
Optimal decision-making under constraints and uncertainty
Latour, A.L.D.

Citation
Latour, A. L. D. (2022, September 13). Optimal decision-making under
constraints and uncertainty. SIKS Dissertation Series. Retrieved from
https://hdl.handle.net/1887/3455662

Version: Publisher's Version

License:
Licence agreement concerning inclusion of doctoral
thesis in the Institutional Repository of the University
of Leiden

Downloaded from: https://hdl.handle.net/1887/3455662

Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/3455662

Part I

Background

11

2
Logic, probability and inference

2.1 Introduction

As described in Chapter 1, the focus of this work is on developing exact solving
methods for stochastic constraint (optimisation) problems (SCPs), that strike a rea-
sonable balance between convenience, generality and speed. Because probability
is such an important part of SCPs, we devote this chapter to background on mod-
elling probability distributions and on executing well-known inference tasks. In
this work we take a propositional logic-based approach to modelling probability
distributions and reasoning about uncertainty. This decision is motivated by the
fact that logic-based models of probability distributions generalise many others.
Additionally, propositional logic connects very naturally to the constraint solving
component of the subject matter of this dissertation. Consequently, our focus in
this chapter is on probability distribution representations that are based in propo-
sitional logic.

We therefore open this chapter in Section 2.2 with some background on propo-

13

Logic, probability and inference

sitional logic, typical problems that can be formulated on propositional formulae,
and their associated complexity classes. Since this work aims to solve constraint
(optimisation) problems that involve a stochastic component in particular, and
since the field of probabilistic inference has produced a rich literature on how to
solve such problems, in Section 2.3 we give a brief overview of the main proba-
bilistic inference tasks known from this literature.

Moving on to concrete methods for solving probabilistic inference problems,
we then discuss the technique of knowledge compilation in Section 2.4, and how
to use the compilation of propositional formulae to decision diagrams (DDs) for
probabilistic inference in Section 2.5.

While propositional formulae provide a general way of representing prob-
ability distributions, constructing these formulae is not always straightforward.
We therefore also describe another way of representing probability distributions:
the probabilistic logic program, in Section 2.6. This provides a convenient and
human-friendly language for programming probability distributions, which can
then be converted to DDs or propositional formulae. We conclude this chapter in
Section 2.7.

2.2 Propositional logic

In this work, we take a probabilistic logic-based approach to reasoning about un-
certainty. In particular, we focus on (literal-weighted) propositional formulae to
represent probability distributions. In this section we first give a brief recap of
propositional formulae. We then discuss how they can represent probability dis-
tributions and how we can compute probabilities from propositional formulae.
Finally, we reflect on some relevant complexity classes, using problems formu-
lated on propositional formulae as representative members of those classes. This
discussion serves to put the next section (about different kinds of probabilistic
queries) into a computational complexity context.

2.2.1 Propositional formulae

Recall the stochastic constraint Equation 1.1 that we defined in Section 1.2. In
Section 2.2.3, we show how we can use the formalism of weighted model count-
ing (WMC) to compute the probability that an event φ occurs. In order to do so,
we model φ as a propositional formula. We now give a brief overview of the no-
tation and terminology that we use in this work. For a detailed description of
propositional logic, we refer the reader to the literature, e.g., Mathematical Logic

14

2.2 Propositional logic

for Computer Science [14].

A propositional formula φ(X) is defined on Boolean variables X ∈ X that
are connected in the formula through binary logical connectives ∨ (“or”) and ∧
(“and”). Variables in the formula may be negated (¬). We define a literal as either
a variable X or its negation, ¬X. In this work, we use true, > and 1 to indicate
‘true’, and false, ⊥ and 0 to indicate ‘false’.

We call sc(φ) = X the scope of φ. In this work, we assume the variables in sc(φ)
to be partitioned into a set of Boolean decision variables D and a set of Boolean
stochastic variables T. We use D ∈ D to indicate a Boolean decision variable,
and T ∈ T to indicate a Boolean stochastic variable. When the type of variable is
irrelevant, we use X ∈ X to indicate a generic Boolean variable and a generic set
of Boolean variables.

When literals are connected through only∨s, we call this a disjunction or a (dis-
junctive) clause. When they are connected through only ∧s, we call this a conjunc-
tion. If a propositional formula consists of a conjunction of clauses, this formula
is in conjunctive normal form (CNF). If it consists of a disjunction of conjunctions
of literals, the formula is in disjunctive normal form (DNF). For the scope of this
thesis we do not assume the input propositional formulae to be in any particular
normal form, unless otherwise specified.

We sometimes assign truth values to (some of) the variables in a propositional
formula φ and then consider the residual formula that we obtain by replacing those
variables by their truth values in φ and simplifying the result. We denote such a
partial assignment by π : X 7→ {>,⊥} and denote the residual formula as φ|π .
In this work in particular, we often want to evaluate the residual propositional
formula after we have assigned truth values to the decision variables in particular.
Since such a partial assignment corresponds to us making a set of decisions, we
refer to a partial assignment that only assigns truth values to the decision vari-
ables, σ : D 7→ {>,⊥}, as a strategy. If σ assigns truth values to only a subset of
the decision variables in sc(φ), we call it a partial strategy. When a partial assign-
ment only assigns truth values to stochastic variables, we call υ : T 7→ {>,⊥}
a scenario or possible world. Any π that assigns a truth value to all variables in
sc(φ) is called an interpretation of φ. We will sometimes abuse notation and treat
a partial assignment or interpretation simply as the set of literals that it sets to >.

We say that a formula evaluates to true under σ, in which case we call φ satis-
fiable, if φ|σ = >. We call any interpretation of φ that makes φ evaluate to true a
model, witness or solution of φ.

The task of deciding whether a propositional formula in CNF has at least one
model, is known as the Boolean satisfiability problem (SAT) and is known to be

15

Logic, probability and inference

NP-complete [38, 106] (see Section 2.2.4). The task of counting the total number
of models of a propositional formula, is known as the propositional model counting
problem (#SAT), and is the canonical #P-complete problem (see Section 2.2.4). In
Section 2.2.3, we discuss how a weighted version of this counting problem relates
to computing probabilities, but we first briefly recall some basic concepts of first-
order logic.

2.2.2 First-order logic

While in this work we limit ourselves to propositional formulae as a basis for
reasoning about uncertainty, for the ease of discussion in later sections, we now
briefly recall basic concepts and notation of first-order formulae. For a formal and
more detailed description, we refer the reader to the literature, e.g., Mathematical
Logic for Computer Science [14].

Like propositional formulae, complex first-order formulae are constructed
from simpler formulae using logical connectives such as ∨ and ∧, a negation
operator ¬ and the constants > and ⊥. The most simple form of logical formula
is the literal, which in the context of first-order logic is more generally defined
than in propositional logic. In first-order logic, a literal is an atomic formula (atom)
or its negation. An atom is a predicate that operates on terms, of which there are
different types.

Informally, we can think of terms as objects or entities. The simplest ones are
constants, e.g., a and b. They can represent, for example, people. Terms can also be
variables. We can interpret variables and constants by giving them values from a
domain. The third type of terms are functions. Function symbols are applied on
terms to define new terms.

As stated above, the literals of first-order logic are predicates and their nega-
tions. These predicates express properties of objects (terms) or relations between
objects. A predicate can take any number of arguments, including zero, which
is called a nullary predicate. Regardless of the input, a predicate always returns
a truth value (> or ⊥). Consider for example the domain of friends {a, b} and
the binary predicate isFriendO f (X, Y). If we interpret X and Y by assigning them
the values a and b, respectively, the predicate isFriendO f (a, b) evaluating to true
may mean that a is a friend of b. Predicates are the reason that first-order logic is
sometimes referred to as predicate logic [84].

Note that, while expressions involving only constants, variables, and func-
tions are terms, no expression involving a predicate is a term. Rather, an expres-
sion involving a predicate is a formula.

In addition, first-order logic uses quantifiers to indicate for how many values

16

2.2 Propositional logic

the relationship expressed by predicates must hold. The existential quantifier ∃
(“exists”) and the universal quantifier ∀ (“for all”) can be used to express that a
certain relationship holds for at least one arbitrary value, or for all values, respec-
tively. For example: ψ = ∀x∃y.pred(x, y) means that ψ evaluates to true iff, for
any value x, we can find at least one value y such that the predicate pred(x, y)
evaluates to true.

Note that first-order logic can express subtle details about the relationships be-
tween objects and can be a more compact way to encode information than propo-
sitional logic, especially if there is a lot of structure or repetition in the problem
or information that we want to model [84]. If the same predicate holds for many
(combinations of) values, this can often be more compactly expressed in first-
order logic than in propositional logic.

2.2.3 Propositional weighted model counting

In this work, we will use propositional formulae to represent probabilistic mod-
els. We then use the formalism of weighted model counting (WMC) to compute
probabilities from these formulae.

There are many alternative formalisms for representing probability distribu-
tions, which we will reflect on in the next chapter. In this work, however, we
use a propositional WMC approach, since it generalises many other well-known
approaches and is common practice in the domains of probabilistic reasoning,
planning and learning [13, 32, 33, 45, 52, 57, 61, 64, 158].

Before we give a formal definition of WMC, we first need to define the notion
of literal-weighted propositional formulae:

Definition 2.2.1 (Literal-weighted propositional formula). A literal-weighted
propositional formula is a tuple 〈φ(X), W(L)〉, of a propositional formula φ and a
weight function W : L 7→ Q+

0 that maps each literal in L to a non-negative rational
number. Here, X the set of variables of φ, i.e., φ’s scope, and L the corresponding set of
literals.

Specifically, we must define a particular type of literal-weighted formula: one
in which all weights can be interpreted as probabilities:

Definition 2.2.2 (Probability-weighted propositional formula). A probability-
weighted propositional formula is a tuple 〈φ(T), W(L)〉, with T the set of vari-
ables of φ, i.e., φ’s scope, and L the corresponding set of literals. The weight function
W : L 7→ {w ∈ Q | (0 ≤ w ≤ 1) ∧ (∀L ∈ L : W(¬L) = 1−W(L))} assigns a
rational weight between 0 and 1 to each literal L ∈ L, such that the weight of L (denoted
by W(L)) and the weight of its negation sum up to 1.

