node, the respected vtree determines the scopes of sub formulae
represented by the prime and the sub. We observe the following: if all left-hand
(right-hand) descendants of an internal vtree node n are stochastic variables, then
for each SDD decomposition node (p, s) whose parent respects n, it holds that all
variables occurring in n’s prime p (sub s) are stochastic as well. A similar property
holds for decision variables.

Recall from Section 5.2.2 that if the sub or the prime of a decomposition node
represents a constant or a Boolean variable, this means that the constraints asso-
ciate with those decomposition nodes can be linearised. Note that, if sc(p) ⊆ T,
the only variables in the scope of prime p are stochastic ones. Since stochastic vari-
ables can be considered as constants for the MIP model, we can precompute the
corresponding value for the prime, effectively eliminating the MIP model vari-
able associated with that prime. Similarly, if sc(p) ⊆ D, the sub formula rep-
resented by a prime p consists only of decision variables, which can only take
Boolean values in the decomposition. Since we can linearise all operations on
Boolean variables [127], any prime containing only decision variables can be ex-
pressed by a Boolean variable with linear relations to other variables. Thus, in
each of these two cases, the expression represented by the prime can be linearised
and hence the product represented by the SDD decomposition node as well. The
same holds for subs.

This leads us to define the concept of mixed and pure nodes in a vtree. A pure

104

5.2 Decomposing and solving stochastic constraints

node is an internal node whose leaf descendants all are variables of the same type
(either stochastic or decision), while a mixed node is an internal node that has leaf
descendants of both types. We state that an SDD can be linearised into a MIP
model if the vtree that it respects has the single mixed path (SMP) property.

Definition 5.2.1. Given a vtree on variables of two distinct classes (e.g. decision and
stochastic). This vtree has the single mixed path (SMP) property (and is called an SMP
vtree) if, for each of its internal nodes n, the following holds: either both children of n are
pure nodes, or one child of n is pure and the other child is mixed. As a consequence, if an
SMP vtree has mixed nodes, all mixed nodes occur on the same path from the root of the
vtree to the lowest mixed node.

SMP-preserving SDD minimisation

Recall that SDDs that respect right-linear vtrees are equivalent to OBDDs. One
can easily verify that a right-linear vtree has the SMP property: if it has an single
mixed path, it is on the right spine of the vtree. From this follows that OBDDs can
be linearised. However: right-linear vtrees generally do not yield the smallest
SDDs. Since the size of the SDD determines the size of the resulting MIP model,
and thus likely the solving time, small SDDs are preferable as input for the MIP
model builder.

Choi and Darwiche have proposed a local search algorithm for SDD minimi-
sation [36]. This algorithm considers three operations on the vtree: right-rotate,
left-rotate (each well-known operations on binary trees) and swap. When a swap
operation is applied to an internal node, the sub vtrees rooted at its children are
swapped. Given a (sub) vtree, the greedy local search algorithm of Choi and Dar-
wiche loops through its neighbourhood of different vtrees by applying consecu-
tive rotate and swap operations, trying to find a vtree that yields a smaller SDD.
Recall from Section 2.4.1 that we expect SDD minimisation to be NP-hard.

Generally, this minimisation produces vtrees that do not have the SMP prop-
erty, even if the initial vtree did, because rotation may remove this property.

A desirable property of Choi and Darwiche’s algorithm is the following: the
three local moves considered are sufficient to turn any vtree on a certain set of
variables into any other vtree on the same set of variables. Consequently, the local
moves in principle allow complete traversal of the search space of vtrees.

Here, we propose a simple modification of Choi and Darwiche’s algorithm:
we use the same local moves as their algorithm does, but any move that leads to
a vtree that violates the SMP property is immediately rejected.

While this modification is conceptually easy, a relevant fundamental question

105

Decomposition methods for solving SCPs

x

y

LL b

a

rr(x)

lr(y)

y

LL x

b a

Figure 5.3: Rotate operations on an SMP vtree. Node LL is the lowest variable in the vari-
able ordering induced by these vtrees. Nodes x and y are internal; a and b are sub vtrees.

is whether under this modification it is still possible to traverse the space of SMP
vtrees on a fixed set of variables completely. We show that this is indeed the case.

In the following we refer to the leaf node that represents the variable that is
lowest in the order associated with a vtree as LL (lowest leaf).

