
Optimal decision-making under constraints and uncertainty
Latour, A.L.D.

Citation
Latour, A. L. D. (2022, September 13). Optimal decision-making under
constraints and uncertainty. SIKS Dissertation Series. Retrieved from
https://hdl.handle.net/1887/3455662

Version: Publisher's Version

License:
Licence agreement concerning inclusion of doctoral
thesis in the Institutional Repository of the University
of Leiden

Downloaded from: https://hdl.handle.net/1887/3455662

Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/3455662

Part II

Contributions

73

4
Stochastic constraint

(optimisation) problems

In this chapter we describe how to formally model stochastic constraint (optimisa-
tion) problems (SCPs) mathematically, and how to represent the probability distri-
butions that they are formulated on in such a way that we can use weighted model
counting (WMC) to perform probabilistic inference. We then introduce a new rep-
resentation language, SC-ProbLog, as a convenient way to model not only the
complex probability distributions that result from the probabilistic networks on
which we formulate the SCPs in this work, but also their associated constraints
and optimisation criterion. Later in the chapter, we put SCPs and the methods we
propose for modelling and solving them in the context of the existing literature
on stochastic SAT (SSAT), probabilistic programming, stochastic constraint pro-
gramming and knowledge compilation for solving stochastic optimisation prob-
lems. Finally, we describe a number of typical problem settings that we use in
later chapters to evaluate the SCP solving methods proposed therein. Parts of

75

Stochastic constraint (optimisation) problems

this chapter are based on the following publication:

� A.L.D. Latour, B. Babaki, A. Dries, A. Kimmig, G. Van den Broeck, and S. Nijs-
sen. ‘Combining Stochastic Constraint Optimization and Probabilistic Pro-
gramming — From Knowledge Compilation to Constraint Solving’. In: Prin-
ciples and Practice of Constraint Programming — 23rd International Conference,
CP 2017, Melbourne, VIC, Australia, August 28 – September 1, 2017, Proceedings,
Springer. pp. 495–511, 2017.

4.1 Introduction

The main focus of this work is on solving SCPs such as the ones described in
Section 1.1. This work was partially motivated by the following observations on
the limitations of the existing SCP solving literature:

• Most publications on SCPs focus on specific types of problems: scheduling and
planning problems, typically.

• Existing languages for modelling modelling stochastic constraint optimisation
problems are less suitable for modelling SCPs formulated on probabilistic net-
works.

To address the first limitation, we note that there is a rich literature on solving
SCPs in the domains of scheduling and planning [7, 57, 78, 82, 110, 113, 150, 171],
with methods proposed for solving problems in those domains, specifically. Tools
like MiniZinc [130] and the Advanced Interactive Multidimensional Modeling System
(AAIMS)1 are very well-equipped to model these problems. We discuss some of
these problems and solving methods in Section 4.4.

However, to the best of our knowledge, no such methods exist for conve-
niently modelling and solving the examples of SCPs described in Section 1.1.
They are specified over a very different type of distribution than common in ex-
isting SCP solving systems: probabilistic networks, i.e., networks in which edges
exist with a certain probability.

Given the range of different application domains that these examples cover,
from marketing to governance to bioinformatics, we conclude that SCPs outside
the domains of planning and scheduling are plentiful. We thus aim to extend the
focus of SCP solving research to also include these kinds of problems.

Therefore, in this chapter we introduce a programming language that can be
used to model these SCPs, and potentially many other SCPs. In later chapters, we
introduce tools for solving the resulting models.

1Available at www.aimms.com.

76

www.aimms.com

4.2 Modelling SCPs

Addressing the second limitation, we propose to exploit the fact that in re-
cent years, significant progress has been made in the development of probabilistic
programming languages, as discussed in Sections 2.6 and 3.2.

These languages allow users to model probability distributions on probabilis-
tic networks very efficiently, as they are particularly well-suited for modelling
relational data. Until now, however, they have rarely been linked to constraint
programming (CP).

In this work, we expand DT-ProbLog [178], a probabilistic programming lan-
guage designed for modelling optimisation problems that involve uncertainty,
and which we described in Section 3.2. It is particularly suited for modelling op-
timisation problems on probabilistic networks, so we adapt it such that it can
be used to formalise SCPs as well, adding support for hard constraints. We call
the resulting modelling language stochastic-constraint probabilistic Prolog: or SC-

ProbLog.
The remainder of this chapter is organised as follows. In Section 4.2 we first

describe how to model SCPs mathematically. We then describe SC-ProbLog and
how to model SCPs such that they can be communicated to a computer, in Sec-
tion 4.3. We close this chapter with a description of typical examples of SCP prob-
lem settings, and a number of specific problems, formulated on real-world data,
in Section 4.5. Finally, we conclude this chapter in Section 4.6.

4.2 Modelling SCPs

Here we provide a concrete example of a problem instance for each of the two
problem settings described in Section 1.1. These problem instances are formu-
lated on the probabilistic networks shown in Figure 4.1. Then, we show how to
model the associated probability distributions, such that we can use WMC to
compute probabilities.

4.2.1 Modelling stochastic constraint (optimisation) problems

First, we define a problem instance for the spread of influence problem:

Example 4.2.1 (Spread of influence: SCP). Consider the network in Figure 4.1a. Nodes
represent people. Edges represent probabilistic influence relationships, meaning that an
individual u influences another individual v with probability puv, which labels edge
(u, v). We distribute free samples to a subset of the individuals, who can probabilistically
influence other individuals to become customers as well. The objective is to maximise

77

Stochastic constraint (optimisation) problems

a

b

c d0.4
0.8

0.1
0.3

(a) A social network with four nodes repre-
senting Alexa, Behrouz, Claire and Daniël, and
four undirected edges with mutually indepen-
dent probabilities, representing their stochastic
influence relationships.

a b

cd

e

(b) A power transmission grid with five nodes:
one power producer (a), three power consumers
(c, d and e) and one power transmitter (b). Edge
probabilities depend on strategy.

