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Abstract

Scientists, policy makers and individuals must take decisions while dealing with
uncertainty on a daily basis. Often-times, there also are limitations on the number
or kind of decisions we can take. Especially when the stakes are high, we want to
take an optimal decision: one that has, in expectation, the best possible outcome,
according to some predefined metric of success.

Uncertainty can, for example, stem from randomisation in algorithms or hu-
man behaviour. Even if you follow someone on Twitter, does their post show up
on your timeline? And if it does, do you read it? Alternatively, uncertainty may,
for example, originate in the randomness of nature. When an earthquake strikes,
which power lines in an electric grid survive this disaster? And how many house-
holds lose power as a result? In any application, uncertainty can stem from the
practical problem that some things are hard to accurately measure or quantify.

We must also deal with constraints. In the realm of marketing, there is a limit
on how many people we can reach with a single ad campaign or newspaper ar-
ticle. In the context of maintenance, there is a limit on how much money we can
spend on making our electric grid strong and resilient.

The examples above all involve relationships between entities. People may
have a (mutual) follower relationship with each other on social media. Power
grids connect power stations to households. Because of the uncertainty in these
examples, we can view these relationships as probabilistic relational data, which we
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can model using probabilistic networks.

In this work, we develop new methods for exact optimal decision-making un-
der constraints and uncertainty, specifically for problems that involve some form
of probabilistic relational data. These stochastic constraint (optimisation) problems
(SCPs) are hard to solve. Uncertainty about the future means that we must con-
sider many different, and possibly overlapping, scenarios, to assess the effects of
decisions. In addition, the number of potential strategies (sets of decisions) that
we can adopt for solving the problem can grow exponentially with the number
of individual decisions in the problem. In general, SCPs are NP-hard problems.

We aim to design solving tools that are convenient to use, and thus accessible
to people with limited programming skills, general enough to support a wide
range of SCPs, and fast enough to be practical. In order to achieve these goals, we
propose to build on technology from the probabilistic inference literature, and the
constraint programming (CP) and mixed integer programming (MIP) literature.

In particular, we present a new probabilistic logic programming language,
SC-ProbLog, especially designed for modelling SCPs formulated on probabilis-
tic networks, and based on ProbLog. We show how to formulate constraints on
the probability distributions induced by these networks, and how to model these
constraints such that they can be solved by a CP or MIP solver. Here, we make
use of existing tools to create decision diagram (DD) representations of probabil-
ity distributions, which support tractable probabilistic inference. In doing so, we
identify specific properties of these DDs that we can exploit to speed up the in-
ference process, and thus the SCP solving process.

We take a modular approach to building our SCP solving pipelines. This en-
sures that, for each subtask, we can use any relevant state-of-the-art tools, which
helps to keep the pipeline up-to-date with the latest developments, without hav-
ing to (re)implement the latest techniques ourselves or having to integrate them
into a monolithic design.

We do this following the paradigm of programming by optimisation (PbO), im-
plementing alternative design choices for different parts of the pipeline. The re-
sulting pipelines are highly configurable, meaning that choosing the right compo-
nents, and the right parameters for those components, for a specific type of prob-
lem may be difficult. We therefore use automated algorithm configuration (AAC), to
not only evaluate the performances of the SCP solving pipelines in a fair man-
ner, but also find which parameter settings work well for problems from specific
application domains.

The work presented in this dissertation advances the state of the art in SCP
solving by proposing a new programming language to model SCPs, demonstrat-
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ing how off-the-shelf CP and MIP technology can be leveraged for fast SCP solv-
ing, and by proposing an efficient propagation algorithm for stochastic constraints.
We take a PbO-based approach, being, to the best of our knowledge, the first to do
so in the field of exact probabilistic inference. We demonstrate the effectiveness of
our methods on problems that are known in the data mining literature, including
spread-of-influence problems and frequent itemset mining (FIM) problems.
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Beknopte samenvatting

Wetenschappers, beleidsmakers en individuen maken dagelijkse beslissingen op
basis van onzekerheden en kansen. Vaak zijn er ook beperkingen op het aantal
en het type beslissingen dat we kunnen nemen. Zeker als de belangen groot zijn,
willen we graag dat de uiteindelijke beslissing die we nemen, optimaal is. Een
optimale beslissing is een beslissing die naar verwachting de beste uitkomst heeft,
volgens een bepaalde maatstaf van succes.

Kansen in een beslissingsprobleem kunnen bijvoorbeeld komen door wille-
keur in algoritmes of onzekerheid over menselijk gedrag. Als je iemand volgt
op Twitter, zie je hun tweets dan in je timeline? En als je een tweet ziet, stop je
dan om te lezen, of scroll je verder? De probabilistische component van een be-
slissingsprobleem kan zijn oorsprong ook hebben in de chaos en willekeur van
natuurlijke processen. Welke hoogspanningskabels blijven heel als ze getroffen
worden door een aardbeving? Hoeveel huishoudens komen dan zonder elektri-
citeit te zitten? In alle toepassingen vinden we ook onzekerheden die veroorzaakt
worden door het praktische probleem dat sommige dingen lastig exact te meten
of the quantificeren zijn.

Daarnaast moeten we ons vaak houden aan bepaalde beperkingen. In een re-
clamecampagne is er een limiet aan het aantal mensen dat je kunt bereiken via
een advertentie in de krant, omdat niet iedereen die krant leest. We hebben ook
geen oneindig budget voor het versterken van onze energie-infrastructuur.

v



De bovengenoemde voorbeelden bevatten ook relaties tussen entiteiten. Men-
sen kunnen elkaar volgen op sociale media. Elektriciteitsnetwerken verbinden
energiecentrales met huishoudens. De onzekerheid in de relaties in de bovenge-
noemde voorbeelden maakt dat we die relaties kunnen zien als probabilistische
data, die we kunnen modelleren met probabilistische netwerken.

In dit proefschrift presenteren we nieuwe methodes voor het exact oplossen
van optimalisatieproblemen waarin we beslissingen moeten nemen over onze-
kere, relationele data, en relevante beperkingen moeten respecteren. Deze stochas-
tic constraint (optimisation) problems (SCPs) zijn moeilijk op te lossen. Om exact
te kunnen te redeneren over het effect van onze beslissingen in een onzekere
toekomst, moeten we alle mogelijke, en vaak deels overlappende, scenarios in
acht nemen. Het feit dat het aantal combinaties van beslissingen dat we kunnen
nemen exponentieel kan groeien met het totale aantal individuele beslissingen,
maakt het nog lastiger. In het algemeen zijn SCPs NP-volledig.

Ons doel is nieuwe algoritmes te ontwikkelen die gemakkelijk zijn toe te pas-
sen, en daardoor toegankelijk voor een grote groep potentiële gebruikers, inclu-
sief gebruikers met beperkte programmeerervaring. Daarnaast moeten onze me-
thodes algemeen genoeg zijn om een breed scala aan verschillende SCPs op te
kunnen lossen, en dat snel genoeg doen om van praktisch nut te zijn. Om deze
drie doelen te kunnen bereiken, bouwen wij verder op bestaande methoden voor
het redeneren over kansen, en op technologie die helpt om te zoeken door ver-
schillende combinaties van beslissingen: constraint programming (CP) en mixed in-
teger programming (MIP).

We presenteren een nieuwe probabilistisch-logische programmeertaal, SC-

ProbLog, die speciaal ontwikkeld is om SCPs mee te modelleren. Deze taal is geba-
seerd op ProbLog, een programmeertaal die bijzonder geschikt is om probabilis-
tische relaties tussen entiteiten te modelleren. We laten zien hoe we beperkingen
op de kansverdelingen die voortkomen uit probabilistische netwerken kunnen
formuleren, en hoe we deze beperkingen kunnen modelleren zodat ze kunnen
worden opgelost door CP of MIP software. We maken gebruik van bestaande
algoritmes om beslissingsdiagrammen te genereren die een representatie vormen
van deze kansverdelingen. Deze beslissingsdiagrammen helpen ons om efficiënt
te redeneren over kansen en kansverdelingen, tijdens het oplossen van SCPs.

Onze oplosmethoden zijn allemaal modulair van aard. Hierdoor kunnen we
voor elke deeltaak de best beschikbare relevante software gebruiken. Dit helpt
om onze pijplijnen voor het oplossen van SCPs actueel te houden met de laat-
ste ontwikkelingen, zonder dat we de laatste technieken steeds zelf moeten
(her)implementeren, of moeten integreren in een monolitisch software-ontwerp.

vi



We volgen hierbij het principe van programmeren-door-optimalisatie, en imple-
menteren veel alternatieve oplossingen voor elke deeltaak in de pijplijnen, die
hierdoor zeer configureerbaar zijn. Door deze flexibiliteit is het soms lastig om de
juiste component voor elke deeltaak en de juiste instellingen voor elk component
te vinden voor het oplossen van een specifiek type probleem. Daarom maken we
gebruik van technieken die het configureren van onze algoritmes automatiseren.
Dit doen we niet alleen om de kwaliteit van onze methodes op een eerlijke en
consequente manier te toetsen, maar ook om te achterhalen welke instellingen
goed werken voor welk soort problemen.

Ons werk verlegt de grenzen van de al beschikbare technologie voor het op-
lossen van SCPs door een nieuwe programmeertaal te introduceren voor het mo-
delleren van SCPs, door te laten zien hoe de beschikbare CP en MIP software ge-
bruikt kan worden om SCPs snel op te lossen, en door nieuwe algoritmes te intro-
duceren voor het oplossen van problemen met beperkingen op kansverdelingen.
Hierbij kiezen wij een programmeren-door-optimalisatie-aanpak, en zijn, voor
zover wij weten, de eersten die dat doen in het vakgebied van probabilistisch re-
deneren. We demonstreren de effectiviteit van onze methodes op problemen uit
de dataminingliteratuur, in het bijzonder op problemen rondom mond-op-mond
reclame en frequent itemset mining (FIM).
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1
Introduction

This is where we’ve filled ourselves
up with so many questions that
they’re starting to overflow and
become answers.

Sir Terry Pratchett

1.1 Motivation

In business, governance, science as well as in our daily lives, we often have to
solve problems that involve decision making under constraints and uncertainty.
Examples of these problems arise in a diversity of domains, such as:

• planning (e.g., decide when to invest in which company or product, to max-
imise your return on investment) [7],
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• scheduling (e.g., finding rosters for nurses that honour their preferences as
much as possible and can deal with a stochastic number of daily patients) [181],

• production planning (e.g., deciding how many books to print in each quarter of
the year, to minimise storage costs but have enough to satisfy customers) [181],

• vehicle routing (e.g., deliver all the packages ordered by people who are under
sheltering-in-place during a pandemic as efficiently as possible, while dealing
with stochastic demand) [150], and even

• bioinformatics (e.g., model stochastic protein-protein and protein-gene interac-
tion in a network that is as small as possible, but still explains the interactions
as true to nature as possible) [50, 133].

Note that all the above examples do not just require us to make a decision
under constraints and uncertainty, but also require some kind of optimality of that
decision. We want to maximise profit or minimise cost. We want to maximise effi-
ciency or minimise size. This is a common property of decision making problems
in the world around us. In real-world problems, we often face multiple, possibly
conflicting, objectives, such that solutions to a problem contain a certain trade-off
with respect to these objectives. These trade-offs can often be captured in a sin-
gle cost or utility value. We therefore only consider single-objective optimisation
problems in this work.

Given the abundance of relational data in the areas mentioned above, many
problems also involve probabilistic network data [50, 56, 61, 92]. Consider, for
example, the following two problems.

Spread of influence This is a problem setting that is well-known from the data
mining literature [56, 92]. We are given a social network in which the nodes repre-
sent people and the edges represent probabilistic mutual influence relationships,
such as people following each other on social media. We are also given a mar-
keting budget, which we can spend on providing free samples of our product
to selected individuals in the social network. We then rely on a word-of-mouth
marketing strategy, in which people who have tried our product may become our
customers and try to convince their friends, family and acquaintances to also buy
the product and become a customer. Depending on how much influence they
hold over those relations, they are either successful in convincing a relation, or
not. Our objective is to maximise the number of people in the social network who
are convinced that they should buy our product, and are thus converted to cus-
tomers. We can start this process by using our budget to provide free samples to a
subset of the people in the network, which we distribute all at the same time. We
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must therefore identify the subset of people that is small enough such that we do
not exceed our budget (constraint), but maximises the expected number of people
who will eventually be convinced to buy our product (optimisation criterion).

Power grid reliability This is an optimisation version of a problem known
from the literature [61]. We are given a high-voltage power grid in which the
nodes may either represent power producers (like nuclear power plants or solar
farms), power consumers (power stations that transform the high-voltage power
into lower-voltage power to distribute among buildings), and power transmit-
ters (power stations that simply pass on the power, possibly splitting or merging
lines). Power lines connect nodes to each other. With each power line we associate
a probability that it will remain intact during a natural disaster like an earth-
quake, hurricane or storm surge. This probability may depend on its length or
the terrain in which it exists. If too many lines are damaged, consumers may lose
power. We are given a power line maintenance budget (constraint) and must de-
cide which power lines we spend it on, such that we maximise the expected num-
ber of power consumers that are still connected to at least one power producer
after a natural disaster (optimisation criterion). The budget must be assigned at a
single moment in time.

Note that, because for each problem setting, we have to decide how to spend
the budget in one moment in time, both these problem settings are considered
single-stage constraint optimisation problems. These problems are instances of a
general class of problems, known as stochastic constraint (optimisation) problems
(SCPs). SCPs have the following characteristics:

• They involve (Boolean) decision variables and (Boolean) stochastic (or random)
variables.

• They involve reasoning over probability distributions.

• They involve constraints that limit the decisions we can make.

• They involve an optimisation criterion.

We provide a formal description of SCPs in Section 1.2.
For this work, we have chosen to limit ourselves to studying single-stage

problems. As there are many real-world single-state problems, some of which
were mentioned above, we believe that this choice to limit the scope is justified.
We study how to solve SCPs efficiently, and use optimisations that are only pos-
sible in the single-stage setting.
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The main goal of this work is to develop methods that find exact solutions
to single-stage SCPs that are formulated on probabilistic networks, making sure
that these methods strike a reasonable balance between:

Convenience, such that our methods and tools are accessible and easy to use,
even for people with little or no background in programming or computer
science.

Generality, such that our methods and tools can be used for solving a diversity
of problem and problem types, from different application domains, and

Speed, such that our methods and tools solve SCPs fast enough to be practical.

In meeting the last requirement, we attempt to find algorithms with a low theo-
retical bound on the running time, as well as algorithms that have the potential to
be faster in practice than others, even if their theoretical complexity is not lower.
In order to find these exact solutions, we need to take three distinct steps:

Model the problem mathematically: Define the real-world problem and what
constitutes a solution to that problem.

Specify the model in a computer-friendly manner: Use a suitable program-
ming language to communicate the problem to a computer.

Solve the problem: Let an algorithm find the exact optimal solution.

In the literature, this second step is also referred to as ‘modelling’, so we will use
that term in the remainder of this dissertation for different tasks, trusting that the
context is enough to disambiguate, and clarifying wherever necessary.

The remainder of this chapter is organised as follows. In Section 1.2, we de-
scribe the stochastic constraint that is central to this work. Then, in Section 1.3 we
briefly reflect on the hardness of SCPs and how we address the computational
complexity of SCPs. We list and motivate our main research questions in Sec-
tion 1.4, and specify which contributions we present in this dissertation in rela-
tion to these questions. This last section also serves as an outline to the remainder
of this dissertation.

1.2 Stochastic constraints on probability distribu-
tions

The SCPs that we aim to solve in this work are all characterised by the presence
of a stochastic constraint, similar to the ones studied by Papadimitriou [137] and
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Littman et al. [111], or a stochastic optimisation criterion, similar to the ones stud-
ied by Walsh [181] and Van den Broeck et al. [178]. Specifically, in this work we
study stochastic constraints of the following form:

∑
φ∈Φ

ρφ · P (φ | σ) > θ. (1.1)

The sum represents an expected utility, in which Φ is a set of stochastic events that
are of interest to us, P (φ | σ) represents the probability of an event φ happening,
given a strategy σ over Boolean variables; and ρφ ∈ R+ is a reward for this event.
This constraint specifies a lower bound θ ∈ R+ for an expected utility. Our meth-
ods can also be applied to stochastic constraints that impose an upper bound on an
expected utility, instead.

Recall that SCPs are problems that may involve a stochastic objective function,
rather than a stochastic constraint. We can straightforwardly employ constraints
on probability distributions to solve minimisation or maximisation problems over
expected utilities (under other constraints). We describe how this can be done in
Chapter 3.

1.3 Computational complexity of SCPs

SCPs are difficult to solve exactly (i.e., in a way that produces provably optimal
solutions). Indeed, well-known instances of SCPs are shown to beNP-hard [92],
and solving SCPs exactly is NP-hard in the general case. Specifically, exact SCP
solving involves two components:

1. To evaluate the quality of a strategy σ, we have to compute P(φ | σ), which
involves a counting task that is #P-complete in general [155, 176, 177].

2. We have to perform this evaluation a potentially exponential number of times,
since the number of possible strategies for |D| Boolean decision variables is
2|D|.

Informally, a #P-complete problem requires the counting of all solutions to a
Boolean formula, of which it may have exponentially many, and can be harder
than determining if a propositional formula has a solution, which is NP-
complete [38]. Thus, naı̈vely solving an SCP by enumerating all possible strate-
gies and evaluating their score, which requires counting all the possible conse-
quences of a strategy, is typically computationally impractical. We discuss NP ,
#P and other relevant complexity classes, as well as propositional formulae and
the counting task referred to above, in Section 2.2.
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There is earlier work on which we can build to address the two challenges
listed above. In particular, knowledge compilation [48, 123, 165] techniques have
been used to make probabilistic inference tractable. Similarly, constraint program-
ming (CP) [154] or mixed integer programming (MIP) [25] have been used to model
and solve constraint optimisation problems. In this work, we investigate whether
and how these approaches can be combined to solve SCPs quickly, in theory or in
practice.

The answer to that question is not immediately obvious. In order to reap the
benefits of knowledge compilation, we have to encode the resulting representa-
tions of probability distributions in such a way that they can be communicated
to a CP or MIP solver, otherwise the associated stochastic constraints cannot be
solved by these solvers. We then have to choose how to model these constraints
such that they can not only be solved quickly, but are also convenient and easy for
the user to specify, and ideally generic enough to be implemented in a range of
different solvers. The focus of this dissertation is on finding SCP solving methods
with reasonable trade-offs between convenience, generality and speed.

1.4 Contributions

In this work we aim to answer four main research questions. We start by ac-
knowledging that a new technology’s success stands or falls on accessibility and
ease-of-use. We therefore ask:

MRQ1 How can we conveniently model SCPs and specify them to a computer?

The contributions of this thesis with respect to MRQ1 are as follows:

C1 We formulate a stochastic constraint on probability distributions (SCPD), which
allows us to model SCPs. As we will show in Section 4.2, this constraint can
also be used to formulate stochastic optimisation problems.

C2 Next, we develop a new declarative programming language, stochastic con-
straint probabilistic Prolog, or SC-ProbLog, for programming SCPs. This lan-
guage builds on earlier logic programming languages that allow for conve-
nient modelling of probability distributions, and extends these with syntax
and semantics for modelling constraints and optimisation criteria.

As we described in Section 1.3, it is not immediately obvious how we can use ex-
isting CP, MIP and knowledge compilation techniques to solve SCPs. We there-
fore ask:
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MRQ2 How can we leverage CP, MIP and knowledge compilation technology
to solve SCPs?

The contributions of this thesis with respect to MRQ2 are as follows:

C3 We develop an SCPs solving pipeline, which takes as input an SCPs pro-
grammed in SC-ProbLog. It grounds the program and converts the resulting
logic formulae into either ordered binary decision diagrams (OBDDs) or senten-
tial decision diagrams (SDDs). We either impose a stochastic constraint on the
decision diagram (DD) representations of these probability distributions, or for-
mulate an optimisation criterion that aims to maximise or minimise an ex-
pected utility that is computed from these probability distributions. We then
decompose the OBDD or SDD into a CP or MIP model, which we solve using
off-the-shelf solvers.

An important part of this work focuses on how encodings of probability distribu-
tions that are obtained through knowledge compilation interact with the CP and
MIP solvers that we use to solve the SCPs that are formulated on those probabil-
ity distributions. That part of this work is done to answer the following research
question:

MRQ3 How can we leverage the properties of SDDs and OBDDs for faster SCP
solving?

The contributions of this dissertation with respect to MRQ3 are as follows:

C4 We observe that MIPs are much easier to solve if they are linear, rather than
quadratic, and decomposed SDDs typically do not yield linear MIPs. Addi-
tionally, we observe that smaller SDDs yield smaller MIPs and show that
smaller MIPs tend to take less long to solve than larger MIPs. To address
these observations, we identify a class of SDDs that yield linear MIP decom-
positions and develop a minimisation algorithm for finding minimised SDDs
that belong to this subset of SDDs.