Lemma 5.2.1. Let y be the parent and x the grandparent of the LL in an SMP vtree.
Right rotate on x maintains the SMP property for the vtree rooted at y.

Proof. Consider the left SMP vtree in Figure 5.3. Given that this vtree satisfies the
SMP property by assumption, sub vtrees a and b cannot both be mixed, but one
of them can be. Now consider the following cases:

Both a and b are pure and of the same class as LL: Lemma 5.2.1 holds trivially.

Both a and b are pure, not each of the same class as LL: Any class assignment
to a and b will preserve the SMP property.

Node b is pure, node a is mixed: Since b is of the same class as LL (by assump-
tion), node y is pure and node x is mixed. After applying right-rotate on
node y, both y and x are mixed, and the SMP property is preserved.

Node b is mixed, node a is pure: Node a can belong to any class, since both node
y and node x are mixed before as well as after applying right-rotate to y,
preserving the SMP property under rotation.

These cases cover all possibilities for the classes of a and b.

Note that the SMP vtree described above may be a sub vtree of a larger vtree.
The fact that the right-rotate operation does not change the nature (mix or pure)
of the root of this sub vtree, leads to the following corollary:

Corollary 5.2.1. A right-rotate operation on the grandparent of the LL node does not
change the SMP status of the full vtree.

106

5.2 Decomposing and solving stochastic constraints

Lemma 5.2.2. Given an SMP vtree, from which we derive total variable order O and a
particular node LL. We can always obtain an SMP vtree from which we can derive the
same total order O, in which the LL is the left child of the root, through a series of right-
rotate operations, without ever in the process transforming it into a vtree that violates the
SMP property.

Proof. A right-rotate operation on an internal vtree node decreases its left child’s
distance to the root of the vtree by one. Repeated applications of right-rotate on
LL’s grandparent ultimately makes LL’s parent the vtree’s root. By Lemma 5.2.1
and Corollary 5.2.1, the SMP status of the vtree never changes in this process.

Lemma 5.2.3. Given an SMP vtree on order O, we can always obtain a right-linear
vtree on the same order, through a series of right-rotate operations, without ever in the
process transforming it into a vtree that violates the SMP property.

Proof. By Lemma 5.2.2 we can turn any SMP vtree in one for which the LL is the
left child of the root. This vtree can be made right-linear by recursively applying
this method to the root’s right child.

Lemma 5.2.4. A right-linear SMP vtree with variable order O can be transformed in
any SMP vtree on the same variable order by a series of left-rotate operations without ever
in the process transforming into a vtree without the SMP property.

Proof. Since left-rotate is the dual operation of right-rotate, a sequence of right-
rotate moves transforming any vtree to a right-linear one through right-rotate
operations, can simply be reversed through left-rotate operations to turn a right-
linear vtree in any other (on the same variable order).

Note that rotate operations preserve the derived total order of the vtree,
traversing the vtree from left to right, we still encounter the leaves in the same
order. The only thing that changes, is the vtree’s shape. However, the space of
possible vtrees on a fixed set of variables is larger, since different total variable
orders exist. The total order of variables is only changed by the application of
swap operations.

Lemma 5.2.5. Any right-linear vtree on variable order O can be transformed into a
right-linear vtree on any other total variable order O′ through a series of rotate and swap
operations without ever in the process transforming into a vtree that violates the SMP
property.

Proof. Observe that any right-linear vtree satisfies the SMP property. Observe that
if we can reverse the mutual total order of two adjacent variables (e.g. A ≺ B ≺

107

Decomposition methods for solving SCPs

C ≺ D becomes A ≺ C ≺ B ≺ D), we can create any total variable order by
repeatedly reversing the orders of adjacent variables. This reversal in the total
order is simple to achieve. Suppose that node b in the right vtree of Figure 5.3
is a single variable, as is LL. We can make LL and b swap places by applying a
left-rotate on y, resulting in the left vtree of Figure 5.3, and then applying a swap
operation on y, followed by a right-rotate operation on x.

Theorem 5.2.1. Any SMP vtree can be transformed into any other SMP vtree on the
same variable through a series of rotation and swap moves, without ever in the process
transforming into a vtree that does not have the SMP property.