Figure 4.1: Two examples of probabilistic networks.

the expected number of people who become our customer, given a limited number k to
distribute free product samples to people in the network.

We make the simplifying assumption that influence relationships are mutually in-
dependent, meaning that whether persons u and v influence each other is independent
of whether persons w and x influence each other (where x 6= u 6= v). We also assume
that once a person becomes our customer, they will never stop being our customer, such
that they can become our customer at most once. As the problem setting in Section 1.1
describes, we assume that we distribute the free product samples only at one moment in
time.

Given these assumptions, we model this problem as follows:

• With each node i in the network we associate a Boolean decision variable Di ∈ {>,⊥},
representing whether person i receives a free sample.

• We are interested in the events Φ = {φa, φb, φc, φd}, where φi denotes the event of
person i being our customer.

• Our objective is to find a strategy σ that maximises the expected utility ∑i∈{a,b,c,d} ρi ·
P (φi|σ), where we fix ρi := 1.

• Constraint: ∑i∈{a,b,c,e} ci · Di ≤ k (threshold k ∈N+), where we fix ci := 1.

Similarly, we also define a problem instance for the power grid reliability
problem:

Example 4.2.2 (Power grid reliability: SCP). Consider the network in Figure 4.1b.
Here, each edge represents a power line (u, v) that has a probability puv of remaining
intact during a natural disaster. By using our maintenance budget to reinforce power
lines, we can increase the survival probability of those power lines. Our goal is to use our

78

4.2 Modelling SCPs

budget β for maintaining power lines wisely, such that the expected number of consumers
that will still have power after a natural disaster, is maximised.

We make the simplifying assumption that the survival probabilities of power lines are
mutually independent, meaning that the survival or breakage of power line (u, v) does
not influence the survival or breakage of power line (w, x) (with x 6= u 6= v).

We model this problem as follows:

• We distinguish three types of nodes: power consumers Vcons = {c, d, e}, power pro-
ducers Vprod = {a} and power transmitters Vtrans = {b}, such that Vcons ∩ Vprod ∩
Vtrans = ∅ and Vcons ∪Vprod ∪Vtrans = V is the set of nodes in the network.

• With each power line (u, v) ∈ L we associate a decision variable Duv ∈ {>,⊥} that
indicates whether or not a power line is reinforced.

• We are interested in events Φ = {φi : i ∈ Vcons}, where φi represents that consumer i
is still connected to a power producer after a natural disaster.

• Our objective is to find a strategy σ that maximises the expected utility ∑i∈Φ ρi ·
P (φi|σ), where we fix ρi := 1.

• Constraint: ∑i∈L ci · Di ≤ β (threshold β ∈N+), where we fix ci := 1.

Note that in both examples, we fix ci = ρi = 1 for reasons of simplicity, but it
is straightforward to use alternative values, as long as ci, ρi ∈ R+.

4.2.2 Stochastic optimisation criteria

Observe that the two examples above each involve a stochastic objective function,
rather than a stochastic constraint. In those examples, the constraint is a linear
constraint on the expenses of the company that wants to use spread of influence
to market their product or the power company that wants to do a maintenance
project on its power lines. Problems like these occur often in real-world situations,
where there may be a cost associated with setting a decision variable to true, and
the user has a limited budget.

Recall our discussion of how to turn a constraint optimisation problem into a
constraint satisfaction in Section 3.3.4. We can straightforwardly apply that prin-
ciple here, by starting with the following two constraints:

∑
φ∈Φ

ρφ · P (φ|σ) > θ and ∑
0≤i<|D|

ci · Di ≤ β,

where ρφ is the reward associated with φ evaluating to true, θ is initialised to 0, ci

is the cost of setting decision variable Di ∈ D to true, and β is the budget.

79

Stochastic constraint (optimisation) problems

Following the procedure as described in Section 3.3.4, we then iteratively
solve this constraint satisfaction problem (CSP), updating the value of θ every time
we find a new solution.

4.2.3 Modelling probability distributions

In order to complete our models for the problems described in Examples 4.2.1
and 4.2.2, we must define the probability of events Φi, given a strategy. As argued
in Chapter 2, in this work we take a propositional WMC approach to representing
probability distributions, modelling them first using the decision-theoretic proba-
bilistic logic programming language DT-ProbLog, which is based on probabilistic
logic programming language ProbLog. Crucially, ProbLog provides functionality
to ground probabilistic logic programs (see also Section 2.6). While in practice,
these groundings are immediately compiled into decision diagrams (DDs), DT-
ProbLog has functionality for grounding probabilistic logic programs into literal-
weighted propositional formulae on decision variables and stochastic variables.
For the sake of discussion, and for the scope of this subsection, we assume that
programs are ground into these formulae rather than DDs. Note that this repre-
sents simply a different way of representing the same information, since DDs can
be seen as summaries of truth tables of (literal-weighted) propositional formulae
(see Section 2.4).

Note that we make one crucial assumption in both examples above: the proba-
bilities associated with the edges in the networks are mutually independent. This
allows us to straightforwardly map every edge to a single stochastic variable, and
then compute probabilities using WMC as described in Section 2.2.3.

Recall from Section 2.2 that, under the WMC approach, the following holds:

P(φ|σ) = ∑
µ∈M

∏
T∈µ

W(T), (4.1)

where µ is a set of truth assignments to all stochastic variables in T, such that µ

is a model of φ|σ,M is the set of all models of φ|σ, T ∈ T is a stochastic variable,
W(T) := wT if T = > in µ, and W(T) := wT if T = ⊥ in µ.

We now illustrate how WMC can be used to formalise the probability distri-
butions from our running examples.

Example 4.2.3 (Spread of influence: WMC). We model this problem under the follow-
ing simplifying assumptions:

• Influence relationships are symmetric.

• Once someone gets a free product sample, they will become a customer.

80

4.2 Modelling SCPs

• If u influences v, and u is a customer, then v becomes a customer.