C5 We show that CPs solvers cannot guarantee generalised arc consistency (GAC)
in a naı̈ve decomposition of stochastic constraints on OBDD representations
of probability distributions. This results in the CP solver potentially search-
ing a part of the search space that does not contain any feasible solutions, and
thus wasting computation time. We also show that a GAC-guaranteeing de-
composition of such a constraint comes at the cost of extra memory use and
does not improve solving times significantly.
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C6 To remedy these shortcomings, we introduce a novel, global constraint on
probability distributions that are represented by OBDDs and have a certain
monotonic property. We also present and implement a propagation algorithm
for this stochastic constraint on monotonic distributions (SCMD). This propagator
leverages the structure of the OBDDs to incrementally compute the solution
to the constraint, and the fact that the underlying probability distribution is
monotonic to guarantee GAC.

In addressing MRQ1 to MRQ3, we develop a number of different SCP solving
methods, each with a number of different components, that can each be imple-
mented in different ways. Since SCPs are hard to solve in general, and since each
application domain may yield SCPs with different properties, it is not immedi-
ately obvious which solving method with which exact implementation choices
for its different components works well to solve SCPs from a specific appli-
cation domain. Additionally, since we use different existing tools (such as CP
solvers Gecode1 and OscaR [132], MIP solver Gurobi2, and knowledge compilers
CUDD [168] and sdd [36]), whose default parameter settings may be tuned on
use cases that are rather different from the one studied in this work, it is unclear
what a good parameter setting for these components might be. These uncertain-
ties form a challenge for any scientist (or other user) who not only wants to eval-
uate the performance of these methods in a fair and informative manner, but also
wants to use them as effectively as possible. This observation naturally begs an
additional research question for this dissertation:

MRQ4 How can we fairly and informatively evaluate the running time perfor-
mance of complex solving pipelines on problems from different appli-
cation domains, and ultimately best employ these pipelines for solving
real-world SCPs?

In addressing this question, we make the following additional contribution:

C7 We apply the paradigm of programming by optimisation (PbO) [80] to all solving
pipelines described in this paper. For most of our design choices we imple-
ment alternatives and/or expose parameters to make the pipelines maximally
configurable. We then use automated algorithm configuration (AAC) [79] to find
optimised configurations of these solving pipelines. To the best of our knowl-
edge, this work represents the first instance of using first use of AAC in exact
probabilistic inference.

1Available at www.gecode.org.
2Available at www.gurobi.com.
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1.4 Contributions

The remainder of this work is organised as follows. Part I serves to provide some
background for the reader. Specifically, we provide some background on how
chance, logic and reasoning are related to each other in Chapter 2. We then de-
scribe several programming paradigms for optimisation in Chapter 3.

Part II is dedicated to the contributions of this work. Specifically, we start
Part II with a detailed description of the SCPs that we study in this work, and
briefly discuss related problems in Chapter 4. In that chapter, we also describe the
problem settings used in our experiments, and the data on which those problems
are formulated.

In Chapter 4, we also show how we use the stochastic constraint on probability
distributions (SCPD) formulated in Section 1.2 to model these problems (C1) and
present the new programming language that we propose specifically for mod-
elling SCPs (C2). Then, in Chapter 5 we propose a specific kind of exact SCP
solving method that takes a stochastic constraint on an SDD or OBDD encoding
and decomposes it into a multitude of smaller constraints, resulting in a CP or MIP
model that is then solved with an off-the-shelf CP or MIP solver (C3 and C4).
These parts of Chapter 4 and all of Chapter 5 are based on research previously
published in:

� Anna L.D. Latour, Behrouz Babaki, Anton Dries, Angelika Kimmig, Guy Van
den Broeck, and Siegfried Nijssen. ‘Combining Stochastic Constraint Opti-
mization and Probabilistic Programming: From Knowledge Compilation to
Constraint Solving’. In: Principles and Practice of Constraint Programming: 23rd
International Conference (CP 2017). 2017, pp. 495–511.

In the next chapter, Chapter 6, we note that the decomposition approach does
not guarantee GAC and that a trivial modification of this approach does not sig-
nificantly improve performance (C5). We therefore propose a new, global SCMD,
which operates on OBDD encodings of probability distributions with a specific
monotonic property, and demonstrate its superior performance (C6). Chapter 6 is
based on research previously published in:

� Anna Louise D. Latour, Behrouz Babaki, Siegfried Nijssen. ‘Stochastic Con-
straint Propagation for Mining Probabilistic Networks’. In: Proceedings of the
Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI 2019).
2019, pp. 1137–1145.

We then take the decomposition method described in Chapter 5 and the global
constraint propagation method described in Chapter 6, and apply the paradigm
of PbO to these methods in Chapter 7. We implement alternative design choices
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for the different elements of the SCP solving pipelines and use AAC to automati-
cally configure them on sets of problems instances from several applications do-
mains, demonstrating that the global SCMD propagation algorithm from Chap-
ter 6 tends to outperform the other methods (C7). This chapter is based on re-
search previously presented in:

� Daniël Fokkinga, Anna Louise D. Latour, Marie Anastacio, Siegfried Nijssen,
and Holger Hoos. ‘Programming a Stochastic Constraint Optimisation Al-
gorithm, by Optimisation’. In: Data Science meets Optimization workshop 2019
(DSO 2019), co-located with IJCAI 2019, Macao, 2019.

� Anna L.D. Latour, Behrouz Babaki, Daniël Fokkinga, Marie Anastacio, Hol-
ger H. Hoos, and Siegfried Nijssen. ‘Exact Stochastic Constraint Optimisation
with Applications in Network Analysis’. In: Artificial Intelligence, vol 304, 2022.
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Background
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2
Logic, probability and inference

2.1 Introduction

As described in Chapter 1, the focus of this work is on developing exact solving
methods for stochastic constraint (optimisation) problems (SCPs), that strike a rea-
sonable balance between convenience, generality and speed. Because probability
is such an important part of SCPs, we devote this chapter to background on mod-
elling probability distributions and on executing well-known inference tasks. In
this work we take a propositional logic-based approach to modelling probability
distributions and reasoning about uncertainty. This decision is motivated by the
fact that logic-based models of probability distributions generalise many others.
Additionally, propositional logic connects very naturally to the constraint solving
component of the subject matter of this dissertation. Consequently, our focus in
this chapter is on probability distribution representations that are based in propo-
sitional logic.

We therefore open this chapter in Section 2.2 with some background on propo-
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sitional logic, typical problems that can be formulated on propositional formulae,
and their associated complexity classes. Since this work aims to solve constraint
(optimisation) problems that involve a stochastic component in particular, and
since the field of probabilistic inference has produced a rich literature on how to
solve such problems, in Section 2.3 we give a brief overview of the main proba-
bilistic inference tasks known from this literature.

Moving on to concrete methods for solving probabilistic inference problems,
we then discuss the technique of knowledge compilation in Section 2.4, and how
to use the compilation of propositional formulae to decision diagrams (DDs) for
probabilistic inference in Section 2.5.

While propositional formulae provide a general way of representing prob-
ability distributions, constructing these formulae is not always straightforward.
We therefore also describe another way of representing probability distributions:
the probabilistic logic program, in Section 2.6. This provides a convenient and
human-friendly language for programming probability distributions, which can
then be converted to DDs or propositional formulae. We conclude this chapter in
Section 2.7.

2.2 Propositional logic

In this work, we take a probabilistic logic-based approach to reasoning about un-
certainty. In particular, we focus on (literal-weighted) propositional formulae to
represent probability distributions. In this section we first give a brief recap of
propositional formulae. We then discuss how they can represent probability dis-
tributions and how we can compute probabilities from propositional formulae.
Finally, we reflect on some relevant complexity classes, using problems formu-
lated on propositional formulae as representative members of those classes. This
discussion serves to put the next section (about different kinds of probabilistic
queries) into a computational complexity context.

2.2.1 Propositional formulae

Recall the stochastic constraint Equation 1.1 that we defined in Section 1.2. In
Section 2.2.3, we show how we can use the formalism of weighted model count-
ing (WMC) to compute the probability that an event φ occurs. In order to do so,
we model φ as a propositional formula. We now give a brief overview of the no-
tation and terminology that we use in this work. For a detailed description of
propositional logic, we refer the reader to the literature, e.g., Mathematical Logic
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for Computer Science [14].

A propositional formula φ(X) is defined on Boolean variables X ∈ X that
are connected in the formula through binary logical connectives ∨ (“or”) and ∧
(“and”). Variables in the formula may be negated (¬). We define a literal as either
a variable X or its negation, ¬X. In this work, we use true, > and 1 to indicate
‘true’, and false, ⊥ and 0 to indicate ‘false’.

We call sc(φ) = X the scope of φ. In this work, we assume the variables in sc(φ)
to be partitioned into a set of Boolean decision variables D and a set of Boolean
stochastic variables T. We use D ∈ D to indicate a Boolean decision variable,
and T ∈ T to indicate a Boolean stochastic variable. When the type of variable is
irrelevant, we use X ∈ X to indicate a generic Boolean variable and a generic set
of Boolean variables.

When literals are connected through only∨s, we call this a disjunction or a (dis-
junctive) clause. When they are connected through only ∧s, we call this a conjunc-
tion. If a propositional formula consists of a conjunction of clauses, this formula
is in conjunctive normal form (CNF). If it consists of a disjunction of conjunctions
of literals, the formula is in disjunctive normal form (DNF). For the scope of this
thesis we do not assume the input propositional formulae to be in any particular
normal form, unless otherwise specified.

We sometimes assign truth values to (some of) the variables in a propositional
formula φ and then consider the residual formula that we obtain by replacing those
variables by their truth values in φ and simplifying the result. We denote such a
partial assignment by π : X 7→ {>,⊥} and denote the residual formula as φ|π .
In this work in particular, we often want to evaluate the residual propositional
formula after we have assigned truth values to the decision variables in particular.
Since such a partial assignment corresponds to us making a set of decisions, we
refer to a partial assignment that only assigns truth values to the decision vari-
ables, σ : D 7→ {>,⊥}, as a strategy. If σ assigns truth values to only a subset of
the decision variables in sc(φ), we call it a partial strategy. When a partial assign-
ment only assigns truth values to stochastic variables, we call υ : T 7→ {>,⊥}
a scenario or possible world. Any π that assigns a truth value to all variables in
sc(φ) is called an interpretation of φ. We will sometimes abuse notation and treat
a partial assignment or interpretation simply as the set of literals that it sets to >.

We say that a formula evaluates to true under σ, in which case we call φ satis-
fiable, if φ|σ = >. We call any interpretation of φ that makes φ evaluate to true a
model, witness or solution of φ.

The task of deciding whether a propositional formula in CNF has at least one
model, is known as the Boolean satisfiability problem (SAT) and is known to be

15



Logic, probability and inference

NP-complete [38, 106] (see Section 2.2.4). The task of counting the total number
of models of a propositional formula, is known as the propositional model counting
problem (#SAT), and is the canonical #P-complete problem (see Section 2.2.4). In
Section 2.2.3, we discuss how a weighted version of this counting problem relates
to computing probabilities, but we first briefly recall some basic concepts of first-
order logic.

2.2.2 First-order logic

While in this work we limit ourselves to propositional formulae as a basis for
reasoning about uncertainty, for the ease of discussion in later sections, we now
briefly recall basic concepts and notation of first-order formulae. For a formal and
more detailed description, we refer the reader to the literature, e.g., Mathematical
Logic for Computer Science [14].

Like propositional formulae, complex first-order formulae are constructed
from simpler formulae using logical connectives such as ∨ and ∧, a negation
operator ¬ and the constants > and ⊥. The most simple form of logical formula
is the literal, which in the context of first-order logic is more generally defined
than in propositional logic. In first-order logic, a literal is an atomic formula (atom)
or its negation. An atom is a predicate that operates on terms, of which there are
different types.

Informally, we can think of terms as objects or entities. The simplest ones are
constants, e.g., a and b. They can represent, for example, people. Terms can also be
variables. We can interpret variables and constants by giving them values from a
domain. The third type of terms are functions. Function symbols are applied on
terms to define new terms.

As stated above, the literals of first-order logic are predicates and their nega-
tions. These predicates express properties of objects (terms) or relations between
objects. A predicate can take any number of arguments, including zero, which
is called a nullary predicate. Regardless of the input, a predicate always returns
a truth value (> or ⊥). Consider for example the domain of friends {a, b} and
the binary predicate isFriendO f (X, Y). If we interpret X and Y by assigning them
the values a and b, respectively, the predicate isFriendO f (a, b) evaluating to true
may mean that a is a friend of b. Predicates are the reason that first-order logic is
sometimes referred to as predicate logic [84].

Note that, while expressions involving only constants, variables, and func-
tions are terms, no expression involving a predicate is a term. Rather, an expres-
sion involving a predicate is a formula.

In addition, first-order logic uses quantifiers to indicate for how many values
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the relationship expressed by predicates must hold. The existential quantifier ∃
(“exists”) and the universal quantifier ∀ (“for all”) can be used to express that a
certain relationship holds for at least one arbitrary value, or for all values, respec-
tively. For example: ψ = ∀x∃y.pred(x, y) means that ψ evaluates to true iff, for
any value x, we can find at least one value y such that the predicate pred(x, y)
evaluates to true.

Note that first-order logic can express subtle details about the relationships be-
tween objects and can be a more compact way to encode information than propo-
sitional logic, especially if there is a lot of structure or repetition in the problem
or information that we want to model [84]. If the same predicate holds for many
(combinations of) values, this can often be more compactly expressed in first-
order logic than in propositional logic.

2.2.3 Propositional weighted model counting

In this work, we will use propositional formulae to represent probabilistic mod-
els. We then use the formalism of weighted model counting (WMC) to compute
probabilities from these formulae.

There are many alternative formalisms for representing probability distribu-
tions, which we will reflect on in the next chapter. In this work, however, we
use a propositional WMC approach, since it generalises many other well-known
approaches and is common practice in the domains of probabilistic reasoning,
planning and learning [13, 32, 33, 45, 52, 57, 61, 64, 158].

Before we give a formal definition of WMC, we first need to define the notion
of literal-weighted propositional formulae:

Definition 2.2.1 (Literal-weighted propositional formula). A literal-weighted
propositional formula is a tuple 〈φ(X), W(L)〉, of a propositional formula φ and a
weight function W : L 7→ Q+

0 that maps each literal in L to a non-negative rational
number. Here, X the set of variables of φ, i.e., φ’s scope, and L the corresponding set of
literals.

Specifically, we must define a particular type of literal-weighted formula: one
in which all weights can be interpreted as probabilities:

Definition 2.2.2 (Probability-weighted propositional formula). A probability-
weighted propositional formula is a tuple 〈φ(T), W(L)〉, with T the set of vari-
ables of φ, i.e., φ’s scope, and L the corresponding set of literals. The weight function
W : L 7→ {w ∈ Q | (0 ≤ w ≤ 1) ∧ (∀L ∈ L : W(¬L) = 1−W(L))} assigns a
rational weight between 0 and 1 to each literal L ∈ L, such that the weight of L (denoted
by W(L)) and the weight of its negation sum up to 1.
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Here, we follow Sato’s semantics for probability distributions [160]. In prac-
tice, this means that we interpret the probability W(L) to be the probability that L
has the value >. We also assume that the probabilities associated with variables
are mutually independent. We will use literal-weighted propositional formulae
as a way to represent probabilistic models (see Section 2.3.1) and for probabilistic
reasoning about those models (see Section 2.2.3). Note that, because of the as-
sumption that W(¬L) = 1−W(L), probability-weighted propositional formulae
describe Bernoulli distributions.

Specifically, we use WMC to compute the probability P(φ|σ) of an event
φ(D, T), defined on decision variables D and stochastic variables T, occurring
for a given strategy σ that maps each decision variable in D to a truth value.
Using the above definition of a probability-weighted propositional formula, we
define the WMC as follows:

Definition 2.2.3 (Weighted model count). The weighted model count of a probability-
weighted propositional formula 〈φ(T), W(L)〉 is given by:

wmc(φ) = ∑
υ∈M

∏
L∈υ

W(L), (2.1)

where υ denotes a model of φ(T), represented as the set of literals that are set to > in
that model andM denotes the set of models of φ(T), and T and L as defined in Defini-
tion 2.2.2.

We interpret wmc(φ) as the probability that φ(T) evaluates to >, given the
probabilities as defined by W(L). We therefore also write P(φ) to denote φ’s
weighted model count. Note that Equation 2.1 shows that we assume that the
probabilities associated with positive literals by W are mutually independent. If
we had not made this assumption, we would not be able to simply multiply literal
weights in Equation 2.1.

The WMC formalism can be used for counting the number of solutions to a
propositional formula, and is known to be #P-complete [155].

We can now use the notion of the weighted model count of a probability-
weighted propositional formula to compute the success probability P(φ|σ) of the
residual formula that is obtained when conditioning a propositional formula
φ(D, T) on a full strategy σ, which assigns truth values to all variables in D. We
illustrate this with the following example:

Example 2.2.1 (The weighted model count of a propositional formula). Consider
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the following propositional formula, strategy and weight function:

φd(D, T) := Dd ∨ (Dc ∧ Tcd) ∨ (Db ∧ Tbc ∧ Tcd) ∨ (Da ∧ Tac ∧ Tcd)∨
(Db ∧ Tab ∧ Tac ∧ Tcd) ∨ (Da ∧ Tab ∧ Tbc ∧ Tcd) ,

σd := {Da := >, Db := >, Dc := ⊥, Dd := ⊥},
W(L) := {pTab := 0.4, pTac := 0.8, pTbc := 0.1, pTcd := 0.3},

(2.2)

with D = {Da, Db, Dc, Dd} and T = {Tab, Tac, Tbc, Tcd}. Here, we have only listed the
weights of the positive literals for brevity, and denote the weight of a literal L with pL,
since it reflects a probability. Conditioning φd on σd yields the following residual formula:

φd|σd := (Tbc ∧ Tcd) ∨ (Tac ∧ Tcd) ∨ (Tab ∧ Tac ∧ Tcd) ∨ (Tab ∧ Tbc ∧ Tcd) . (2.3)

We can now ‘roll the dice‘ for each stochastic variable to obtain a truth value for it. The
resulting possible world υ : T 7→ {⊥,>} represents just one scenario of what could
happen once the probabilistic truth values of the stochastic variables are revealed. Substi-
tuting the truth values specified by υ into the residual formula φd|σd either satisfies that
formula, in which case υ ∈ M is a model of φd|σd , or falsifies it.

We can now use Equation 2.1 to compute the success probability of φd|σd , which we
illustrate in Table 2.1, finding a success probability of P

(
φd|σd

)
0.2460 for this formula.

Table 2.1: An example of how to compute the weighted model count of Equation 2.3. Note
that the table only lists interpretations that are models of φd|σd .

model weight

{Tab := >, Tac := >, Tbc := >, Tcd := >} 0.4 · 0.8 · 0.1 · 0.3 = 0.0096
{Tab := >, Tac := >, Tbc := ⊥, Tcd := >} 0.4 · 0.8 · 0.9 · 0.3 = 0.0864

...
...

{Tab := ⊥, Tac := >, Tbc := >, Tcd := >} 0.6 · 0.8 · 0.1 · 0.7 = 0.0336

P(φd|σd) = 0.2460

2.2.4 Relevant complexity classes

The problems studied in this work are NP-hard in the general case. They in-
volve solving sub-problems (probabilistic inference problems, specifically) that
are shown to be #P-complete. Later in this chapter, we will describe different
types of probabilistic inference and how they relate to the SCPs studied in this
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work. In order to put those into (their computational complexity) context, we
first provide some definitions.

Recall from Section 2.2.1 that the SAT problem asks, for a given propositional
input formula φ in CNF, if there is a model of that formula. If there is, we call such
a formula satisfiable. Informally, problems that are members of the NP complex-
ity class are decision problems for which we can efficiently verify if a candidate
solution to an instance of this decision problem is indeed a solution to this prob-
lem instance. Here, the word “efficiently” means “in time polynomial in the input
size on a deterministic Turing machine or equivalent model of computation”.

In order to define the classNP more formally, we remark that we can encode
a problem instance (a propositional formula, in case of SAT) as a string. We can
define the problem size as the length of that string. Using these strings, we can
define languages that describe a problem class. In the SAT example, the SAT lan-
guage would consist of all strings that describe propositional formulae that are
satisfiable.

