
Optimal decision-making under constraints and uncertainty
Latour, A.L.D.

Citation
Latour, A. L. D. (2022, September 13). Optimal decision-making under
constraints and uncertainty. SIKS Dissertation Series. Retrieved from
https://hdl.handle.net/1887/3455662

Version: Publisher's Version

License:
Licence agreement concerning inclusion of doctoral
thesis in the Institutional Repository of the University
of Leiden

Downloaded from: https://hdl.handle.net/1887/3455662

Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/3455662

1
Introduction

This is where we’ve filled ourselves
up with so many questions that
they’re starting to overflow and
become answers.

Sir Terry Pratchett

1.1 Motivation

In business, governance, science as well as in our daily lives, we often have to
solve problems that involve decision making under constraints and uncertainty.
Examples of these problems arise in a diversity of domains, such as:

• planning (e.g., decide when to invest in which company or product, to max-
imise your return on investment) [7],

1

Introduction

• scheduling (e.g., finding rosters for nurses that honour their preferences as
much as possible and can deal with a stochastic number of daily patients) [181],

• production planning (e.g., deciding how many books to print in each quarter of
the year, to minimise storage costs but have enough to satisfy customers) [181],

• vehicle routing (e.g., deliver all the packages ordered by people who are under
sheltering-in-place during a pandemic as efficiently as possible, while dealing
with stochastic demand) [150], and even

• bioinformatics (e.g., model stochastic protein-protein and protein-gene interac-
tion in a network that is as small as possible, but still explains the interactions
as true to nature as possible) [50, 133].

Note that all the above examples do not just require us to make a decision
under constraints and uncertainty, but also require some kind of optimality of that
decision. We want to maximise profit or minimise cost. We want to maximise effi-
ciency or minimise size. This is a common property of decision making problems
in the world around us. In real-world problems, we often face multiple, possibly
conflicting, objectives, such that solutions to a problem contain a certain trade-off
with respect to these objectives. These trade-offs can often be captured in a sin-
gle cost or utility value. We therefore only consider single-objective optimisation
problems in this work.

Given the abundance of relational data in the areas mentioned above, many
problems also involve probabilistic network data [50, 56, 61, 92]. Consider, for
example, the following two problems.

Spread of influence This is a problem setting that is well-known from the data
mining literature [56, 92]. We are given a social network in which the nodes repre-
sent people and the edges represent probabilistic mutual influence relationships,
such as people following each other on social media. We are also given a mar-
keting budget, which we can spend on providing free samples of our product
to selected individuals in the social network. We then rely on a word-of-mouth
marketing strategy, in which people who have tried our product may become our
customers and try to convince their friends, family and acquaintances to also buy
the product and become a customer. Depending on how much influence they
hold over those relations, they are either successful in convincing a relation, or
not. Our objective is to maximise the number of people in the social network who
are convinced that they should buy our product, and are thus converted to cus-
tomers. We can start this process by using our budget to provide free samples to a
subset of the people in the network, which we distribute all at the same time. We

2

1.1 Motivation

must therefore identify the subset of people that is small enough such that we do
not exceed our budget (constraint), but maximises the expected number of people
who will eventually be convinced to buy our product (optimisation criterion).

Power grid reliability This is an optimisation version of a problem known
from the literature [61]. We are given a high-voltage power grid in which the
nodes may either represent power producers (like nuclear power plants or solar
farms), power consumers (power stations that transform the high-voltage power
into lower-voltage power to distribute among buildings), and power transmit-
ters (power stations that simply pass on the power, possibly splitting or merging
lines). Power lines connect nodes to each other. With each power line we associate
a probability that it will remain intact during a natural disaster like an earth-
quake, hurricane or storm surge. This probability may depend on its length or
the terrain in which it exists. If too many lines are damaged, consumers may lose
power. We are given a power line maintenance budget (constraint) and must de-
cide which power lines we spend it on, such that we maximise the expected num-
ber of power consumers that are still connected to at least one power producer
after a natural disaster (optimisation criterion). The budget must be assigned at a
single moment in time.

Note that, because for each problem setting, we have to decide how to spend
the budget in one moment in time, both these problem settings are considered
single-stage constraint optimisation problems. These problems are instances of a
general class of problems, known as stochastic constraint (optimisation) problems
(SCPs). SCPs have the following characteristics:

• They involve (Boolean) decision variables and (Boolean) stochastic (or random)
variables.

• They involve reasoning over probability distributions.

• They involve constraints that limit the decisions we can make.

• They involve an optimisation criterion.