The possible worlds in which the event φd takes place in Figure 4.1a can then be modelled
by a literal-weighted propositional formula that we already encountered in Section 2.5,
which we repeat here, for convenience:

φd(D, T) := Dd ∨ (Dc ∧ Tcd) ∨ (Db ∧ Tbc ∧ Tcd) ∨ (Da ∧ Tac ∧ Tcd)∨
(Db ∧ Tab ∧ Tac ∧ Tcd) ∨ (Da ∧ Tab ∧ Tbc ∧ Tcd) .

This formula represents all the different situations in which Daniël becomes a customer.
We use two types of variables: Di are the decision variables of the SCP and Tij are associ-
ated with each edge (i, j) in the network and represent influence. One possibility for event
φd to happen is when Claire gets a free sample and has enough influence over Daniël to
convince him to buy the product.

To define a distribution over the network, we associate a probability p
(
Tij
)

with each
Boolean variable Tij that this variable is true. We call Tij a stochastic variable. The
probability P (φd|σ) is then defined as the sum of the probabilities of all the (logical)
models of this formula, given the strategy. Given strategy σ := {Da := >, Db :=
⊥, Dc := ⊥, Dd := ⊥} (where we give a free product sample to Alexa, but to nobody
else), an example of a scenario that is a model for φd|σ is {Tac = Tcd = >, Tab = Tbc =

⊥} (where Alexa convinces Claire, who convinces Daniël to buy our product), which has
a probability of 0.8 · 0.3 · (1− 0.4) · (1− 0.1) = 0.1296.

Example 4.2.4 (Power grid reliability: WMC). For the sake of simplicity, we make the
following assumptions:

• All power lines have the same survival probability puv if not reinforced and the same
survival probability p′uv > puv if reinforced.

• With each power line (u, v) ∈ L we associate a survival probability πuv that takes the
following values:

πuv :=

puv if Duv = ⊥;

p′uv > puv if Duv = >.
(4.2)

The possible worlds in which event φd takes place in Figure 4.1b are defined by the propo-
sitional formula

φd (D, T) := (Tad ∨ (Sad ∧ Dad))∨
((Tab ∨ (Sab ∧ Dab)) ∧ (Tbc ∨ (Sbc ∧ Dbc)) ∧ (Tcd ∨ (Scd ∧ Dcd))) .

This formula represents all the different situations in which power consumer d will still
be connected to a power producer after a natural disaster. Again, we use two types of

81

Stochastic constraint (optimisation) problems

variables: Duv, the decision variables of the SCP, and Tuv and Suv, the stochastic variables
associated with each edge (u, v) in the network, to represent the stochastic survival of the
power line. We need two stochastic variables to model the survival probability of each
power line in the network: one to model the survival probability if it is reinforced (Suv),
and one to model the survival probability if it is not (Tuv).

Table 4.1: The weighted model count for φuv|Duv=> = Tuv ∨ Suv.

model weight

{Tuv := >, Suv := >} P(Tuv = >) · P(Suv = >)
{Tuv := >, Suv := ⊥} P(Tuv = >) · (1− P(Suv = >))
{Tuv := ⊥, Suv := >} (1− P(Tuv = >)) · P(Suv = >)

P(Tuv = >) + (1− P(Tuv = >)) · P(Suv = >)

In this model, we associate the following probabilities with variables Tuv and Suv:
P (Tuv = >) = puv, and P (Suv = >) = (p′uv − puv)/(1− puv). Here, probability P(Tuv =

>) = puv is taken directly from the definition given in Equation 4.2. To see why we do
not set P(Suv = >) = p′uv, consider the following propositional formula that models the
survival probability of a line (u, v): φuv = Tuv ∨ (Suv ∧ Duv). Here, we associate Tuv

with the stochastic survival of line (u, v) if that line is not reinforced, and Suv with the
stochastic survival of line (u, v) if it is. If we decide to not reinforce this line (Duv := ⊥),
the probability that φuv evaluates to true (and thus that line (u, v) survives) is equal
to P(Tuv = >). Now suppose that we do reinforce line (u, v), by setting Duv := >.
In this case, the probability that φuv is true becomes P(Tuv = >) + (1 − P(Tuv =

>)) · P(Suv = >), as demonstrated in Table 4.1. Therefore, if we want to model the
probabilities as they are in Equation 4.2, we cannot set P(Suv = >) = p′uv, but must
instead set this probability to P(Suv = >) = (p′uv − puv)/(1− puv). This ensures that
P(φuv = > | Duv = >) = P(Tuv = >) + (1− P(Tuv = >)) · P(Suv = >) =

puv + (1− puv) · (p′uv − puv)/(1− puv) = p′uv, which is exactly the probability as specified
in Equation 4.2. Note that the need to perform this trick stems from the fact that we use a
disjunction (∨) to model the possible survival of line (u, v) and not an exclusive-OR.

Consequently, for puv := 0.4 and p′uv := 0.875 (values from the literature [61]), we
get P(Suv = >) ≈ 0.79167. For strategy σ = {Dad = Dbc = >, Dab = Db f = Dcd =

⊥}, one example of a model for φd|σ is: Sad = Tab = Sab = Tcd = Sbe = >, Tad =

Tbc = Sbc = Scd = Tbe = ⊥, of which the probability is 0.791673 · 0.208332 · 0.42 ·
0.63 = 7.44235 · 10−4.

82

4.3 SC-ProbLog

4.3 SC-ProbLog

After formalising the problem in a mathematical model, the next steps are to rep-
resent this model in a way that is usable for a computer, and compile the relevant
probability distributions into DDs. In particular, we want to use a computer to
get from the mathematical models described in Examples 4.2.1 and 4.2.2 to or-
dered binary decision diagrams (OBDDs) or sentential decision diagrams (SDDs) that
we can use to compute weighted model counts (WMCs).

In this section, we kill two birds with one stone by building on existing tools
from the probabilistic logic programming literature. In Section 3.2 we described
a probabilistic programming language that is particularly suited for modelling
optimisation problems defined on probabilistic networks: DT-ProbLog [178]. Ad-
ditionally, this language, because it is based on ProbLog [52], offers functionality
to ground probabilistic logic programs into DDs that can be used for tractable
weighted model counting.