We conclude that an SMP-preserving minimisation algorithm that applies
only swap and rotate operations can in principle convert any SMP vtree into any
other SMP vtree on the same variables. Note that, in principle, we could use an
unrestricted minimisation algorithm. However, the search space of possible SMP
vtrees on a given total orderO is only a small part of the search space of all vtrees
on O. Therefore, it might not be easy or quick to transform a minimised SDD
that violates the SMP property back into one that respects it, and we choose to
adapt the minimisation algorithm in such a way that the vtree never loses the
SMP property. Thanks to the above theorem, it is possible to traverse the entire
search space of SMP vtree for a given total order, even though the path from one
vtree to another might be very long.

Using the insights above, we implemented a greedy SMP-preserving min-
imisation algorithm as follows, building on the minimisation algorithm imple-
mented in UCLA’s sdd 1.1.1 library1. First, we compile an SDD without any min-
imisation. Since in the default settings, the resulting SDD respect a right-linear
vtree, by Definition 5.2.1 this SDD has the SMP property. We then minimise this
SDD by iteratively selecting an internal vtree node and exploring the neighbour-
hood of possible vtrees by performing SMP-preserving left-rotate, right-rotate
and swap operations on it. We greedily choose that operation that reduces the
size of the SDD the most. We repeat this process until the SDD size converges.

5.2.3 A decomposition-based SCP solving pipeline

In Sections 4.2 and 4.3 we showed how to model and program SCPs, and in Sec-
tion 1.3 we identified two components to SCP solving complexity: probabilistic
inference and search space traversal. Then, in Section 2.5, we showed how we
can use the compact truth table representations that decision diagrams offer to

1Available at reasoning.cs.ucla.edu/sdd

108

http://reasoning.cs.ucla.edu/sdd/

5.2 Decomposing and solving stochastic constraints

tractably perform online probabilistic inference. We briefly argued for the use of
CP and MIP technology for efficient search space traversal in Sections 3.3 and 3.4.

In this chapter we described how we can combine these ingredients to create
constraint programs and mixed-integer programs that encode SCPs that can be
solved efficiently.

In order to solve SCPs, we propose the following decomposition-based
pipeline, see also Figure 5.4:

Step 1: Model the problem using a probabilistic network and (stochastic) con-
straint(s) or optimisation criterion.

Step 2: Program the problem using SC-ProbLog.

Step 3: Model the program for the queries present in the optimisation criterion
of the SCP into a set of propositional formulae Φ.

Step 4: Compile a multi-rooted OBDD or SDD ∆, such that each root encodes
the conditional success probability P(φ | σ) of one of the queries φ ∈
Φ, using possibly SMP-preserving minimisation algorithms for the SDD
compilation to guarantee linearised models.

Step 5: Convert ∆ into a multi-rooted AC (see Section 2.5), and then decompose
this AC into a set of constraints, using the big-M method to linearise con-
straints when appropriate.

Step 6: Add the (stochastic) constraints to the set of constraints.

Step 7: Add the (stochastic) optimisation criterion to the resulting CP or MIP
model.

Step 8: Use an off-the-shelf CP or MIP solver to find the optimal solution.

Note that, while we include OBDDs in the pipeline for reasons of general-
ity, in this chapter, the focus in primarily on SDDs. Recall from Section 2.5 that
SDDs that respect a right-linear vtree are actually OBDDs and that SDDs can be
more succinct than OBDDs, once minimised. This motivates our choice to focus
on SDDs in this chapter.

109

Decomposition methods for solving SCPs

model

problem

(Step 1)

encode into

SC-ProbLog

program

(Step 2)

ground into

propositional

formulae

(Step 3)

compile

into DD

(Step 4)

decompose

into CP or MIP

(Steps 5 to 7)

solve with

CP or MIP

solver

(Step 8)

a

b

c d0.4
0.8

0.1
0.3

maximise ∑φ∈Φ ρφ · P (φ | σ),

subject to ∑D∈D D ≤ k

person(alexa). person(claire). 0.4:: dir(alexa ,behrouz). 0.8:: dir(alexa ,claire).

person(behrouz). person(daniel). 0.1:: dir(behrouz ,claire). 0.3:: dir(claire ,daniel).

?:: gets_free_sample(P) :- person(P).

influences(X,Y) :- dir(X,Y). buys(X) :- gets_free_sample(X).

influences(X,Y) :- dir(Y,X). buys(X) :- influences(X,Y), buys(Y).

{ gets_free_sample(P) => 1 :- person(P). } k. #maximise { buys(P) => 1 :- person(P). }.