We provide a formal description of SCPs in Section 1.2.
For this work, we have chosen to limit ourselves to studying single-stage

problems. As there are many real-world single-state problems, some of which
were mentioned above, we believe that this choice to limit the scope is justified.
We study how to solve SCPs efficiently, and use optimisations that are only pos-
sible in the single-stage setting.

3

Introduction

The main goal of this work is to develop methods that find exact solutions
to single-stage SCPs that are formulated on probabilistic networks, making sure
that these methods strike a reasonable balance between:

Convenience, such that our methods and tools are accessible and easy to use,
even for people with little or no background in programming or computer
science.

Generality, such that our methods and tools can be used for solving a diversity
of problem and problem types, from different application domains, and

Speed, such that our methods and tools solve SCPs fast enough to be practical.

In meeting the last requirement, we attempt to find algorithms with a low theo-
retical bound on the running time, as well as algorithms that have the potential to
be faster in practice than others, even if their theoretical complexity is not lower.
In order to find these exact solutions, we need to take three distinct steps:

Model the problem mathematically: Define the real-world problem and what
constitutes a solution to that problem.

Specify the model in a computer-friendly manner: Use a suitable program-
ming language to communicate the problem to a computer.

Solve the problem: Let an algorithm find the exact optimal solution.

In the literature, this second step is also referred to as ‘modelling’, so we will use
that term in the remainder of this dissertation for different tasks, trusting that the
context is enough to disambiguate, and clarifying wherever necessary.

The remainder of this chapter is organised as follows. In Section 1.2, we de-
scribe the stochastic constraint that is central to this work. Then, in Section 1.3 we
briefly reflect on the hardness of SCPs and how we address the computational
complexity of SCPs. We list and motivate our main research questions in Sec-
tion 1.4, and specify which contributions we present in this dissertation in rela-
tion to these questions. This last section also serves as an outline to the remainder
of this dissertation.

1.2 Stochastic constraints on probability distribu-
tions

The SCPs that we aim to solve in this work are all characterised by the presence
of a stochastic constraint, similar to the ones studied by Papadimitriou [137] and

4

1.3 Computational complexity of SCPs

Littman et al. [111], or a stochastic optimisation criterion, similar to the ones stud-
ied by Walsh [181] and Van den Broeck et al. [178]. Specifically, in this work we
study stochastic constraints of the following form:

∑
φ∈Φ

ρφ · P (φ | σ) > θ. (1.1)

The sum represents an expected utility, in which Φ is a set of stochastic events that
are of interest to us, P (φ | σ) represents the probability of an event φ happening,
given a strategy σ over Boolean variables; and ρφ ∈ R+ is a reward for this event.
This constraint specifies a lower bound θ ∈ R+ for an expected utility. Our meth-
ods can also be applied to stochastic constraints that impose an upper bound on an
expected utility, instead.

Recall that SCPs are problems that may involve a stochastic objective function,
rather than a stochastic constraint. We can straightforwardly employ constraints
on probability distributions to solve minimisation or maximisation problems over
expected utilities (under other constraints). We describe how this can be done in
Chapter 3.

1.3 Computational complexity of SCPs

SCPs are difficult to solve exactly (i.e., in a way that produces provably optimal
solutions). Indeed, well-known instances of SCPs are shown to beNP-hard [92],
and solving SCPs exactly is NP-hard in the general case. Specifically, exact SCP
solving involves two components:

1. To evaluate the quality of a strategy σ, we have to compute P(φ | σ), which
involves a counting task that is #P-complete in general [155, 176, 177].

2. We have to perform this evaluation a potentially exponential number of times,
since the number of possible strategies for |D| Boolean decision variables is
2|D|.

Informally, a #P-complete problem requires the counting of all solutions to a
Boolean formula, of which it may have exponentially many, and can be harder
than determining if a propositional formula has a solution, which is NP-
complete [38]. Thus, naı̈vely solving an SCP by enumerating all possible strate-
gies and evaluating their score, which requires counting all the possible conse-
quences of a strategy, is typically computationally impractical. We discuss NP ,
#P and other relevant complexity classes, as well as propositional formulae and
the counting task referred to above, in Section 2.2.

5

Introduction

There is earlier work on which we can build to address the two challenges
listed above. In particular, knowledge compilation [48, 123, 165] techniques have
been used to make probabilistic inference tractable. Similarly, constraint program-
ming (CP) [154] or mixed integer programming (MIP) [25] have been used to model
and solve constraint optimisation problems. In this work, we investigate whether
and how these approaches can be combined to solve SCPs quickly, in theory or in
practice.

