
Optimal decision-making under constraints and uncertainty
Latour, A.L.D.

Citation
Latour, A. L. D. (2022, September 13). Optimal decision-making under
constraints and uncertainty. SIKS Dissertation Series. Retrieved from
https://hdl.handle.net/1887/3455662

Version: Publisher's Version

License:
Licence agreement concerning inclusion of doctoral
thesis in the Institutional Repository of the University
of Leiden

Downloaded from: https://hdl.handle.net/1887/3455662

Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/3455662

3
Programming paradigms for

optimisation

3.1 Introduction

Recall from Section 1.3 that exact stochastic constraint (optimisation) problem (SCP)
solving involves two components: probabilistic inference and search. While in the
previous chapter we discussed how to model probability distributions and typi-
cal inference tasks, in this chapter we discuss programming paradigms that help
us model probabilistic optimisation problems, and on programming paradigms
that help us traverse the search space of possible strategies efficiently. Specifically,
in the next section, we discuss a ProbLog-derived tool for solving decision prob-
lems that involve probabilities, DT-ProbLog [178]. Then, in Sections 3.3 and 3.4,
we discuss the fields of constraint programming (CP) and mixed integer program-
ming (MIP) as optimisation paradigms that allow us to efficiently traverse search
spaces.

51

Programming paradigms for optimisation

Recall also from Section 2.1 that the work presented in this dissertation is
broad in scope, meaning that we can build on many and varied existing tools,
each with its own set of tunable parameters. Consequently, bringing these tools
together in an effort to solve SCPs may result in complex systems that may re-
quire specialised configurations for different application domains for them to per-
form well. Therefore, later in this chapter, we provide a brief introduction to the
paradigms of programming by optimisation (PbO) and automated algorithm configu-
ration (AAC), which enable us to find these configurations. We close this chapter
in Section 3.6 with a brief conclusion.

3.2 Decision-theoretic probabilistic logic program-
ming

We start this overview of programming paradigms for optimisation with yet an-
other Prolog-based modelling language (recall Section 2.6): DT-ProbLog (short for
decision-theoretic ProbLog) [178]. This extension of ProbLog [52] was proposed in
2010 in order to solve decision problems in which the aim is to maximise some
kind of utility that is associated with (derived) facts. To this end, DT-ProbLog
extends the ProbLog syntax and semantics by adding decision variables and func-
tionality to assign a utility to events.

By setting decision variables to true, we can introduce facts to the program.
Utilities associate with facts can be used to define the relative costs and benefits
of facts and consequences. We illustrate this with the following example.

Program 3.1: A DT-ProbLog program describing a spread of influence problem.

% Background knowledge

1. person(alexa). person(claire).

2. person(behrouz). person(daniel).

% Probabilistic relation facts

3. 0.4:: dir(alexa ,behrouz). 0.8:: dir(alexa ,claire).

4. 0.1:: dir(behrouz ,claire). 0.3:: dir(claire ,daniel).

% Relation rules

5. influences(X,Y) :- dir(X,Y).

6. influences(X,Y) :- dir(Y,X).

% Decisions

7. ?:: gets_free_sample(P) :- person(P).

% Utilities

52

3.3 Constraint programming

8. utility(buys(P), 1) :- person(P).

9. utility(gets_free_sample(P), -1) :- person(P).

% Probabilistic customer conversion rules

10. buys(X) :- gets_free_sample(X).

11. buys(X) :- influences(Y,X), buys(Y).

Example 3.2.1 (A simple DT-ProbLog program). We can modify and extend the prob-
abilistic logic program described by Programs 2.1 and 2.3 by adding decision variables
and utilities, resulting in Program 3.1. Note that this program describes a spread of in-
fluence problem like the one described in Section 1.1.

Here, line 7 specifies the decision variables — a functionality that is new in DT-

ProbLog. Lines 8 and 9 specify utilities for (derived) facts. Specifically, they state that
converting a person into a customer who buys our product, has a utility of 1 per person
(line 8). However, it costs 1 to give a person a free sample of our product (line 9).

DT-ProbLog does not provide a specific syntax for querying the program, but
returns grounded facts that represent the decisions that have to be made in order
to maximise the expected utility, along with the value of that utility. This utility
is computed by simply summing the (expected) utilities present in or derived
from the DT-ProbLog program. In the example above, the output of DT-ProbLog
is gets_free_sample(alexa) := True, gets_free_sample(behrouz) :=

False, gets_free_sample(claire) := False, gets_free_sample(daniel)

:= False, Expected utility: 1.4984.
It comes to this conclusion based on an inference process that uses algebraic

decision diagrams (ADDs) [11], data structures that are very similar to the arithmetic
circuits (ACs), described in Section 2.5, and can be used for optimisation problems.
These can be constructed from decision diagrams (DDs) like ordered binary decision
diagrams (OBDDs) and sentential decision diagrams (SDDs).

These properties make DT-ProbLog an attractive programming paradigm for
stochastic optimisation problems, for us to build on in our efforts of designing
SCP solving methods.

Note that we do have to build on DT-ProbLog before we can use it to solve
SCPs, since DT-ProbLog itself does not support constraints, only a maximisation
criterion.