φa = Da ∨ (Db ∧ (Tab ∨ (Tbc ∧ Tac))) ∨ (Dc ∧ (Tac ∨ (Tab ∧ Tbc))) ∨ (Dd ∧ Tcd ∧ (Tac ∨ (Tab ∧ Tbc)))

...

φd = Dd ∨ (Dc ∧ Tcd) ∨ (Db ∧ Tbc ∧ Tcd) ∨ (Da ∧ Tac ∧ Tcd) ∨ (Db ∧ Tba ∧ Tac ∧ Tce) ∨ (Da ∧ Tab ∧ Tbc ∧ Dcd)

OBDD

or

SDD

CP

solver

Gecode

or

MIP

solver

Gurobi

Figure 5.4: Overview of the decomposition-based SCP solving pipeline we propose in this
chapter.

110

5.3 Experimental evaluation

5.3 Experimental evaluation

We state some questions about the approach described in the previous section.
Then we describe the experiments that we performed to answer these questions.

5.3.1 Research questions

Recall that the size of a MIP or CP model is linear in the size of the SDD represen-
tation of the probability distribution on which we impose a stochastic constraint.
We expect smaller models to be faster to solve. However: minimising an SDD
takes time. Furthermore, when quadratic constraints are allowed, we expect to
obtain smaller SDDs; however, solving quadratic problems using CP may take
longer than solving MIPs. We pose the following questions:

Q2 How do SDD sizes depend on the choice of minimisation algorithm?

Q3 How do the calculation times for the full toolchain compare for CP and MIP
solvers, with and without appropriate minimisation?

Q4 How do the computation times for different phases of the algorithm compare
to each other?

To answer these questions, and to demonstrate that SC-ProbLog programs can
be solved in practice, we apply our algorithms to different SCPs. Of course, the
constraints determine problem hardness, which begs the question:

Q1 Which threshold settings are useful for an evaluation of the solving times?

5.3.2 Experimental setup

We briefly describe our experimental setup and some details on the problem in-
stances we used for our experiments.

Software and hardware

We implemented the stochastic constraint component of SC-ProbLog2 in Python

3.4, building on the existing ProbLog 2.1 [59] implementation. ProbLog 2.1 uses
UCLA’s sdd 1.1.1 library [36], which is implemented in C, for SDD compilation.3

We built on this code to implement our SMP-preserving SDD-minimisation algo-
rithm. To convert constraints on SDDs representations of probability distributions
into MIP models, we used Gurobi 6.52, which provides a convenient modelling

2Available at github.com/ML-KULeuven/problog/tree/sc-problog.
3Available at reasoning.cs.ucla.edu/sdd.

111

https://github.com/ML-KULeuven/problog/tree/sc-problog
http://reasoning.cs.ucla.edu/sdd/

Decomposition methods for solving SCPs

Table 5.1: Some characteristics of the problem instances for the experiments in this sec-
tion. We give the extracted community and variant of the problem we formulate on that
network (see Section 4.5). We also provide the size of the set(s) of interest |Φ| and the
number of decision variables |D| in the SC-ProbLog encoding of each problem. For each
problem, we give the constraint threshold k or θ and objective value vobj (‘n/a’ denotes a
problem that has no solution for that threshold).

instance problem type |Φ| |D| threshold vobj

spine16, variant 1 sparsification 23 33 k = 15 14.4
spine16, variant 2 sparsification 23 36 θ = 6.9 8
spine27, variant 1 sparsification 13 76 k = 25 10.2
spine27, variant 2 sparsification 13 76 θ = 6.5 8
spine27, variant 3 sparsification 26 86 θ = 1.3 9.5
spine27, variant 4 sparsification 13 71 θ = 6.5 52
hepth47, variant 1 spread of influence 20 20 k = 10 3.2
hepth47, variant 2 spread of influence 20 20 θ = 2 6
hepth5, variant 1 spread of influence 10 33 k = 20 2.8
hepth5, variant 2 spread of influence 10 33 θ = 5 n/a

interface through gurobipy.4 We built our CP models using Gecode 5.0.0. We used
Gurobi 6.52 as MIP solver and Gecode 5.0.0 as CP solver.5

We ran our experiments on a machine that we call JABBA. It has an Intel Xeon
E5-2630 processor and 512GB RAM, running under Red Hat 4.8.3-9. For each in-
dividual computational step of the pipeline (Steps 3, 4 and 8) we used a timeout
on our experiments of 3 600 s (1 hour).