17

Logic, probability and inference

Here, we follow Sato’s semantics for probability distributions [160]. In prac-
tice, this means that we interpret the probability W(L) to be the probability that L
has the value >. We also assume that the probabilities associated with variables
are mutually independent. We will use literal-weighted propositional formulae
as a way to represent probabilistic models (see Section 2.3.1) and for probabilistic
reasoning about those models (see Section 2.2.3). Note that, because of the as-
sumption that W(¬L) = 1−W(L), probability-weighted propositional formulae
describe Bernoulli distributions.

Specifically, we use WMC to compute the probability P(φ|σ) of an event
φ(D, T), defined on decision variables D and stochastic variables T, occurring
for a given strategy σ that maps each decision variable in D to a truth value.
Using the above definition of a probability-weighted propositional formula, we
define the WMC as follows:

Definition 2.2.3 (Weighted model count). The weighted model count of a probability-
weighted propositional formula 〈φ(T), W(L)〉 is given by:

wmc(φ) = ∑
υ∈M

∏
L∈υ

W(L), (2.1)

where υ denotes a model of φ(T), represented as the set of literals that are set to > in
that model andM denotes the set of models of φ(T), and T and L as defined in Defini-
tion 2.2.2.

We interpret wmc(φ) as the probability that φ(T) evaluates to >, given the
probabilities as defined by W(L). We therefore also write P(φ) to denote φ’s
weighted model count. Note that Equation 2.1 shows that we assume that the
probabilities associated with positive literals by W are mutually independent. If
we had not made this assumption, we would not be able to simply multiply literal
weights in Equation 2.1.

The WMC formalism can be used for counting the number of solutions to a
propositional formula, and is known to be #P-complete [155].

We can now use the notion of the weighted model count of a probability-
weighted propositional formula to compute the success probability P(φ|σ) of the
residual formula that is obtained when conditioning a propositional formula
φ(D, T) on a full strategy σ, which assigns truth values to all variables in D. We
illustrate this with the following example:

Example 2.2.1 (The weighted model count of a propositional formula). Consider

18

2.2 Propositional logic

the following propositional formula, strategy and weight function:

φd(D, T) := Dd ∨ (Dc ∧ Tcd) ∨ (Db ∧ Tbc ∧ Tcd) ∨ (Da ∧ Tac ∧ Tcd)∨
(Db ∧ Tab ∧ Tac ∧ Tcd) ∨ (Da ∧ Tab ∧ Tbc ∧ Tcd) ,

σd := {Da := >, Db := >, Dc := ⊥, Dd := ⊥},
W(L) := {pTab := 0.4, pTac := 0.8, pTbc := 0.1, pTcd := 0.3},

(2.2)

with D = {Da, Db, Dc, Dd} and T = {Tab, Tac, Tbc, Tcd}. Here, we have only listed the
weights of the positive literals for brevity, and denote the weight of a literal L with pL,
since it reflects a probability. Conditioning φd on σd yields the following residual formula:

φd|σd := (Tbc ∧ Tcd) ∨ (Tac ∧ Tcd) ∨ (Tab ∧ Tac ∧ Tcd) ∨ (Tab ∧ Tbc ∧ Tcd) . (2.3)

We can now ‘roll the dice‘ for each stochastic variable to obtain a truth value for it. The
resulting possible world υ : T 7→ {⊥,>} represents just one scenario of what could
happen once the probabilistic truth values of the stochastic variables are revealed. Substi-
tuting the truth values specified by υ into the residual formula φd|σd either satisfies that
formula, in which case υ ∈ M is a model of φd|σd , or falsifies it.

We can now use Equation 2.1 to compute the success probability of φd|σd , which we
illustrate in Table 2.1, finding a success probability of P

(
φd|σd

)
0.2460 for this formula.

Table 2.1: An example of how to compute the weighted model count of Equation 2.3. Note
that the table only lists interpretations that are models of φd|σd .

model weight

{Tab := >, Tac := >, Tbc := >, Tcd := >} 0.4 · 0.8 · 0.1 · 0.3 = 0.0096
{Tab := >, Tac := >, Tbc := ⊥, Tcd := >} 0.4 · 0.8 · 0.9 · 0.3 = 0.0864

...
...

{Tab := ⊥, Tac := >, Tbc := >, Tcd := >} 0.6 · 0.8 · 0.1 · 0.7 = 0.0336

P(φd|σd) = 0.2460

2.2.4 Relevant complexity classes

The problems studied in this work are NP-hard in the general case. They in-
volve solving sub-problems (probabilistic inference problems, specifically) that
are shown to be #P-complete. Later in this chapter, we will describe different
types of probabilistic inference and how they relate to the SCPs studied in this

19

Logic, probability and inference

work. In order to put those into (their computational complexity) context, we
first provide some definitions.

Recall from Section 2.2.1 that the SAT problem asks, for a given propositional
input formula φ in CNF, if there is a model of that formula. If there is, we call such
a formula satisfiable. Informally, problems that are members of the NP complex-
ity class are decision problems for which we can efficiently verify if a candidate
solution to an instance of this decision problem is indeed a solution to this prob-
lem instance. Here, the word “efficiently” means “in time polynomial in the input
size on a deterministic Turing machine or equivalent model of computation”.

In order to define the classNP more formally, we remark that we can encode
a problem instance (a propositional formula, in case of SAT) as a string. We can
define the problem size as the length of that string. Using these strings, we can
define languages that describe a problem class. In the SAT example, the SAT lan-
guage would consist of all strings that describe propositional formulae that are
satisfiable.

We can now imagine the existence of an algorithm that checks (verifies) if an
interpretation π of φ is indeed a model of φ. It thus takes two inputs: a string
encoding the propositional formula and a string encoding the interpretation. In
the computational complexity literature, this algorithm is typically modelled by
a Turing Machine (TM). Using these notions, we can more formally define the
class NP as follows (inspired by the definitions given by Arora & Barak [6] and
Martin [124]):

Definition 2.2.4 (The classNP). Given a finite set of characters (an alphabet) A and
a language L ⊆ A∗, which is a set of strings of arbitrary length, comprising characters
from A. This language L is in NP iff there exists a polynomial p : N 7→ N and
a polynomial-time TM M, which we call the verifier for L, such that for every string
x ∈ A∗,

x ∈ L⇔ ∃u ∈ Ap(|x|) s.t. M(x, u) = >
Here, we call u a certificate for input string x (with respect to L and M) if x ∈ L and
u ∈ Ap(|x|), with |x| the length of the input string x.

Without loss of generality, we can choose this alphabet to simply be {⊥,>},
which we use to both encode the input string x describing the problem instance,
and the certificate u. Note that encoding x using an alphabet of A = {⊥,>} is
note quite as trivial as encoding u. In the computational complexity literature, it
is often assumed that the alphabet also has a blank symbol � and a start symbol .
for easier encoding in a Turing Machine. Because a discussion of how to encode
x and a discussion of the exact workings of the Turing Machine model of compu-
tation are outside the scope of this work, we will ignore these special symbols.

20

2.2 Propositional logic

As long as the alphabet is finite, the exact choice of the alphabet is unim-
portant, since we can always come up with a transformation of one alphabet to
another. To get an intuition for this, consider two finite alphabets, A = {⊥,>}
and B, with |A| < |B|. Now, B can easily simulate A by simply mapping > to a
symbol b ∈ B and ⊥ to a symbol b′ ∈ B and not using all other symbols in B.
Conversely, A can encode any symbol in B using log |B| bits.

For the sake of completeness, we also recap the concepts of hardness and com-
pleteness. Informally, a problem P′ is called hard for a certain time complexity class
if any problem P in that complexity class can be reduced to P′ in polynomial time.
Intuitively, this polynomial reduction means that we can transform input string
x ∈ L (the encoding of problem P) into a an input string x′ ∈ L′ in time that is
polynomial in |x|, such that a TM that verifies L′ can be used to verify L.

More formally, we repeat the following definitions from Arora & Barak [6]:

Definition 2.2.5 (Reduction). A language L ∈ A∗ is polynomial-time Karp re-
ducible to a language L′, denoted by L ≤p L′, if there is a polynomial-time computable
function f : A∗ 7→ A∗ such that for every x ∈ A∗, x ∈ L iff f (x) ∈ L′.

Note that L and L′ need not be languages on the same alphabet A. Rather, f may
also be a function from strings on finite alphabet A to strings on a different finite
alphabet B, because of the aforementioned possibility of using one alphabet to
simulate another.

Using the definition above, we can give definitions for NP-hardness and
NP-completeness:

Definition 2.2.6 (NP-hardness and NP-completeness). We say that L′ is NP-
hard if L ≤p L′ for every L ∈ NP . We say that L′ is NP-complete if L′ is NP-hard
and L′ ∈ NP .

Here the “NP” in NP stand for “non-deterministic polynomial”. Intuitively,
NP-complete problems are those problems for which there cannot be an algo-
rithm that can efficiently (i.e., in polynomial time) and deterministically find a
solution to an arbitrary instance of that problem that it is presented with, but for
which it is possible to construct an algorithm that efficiently checks if a given solu-
tion (e.g., a non-deterministic guess) to the problem instance is indeed a solution.

At least, that is the hunch that the overwhelming majority of computer scien-
tists share on this topic. Unless we find that P=NP , in which case there would
be a way to construct polynomial-time (“efficient”) algorithms for solving NP-
complete problems, or definitively prove that P 6=NP , we operate under the as-
sumption that no theoretically efficient (polynomial) algorithms exist to find a so-
lution to an arbitrary instance of any NP-complete problem.

21

Logic, probability and inference

Recall that we study stochastic constraint (optimisation) problems in this
work, and aim to solve them exactly. In the case of the stochastic constraint satis-
faction problems, it is clear that they are decision problems: we ask if the constraint
is satisfied. We can turn stochastic constraint optimisation problems into stochas-
tic constraint satisfaction problems by simply asking if the value that we aim to
maximise exceeds a certain threshold (and analogously for minimisation prob-
lems). We discuss the relationship between stochastic constraint satisfaction and
stochastic constraint optimisation in more detail in Section 4.1.