3.3 Constraint programming

As discussed in Section 1.3, in order to solve SCPs we do not just need efficient
probabilistic inference, we also need an effective search mechanism. One of the

53

Programming paradigms for optimisation

0 2 4 6 8

L

0

1

2

3

4

5

6

7

8

S

L ≥ 0
S ≥ 0

S ≤ 5
1 1
6 L+ 3 1

3 S ≤ 19

1
3
4 L

+
3S
≤

24

Feasible region

0 2 4 6 8

L

0

1

2

3

4

5

6

7

8
Candidate solutions

Figure 3.1: Graphical representation of the constraints in the power grid reliability problem
described in Example 3.3.1. The horizontal axis shows the number of power lines that we
can choose to reinforce, and the vertical axis shows the number of stations. Stars indicate
(L, S) combinations that satisfy the constraints and are thus candidate solutions of the
optimisation problem.

paradigms we employ in this work is CP. Here, we recall basic concepts of CP.
For details we refer the reader to the literature, e.g., the Handbook of Constraint
Programming [154].

Constraint satisfaction problems (CSPs) are modelled using a set of variables
X = {X1, . . . , X|X|}, each of which is associated with a domain dom(Xi), a set of
constraints C on (subsets of) these variables and an objective function f (X). In
the context of this work, the objective function can be, e.g., arg maxσ P (φ|σ), or
the linear constraint optimisation function in the next example, which we will
consider for the scope of this section and the next, to illustrate some key concepts
of optimisation techniques.

Example 3.3.1 (A power grid reliability problem). Recall the power grid reliability
problem from Section 1.1. Suppose we drastically simplify this problem by defining some
measure of ‘reliability’ and assuming that this is some linear combination of the number

54

3.3 Constraint programming

of power lines and stations that we have reinforced.

maximise reliability R =
5
4

L + S (3.1)

subject to budget constraint
7
6

L +
10
3

S ≤ 19 (3.2)

and time constraint
7
4

L + 3S ≤ 24 (3.3)

with L, S ∈N0, L ≤ 10, S ≤ 5 (3.4)

where L and S are the numbers of power lines and power stations that we have reinforced.
They require different amounts of money (7

6 million and 10
3 million of your favourite

currency, respectively), with a budget of 19 million. They also require different amounts
of time per unit to reinforce (7

4 and 3 months, respectively), where we assume that there is
only one team that does the reinforcements and they can only reinforce one unit at a time,
and we have two years to complete the project. Finally, our small network has ten power
lines and five power stations.

We provide a graphical representation of this problem in Figure 3.1.

In general, variables can have different kinds of domains (typically Boolean,
categorical, ordinal, integer- and real-valued). In the example above, the variables
have integer domains. In the SCP problems studied in this work, the relevant
variables are all Boolean decision variables. However, the choices we make in
Chapter 5 to model SCPs in CP solvers, result in constraint programs that also
contain variables with real-valued domains.

In the next subsections, we continue with a discussion of two orthogonal solv-
ing techniques for CP: search and inference. Intuitively, the search process deter-
mines how the solver traverses the search space, by assigning values to variables
to see if those variable assignments can be extended to a solution. The inference
process, called propagation, helps to prune the resulting search tree by efficiently
inferring consequences of these assignments. Propagation detects which values in
the domains of free variables have to be removed from those domains because
they are inconsistent with the assignments made by the search process, and thus
can never lead to a solution.

This brings us to another important dichotomy that is identified in the CP
literature: modelling versus solving. CP solvers provide the user with a range of
different constraints to choose from. Each of these constraints has an associated
constraint propagator: an algorithm that can efficiently infer consequences when
variable domains change, due to choices made during the search process. We will
describe propagation in more detail later in this section.

55

Programming paradigms for optimisation

Since not all propagators are equally powerful, meaning that they cannot al-
ways make the same inferences using the same amount of computational effort,
the actual choice of which constraints to use in modelling the problem can have a
significant impact on how efficiently the problem can then be solved. Therefore, in
order to successfully employ CP techniques, the user has to be smart about how
they model the problem. A detailed discussion of (how to make good) modelling
choices is outside the scope of this work, but we do now continue with a brief
overview of search and propagation techniques.

3.3.1 Backtracking search

CP solvers employ one core algorithmic approach to finding a solution (or refu-
tation) to the input problem: backtracking search. While CSPs can also be solved by
techniques like local search and dynamic programming, we focus on backtracking
search.

In this work, we require the search algorithm to be complete, meaning that
it guarantees that a solution will be found if one exists, that it will show that a
problem does not have a solution if none exists, and that it can be used to find
a provably optimal solution. The backtracking search approach is complete (un-
like most local search algorithms) and typically preferred over the (complete)
dynamic programming approach, because backtracking requires only a polyno-
mial amount of space, while dynamic programming might require exponential
amounts of time and space [154, Chapter 4]. Backtracking search was first pro-
posed in the 1960s [49, 73] and is still the main driver of modern-day CP solvers.

Typical backtracking search uses a depth-first search, inducing a search tree
to find a solution to the CSP (or an optimal solution in an optimisation setting).
The solver repeatedly selects an unbound (or uninstantiated, or free) variable X and
assigns to it a value a ∈ dom(X) (or a range or interval of values in case, e.g.,
dom(X) ⊆ R), thus building a partial solution. Repeatedly selecting an unbound
variable and assigning a value to it is called branching and induces a search tree.