We can now imagine the existence of an algorithm that checks (verifies) if an
interpretation π of φ is indeed a model of φ. It thus takes two inputs: a string
encoding the propositional formula and a string encoding the interpretation. In
the computational complexity literature, this algorithm is typically modelled by
a Turing Machine (TM). Using these notions, we can more formally define the
class NP as follows (inspired by the definitions given by Arora & Barak [6] and
Martin [124]):

Definition 2.2.4 (The classNP). Given a finite set of characters (an alphabet) A and
a language L ⊆ A∗, which is a set of strings of arbitrary length, comprising characters
from A. This language L is in NP iff there exists a polynomial p : N 7→ N and
a polynomial-time TM M, which we call the verifier for L, such that for every string
x ∈ A∗,

x ∈ L⇔ ∃u ∈ Ap(|x|) s.t. M(x, u) = >
Here, we call u a certificate for input string x (with respect to L and M) if x ∈ L and
u ∈ Ap(|x|), with |x| the length of the input string x.

Without loss of generality, we can choose this alphabet to simply be {⊥,>},
which we use to both encode the input string x describing the problem instance,
and the certificate u. Note that encoding x using an alphabet of A = {⊥,>} is
note quite as trivial as encoding u. In the computational complexity literature, it
is often assumed that the alphabet also has a blank symbol � and a start symbol .
for easier encoding in a Turing Machine. Because a discussion of how to encode
x and a discussion of the exact workings of the Turing Machine model of compu-
tation are outside the scope of this work, we will ignore these special symbols.
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As long as the alphabet is finite, the exact choice of the alphabet is unim-
portant, since we can always come up with a transformation of one alphabet to
another. To get an intuition for this, consider two finite alphabets, A = {⊥,>}
and B, with |A| < |B|. Now, B can easily simulate A by simply mapping > to a
symbol b ∈ B and ⊥ to a symbol b′ ∈ B and not using all other symbols in B.
Conversely, A can encode any symbol in B using log |B| bits.

For the sake of completeness, we also recap the concepts of hardness and com-
pleteness. Informally, a problem P′ is called hard for a certain time complexity class
if any problem P in that complexity class can be reduced to P′ in polynomial time.
Intuitively, this polynomial reduction means that we can transform input string
x ∈ L (the encoding of problem P) into a an input string x′ ∈ L′ in time that is
polynomial in |x|, such that a TM that verifies L′ can be used to verify L.

More formally, we repeat the following definitions from Arora & Barak [6]:

Definition 2.2.5 (Reduction). A language L ∈ A∗ is polynomial-time Karp re-
ducible to a language L′, denoted by L ≤p L′, if there is a polynomial-time computable
function f : A∗ 7→ A∗ such that for every x ∈ A∗, x ∈ L iff f (x) ∈ L′.

Note that L and L′ need not be languages on the same alphabet A. Rather, f may
also be a function from strings on finite alphabet A to strings on a different finite
alphabet B, because of the aforementioned possibility of using one alphabet to
simulate another.

Using the definition above, we can give definitions for NP-hardness and
NP-completeness:

Definition 2.2.6 (NP-hardness and NP-completeness). We say that L′ is NP-
hard if L ≤p L′ for every L ∈ NP . We say that L′ is NP-complete if L′ is NP-hard
and L′ ∈ NP .

Here the “NP” in NP stand for “non-deterministic polynomial”. Intuitively,
NP-complete problems are those problems for which there cannot be an algo-
rithm that can efficiently (i.e., in polynomial time) and deterministically find a
solution to an arbitrary instance of that problem that it is presented with, but for
which it is possible to construct an algorithm that efficiently checks if a given solu-
tion (e.g., a non-deterministic guess) to the problem instance is indeed a solution.

At least, that is the hunch that the overwhelming majority of computer scien-
tists share on this topic. Unless we find that P=NP , in which case there would
be a way to construct polynomial-time (“efficient”) algorithms for solving NP-
complete problems, or definitively prove that P 6=NP , we operate under the as-
sumption that no theoretically efficient (polynomial) algorithms exist to find a so-
lution to an arbitrary instance of any NP-complete problem.
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Recall that we study stochastic constraint (optimisation) problems in this
work, and aim to solve them exactly. In the case of the stochastic constraint satis-
faction problems, it is clear that they are decision problems: we ask if the constraint
is satisfied. We can turn stochastic constraint optimisation problems into stochas-
tic constraint satisfaction problems by simply asking if the value that we aim to
maximise exceeds a certain threshold (and analogously for minimisation prob-
lems). We discuss the relationship between stochastic constraint satisfaction and
stochastic constraint optimisation in more detail in Section 4.1.

While the SCPs that we study in this work are shown to be NP-hard in the
general case, they need not be in NP , and thus need not be NP-complete. This
is because real-world examples of SCPs (such as the ones studied in this work)
often-times contain a lot of structures and symmetries that can be analysed to
define special cases of SCPs for which we can design theoretically efficient solving
algorithms.

As briefly touched upon in Section 1.3, in order to exactly solver SCPs, we
need to evaluate the quality of different strategies, and evaluating the quality of
a strategy is #P-complete. The complexity class #P (pronounced “sharp p”) cap-
tures the class of problems in which we are not just interested in finding a solution,
but rather in counting all solutions to a problem instance. Perhaps unsurprisingly,
the canonical problem of this complexity class is the problem of counting the num-
ber of models of a propositional formula (#SAT), the model counting problem for short,
in which we count all models of a given propositional formula, as discussed in
Section 2.2.1.

More formally, we again give a definition analogous to the one given by Arora
& Barak [6]:

Definition 2.2.7 (The class #P). A function f : A∗ 7→ N is in #P if there exists a
polynomial p : N 7→N and a polynomial-time TM M such that for every x ∈ A∗:

f (x) =
∣∣∣{u ∈ Ap(|x|) : M(x, u) = >

}∣∣∣ .

Note that this definition implies that the count itself can be encoded in a string
whose length is polynomial in the length of the input string x that encodes the
problem instance. The weighted version of this problem, as described in Sec-
tion 2.2.3, is also shown to be #P-complete in the general case [155].

Perhaps unsurprisingly, counting can be harder in practice than deciding.
In particular, some problems that are easy to decide have an associated count-
ing version that is hard. A well-known example are propositional formulae in
DNF. Their satisfiability can be decided easily (while deciding their falsifiability
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is hard), but counting the number of models of a DNF formula is not easier than
counting the number of models of a CNF formula.

In order to define completeness for #P , we must first define FP , the class of
functions f : A∗ 7→ N that are computable by a deterministic polynomial-time
Turing Machine [6]. Intuitively, computable functions are those that can be com-
puted by an algorithm or computer without going into infinite loops. A formal
definition of #P-completeness is outside the scope of this work, but informally,
a function f is #P-complete if it is in #P and the existence of a polynomial-time
algorithm for f implies that #P = FP . We refer the reader to the literature for
more details, e.g., Computational Complexity, by Arora & Barak [6].

Finally, we point to the class of problems that represents decision versions of
problems in #P : PP . Intuitively, and taking the #SAT problem as an example, the
question asked in these problems is whether the model count of a propositional
formula meets a certain threshold. More formally [6]:

Definition 2.2.8 (The class PP). A language L is in PP if there exists a polynomial-
time TM M and a polynomial p : N 7→N such that for every x ∈ A∗,

x ∈ L⇔
∣∣∣{u ∈ Ap(|x|) : M(x, u) = >

}∣∣∣ ≥ 1
2
· 2p(|x|),

where we assume that A = {⊥,>}.

Here, 2p(|x|) represents the total number of possible certificates for the input in-
stance x, and it is assumed that the length of a certificate u is polynomial in the
length of x.

In the language of Turing Machines, we can think of L as a language whose
strings are accepted by the majority of paths in non-deterministic TM M. Unlike
problems that are in NP , and taking the SAT problem as an example, we do not
need to find just one model, but we must check that the majority of interpretations
are models of the input formula.

We finally point to the concept of oracles, which are used in computational
complexity theory to reason about different complexity classes. Informally, an
oracle is a black box that answers queries. Even though those queries represent
problems in a specific complexity class, it costs a Turing Machine only one time
step to query the black box. For example, NPPP is the class of problems that can
be decided by a non-deterministic, polynomial-time Turing Machine, provided
that it has access to an oracle that decides problems that are in PP .

In the next section, we describe a number of probabilistic inference tasks that
are members of the complexity classes described above.
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2.3 Probabilistic inference

As we described in Chapter 1, we study problems that involve some sort of
stochastic component, and thus require us to perform some kind of probabilis-
tic reasoning. Given a probabilistic model, we use the term probabilistic inference
to refer to answering probabilistic queries about the model, such as “what is the
probability that it will be windy and rainy when I go outside?” In this section
we describe several probabilistic queries known from the probabilistic inference
literature.

Specifically, we identify three main types of inference tasks: max-inference
tasks, sum-inference tasks and mixed-inference tasks [143]. They are listed here in in-
creasing order of difficulty, their complexity classes ranging from NP-complete,
to #P-complete to NPPP-complete, respectively [47, 139], with NP ⊆ #P ⊆
NPPP.

Before we describe these tasks, their complexities, and techniques that have
been developed to solve them, we first introduce some notation and terminology
related to the probabilistic models on which these tasks are formulated.

2.3.1 Probabilistic models

Probabilistic models can be represented in different ways. In the previous sec-
tion, we discussed a specific way of modelling probability distributions: literal-
weighted propositional formulae. A popular alternative approach to representing
probabilistic models are graphical models [97, 140].

A well-known example of a graphical model is the Bayesian network (BN) [140],
whose name was coined by Pearl in the 1980s. BNs are directed-acyclic graphs in
which each node represents a variable and the directed edges indicate depen-
dence relationships. With each node they also associate a conditional probability
table (CPT) that describes that relationship. Another well-known example is the
Markov Network (MN), or Markov Random Field (MRF) [140], which is an undi-
rected version of the Bayesian network.

However, in this work we choose literal-weighted propositional formulae to
model probability distributions (as described in Section 2.2), since they gener-
alise other approaches [32, 158]. Because of that choice, in this work, we consider
problems formulated on Boolean variables. For ease of discussion, here we there-
fore assume that all variables have Boolean domains, but this need not be the case
in general (in fact, they need not even be discrete).

The contents of this section are agnostic of any specific probabilistic model
representation, unless indicated otherwise.
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In our discussion of probabilistic inference tasks below, we consider a prob-
abilistic model P = 〈E, S, Q, Φ〉 on variables that are partitioned into three dis-
joint sets: E, S and Q. Intuitively, we can think of these sets as variables whose
values represent evidence (E), variables that must be marginalised out (S), which
is done by summation, and variables whose values we want to query (Q). Taking
the spread of influence problem as described in Section 1.1 as an example, we
can think of the evidence as a decision on which people get a free sample. Maybe
we want to target a specific group (e.g., women in tech, people who like running,
reading enthusiasts, . . . ). We then query members of that group to predict the ex-
pected reach of our marketing campaign to that specific target audience, leaving
members outside that target audience (who might still participate in spreading
the word about our product) to be marginalised out.

Joint probability distributions on these variables are, in the graphical model
literature, typically defined using a set F of potentials f . These potentials map sets
of (truth value) assignments to variables in X to real numbers: f : {>,⊥}|X| 7→ R.
In general, each potential must take a nonnegative value for at least one set of
truth value assignments [187]. In the context of graphical models, we can typi-
cally interpret these potentials as conditional probability tables (CPTs) that associate
a probability with an assignment of truth values to the variables in the scope of
the potential (X). We thus consider all the potential’s values to be nonnegative in
this chapter.

Recall the discussion of literal-weighted propositional formulae and their
weighted model counts from Section 2.2.3. Similar to the CPTs in the context of
graphical models, we can see Table 2.1 as a potential. Instead of having multi-
ple potentials that define a probability distribution over subsets of all variables
involved, now we have just one potential. This potential maps models of the
literal-weighted propositional formula to their weights, and any interpretation
of the formula that is not a model to 0.

We now continue with a description of the three main probabilistic tasks that
can be formulated on probabilistic models.

2.3.2 Max-inference tasks

Max-inference tasks typically aim to find the most probable configuration of a
joint probability distribution. A typical max-inference task is the most probable
explanation (MPE) task. In some of the literature, this task is also known as the
maximum probability assignment (MPA) task [20], or the maximum a posteriori (MAP)
task, e.g., in [1, 35, 91, 104, 112, 126, 153, 167, 184]. Given a probabilistic model
P as described above, with S = ∅, and some evidence e in the form of truth

25



Logic, probability and inference

assignments to the variables in E, e : E 7→ {⊥,>}, the MAP task aims to find
an assignment of truth values q to the variables in Q, q : Q 7→ {⊥,>}, that
maximises P(Q = q | E = e).

Then, in the context of graphical models, for each possible q we can write:

P (Q = q | E = e) :=
∏ f∈F f (e, q)

P(E = e)
(2.4)

Note that, in the context of literal-weighted propositional formula representations
of probabilistic models, instead of Equation 2.4, for each possible q we would
write:

P (Q = q | E = e) :=

∏L∈q W(L) if e ∪ q ∈ M(φ)

0 otherwise,
(2.5)

where W(L) represents the weight of literal L andM(φ) is the set of models of
propositional formula φ. Note that this is simply the weight of the interpretation
defined by e ∪ q.

The goal of the MPE task is then to find an assignment of truth values to
variables in Q that maximises this probability:

q∗ := arg max
q

P (Q = q | E = e) , (2.6)

where in fact we can also simply compute q∗ ∈ arg maxq ∏ f∈F f (e, q) (in the
graphical model view), since P(E = e) is independent of q. Where, for simplic-
ity, we assume that the arg max function in the above formula returns just one
assignment, even if more than one maximise P (Q = q | E = e).

Note that, because S = ∅, the MPE task can be seen as finding the most likely
configuration of a set of variables Q, given evidence about the variables in the
complement of Q, namely those in E. As such, it is a very useful task for diag-
nostic purposes. For example: given a set of symptoms (E = e), a physician may
want to ask what the probability is that the patient has a certain disease (Q = q).

The MPE inference task of determining if there exists a configuration q such
that P (Q = q | E = e) > θ (with rational threshold 0 ≤ θ ≤ 1) is shown to
be NP-complete [20, 167]. In fact, even finding a solution to the MPE problem
whose quality is guaranteed to be within a constant ratio ρMAP of the optimal
solution, is shown to be NP-hard [1].

The earliest exact methods for solving MPE were join-tree algorithms, devised
in the context of Bayesian networks, where potentials are computed one by one,
in a strict order that is determined by the (structure of the) problem, often using
the potentials that were computed earlier [90, 101, 140]. In the late 1990s, Dechter
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proposed the bucket elimination framework as a generalisation of variable elimi-
nation algorithms, typically used for mixed-inference tasks, which we will briefly
discuss in Section 2.3.4. Because the max-inference and mixed-inference tasks are
so closely related, Dechter proposed a general framework for solving these task.
It provides functionality for balancing the space and time requirements of vari-
able elimination algorithms [53]. Note that the efficiency of variable elimination
algorithms is determined by the variable order inherent to the specific problem
instance.

Alternative approaches to exact MPE solving include one based on a modi-
fication of the DPLL algorithm, using a dynamic programming approach [159],
and one that is based on integer linear programming (ILP) [153]. Another class of
algorithms encodes the problem in an AND/OR diagram (which exploits the in-
dependencies in the graphical model), and uses a depth-first branch-and-bound
search to traverse that diagram in order to solve the MPE task [115, 116].

Finally, we point to the existence of approximation methods for MAP, based
on, e.g., local search [139], mini-bucket elimination algorithm [54], (hybrid) mes-
sage passing algorithms [91, 112], weighted search [67] and others [103, 119, 138,
143, 186]. A detailed discussion of these techniques is outside the scope of this
work, since we focus on exact SCP solving.

Note that solving SCPs as described in Section 1.1 never requires max-
inference only. Instead, we always require a form of inference that performs some
kind of aggregation over probabilistic paths in networks, and thus sum-inference.

2.3.3 Sum-inference tasks

The probabilistic logic programming (PLP) literature identifies an inference task in
which the set Q contains only one variable (Q = {Q}), there are no observed
variables, and thus there is no evidence (E = ∅), but there are latent (i.e., unob-
served or uninteresting) variables that must be marginalised out (S 6= ∅). In this
case, we call P(Q = >) the success probability of query Q, which, in the graphical
model context, is computed as:

P(Q = >) :=
1
Z

˙∑s ∏
f∈F

f (s, Q = >) , (2.7)

where Z is a constant needed for normalisation, often referred to as a partition
function. In the literal-weighted propositional formula context, computing P(Q =

>) corresponds to computing the weighted model count of a formula that can
only be satisfied if Q = >, using Equation 2.1.
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This task is known in the PLP literature as the marginal distribution
(MARG) [52, 64, 65] or simply MAR [47] task, or the PROB task [96].

This task is known to be #P-complete in the general case [155, 176, 177]. The
decision version of this problem asks if P(Q = >) > θ holds for a given threshold
0 ≤ θ ≤ 1. This problem is PP-complete [6, 47].

Since the task of computing the success probability of a query is such an im-
portant task in the PLP community, many methods for solving this task either
exactly or approximately have been developed over the years. In particular, it has
been shown that the MARG task can be reduced to the WMC problem [8, 9, 43],
which we briefly referred to in Section 2.2.4. Consequently, a lot of the literature
on solving this task is based on model counting techniques.

An early example of this is the suggestion by Bacchus and Dalmao to adapt
the Davis-Putnam-Logemann-Loveland (DPLL) algorithm such that it can be
used for model counting [9]. They observed that computing the conditional prob-
ability distributions for variables in a Bayesian Network (the BAYES problem),
and counting the number of model of a propositional formula (#SAT) are in-
stances of the same SUMPROB problem, as identified by Dechter [53]. They
thus proposed to solve the BAYES problem with their #DPLL algorithm [8, 9],
which eventually led to weighted model counter Cachet, which employed conflict-
driven clause learning (CDCL) for efficient weighted model counting [157, 158].
Somewhat more recent model counters of this type include weighted versions
of miniC2D [134] and sharpSAT [173], specifically our weighted version1, a ver-
sion called sharpSAT-TD2, and a weighted version of GANAK [166].3 Finally,
Chakraborty et al. showed that, under certain assumptions, literal-weighted
propositional formulae can be transformed into unweighted propositional for-
mulae whose model counts can then be transformed back into probabilities,
thus allowing any unweighted model counter to be transformed into a weighted
one [29].

These model counting techniques typically require the input to be in a cer-
tain propositional language (typically CNF). However, a large part of the prob-
abilistic inference literature assumes the probabilistic model to be encoded as a
graphical model, thus requiring some kind of encoding step before solving. Sev-
eral methods for encoding probabilistic graphical models into (literal-)weighted
CNFs have been proposed [13, 29, 33, 43], but a detailed discussion of them is
outside the scope of this work.

A weighted model counter takes a (literal-)weighted CNF as input and returns

1Available at bitbucket.org/latower/weighted-sharpsat.
2Available at github.com/Laakeri/sharpsat-td.
3Weighted version available at github.com/meelgroup/ganak/tree/wmc.
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a probability. In some contexts, this might be enough. However, in some other
contexts, we may want to query the same model multiple times, only with differ-
ent weights, or with different decisions. For example, in the context of the power
grid reliability problem, experts may have provided us with upper and lower
bounds on the survival probabilities of the power lines. Using those bounds, we
may want to formulate queries for best-case and worst-case scenarios. The un-
derlying model is the same for these two scenarios, but the weights are different.
Taking the spread of influence problem as another example, we may just want to
determine the expected number of eventual customers given different ‘seed’ sets
of people who receive a free sample. Again, the underlying model is the same,
but some decisions (and thus the values of decision variables) are different.

In these examples, we want to compute the success probability of a literal-
weighted formula multiple times, only with slightly different weights. Using the
DPLL-based algorithms, we would have to run the algorithm again for each dif-
ferent weight function, and we cannot reuse any results.

This single-use property of model counters is a drawback if we may want to
perform multiple queries on the same model. These observations are addressed
by the field of knowledge compilation [48, 123, 165], where a propositional formula
is compiled into a decision diagram (DD). These data structures capture the model
into a data structure that allows for repeated querying in time that is polynomial
(typically linear) in the size of the DD. Since this work relies heavily on knowl-
edge compilation, we discuss this in more detail in Section 2.4.

Due to the complexity of the MARG task, there is also a class of bounding
and approximation algorithms for solving this problem. One of the earliest meth-
ods simply uses a SAT solver to generate sample solutions, whose weights can
be used to estimate the total weighted model count of a literal-weighted input
formula [182], taking care to take into account the weight of the samples them-
selves [28]. Later methods take a hashing-based approach, which adds random
XOR constraints to the formula, which cuts down the solution space until it is
small enough to count. The total model count is then estimated by repeating this
procedure, resulting in probabilistic upper and lower bounds on the weighted
model count [30]. Another method is an anytime approach from the PLP litera-
ture simply generates partial proofs by partially grounding a probabilistic logic
program, generating lower and upper bounds on the success probability that get
closer as the algorithm continues to run [151, 152].