While the SCPs that we study in this work are shown to be NP-hard in the
general case, they need not be in NP , and thus need not be NP-complete. This
is because real-world examples of SCPs (such as the ones studied in this work)
often-times contain a lot of structures and symmetries that can be analysed to
define special cases of SCPs for which we can design theoretically efficient solving
algorithms.

As briefly touched upon in Section 1.3, in order to exactly solver SCPs, we
need to evaluate the quality of different strategies, and evaluating the quality of
a strategy is #P-complete. The complexity class #P (pronounced “sharp p”) cap-
tures the class of problems in which we are not just interested in finding a solution,
but rather in counting all solutions to a problem instance. Perhaps unsurprisingly,
the canonical problem of this complexity class is the problem of counting the num-
ber of models of a propositional formula (#SAT), the model counting problem for short,
in which we count all models of a given propositional formula, as discussed in
Section 2.2.1.

More formally, we again give a definition analogous to the one given by Arora
& Barak [6]:

Definition 2.2.7 (The class #P). A function f : A∗ 7→ N is in #P if there exists a
polynomial p : N 7→N and a polynomial-time TM M such that for every x ∈ A∗:

f (x) =
∣∣∣{u ∈ Ap(|x|) : M(x, u) = >

}∣∣∣ .

Note that this definition implies that the count itself can be encoded in a string
whose length is polynomial in the length of the input string x that encodes the
problem instance. The weighted version of this problem, as described in Sec-
tion 2.2.3, is also shown to be #P-complete in the general case [155].

Perhaps unsurprisingly, counting can be harder in practice than deciding.
In particular, some problems that are easy to decide have an associated count-
ing version that is hard. A well-known example are propositional formulae in
DNF. Their satisfiability can be decided easily (while deciding their falsifiability

22

2.2 Propositional logic

is hard), but counting the number of models of a DNF formula is not easier than
counting the number of models of a CNF formula.

In order to define completeness for #P , we must first define FP , the class of
functions f : A∗ 7→ N that are computable by a deterministic polynomial-time
Turing Machine [6]. Intuitively, computable functions are those that can be com-
puted by an algorithm or computer without going into infinite loops. A formal
definition of #P-completeness is outside the scope of this work, but informally,
a function f is #P-complete if it is in #P and the existence of a polynomial-time
algorithm for f implies that #P = FP . We refer the reader to the literature for
more details, e.g., Computational Complexity, by Arora & Barak [6].

Finally, we point to the class of problems that represents decision versions of
problems in #P : PP . Intuitively, and taking the #SAT problem as an example, the
question asked in these problems is whether the model count of a propositional
formula meets a certain threshold. More formally [6]:

Definition 2.2.8 (The class PP). A language L is in PP if there exists a polynomial-
time TM M and a polynomial p : N 7→N such that for every x ∈ A∗,

x ∈ L⇔
∣∣∣{u ∈ Ap(|x|) : M(x, u) = >

}∣∣∣ ≥ 1
2
· 2p(|x|),

where we assume that A = {⊥,>}.

Here, 2p(|x|) represents the total number of possible certificates for the input in-
stance x, and it is assumed that the length of a certificate u is polynomial in the
length of x.

In the language of Turing Machines, we can think of L as a language whose
strings are accepted by the majority of paths in non-deterministic TM M. Unlike
problems that are in NP , and taking the SAT problem as an example, we do not
need to find just one model, but we must check that the majority of interpretations
are models of the input formula.

We finally point to the concept of oracles, which are used in computational
complexity theory to reason about different complexity classes. Informally, an
oracle is a black box that answers queries. Even though those queries represent
problems in a specific complexity class, it costs a Turing Machine only one time
step to query the black box. For example, NPPP is the class of problems that can
be decided by a non-deterministic, polynomial-time Turing Machine, provided
that it has access to an oracle that decides problems that are in PP .

In the next section, we describe a number of probabilistic inference tasks that
are members of the complexity classes described above.

23

Logic, probability and inference

2.3 Probabilistic inference

As we described in Chapter 1, we study problems that involve some sort of
stochastic component, and thus require us to perform some kind of probabilis-
tic reasoning. Given a probabilistic model, we use the term probabilistic inference
to refer to answering probabilistic queries about the model, such as “what is the
probability that it will be windy and rainy when I go outside?” In this section
we describe several probabilistic queries known from the probabilistic inference
literature.

Specifically, we identify three main types of inference tasks: max-inference
tasks, sum-inference tasks and mixed-inference tasks [143]. They are listed here in in-
creasing order of difficulty, their complexity classes ranging from NP-complete,
to #P-complete to NPPP-complete, respectively [47, 139], with NP ⊆ #P ⊆
NPPP.

Before we describe these tasks, their complexities, and techniques that have
been developed to solve them, we first introduce some notation and terminology
related to the probabilistic models on which these tasks are formulated.

2.3.1 Probabilistic models

Probabilistic models can be represented in different ways. In the previous sec-
tion, we discussed a specific way of modelling probability distributions: literal-
weighted propositional formulae. A popular alternative approach to representing
probabilistic models are graphical models [97, 140].

A well-known example of a graphical model is the Bayesian network (BN) [140],
whose name was coined by Pearl in the 1980s. BNs are directed-acyclic graphs in
which each node represents a variable and the directed edges indicate depen-
dence relationships. With each node they also associate a conditional probability
table (CPT) that describes that relationship. Another well-known example is the
Markov Network (MN), or Markov Random Field (MRF) [140], which is an undi-
rected version of the Bayesian network.

However, in this work we choose literal-weighted propositional formulae to
model probability distributions (as described in Section 2.2), since they gener-
alise other approaches [32, 158]. Because of that choice, in this work, we consider
problems formulated on Boolean variables. For ease of discussion, here we there-
fore assume that all variables have Boolean domains, but this need not be the case
in general (in fact, they need not even be discrete).

The contents of this section are agnostic of any specific probabilistic model
representation, unless indicated otherwise.

24

2.3 Probabilistic inference

In our discussion of probabilistic inference tasks below, we consider a prob-
abilistic model P = 〈E, S, Q, Φ〉 on variables that are partitioned into three dis-
joint sets: E, S and Q. Intuitively, we can think of these sets as variables whose
values represent evidence (E), variables that must be marginalised out (S), which
is done by summation, and variables whose values we want to query (Q). Taking
the spread of influence problem as described in Section 1.1 as an example, we
can think of the evidence as a decision on which people get a free sample. Maybe
we want to target a specific group (e.g., women in tech, people who like running,
reading enthusiasts, . . .). We then query members of that group to predict the ex-
pected reach of our marketing campaign to that specific target audience, leaving
members outside that target audience (who might still participate in spreading
the word about our product) to be marginalised out.

Joint probability distributions on these variables are, in the graphical model
literature, typically defined using a set F of potentials f . These potentials map sets
of (truth value) assignments to variables in X to real numbers: f : {>,⊥}|X| 7→ R.
In general, each potential must take a nonnegative value for at least one set of
truth value assignments [187]. In the context of graphical models, we can typi-
cally interpret these potentials as conditional probability tables (CPTs) that associate
a probability with an assignment of truth values to the variables in the scope of
the potential (X). We thus consider all the potential’s values to be nonnegative in
this chapter.

Recall the discussion of literal-weighted propositional formulae and their
weighted model counts from Section 2.2.3. Similar to the CPTs in the context of
graphical models, we can see Table 2.1 as a potential. Instead of having multi-
ple potentials that define a probability distribution over subsets of all variables
involved, now we have just one potential. This potential maps models of the
literal-weighted propositional formula to their weights, and any interpretation
of the formula that is not a model to 0.

We now continue with a description of the three main probabilistic tasks that
can be formulated on probabilistic models.

2.3.2 Max-inference tasks

Max-inference tasks typically aim to find the most probable configuration of a
joint probability distribution. A typical max-inference task is the most probable
explanation (MPE) task. In some of the literature, this task is also known as the
maximum probability assignment (MPA) task [20], or the maximum a posteriori (MAP)
task, e.g., in [1, 35, 91, 104, 112, 126, 153, 167, 184]. Given a probabilistic model
P as described above, with S = ∅, and some evidence e in the form of truth

25

Logic, probability and inference

assignments to the variables in E, e : E 7→ {⊥,>}, the MAP task aims to find
an assignment of truth values q to the variables in Q, q : Q 7→ {⊥,>}, that
maximises P(Q = q | E = e).

Then, in the context of graphical models, for each possible q we can write:

P (Q = q | E = e) :=
∏ f∈F f (e, q)

P(E = e)
(2.4)

Note that, in the context of literal-weighted propositional formula representations
of probabilistic models, instead of Equation 2.4, for each possible q we would
write:

P (Q = q | E = e) :=

∏L∈q W(L) if e ∪ q ∈ M(φ)

0 otherwise,
(2.5)

where W(L) represents the weight of literal L andM(φ) is the set of models of
propositional formula φ. Note that this is simply the weight of the interpretation
defined by e ∪ q.

The goal of the MPE task is then to find an assignment of truth values to
variables in Q that maximises this probability:

q∗ := arg max
q

P (Q = q | E = e) , (2.6)

where in fact we can also simply compute q∗ ∈ arg maxq ∏ f∈F f (e, q) (in the
graphical model view), since P(E = e) is independent of q. Where, for simplic-
ity, we assume that the arg max function in the above formula returns just one
assignment, even if more than one maximise P (Q = q | E = e).

Note that, because S = ∅, the MPE task can be seen as finding the most likely
configuration of a set of variables Q, given evidence about the variables in the
complement of Q, namely those in E. As such, it is a very useful task for diag-
nostic purposes. For example: given a set of symptoms (E = e), a physician may
want to ask what the probability is that the patient has a certain disease (Q = q).

The MPE inference task of determining if there exists a configuration q such
that P (Q = q | E = e) > θ (with rational threshold 0 ≤ θ ≤ 1) is shown to
be NP-complete [20, 167]. In fact, even finding a solution to the MPE problem
whose quality is guaranteed to be within a constant ratio ρMAP of the optimal
solution, is shown to be NP-hard [1].