If the domain of a variable X is reduced to a single value in this process, we
consider X to be fixed (or bound) to that value. If a fixed variable or set of fixed
variables violate(s) a constraint, we have encountered a failure: a partial assign-
ment that cannot be extended to a solution. When this happens, the solver back-
tracks to an earlier point in the search tree by undoing variable assignments. The
two main backtracking methods are chronological backtracking, where the solver
simply returns to the closest node on the current path in the search tree where
not all outgoing branches have been explored yet, and non-chronological backtrack-
ing or backjumping, where the solver ‘jumps’ back to a higher level in the search

56

3.3 Constraint programming

0 2 4 6 8

L

0

1

2

3

4

5

6

7

8

S

L
≥

6

L
≤

5

Root of the search tree

0 2 4 6 8

L

0

1

2

3

4

5

6

7

8

S ≥ 3

S ≤ 2

dom(L) := [0, 5]

Figure 3.2: Graphical representation of branching in the root and in the left child of the
root in Figure 3.3.

tree, thus skipping one or more nodes whose outgoing branches have not all been
explored yet.

Let us now use the constraint optimisation problem in Example 3.3.1 to illus-
trate backtracking search in CP.

Example 3.3.2 (Branching and backtracking in CP). The constraint optimisation
problem described in Example 3.3.1 has two variables: the number of power lines that
we choose to reinforce L, and the number of power stations that we choose to reinforce S.
A search algorithm will thus have to traverse the search space of (L, S) combinations to
find the combination that satisfies Equations 3.2 to 3.4 and maximises Equation 3.1.

Figure 3.3 illustrates just one way of traversing that search space. In each node, the
domain of either L or S is split (roughly) in half, branching left on the lower side, and
right on the higher side of the domain. Going down along a branch on the tree, nodes
in which we split on the domain of L and the domain of S alternate. Let us assume we
traverse the tree from left to right, and let us in this example only consider the left part of
the search tree (rooted at the left child of the root).

Following the left-most branch, we first branch on L ≤ 5 and then on S ≤ 2. We
can visualise this as adding extra constraints to focus on a specific region of the search
space, as is illustrated in Figure 3.2. Note that, at this point in the search tree, with
dom(L) = [0, 5] and dom(S) = [0, 2], all (L, S) combinations satisfy the constraints in
Equations 3.2 to 3.4. For the sake of legibility, we have omitted further descendents of this
node and just listed the optimal combination in these domains: R(L = 5, S = 2) = 8.25.

57

Programming paradigms for optimisation

dom (L) := [0, 10]

dom (S) := [0, 5]

dom (L) := [0, 5]

dom (S) := [0, 5]

dom (L) := [6, 8]F

dom (S) := [0, 3]F

dom (L) := [0, 5]

dom (S) := [0, 2]

3

opt: R(5, 2) = 8.25

dom (L) := [0, 5]

dom (S) := [3, 5]

dom(L) := [6, 8]

dom (S) := [0, 1]

dom (L) := 6F

dom (S) := [2, 3]

3

opt: R(6, 3) = 10.5

dom (L) := [0, 2]

dom (S) := [3, 5]

3

opt: R(2, 5) = 7.5

dom (L) := [3, 5]

dom (S) := [3, 5]

dom(L) := [6, 7]

dom (S) := [0, 1]

3

opt: R(7, 1) = 9.75

L := 8

dom (S) := 0F

3

R(8, 0) = 10

dom (L) := [3, 5]

dom (S) := [3, 4]

dom (L) := [3, 5]

S := 5

7

7/6 · 3 + 01/3 · 5 � 19

7/6 · 4 + 10/3 · 5 � 19

7/6 · 5 + 10/3 · 5 � 19dom (L) := [3, 4]

dom (S) := [3, 4]

3

opt: R(4, 4) = 9

L := 5

dom (S) := [3, 4]

L := 5

S := 3

3

R(5, 3) = 9.25

L := 5

S := 4

7

7/6 · 5 + 10/3 · 4 � 19

L ≤
5 6 ≤ L

S
≤

2 3 ≤
S S

≤
1 2

≤
S

L
≤

2 3
≤

L L
≤

7 8 ≤
L

S
≤

4 5 ≤
S

L
≤

4 5
≤

L

S
≤

3 4 ≤
S

Figure 3.3: An example of a small search tree for the constraint optimisation problem de-
scribed in Example 3.3.1. We use 7 to indicate failures and 3 to indicate a solution to the
constraints in Equations 3.2 to 3.4. Domains marked withF are relevant for Example 3.3.3.

58

3.3 Constraint programming

After finding this solution, we backtrack to the parent node and branch right, on
3 ≤ S to continue the search. We continue branching and finding solutions, until the
node in which both domains have been reduced to just one value: L := 5, S := 4, which
is a combination that violates the budget constraint in Equation 3.2. We backtrack and
continue the search for a better solution than the best one found so far (R(L = 5, S =

3) = 91/4), until we have traversed the entire search tree.