Finally, we mention parallelised methods for weighted model counting, such
as ones that utilise GPUs [62] or implement parallel DD compilation algo-
rithms [40].
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2.3.4 Mixed-inference tasks

Recall the probabilistic model we described above: P = 〈E, S, Q, Φ〉. For the
definition of the MPE problem, we assumed that S = ∅. For the definition of
MARG inference, we assumed that E = ∅. We now discuss a generalisation
of the MPE in which S 6= ∅ and E 6= ∅, known as the MAP problem. As we
mentioned in Section 2.3.2, some literature calls the MPE task the MAP task. In
these works, the mixed-inference task is called marginal MAP (MMAP) (e.g., in
[1, 35, 91, 104, 112, 126, 153, 167, 184]) or partial MAP [100].

The MAP task is to find an assignment of truth values q to the variables in Q
that maximises P(Q = q | E = e), and thus given only partial evidence on the
variables in the complement of Q.

In the MAP setting, we have to marginalise out the variables in S, which
present the ‘hidden’ variables that we neither know, nor care about, resulting in
the following expression for the probability of an instantiation q of the variables
in Q, in the context of graphical models:

P (Q = q | E = e) :=
1

P (E = e)
· ∑

s∈{>,⊥}|S|
∏
f∈F

f (e, q, s) . (2.8)

In the context of literal-weighted propositional formulae, this would correspond
to computing the weighted model count of the residual formula φ|q,e, obtained
by substituting the variables in Q ∪ E with their truth values according to q and
e, and simplifying the resulting formula. Consequently, the sum in Equation 2.1
then only runs over interpretations s that are models of φ|q,e. Similar to the MPE
task, MAP aims to find the solution to Equation 2.6, but uses Equation 2.8 to
compute P (Q = q | E = e) instead of Equation 2.4:

q∗ := arg max
q

∑
s∈{>,⊥}|S|

∏
f∈F

f (e, q, s), (2.9)

where we note that, again, the factor P(E = e) is unimportant for the purposes
of finding q∗.

A generalisation of the MAP task is the maximum expected utility (MEU)
task [53], which is formulated on a probabilistic modelP = 〈E, S, Q, Φ, U〉, where
we are given a utility function that associates a utility u(e∪ s∪q) with each possi-
ble instantiation of the variables in E∪ S∪Q. Instead of maximising the marginal
probability, this problem maximises the expected utility. As such, it is a popular
setting in the field of optimisation, planning and scheduling [5, 102]. Clearly, we
can formulate SCPs as MEUs, provided that we can encode the constraints into
the probabilistic model.

30



2.3 Probabilistic inference

Note that solving the MAP problem involves both maximisation and summa-
tion. Since the maximisation and summation operators do not commute, mixed-
inference tasks are typically harder than either sum-inference or max-inference
alone. In fact, Park and Darwiche proved that MAP is NPPP-complete in the
general case [139], whereas MPE is ‘only’ NP-complete.

There is a rich literature on solving the MAP task, with methods for solving
the problem exactly, approximately, or for computing bounds on the solution. We
highlight a few common methods.

The MAP task is naturally solved by using some form of variable elimina-
tion [53]. Early exact algorithms for MAP use variable elimination in a branch-
and-bound algorithm to find an optimal solution [138, 186], in some cases even in
combination with knowledge compilation [83]. Just like AND/OR diagrams can
be used in algorithms to solve the MPE problem, they can also be used to solve
MAP, by combining them with depth-first search [117] or best-first search [118].

In order to employ branch-and-bound algorithms, we need to compute actual
upper bounds on the conditional probability. Perhaps unsurprisingly, techniques
that have been developed for this are quite similar to those that have been de-
veloped for solving MPE tasks, and the MPE approximation methods that we
mentioned in Section 2.3.2 can be used for this purpose.

Given the applicability of AND/OR diagrams (combined with a search algo-
rithm) to solve both MPE and MAP exactly, it is unsurprising that anytime vari-
ants of these algorithms have also been developed over the last years [104, 119,
120, 122]. Some methods not only use MPE approximation methods to obtain
meaningful upper bounds on the optimal probability of a MAP, but also employ
weighted search methods [67] to also obtain meaningful lower bounds [121].

Other approximation methods rely on decomposition and approximate vari-
able elimination [35, 143], on repeatedly performing the MARG task on each vari-
able in the MAP to compute a lower bound [4], gradient-based methods [39], to
name a few. Because of its hardness and usefulness to model a wide range of
problems, many MAP approximation methods have been developed over the
years, and still are being developed. Since our focus is on exact solving, we do
not expand further on approximate MAP, considering it to be outside the scope
of this work.

In this section, we gave a very brief overview of the main inference tasks in the
probabilistic inference literature. This literature displays a strong focus on graph-
ical models of probability distributions. As we motivated earlier, in our work we
focus on propositional representations of probability distributions. In the next
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section, we give a brief introduction to a useful tool in the realm of propositional
inference: knowledge compilation.

2.4 Knowledge compilation

Historically, knowledge compilation [48, 123, 165] has been a popular method for
making online WMC computation more tractable in the field of probabilistic in-
ference and planning [33, 45, 52, 64, 82]. As we mentioned in Section 2.3.3, com-
puting the success probability of a query is a well-known task in the field of
PLP. In stochastic optimisation problems, it is only natural to want to repeat-
edly compute a conditional success probability, conditioned on different evidence
(or strategies). However, recall from Section 2.3.3 that WMC computation can
be done by using a ‘single-use’ weighted model counter. Consequently, if we
would want to recompute the weighted model count of a probabilistic model
after changing the evidence, we would also have to rerun the solver, discarding
any partial results that might have been reusable.

2.4.1 Decision diagrams

Knowledge compilation represents a solution to this problem. Most knowledge
compilers are essentially DPLL-based model counters that record their trace (the
search tree) while counting. Taking care to create the trace in such a way that it
has specific properties, the result is saved in a language that supports tractable
(meaning “in time that is polynomial in the size of the string in that language”)
inference operations. A formula (or sentence) in this language can be represented
as a decision diagram (DD), and is then said to be ‘compiled’. This DD can be seen
as a compact representation of the truth table of the input formula.

Recall Table 2.1 in Section 2.2.3. In essence, this table is a truth table (albeit
one that only lists the rows that represent models of φd). It will not surprise the
reader that, by adding appropriate weights to a DD representation of the truth
table of a literal-weighted propositional formula, we can use that DD to compute
the WMC of that formula. Note also that, once the diagram is compiled, these
weights can be changed to, e.g., represent different assumptions about the exact
probabilities in the probabilistic model, or to represent different strategies that
we need to evaluate in order to solve a SCP.

Examples of DDs that are used for tractable MARG inference include binary
decision diagrams (BDDs) and ordered binary decision diagrams (OBDDs) [42, 45],
negation normal forms (NNFs) [32], deterministic decomposable negation normal forms
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(d-DNNFs) [34], sentential decision diagrams (SDDs) [37], weighted positive binary de-
cision diagrams [41], and algebraic decision diagrams (ADDs) [60]. In this work, we
focus on ordered binary decision diagrams (OBDDs) and sentential decision diagrams
(SDDs), specifically. For a good overview of the different properties of some of
these languages and on how they relate to each other, we refer the reader to Dar-
wiche’s A knowledge compilation map [48].

Note that, while all these diagrams support inference operations that take
time polynomial in the size of the diagram, this diagram must still be compiled.
Consequently, for a single query, the total time complexity would not be reduced
if using knowledge compilation instead of running a model counting algorithm
for that query. However, for repeated querying under different assumptions, this
computational effort is ‘shared’ among all those queries.

An additional potential time saver is the fact that propositional formulae
can have sub formulae in common. This is particularly likely to happen when
these formulae originate from the same system. In Section 4.2 we will show how
queries about real-world systems can be translated into propositional formulae.
Because these formulae represent questions about the same stochastic system,
they are likely to overlap in part. In this case, we can choose not to construct an
individual DD for each formula, but instead compile one DD with multiple roots,
each root corresponding to a different formula. This way, we can potentially save
compilation time and memory, by avoiding to repeatedly recompile the same sub
formulae, but instead re-using those compiled sub formulae. For the sake of sim-
plicity, the discussion below will be limited to single-rooted DDs.

While inference operations can be done in time polynomial in the size of the
diagram, the size of the diagram may still be exponential in the size of the input
CNF in the worst case [48]. The task of finding a minimal-sized DD is typically
also hard. In fact, finding a minimal-size OBDD is known to beNP-hard [22], and
we expect the same to hold for SDDs, although we are not aware of a published
proof of this. There is a rich literature on how to compile succinct diagrams, the
discussion of which is outside the scope of this work.

Note also that, since the knowledge compilation process involves storing the
full trace (search tree) of the DPLL-based model counter that the compiler is built
on, it may require a lot of memory, which can be prohibitive.

To summarise: compiling CNFs to DDs gives us data structures that we can
use for tractable inference if we are able to make these DDs compact enough, and
if we have enough memory to compile the diagram. Additionally, this effort is
only useful if we need to answer multiple queries. Taking this into consideration,
the question arises of why we use knowledge compilation in this work. In short:

33



Logic, probability and inference

A

B B

CC

D

0 1

B

A
D

C

0 1

m
odels

lo arc hi arc

Figure 2.1: Two small OBDDs, each encoding the propositional logic formula φ = (A ∧
B)∨ (B∧C)∨ (C ∧D). The left OBDD has variable order A ≺ B ≺ C ≺ D, while the right
one has variable order B ≺ A ≺ D ≺ C.

DDs help us to model relationship between variables and exploit those relation-
ships to solve SCPs. We will answer this question in detail in Chapters 5 and 6.

In the remainder of this section, we will first provide some background on two
specific types of DDs: ordered binary decision diagrams (OBDDs) and sentential deci-
sion diagrams (SDDs). In the next section, we show how to use them specifically
for the task of WMC for probabilistic inference.

2.4.2 Ordered binary decision diagrams

Figure 2.1 shows two examples of OBDDs, each representing the truth table of the
same propositional formula. An OBDD is a directed acyclic graph (DAG) with two
leaf nodes that represent the values true (1) and false (0). In an OBDD ∆(φ) that
encodes a formula φ, each internal node n is labelled with a variable X ∈ sc(φ).
There can be multiple nodes with the same label, but never multiple nodes with
the same label on a path from root to leaf. Each internal node n has two outgoing
arcs: a lo arc that corresponds to X = ⊥ and a hi arc that corresponds to X = >,
where X ∈ sc(φ) labels n.

A path from the root of the diagram to the leaf node labelled with 1 corre-
sponds to a model of φ, a mapping sc(φ) 7→ {⊥,>} of truth values on the vari-
ables in the scope of φ. Note that not all variables may be encountered in a path
from root to leaf, since assignments of truth values to variables may make the
satisfiability of the resulting residual formula agnostic to the truth values of some
of the other variables. As a consequence, OBDDs can be used to very compactly
encode all the models of a propositional formula.
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The size and shape of an OBDD are determined by its variable order O, which
indicates in which order we encounter the variables in sc(φ) on a path from the
root of the OBDD to a leaf. The two OBDDs in Figure 2.1 are shaped by two
different variable orders.

2.4.3 Sentential decision diagrams

Figure 2.2 shows two examples of SDDs. Like OBDDs, SDDs are compact repre-
sentations of truth tables.

In Figure 2.2 the circular nodes represent disjunctions and rectangular nodes
represent decompositions of a prime p (rooted in the left half of the node) and
a sub s (rooted in the right half), such that a decomposition node represents the
formula p ∧ s. A single variable or constant in a prime or a sub is called a termi-
nal. Naturally, a disjunction node is true if at least one of its children is true. A
conjunction node is true if both the prime and the sub evaluate to true.

As with OBDDs, there is typically no unique SDD representation for a propo-
sitional formula. Rather, the shape and size of an SDD is determined by the
vtree [144] that it respects. A vtree is a full binary tree that generalises the con-
cept of a variable order. In particular: each disjunction node in an SDD respects a
subvtree of the subvtree that the entire SDD respects, rooted at an internal node
in that vtree. The left and right children of that vtree node determine the scopes
of respectively the primes and subs of the children of the disjunction node in de
SDD.

Consider the SDDs and corresponding vtrees in Figure 2.2. Each disjunction
node in the SDD is labelled with the index of the internal vtree node that is the
root of the subvtree respected by that disjunction node. The root disjunction node
of the SDD respects the entire vtree. Let φp and φs be the propositional formulae
represented by the prime and the sub of any decomposition node that is a de-
scendant of a disjunction node ∆. Let ` and r be the left child and the right child
of an internal vtree node n, respectively. We say that ∆ respects n if the following
holds: sc

(
φp
)
⊆ {Xl ∈ T`} and sc (φs) ⊆ {Xl ∈ Tr}, where T` and Tr represent

the sub vtrees rooted at ` and r, respectively, and Xl represents the variable that
labels a leaf in those sub vtrees.

Thus, in the (sub) SDD rooted at ∆, the sub formulae corresponding to the
primes of the decomposition nodes that are ∆’s children only contain variables
that occur in the vtree rooted at the left child of internal vtree node n, and the
sub formulae corresponding to the subs of the decomposition nodes that are ∆’s
children only contain variables that occur in the vtree rooted at the right child of
n.
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(a) An SDD (right) that respects a right-linear vtree (left).
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(b) An SDD (right) that respects a balanced vtree (left). Example from Darwiche [46]

Figure 2.2: Two examples of SDDs encoding the truth table of propositional formula
φ = (A ∧ B) ∨ (B ∧ C) ∨ (C ∧ D), and their corresponding vtrees. Both internal nodes
and leaves in the vtrees are labelled with an index to indicate their place in the variable
order. Disjunction nodes in SDDs are labelled with the index of the internal vtree node
they respect.

The figure shows two examples of how vtrees influence the size and shape
of SDDs. In particular, we distinguish three types of vtrees: right-linear, left-linear
and balanced. Figure 2.2a shows an example of an SDD that respects a right-linear
vtree, while Figure 2.2b shows an example of an SDD that respects a balanced
vtree.

Note that we can distill a total order from vtrees by doing a left-right traversal
and noting the order in which we encounter the variables. Unlike OBDDs, the
size and shape of SDDs are not defined by a total order, but by a vtree. This is
also illustrated in Figure 2.2. Both vtrees have the total order B ≺ A ≺ D ≺ C,
but they have different shapes and thus correspond to differently shaped SDDs.

In a top-down traversal of an SDD, we can interpret the primes as conditions:
if the prime evaluates to true, then the condition in the sub must evaluate to true
in order to make the formula evaluate to true. Right-linear vtrees have the special
property that the SDDs that respect them are equivalent to OBDDs. Comparing
the right OBDD in Figure 2.1 and the SDD in Figure 2.2a, we see that the primes
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in the SDD correspond to the values of the outgoing arcs in the OBDD.
SDDs are a strict superset of OBDDs [46]. When an SDD respects a right-linear

vtree, its primes can only condition on truth assignments to single variables (as
is shown in Figure 2.2a). For other vtrees, however, primes might represent en-
tire sub formulae (as is shown in Figure 2.2b), which are called sentences in the
knowledge compilation literature (hence the name sentential decision diagrams).
Because of this, truth tables can potentially be encoded more efficiently when
the vtree is not right-linear, and thus SDDs can be made at least as small as
OBDDs [24].

We remark that SDDs and OBDDs are not the only DDs that can be used for
conditional probability computation in time that is linear in the size of the dia-
gram. Other examples include negation normal forms (NNFs) [95], d-DNNFs [33,
145], smooth deterministic decomposable negation normal forms (sd-DNNFs) [95] and
affine decision trees (ADTs) [98]. A detailed discussion of these is outside the scope
of this work. We point the interested reader to Darwiche & Marquis’s A Knowledge
Compilation Map [48] on how most of these languages relate to each other.

2.5 Inference with decision diagrams

We now describe, mainly with help of examples, how we can use OBDDs and
SDDs for probabilistic inference. The propositional formula that we will be using
in these examples is the following:

φd(D, T) := Dd ∨ (Dc ∧ Tcd) ∨ (Db ∧ Tbc ∧ Tcd) ∨ (Da ∧ Tac ∧ Tcd)∨
(Db ∧ Tab ∧ Tac ∧ Tcd) ∨ (Da ∧ Tab ∧ Tbc ∧ Tcd) ,

(2.10)

with D = {Da, Db, Dc, Dd} a set of Boolean decision variables and T =

{Tab, Tac, Tbc, Tcd} a set of Boolean stochastic variables. We will discuss the ori-
gin of this formula in more detail in Section 4.2. Recall that φd|σ(T) is the residual
formula obtained by taking φd(D, T) and replacing the variables in D by their val-
ues specified by strategy σ and simplifying. Since the goal of solving Equation 1.1
is finding a strategy σ that satisfies that constraint, we are going to describe how
to use OBDDs and SDDs to compute P(φd|σ), particularly.

As discussed in the previous section, DDs are data structures that summarise
truth tables of propositional formulae, and we can use DDs to compute the
(weighted) model count of a formula in time that is linear in the size of the DD,
instead of simply listing all the models of the formula, determining their indi-
vidual weights and summing those, as we did in Table 2.1. In order to employ
a DD to compute the success probability of a probability-weighted propositional
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formula, we must transform it into an arithmetic circuit (AC). In the following, we
will not explicitly show the arithmetic circuits (ACs), but describe how to transform
an OBDD or SDD into one.

Note that we compile the entire formula φ, and then compute P (φ|σ) by set-
ting the appropriate weights in the AC to reflect σ. Once those weights are de-
fined, a bottom-up traversal of such an AC computes the success probability of
φ|σ. For the sake of brevity, we will sometimes abuse terminology and say that
we traverse the DD to compute that probability, where we actually mean that we
traverse the AC that is obtained from the DD. Note that, for OBDDs and SDDs,
the size of the AC is linear in the size of the DD it was constructed from.

As we discussed in Section 2.4.1, a DD may have multiple roots, each corre-
sponding to a different formula. Consequently, an AC constructed from such a
multi-rooted DD may also have multiple roots, where each returns the success
probability of a different query. For the sake of simplicity, the discussion below
will be limited to single-rooted ACs.

2.5.1 Inference with OBDDs

In this section, we briefly discuss how to compute conditional probabilities using
an OBDD representation of a (weighted) propositional formula, in time that is
linear in the size of the OBDD.

To see how we can compute P (φd|σ) using an OBDD [42, 45] in linear time,
consider Figure 2.3. This OBDD has two types of internal nodes. The square nodes
are labelled with decision variables Di ∈ D, and we refer to those nodes as deci-
sion nodes. The circular nodes are labelled with stochastic variables Tij ∈ T, and
we refer to those nodes as stochastic nodes. The two leaf nodes are labelled with 0
and 1, which represent the values false and true, respectively. A path from the root
of an OBDD to the leaf labelled with 1 corresponds to a (sub)set of the set of (vari-
able, truth value) pairs that form a model for the formula encoded by the OBDD.
This subset is sufficient for satisfying the formula, and its weight equals the sum
of the weights of all models that are its supersets. Each model of the formula is
defined by exactly one such path/(sub)set.

We map this OBDD to an AC to compute the probability that φd in Exam-
ple 4.2.3 evaluates to true under a strategy σ as follows. The weights on the out-
going arcs of a stochastic node correspond to the probability that the variable that
labels that node is true (for the solid, or hi, arcs) or false (dashed, or lo, arcs). We
add a strategy σ on the OBDD by adding weights of 0 and 1 to the appropriate
outgoing arcs of the decision nodes. The OBDD in Figure 2.3 does not reflect any
specific strategy.
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Figure 2.3: An OBDD representation of Equation 2.10, mapped to an AC. This OBDD has
variable order Dd ≺ Tcd ≺ Dc ≺ Tac ≺ Tbc ≺ Tab ≺ Da ≺ Db. Bold arcs represent one of
the models of φd: {Dd := ⊥, Dc := ⊥, Tac := >, Tbc := >, Da := >}.

We can now compute P(φd|σ) as follows. In a bottom-up traversal of the
OBDD, each node r is assigned the following score:

v(r) := w(r) · v
(
r+
)
+ (1− w(r)) · v

(
r−
)

, (2.11)

where 0 ≤ w(r) ≤ 1 represents the weight of the variable that labels r, r+ (r−) is
the hi (lo) child of r, i.e., the child connected through the solid (dashed) outgoing
arc of r; v(r) := 0 for the negative leaf and v(r) := 1 for the positive leaf. Observe
that v(root) = P (φ|σ). Note that it takes one bottom-up traversal of this AC to
compute the score of the root.

In the interest of brevity, in the remainder of this work, we will sometimes
abuse terminology and refer to the OBDD when we actually mean the AC that
the OBDD is mapped onto.

Example 2.5.1 (WMC on an OBDD). Consider the OBDD in Figure 2.3. Suppose we
want to compute P(φd|σ), with σ := {Dd := ⊥, Dc := ⊥, Da := >, Db := >}).
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We label the dashed outgoing arcs of nodes labelled with Dd and Dc, as well as the solid
outgoing arcs of nodes labelled with Da and Db with the value 1. Similarly, we label the
solid outgoing arcs of nodes labelled with Dd and Dc, as well as the dashed outgoing arcs
of nodes labelled with Da and Db with the value 0. Then, we perform a bottom-up sweep
of the diagram to compute the score of each node, by computing the weighted sum of its
children, as per Equation 2.11.