The earliest exact methods for solving MPE were join-tree algorithms, devised
in the context of Bayesian networks, where potentials are computed one by one,
in a strict order that is determined by the (structure of the) problem, often using
the potentials that were computed earlier [90, 101, 140]. In the late 1990s, Dechter

26

2.3 Probabilistic inference

proposed the bucket elimination framework as a generalisation of variable elimi-
nation algorithms, typically used for mixed-inference tasks, which we will briefly
discuss in Section 2.3.4. Because the max-inference and mixed-inference tasks are
so closely related, Dechter proposed a general framework for solving these task.
It provides functionality for balancing the space and time requirements of vari-
able elimination algorithms [53]. Note that the efficiency of variable elimination
algorithms is determined by the variable order inherent to the specific problem
instance.

Alternative approaches to exact MPE solving include one based on a modi-
fication of the DPLL algorithm, using a dynamic programming approach [159],
and one that is based on integer linear programming (ILP) [153]. Another class of
algorithms encodes the problem in an AND/OR diagram (which exploits the in-
dependencies in the graphical model), and uses a depth-first branch-and-bound
search to traverse that diagram in order to solve the MPE task [115, 116].

Finally, we point to the existence of approximation methods for MAP, based
on, e.g., local search [139], mini-bucket elimination algorithm [54], (hybrid) mes-
sage passing algorithms [91, 112], weighted search [67] and others [103, 119, 138,
143, 186]. A detailed discussion of these techniques is outside the scope of this
work, since we focus on exact SCP solving.

Note that solving SCPs as described in Section 1.1 never requires max-
inference only. Instead, we always require a form of inference that performs some
kind of aggregation over probabilistic paths in networks, and thus sum-inference.

2.3.3 Sum-inference tasks

The probabilistic logic programming (PLP) literature identifies an inference task in
which the set Q contains only one variable (Q = {Q}), there are no observed
variables, and thus there is no evidence (E = ∅), but there are latent (i.e., unob-
served or uninteresting) variables that must be marginalised out (S 6= ∅). In this
case, we call P(Q = >) the success probability of query Q, which, in the graphical
model context, is computed as:

P(Q = >) :=
1
Z

˙∑s ∏
f∈F

f (s, Q = >) , (2.7)

where Z is a constant needed for normalisation, often referred to as a partition
function. In the literal-weighted propositional formula context, computing P(Q =

>) corresponds to computing the weighted model count of a formula that can
only be satisfied if Q = >, using Equation 2.1.

27

Logic, probability and inference

This task is known in the PLP literature as the marginal distribution
(MARG) [52, 64, 65] or simply MAR [47] task, or the PROB task [96].

This task is known to be #P-complete in the general case [155, 176, 177]. The
decision version of this problem asks if P(Q = >) > θ holds for a given threshold
0 ≤ θ ≤ 1. This problem is PP-complete [6, 47].

Since the task of computing the success probability of a query is such an im-
portant task in the PLP community, many methods for solving this task either
exactly or approximately have been developed over the years. In particular, it has
been shown that the MARG task can be reduced to the WMC problem [8, 9, 43],
which we briefly referred to in Section 2.2.4. Consequently, a lot of the literature
on solving this task is based on model counting techniques.

An early example of this is the suggestion by Bacchus and Dalmao to adapt
the Davis-Putnam-Logemann-Loveland (DPLL) algorithm such that it can be
used for model counting [9]. They observed that computing the conditional prob-
ability distributions for variables in a Bayesian Network (the BAYES problem),
and counting the number of model of a propositional formula (#SAT) are in-
stances of the same SUMPROB problem, as identified by Dechter [53]. They
thus proposed to solve the BAYES problem with their #DPLL algorithm [8, 9],
which eventually led to weighted model counter Cachet, which employed conflict-
driven clause learning (CDCL) for efficient weighted model counting [157, 158].
Somewhat more recent model counters of this type include weighted versions
of miniC2D [134] and sharpSAT [173], specifically our weighted version1, a ver-
sion called sharpSAT-TD2, and a weighted version of GANAK [166].3 Finally,
Chakraborty et al. showed that, under certain assumptions, literal-weighted
propositional formulae can be transformed into unweighted propositional for-
mulae whose model counts can then be transformed back into probabilities,
thus allowing any unweighted model counter to be transformed into a weighted
one [29].

These model counting techniques typically require the input to be in a cer-
tain propositional language (typically CNF). However, a large part of the prob-
abilistic inference literature assumes the probabilistic model to be encoded as a
graphical model, thus requiring some kind of encoding step before solving. Sev-
eral methods for encoding probabilistic graphical models into (literal-)weighted
CNFs have been proposed [13, 29, 33, 43], but a detailed discussion of them is
outside the scope of this work.

A weighted model counter takes a (literal-)weighted CNF as input and returns

1Available at bitbucket.org/latower/weighted-sharpsat.
2Available at github.com/Laakeri/sharpsat-td.
3Weighted version available at github.com/meelgroup/ganak/tree/wmc.

28

https://bitbucket.org/latower/weighted-sharpsat
https://github.com/Laakeri/sharpsat-td
https://github.com/meelgroup/ganak/tree/wmc

2.3 Probabilistic inference

a probability. In some contexts, this might be enough. However, in some other
contexts, we may want to query the same model multiple times, only with differ-
ent weights, or with different decisions. For example, in the context of the power
grid reliability problem, experts may have provided us with upper and lower
bounds on the survival probabilities of the power lines. Using those bounds, we
may want to formulate queries for best-case and worst-case scenarios. The un-
derlying model is the same for these two scenarios, but the weights are different.
Taking the spread of influence problem as another example, we may just want to
determine the expected number of eventual customers given different ‘seed’ sets
of people who receive a free sample. Again, the underlying model is the same,
but some decisions (and thus the values of decision variables) are different.

In these examples, we want to compute the success probability of a literal-
weighted formula multiple times, only with slightly different weights. Using the
DPLL-based algorithms, we would have to run the algorithm again for each dif-
ferent weight function, and we cannot reuse any results.

This single-use property of model counters is a drawback if we may want to
perform multiple queries on the same model. These observations are addressed
by the field of knowledge compilation [48, 123, 165], where a propositional formula
is compiled into a decision diagram (DD). These data structures capture the model
into a data structure that allows for repeated querying in time that is polynomial
(typically linear) in the size of the DD. Since this work relies heavily on knowl-
edge compilation, we discuss this in more detail in Section 2.4.

Due to the complexity of the MARG task, there is also a class of bounding
and approximation algorithms for solving this problem. One of the earliest meth-
ods simply uses a SAT solver to generate sample solutions, whose weights can
be used to estimate the total weighted model count of a literal-weighted input
formula [182], taking care to take into account the weight of the samples them-
selves [28]. Later methods take a hashing-based approach, which adds random
XOR constraints to the formula, which cuts down the solution space until it is
small enough to count. The total model count is then estimated by repeating this
procedure, resulting in probabilistic upper and lower bounds on the weighted
model count [30]. Another method is an anytime approach from the PLP litera-
ture simply generates partial proofs by partially grounding a probabilistic logic
program, generating lower and upper bounds on the success probability that get
closer as the algorithm continues to run [151, 152].

Finally, we mention parallelised methods for weighted model counting, such
as ones that utilise GPUs [62] or implement parallel DD compilation algo-
rithms [40].

29

Logic, probability and inference

2.3.4 Mixed-inference tasks

Recall the probabilistic model we described above: P = 〈E, S, Q, Φ〉. For the
definition of the MPE problem, we assumed that S = ∅. For the definition of
MARG inference, we assumed that E = ∅. We now discuss a generalisation
of the MPE in which S 6= ∅ and E 6= ∅, known as the MAP problem. As we
mentioned in Section 2.3.2, some literature calls the MPE task the MAP task. In
these works, the mixed-inference task is called marginal MAP (MMAP) (e.g., in
[1, 35, 91, 104, 112, 126, 153, 167, 184]) or partial MAP [100].

The MAP task is to find an assignment of truth values q to the variables in Q
that maximises P(Q = q | E = e), and thus given only partial evidence on the
variables in the complement of Q.

In the MAP setting, we have to marginalise out the variables in S, which
present the ‘hidden’ variables that we neither know, nor care about, resulting in
the following expression for the probability of an instantiation q of the variables
in Q, in the context of graphical models:

P (Q = q | E = e) :=
1

P (E = e)
· ∑

s∈{>,⊥}|S|
∏
f∈F

f (e, q, s) . (2.8)

In the context of literal-weighted propositional formulae, this would correspond
to computing the weighted model count of the residual formula φ|q,e, obtained
by substituting the variables in Q ∪ E with their truth values according to q and
e, and simplifying the resulting formula. Consequently, the sum in Equation 2.1
then only runs over interpretations s that are models of φ|q,e. Similar to the MPE
task, MAP aims to find the solution to Equation 2.6, but uses Equation 2.8 to
compute P (Q = q | E = e) instead of Equation 2.4:

q∗ := arg max
q

∑
s∈{>,⊥}|S|

∏
f∈F

f (e, q, s), (2.9)

where we note that, again, the factor P(E = e) is unimportant for the purposes
of finding q∗.

A generalisation of the MAP task is the maximum expected utility (MEU)
task [53], which is formulated on a probabilistic modelP = 〈E, S, Q, Φ, U〉, where
we are given a utility function that associates a utility u(e∪ s∪q) with each possi-
ble instantiation of the variables in E∪ S∪Q. Instead of maximising the marginal
probability, this problem maximises the expected utility. As such, it is a popular
setting in the field of optimisation, planning and scheduling [5, 102]. Clearly, we
can formulate SCPs as MEUs, provided that we can encode the constraints into
the probabilistic model.

30

2.3 Probabilistic inference

Note that solving the MAP problem involves both maximisation and summa-
tion. Since the maximisation and summation operators do not commute, mixed-
inference tasks are typically harder than either sum-inference or max-inference
alone. In fact, Park and Darwiche proved that MAP is NPPP-complete in the
general case [139], whereas MPE is ‘only’ NP-complete.