Typically, CP solvers employ a process called branch and bound, which uses
cheap-to-compute heuristics to determine if branches of the search tree can still
contain a better solution than the best solution found so far, or even any solution
at all. This helps to keep the size of the search tree from becoming too large.

In the above example, we made a rather arbitrary choice to alternate between
splitting the domains of L and S and to always split them (roughly) in half. Which
variable (and value or domain) to branch on next, is typically decided by a branch-
ing heuristic. The aim of these heuristics is to find a variable and value/domain
branching order that minimises the size of the search tree, and thus likely also
the running time of the solver. Since even finding the first variable of an optimal
variable order is at least as hard as solving the input problem itself [107], finding
and using the optimal variable order is infeasible.

Therefore, CP solvers use heuristics that give no guarantees of optimality to
decide which (variable, value/domain) pair to branch on next during the search.
These heuristics can either be universal or domain-specific, and can be either
static (determined before the search starts) or dynamic (determined during the
search). In this work we use existing universal branching heuristics, and present
new ones that are either static or dynamic and designed specifically for a new
constraint propagator that we introduce in Chapter 6. Additionally, we introduce
static, domain-specific branching heuristics in Chapter 7.

3.3.2 Constraints, consistency and pruning

The second mechanism that drives typical CP solvers is constraint propagation, or
inference, which is orthogonal to search. Informally, constraint propagation helps
the solver to eliminate inconsistencies, which are values in domains of free vari-
ables that cannot be part of a solution to the CSP, given the current assignment
to the bound variables. By enforcing consistency, constraint propagation helps
the solver to avoid branching on (variable, value) pairs that are inconsistent with
the current partial assignment and the constraints, and thus to prune parts of the
search space that do not contain any solutions, reducing the size of the search
tree.

59

Programming paradigms for optimisation

Constraint propagation operates as follows. After each time a backtracking
search solver branches on a (variable, value/domain) pair, propagators update
the domains of the remaining unbound variables by removing values that would
violate the constraints of the problem instance, given the current partial solution.
This helps to shrink the domains of the remaining free variables, and thus to
prune the search tree. If the domain of a variable X is reduced to a single value in
this process, this variable is automatically bound to that value. If for any variable
X we find that dom(X) = ∅ after propagation, we have found a failure and must
backtrack. Note that constraint propagation can also be called before the search
starts, in which case it serves as a preprocessing step to reduce the sizes of vari-
able domains [154, Chapter 4].

An important type of consistency is that of generalised arc consistency (GAC).
A (variable, value) pair (X, x) with x ∈ dom(X) is considered generalised arc con-
sistent (GAC) with respect to a constraint c ∈ C iff there exists an assignment in
the current domains of the other variables in the scope of c that satisfies c and in
which X = x [114]. Propagation establishes GAC for a constraint c if all remaining
values of all variables in the scope of c are GAC.

Example 3.3.3 (Search space pruning in CP). Note that the left side of the search tree
in Figure 3.3 is quite large, despite us omitting many nodes for reasons of legibility and
instead simply giving the optimal value of the objective function possible for the domains
of L and S in that node. Crucially, in Example 3.3.2, we did not perform any propagation.
Had we done any propagation, we could have pruned the search space.

Consider the right branch of the root of the search tree in Figure 3.3. It branches on
6 ≤ L, reducing L’s domain from [0, 10] to [6, 10]. A quick glance at Figure 3.1 tells
us that any L that exceeds 8, violates the time constraint in Equation 3.3. A constraint
propagation algorithm may detect that this is the case, and exclude the values 9 and 10
from L’s domain, which we have done in the right child of the root of the search tree.
Similarly, for values of L that are larger than 4, there are no solutions in which S = 4 or
S = 5. Since we branched on L ≥ 6 in the right child of the root, we can also exclude the
values 4 and 5 from the domain of S, which we have also done in that node.

Note that these actions kept the domains of L and S GAC with respect to the budget
constraint in Equation 3.2, and the time constraint in Equation 3.3, respectively. The
domains in Figure 3.3 that have been pruned using propagation, are marked withF.

3.3.3 Local and global constraints

A detailed discussion of backtracking and propagation, as well as of other tech-
niques, such as randomisation, restarts, local search, value selection heuristics

60

3.3 Constraint programming

and more, is outside the scope of this work. However, we must mention a few
important concepts about local and global constraints.

The main difference between local and global constraints is their scope. Local
constraints are between a fixed number of variables. For example: X < Y is a local
constraint, since it is always between two variables.

Global constraints, on the other hand, can involve an arbitrary subset of the
variables present in a problem. Arguably the best-known global constraint is the
AllDifferent constraint, which requires all variables in the scope of the constraint
to have a different value. Note that, contrary to the constraint above, the size of
the scope of an AllDifferent constraint is not determined by the form that the
constraint takes.

The constraint that is central to this work, the one in Equation 1.1, is a global
constraint. The constraints in Equations 3.2 to 3.4 on the other hand, are local
constraints.

Note that enforcing GAC for global constraints can be more computationally
expensive in both time and space than enforcing consistency on local constraints,
but also potentially more powerful in the amount of pruning it makes possible.
Some work has been done on decomposing global constraints such that the de-
composition has the same propagation power as the original global constraint,
meaning that the decomposition prunes the same values from the domains of the
involved variables as does the original global constraint. This is possible for some
global constraints, but not for all (at least not in polynomial time and polynomial
space). We refer the interested reader to the literature on which global constraints
can be decomposed, whether those decompositions preserve the solutions to the
CSP, whether they preserve GAC, and whether they preserve the time and space
complexity of enforcing GAC, e.g., [10, 15] and [154, Chapter 3].