This yields a score of 1 for the nodes labelled with Da, Db and Tab, and for the right
node labelled with Tbc. The left Tbc node has a score of 0.1. The Tac and Dc nodes each
have a score of 0.82, and the nodes labelled with Tcd and Dd each have a score of 0.246.
Because the node labelled with Dd is the root node of the diagram, we conclude that
P(φd | {Dd := ⊥, Dc := ⊥, Da := >, Db := >}) = 0.246.

2.5.2 Inference with SDDs

Just like OBDDs, we can use SDDs to compute the success probability of a resid-
ual propositional formula, by mapping the SDD onto an AC. Note that here,
too, the time it takes to compute those probabilities is linear in the size of the
DD, in this case an SDD. Since SDDs can be made more succinct than OBDDs
through minimisation [24], the ACs we derive from them can also be more suc-
cinct, and therefore more efficient tools for repeated querying, than ACs obtained
from OBDDs.

To compute P (φd|σ) with an SDD, we construct an AC as follows. We replace
the subs and the primes in Figure 2.4 with their weight according to the corre-
sponding probability (in case of stochastic variables T) or their assignment (in
case of decision variables D). We compute P(φd|σ) in a bottom-up traversal of the
SDD, where each disjunction node r takes score

v(r) := v
(

p`
)
· v
(

s`
)
+ v (pr) · v (sr) , (2.12)

where p` (pr) denotes the prime of the left (right) child of r, and s` (sr) the sub
of the left (right) child, and v(p) or v(s) is the weight of the terminal in the cor-
responding prime or sub, or the score of the sub formula rooted in that prime
or sub. Again, v(root) = P (φd|σ). And again, in the interest of brevity, in the re-
mainder of this work, we will sometimes abuse terminology and refer to the SDD
when we actually mean the AC that the SDD is mapped onto.

Example 2.5.2 (WMC on an SDD). Consider the SDD in Figure 2.4. Suppose that,
again, we want to compute P

(
φd|{Dd :=⊥,Dc :=⊥,Da :=>,Db :=>}

)
.

The disjunction node indexed with 10 has score 0 · 0.4 + 1 · 1 = 1, and the one
indexed with 11 has score 1 · 0.4 + 0 · 0 = 0.4. Continuing in our bottom-up traversal

40



2.5 Inference with decision diagrams

P(φd)

1

¬Dd • Dd 1

2

Tcd• ¬Tcd 0

3

¬Dc • Dc 1

4

¬Tac • Tac •

5 6

¬Tbc 0 Tbc • Tbc • ¬Tbc •

7 8 9

Da • ¬Da Db Da 1 ¬Da •

10 11

¬Db Tab Db 1 Db Tab ¬Db 0

pr
ob

ab
ili

ty m
odels

terminals

prime

sub

decomposition

disjunction

Figure 2.4: An SDD representation of Equation 2.10 with variable order Dd ≺ Tcd ≺ Dc ≺
Tac ≺ Tbc ≺ Da ≺ Db ≺ Tab. Bold arcs represent one of the models of φd: {Dd := ⊥, Dc :=
⊥, Tac := >, Tbc := >, Da := >}. Probabilities are omitted. Disjunction nodes are indexed
for reference.

and applying Equation 2.12, disjunction nodes 6–9 each have score 1, while disjunction
node 5 has score 0.1. Disjunction node 4 has score 0.2 · 0.1 + 0.8 · 1 = 0.82, and so does
node 3. Finally, node 2 has score 0.3 · 0.82 + 0.7 · 0 = 0.246, and so does node 1. Since
node 1 is the root of the SDD, we find that P

(
φd|{Dd :=⊥,Dc :=⊥,Da :=>,Db :=>}

)
= 0.246.
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2.6 Probabilistic logic programming

As the previous section shows, DDs such as OBDDs and SDDs represent conve-
nient data structures for performing tractable probabilistic inference. This begs
the question: how do we go from a mathematical model of a probability distribu-
tion to a DD-representation of that distribution?

Note that this question really has two components. First, we need some con-
venient way to model the probability distribution in a computer. Second, we then
need to compile this model into a DD.

To illustrate the first challenge, recall the two example problems described in
Section 1.1: spread of influence and power grid reliability. Both of them are for-
mulated on probabilistic networks (where edges exist with a certain probability),
and both of them require some form of reasoning about paths in those networks.
As a consequence, the resulting probability distributions can become quite com-
plex, since there are often many different paths between two nodes in a real-world
network, especially in the case of social networks, which are the types of network
that spread of influence problems are formulated on. Additionally, these paths
may partially overlap, divert from each other, and maybe even join again later
on. This makes the resulting probability distributions quite non-trivial to define.

This is a problem, since we aim to develop solving methods for problems like
the spread of influence problem, that are convenient to use. We want it to be easy
for a user to specify them, and to not require (much) technical knowledge, aiming
to democratise the technology that we develop in this dissertation as much as
possible, making it as accessible as possible to anyone who needs it.

In this section we discuss a convenient tool for modelling probability distri-
butions: the probabilistic logic programming language ProbLog [52]. This Prolog-
based language provides a simple way for users to model probability distribu-
tions, and is particularly suited for modelling distributions that arise from prob-
abilistic networks, thus addressing the first challenge. Conveniently, ProbLog has
functionality for compiling these distributions into several different DDs built
in, thus addressing the second challenge. In the remainder of this section, we
give a brief introduction to the logic programming Prolog, which is a precursor to
ProbLog, and then to ProbLog itself.

2.6.1 Logic programs

Prolog is a rule-based, logical programming language that is declarative in nature.
Declarative programming paradigms are very user-friendly in the following way.
Imperative programming languages (such as C, C++, Java, Python, Go, etc.) require
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the user to specify how the computer should solve a problem. Declarative pro-
gramming languages (like Prolog, Datalog and SQL), on the other hand, only ask
the user to specify everything they know about the problem, and then simply ask
a question. The computer will then figure out how to get to the answer.

Our choice to build on Prolog is motivated by the fact that it is declarative.
While a study of how different types of intended users experience modelling
problems in Prolog compared to other languages is outside the scope of this work,
we are confident that its declarative nature can appeal to a wide range of users.
In Section 4.3, we present a language to model constraint optimisation prob-
lems by querying databases. Arguably the most-used programming paradigms
for these elements are constraint programming (CP) for modelling linear and non-
linear constraints (see Section 3.3), mixed integer programming (MIP) for modelling
linear constraint optimisation problems (see Section 3.4) and SQL for querying
databases. Since all three of these paradigms are declarative in nature, we expect
our target audience to find a declarative programming tool convenient to use and
easy to learn. After all, there is probably a good reason that declarative languages
are so popular, and due to their popularity, a potential user is likely to be familiar
with the declarative programming paradigm.

It is important to us that our tools are easy to use by a wide variety of people,
even if they have no previous coding experience, because that helps to democra-
tise computing power and technology. However, there are possible downsides
such as added expressive complexity for specifying certain tasks and less speed.
At the same time, it is a very common practice in Computer Science to design lan-
guages for specific goals, and thus with limited applicability, so these downsides
are only a natural consequence of the fact that we design task-specific tools.

Recall the goal that we specified in Section 1.3: to find SCP solving methods
with reasonable trade-offs between convenience, generality and speed. Our rea-
son for choosing the declarative ProbLog (probabilistic Prolog) language as a basis
for our new SCP modelling language is primarily rooted in the first criterion: con-
venience. As mentioned above, the basics of Prolog, which provide the user with
enough expressibility to model a wide range of problems, are quick and easy to
learn. Additionally, it is very convenient for modelling relations between entities.
In this work, our focus is on SCPs that are formulated on probabilistic networks.
Networks are very easy to model in Prolog, because edges can be seen as rela-
tions between nodes. To illustrate this, we now first present a few basics about
the syntax and semantics of Prolog, and then provide a small example.

Prolog is a rule-based programming language. To construct rules, we can use
terms and predicates. Terms are either constants, or variables. Constant symbols in
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Prolog start with a lower case letter, or are a string enclosed in single quotes.
Variable symbols are capitalised and can take arbitrary constants as values. Prolog
uses predicates to express relationships between constants or variables, in the same
way as the predicates in first-order logic (Section 2.2.2). The name of a predicate
also starts with a lowercase letter, and is followed by comma-separated terms in
brackets: the arguments of the predicate. Any Prolog predicate can also be negated.

Each rule is of the form: Head :- Body., which means “Head is true if Body is
true .” The body contains one or more predicates and terms, which are known as
goals, separated either by “,” for conjunction, or “;” for disjunction. We also refer
to these rules as clauses. A special property of the rules in Prolog is that the head
only contains one predicate, which makes these clauses Horn clauses [81].

In addition to rules, there are also facts. An example is: dir(alexa,behrouz).,
which is a shorthand for dir(alexa,behrouz) :- true., and means that there
is a directed relationship between the constant alexa and the constant behrouz.

The user can use rules and facts to describe everything they know
about the problem, and ask questions by specifying queries of the form ?-

influences(alexa,daniel).. Queries can be seen as rules without a head, where
we ask if the goals in the body are true. The Prolog system then uses an inference
process called selective linear definite (SLD) clause resolution. The resolution process
tries to find constants in the rest of the program that can be used to substitute
variables such that rules are satisfied (the arguments in the predicates in the head
and the body match) and new facts are proven from these rules.

We can now formulate a small Prolog program that describes some relation-
ships between some people.

Program 2.1: A Prolog program describing influence relationships between four people.

% Relation facts

1. dir(alexa ,behrouz).

2. dir(alexa ,claire).

3. dir(behrouz ,claire).

4. dir(claire ,daniel).

% Relation rules

5. influences(X,Y) :- dir(X,Y).

6. influences(X,Y) :- dir(Y,X).

% Query

7. ?- influences(alexa ,daniel).

Example 2.6.1 (A simple Prolog program). Consider the small Prolog program in
Program 2.1. In lines 1–4, it describes the direct influence relationships between four peo-
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ple who are represented by the constants alexa, behrouz, claire and daniel. Line
6 serves to make the relationships symmetric, and line 7 is a query asking if Alexa in-
fluences Daniël. Evaluating this program tells us that she does not, since neither the
predicate dir(alexa,daniel). nor dir(daniel,alexa). is in the knowledge base of
relation facts, meaning that the rules in line 5 and 6 cannot be used to prove that Alexa
influences Daniël.

The reader may have noticed that the fact that Alexa does not influence Daniël
is proved by failing to prove that she does. This property, absence of truth meaning
negation of truth, is called the closed-world assumption and central to the semantics
of Prolog. The closed-world assumption is very powerful because it drastically
limits the size of program you need to model a problem.

Note that in Program 2.1, lines 1–4 are essentially first-order logic formu-
lae. Using predicates, we could rewrite these lines as R(a, b) ∧ R(a, c) ∧ R(b, c) ∧
R(c, d), where R(a, b) indicates that there is a directed relationship between con-
stants a (Alexa) and b (Behrouz), and analogously for the other predicates and
constants. We could replace each predicate by a Boolean variable, and then
rewrite these lines as as the propositional logic formula Rab ∧Rac ∧Rbc ∧Rcd, where
Rab is a Boolean variable that is true iff there is a directed relationship from Alexa
to Behrouz, and analogously for the other variables. This latter expression is not
written in first-order logic, since it does not use any predicates or quantifiers.

Lines 5 and 6, on the other hand, are written in first-order logic and cannot be
rewritten by replacing predicates with Boolean variables. We can rewrite line 5 as
∀X, Y. (I(X, Y) ∨ ¬R(X, Y)), where X and Y are variables that could be replaced
by a, b, c or d, and I(X, Y) is a predicate that is true iff X influences Y.

It helps our discussion later on to introduce the concept of grounding a logic
program. A predicate that does not contain any variables, is called a ground predi-
cate. A ground logic program is one in which all predicates are ground by substi-
tuting the variables by constants. Note that this corresponds to turning the first-
order logic formula that is implied by the program into a propositional formula.

Program 2.2: Ground relation rules.

5.1. influences(alexa ,behrouz).

6.1. influences(behrouz ,alexa).

5.2. influences(alexa ,claire).

6.2. influences(claire ,alexa).

5.3. influences(behrouz ,claire).

6.3. influences(claire ,behrouz).

5.4. influences(claire ,daniel).

6.4. influences(daniel ,claire).
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Example 2.6.2 (Ground Prolog program). For example, we could ground the program
in Program 2.1 by replacing lines 5 and 6 by Program 2.2. Here, we have replaced the
Xs and Ys in these lines by combinations of constants that are allowed according to the
relation facts in lines 1–4. Note again that influences(alexa,daniel). is not in the
ground program, and thus we cannot prove that Alexa influences Daniël, as is asked in
line 7 of Program 2.1.

Note that in the example above, we can replace the ground predicates of lines
5.1–6.4 by converting them into Boolean variables, and write these lines as Iab ∧
Iba ∧ Iac ∧ Ica ∧ Ibc ∧ Icb ∧ Icd ∧ Idc, which is a propositional logic formula.

Grounding an entire Prolog program requires substitution of variables into all
possible (combinations of) constants that are allowed by the program. This typ-
ically results in not only a large program, but one with many ground facts that
are irrelevant for answering the query, as is very clearly shown in Example 2.6.2,
where all eight ground relation rules turn out to be irrelevant for answering the
query. Therefore, grounding typically happens in a top-down rather than bottom-
up manner, such that only those predicates are ground that are needed for an-
swering the query.

A detailed description of Prolog, and of SLD and techniques for efficient
grounding, is outside the scope of this work. For more information on the syntax,
semantics and inner workings of Prolog, we refer the reader to the literature, e.g.,
Peter Flach’s Simply Logical: Intelligent Reasoning by Example [66].

2.6.2 Probabilistic logic programs

The probabilistic logic programming ProbLog [52] is a language for programming
probability distributions, built on Prolog. We can turn the Prolog program in Pro-
gram 2.1 into a ProbLog program by adding probabilities to facts and rules. For
example, by replacing lines 1–4 by the following, we can make the influence rela-
tionships between people probabilistic:

Program 2.3: Probabilistic facts.

1. 0.4:: dir(alexa ,behrouz).

2. 0.8:: dir(alexa ,claire).

3. 0.1:: dir(behrouz ,claire).

4. 0.3:: dir(claire ,daniel).

Here, we assume that the associated probabilities are independent of each other.
We can think of these probabilistic facts as the (positive) literals in a probability-
weighted propositional formula, as described in Section 2.2.3.
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We can think of a ProbLog program as one that defines a distribution of
‘underlying’ Prolog programs, or possible worlds, where each probabilistic fact is
non-deterministically present in a program that was randomly sampled from
this distribution, according to that fact’s associated probability. This proba-
bility is the one that annotates the corresponding rule or fact. A probabilistic
version of the rule in line 5 in Program 2.1 would be, e.g., 0.2::buys(X)

:- influences(Y,X), buys(Y).. This is shorthand for 0.2::buys(alexa)

:- influences(alexa,alexa), buys(alexa)., 0.2::buys(alexa) :-

influences(behrouz,alexa), buys(behrouz)., and so on. Each of these
rules has a probability of 0.2 to be included in a Prolog program that is randomly
selected from the distribution defined by the ProbLog program. In other words:
if there is a way in which the body of the rule can be made true, the chance that
the head is true, is 0.2.

Following the closed-world assumption, we assume that the probability that
a fact is true (and thus present in a Prolog program randomly sampled from the
distribution) and the probability that the negation of that fact is true (and thus not
present in that Prolog program), sum up to one. For example: we assume that the
probability that Alexa does not influence Behrouz is 1− 0.4 = 0.6. Now, instead of
asking if Alexa influences Daniël, line 7 now asks with what probability she does.
We also refer to this probability as the success probability of the query.

The success probability of a query Q is defined as follows:

P (Q |P) = ∑
υ∈P |υ|=Q

P(υ), (2.13)

where P is a ProbLog program, υ is a possible world, i.e., a Prolog program that can
be obtained from P by including all deterministic facts and rules and including
a subset of the probabilistic facts and rules, and P(υ) is the probability that υ is
randomly sampled from P . Here, we use the notation υ ∈P to indicate that υ is
a possible world that can be obtained from P , and the notation υ |= Q to denote
that Q is a logical consequence of υ. Note that we simply sum the probabilities of
all possible worlds in which Q = >. In the example above, there are no world in
which the query is true, so the probability that Alexa influence Daniël is 0.

Because of the assumption that the probabilities annotating the probabilis-
tic facts are mutually independent, we can follow Sato’s distributions seman-
tics [160] and define the probability of a possible world as:

P(υ) = ∏
f∈υ

P( f ), (2.14)

where f is a (probabilistic) fact in the ground Prolog program υ, and P( f ) its asso-
ciated probability, according to P .
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Equations 2.13 and 2.14 should look familiar to the reader, as they bear a
clear and non-accidental similarity to Equation 2.1, which defines the weighted
model count of a literal-weighted propositional formula. Indeed, we can think
of ProbLog as a tool to program literal-weighted propositional formulae, whose
model counts reflect success probabilities of the associated queries.

This is also reflected in the inner workings of ProbLog. Like Prolog, ProbLog
uses SLD resolution in order to provide an answer to the query, which comes
in the form of that query’s success probability. Conceptually, in doing so, it gen-
erates all possible ground logic programs that one could create from the proba-
bilistic logic program, and summarises them into a DD, which can then be used
to compute a query’s success probability, as described in Section 2.5. That knowl-
edge compilation step helps us to achieve our requirement that SCP solving meth-
ods are fast, as well as convenient.

However convenient probability distributions are to model using ProbLog,
they still require the user to be smart about how they model the problems ex-
actly. As with many problems in Computer Science, we expect the way that we
model an SCP to have a large impact on the speed with which we can solve it. We
will reflect on this some more in the next chapter.

2.7 Conclusion

In this chapter we discussed topics related to probabilistic inference and how to
express probabilistic models and queries using logic and a probabilistic logic pro-
gramming language. We motivated why, in this work, we chose to model prob-
ability distributions using probability-weighted propositional formulae, which
we discussed in Section 2.2, along with related topics such as first-order logic and
relevant complexity classes. We specifically described how we can apply weighted
model countings (WMCs) to weighted propositional formulae to compute the prob-
ability that our probabilistic model is in a certain configuration.

In order to put the (sub-)problems described in this dissertation into con-
text, we also gave a high-level overview of the different probabilistic inference
tasks known in the probabilistic reasoning literature. Specifically, we discussed
the NP-complete task of determining the most likely truth evaluation of each
of a set of queries, given a truth value assignment to the complementary set of
variables in the probabilistic model. The decision version of this max-inference
task, where we do not ask what the most likely truth evaluation is, but rather if
a given assignment is more likely than a certain threshold value, is relevant to
this work, as it can be seen as asking if a specific strategy σ satisfies Equation 1.1.
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We then discussed the #P-complete sum-inference task, which is to compute the
success probability of a query, such as the ones described in Section 2.6.2. Finally,
we discussed the NPPP-complete mixed-inference task that aims to find an as-
signment to a subset of variables, given truth assignments to another, disjoint set,
and without knowing the truth values of the variables in the complement of these
two sets. Provided we can encode the constraints into the probabilistic model, we
can cast SCPs as instances of MMAP.

We then argued that knowledge compilation techniques can help us achieve
our goal of developing exact SCP solving methods that strike a reasonable bal-
ance between convenience, generality and speed. Specifically, we argued that
DD representations of probability distributions can be compact and can be used
for tractable probabilistic inference. We closed this chapter with a description of
probabilistic logic programming language ProbLog, a tool that not only allows us
to conveniently model probability distributions that arise from the probabilistic
networks on which the SCPs that we study in this work are formulated, but also
provides support for converting the resulting probabilistic logic programs into
DDs for fast inference.

The focus of this chapter was on the probabilistic reasoning part of SCP solv-
ing. In the next chapter, we focus on the constraint optimisation part of SCP solv-
ing. Together, the techniques and frameworks described in this chapter and the
next will help us develop SCP solving tools in Part II of this dissertation.
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3
Programming paradigms for

optimisation

3.1 Introduction

Recall from Section 1.3 that exact stochastic constraint (optimisation) problem (SCP)
solving involves two components: probabilistic inference and search. While in the
previous chapter we discussed how to model probability distributions and typi-
cal inference tasks, in this chapter we discuss programming paradigms that help
us model probabilistic optimisation problems, and on programming paradigms
that help us traverse the search space of possible strategies efficiently. Specifically,
in the next section, we discuss a ProbLog-derived tool for solving decision prob-
lems that involve probabilities, DT-ProbLog [178]. Then, in Sections 3.3 and 3.4,
we discuss the fields of constraint programming (CP) and mixed integer program-
ming (MIP) as optimisation paradigms that allow us to efficiently traverse search
spaces.
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Recall also from Section 2.1 that the work presented in this dissertation is
broad in scope, meaning that we can build on many and varied existing tools,
each with its own set of tunable parameters. Consequently, bringing these tools
together in an effort to solve SCPs may result in complex systems that may re-
quire specialised configurations for different application domains for them to per-
form well. Therefore, later in this chapter, we provide a brief introduction to the
paradigms of programming by optimisation (PbO) and automated algorithm configu-
ration (AAC), which enable us to find these configurations. We close this chapter
in Section 3.6 with a brief conclusion.