The answer to that question is not immediately obvious. In order to reap the
benefits of knowledge compilation, we have to encode the resulting representa-
tions of probability distributions in such a way that they can be communicated
to a CP or MIP solver, otherwise the associated stochastic constraints cannot be
solved by these solvers. We then have to choose how to model these constraints
such that they can not only be solved quickly, but are also convenient and easy for
the user to specify, and ideally generic enough to be implemented in a range of
different solvers. The focus of this dissertation is on finding SCP solving methods
with reasonable trade-offs between convenience, generality and speed.

1.4 Contributions

In this work we aim to answer four main research questions. We start by ac-
knowledging that a new technology’s success stands or falls on accessibility and
ease-of-use. We therefore ask:

MRQ1 How can we conveniently model SCPs and specify them to a computer?

The contributions of this thesis with respect to MRQ1 are as follows:

C1 We formulate a stochastic constraint on probability distributions (SCPD), which
allows us to model SCPs. As we will show in Section 4.2, this constraint can
also be used to formulate stochastic optimisation problems.

C2 Next, we develop a new declarative programming language, stochastic con-
straint probabilistic Prolog, or SC-ProbLog, for programming SCPs. This lan-
guage builds on earlier logic programming languages that allow for conve-
nient modelling of probability distributions, and extends these with syntax
and semantics for modelling constraints and optimisation criteria.

As we described in Section 1.3, it is not immediately obvious how we can use ex-
isting CP, MIP and knowledge compilation techniques to solve SCPs. We there-
fore ask:

6

1.4 Contributions

MRQ2 How can we leverage CP, MIP and knowledge compilation technology
to solve SCPs?

The contributions of this thesis with respect to MRQ2 are as follows:

C3 We develop an SCPs solving pipeline, which takes as input an SCPs pro-
grammed in SC-ProbLog. It grounds the program and converts the resulting
logic formulae into either ordered binary decision diagrams (OBDDs) or senten-
tial decision diagrams (SDDs). We either impose a stochastic constraint on the
decision diagram (DD) representations of these probability distributions, or for-
mulate an optimisation criterion that aims to maximise or minimise an ex-
pected utility that is computed from these probability distributions. We then
decompose the OBDD or SDD into a CP or MIP model, which we solve using
off-the-shelf solvers.

An important part of this work focuses on how encodings of probability distribu-
tions that are obtained through knowledge compilation interact with the CP and
MIP solvers that we use to solve the SCPs that are formulated on those probabil-
ity distributions. That part of this work is done to answer the following research
question:

MRQ3 How can we leverage the properties of SDDs and OBDDs for faster SCP
solving?

The contributions of this dissertation with respect to MRQ3 are as follows:

C4 We observe that MIPs are much easier to solve if they are linear, rather than
quadratic, and decomposed SDDs typically do not yield linear MIPs. Addi-
tionally, we observe that smaller SDDs yield smaller MIPs and show that
smaller MIPs tend to take less long to solve than larger MIPs. To address
these observations, we identify a class of SDDs that yield linear MIP decom-
positions and develop a minimisation algorithm for finding minimised SDDs
that belong to this subset of SDDs.

C5 We show that CPs solvers cannot guarantee generalised arc consistency (GAC)
in a naı̈ve decomposition of stochastic constraints on OBDD representations
of probability distributions. This results in the CP solver potentially search-
ing a part of the search space that does not contain any feasible solutions, and
thus wasting computation time. We also show that a GAC-guaranteeing de-
composition of such a constraint comes at the cost of extra memory use and
does not improve solving times significantly.

7

Introduction

C6 To remedy these shortcomings, we introduce a novel, global constraint on
probability distributions that are represented by OBDDs and have a certain
monotonic property. We also present and implement a propagation algorithm
for this stochastic constraint on monotonic distributions (SCMD). This propagator
leverages the structure of the OBDDs to incrementally compute the solution
to the constraint, and the fact that the underlying probability distribution is
monotonic to guarantee GAC.