DT-ProbLog, however, does not offer support for constraints. It would be very
convenient if we could model the entire SCP using just one language. We there-
fore expanded DT-ProbLog into a new language: stochastic constraint probabilistic
Prolog, or SC-ProbLog. Compared to DT-ProbLog, SC-ProbLog adds support for
hard constraints on probability distributions. Additionally, where DT-ProbLog

only supports maximisation problems, the syntax and semantics we added al-
lows the user to specify whether they want the objective function to be minimised
or maximised.

We illustrate how to use the SC-ProbLog language by showing how we can to
model SCPs described in Examples 4.2.1 and 4.2.2 with SC-ProbLog programs.

Example 4.3.1 (Spread of influence: SC-ProbLog). Recall the DT-ProbLog program in
Program 3.1, and notice how it matches the problem described in Example 4.2.1. We only
have to adapt it slightly to turn it into the SC-ProbLog program shown in Program 4.1.

Program 4.1: An SC-ProbLog program for the spread of influence problem.

% Background knowledge

1. person(alexa). person(claire).

2. person(behrouz). person(daniel).

% Probabilistic relation facts

3. 0.4:: dir(alexa ,behrouz). 0.8:: dir(alexa ,claire).

4. 0.1:: dir(behrouz ,claire). 0.3:: dir(claire ,daniel).

% Relation rules

5. influences(X,Y) :- dir(X,Y).

6. influences(X,Y) :- dir(Y,X).

83

Stochastic constraint (optimisation) problems

% Decisions

7. ?:: gets_free_sample(P) :- person(P).

% Customer conversion rules

8. buys(X) :- gets_free_sample(X).

9. buys(X) :- influences(Y,X), buys(Y).

% Constraint and optimisation criterion

10. { gets_free_sample(P) => 1 :- person(P). } k.

11. #maximise { buys(P) => 1 :- person(P). }.

Lines 1–9 are taken directly from Program 3.1. Note that we have not copied the
lines that indicate the utility of the different events. Instead, they are incorporated
in the constraint in line 10 and the objective function in line 11.

In the example above, lines 10 and 11 represent the syntax and semantics that
we added to obtain SC-ProbLog. Here, we borrow the syntax from the answer set
programming literature (see, e.g., Answer Set Programming by Lifschitz [108]).

In particular, line 10 represents the constraint. It assigns a cost of 1 to the deci-
sion to give a person a free sample, indicated by the => in the head of the rule in
the braces, where we assume that not giving a person a free sample has a cost of
0. The braces indicate that the costs (or utilities) within them must be summed.
The k corresponds to the k in Example 4.2.1, and represents the upper bound (or
threshold) on the sum of the utilities.

Line 11 represents the optimisation criterion. The syntax in the braces is the
same as in line 10. However, we now indicate that the sum of the expected utilities
associated with a person buying the product is to be maximised.

Note that, in the example above, the constraint is formulated over decision
variables, while the optimisation criterion is formulated over predicates whose
truth values depend on the values of stochastic variables, but this need not be the
case. We could also add multiple constraints, or omit the optimisation criterion,
but we do not support multiple optimisation criteria.

A key property of ProbLog (and therefore also of SC-ProbLog) is that the rules
that are stated are not assumed to be mutually exclusive. For example, the rules in
lines 8 and 9 could be probabilistic, meaning that there is a chance p f s of turning
someone into a customer by giving them a free sample, and a chance pin f l of
turning them into a customer if they are influenced by someone who is already a
customer. These two customer conversion processes are not mutually exclusive.

However, in the power grid reliability problem, we are dealing with proba-
bilistic facts that are mutually exclusive: a power line is either reinforced, or it
is not. Recall the probabilities that we associated with the stochastic variables

84

4.3 SC-ProbLog

in Example 4.2.4, and that they stemmed from the choice to model the possible
survival of a power line as a (non-mutually exclusive) disjunction instead of as
an exclusive-OR. We can therefore use those probabilities directly in a ProbLog

program, as we demonstrate in the next example.

Example 4.3.2 (Power grid reliability: SC-ProbLog). We model the power grid relia-
bility problem described in Example 4.2.2 as follows:

Program 4.2: An SC-ProbLog program for the power grid reliability problem.

% Background knowledge

1. power_line(a,b). power_line(a,d).

2. power_line(b,c). power_line(b,e). power_line(c,d).

3. producer(a). consumer(c).

4. consumer(d). consumer(e).

% Decisions

5. ?:: reinforce(X,Y) :- power_line(X,Y).

% Probabilistic facts

6. 0.79167:: survives(X,Y) :- power_line(X,Y), reinforce(X,Y).

7. 0.79167:: survives(X,Y) :- power_line(Y,X), reinforce(Y,X).

8. 0.4:: survives(X,Y) :- power_line(X,Y).

9. 0.4:: survives(X,Y) :- power_line(Y,X).

% Relations

10. connection(X,Y) :- survives(X,Y).

11. connection(X,Y) :- connection(X,Z), survives(Z,Y).

12. connected_to_producer(X) :- producer(Y), connection(X,Y).

% Constraint and optimisation criterion

13. { reinforce(X,Y) => 1 :- power_line(X,Y). } b.

14. #maximise { connected_to_producer(X) => 1 :- consumer(X). }.

We define directed power lines in lines 1 and 2, and then define the power producers
and the power consumers in lines 3 and 4. Line 5 represents the decision variables in this
problem: one for each power line.

Lines 6–9 have two purposes: they make the directed power lines from lines 1 and 2
undirected, and they model the different survival probabilities of those power lines, de-
pending on whether they have been reinforced to make them strongly and less likely to
break. Note that lines 6 and 7 correspond to the Suv variables as described in Exam-
ple 4.2.4, while lines 8 and 9 correspond to the Tuv variables.