3.2 Decision-theoretic probabilistic logic program-
ming

We start this overview of programming paradigms for optimisation with yet an-
other Prolog-based modelling language (recall Section 2.6): DT-ProbLog (short for
decision-theoretic ProbLog) [178]. This extension of ProbLog [52] was proposed in
2010 in order to solve decision problems in which the aim is to maximise some
kind of utility that is associated with (derived) facts. To this end, DT-ProbLog
extends the ProbLog syntax and semantics by adding decision variables and func-
tionality to assign a utility to events.

By setting decision variables to true, we can introduce facts to the program.
Utilities associate with facts can be used to define the relative costs and benefits
of facts and consequences. We illustrate this with the following example.

Program 3.1: A DT-ProbLog program describing a spread of influence problem.

% Background knowledge

1. person(alexa). person(claire).

2. person(behrouz). person(daniel).

% Probabilistic relation facts

3. 0.4:: dir(alexa ,behrouz). 0.8:: dir(alexa ,claire).

4. 0.1:: dir(behrouz ,claire). 0.3:: dir(claire ,daniel).

% Relation rules

5. influences(X,Y) :- dir(X,Y).

6. influences(X,Y) :- dir(Y,X).

% Decisions

7. ?:: gets_free_sample(P) :- person(P).

% Utilities
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8. utility(buys(P), 1) :- person(P).

9. utility(gets_free_sample(P), -1) :- person(P).

% Probabilistic customer conversion rules

10. buys(X) :- gets_free_sample(X).

11. buys(X) :- influences(Y,X), buys(Y).

Example 3.2.1 (A simple DT-ProbLog program). We can modify and extend the prob-
abilistic logic program described by Programs 2.1 and 2.3 by adding decision variables
and utilities, resulting in Program 3.1. Note that this program describes a spread of in-
fluence problem like the one described in Section 1.1.

Here, line 7 specifies the decision variables — a functionality that is new in DT-

ProbLog. Lines 8 and 9 specify utilities for (derived) facts. Specifically, they state that
converting a person into a customer who buys our product, has a utility of 1 per person
(line 8). However, it costs 1 to give a person a free sample of our product (line 9).

DT-ProbLog does not provide a specific syntax for querying the program, but
returns grounded facts that represent the decisions that have to be made in order
to maximise the expected utility, along with the value of that utility. This utility
is computed by simply summing the (expected) utilities present in or derived
from the DT-ProbLog program. In the example above, the output of DT-ProbLog
is gets_free_sample(alexa) := True, gets_free_sample(behrouz) :=

False, gets_free_sample(claire) := False, gets_free_sample(daniel)

:= False, Expected utility: 1.4984.
It comes to this conclusion based on an inference process that uses algebraic

decision diagrams (ADDs) [11], data structures that are very similar to the arithmetic
circuits (ACs), described in Section 2.5, and can be used for optimisation problems.
These can be constructed from decision diagrams (DDs) like ordered binary decision
diagrams (OBDDs) and sentential decision diagrams (SDDs).

These properties make DT-ProbLog an attractive programming paradigm for
stochastic optimisation problems, for us to build on in our efforts of designing
SCP solving methods.

Note that we do have to build on DT-ProbLog before we can use it to solve
SCPs, since DT-ProbLog itself does not support constraints, only a maximisation
criterion.

3.3 Constraint programming

As discussed in Section 1.3, in order to solve SCPs we do not just need efficient
probabilistic inference, we also need an effective search mechanism. One of the
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Figure 3.1: Graphical representation of the constraints in the power grid reliability problem
described in Example 3.3.1. The horizontal axis shows the number of power lines that we
can choose to reinforce, and the vertical axis shows the number of stations. Stars indicate
(L, S) combinations that satisfy the constraints and are thus candidate solutions of the
optimisation problem.

paradigms we employ in this work is CP. Here, we recall basic concepts of CP.
For details we refer the reader to the literature, e.g., the Handbook of Constraint
Programming [154].

Constraint satisfaction problems (CSPs) are modelled using a set of variables
X = {X1, . . . , X|X|}, each of which is associated with a domain dom(Xi), a set of
constraints C on (subsets of) these variables and an objective function f (X). In
the context of this work, the objective function can be, e.g., arg maxσ P (φ|σ), or
the linear constraint optimisation function in the next example, which we will
consider for the scope of this section and the next, to illustrate some key concepts
of optimisation techniques.

Example 3.3.1 (A power grid reliability problem). Recall the power grid reliability
problem from Section 1.1. Suppose we drastically simplify this problem by defining some
measure of ‘reliability’ and assuming that this is some linear combination of the number
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of power lines and stations that we have reinforced.

maximise reliability R =
5
4

L + S (3.1)

subject to budget constraint
7
6

L +
10
3

S ≤ 19 (3.2)

and time constraint
7
4

L + 3S ≤ 24 (3.3)

with L, S ∈N0, L ≤ 10, S ≤ 5 (3.4)

where L and S are the numbers of power lines and power stations that we have reinforced.
They require different amounts of money ( 7

6 million and 10
3 million of your favourite

currency, respectively), with a budget of 19 million. They also require different amounts
of time per unit to reinforce ( 7

4 and 3 months, respectively), where we assume that there is
only one team that does the reinforcements and they can only reinforce one unit at a time,
and we have two years to complete the project. Finally, our small network has ten power
lines and five power stations.

We provide a graphical representation of this problem in Figure 3.1.

In general, variables can have different kinds of domains (typically Boolean,
categorical, ordinal, integer- and real-valued). In the example above, the variables
have integer domains. In the SCP problems studied in this work, the relevant
variables are all Boolean decision variables. However, the choices we make in
Chapter 5 to model SCPs in CP solvers, result in constraint programs that also
contain variables with real-valued domains.

In the next subsections, we continue with a discussion of two orthogonal solv-
ing techniques for CP: search and inference. Intuitively, the search process deter-
mines how the solver traverses the search space, by assigning values to variables
to see if those variable assignments can be extended to a solution. The inference
process, called propagation, helps to prune the resulting search tree by efficiently
inferring consequences of these assignments. Propagation detects which values in
the domains of free variables have to be removed from those domains because
they are inconsistent with the assignments made by the search process, and thus
can never lead to a solution.

This brings us to another important dichotomy that is identified in the CP
literature: modelling versus solving. CP solvers provide the user with a range of
different constraints to choose from. Each of these constraints has an associated
constraint propagator: an algorithm that can efficiently infer consequences when
variable domains change, due to choices made during the search process. We will
describe propagation in more detail later in this section.
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Since not all propagators are equally powerful, meaning that they cannot al-
ways make the same inferences using the same amount of computational effort,
the actual choice of which constraints to use in modelling the problem can have a
significant impact on how efficiently the problem can then be solved. Therefore, in
order to successfully employ CP techniques, the user has to be smart about how
they model the problem. A detailed discussion of (how to make good) modelling
choices is outside the scope of this work, but we do now continue with a brief
overview of search and propagation techniques.

3.3.1 Backtracking search

CP solvers employ one core algorithmic approach to finding a solution (or refu-
tation) to the input problem: backtracking search. While CSPs can also be solved by
techniques like local search and dynamic programming, we focus on backtracking
search.

In this work, we require the search algorithm to be complete, meaning that
it guarantees that a solution will be found if one exists, that it will show that a
problem does not have a solution if none exists, and that it can be used to find
a provably optimal solution. The backtracking search approach is complete (un-
like most local search algorithms) and typically preferred over the (complete)
dynamic programming approach, because backtracking requires only a polyno-
mial amount of space, while dynamic programming might require exponential
amounts of time and space [154, Chapter 4]. Backtracking search was first pro-
posed in the 1960s [49, 73] and is still the main driver of modern-day CP solvers.

Typical backtracking search uses a depth-first search, inducing a search tree
to find a solution to the CSP (or an optimal solution in an optimisation setting).
The solver repeatedly selects an unbound (or uninstantiated, or free) variable X and
assigns to it a value a ∈ dom(X) (or a range or interval of values in case, e.g.,
dom(X) ⊆ R), thus building a partial solution. Repeatedly selecting an unbound
variable and assigning a value to it is called branching and induces a search tree.

If the domain of a variable X is reduced to a single value in this process, we
consider X to be fixed (or bound) to that value. If a fixed variable or set of fixed
variables violate(s) a constraint, we have encountered a failure: a partial assign-
ment that cannot be extended to a solution. When this happens, the solver back-
tracks to an earlier point in the search tree by undoing variable assignments. The
two main backtracking methods are chronological backtracking, where the solver
simply returns to the closest node on the current path in the search tree where
not all outgoing branches have been explored yet, and non-chronological backtrack-
ing or backjumping, where the solver ‘jumps’ back to a higher level in the search
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Figure 3.2: Graphical representation of branching in the root and in the left child of the
root in Figure 3.3.

tree, thus skipping one or more nodes whose outgoing branches have not all been
explored yet.

Let us now use the constraint optimisation problem in Example 3.3.1 to illus-
trate backtracking search in CP.

Example 3.3.2 (Branching and backtracking in CP). The constraint optimisation
problem described in Example 3.3.1 has two variables: the number of power lines that
we choose to reinforce L, and the number of power stations that we choose to reinforce S.
A search algorithm will thus have to traverse the search space of (L, S) combinations to
find the combination that satisfies Equations 3.2 to 3.4 and maximises Equation 3.1.

Figure 3.3 illustrates just one way of traversing that search space. In each node, the
domain of either L or S is split (roughly) in half, branching left on the lower side, and
right on the higher side of the domain. Going down along a branch on the tree, nodes
in which we split on the domain of L and the domain of S alternate. Let us assume we
traverse the tree from left to right, and let us in this example only consider the left part of
the search tree (rooted at the left child of the root).

Following the left-most branch, we first branch on L ≤ 5 and then on S ≤ 2. We
can visualise this as adding extra constraints to focus on a specific region of the search
space, as is illustrated in Figure 3.2. Note that, at this point in the search tree, with
dom(L) = [0, 5] and dom(S) = [0, 2], all (L, S) combinations satisfy the constraints in
Equations 3.2 to 3.4. For the sake of legibility, we have omitted further descendents of this
node and just listed the optimal combination in these domains: R(L = 5, S = 2) = 8.25.
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Figure 3.3: An example of a small search tree for the constraint optimisation problem de-
scribed in Example 3.3.1. We use 7 to indicate failures and 3 to indicate a solution to the
constraints in Equations 3.2 to 3.4. Domains marked withF are relevant for Example 3.3.3.
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After finding this solution, we backtrack to the parent node and branch right, on
3 ≤ S to continue the search. We continue branching and finding solutions, until the
node in which both domains have been reduced to just one value: L := 5, S := 4, which
is a combination that violates the budget constraint in Equation 3.2. We backtrack and
continue the search for a better solution than the best one found so far (R(L = 5, S =

3) = 91/4), until we have traversed the entire search tree.

Typically, CP solvers employ a process called branch and bound, which uses
cheap-to-compute heuristics to determine if branches of the search tree can still
contain a better solution than the best solution found so far, or even any solution
at all. This helps to keep the size of the search tree from becoming too large.

In the above example, we made a rather arbitrary choice to alternate between
splitting the domains of L and S and to always split them (roughly) in half. Which
variable (and value or domain) to branch on next, is typically decided by a branch-
ing heuristic. The aim of these heuristics is to find a variable and value/domain
branching order that minimises the size of the search tree, and thus likely also
the running time of the solver. Since even finding the first variable of an optimal
variable order is at least as hard as solving the input problem itself [107], finding
and using the optimal variable order is infeasible.

Therefore, CP solvers use heuristics that give no guarantees of optimality to
decide which (variable, value/domain) pair to branch on next during the search.
These heuristics can either be universal or domain-specific, and can be either
static (determined before the search starts) or dynamic (determined during the
search). In this work we use existing universal branching heuristics, and present
new ones that are either static or dynamic and designed specifically for a new
constraint propagator that we introduce in Chapter 6. Additionally, we introduce
static, domain-specific branching heuristics in Chapter 7.

3.3.2 Constraints, consistency and pruning

The second mechanism that drives typical CP solvers is constraint propagation, or
inference, which is orthogonal to search. Informally, constraint propagation helps
the solver to eliminate inconsistencies, which are values in domains of free vari-
ables that cannot be part of a solution to the CSP, given the current assignment
to the bound variables. By enforcing consistency, constraint propagation helps
the solver to avoid branching on (variable, value) pairs that are inconsistent with
the current partial assignment and the constraints, and thus to prune parts of the
search space that do not contain any solutions, reducing the size of the search
tree.
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Constraint propagation operates as follows. After each time a backtracking
search solver branches on a (variable, value/domain) pair, propagators update
the domains of the remaining unbound variables by removing values that would
violate the constraints of the problem instance, given the current partial solution.
This helps to shrink the domains of the remaining free variables, and thus to
prune the search tree. If the domain of a variable X is reduced to a single value in
this process, this variable is automatically bound to that value. If for any variable
X we find that dom(X) = ∅ after propagation, we have found a failure and must
backtrack. Note that constraint propagation can also be called before the search
starts, in which case it serves as a preprocessing step to reduce the sizes of vari-
able domains [154, Chapter 4].

An important type of consistency is that of generalised arc consistency (GAC).
A (variable, value) pair (X, x) with x ∈ dom(X) is considered generalised arc con-
sistent (GAC) with respect to a constraint c ∈ C iff there exists an assignment in
the current domains of the other variables in the scope of c that satisfies c and in
which X = x [114]. Propagation establishes GAC for a constraint c if all remaining
values of all variables in the scope of c are GAC.

Example 3.3.3 (Search space pruning in CP). Note that the left side of the search tree
in Figure 3.3 is quite large, despite us omitting many nodes for reasons of legibility and
instead simply giving the optimal value of the objective function possible for the domains
of L and S in that node. Crucially, in Example 3.3.2, we did not perform any propagation.
Had we done any propagation, we could have pruned the search space.

Consider the right branch of the root of the search tree in Figure 3.3. It branches on
6 ≤ L, reducing L’s domain from [0, 10] to [6, 10]. A quick glance at Figure 3.1 tells
us that any L that exceeds 8, violates the time constraint in Equation 3.3. A constraint
propagation algorithm may detect that this is the case, and exclude the values 9 and 10
from L’s domain, which we have done in the right child of the root of the search tree.
Similarly, for values of L that are larger than 4, there are no solutions in which S = 4 or
S = 5. Since we branched on L ≥ 6 in the right child of the root, we can also exclude the
values 4 and 5 from the domain of S, which we have also done in that node.

Note that these actions kept the domains of L and S GAC with respect to the budget
constraint in Equation 3.2, and the time constraint in Equation 3.3, respectively. The
domains in Figure 3.3 that have been pruned using propagation, are marked withF.

3.3.3 Local and global constraints

A detailed discussion of backtracking and propagation, as well as of other tech-
niques, such as randomisation, restarts, local search, value selection heuristics
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and more, is outside the scope of this work. However, we must mention a few
important concepts about local and global constraints.

The main difference between local and global constraints is their scope. Local
constraints are between a fixed number of variables. For example: X < Y is a local
constraint, since it is always between two variables.

Global constraints, on the other hand, can involve an arbitrary subset of the
variables present in a problem. Arguably the best-known global constraint is the
AllDifferent constraint, which requires all variables in the scope of the constraint
to have a different value. Note that, contrary to the constraint above, the size of
the scope of an AllDifferent constraint is not determined by the form that the
constraint takes.

The constraint that is central to this work, the one in Equation 1.1, is a global
constraint. The constraints in Equations 3.2 to 3.4 on the other hand, are local
constraints.

Note that enforcing GAC for global constraints can be more computationally
expensive in both time and space than enforcing consistency on local constraints,
but also potentially more powerful in the amount of pruning it makes possible.
Some work has been done on decomposing global constraints such that the de-
composition has the same propagation power as the original global constraint,
meaning that the decomposition prunes the same values from the domains of the
involved variables as does the original global constraint. This is possible for some
global constraints, but not for all (at least not in polynomial time and polynomial
space). We refer the interested reader to the literature on which global constraints
can be decomposed, whether those decompositions preserve the solutions to the
CSP, whether they preserve GAC, and whether they preserve the time and space
complexity of enforcing GAC, e.g., [10, 15] and [154, Chapter 3].

3.3.4 Advantages of CP technology

CP solvers typically support many different types of constraints, where each con-
straint has a dedicated propagator, designed specifically to propagate changes in
domains of variables in the scope of that constraint efficiently. As one propaga-
tor removes values from a variable’s domain, this may trigger other propagators
to also remove values from domains. Thus, even though propagators themselves
are designed to solve specific constraints, their interaction can be quite power-
ful in finding solutions to the input problem very quickly. A user simply has to
specify the relevant constraints, and the dedicated propagators take care of the
inference tasks.

Note that, while we have so far only discussed CSPs, we can also use CP for
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solving constraint optimisation problems. We can straightforwardly turn a con-
straint optimisation problem into a CSP as follows.

Suppose we have an optimisation problem with non-negative objective func-
tion f (X) and constraint c(X). The first step is to turn the objective function into
a constraint, by setting f (X) > 0. If there exists a solution to the resulting CSP,
Xsol, it has value θsol := f (Xsol). We now update the constraint we derived from
the objective function to f (X) > θsol and continue the search. Note that, because
Xsol represents the first solution we found, we do not have to restart the search,
but can simply continue building the existing search tree, now in pursuit of a new
solution Xnew such that f (Xnew) > θsol. We continue this process until the CSP
becomes infeasible, in which case the last solution that was found represents the
solution to the original constraint optimisation problem. This makes CP a declara-
tive, flexible, convenient, general and fast programming paradigm for modelling
and solving a wide range of problems.

Unsurprisingly, therefore, the CP community has produced a wide range of
tools for modelling and solving CSPs, of which we name a few here. First of all,
as described above, CSPs must be modelled before they can be solved. MiniZinc

is a free and open source tool, especially designed to model CSPs in a high-level
and solver-independent way.1 All solvers that we name in this section can not
only solve CSPs modelled with MiniZinc, but also have an interface that directly
connects MiniZinc to the solver.

The powerful open source C++ toolkit Gecode2 has proven to be a time- and
memory-efficient CP solving tool for well over a decade, winning all gold medals
in all categories of the MiniZinc Challenge3 five years in a row. IBM’s commer-
cial ILOG CP Optimizer provides state-of-the art support for both real-world, and
purely academic constraint optimisation problems.4 The ILOG-inspired, and re-
cent MiniZinc Challenge gold medallist, Scala library OscaR [132] provides an
open source toolkit for constraint solving and constraint optimisation, including
functionality for visualising the search tree.5 Google’s OR-Tools provides Python,
C++, Java and C# interfaces for users to model CP problems and then solve them
by solvers such as CP-SAT.6 The open-source constraint logic programming sys-
tem ECLiPSe was particularly designed to be a generic programming tool, espe-
cially suitable for rapid prototyping, and provides a Python interface.7

1Available at www.minizinc.org.
2Available at www.gecode.org.
3See www.minizinc.org/challenge.html.
4Available at www.ibm.com/analytics/cplex-cp-optimizer.
5Available at bitbucket.org/oscarlib/oscar.
6Available at developers.google.com/optimization.
7Available at eclipseclp.org and pyclp.sourceforge.net.
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The discussion above represent just a small selection of the wide range of CP
solvers available. Later in this work, in Chapter 5, we will explore how we can
use off-the-shelf CP solvers to solve SCPs. Then, in Chapter 6, we present two
variants of a propagation algorithm that is specifically designed for a special kind
of stochastic constraint.

3.4 Mixed integer programming

As an alternative to CP solvers, we can also employ mixed integer programming
(MIP) solvers to solve the SCPs studied in this work. We recall basic concepts of
MIP. For details we refer the reader to the literature, e.g., Bradley et al.’s Applied
Mathematical Programming [25].

3.4.1 Mixed-integer linear programs

Again, we can model discrete optimisation problems with a set of variables,
corresponding domains, a set of constraints and an objective function. Unlike
CP solvers, MIP solvers support a limited range of different constraints. Mixed
integer-linear programming (MILP) solvers – arguably the most widely used type
of MIP solvers – support only linear constraints; as a result, they can only be
used for solving problems that can be modelled using linear constraints. Note
that even MILP is NP-hard [71].