In addressing MRQ1 to MRQ3, we develop a number of different SCP solving
methods, each with a number of different components, that can each be imple-
mented in different ways. Since SCPs are hard to solve in general, and since each
application domain may yield SCPs with different properties, it is not immedi-
ately obvious which solving method with which exact implementation choices
for its different components works well to solve SCPs from a specific appli-
cation domain. Additionally, since we use different existing tools (such as CP
solvers Gecode1 and OscaR [132], MIP solver Gurobi2, and knowledge compilers
CUDD [168] and sdd [36]), whose default parameter settings may be tuned on
use cases that are rather different from the one studied in this work, it is unclear
what a good parameter setting for these components might be. These uncertain-
ties form a challenge for any scientist (or other user) who not only wants to eval-
uate the performance of these methods in a fair and informative manner, but also
wants to use them as effectively as possible. This observation naturally begs an
additional research question for this dissertation:

MRQ4 How can we fairly and informatively evaluate the running time perfor-
mance of complex solving pipelines on problems from different appli-
cation domains, and ultimately best employ these pipelines for solving
real-world SCPs?

In addressing this question, we make the following additional contribution:

C7 We apply the paradigm of programming by optimisation (PbO) [80] to all solving
pipelines described in this paper. For most of our design choices we imple-
ment alternatives and/or expose parameters to make the pipelines maximally
configurable. We then use automated algorithm configuration (AAC) [79] to find
optimised configurations of these solving pipelines. To the best of our knowl-
edge, this work represents the first instance of using first use of AAC in exact
probabilistic inference.

1Available at www.gecode.org.
2Available at www.gurobi.com.

8

www.gecode.org
www.gurobi.com

1.4 Contributions

The remainder of this work is organised as follows. Part I serves to provide some
background for the reader. Specifically, we provide some background on how
chance, logic and reasoning are related to each other in Chapter 2. We then de-
scribe several programming paradigms for optimisation in Chapter 3.

Part II is dedicated to the contributions of this work. Specifically, we start
Part II with a detailed description of the SCPs that we study in this work, and
briefly discuss related problems in Chapter 4. In that chapter, we also describe the
problem settings used in our experiments, and the data on which those problems
are formulated.

In Chapter 4, we also show how we use the stochastic constraint on probability
distributions (SCPD) formulated in Section 1.2 to model these problems (C1) and
present the new programming language that we propose specifically for mod-
elling SCPs (C2). Then, in Chapter 5 we propose a specific kind of exact SCP
solving method that takes a stochastic constraint on an SDD or OBDD encoding
and decomposes it into a multitude of smaller constraints, resulting in a CP or MIP
model that is then solved with an off-the-shelf CP or MIP solver (C3 and C4).
These parts of Chapter 4 and all of Chapter 5 are based on research previously
published in:

� Anna L.D. Latour, Behrouz Babaki, Anton Dries, Angelika Kimmig, Guy Van
den Broeck, and Siegfried Nijssen. ‘Combining Stochastic Constraint Opti-
mization and Probabilistic Programming: From Knowledge Compilation to
Constraint Solving’. In: Principles and Practice of Constraint Programming: 23rd
International Conference (CP 2017). 2017, pp. 495–511.

In the next chapter, Chapter 6, we note that the decomposition approach does
not guarantee GAC and that a trivial modification of this approach does not sig-
nificantly improve performance (C5). We therefore propose a new, global SCMD,
which operates on OBDD encodings of probability distributions with a specific
monotonic property, and demonstrate its superior performance (C6). Chapter 6 is
based on research previously published in:

� Anna Louise D. Latour, Behrouz Babaki, Siegfried Nijssen. ‘Stochastic Con-
straint Propagation for Mining Probabilistic Networks’. In: Proceedings of the
Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI 2019).
2019, pp. 1137–1145.

We then take the decomposition method described in Chapter 5 and the global
constraint propagation method described in Chapter 6, and apply the paradigm
of PbO to these methods in Chapter 7. We implement alternative design choices

9

Introduction

for the different elements of the SCP solving pipelines and use AAC to automati-
cally configure them on sets of problems instances from several applications do-
mains, demonstrating that the global SCMD propagation algorithm from Chap-
ter 6 tends to outperform the other methods (C7). This chapter is based on re-
search previously presented in:

� Daniël Fokkinga, Anna Louise D. Latour, Marie Anastacio, Siegfried Nijssen,
and Holger Hoos. ‘Programming a Stochastic Constraint Optimisation Al-
gorithm, by Optimisation’. In: Data Science meets Optimization workshop 2019
(DSO 2019), co-located with IJCAI 2019, Macao, 2019.

� Anna L.D. Latour, Behrouz Babaki, Daniël Fokkinga, Marie Anastacio, Hol-
ger H. Hoos, and Siegfried Nijssen. ‘Exact Stochastic Constraint Optimisation
with Applications in Network Analysis’. In: Artificial Intelligence, vol 304, 2022.

10