Lines 10–12 in Program 4.2 serve to define what it means to be connected to a power
producer. Line 13 associates a cost of 1 with reinforcing a power line and defines an upper
bound of b on the sum of these costs. Finally, line 14 associates a reward of 1 with each

85

Stochastic constraint (optimisation) problems

power consumer that is connected to at least one power producer, which is a probabilistic
fact, and specifies that the sum of the resulting expectations is the value that we want to
maximise.

In the example above, the first 12 lines use the DT-ProbLog functionality. Lines
13 and 14 represent the new functionality introduced in SC-ProbLog: a constraint
and an optimisation criterion, much like lines 10 and 11 in Program 4.1.

Now that we have modelled the problems described in this chapter using SC-

ProbLog, we can rely on ProbLog’s technology to ground these programs to obtain
the OBDDs or SDDs that represent the (stochastic) events of interest. In the next
chapter, we describe how we can use these DDs representations of probability
distributions to build a fast pipeline for solving SCPs. Before that, however, we
first provide an overview of existing work that relates to SCP solving or the meth-
ods we propose to use in our SCP solving pipelines.

4.4 Related work

We now give a brief overview of work that is related to SCPs and their solving
methods. Specifically, we first highlight a number of problems known from the lit-
erature that are very closely related to either checking if a stochastic constraint is
satisfied, or to maximising a stochastic optimisation criterion. Since the approach
to modelling SCPs in this work is rooted in probabilistic logic programming, we
then provide a brief overview of probabilistic programming paradigms. Then,
because our methods solving SCPs is mostly based on CP techniques, we discuss
existing literature on stochastic constraint programming. We end this section with
a brief discussion of other work that exploits knowledge compilation techniques
for solving SCP-like problems.

4.4.1 Stochastic satisfiability

Solving a stochastic constraint like the one in Equation 1.1, which we repeat here
for convenience:

∑
φ∈Φ

ρφ · P (φ | σ) > θ,

and maximising a stochastic optimisation criterion as described in Section 4.1 can
each be seen as instances of SSAT, as defined in Chapter 27 of the Handbook of
Satisfiability [16].2

2An earlier version of this problem was proposed by Papadimitriou, who called it a ‘game against
nature’ [137].

86

4.4 Related work

SSAT in its most general form is defined over formulae of the following kind:

ψ (X) := Q1X1 · · ·Q|X|X|X|φ(X), (4.3)

where Qi ∈ {∃,

R} represent the quantifiers and Xi ∈ X the corresponding vari-
ables. The quantifier

R

indicates that the corresponding variable is ‘randomly’
quantified, meaning that this variable takes the values > or ⊥ with a certain
probability, independently of the other variables. While in the general case, the
order of the quantifiers in the prefix of ψ is arbitrary, for this work only orders
in which all the existentially quantified variables come first in the prefix, are rele-
vant. Hence, below we only discuss settings of this kind, and we omit all discus-
sion of settings in which the order of quantifiers is different.

To see how the SSAT problem connects to solving stochastic constraints like
the one in Equation 1.1, we also distinguish a specific decision version of SSAT.

Definition 4.4.1 (E-MAJSAT). Given a formula ψ (D, T) as defined in Equation 4.3,
where all the existentially quantified (D) variables come first in the prefix and the
randomly quantified variables (T) take the value > with a given rational probability
0 ≤ pX ≤ 1, and given a rational threshold value 0 ≤ θ ≤ 1, is there an assignment σ

to the existentially quantified variables D, such that

P (ψ|σ = >) > θ? (4.4)

Here, P(·) indicates a probability and ψ|σ is the residual formula obtained by removing
all existentially quantified variables from the prefix of ψ and substituting the existential
variables in φ(D, T) by their truth values as specified by σ.

Thus, the exists-majority SAT (E-MAJSAT) problem asks if there exists an as-
signment π such that the probability that ψ is satisfied exceeds a certain threshold
value θ.

A well-known special case of E-MAJSAT in which D = ∅ (and thus all vari-
ables are randomly quantified), for each T ∈ T we have pT = 1/2 and θ = 1/2, is
known in the literature as the majority SAT (MAJSAT) problem [16, 137]. This MA-
JSAT problem is known to be complete for the probabilistic polynomial time (PP)
complexity class [16]. Recall the definition of the class PP in Definition 2.2.8, and
note how it indeed loudly echoes the task of the MAJSAT problem.

Note that computing the exact success probability of ψ, and thus counting the
number of solutions, is a WMC task (as described in Section 2.2.3), and is #P-
complete [155]. It is not hard to see that evaluating if Equation 1.1 is satisfied for
a given strategy σ can be seen as a generalisation of the MAJSAT problem, in
which 0 ≤ pX ≤ 1 and 0 ≤ θ ≤ 1 can take arbitrary, rational values.

87

Stochastic constraint (optimisation) problems

Since in this work, we do not only solve stochastic constraints, but also deal
with stochastic optimisation criteria, we also define the following variant of SSAT:

Definition 4.4.2 (Functional E-MAJSAT). Given a formula ψ (D, T) as defined in Def-
inition 4.4.1, which assignment σ of truth values to the existentially quantified (decision)
variables in D maximises P (ψ|σ = >)?

The solution to a functional E-MAJSAT problem is the optimal assignment σ∗.
We finally point to Littman et al.’s extended version of SSAT: XSSAT [111]. This

problem generalises the SSAT problem by, aside from existentially quantified
variables and randomly quantified variables, also allowing universally quanti-
fied variables, in arbitrary orders. A formal definition of this problem is outside
the scope of this work.

4.4.2 Probabilistic programming

In Section 2.6 we briefly described ProbLog [52] and motivated why we use its
decision-theoretic version DT-ProbLog [178] as a basis to build SC-ProbLog on.
However, ProbLog is not the only probabilistic programming languages that we
could have chosen. We now briefly discuss alternative languages and their uses.
For an extensive overview of the probabilistic logic programming literature, we
refer the reader to De Raedt & Kimmig’s recent survey [51].