There is a rich literature on solving the MAP task, with methods for solving
the problem exactly, approximately, or for computing bounds on the solution. We
highlight a few common methods.

The MAP task is naturally solved by using some form of variable elimina-
tion [53]. Early exact algorithms for MAP use variable elimination in a branch-
and-bound algorithm to find an optimal solution [138, 186], in some cases even in
combination with knowledge compilation [83]. Just like AND/OR diagrams can
be used in algorithms to solve the MPE problem, they can also be used to solve
MAP, by combining them with depth-first search [117] or best-first search [118].

In order to employ branch-and-bound algorithms, we need to compute actual
upper bounds on the conditional probability. Perhaps unsurprisingly, techniques
that have been developed for this are quite similar to those that have been de-
veloped for solving MPE tasks, and the MPE approximation methods that we
mentioned in Section 2.3.2 can be used for this purpose.

Given the applicability of AND/OR diagrams (combined with a search algo-
rithm) to solve both MPE and MAP exactly, it is unsurprising that anytime vari-
ants of these algorithms have also been developed over the last years [104, 119,
120, 122]. Some methods not only use MPE approximation methods to obtain
meaningful upper bounds on the optimal probability of a MAP, but also employ
weighted search methods [67] to also obtain meaningful lower bounds [121].

Other approximation methods rely on decomposition and approximate vari-
able elimination [35, 143], on repeatedly performing the MARG task on each vari-
able in the MAP to compute a lower bound [4], gradient-based methods [39], to
name a few. Because of its hardness and usefulness to model a wide range of
problems, many MAP approximation methods have been developed over the
years, and still are being developed. Since our focus is on exact solving, we do
not expand further on approximate MAP, considering it to be outside the scope
of this work.

In this section, we gave a very brief overview of the main inference tasks in the
probabilistic inference literature. This literature displays a strong focus on graph-
ical models of probability distributions. As we motivated earlier, in our work we
focus on propositional representations of probability distributions. In the next

31

Logic, probability and inference

section, we give a brief introduction to a useful tool in the realm of propositional
inference: knowledge compilation.

2.4 Knowledge compilation

Historically, knowledge compilation [48, 123, 165] has been a popular method for
making online WMC computation more tractable in the field of probabilistic in-
ference and planning [33, 45, 52, 64, 82]. As we mentioned in Section 2.3.3, com-
puting the success probability of a query is a well-known task in the field of
PLP. In stochastic optimisation problems, it is only natural to want to repeat-
edly compute a conditional success probability, conditioned on different evidence
(or strategies). However, recall from Section 2.3.3 that WMC computation can
be done by using a ‘single-use’ weighted model counter. Consequently, if we
would want to recompute the weighted model count of a probabilistic model
after changing the evidence, we would also have to rerun the solver, discarding
any partial results that might have been reusable.

2.4.1 Decision diagrams

Knowledge compilation represents a solution to this problem. Most knowledge
compilers are essentially DPLL-based model counters that record their trace (the
search tree) while counting. Taking care to create the trace in such a way that it
has specific properties, the result is saved in a language that supports tractable
(meaning “in time that is polynomial in the size of the string in that language”)
inference operations. A formula (or sentence) in this language can be represented
as a decision diagram (DD), and is then said to be ‘compiled’. This DD can be seen
as a compact representation of the truth table of the input formula.

Recall Table 2.1 in Section 2.2.3. In essence, this table is a truth table (albeit
one that only lists the rows that represent models of φd). It will not surprise the
reader that, by adding appropriate weights to a DD representation of the truth
table of a literal-weighted propositional formula, we can use that DD to compute
the WMC of that formula. Note also that, once the diagram is compiled, these
weights can be changed to, e.g., represent different assumptions about the exact
probabilities in the probabilistic model, or to represent different strategies that
we need to evaluate in order to solve a SCP.

Examples of DDs that are used for tractable MARG inference include binary
decision diagrams (BDDs) and ordered binary decision diagrams (OBDDs) [42, 45],
negation normal forms (NNFs) [32], deterministic decomposable negation normal forms

32

2.4 Knowledge compilation

(d-DNNFs) [34], sentential decision diagrams (SDDs) [37], weighted positive binary de-
cision diagrams [41], and algebraic decision diagrams (ADDs) [60]. In this work, we
focus on ordered binary decision diagrams (OBDDs) and sentential decision diagrams
(SDDs), specifically. For a good overview of the different properties of some of
these languages and on how they relate to each other, we refer the reader to Dar-
wiche’s A knowledge compilation map [48].

Note that, while all these diagrams support inference operations that take
time polynomial in the size of the diagram, this diagram must still be compiled.
Consequently, for a single query, the total time complexity would not be reduced
if using knowledge compilation instead of running a model counting algorithm
for that query. However, for repeated querying under different assumptions, this
computational effort is ‘shared’ among all those queries.

An additional potential time saver is the fact that propositional formulae
can have sub formulae in common. This is particularly likely to happen when
these formulae originate from the same system. In Section 4.2 we will show how
queries about real-world systems can be translated into propositional formulae.
Because these formulae represent questions about the same stochastic system,
they are likely to overlap in part. In this case, we can choose not to construct an
individual DD for each formula, but instead compile one DD with multiple roots,
each root corresponding to a different formula. This way, we can potentially save
compilation time and memory, by avoiding to repeatedly recompile the same sub
formulae, but instead re-using those compiled sub formulae. For the sake of sim-
plicity, the discussion below will be limited to single-rooted DDs.

While inference operations can be done in time polynomial in the size of the
diagram, the size of the diagram may still be exponential in the size of the input
CNF in the worst case [48]. The task of finding a minimal-sized DD is typically
also hard. In fact, finding a minimal-size OBDD is known to beNP-hard [22], and
we expect the same to hold for SDDs, although we are not aware of a published
proof of this. There is a rich literature on how to compile succinct diagrams, the
discussion of which is outside the scope of this work.

Note also that, since the knowledge compilation process involves storing the
full trace (search tree) of the DPLL-based model counter that the compiler is built
on, it may require a lot of memory, which can be prohibitive.

To summarise: compiling CNFs to DDs gives us data structures that we can
use for tractable inference if we are able to make these DDs compact enough, and
if we have enough memory to compile the diagram. Additionally, this effort is
only useful if we need to answer multiple queries. Taking this into consideration,
the question arises of why we use knowledge compilation in this work. In short:

33

Logic, probability and inference

A

B B

CC

D

0 1

B

A
D

C

0 1

m
odels

lo arc hi arc

Figure 2.1: Two small OBDDs, each encoding the propositional logic formula φ = (A ∧
B)∨ (B∧C)∨ (C ∧D). The left OBDD has variable order A ≺ B ≺ C ≺ D, while the right
one has variable order B ≺ A ≺ D ≺ C.

DDs help us to model relationship between variables and exploit those relation-
ships to solve SCPs. We will answer this question in detail in Chapters 5 and 6.

In the remainder of this section, we will first provide some background on two
specific types of DDs: ordered binary decision diagrams (OBDDs) and sentential deci-
sion diagrams (SDDs). In the next section, we show how to use them specifically
for the task of WMC for probabilistic inference.

2.4.2 Ordered binary decision diagrams

Figure 2.1 shows two examples of OBDDs, each representing the truth table of the
same propositional formula. An OBDD is a directed acyclic graph (DAG) with two
leaf nodes that represent the values true (1) and false (0). In an OBDD ∆(φ) that
encodes a formula φ, each internal node n is labelled with a variable X ∈ sc(φ).
There can be multiple nodes with the same label, but never multiple nodes with
the same label on a path from root to leaf. Each internal node n has two outgoing
arcs: a lo arc that corresponds to X = ⊥ and a hi arc that corresponds to X = >,
where X ∈ sc(φ) labels n.

A path from the root of the diagram to the leaf node labelled with 1 corre-
sponds to a model of φ, a mapping sc(φ) 7→ {⊥,>} of truth values on the vari-
ables in the scope of φ. Note that not all variables may be encountered in a path
from root to leaf, since assignments of truth values to variables may make the
satisfiability of the resulting residual formula agnostic to the truth values of some
of the other variables. As a consequence, OBDDs can be used to very compactly
encode all the models of a propositional formula.

34

2.4 Knowledge compilation

The size and shape of an OBDD are determined by its variable order O, which
indicates in which order we encounter the variables in sc(φ) on a path from the
root of the OBDD to a leaf. The two OBDDs in Figure 2.1 are shaped by two
different variable orders.

2.4.3 Sentential decision diagrams

Figure 2.2 shows two examples of SDDs. Like OBDDs, SDDs are compact repre-
sentations of truth tables.

In Figure 2.2 the circular nodes represent disjunctions and rectangular nodes
represent decompositions of a prime p (rooted in the left half of the node) and
a sub s (rooted in the right half), such that a decomposition node represents the
formula p ∧ s. A single variable or constant in a prime or a sub is called a termi-
nal. Naturally, a disjunction node is true if at least one of its children is true. A
conjunction node is true if both the prime and the sub evaluate to true.

As with OBDDs, there is typically no unique SDD representation for a propo-
sitional formula. Rather, the shape and size of an SDD is determined by the
vtree [144] that it respects. A vtree is a full binary tree that generalises the con-
cept of a variable order. In particular: each disjunction node in an SDD respects a
subvtree of the subvtree that the entire SDD respects, rooted at an internal node
in that vtree. The left and right children of that vtree node determine the scopes
of respectively the primes and subs of the children of the disjunction node in de
SDD.

Consider the SDDs and corresponding vtrees in Figure 2.2. Each disjunction
node in the SDD is labelled with the index of the internal vtree node that is the
root of the subvtree respected by that disjunction node. The root disjunction node
of the SDD respects the entire vtree. Let φp and φs be the propositional formulae
represented by the prime and the sub of any decomposition node that is a de-
scendant of a disjunction node ∆. Let ` and r be the left child and the right child
of an internal vtree node n, respectively. We say that ∆ respects n if the following
holds: sc

(
φp
)
⊆ {Xl ∈ T`} and sc (φs) ⊆ {Xl ∈ Tr}, where T` and Tr represent

the sub vtrees rooted at ` and r, respectively, and Xl represents the variable that
labels a leaf in those sub vtrees.