The constraint optimisation problem in Example 3.3.1 also happens to be a
MILP, since both the constraints and the objective function are simply linear com-
binations of variables.

3.4.2 Solving a MILP

Despite the limitation of only being able to deal with linear constraints, MILP
solvers can be more powerful than CP solvers in solving linear programs, be-
cause of their ability to relax MILPs. Relaxing a MILP instance means relaxing
the integrality constraint of the decision variables with integer domains, mean-
ing that they are allowed to take real values. The resulting linear program has an
optimal solution that is guaranteed to be on one of the corner points of the convex
hull of all feasible solutions. This is illustrated in the left figure of Figure 3.4. It
shows the feasible region, where all constraints are satisfied, and shows the only
allowed solutions, which are the integer ones. The optimal continuous solution is
on the outer hull of the feasible region, and is indicated in the figure. The figure
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Figure 3.4: Candidate solutions (solid disks) on the outer hull of the feasible region of the
MILP in Example 3.3.1, along with the corresponding values of the optimisation criterion
in Equation 3.1 (diagonal lines). In the left figure there is one optimal continuous solution.
In the right figure, there is one optimal continuous solution for each sub-domain of L that
is obtained after branching.

also shows the values of the reliability function (Equation 3.1) for the different
corner points of the convex hull.

Since the optimal continuous solution is usually not a valid solution because
of the integrality constraints on L and S in Example 3.3.1, a MILP solver must
narrow down the space of feasible optimal solutions, until it finds an integer one.
Note that simply rounding the continuous solution to an integer one may not be
feasible, since that might violate constraints. MILP solvers employ three main
techniques for this [25, Chapter 9]: branch-and-bound, cutting planes and group-
theoretic approaches. We will give a short intuition for how the first two tech-
niques work, again using the example problem in Example 3.3.1.

The branch-and-bound technique is also employed by CP solvers and simply
adds extra constraints to recursively narrow down the search space to an integral
one. This process induces a search tree, which allows for pruning similar to what
we described in Section 3.3.1.

Example 3.4.1 (Branch-and-bound). Consider the left figure in Figure 3.4. The MILP
solver has used the knowledge that the optimal continuous solution is on a corner points
of the convex outer hull of the feasible region, which in this case happens to be at
(L = 1122/191, S = 696/191). Using this as a starting point for the search, it might make
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sense to split the problem into two parts by adding two more constraints, either:

S ≤ 3 and S ≥ 4, or L ≤ 5 and L ≥ 6.

Note that neither choice excludes any integer solutions from the feasible region.
In the figure, we have chosen to first branch on the latter set of constraints, similar to

what we did in Example 3.3.2 and the left plot of Figure 3.2. This divides the search space
up into two sub problems, that can be solved individually. In the left part of Figure 3.4,
we have indicated the reliability values of Equation 3.1 for the corner points of the convex
hulls, and the new optimal continuous solutions.

Note that, if we now continue with the L ≥ 6 part of the sub-problem, we can im-
mediately refine the optimal continuous solution of (L = 6, S = 25/7) to (L = 6, S = 3).
We do this by noting that the optimal continuous solution is not in between two integer
solutions, but that its value for S can be rounded down to an integer solution, and obtain
R(6, 3) = 10.5. Since this value is higher than the optimal continuous solution of the
L ≤ 5 part of the search space (R (5, 79/20) = 10.2), we have found the optimal integer
solution and do not have to explore that part of the search space.

An alternative way of narrowing down the space of feasible optimal solutions,
is the cutting plane technique, introduced by Gomory in the 1950s [76], which is
used in all modern MILP solvers. After finding an optimal solution to the relaxed
MILP, the MILP solver checks if the decision variables in that solution take integer
values. If not, it introduces a new linear constraint (cutting plane), separating this
solution from the convex hull of feasible solutions to the MILP. Then, it solves
the resulting (relaxed) linear program, obtains a new optimal solution, checks
it for integrality, and so on. Plenty of research effort has been spent on creating
techniques for finding cutting planes that are fast to compute and that reduce the
feasible region by as much as possible, without excluding any integer solutions.
While a detailed discussion of these efforts is outside the scope of this work, we
illustrate the cutting planes technique with the following example.

Example 3.4.2 (Cutting planes). We illustrate the cutting planes technique in Fig-
ure 3.5. The red line in the left figure represents the cut. The part of the feasible region
that is above the cut does not contain any integer solutions, and can thus safely be cut off
from the feasible region, thus allowing the solver to narrow down its search.

In the right figure we have indicated the reliability scores for the corner points of
the new outer hull of the feasible region. Note that the new optimal continuous solution,
R (108/17, 48/17) = 10.8, is smaller than the optimal continuous solution in the right plot
of Figure 3.4.

Many MIP solvers grew from extending CP solving techniques such as
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Figure 3.5: Visualisation of the cutting planes technique. The red line in the left figure cuts
off a part of the feasible region, without excluding integer solutions.

branch-and-bound with MIP solving techniques such as cutting planes. One ex-
ample of a (commercial) solver (with free academic license) that evolved in this
way is IBM’s CPLEXOptimizer.8 After extensive integration of cutting planes tech-
niques into this solver in 1999, it showed a dramatic decrease both in solving time
and in optimality gap on MIPLIB examples.9 Another commercial MIP solver
with free academic license, Gurobi, provides a wide range of cutting plane tech-
niques, whose parameters can be tuned either by hand or by Gurobi’s automated
parameter optimiser.10 Some systems, such as the non-commercial SCIP Optimiza-

tion Suite11, or Google’s OR-Tools12 offer a general framework for modelling MIPs
and then providing an interface to the user to have the resulting programs solved
by other MIP solvers.

3.4.3 Quadratic programs and linearisation

Later, in Chapter 5 we will demonstrate how to encode SCPs as MIPs. The encod-
ings that we use result in MIP models that are not linear, but contain quadratic
constraints. While state-of-the-art MIP solvers, such as CPLEX and Gurobi, can

8Available at www.ibm.com/analytics/cplex-optimizer.
9Available at miplib.zib.de.

10Available at www.gurobi.com.
11Available at scipopt.org.
12Available at developers.google.com/optimization.
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also deal with quadratic constraints under certain conditions, we limit ourselves
to MILPs; we do this, because those conditions are currently not guaranteed by all
MIP encodings obtained from SDD representations of probability distributions.

Under certain circumstances, it is possible to linearise quadratic constraints.
We will reflect on how to linearise quadratic constraints that are obtained from
OBDD or SDD representations of constraints on probability distributions in
Chapter 5. While linearisation typically comes at the cost of increasing the size
of the model, it may very well be worth it, because linearised models are poten-
tially very quick to solve by a MILP solver, because of the relaxation, branch-and-
bound and cutting planes techniques described above.

3.5 Programming by optimisation

In this work, specifically in Chapters 5 and 6, we introduce modular methods for
solving SCPs. This is in large part a consequence of the fact that this work is broad
in scope. In this and the previous chapter, we have discussed relevant techniques
from the fields of propositional logic, probabilistic inference, knowledge compila-
tion, logic programming, CP solving and MIP solving. These different fields have
their own states of the art, implemented in different tools and solvers. Thus, if we
want to combine the crème de la crème of the technologies brought forth by these
fields, a promising attempt at combining them into SCP solvers may be to click
them together like LEGO bricks, building SCP solvers in a modular manner.13

3.5.1 One size does not really fit anybody

This prompts us to employ yet another programming paradigm for optimisation:
programming by optimisation (PbO) [80].

Just like LEGO bricks come in different colours, so we can choose which
colour to use every time we add one to the thing we are constructing, there are of-

13LEGO bricks are things that, when stepped on while barefoot, induce a hellish pain that requires
excessive screaming to soothe. Many wheelchair users remain blissfully unaware of the pain inflicted
by these specific instruments of torture. Optionally, the small, brightly coloured, interlocking plastic
bricks can be used by children and adults alike to construct various objects. Anything constructed can
be taken apart again, and the pieces reused to make new things. Much like this dissertation, a LEGO
brick presents a choking hazard to anyone unwise enough to stick it in their mouth. Unlike a LEGO
brick, however, this dissertation presents a challenge to anyone attempting to stick it far enough up
their nose (or anybody else’s) to require a hospital visit for its removal from the relevant nose. At the
time of writing, these last two statements remain purely speculative, since this dissertation has not
been printed yet. That being said, we do not encourage the reader to attempt an empirical verification
or falsification of the truth of those statements, even after this dissertation has gone to print.
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ten multiple available solutions for solving the same sub task in our SCP solving
pipelines. For example, for modelling probability distributions, we could either
choose to model them with an OBDD or with an SDD. These design choices have
no effect on correctness, but can affect performance, especially for computation-
ally challenging problems, such as SCPs.

Note also that one-size-fits-all solutions are rare in this world. There is a rea-
son that LEGO bricks come in different shapes and sizes. We often find that
certain approaches work well for solving problems from one domain, but are
much less suited to solve problems from another domain. For example: branch-
ing heuristics in CP solvers may be domain-specific. However, in practice, only
one of these design choices is implemented in the final version of an algorithm
or software system. The choice is often made based on limited experimentation,
with a specific application in mind.

In this work, we try to avoid making that mistake. Rather, we want to exploit
the fact that there are often multiple possible ways of achieving (sub)tasks read-
ily available for us to use. As we will describe in Chapter 7, we have therefore
constructed various parts of our SCP solving pipeline in such a way that it has
access to different methods for solving subtasks and can be tuned for problems
from specific application domains.

This approach, implementing different design choices such that the configu-
ration of the resulting solver can be optimised for specific problem types is called
PbO [80].

3.5.2 Automated algorithm configuration

Taking a PbO-based approach to software or algorithm design, developers pro-
vide the end user with the choice between these options, by exposing them as
configurable parameters. A potential downside of this is that the user is left with
myriad choices of possible parameter settings (the configuration of the algorithm
or software system), with even more possible combinations. An end user might
not have the specialised expertise to make an optimal choice of these parameter
settings, while the algorithm’s configuration can have a substantial impact on its
performance. Additionally, the optimal configuration may vary for different sets
of problem instances.

This also applies to many existing state-of-the-art algorithms that naturally
come with many parameters. Using suitable parameter settings is then critical for
reaching state-of-the-art performance — especially for NP-hard problems, such
as ones studied in this work.

A solution to this problem lies in automated algorithm configuration (AAC) [79],
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which is the process of automatically finding an optimised configuration of an
algorithm’s parameters for solving problem instances from a specific problem
set, and critically enables PbO-based algorithm design.

After applying AAC to a target algorithm A with parameters q1, . . . , qn on a set
of problem instances I, we obtain a configuration c∗ that is expected to perform
well, according to a given performance metric m, on new instances that are similar
to those in I. In this work, since we are studying exact optimisation methods
and therefore cannot optimise for, e.g., quality of approximation, our performance
metric is always running time.

There are two main types of configurators [86]: model-free configurators, such
as (iterative) F-Race [12, 17] and paramILS [87, 88], and model-based configurators,
such as SMAC [86] and GGA++ [3].

Model-free configurators are relatively simple. For example, in its most ba-
sic form, the well-known configurator F-Race operates by first choosing a set of
configurations according to some kind of distribution, and then ‘racing’ them
against each other to see which solves the problem instances the best, according
to the performance metric [174]. Once it becomes clear that a configuration is too
far behind the others to ever catch up, it is eliminated from the set of candidate
configurations. At the end of its configuration run, F-Race returns a set of ‘elite’
configurations whose performances are statistically equivalent to each other, and
statistically better than performances of the configuration outside the set of ‘elite’
configurations. paramILS [87], on the other hand, uses a process of iterated local
search to find optimised parameters.

An advantage of this model-free approach is that it is well-suited for paral-
lelisation. On the other hand, the different racers do not exchange information,
thus missing the opportunity to learn about less successful configurations. Con-
sequently, a configurator may lose efficiency by learning the same information
more than once, or learning more slowly than it could have with information
sharing.

Model-based configurators, on the other hand, sequentially build a model that
captures the dependency of the performance of the target algorithm on its config-
uration. This model is used to predict the performance of configurations on mul-
tiple instances and to select promising candidate configurations, which is useful
for identifying good configurations more quickly than model-free configurators,
because of its ability to learn.

Another important property of configurators is the type of parameters that
they support. For example, F-Race focuses on numerical parameters (integer- and
real-valued) [174], while paramILS supports numerical and categorical parame-
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ters, as well as conditional parameters, whose activations depend on the values
assigned to other parameters. An advantage of model-based configurators is that
they support many different types of parameters.

This is useful in the context of this work, because in many cases the alternative
designs that we have implemented come with very specific sets of parameters.
Consequently, the resulting configuration space has many nooks and crannies
that are only relevant to explore under specific circumstances. By taking that into
account, the search for optimised parameters can often be carried out.

In Chapter 7, we choose SMAC [86] as the configurator for our experiments,
because it is one of the best-performing configurators that are freely available.

3.6 Conclusion

In this chapter we described tools for modelling and solving constraint (optimi-
sation) problems, and motivated why we have chosen these specific tools to build
on in this work.

Specifically, we described the probabilistic logic programming language DT-

ProbLog, which is especially designed to program problems that involve optimal
decision making under uncertainty. We described that we need to add functional-
ity for constraints and other types of optimisation than just maximisation in order
to use a DT-ProbLog-like language to program the kinds of SCPs studied in this
work.

We then proposed to use CP solving as a well-established and powerful
search mechanism. We briefly reflected on the two main processes that drive
CP solvers: back-tracking search and propagation, and how those relate to the
concept of consistency. Finally, we discussed the difference between local and
global constraints. Then, we discussed MIP solving as another technique for op-
timisation. We focused specifically on branch-and-bound techniques and cutting
planes techniques, used by MILPs solvers in particular to find integer solutions
to mixed-integer linear programs. We also, very briefly, reflected on the existence
of quadratic local constraints, and argued why we limit ourselves to linearisable
local constraints in this dissertation.

Finally, we motivated why we apply the paradigm of PbO to create a SCP
solving pipeline, and gave a brief introduction to this idea, and to AAC, which
enables us to take a PbO-based approach. In short, our use of PbO is motivated by
the observations that different subtasks in an algorithm can often be completed in
different ways (without affecting correctness), and that different design choices
that we make there can be better suited for some problems than for others. In
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order to fully exploit the potential power of the solver, we therefore implement
many of these alternatives, and use AAC to automatically determine optimised
configurations for problems from different application domains. We believe that
this approach is particularly useful when developing tools for solving hard prob-
lems, such as the NP-hard SCPs that we study in this work.
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4
Stochastic constraint

(optimisation) problems

In this chapter we describe how to formally model stochastic constraint (optimisa-
tion) problems (SCPs) mathematically, and how to represent the probability distri-
butions that they are formulated on in such a way that we can use weighted model
counting (WMC) to perform probabilistic inference. We then introduce a new rep-
resentation language, SC-ProbLog, as a convenient way to model not only the
complex probability distributions that result from the probabilistic networks on
which we formulate the SCPs in this work, but also their associated constraints
and optimisation criterion. Later in the chapter, we put SCPs and the methods we
propose for modelling and solving them in the context of the existing literature
on stochastic SAT (SSAT), probabilistic programming, stochastic constraint pro-
gramming and knowledge compilation for solving stochastic optimisation prob-
lems. Finally, we describe a number of typical problem settings that we use in
later chapters to evaluate the SCP solving methods proposed therein. Parts of
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this chapter are based on the following publication:

� A.L.D. Latour, B. Babaki, A. Dries, A. Kimmig, G. Van den Broeck, and S. Nijs-
sen. ‘Combining Stochastic Constraint Optimization and Probabilistic Pro-
gramming — From Knowledge Compilation to Constraint Solving’. In: Prin-
ciples and Practice of Constraint Programming — 23rd International Conference,
CP 2017, Melbourne, VIC, Australia, August 28 – September 1, 2017, Proceedings,
Springer. pp. 495–511, 2017.

4.1 Introduction

The main focus of this work is on solving SCPs such as the ones described in
Section 1.1. This work was partially motivated by the following observations on
the limitations of the existing SCP solving literature:

• Most publications on SCPs focus on specific types of problems: scheduling and
planning problems, typically.

• Existing languages for modelling modelling stochastic constraint optimisation
problems are less suitable for modelling SCPs formulated on probabilistic net-
works.

To address the first limitation, we note that there is a rich literature on solving
SCPs in the domains of scheduling and planning [7, 57, 78, 82, 110, 113, 150, 171],
with methods proposed for solving problems in those domains, specifically. Tools
like MiniZinc [130] and the Advanced Interactive Multidimensional Modeling System
(AAIMS)1 are very well-equipped to model these problems. We discuss some of
these problems and solving methods in Section 4.4.

However, to the best of our knowledge, no such methods exist for conve-
niently modelling and solving the examples of SCPs described in Section 1.1.
They are specified over a very different type of distribution than common in ex-
isting SCP solving systems: probabilistic networks, i.e., networks in which edges
exist with a certain probability.

Given the range of different application domains that these examples cover,
from marketing to governance to bioinformatics, we conclude that SCPs outside
the domains of planning and scheduling are plentiful. We thus aim to extend the
focus of SCP solving research to also include these kinds of problems.

Therefore, in this chapter we introduce a programming language that can be
used to model these SCPs, and potentially many other SCPs. In later chapters, we
introduce tools for solving the resulting models.

1Available at www.aimms.com.
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Addressing the second limitation, we propose to exploit the fact that in re-
cent years, significant progress has been made in the development of probabilistic
programming languages, as discussed in Sections 2.6 and 3.2.

These languages allow users to model probability distributions on probabilis-
tic networks very efficiently, as they are particularly well-suited for modelling
relational data. Until now, however, they have rarely been linked to constraint
programming (CP).

In this work, we expand DT-ProbLog [178], a probabilistic programming lan-
guage designed for modelling optimisation problems that involve uncertainty,
and which we described in Section 3.2. It is particularly suited for modelling op-
timisation problems on probabilistic networks, so we adapt it such that it can
be used to formalise SCPs as well, adding support for hard constraints. We call
the resulting modelling language stochastic-constraint probabilistic Prolog: or SC-

ProbLog.
The remainder of this chapter is organised as follows. In Section 4.2 we first

describe how to model SCPs mathematically. We then describe SC-ProbLog and
how to model SCPs such that they can be communicated to a computer, in Sec-
tion 4.3. We close this chapter with a description of typical examples of SCP prob-
lem settings, and a number of specific problems, formulated on real-world data,
in Section 4.5. Finally, we conclude this chapter in Section 4.6.

4.2 Modelling SCPs

Here we provide a concrete example of a problem instance for each of the two
problem settings described in Section 1.1. These problem instances are formu-
lated on the probabilistic networks shown in Figure 4.1. Then, we show how to
model the associated probability distributions, such that we can use WMC to
compute probabilities.

4.2.1 Modelling stochastic constraint (optimisation) problems

First, we define a problem instance for the spread of influence problem:

Example 4.2.1 (Spread of influence: SCP). Consider the network in Figure 4.1a. Nodes
represent people. Edges represent probabilistic influence relationships, meaning that an
individual u influences another individual v with probability puv, which labels edge
(u, v). We distribute free samples to a subset of the individuals, who can probabilistically
influence other individuals to become customers as well. The objective is to maximise
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(a) A social network with four nodes repre-
senting Alexa, Behrouz, Claire and Daniël, and
four undirected edges with mutually indepen-
dent probabilities, representing their stochastic
influence relationships.

a b

cd

e

(b) A power transmission grid with five nodes:
one power producer (a), three power consumers
(c, d and e) and one power transmitter (b). Edge
probabilities depend on strategy.

Figure 4.1: Two examples of probabilistic networks.

the expected number of people who become our customer, given a limited number k to
distribute free product samples to people in the network.

We make the simplifying assumption that influence relationships are mutually in-
dependent, meaning that whether persons u and v influence each other is independent
of whether persons w and x influence each other (where x 6= u 6= v). We also assume
that once a person becomes our customer, they will never stop being our customer, such
that they can become our customer at most once. As the problem setting in Section 1.1
describes, we assume that we distribute the free product samples only at one moment in
time.

Given these assumptions, we model this problem as follows:

• With each node i in the network we associate a Boolean decision variable Di ∈ {>,⊥},
representing whether person i receives a free sample.

• We are interested in the events Φ = {φa, φb, φc, φd}, where φi denotes the event of
person i being our customer.

• Our objective is to find a strategy σ that maximises the expected utility ∑i∈{a,b,c,d} ρi ·
P (φi|σ), where we fix ρi := 1.

• Constraint: ∑i∈{a,b,c,e} ci · Di ≤ k (threshold k ∈N+), where we fix ci := 1.