As we mentioned in Section 2.3, a popular method for representing proba-
bility distributions, is Bayesian networks (BNs) [140]. One of the first languages
that extended Prolog to include probabilities, was Poole’s probabilistic Horn ab-
duction (PHA) language, designed as a representation language for Bayesian net-
works [146]. PHA assigns probabilities to facts, and computes these probabili-
ties by generating mutually exclusive explanations for these facts. Because these
explanations are disjoint, their individual probabilities can simply be summed
to obtain the probability of the fact that they explain. Dependencies are mod-
elled by inventing new hypotheses. Sato’s symbolic-statistical modelling lan-
guage PRISM [161, 162], Muggleton’s stochastic logic programs [129] and Poole’s
independent choice logic [147, 148] impose similar constraints on which facts can
be true at the same time.

Recall from Section 4.3 that ProbLog, and languages derived from it, do not
impose such constraints, as is evidenced by the fact that in the spread of influence
example of Example 4.3.1 there are multiple ways of converting somebody into a
customer, that do not need to exclude each other.

An interesting proposal for unifying the representations languages of BNs
and propositional logic are Kersting & De Raedt’s Bayesian logic programs [93, 94].

88

4.4 Related work

BNs can be seen as an extension of propositional logic, adding quantitative in-
formation (probabilities) to the qualitative information (local influences between
random variables). As such, they inherit the limitations of propositional logic,
particularly its rigidity and inability to represent a variable number of objects
in the problem encoding, or a variable number of relations between those ob-
jects. This is something that probabilistic logic programming is much more suited
for. Bayesian logic programs is a representation language that generalises both BNs
and probabilistic logic programs, separating the qualitative information from the
quantitative information.

Finally, we mention another interesting paradigm related to probabilistic logic
programming, is that of probabilistic databases [170], with applications in data re-
trieval and reasoning over the web. Specifically, Fuhr’s probabilistic Datalog [68],
designed specifically as a language for such information retrieval, is very similar
to ProbLog in how it attaches probabilities to facts and rules. Its reasoning powers,
however, are limited compared to ProbLog’s [52].

4.4.3 Stochastic constraint programming

This work is also closely related to chance constraint programming [31] and proba-
bilistic constraint programming [172]. In particular, the problem we consider can be
framed as a single-stage stochastic constraint satisfaction problem (SCSP) [181].

As briefly discussed in Section 1.1, we limit ourselves in this work to single-
stage optimisation problems, because of restrictions on the probability distribu-
tions required by the SCP solving pipeline that we present in Chapter 6. We
briefly mention existing work on multi-stage stochastic optimisation problems,
for the interested reader.

In multi-stage SCPs, after a first set of decisions, the value of stochastic vari-
ables is revealed. This prompts another set of decisions to be made, after which
the value of another set of stochastic variables is revealed, and so on. The goal is to
either make an optimal first decision (with respect to a given objective function),
before the values of the stochastic variables of the first stage are even revealed,
or to develop a policy that allows the users to choose the decisions in the follow-
ing stages, based on what unfolds as the values of the stochastic variables are
revealed. Multi-stage SCPs are typically used to model planning and scheduling
problems [7, 113], and can be modelled as special cases of the SSAT problem [16],
where blocks of existentially quantified and randomly quantified variables al-
ternated in the prefix of the propositional formula (see also Section 4.4.1). The
authors of stochastic MiniZinc [150] implemented a generic framework to encode
multi-stage SCPs in a solver-agnostic manner.

89

Stochastic constraint (optimisation) problems

Note that, while SCPs are certainly related to constraint optimisation under
soft constraints [18], we impose hard constraints on probability distributions, and
thus refrain from a further discussion of soft constraints. We also stress that in
this work, we focus on finding exact solutions. There is an extensive literature on
approximation methods, see, e.g., [23, 35, 121, 143, 185], the discussion of which
is outside the scope of this work.

Mixed networks [125] essentially combine probabilistic graphical models, which
are used to model probability distributions, and constraint networks, which are
used to express constraints. The authors define the constraint (or conjunctive nor-
mal form (CNF)) probability evaluation (CPE) task for a problem that can be speci-
fied on a belief network (a type of probabilistic graphical model) and a set of con-
straints, which are expressed in a CNF. Their goal is to find the probability distri-
bution of the belief network, for all models of the CNF. As such, it corresponds
to computing Equation 2.7 for all possible queries, and is thus closely related to
SCP solving. Since we use a probabilistic propositional framework to represent
our models, we consider a detailed description of probabilistic graphical models,
although they are conceptually somewhat related to our framework, to be outside
the scope of this work.

As briefly mentioned in Section 1.1, our work distinguishes itself from earlier,
more generic, stochastic constraint programming approaches because we explic-
itly use the structure of the encoding of the underlying probability distributions
to speed up the solving process.

4.4.4 Knowledge compilation for SCP solving

Pipatsrisawat and Darwiche use knowledge compilation to solve E-MAJSAT
problems [145]. In their approach, all constraints are encoded together into one
diagram, which can cause it to blow up, depending on the number and type of
constraints that must be encoded. Additionally, by integrating all constraints into
one representation, they lose information about the structure of those constraints.
Constraint solvers typically exploit this information in dedicated constraint prop-
agators, an option that is no longer available once all constraints are encoded into
one diagram. Moreover, not all constraints can be (trivially) encoded into CNF,
which limits the expressiveness of the approach. In this work, we study if another
approach is possible.

In the CP literature, OBDDs and the similar multi-valued decision diagrams
(MDDs) are often used to encode all solutions for a constraint, and efficient prop-
agation algorithms for these data structures have been developed [70, 77, 179].
By associating MDD arcs in such encodings with probabilities, one can sample

90

4.5 Problem settings

solutions to a constraint [141]. Note that, while this data structure is similar to
OBDDs, it is used to solve a fundamentally different problem than the one we
address in this work.