Thus, in the (sub) SDD rooted at ∆, the sub formulae corresponding to the
primes of the decomposition nodes that are ∆’s children only contain variables
that occur in the vtree rooted at the left child of internal vtree node n, and the
sub formulae corresponding to the subs of the decomposition nodes that are ∆’s
children only contain variables that occur in the vtree rooted at the right child of
n.

35

Logic, probability and inference

6

B
0

5

A
1

4

D
2

C
3

6

¬B • B •

5

¬A C A >

4

¬D ⊥ D C

m
odelsterminals

prime sub

decomposition

disjunction

(a) An SDD (right) that respects a right-linear vtree (left).

6

2 5

B
0

A
1

D
3

C
4

6

>• C• ¬B •

2 2 5

B A ¬B ⊥ B ¬A D C ¬D ⊥
(b) An SDD (right) that respects a balanced vtree (left). Example from Darwiche [46]

Figure 2.2: Two examples of SDDs encoding the truth table of propositional formula
φ = (A ∧ B) ∨ (B ∧ C) ∨ (C ∧ D), and their corresponding vtrees. Both internal nodes
and leaves in the vtrees are labelled with an index to indicate their place in the variable
order. Disjunction nodes in SDDs are labelled with the index of the internal vtree node
they respect.

The figure shows two examples of how vtrees influence the size and shape
of SDDs. In particular, we distinguish three types of vtrees: right-linear, left-linear
and balanced. Figure 2.2a shows an example of an SDD that respects a right-linear
vtree, while Figure 2.2b shows an example of an SDD that respects a balanced
vtree.

Note that we can distill a total order from vtrees by doing a left-right traversal
and noting the order in which we encounter the variables. Unlike OBDDs, the
size and shape of SDDs are not defined by a total order, but by a vtree. This is
also illustrated in Figure 2.2. Both vtrees have the total order B ≺ A ≺ D ≺ C,
but they have different shapes and thus correspond to differently shaped SDDs.

In a top-down traversal of an SDD, we can interpret the primes as conditions:
if the prime evaluates to true, then the condition in the sub must evaluate to true
in order to make the formula evaluate to true. Right-linear vtrees have the special
property that the SDDs that respect them are equivalent to OBDDs. Comparing
the right OBDD in Figure 2.1 and the SDD in Figure 2.2a, we see that the primes

36

2.5 Inference with decision diagrams

in the SDD correspond to the values of the outgoing arcs in the OBDD.
SDDs are a strict superset of OBDDs [46]. When an SDD respects a right-linear

vtree, its primes can only condition on truth assignments to single variables (as
is shown in Figure 2.2a). For other vtrees, however, primes might represent en-
tire sub formulae (as is shown in Figure 2.2b), which are called sentences in the
knowledge compilation literature (hence the name sentential decision diagrams).
Because of this, truth tables can potentially be encoded more efficiently when
the vtree is not right-linear, and thus SDDs can be made at least as small as
OBDDs [24].

We remark that SDDs and OBDDs are not the only DDs that can be used for
conditional probability computation in time that is linear in the size of the dia-
gram. Other examples include negation normal forms (NNFs) [95], d-DNNFs [33,
145], smooth deterministic decomposable negation normal forms (sd-DNNFs) [95] and
affine decision trees (ADTs) [98]. A detailed discussion of these is outside the scope
of this work. We point the interested reader to Darwiche & Marquis’s A Knowledge
Compilation Map [48] on how most of these languages relate to each other.

2.5 Inference with decision diagrams

We now describe, mainly with help of examples, how we can use OBDDs and
SDDs for probabilistic inference. The propositional formula that we will be using
in these examples is the following:

φd(D, T) := Dd ∨ (Dc ∧ Tcd) ∨ (Db ∧ Tbc ∧ Tcd) ∨ (Da ∧ Tac ∧ Tcd)∨
(Db ∧ Tab ∧ Tac ∧ Tcd) ∨ (Da ∧ Tab ∧ Tbc ∧ Tcd) ,

(2.10)

with D = {Da, Db, Dc, Dd} a set of Boolean decision variables and T =

{Tab, Tac, Tbc, Tcd} a set of Boolean stochastic variables. We will discuss the ori-
gin of this formula in more detail in Section 4.2. Recall that φd|σ(T) is the residual
formula obtained by taking φd(D, T) and replacing the variables in D by their val-
ues specified by strategy σ and simplifying. Since the goal of solving Equation 1.1
is finding a strategy σ that satisfies that constraint, we are going to describe how
to use OBDDs and SDDs to compute P(φd|σ), particularly.

As discussed in the previous section, DDs are data structures that summarise
truth tables of propositional formulae, and we can use DDs to compute the
(weighted) model count of a formula in time that is linear in the size of the DD,
instead of simply listing all the models of the formula, determining their indi-
vidual weights and summing those, as we did in Table 2.1. In order to employ
a DD to compute the success probability of a probability-weighted propositional

37

Logic, probability and inference

formula, we must transform it into an arithmetic circuit (AC). In the following, we
will not explicitly show the arithmetic circuits (ACs), but describe how to transform
an OBDD or SDD into one.

Note that we compile the entire formula φ, and then compute P (φ|σ) by set-
ting the appropriate weights in the AC to reflect σ. Once those weights are de-
fined, a bottom-up traversal of such an AC computes the success probability of
φ|σ. For the sake of brevity, we will sometimes abuse terminology and say that
we traverse the DD to compute that probability, where we actually mean that we
traverse the AC that is obtained from the DD. Note that, for OBDDs and SDDs,
the size of the AC is linear in the size of the DD it was constructed from.

As we discussed in Section 2.4.1, a DD may have multiple roots, each corre-
sponding to a different formula. Consequently, an AC constructed from such a
multi-rooted DD may also have multiple roots, where each returns the success
probability of a different query. For the sake of simplicity, the discussion below
will be limited to single-rooted ACs.

2.5.1 Inference with OBDDs

In this section, we briefly discuss how to compute conditional probabilities using
an OBDD representation of a (weighted) propositional formula, in time that is
linear in the size of the OBDD.

To see how we can compute P (φd|σ) using an OBDD [42, 45] in linear time,
consider Figure 2.3. This OBDD has two types of internal nodes. The square nodes
are labelled with decision variables Di ∈ D, and we refer to those nodes as deci-
sion nodes. The circular nodes are labelled with stochastic variables Tij ∈ T, and
we refer to those nodes as stochastic nodes. The two leaf nodes are labelled with 0
and 1, which represent the values false and true, respectively. A path from the root
of an OBDD to the leaf labelled with 1 corresponds to a (sub)set of the set of (vari-
able, truth value) pairs that form a model for the formula encoded by the OBDD.
This subset is sufficient for satisfying the formula, and its weight equals the sum
of the weights of all models that are its supersets. Each model of the formula is
defined by exactly one such path/(sub)set.

We map this OBDD to an AC to compute the probability that φd in Exam-
ple 4.2.3 evaluates to true under a strategy σ as follows. The weights on the out-
going arcs of a stochastic node correspond to the probability that the variable that
labels that node is true (for the solid, or hi, arcs) or false (dashed, or lo, arcs). We
add a strategy σ on the OBDD by adding weights of 0 and 1 to the appropriate
outgoing arcs of the decision nodes. The OBDD in Figure 2.3 does not reflect any
specific strategy.

38

2.5 Inference with decision diagrams

P(φd)

Dd

Tcd

Dc

Tac

Tbc Tbc

Tab Tab

Da

Da
Db

0 1

0.3

0.7

0.80.2

0.1

0.9

0.1
0.9

0.4

0.6

0.4
0.6

pr
ob

ab
ili

ty m
odels

lo arc

hi arc

stochastic
node

decision
node

Figure 2.3: An OBDD representation of Equation 2.10, mapped to an AC. This OBDD has
variable order Dd ≺ Tcd ≺ Dc ≺ Tac ≺ Tbc ≺ Tab ≺ Da ≺ Db. Bold arcs represent one of
the models of φd: {Dd := ⊥, Dc := ⊥, Tac := >, Tbc := >, Da := >}.

We can now compute P(φd|σ) as follows. In a bottom-up traversal of the
OBDD, each node r is assigned the following score:

v(r) := w(r) · v
(
r+
)
+ (1− w(r)) · v

(
r−
)

, (2.11)

where 0 ≤ w(r) ≤ 1 represents the weight of the variable that labels r, r+ (r−) is
the hi (lo) child of r, i.e., the child connected through the solid (dashed) outgoing
arc of r; v(r) := 0 for the negative leaf and v(r) := 1 for the positive leaf. Observe
that v(root) = P (φ|σ). Note that it takes one bottom-up traversal of this AC to
compute the score of the root.

In the interest of brevity, in the remainder of this work, we will sometimes
abuse terminology and refer to the OBDD when we actually mean the AC that
the OBDD is mapped onto.

Example 2.5.1 (WMC on an OBDD). Consider the OBDD in Figure 2.3. Suppose we
want to compute P(φd|σ), with σ := {Dd := ⊥, Dc := ⊥, Da := >, Db := >}).

39

Logic, probability and inference

We label the dashed outgoing arcs of nodes labelled with Dd and Dc, as well as the solid
outgoing arcs of nodes labelled with Da and Db with the value 1. Similarly, we label the
solid outgoing arcs of nodes labelled with Dd and Dc, as well as the dashed outgoing arcs
of nodes labelled with Da and Db with the value 0. Then, we perform a bottom-up sweep
of the diagram to compute the score of each node, by computing the weighted sum of its
children, as per Equation 2.11.

This yields a score of 1 for the nodes labelled with Da, Db and Tab, and for the right
node labelled with Tbc. The left Tbc node has a score of 0.1. The Tac and Dc nodes each
have a score of 0.82, and the nodes labelled with Tcd and Dd each have a score of 0.246.
Because the node labelled with Dd is the root node of the diagram, we conclude that
P(φd | {Dd := ⊥, Dc := ⊥, Da := >, Db := >}) = 0.246.