3.3.4 Advantages of CP technology

CP solvers typically support many different types of constraints, where each con-
straint has a dedicated propagator, designed specifically to propagate changes in
domains of variables in the scope of that constraint efficiently. As one propaga-
tor removes values from a variable’s domain, this may trigger other propagators
to also remove values from domains. Thus, even though propagators themselves
are designed to solve specific constraints, their interaction can be quite power-
ful in finding solutions to the input problem very quickly. A user simply has to
specify the relevant constraints, and the dedicated propagators take care of the
inference tasks.

Note that, while we have so far only discussed CSPs, we can also use CP for

61

Programming paradigms for optimisation

solving constraint optimisation problems. We can straightforwardly turn a con-
straint optimisation problem into a CSP as follows.

Suppose we have an optimisation problem with non-negative objective func-
tion f (X) and constraint c(X). The first step is to turn the objective function into
a constraint, by setting f (X) > 0. If there exists a solution to the resulting CSP,
Xsol, it has value θsol := f (Xsol). We now update the constraint we derived from
the objective function to f (X) > θsol and continue the search. Note that, because
Xsol represents the first solution we found, we do not have to restart the search,
but can simply continue building the existing search tree, now in pursuit of a new
solution Xnew such that f (Xnew) > θsol. We continue this process until the CSP
becomes infeasible, in which case the last solution that was found represents the
solution to the original constraint optimisation problem. This makes CP a declara-
tive, flexible, convenient, general and fast programming paradigm for modelling
and solving a wide range of problems.

Unsurprisingly, therefore, the CP community has produced a wide range of
tools for modelling and solving CSPs, of which we name a few here. First of all,
as described above, CSPs must be modelled before they can be solved. MiniZinc

is a free and open source tool, especially designed to model CSPs in a high-level
and solver-independent way.1 All solvers that we name in this section can not
only solve CSPs modelled with MiniZinc, but also have an interface that directly
connects MiniZinc to the solver.

The powerful open source C++ toolkit Gecode2 has proven to be a time- and
memory-efficient CP solving tool for well over a decade, winning all gold medals
in all categories of the MiniZinc Challenge3 five years in a row. IBM’s commer-
cial ILOG CP Optimizer provides state-of-the art support for both real-world, and
purely academic constraint optimisation problems.4 The ILOG-inspired, and re-
cent MiniZinc Challenge gold medallist, Scala library OscaR [132] provides an
open source toolkit for constraint solving and constraint optimisation, including
functionality for visualising the search tree.5 Google’s OR-Tools provides Python,
C++, Java and C# interfaces for users to model CP problems and then solve them
by solvers such as CP-SAT.6 The open-source constraint logic programming sys-
tem ECLiPSe was particularly designed to be a generic programming tool, espe-
cially suitable for rapid prototyping, and provides a Python interface.7

1Available at www.minizinc.org.
2Available at www.gecode.org.
3See www.minizinc.org/challenge.html.
4Available at www.ibm.com/analytics/cplex-cp-optimizer.
5Available at bitbucket.org/oscarlib/oscar.
6Available at developers.google.com/optimization.
7Available at eclipseclp.org and pyclp.sourceforge.net.

62

https://www.minizinc.org
https://www.gecode.org
https://www.minizinc.org/challenge.html
https://www.ibm.com/analytics/cplex-cp-optimizer
https://bitbucket.org/oscarlib/oscar
https://developers.google.com/optimization/
http://eclipseclp.org
http://pyclp.sourceforge.net

3.4 Mixed integer programming

The discussion above represent just a small selection of the wide range of CP
solvers available. Later in this work, in Chapter 5, we will explore how we can
use off-the-shelf CP solvers to solve SCPs. Then, in Chapter 6, we present two
variants of a propagation algorithm that is specifically designed for a special kind
of stochastic constraint.

3.4 Mixed integer programming

As an alternative to CP solvers, we can also employ mixed integer programming
(MIP) solvers to solve the SCPs studied in this work. We recall basic concepts of
MIP. For details we refer the reader to the literature, e.g., Bradley et al.’s Applied
Mathematical Programming [25].

3.4.1 Mixed-integer linear programs

Again, we can model discrete optimisation problems with a set of variables,
corresponding domains, a set of constraints and an objective function. Unlike
CP solvers, MIP solvers support a limited range of different constraints. Mixed
integer-linear programming (MILP) solvers – arguably the most widely used type
of MIP solvers – support only linear constraints; as a result, they can only be
used for solving problems that can be modelled using linear constraints. Note
that even MILP is NP-hard [71].

The constraint optimisation problem in Example 3.3.1 also happens to be a
MILP, since both the constraints and the objective function are simply linear com-
binations of variables.