4.5 Problem settings

So far, we have been using the spread of influence problem and power grid relia-
bility problem as running examples to illustrate our methods. In the subsequent
chapters, we will use concrete instances of these problems to evaluate our meth-
ods. In addition, we will use problem instance from other domains, so we can
evaluate our proposed pipelines on a variety of problem types. Therefore, in this
section, we describe the problem settings that we consider in the experiments in
Sections 5.3, 6.5 and 7.3. Where relevant, we also describe how we processed the
input data sets to obtain individual problem instances for our experiments.

4.5.1 Theory compression or graph sparsification

The first problem setting that we consider in this work is one from the data min-
ing literature [50]. We are given a network of genes, proteins (both represented by
vertices) and their interactions (edges), where these interactions are probabilistic.
Furthermore, we are given knock-out pairs: pairs of vertices for which knocking
out one vertex leads to a positive or negative change in the expression level of
the other vertex. Paths of interaction can explain the positive or negative effect
of one vertex on another. Our goal is to obtain a sparser network that preserves
the pairwise interactions we are most interested in, in order to better understand
these interactions. This problem is known from the literature as a theory compres-
sion problem [50].

Let Φ+ and Φ− be our sets of interest, where events φu→v ∈ Φ+ represents
a vertex pair (u, v) for which a knock-out of protein u leads to an observed pos-
itive change in the expression level of gene v, and similar for events in Φ−. We
associate a decision variable d and a stochastic variable t with each edge in the
network. Here, the decision variable represents whether or not we select the cor-
responding edge to be part of the network that we extract, while the stochastic
variable represents the strength of the interaction of the vertices on which the
edge is incident.

We use a gene-protein and protein-protein interaction network called the
Signalling-regulatory Pathway INference (SPINE) [133] network. The full network
has 4 696 vertices that represent genes and proteins. It has a total of 5 568 directed

91

Stochastic constraint (optimisation) problems

protein-gene edges, and 15 147 undirected protein-protein edges. The SPINE net-
work provides probabilities for both the directed and undirected edges. We used
Gephi’s implementation of the Louvain community detection algorithm [19] to ex-
tract communities of different sizes, containing different sets of positive and neg-
ative vertex pairs, because the full network is too large to handle by our methods.
In the rest of this work, we refer to the problem instances from the SPINE network
as spine instances.

In our experiments, we consider some variants of this problem, which are each
combinations of an optimisation criterion and a constraint, where one of these
elements involves an expectation and the other the cardinality of the solution:

Variant 1: Maximise expectation, upper bound on solution cardinality. Given a
set of vertex pairs Φ ∈ {Φ+, Φ−}, our aim is to maximise the expected
number of pairs in this set in which there is interaction between the two
vertices in the pair, while placing an upper bound on the number of edges
we can pick for the extracted network:

maximise ∑
φ∈Φ

P (φ | σ) , subject to ∑
D∈D

D ≤ k, (4.5)

Variant 2: Minimise solution cardinality, lower bound on expectation. Here, the
goal is to minimise the size of the network induced on the extracted edges,
but to guarantee that the summed expected strength of interactions between
the vertex pairs meets a certain lower bound:

minimise ∑
D∈D

D, subject to ∑
φ∈Φ

P (φ | σ) ≥ θ, (4.6)

where again Φ ∈ {Φ+, Φ−} and θ ∈ R+ represents the lower bound on the
expectation.

Variant 3: Maximise expectation, upper bound on another expectation. This is a
setting in which we are less concerned with network size, but more with
how ‘pure’ the extracted network is in its ability to explain the interaction
between vertices from one set of interest only, and not the other:

maximise ∑
φ+∈Φ+

P
(
φ+ | σ

)
, subject to ∑

φ−∈Φ−
P
(
φ− | σ

)
≤ θ, (4.7)

or with the roles of Φ+ and Φ− reversed.

Variant 4: Maximise solution cardinality, upper bound on expectation. A slightly
less intuitive setting, where we aim to filter out a specific proportion of the

92

4.5 Problem settings

interaction between the vertices in one set of interest:

maximise ∑
D∈D

D, subject to ∑
φ∈Φ

P (φ | σ) ≤ θ, (4.8)

where again Φ ∈ {Φ+, Φ−} and θ ∈ R+ a lower bound on the expectation.

Finally, for each (community, variant) pair we determined a threshold k or θ

that yields a hard problem to solve. We provide more details in Section 5.3.

4.5.2 Spread of influence

This is the problem setting described in Example 4.2.1, and is known from the
data mining literature [56, 92]. For our experiments, we relax some of the sim-
plifying assumptions made in Example 4.2.1. In particular, we set the probability
that a person turns into a customer when they receive a free product sample to
0.2. Similarly, if an existing customer influences a person, this person has a prob-
ability of 0.2 to turn into a customer themselves. We also apply this setting to
the spreading of ideas, research interests or even research styles within a scien-
tific community. In this problem setting, we associate decision variables with the
vertices of the network, and stochastic variables with both vertices and edges.

To generate problem instances, we took a directed multigraph that represents
user interactions on Facebook [180]. The full network comprises 46 952 users (ver-
tices) and 876 993 unweighted edges (wall posts). We then used Kempe et al.’s
approach [92] to create weighted edges between users, by assigning a weight of
1− (1− p)n to an edge (u, v) if u posted n times on v’s wall, with p = 0.1.

Additionally, we took the high-energy physics collaboration undirected net-
work [131], which was used in earlier publications on viral marketing [92]. The
full network has 7 610 authors (vertices) and 15 751 directed unweighted edges,
which we turn into probabilities, again following Kempe et al.’s approach. If an
edge (u, v) has weight n, where n is the number of times that author v cites au-
thor u, the edge gets a weight of 1− (1− p)n, where we choose p = 0.1. Note that
for this specific network, we may not be interested in spread of influence for the
purposes of word-of-mouth marketing. Rather, the spread of influence may refer
to the spread of ideas, research interest or even research styles within a scientific
community, by means of citation.

We used the Louvain community detection algorithm [19] to extract commu-
nities of suitable sizes. In this work, we refer to instances from these datasets as
facebook and hepth instances, respectively.