2.5.2 Inference with SDDs

Just like OBDDs, we can use SDDs to compute the success probability of a resid-
ual propositional formula, by mapping the SDD onto an AC. Note that here,
too, the time it takes to compute those probabilities is linear in the size of the
DD, in this case an SDD. Since SDDs can be made more succinct than OBDDs
through minimisation [24], the ACs we derive from them can also be more suc-
cinct, and therefore more efficient tools for repeated querying, than ACs obtained
from OBDDs.

To compute P (φd|σ) with an SDD, we construct an AC as follows. We replace
the subs and the primes in Figure 2.4 with their weight according to the corre-
sponding probability (in case of stochastic variables T) or their assignment (in
case of decision variables D). We compute P(φd|σ) in a bottom-up traversal of the
SDD, where each disjunction node r takes score

v(r) := v
(

p`
)
· v
(

s`
)
+ v (pr) · v (sr) , (2.12)

where p` (pr) denotes the prime of the left (right) child of r, and s` (sr) the sub
of the left (right) child, and v(p) or v(s) is the weight of the terminal in the cor-
responding prime or sub, or the score of the sub formula rooted in that prime
or sub. Again, v(root) = P (φd|σ). And again, in the interest of brevity, in the re-
mainder of this work, we will sometimes abuse terminology and refer to the SDD
when we actually mean the AC that the SDD is mapped onto.

Example 2.5.2 (WMC on an SDD). Consider the SDD in Figure 2.4. Suppose that,
again, we want to compute P

(
φd|{Dd :=⊥,Dc :=⊥,Da :=>,Db :=>}

)
.

The disjunction node indexed with 10 has score 0 · 0.4 + 1 · 1 = 1, and the one
indexed with 11 has score 1 · 0.4 + 0 · 0 = 0.4. Continuing in our bottom-up traversal

40

2.5 Inference with decision diagrams

P(φd)

1

¬Dd • Dd 1

2

Tcd• ¬Tcd 0

3

¬Dc • Dc 1

4

¬Tac • Tac •

5 6

¬Tbc 0 Tbc • Tbc • ¬Tbc •

7 8 9

Da • ¬Da Db Da 1 ¬Da •

10 11

¬Db Tab Db 1 Db Tab ¬Db 0

pr
ob

ab
ili

ty m
odels

terminals

prime

sub

decomposition

disjunction

Figure 2.4: An SDD representation of Equation 2.10 with variable order Dd ≺ Tcd ≺ Dc ≺
Tac ≺ Tbc ≺ Da ≺ Db ≺ Tab. Bold arcs represent one of the models of φd: {Dd := ⊥, Dc :=
⊥, Tac := >, Tbc := >, Da := >}. Probabilities are omitted. Disjunction nodes are indexed
for reference.

and applying Equation 2.12, disjunction nodes 6–9 each have score 1, while disjunction
node 5 has score 0.1. Disjunction node 4 has score 0.2 · 0.1 + 0.8 · 1 = 0.82, and so does
node 3. Finally, node 2 has score 0.3 · 0.82 + 0.7 · 0 = 0.246, and so does node 1. Since
node 1 is the root of the SDD, we find that P

(
φd|{Dd :=⊥,Dc :=⊥,Da :=>,Db :=>}

)
= 0.246.

41

Logic, probability and inference

2.6 Probabilistic logic programming

As the previous section shows, DDs such as OBDDs and SDDs represent conve-
nient data structures for performing tractable probabilistic inference. This begs
the question: how do we go from a mathematical model of a probability distribu-
tion to a DD-representation of that distribution?

Note that this question really has two components. First, we need some con-
venient way to model the probability distribution in a computer. Second, we then
need to compile this model into a DD.

To illustrate the first challenge, recall the two example problems described in
Section 1.1: spread of influence and power grid reliability. Both of them are for-
mulated on probabilistic networks (where edges exist with a certain probability),
and both of them require some form of reasoning about paths in those networks.
As a consequence, the resulting probability distributions can become quite com-
plex, since there are often many different paths between two nodes in a real-world
network, especially in the case of social networks, which are the types of network
that spread of influence problems are formulated on. Additionally, these paths
may partially overlap, divert from each other, and maybe even join again later
on. This makes the resulting probability distributions quite non-trivial to define.

This is a problem, since we aim to develop solving methods for problems like
the spread of influence problem, that are convenient to use. We want it to be easy
for a user to specify them, and to not require (much) technical knowledge, aiming
to democratise the technology that we develop in this dissertation as much as
possible, making it as accessible as possible to anyone who needs it.

In this section we discuss a convenient tool for modelling probability distri-
butions: the probabilistic logic programming language ProbLog [52]. This Prolog-
based language provides a simple way for users to model probability distribu-
tions, and is particularly suited for modelling distributions that arise from prob-
abilistic networks, thus addressing the first challenge. Conveniently, ProbLog has
functionality for compiling these distributions into several different DDs built
in, thus addressing the second challenge. In the remainder of this section, we
give a brief introduction to the logic programming Prolog, which is a precursor to
ProbLog, and then to ProbLog itself.

2.6.1 Logic programs

Prolog is a rule-based, logical programming language that is declarative in nature.
Declarative programming paradigms are very user-friendly in the following way.
Imperative programming languages (such as C, C++, Java, Python, Go, etc.) require

42

2.6 Probabilistic logic programming

the user to specify how the computer should solve a problem. Declarative pro-
gramming languages (like Prolog, Datalog and SQL), on the other hand, only ask
the user to specify everything they know about the problem, and then simply ask
a question. The computer will then figure out how to get to the answer.

Our choice to build on Prolog is motivated by the fact that it is declarative.
While a study of how different types of intended users experience modelling
problems in Prolog compared to other languages is outside the scope of this work,
we are confident that its declarative nature can appeal to a wide range of users.
In Section 4.3, we present a language to model constraint optimisation prob-
lems by querying databases. Arguably the most-used programming paradigms
for these elements are constraint programming (CP) for modelling linear and non-
linear constraints (see Section 3.3), mixed integer programming (MIP) for modelling
linear constraint optimisation problems (see Section 3.4) and SQL for querying
databases. Since all three of these paradigms are declarative in nature, we expect
our target audience to find a declarative programming tool convenient to use and
easy to learn. After all, there is probably a good reason that declarative languages
are so popular, and due to their popularity, a potential user is likely to be familiar
with the declarative programming paradigm.

It is important to us that our tools are easy to use by a wide variety of people,
even if they have no previous coding experience, because that helps to democra-
tise computing power and technology. However, there are possible downsides
such as added expressive complexity for specifying certain tasks and less speed.
At the same time, it is a very common practice in Computer Science to design lan-
guages for specific goals, and thus with limited applicability, so these downsides
are only a natural consequence of the fact that we design task-specific tools.

Recall the goal that we specified in Section 1.3: to find SCP solving methods
with reasonable trade-offs between convenience, generality and speed. Our rea-
son for choosing the declarative ProbLog (probabilistic Prolog) language as a basis
for our new SCP modelling language is primarily rooted in the first criterion: con-
venience. As mentioned above, the basics of Prolog, which provide the user with
enough expressibility to model a wide range of problems, are quick and easy to
learn. Additionally, it is very convenient for modelling relations between entities.
In this work, our focus is on SCPs that are formulated on probabilistic networks.
Networks are very easy to model in Prolog, because edges can be seen as rela-
tions between nodes. To illustrate this, we now first present a few basics about
the syntax and semantics of Prolog, and then provide a small example.

Prolog is a rule-based programming language. To construct rules, we can use
terms and predicates. Terms are either constants, or variables. Constant symbols in

43

Logic, probability and inference

Prolog start with a lower case letter, or are a string enclosed in single quotes.
Variable symbols are capitalised and can take arbitrary constants as values. Prolog
uses predicates to express relationships between constants or variables, in the same
way as the predicates in first-order logic (Section 2.2.2). The name of a predicate
also starts with a lowercase letter, and is followed by comma-separated terms in
brackets: the arguments of the predicate. Any Prolog predicate can also be negated.

Each rule is of the form: Head :- Body., which means “Head is true if Body is
true .” The body contains one or more predicates and terms, which are known as
goals, separated either by “,” for conjunction, or “;” for disjunction. We also refer
to these rules as clauses. A special property of the rules in Prolog is that the head
only contains one predicate, which makes these clauses Horn clauses [81].

In addition to rules, there are also facts. An example is: dir(alexa,behrouz).,
which is a shorthand for dir(alexa,behrouz) :- true., and means that there
is a directed relationship between the constant alexa and the constant behrouz.

The user can use rules and facts to describe everything they know
about the problem, and ask questions by specifying queries of the form ?-

influences(alexa,daniel).. Queries can be seen as rules without a head, where
we ask if the goals in the body are true. The Prolog system then uses an inference
process called selective linear definite (SLD) clause resolution. The resolution process
tries to find constants in the rest of the program that can be used to substitute
variables such that rules are satisfied (the arguments in the predicates in the head
and the body match) and new facts are proven from these rules.

We can now formulate a small Prolog program that describes some relation-
ships between some people.

Program 2.1: A Prolog program describing influence relationships between four people.

% Relation facts

1. dir(alexa ,behrouz).

2. dir(alexa ,claire).

3. dir(behrouz ,claire).

4. dir(claire ,daniel).

% Relation rules

5. influences(X,Y) :- dir(X,Y).

6. influences(X,Y) :- dir(Y,X).

% Query

7. ?- influences(alexa ,daniel).

Example 2.6.1 (A simple Prolog program). Consider the small Prolog program in
Program 2.1. In lines 1–4, it describes the direct influence relationships between four peo-

44

2.6 Probabilistic logic programming

ple who are represented by the constants alexa, behrouz, claire and daniel. Line
6 serves to make the relationships symmetric, and line 7 is a query asking if Alexa in-
fluences Daniël. Evaluating this program tells us that she does not, since neither the
predicate dir(alexa,daniel). nor dir(daniel,alexa). is in the knowledge base of
relation facts, meaning that the rules in line 5 and 6 cannot be used to prove that Alexa
influences Daniël.