3.4.2 Solving a MILP

Despite the limitation of only being able to deal with linear constraints, MILP
solvers can be more powerful than CP solvers in solving linear programs, be-
cause of their ability to relax MILPs. Relaxing a MILP instance means relaxing
the integrality constraint of the decision variables with integer domains, mean-
ing that they are allowed to take real values. The resulting linear program has an
optimal solution that is guaranteed to be on one of the corner points of the convex
hull of all feasible solutions. This is illustrated in the left figure of Figure 3.4. It
shows the feasible region, where all constraints are satisfied, and shows the only
allowed solutions, which are the integer ones. The optimal continuous solution is
on the outer hull of the feasible region, and is indicated in the figure. The figure

63

Programming paradigms for optimisation

0 2 4 6 8

L

0

1

2

3

4

5

6

7

8

S

optimal
continuous

solution

Candidate solutions

5.0

7.5

10.0

11.0

0 2 4 6 8

L

0

1

2

3

4

5

6

7

8

optimal
continuous
solutions

New candidate solutions

5
.0

6
.2

7
.5

1
0
.0

1
0
.2

1
0
.9

Figure 3.4: Candidate solutions (solid disks) on the outer hull of the feasible region of the
MILP in Example 3.3.1, along with the corresponding values of the optimisation criterion
in Equation 3.1 (diagonal lines). In the left figure there is one optimal continuous solution.
In the right figure, there is one optimal continuous solution for each sub-domain of L that
is obtained after branching.

also shows the values of the reliability function (Equation 3.1) for the different
corner points of the convex hull.

Since the optimal continuous solution is usually not a valid solution because
of the integrality constraints on L and S in Example 3.3.1, a MILP solver must
narrow down the space of feasible optimal solutions, until it finds an integer one.
Note that simply rounding the continuous solution to an integer one may not be
feasible, since that might violate constraints. MILP solvers employ three main
techniques for this [25, Chapter 9]: branch-and-bound, cutting planes and group-
theoretic approaches. We will give a short intuition for how the first two tech-
niques work, again using the example problem in Example 3.3.1.

The branch-and-bound technique is also employed by CP solvers and simply
adds extra constraints to recursively narrow down the search space to an integral
one. This process induces a search tree, which allows for pruning similar to what
we described in Section 3.3.1.

Example 3.4.1 (Branch-and-bound). Consider the left figure in Figure 3.4. The MILP
solver has used the knowledge that the optimal continuous solution is on a corner points
of the convex outer hull of the feasible region, which in this case happens to be at
(L = 1122/191, S = 696/191). Using this as a starting point for the search, it might make

64

3.4 Mixed integer programming

sense to split the problem into two parts by adding two more constraints, either:

S ≤ 3 and S ≥ 4, or L ≤ 5 and L ≥ 6.

Note that neither choice excludes any integer solutions from the feasible region.
In the figure, we have chosen to first branch on the latter set of constraints, similar to

what we did in Example 3.3.2 and the left plot of Figure 3.2. This divides the search space
up into two sub problems, that can be solved individually. In the left part of Figure 3.4,
we have indicated the reliability values of Equation 3.1 for the corner points of the convex
hulls, and the new optimal continuous solutions.

Note that, if we now continue with the L ≥ 6 part of the sub-problem, we can im-
mediately refine the optimal continuous solution of (L = 6, S = 25/7) to (L = 6, S = 3).
We do this by noting that the optimal continuous solution is not in between two integer
solutions, but that its value for S can be rounded down to an integer solution, and obtain
R(6, 3) = 10.5. Since this value is higher than the optimal continuous solution of the
L ≤ 5 part of the search space (R (5, 79/20) = 10.2), we have found the optimal integer
solution and do not have to explore that part of the search space.

An alternative way of narrowing down the space of feasible optimal solutions,
is the cutting plane technique, introduced by Gomory in the 1950s [76], which is
used in all modern MILP solvers. After finding an optimal solution to the relaxed
MILP, the MILP solver checks if the decision variables in that solution take integer
values. If not, it introduces a new linear constraint (cutting plane), separating this
solution from the convex hull of feasible solutions to the MILP. Then, it solves
the resulting (relaxed) linear program, obtains a new optimal solution, checks
it for integrality, and so on. Plenty of research effort has been spent on creating
techniques for finding cutting planes that are fast to compute and that reduce the
feasible region by as much as possible, without excluding any integer solutions.
While a detailed discussion of these efforts is outside the scope of this work, we
illustrate the cutting planes technique with the following example.

Example 3.4.2 (Cutting planes). We illustrate the cutting planes technique in Fig-
ure 3.5. The red line in the left figure represents the cut. The part of the feasible region
that is above the cut does not contain any integer solutions, and can thus safely be cut off
from the feasible region, thus allowing the solver to narrow down its search.

In the right figure we have indicated the reliability scores for the corner points of
the new outer hull of the feasible region. Note that the new optimal continuous solution,
R (108/17, 48/17) = 10.8, is smaller than the optimal continuous solution in the right plot
of Figure 3.4.