Again, we distinguish several variants, similar to the ones described above:

93

Stochastic constraint (optimisation) problems

Variant 1: Maximise expectation, upper bound on solution cardinality. This set-
ting is the one described in Section 1.1 and Example 4.2.1, where we aim to
maximise the expected number of eventual customers of our product, given
a fixed budget with which we send a free product sample to k people in the
given social network.

Variant 2: Minimise solution cardinality, lower bound on expectation. Here we
have a requirement that the expected number of people who will eventually
buy our product is at least θ, while we minimise the number of free samples
that we have to hand out to achieve this goal.

These are the only variants we consider, as the other ones do not make much
sense in this problem setting. Again, for each (community, variant) pair we de-
termined a threshold k or θ that yields a hard problem to solve. We provide more
details in Sections 5.3, 6.5 and 7.3.

4.5.3 Power grid reliability

This is the problem described in Example 4.2.2; we note that it is somewhat sim-
ilar to the theory compression or sparsification problem described above. Again, we
associate stochastic variables and decision variables with the edges of the net-
work.

However, in this problem we are not given a set of paired vertices, but two
sets of vertices, the source vertices and the target vertices; these vertices are not
paired. We wish to maximise the expected number of target vertices that can be
reached from at least one of the source vertices. Moreover, where in the sparsifi-
cation problem described above, setting a variable that represents an edge to false
is interpreted as removing that edge from the graph, in the power grid reliabil-
ity problem, its connection probability becomes lower, but not zero. Finally, the
graphs in the power grid reliability problem are undirected rather than directed.

We take network models of European and North-American high-voltage
power grids [183], extracted by GridKit3. We extract connected components from
geographic regions (countries for the European network and states for the North-
American network), making sure that they contain both source vertices (power
producers) and target vertices (power consumers).

For the survival probabilities of the power lines that are or are not reinforced,
we turn to the literature [61]. We associate a uniform survival probability with
each reinforced power line of 0.875, which drops to 0.4 when it is not reinforced.

3Available at github.com/bdw/GridKit

94

https://github.com/bdw/GridKit

4.5 Problem settings

In this work we refer to instances from this problem set as powergrid in-
stances. We only consider Variant 1-type problems in this work, where we as-
sume that a country or state has a fixed budget for power line maintenance and
aims to maximise the expected number of households that still have power af-
ter a natural disaster. We provide specifics about these instances in Sections 6.5
and 7.3.

4.5.4 Top fake news distributors

To investigate the interaction of the stochastic constraint with constraints other
than cardinality constraints, we also consider a frequent itemset mining (FIM) prob-
lem, based on the spread of influence problem as described above. Note that
FIM problems, like the problem setting described below, cannot currently fully
be modelled using SC-ProbLog, and thus require us to combine different repre-
sentation languages to model them.

A challenging problem of our times is the spread of fake news. Often-times,
fake news is released into specific ‘bubbles’, where it can then spread. It may
therefore be interesting to identify not necessarily which fake news distributors
are most influential, but which fake news distributors are most influential to the
same set of people. We can model this as a FIM problem as follows.

Given a social network, we aim to enumerate all sets of users U ⊆ V for
which the following holds. First, the selected users U are influential, directly or
indirectly, as determined by spread of influence: ∑v∈V P(φv | σU) ≥ θ, where φv

represents the event that a user v believes or adopts a piece of fake news, and σU

represents the ‘strategy’ in which all users in U are considered to be the initial
distributors of that news. In words: the collective influence of the users in U is
at least θ. Second, the selected users all directly influence the same large group
of other users: with each set of users U we can associate another set W ⊆ V of
users of size at least κ, such that there is an edge (u, w) in the network for each
user u ∈ U and for each user w ∈ W, meaning that u directly tries to influence
w. Intuitively, we can think of the users in set W as social media followers of a
fake news distributor u ∈ U. The cardinality constraint of |W| ≥ κ then expresses
the minimum following of u. This second constraint corresponds to a minimum
support constraint over a transaction database in FIM (see, e.g., [2]).

We create this transaction database D by including in it one transaction τ per
user v ∈ V. Here, τ represents the set of other users who influence v directly.
Thus, if fake news spreading user u ∈ U has a following of |W|, it means that u is
present in |W| transactions in D. We used the facebook [180] dataset to generate
communities as described above, and formulated a fifth problem variant:

95

Stochastic constraint (optimisation) problems

Variant 5: Lower bound on expectation, lower bound on support. We aim to
identify the sets of users U (itemsets) such that U ⊆ τ for at least κ indi-
vidual transactions τ ∈ D (making them frequent), where each itemset U
has a collective expected influence of at least θ.

Hence, we combine the stochastic constraint from Equation 1.1 with a minimum
support constraint, known from the FIM literature [164].

Note that, in all of the above example problems and problem settings, we are
summing over probabilities P(φ | σ) for different φ ∈ Φ. It is in this context
that multiple-rooted DDs (as mentioned in Section 2.4), and thus multiple-rooted
arithmetic circuits (ACs) (as mentioned in Section 2.5) are relevant.

We believe that the problem settings described above present a varied and
relevant set of problems for us to test our methods on. Specifically, we believe the
variety between the problem settings to be sufficient enough for us to evaluate
if there are approaches that seem to be universally suited for solving SCPs, or if
our methods may have more complementary properties when it comes to solving
problems from these different domains.

4.6 Conclusion

In this chapter, we provided a basic introduction to SCPs and how to model them
using our newly proposed language stochastic constraint probabilistic Prolog: SC-
ProbLog. Additionally, we provided an overview of work that is related to SCPs,
and to methods we use in this work to solve them, placing our modelling and
solving methods in the context of existing work on stochastic satisfiability prob-
lems, probabilistic logic programming, stochastic constraint programming and
the use of knowledge compilation for solving stochastic optimisation problems.
Finally, we described a variety of problems and problem settings that we will use
to evaluate our SCP solving methods in the next three chapters of this disserta-
tion. As such, this chapter can be seen as a thorough and extensive introduction
to the background required for remainder of this dissertation.

96