Problem instances

For our experiments we use instances obtained from the spine [133] and
hepth [131] datasets described in Section 4.5. We selected specific communities
that we refer to as spine16, spine27, hepth47 and hepth5 in our results, and sum-
marise some of the characteristics of the resulting problem instances in Table 5.1.

5.3.3 Results

To answer Q1, Figure 5.5 shows solving times for the hepth47-v1 problem, for
different thresholds. As expected, we find that thresholds that are not very strict

4Available at www.gurobi.com.
5Available www.gecode.org.

112

www.gurobi.com
www.gecode.org

5.3 Experimental evaluation

Table 5.2: Performance in seconds of the different methods on the hardest instances (see
Table 5.1) for the full pipeline. We show the solving times for SDDs obtained with compi-
lation with no minimisation (tnone), with SMP minimisation (tsmp) and with default min-
imisation (tde f ault) for Gurobi and Gecode. We indicate a timeout with ‘t/o’.

Gurobi Gecode

instance tnone tsmp tnone tde f ault

spine16, variant 1 3.9 3.4 1 389.5 591.4
spine16, variant 2 4.1 3.9 70.9 31.4
spine27, variant 1 5.9 5.6 t/o t/o
spine27, variant 2 4.7 5.7 t/o 1 878.2
spine27, variant 3 443.2 471.3 t/o t/o
spine27, variant 4 23.3 21.9 222.9 8.6
hepth47, variant 1 545.8 412.7 t/o 130.9
hepth47, variant 2 188.6 163.8 2 859.9 6.9
hepth5, variant 1 2 076.8 1 185.7 t/o t/o
hepth5, variant 2 364.6 346.4 t/o t/o

or loose, require the longest solving times. We performed similar experiments for
the other problem settings to systematically identify the threshold for which each
problem was the hardest, which we then chose as test cases for the SCP solving
method comparison.

To answer Q2, Figure 5.6 shows a comparison of the size reductions obtained
by the SMP-minimisation algorithm and the default minimisation algorithm pro-
vided by the sdd library. We find that the SMP minimisation algorithm typically
halves the size of the initial SDD. The default minimisation typically reduces the
size of the SDD by one or two orders of magnitude.

To answer Q3, we summarise the performance of the four methods on our
test cases in Table 5.2. For the hepth5 problem we selected the ten highest-degree
nodes for the queries, since the program could not be grounded within one hour if
we selected all 33 nodes in the problem for querying. This reduced the grounding
time to about 120 seconds. For the other test cases we have selected all queries in
the problem, with grounding times in the range of 1–5 seconds.

We observe that without any minimisation of the SDD, Gurobi consistently
outperforms Gecode. Furthermore, we observe that the difference made by SDD
minimisation is larger for the Gecode methods than for the Gurobi methods. This
can largely be explained by the results in Figure 5.6, and by those in Figure 5.7,

113

Decomposition methods for solving SCPs

0 5 10 15 20

threshold [theory size]

0

200

400

600

800

ti
m

e
[s

]

Figure 5.5: Example of performance of
Gurobi on a decomposed non-minimised
SDD for different thresholds, for problem
hepth47, variant 1.

0 2 4 6 8

without minimisation ×105

0

2

4

6

8

w
it

h
m

in
im

is
a
ti

o
n

×105

equal size

smp

default

equal size

smp

default

Figure 5.6: Comparison of size reduction
by SDD minimisation algorithms.

0 10 20 30 40 50 60

without minimisation [s]

0

10

20

30

40

50

60

w
it

h
m

in
im

is
a
ti

o
n

[s
]

equal time

smp

default

Figure 5.7: Comparison of SDD compila-
tion times.

0.
5

1.
0

1.
5

2.
0

2.
5

without minimisation [s]×103

0.5

1.0

1.5

2.0

2.5

w
it

h
m

in
im

is
a
ti

o
n

[s
]

×103

equal time

smp (Gurobi)

default (Gecode)

Figure 5.8: Comparison of full pipeline
solving times for the two solvers.

which answers Q4. The latter results show that generally, compiling SDDs is a
matter of seconds, whether they are being minimised or not. The exception is the
hepth5 problem, which takes tens of seconds to compile into an SDD when using
SMP minimisation. Observe from the table that minimisation is still useful here,
as it reduces solving time enough to make up for the extra minimisation time. We
note that the minimisation algorithms are based on heuristics, and minimisation
speed-up may lie in the improvement of these heuristics.