Many MIP solvers grew from extending CP solving techniques such as

65

Programming paradigms for optimisation

0 2 4 6 8

L

0

1

2

3

4

5

6

7

8

S

Make a cut

0 2 4 6 8

L

0

1

2

3

4

5

6

7

8

optimal
continuous

solution

Continue recursively

5.0
7.5

10.0

10.8

Figure 3.5: Visualisation of the cutting planes technique. The red line in the left figure cuts
off a part of the feasible region, without excluding integer solutions.

branch-and-bound with MIP solving techniques such as cutting planes. One ex-
ample of a (commercial) solver (with free academic license) that evolved in this
way is IBM’s CPLEXOptimizer.8 After extensive integration of cutting planes tech-
niques into this solver in 1999, it showed a dramatic decrease both in solving time
and in optimality gap on MIPLIB examples.9 Another commercial MIP solver
with free academic license, Gurobi, provides a wide range of cutting plane tech-
niques, whose parameters can be tuned either by hand or by Gurobi’s automated
parameter optimiser.10 Some systems, such as the non-commercial SCIP Optimiza-

tion Suite11, or Google’s OR-Tools12 offer a general framework for modelling MIPs
and then providing an interface to the user to have the resulting programs solved
by other MIP solvers.

3.4.3 Quadratic programs and linearisation

Later, in Chapter 5 we will demonstrate how to encode SCPs as MIPs. The encod-
ings that we use result in MIP models that are not linear, but contain quadratic
constraints. While state-of-the-art MIP solvers, such as CPLEX and Gurobi, can

8Available at www.ibm.com/analytics/cplex-optimizer.
9Available at miplib.zib.de.

10Available at www.gurobi.com.
11Available at scipopt.org.
12Available at developers.google.com/optimization.

66

https://www.ibm.com/analytics/cplex-optimizer
http://miplib.zib.de
https://www.gurobi.com
https://scipopt.org
https://developers.google.com/optimization

3.5 Programming by optimisation

also deal with quadratic constraints under certain conditions, we limit ourselves
to MILPs; we do this, because those conditions are currently not guaranteed by all
MIP encodings obtained from SDD representations of probability distributions.

Under certain circumstances, it is possible to linearise quadratic constraints.
We will reflect on how to linearise quadratic constraints that are obtained from
OBDD or SDD representations of constraints on probability distributions in
Chapter 5. While linearisation typically comes at the cost of increasing the size
of the model, it may very well be worth it, because linearised models are poten-
tially very quick to solve by a MILP solver, because of the relaxation, branch-and-
bound and cutting planes techniques described above.

3.5 Programming by optimisation

In this work, specifically in Chapters 5 and 6, we introduce modular methods for
solving SCPs. This is in large part a consequence of the fact that this work is broad
in scope. In this and the previous chapter, we have discussed relevant techniques
from the fields of propositional logic, probabilistic inference, knowledge compila-
tion, logic programming, CP solving and MIP solving. These different fields have
their own states of the art, implemented in different tools and solvers. Thus, if we
want to combine the crème de la crème of the technologies brought forth by these
fields, a promising attempt at combining them into SCP solvers may be to click
them together like LEGO bricks, building SCP solvers in a modular manner.13

3.5.1 One size does not really fit anybody

This prompts us to employ yet another programming paradigm for optimisation:
programming by optimisation (PbO) [80].

Just like LEGO bricks come in different colours, so we can choose which
colour to use every time we add one to the thing we are constructing, there are of-

13LEGO bricks are things that, when stepped on while barefoot, induce a hellish pain that requires
excessive screaming to soothe. Many wheelchair users remain blissfully unaware of the pain inflicted
by these specific instruments of torture. Optionally, the small, brightly coloured, interlocking plastic
bricks can be used by children and adults alike to construct various objects. Anything constructed can
be taken apart again, and the pieces reused to make new things. Much like this dissertation, a LEGO
brick presents a choking hazard to anyone unwise enough to stick it in their mouth. Unlike a LEGO
brick, however, this dissertation presents a challenge to anyone attempting to stick it far enough up
their nose (or anybody else’s) to require a hospital visit for its removal from the relevant nose. At the
time of writing, these last two statements remain purely speculative, since this dissertation has not
been printed yet. That being said, we do not encourage the reader to attempt an empirical verification
or falsification of the truth of those statements, even after this dissertation has gone to print.

67

Programming paradigms for optimisation

ten multiple available solutions for solving the same sub task in our SCP solving
pipelines. For example, for modelling probability distributions, we could either
choose to model them with an OBDD or with an SDD. These design choices have
no effect on correctness, but can affect performance, especially for computation-
ally challenging problems, such as SCPs.

Note also that one-size-fits-all solutions are rare in this world. There is a rea-
son that LEGO bricks come in different shapes and sizes. We often find that
certain approaches work well for solving problems from one domain, but are
much less suited to solve problems from another domain. For example: branch-
ing heuristics in CP solvers may be domain-specific. However, in practice, only
one of these design choices is implemented in the final version of an algorithm
or software system. The choice is often made based on limited experimentation,
with a specific application in mind.

In this work, we try to avoid making that mistake. Rather, we want to exploit
the fact that there are often multiple possible ways of achieving (sub)tasks read-
ily available for us to use. As we will describe in Chapter 7, we have therefore
constructed various parts of our SCP solving pipeline in such a way that it has
access to different methods for solving subtasks and can be tuned for problems
from specific application domains.

This approach, implementing different design choices such that the configu-
ration of the resulting solver can be optimised for specific problem types is called
PbO [80].