The reader may have noticed that the fact that Alexa does not influence Daniël
is proved by failing to prove that she does. This property, absence of truth meaning
negation of truth, is called the closed-world assumption and central to the semantics
of Prolog. The closed-world assumption is very powerful because it drastically
limits the size of program you need to model a problem.

Note that in Program 2.1, lines 1–4 are essentially first-order logic formu-
lae. Using predicates, we could rewrite these lines as R(a, b) ∧ R(a, c) ∧ R(b, c) ∧
R(c, d), where R(a, b) indicates that there is a directed relationship between con-
stants a (Alexa) and b (Behrouz), and analogously for the other predicates and
constants. We could replace each predicate by a Boolean variable, and then
rewrite these lines as as the propositional logic formula Rab ∧Rac ∧Rbc ∧Rcd, where
Rab is a Boolean variable that is true iff there is a directed relationship from Alexa
to Behrouz, and analogously for the other variables. This latter expression is not
written in first-order logic, since it does not use any predicates or quantifiers.

Lines 5 and 6, on the other hand, are written in first-order logic and cannot be
rewritten by replacing predicates with Boolean variables. We can rewrite line 5 as
∀X, Y. (I(X, Y) ∨ ¬R(X, Y)), where X and Y are variables that could be replaced
by a, b, c or d, and I(X, Y) is a predicate that is true iff X influences Y.

It helps our discussion later on to introduce the concept of grounding a logic
program. A predicate that does not contain any variables, is called a ground predi-
cate. A ground logic program is one in which all predicates are ground by substi-
tuting the variables by constants. Note that this corresponds to turning the first-
order logic formula that is implied by the program into a propositional formula.

Program 2.2: Ground relation rules.

5.1. influences(alexa ,behrouz).

6.1. influences(behrouz ,alexa).

5.2. influences(alexa ,claire).

6.2. influences(claire ,alexa).

5.3. influences(behrouz ,claire).

6.3. influences(claire ,behrouz).

5.4. influences(claire ,daniel).

6.4. influences(daniel ,claire).

45

Logic, probability and inference

Example 2.6.2 (Ground Prolog program). For example, we could ground the program
in Program 2.1 by replacing lines 5 and 6 by Program 2.2. Here, we have replaced the
Xs and Ys in these lines by combinations of constants that are allowed according to the
relation facts in lines 1–4. Note again that influences(alexa,daniel). is not in the
ground program, and thus we cannot prove that Alexa influences Daniël, as is asked in
line 7 of Program 2.1.

Note that in the example above, we can replace the ground predicates of lines
5.1–6.4 by converting them into Boolean variables, and write these lines as Iab ∧
Iba ∧ Iac ∧ Ica ∧ Ibc ∧ Icb ∧ Icd ∧ Idc, which is a propositional logic formula.

Grounding an entire Prolog program requires substitution of variables into all
possible (combinations of) constants that are allowed by the program. This typ-
ically results in not only a large program, but one with many ground facts that
are irrelevant for answering the query, as is very clearly shown in Example 2.6.2,
where all eight ground relation rules turn out to be irrelevant for answering the
query. Therefore, grounding typically happens in a top-down rather than bottom-
up manner, such that only those predicates are ground that are needed for an-
swering the query.

A detailed description of Prolog, and of SLD and techniques for efficient
grounding, is outside the scope of this work. For more information on the syntax,
semantics and inner workings of Prolog, we refer the reader to the literature, e.g.,
Peter Flach’s Simply Logical: Intelligent Reasoning by Example [66].

2.6.2 Probabilistic logic programs

The probabilistic logic programming ProbLog [52] is a language for programming
probability distributions, built on Prolog. We can turn the Prolog program in Pro-
gram 2.1 into a ProbLog program by adding probabilities to facts and rules. For
example, by replacing lines 1–4 by the following, we can make the influence rela-
tionships between people probabilistic:

Program 2.3: Probabilistic facts.

1. 0.4:: dir(alexa ,behrouz).

2. 0.8:: dir(alexa ,claire).

3. 0.1:: dir(behrouz ,claire).

4. 0.3:: dir(claire ,daniel).

Here, we assume that the associated probabilities are independent of each other.
We can think of these probabilistic facts as the (positive) literals in a probability-
weighted propositional formula, as described in Section 2.2.3.

46

2.6 Probabilistic logic programming

We can think of a ProbLog program as one that defines a distribution of
‘underlying’ Prolog programs, or possible worlds, where each probabilistic fact is
non-deterministically present in a program that was randomly sampled from
this distribution, according to that fact’s associated probability. This proba-
bility is the one that annotates the corresponding rule or fact. A probabilistic
version of the rule in line 5 in Program 2.1 would be, e.g., 0.2::buys(X)

:- influences(Y,X), buys(Y).. This is shorthand for 0.2::buys(alexa)

:- influences(alexa,alexa), buys(alexa)., 0.2::buys(alexa) :-

influences(behrouz,alexa), buys(behrouz)., and so on. Each of these
rules has a probability of 0.2 to be included in a Prolog program that is randomly
selected from the distribution defined by the ProbLog program. In other words:
if there is a way in which the body of the rule can be made true, the chance that
the head is true, is 0.2.

Following the closed-world assumption, we assume that the probability that
a fact is true (and thus present in a Prolog program randomly sampled from the
distribution) and the probability that the negation of that fact is true (and thus not
present in that Prolog program), sum up to one. For example: we assume that the
probability that Alexa does not influence Behrouz is 1− 0.4 = 0.6. Now, instead of
asking if Alexa influences Daniël, line 7 now asks with what probability she does.
We also refer to this probability as the success probability of the query.

The success probability of a query Q is defined as follows:

P (Q |P) = ∑
υ∈P |υ|=Q

P(υ), (2.13)

where P is a ProbLog program, υ is a possible world, i.e., a Prolog program that can
be obtained from P by including all deterministic facts and rules and including
a subset of the probabilistic facts and rules, and P(υ) is the probability that υ is
randomly sampled from P . Here, we use the notation υ ∈P to indicate that υ is
a possible world that can be obtained from P , and the notation υ |= Q to denote
that Q is a logical consequence of υ. Note that we simply sum the probabilities of
all possible worlds in which Q = >. In the example above, there are no world in
which the query is true, so the probability that Alexa influence Daniël is 0.

Because of the assumption that the probabilities annotating the probabilis-
tic facts are mutually independent, we can follow Sato’s distributions seman-
tics [160] and define the probability of a possible world as:

P(υ) = ∏
f∈υ

P(f), (2.14)

where f is a (probabilistic) fact in the ground Prolog program υ, and P(f) its asso-
ciated probability, according to P .

47

Logic, probability and inference

Equations 2.13 and 2.14 should look familiar to the reader, as they bear a
clear and non-accidental similarity to Equation 2.1, which defines the weighted
model count of a literal-weighted propositional formula. Indeed, we can think
of ProbLog as a tool to program literal-weighted propositional formulae, whose
model counts reflect success probabilities of the associated queries.

This is also reflected in the inner workings of ProbLog. Like Prolog, ProbLog
uses SLD resolution in order to provide an answer to the query, which comes
in the form of that query’s success probability. Conceptually, in doing so, it gen-
erates all possible ground logic programs that one could create from the proba-
bilistic logic program, and summarises them into a DD, which can then be used
to compute a query’s success probability, as described in Section 2.5. That knowl-
edge compilation step helps us to achieve our requirement that SCP solving meth-
ods are fast, as well as convenient.

However convenient probability distributions are to model using ProbLog,
they still require the user to be smart about how they model the problems ex-
actly. As with many problems in Computer Science, we expect the way that we
model an SCP to have a large impact on the speed with which we can solve it. We
will reflect on this some more in the next chapter.

2.7 Conclusion

In this chapter we discussed topics related to probabilistic inference and how to
express probabilistic models and queries using logic and a probabilistic logic pro-
gramming language. We motivated why, in this work, we chose to model prob-
ability distributions using probability-weighted propositional formulae, which
we discussed in Section 2.2, along with related topics such as first-order logic and
relevant complexity classes. We specifically described how we can apply weighted
model countings (WMCs) to weighted propositional formulae to compute the prob-
ability that our probabilistic model is in a certain configuration.

In order to put the (sub-)problems described in this dissertation into con-
text, we also gave a high-level overview of the different probabilistic inference
tasks known in the probabilistic reasoning literature. Specifically, we discussed
the NP-complete task of determining the most likely truth evaluation of each
of a set of queries, given a truth value assignment to the complementary set of
variables in the probabilistic model. The decision version of this max-inference
task, where we do not ask what the most likely truth evaluation is, but rather if
a given assignment is more likely than a certain threshold value, is relevant to
this work, as it can be seen as asking if a specific strategy σ satisfies Equation 1.1.

48

2.7 Conclusion

We then discussed the #P-complete sum-inference task, which is to compute the
success probability of a query, such as the ones described in Section 2.6.2. Finally,
we discussed the NPPP-complete mixed-inference task that aims to find an as-
signment to a subset of variables, given truth assignments to another, disjoint set,
and without knowing the truth values of the variables in the complement of these
two sets. Provided we can encode the constraints into the probabilistic model, we
can cast SCPs as instances of MMAP.

We then argued that knowledge compilation techniques can help us achieve
our goal of developing exact SCP solving methods that strike a reasonable bal-
ance between convenience, generality and speed. Specifically, we argued that
DD representations of probability distributions can be compact and can be used
for tractable probabilistic inference. We closed this chapter with a description of
probabilistic logic programming language ProbLog, a tool that not only allows us
to conveniently model probability distributions that arise from the probabilistic
networks on which the SCPs that we study in this work are formulated, but also
provides support for converting the resulting probabilistic logic programs into
DDs for fast inference.

The focus of this chapter was on the probabilistic reasoning part of SCP solv-
ing. In the next chapter, we focus on the constraint optimisation part of SCP solv-
ing. Together, the techniques and frameworks described in this chapter and the
next will help us develop SCP solving tools in Part II of this dissertation.

49