114

5.4 Conclusion

Finally, Figure 5.8 shows that the time that is gained during the optimisation
part of the entire solving chain, can be orders of magnitude larger than the time
lost by minimising the SDD. We do note that, since compiling the SDD can be
done in seconds, this effect is less noticeable for the smaller problems.

5.4 Conclusion

In this chapter, and in Section 4.3, we showed how we can combine generic
probabilistic programming technology (in the form of the SC-ProbLog program-
ming language and knowledge compilation) and CP and MIP solvers (Gecode and
Gurobi) to solve the type of SCPs that we described in Section 1.2. We combined
these elements into a pipeline for solving these problems.

In constructing this pipeline, we presented two key contributions. The first is
the decomposition of a hard constraint on an AC representation of a probability
distribution (derived from its SDD representation), into a multitude of local con-
straints, such that they can be fed directly into an off-the-shelf CP or MIP solver.

The second key contribution in this chapter is the SDD minimisation algo-
rithm that preserves properties that ensure that a constraint on an SDD repre-
sentation of a probability distribution can be translated into a MIP model that is
linearisable, while minimising the size of the SDD. This minimisation algorithm
preserves a property of the vtree that defines the variable order of the SDD, which
we call the SMP property.

In our experiments, we evaluated different variants of this pipeline on a range
of problem instances from two different domains, exploring different combina-
tions of stochastic constraints and optimisation criteria, and linear constraints
and optimisation criteria. We showed that the pipeline that uses the MIP solver
Gurobi consistently solved these instances faster than the pipeline that used the
CP solver Gecode.

We also compared the running times of the pipelines when they use no SDD
minimisation (which makes the compilation step fast, but results in larger mod-
els), or when they use SMP minimisation (in the case of the pipeline that uses
Gurobi) or default minimisation (in the case of the pipeline that uses Gecode). Here
we found that in both pipelines, minimisation consistently leads to shorter over-
all running times. In some cases minimisation makes the difference between a
problem being solvable within the one hour time limit, or not. For the problems
that are solvable within that time, minimisation can decrease the overall solving
time with up to two orders of magnitude.

We note that a somewhat related study by Hemmi et al. also proposes a

115

Decomposition methods for solving SCPs

decomposition-based approach to solving SCPs [78]. There are, however, some
important differences in both the scope and approach between their work and
ours. While Hemmi et al. solve multi-stage SCPs, our focus is on single-stage ones.
In multi-stage SCPs, the solution consists of a policy that dictates which decisions
should be made in each stage as a scenario unfolds. Hemmi et al.’s methods solve
multi-stage SCPs by generating all possible scenarios for the next stage, solving
the SCP for each scenario, and continuing recursively. This decouples the stages
from each other (which they call “relaxation”), and hence may cause constraints
on decisions that span multiple stages to become decoupled. They address this
by detecting which constraints are violated, pruning those partial solutions from
the search space, and iteratively refine the solution.

Hemmi et al.’s approach is suitable for multistage problems, while ours only
supports single-stage problems. However, since their method requires all scenar-
ios to be generated, it can only handle small problems. While their experiments
show results for problems with up to a total of 343 possible scenarios and 150
decisions (all solved within 800 seconds), the largest problem in our problem set
has 6.7 million scenarios, and 86 decisions (solved within 444 seconds by our
fastest method, but not solved within an hour by our slowest). Note that the ap-
proach of Hemmi et al. is highly parallelisable, and their results were run using a
parallelised implementation, using 32 hyper threaded cores. In our experiments,
Gurobi is the only solver that is parallelised and attempts to use as many threads
as possible, which was 8 in our case.

While the results presented in this chapter are clearly encouraging, the meth-
ods we presented do have some weaknesses. Chief among them is that, in de-
composing the constraint on the AC, we lose information about the structure of
the underlying SDD. We expect that a dedicated propagation algorithm for such
a constraint that exploits the structure instead of erasing it, may well outperform
the CP-based implementation of the decomposition method, if such a propaga-
tor can be devised and implemented. The resulting method may then become
competitive with the MIP-based decomposition method.

116