3.5.2 Automated algorithm configuration

Taking a PbO-based approach to software or algorithm design, developers pro-
vide the end user with the choice between these options, by exposing them as
configurable parameters. A potential downside of this is that the user is left with
myriad choices of possible parameter settings (the configuration of the algorithm
or software system), with even more possible combinations. An end user might
not have the specialised expertise to make an optimal choice of these parameter
settings, while the algorithm’s configuration can have a substantial impact on its
performance. Additionally, the optimal configuration may vary for different sets
of problem instances.

This also applies to many existing state-of-the-art algorithms that naturally
come with many parameters. Using suitable parameter settings is then critical for
reaching state-of-the-art performance — especially for NP-hard problems, such
as ones studied in this work.

A solution to this problem lies in automated algorithm configuration (AAC) [79],

68

3.5 Programming by optimisation

which is the process of automatically finding an optimised configuration of an
algorithm’s parameters for solving problem instances from a specific problem
set, and critically enables PbO-based algorithm design.

After applying AAC to a target algorithm A with parameters q1, . . . , qn on a set
of problem instances I, we obtain a configuration c∗ that is expected to perform
well, according to a given performance metric m, on new instances that are similar
to those in I. In this work, since we are studying exact optimisation methods
and therefore cannot optimise for, e.g., quality of approximation, our performance
metric is always running time.

There are two main types of configurators [86]: model-free configurators, such
as (iterative) F-Race [12, 17] and paramILS [87, 88], and model-based configurators,
such as SMAC [86] and GGA++ [3].

Model-free configurators are relatively simple. For example, in its most ba-
sic form, the well-known configurator F-Race operates by first choosing a set of
configurations according to some kind of distribution, and then ‘racing’ them
against each other to see which solves the problem instances the best, according
to the performance metric [174]. Once it becomes clear that a configuration is too
far behind the others to ever catch up, it is eliminated from the set of candidate
configurations. At the end of its configuration run, F-Race returns a set of ‘elite’
configurations whose performances are statistically equivalent to each other, and
statistically better than performances of the configuration outside the set of ‘elite’
configurations. paramILS [87], on the other hand, uses a process of iterated local
search to find optimised parameters.

An advantage of this model-free approach is that it is well-suited for paral-
lelisation. On the other hand, the different racers do not exchange information,
thus missing the opportunity to learn about less successful configurations. Con-
sequently, a configurator may lose efficiency by learning the same information
more than once, or learning more slowly than it could have with information
sharing.

Model-based configurators, on the other hand, sequentially build a model that
captures the dependency of the performance of the target algorithm on its config-
uration. This model is used to predict the performance of configurations on mul-
tiple instances and to select promising candidate configurations, which is useful
for identifying good configurations more quickly than model-free configurators,
because of its ability to learn.

Another important property of configurators is the type of parameters that
they support. For example, F-Race focuses on numerical parameters (integer- and
real-valued) [174], while paramILS supports numerical and categorical parame-

69

Programming paradigms for optimisation

ters, as well as conditional parameters, whose activations depend on the values
assigned to other parameters. An advantage of model-based configurators is that
they support many different types of parameters.

This is useful in the context of this work, because in many cases the alternative
designs that we have implemented come with very specific sets of parameters.
Consequently, the resulting configuration space has many nooks and crannies
that are only relevant to explore under specific circumstances. By taking that into
account, the search for optimised parameters can often be carried out.

In Chapter 7, we choose SMAC [86] as the configurator for our experiments,
because it is one of the best-performing configurators that are freely available.

3.6 Conclusion

In this chapter we described tools for modelling and solving constraint (optimi-
sation) problems, and motivated why we have chosen these specific tools to build
on in this work.

Specifically, we described the probabilistic logic programming language DT-

ProbLog, which is especially designed to program problems that involve optimal
decision making under uncertainty. We described that we need to add functional-
ity for constraints and other types of optimisation than just maximisation in order
to use a DT-ProbLog-like language to program the kinds of SCPs studied in this
work.

We then proposed to use CP solving as a well-established and powerful
search mechanism. We briefly reflected on the two main processes that drive
CP solvers: back-tracking search and propagation, and how those relate to the
concept of consistency. Finally, we discussed the difference between local and
global constraints. Then, we discussed MIP solving as another technique for op-
timisation. We focused specifically on branch-and-bound techniques and cutting
planes techniques, used by MILPs solvers in particular to find integer solutions
to mixed-integer linear programs. We also, very briefly, reflected on the existence
of quadratic local constraints, and argued why we limit ourselves to linearisable
local constraints in this dissertation.

Finally, we motivated why we apply the paradigm of PbO to create a SCP
solving pipeline, and gave a brief introduction to this idea, and to AAC, which
enables us to take a PbO-based approach. In short, our use of PbO is motivated by
the observations that different subtasks in an algorithm can often be completed in
different ways (without affecting correctness), and that different design choices
that we make there can be better suited for some problems than for others. In

70

3.6 Conclusion

order to fully exploit the potential power of the solver, we therefore implement
many of these alternatives, and use AAC to automatically determine optimised
configurations for problems from different application domains. We believe that
this approach is particularly useful when developing tools for solving hard prob-
lems, such as the NP-hard SCPs that we study in this work.

71