Similarly, we also define a problem instance for the power grid reliability
problem:

Example 4.2.2 (Power grid reliability: SCP). Consider the network in Figure 4.1b.
Here, each edge represents a power line (u, v) that has a probability puv of remaining
intact during a natural disaster. By using our maintenance budget to reinforce power
lines, we can increase the survival probability of those power lines. Our goal is to use our
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budget β for maintaining power lines wisely, such that the expected number of consumers
that will still have power after a natural disaster, is maximised.

We make the simplifying assumption that the survival probabilities of power lines are
mutually independent, meaning that the survival or breakage of power line (u, v) does
not influence the survival or breakage of power line (w, x) (with x 6= u 6= v).

We model this problem as follows:

• We distinguish three types of nodes: power consumers Vcons = {c, d, e}, power pro-
ducers Vprod = {a} and power transmitters Vtrans = {b}, such that Vcons ∩ Vprod ∩
Vtrans = ∅ and Vcons ∪Vprod ∪Vtrans = V is the set of nodes in the network.

• With each power line (u, v) ∈ L we associate a decision variable Duv ∈ {>,⊥} that
indicates whether or not a power line is reinforced.

• We are interested in events Φ = {φi : i ∈ Vcons}, where φi represents that consumer i
is still connected to a power producer after a natural disaster.

• Our objective is to find a strategy σ that maximises the expected utility ∑i∈Φ ρi ·
P (φi|σ), where we fix ρi := 1.

• Constraint: ∑i∈L ci · Di ≤ β (threshold β ∈N+), where we fix ci := 1.

Note that in both examples, we fix ci = ρi = 1 for reasons of simplicity, but it
is straightforward to use alternative values, as long as ci, ρi ∈ R+.

4.2.2 Stochastic optimisation criteria

Observe that the two examples above each involve a stochastic objective function,
rather than a stochastic constraint. In those examples, the constraint is a linear
constraint on the expenses of the company that wants to use spread of influence
to market their product or the power company that wants to do a maintenance
project on its power lines. Problems like these occur often in real-world situations,
where there may be a cost associated with setting a decision variable to true, and
the user has a limited budget.

Recall our discussion of how to turn a constraint optimisation problem into a
constraint satisfaction in Section 3.3.4. We can straightforwardly apply that prin-
ciple here, by starting with the following two constraints:

∑
φ∈Φ

ρφ · P (φ|σ) > θ and ∑
0≤i<|D|

ci · Di ≤ β,

where ρφ is the reward associated with φ evaluating to true, θ is initialised to 0, ci

is the cost of setting decision variable Di ∈ D to true, and β is the budget.
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Following the procedure as described in Section 3.3.4, we then iteratively
solve this constraint satisfaction problem (CSP), updating the value of θ every time
we find a new solution.

4.2.3 Modelling probability distributions

In order to complete our models for the problems described in Examples 4.2.1
and 4.2.2, we must define the probability of events Φi, given a strategy. As argued
in Chapter 2, in this work we take a propositional WMC approach to representing
probability distributions, modelling them first using the decision-theoretic proba-
bilistic logic programming language DT-ProbLog, which is based on probabilistic
logic programming language ProbLog. Crucially, ProbLog provides functionality
to ground probabilistic logic programs (see also Section 2.6). While in practice,
these groundings are immediately compiled into decision diagrams (DDs), DT-
ProbLog has functionality for grounding probabilistic logic programs into literal-
weighted propositional formulae on decision variables and stochastic variables.
For the sake of discussion, and for the scope of this subsection, we assume that
programs are ground into these formulae rather than DDs. Note that this repre-
sents simply a different way of representing the same information, since DDs can
be seen as summaries of truth tables of (literal-weighted) propositional formulae
(see Section 2.4).

Note that we make one crucial assumption in both examples above: the proba-
bilities associated with the edges in the networks are mutually independent. This
allows us to straightforwardly map every edge to a single stochastic variable, and
then compute probabilities using WMC as described in Section 2.2.3.

Recall from Section 2.2 that, under the WMC approach, the following holds:

P(φ|σ) = ∑
µ∈M

∏
T∈µ

W(T), (4.1)

where µ is a set of truth assignments to all stochastic variables in T, such that µ

is a model of φ|σ,M is the set of all models of φ|σ, T ∈ T is a stochastic variable,
W(T) := wT if T = > in µ, and W(T) := wT if T = ⊥ in µ.

We now illustrate how WMC can be used to formalise the probability distri-
butions from our running examples.

Example 4.2.3 (Spread of influence: WMC). We model this problem under the follow-
ing simplifying assumptions:

• Influence relationships are symmetric.

• Once someone gets a free product sample, they will become a customer.
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• If u influences v, and u is a customer, then v becomes a customer.

The possible worlds in which the event φd takes place in Figure 4.1a can then be modelled
by a literal-weighted propositional formula that we already encountered in Section 2.5,
which we repeat here, for convenience:

φd(D, T) := Dd ∨ (Dc ∧ Tcd) ∨ (Db ∧ Tbc ∧ Tcd) ∨ (Da ∧ Tac ∧ Tcd)∨
(Db ∧ Tab ∧ Tac ∧ Tcd) ∨ (Da ∧ Tab ∧ Tbc ∧ Tcd) .

This formula represents all the different situations in which Daniël becomes a customer.
We use two types of variables: Di are the decision variables of the SCP and Tij are associ-
ated with each edge (i, j) in the network and represent influence. One possibility for event
φd to happen is when Claire gets a free sample and has enough influence over Daniël to
convince him to buy the product.

To define a distribution over the network, we associate a probability p
(
Tij
)

with each
Boolean variable Tij that this variable is true. We call Tij a stochastic variable. The
probability P (φd|σ) is then defined as the sum of the probabilities of all the (logical)
models of this formula, given the strategy. Given strategy σ := {Da := >, Db :=
⊥, Dc := ⊥, Dd := ⊥} (where we give a free product sample to Alexa, but to nobody
else), an example of a scenario that is a model for φd|σ is {Tac = Tcd = >, Tab = Tbc =

⊥} (where Alexa convinces Claire, who convinces Daniël to buy our product), which has
a probability of 0.8 · 0.3 · (1− 0.4) · (1− 0.1) = 0.1296.

Example 4.2.4 (Power grid reliability: WMC). For the sake of simplicity, we make the
following assumptions:

• All power lines have the same survival probability puv if not reinforced and the same
survival probability p′uv > puv if reinforced.

• With each power line (u, v) ∈ L we associate a survival probability πuv that takes the
following values:

πuv :=

puv if Duv = ⊥;

p′uv > puv if Duv = >.
(4.2)

The possible worlds in which event φd takes place in Figure 4.1b are defined by the propo-
sitional formula

φd (D, T) := (Tad ∨ (Sad ∧ Dad))∨
((Tab ∨ (Sab ∧ Dab)) ∧ (Tbc ∨ (Sbc ∧ Dbc)) ∧ (Tcd ∨ (Scd ∧ Dcd))) .

This formula represents all the different situations in which power consumer d will still
be connected to a power producer after a natural disaster. Again, we use two types of
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variables: Duv, the decision variables of the SCP, and Tuv and Suv, the stochastic variables
associated with each edge (u, v) in the network, to represent the stochastic survival of the
power line. We need two stochastic variables to model the survival probability of each
power line in the network: one to model the survival probability if it is reinforced (Suv),
and one to model the survival probability if it is not (Tuv).

Table 4.1: The weighted model count for φuv|Duv=> = Tuv ∨ Suv.

model weight

{Tuv := >, Suv := >} P(Tuv = >) · P(Suv = >)
{Tuv := >, Suv := ⊥} P(Tuv = >) · (1− P(Suv = >))
{Tuv := ⊥, Suv := >} (1− P(Tuv = >)) · P(Suv = >)

P(Tuv = >) + (1− P(Tuv = >)) · P(Suv = >)

In this model, we associate the following probabilities with variables Tuv and Suv:
P (Tuv = >) = puv, and P (Suv = >) = (p′uv − puv)/(1− puv). Here, probability P(Tuv =

>) = puv is taken directly from the definition given in Equation 4.2. To see why we do
not set P(Suv = >) = p′uv, consider the following propositional formula that models the
survival probability of a line (u, v): φuv = Tuv ∨ (Suv ∧ Duv). Here, we associate Tuv

with the stochastic survival of line (u, v) if that line is not reinforced, and Suv with the
stochastic survival of line (u, v) if it is. If we decide to not reinforce this line (Duv := ⊥),
the probability that φuv evaluates to true (and thus that line (u, v) survives) is equal
to P(Tuv = >). Now suppose that we do reinforce line (u, v), by setting Duv := >.
In this case, the probability that φuv is true becomes P(Tuv = >) + (1 − P(Tuv =

>)) · P(Suv = >), as demonstrated in Table 4.1. Therefore, if we want to model the
probabilities as they are in Equation 4.2, we cannot set P(Suv = >) = p′uv, but must
instead set this probability to P(Suv = >) = (p′uv − puv)/(1− puv). This ensures that
P(φuv = > | Duv = >) = P(Tuv = >) + (1− P(Tuv = >)) · P(Suv = >) =

puv + (1− puv) · (p′uv − puv)/(1− puv) = p′uv, which is exactly the probability as specified
in Equation 4.2. Note that the need to perform this trick stems from the fact that we use a
disjunction (∨) to model the possible survival of line (u, v) and not an exclusive-OR.

Consequently, for puv := 0.4 and p′uv := 0.875 (values from the literature [61]), we
get P(Suv = >) ≈ 0.79167. For strategy σ = {Dad = Dbc = >, Dab = Db f = Dcd =

⊥}, one example of a model for φd|σ is: Sad = Tab = Sab = Tcd = Sbe = >, Tad =

Tbc = Sbc = Scd = Tbe = ⊥, of which the probability is 0.791673 · 0.208332 · 0.42 ·
0.63 = 7.44235 · 10−4.
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4.3 SC-ProbLog

After formalising the problem in a mathematical model, the next steps are to rep-
resent this model in a way that is usable for a computer, and compile the relevant
probability distributions into DDs. In particular, we want to use a computer to
get from the mathematical models described in Examples 4.2.1 and 4.2.2 to or-
dered binary decision diagrams (OBDDs) or sentential decision diagrams (SDDs) that
we can use to compute weighted model counts (WMCs).

In this section, we kill two birds with one stone by building on existing tools
from the probabilistic logic programming literature. In Section 3.2 we described
a probabilistic programming language that is particularly suited for modelling
optimisation problems defined on probabilistic networks: DT-ProbLog [178]. Ad-
ditionally, this language, because it is based on ProbLog [52], offers functionality
to ground probabilistic logic programs into DDs that can be used for tractable
weighted model counting.

DT-ProbLog, however, does not offer support for constraints. It would be very
convenient if we could model the entire SCP using just one language. We there-
fore expanded DT-ProbLog into a new language: stochastic constraint probabilistic
Prolog, or SC-ProbLog. Compared to DT-ProbLog, SC-ProbLog adds support for
hard constraints on probability distributions. Additionally, where DT-ProbLog

only supports maximisation problems, the syntax and semantics we added al-
lows the user to specify whether they want the objective function to be minimised
or maximised.

We illustrate how to use the SC-ProbLog language by showing how we can to
model SCPs described in Examples 4.2.1 and 4.2.2 with SC-ProbLog programs.

Example 4.3.1 (Spread of influence: SC-ProbLog). Recall the DT-ProbLog program in
Program 3.1, and notice how it matches the problem described in Example 4.2.1. We only
have to adapt it slightly to turn it into the SC-ProbLog program shown in Program 4.1.

Program 4.1: An SC-ProbLog program for the spread of influence problem.

% Background knowledge

1. person(alexa). person(claire).

2. person(behrouz). person(daniel).

% Probabilistic relation facts

3. 0.4:: dir(alexa ,behrouz). 0.8:: dir(alexa ,claire).

4. 0.1:: dir(behrouz ,claire). 0.3:: dir(claire ,daniel).

% Relation rules

5. influences(X,Y) :- dir(X,Y).

6. influences(X,Y) :- dir(Y,X).
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% Decisions

7. ?:: gets_free_sample(P) :- person(P).

% Customer conversion rules

8. buys(X) :- gets_free_sample(X).

9. buys(X) :- influences(Y,X), buys(Y).

% Constraint and optimisation criterion

10. { gets_free_sample(P) => 1 :- person(P). } k.

11. #maximise { buys(P) => 1 :- person(P). }.

Lines 1–9 are taken directly from Program 3.1. Note that we have not copied the
lines that indicate the utility of the different events. Instead, they are incorporated
in the constraint in line 10 and the objective function in line 11.

In the example above, lines 10 and 11 represent the syntax and semantics that
we added to obtain SC-ProbLog. Here, we borrow the syntax from the answer set
programming literature (see, e.g., Answer Set Programming by Lifschitz [108]).

In particular, line 10 represents the constraint. It assigns a cost of 1 to the deci-
sion to give a person a free sample, indicated by the => in the head of the rule in
the braces, where we assume that not giving a person a free sample has a cost of
0. The braces indicate that the costs (or utilities) within them must be summed.
The k corresponds to the k in Example 4.2.1, and represents the upper bound (or
threshold) on the sum of the utilities.

Line 11 represents the optimisation criterion. The syntax in the braces is the
same as in line 10. However, we now indicate that the sum of the expected utilities
associated with a person buying the product is to be maximised.

Note that, in the example above, the constraint is formulated over decision
variables, while the optimisation criterion is formulated over predicates whose
truth values depend on the values of stochastic variables, but this need not be the
case. We could also add multiple constraints, or omit the optimisation criterion,
but we do not support multiple optimisation criteria.

A key property of ProbLog (and therefore also of SC-ProbLog) is that the rules
that are stated are not assumed to be mutually exclusive. For example, the rules in
lines 8 and 9 could be probabilistic, meaning that there is a chance p f s of turning
someone into a customer by giving them a free sample, and a chance pin f l of
turning them into a customer if they are influenced by someone who is already a
customer. These two customer conversion processes are not mutually exclusive.

However, in the power grid reliability problem, we are dealing with proba-
bilistic facts that are mutually exclusive: a power line is either reinforced, or it
is not. Recall the probabilities that we associated with the stochastic variables
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in Example 4.2.4, and that they stemmed from the choice to model the possible
survival of a power line as a (non-mutually exclusive) disjunction instead of as
an exclusive-OR. We can therefore use those probabilities directly in a ProbLog

program, as we demonstrate in the next example.

Example 4.3.2 (Power grid reliability: SC-ProbLog). We model the power grid relia-
bility problem described in Example 4.2.2 as follows:

Program 4.2: An SC-ProbLog program for the power grid reliability problem.

% Background knowledge

1. power_line(a,b). power_line(a,d).

2. power_line(b,c). power_line(b,e). power_line(c,d).

3. producer(a). consumer(c).

4. consumer(d). consumer(e).

% Decisions

5. ?:: reinforce(X,Y) :- power_line(X,Y).

% Probabilistic facts

6. 0.79167:: survives(X,Y) :- power_line(X,Y), reinforce(X,Y).

7. 0.79167:: survives(X,Y) :- power_line(Y,X), reinforce(Y,X).

8. 0.4:: survives(X,Y) :- power_line(X,Y).

9. 0.4:: survives(X,Y) :- power_line(Y,X).

% Relations

10. connection(X,Y) :- survives(X,Y).

11. connection(X,Y) :- connection(X,Z), survives(Z,Y).

12. connected_to_producer(X) :- producer(Y), connection(X,Y).

% Constraint and optimisation criterion

13. { reinforce(X,Y) => 1 :- power_line(X,Y). } b.

14. #maximise { connected_to_producer(X) => 1 :- consumer(X). }.

We define directed power lines in lines 1 and 2, and then define the power producers
and the power consumers in lines 3 and 4. Line 5 represents the decision variables in this
problem: one for each power line.

Lines 6–9 have two purposes: they make the directed power lines from lines 1 and 2
undirected, and they model the different survival probabilities of those power lines, de-
pending on whether they have been reinforced to make them strongly and less likely to
break. Note that lines 6 and 7 correspond to the Suv variables as described in Exam-
ple 4.2.4, while lines 8 and 9 correspond to the Tuv variables.

Lines 10–12 in Program 4.2 serve to define what it means to be connected to a power
producer. Line 13 associates a cost of 1 with reinforcing a power line and defines an upper
bound of b on the sum of these costs. Finally, line 14 associates a reward of 1 with each
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power consumer that is connected to at least one power producer, which is a probabilistic
fact, and specifies that the sum of the resulting expectations is the value that we want to
maximise.

In the example above, the first 12 lines use the DT-ProbLog functionality. Lines
13 and 14 represent the new functionality introduced in SC-ProbLog: a constraint
and an optimisation criterion, much like lines 10 and 11 in Program 4.1.

Now that we have modelled the problems described in this chapter using SC-

ProbLog, we can rely on ProbLog’s technology to ground these programs to obtain
the OBDDs or SDDs that represent the (stochastic) events of interest. In the next
chapter, we describe how we can use these DDs representations of probability
distributions to build a fast pipeline for solving SCPs. Before that, however, we
first provide an overview of existing work that relates to SCP solving or the meth-
ods we propose to use in our SCP solving pipelines.

4.4 Related work

We now give a brief overview of work that is related to SCPs and their solving
methods. Specifically, we first highlight a number of problems known from the lit-
erature that are very closely related to either checking if a stochastic constraint is
satisfied, or to maximising a stochastic optimisation criterion. Since the approach
to modelling SCPs in this work is rooted in probabilistic logic programming, we
then provide a brief overview of probabilistic programming paradigms. Then,
because our methods solving SCPs is mostly based on CP techniques, we discuss
existing literature on stochastic constraint programming. We end this section with
a brief discussion of other work that exploits knowledge compilation techniques
for solving SCP-like problems.

4.4.1 Stochastic satisfiability

Solving a stochastic constraint like the one in Equation 1.1, which we repeat here
for convenience:

∑
φ∈Φ

ρφ · P (φ | σ) > θ,

and maximising a stochastic optimisation criterion as described in Section 4.1 can
each be seen as instances of SSAT, as defined in Chapter 27 of the Handbook of
Satisfiability [16].2

2An earlier version of this problem was proposed by Papadimitriou, who called it a ‘game against
nature’ [137].
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SSAT in its most general form is defined over formulae of the following kind:

ψ (X) := Q1X1 · · ·Q|X|X|X|φ(X), (4.3)

where Qi ∈ {∃,

R} represent the quantifiers and Xi ∈ X the corresponding vari-
ables. The quantifier

R

indicates that the corresponding variable is ‘randomly’
quantified, meaning that this variable takes the values > or ⊥ with a certain
probability, independently of the other variables. While in the general case, the
order of the quantifiers in the prefix of ψ is arbitrary, for this work only orders
in which all the existentially quantified variables come first in the prefix, are rele-
vant. Hence, below we only discuss settings of this kind, and we omit all discus-
sion of settings in which the order of quantifiers is different.

To see how the SSAT problem connects to solving stochastic constraints like
the one in Equation 1.1, we also distinguish a specific decision version of SSAT.

Definition 4.4.1 (E-MAJSAT). Given a formula ψ (D, T) as defined in Equation 4.3,
where all the existentially quantified (D) variables come first in the prefix and the
randomly quantified variables (T) take the value > with a given rational probability
0 ≤ pX ≤ 1, and given a rational threshold value 0 ≤ θ ≤ 1, is there an assignment σ

to the existentially quantified variables D, such that

P (ψ|σ = >) > θ? (4.4)

Here, P(·) indicates a probability and ψ|σ is the residual formula obtained by removing
all existentially quantified variables from the prefix of ψ and substituting the existential
variables in φ(D, T) by their truth values as specified by σ.

Thus, the exists-majority SAT (E-MAJSAT) problem asks if there exists an as-
signment π such that the probability that ψ is satisfied exceeds a certain threshold
value θ.

A well-known special case of E-MAJSAT in which D = ∅ (and thus all vari-
ables are randomly quantified), for each T ∈ T we have pT = 1/2 and θ = 1/2, is
known in the literature as the majority SAT (MAJSAT) problem [16, 137]. This MA-
JSAT problem is known to be complete for the probabilistic polynomial time (PP)
complexity class [16]. Recall the definition of the class PP in Definition 2.2.8, and
note how it indeed loudly echoes the task of the MAJSAT problem.

Note that computing the exact success probability of ψ, and thus counting the
number of solutions, is a WMC task (as described in Section 2.2.3), and is #P-
complete [155]. It is not hard to see that evaluating if Equation 1.1 is satisfied for
a given strategy σ can be seen as a generalisation of the MAJSAT problem, in
which 0 ≤ pX ≤ 1 and 0 ≤ θ ≤ 1 can take arbitrary, rational values.

87



Stochastic constraint (optimisation) problems

Since in this work, we do not only solve stochastic constraints, but also deal
with stochastic optimisation criteria, we also define the following variant of SSAT:

Definition 4.4.2 (Functional E-MAJSAT). Given a formula ψ (D, T) as defined in Def-
inition 4.4.1, which assignment σ of truth values to the existentially quantified (decision)
variables in D maximises P (ψ|σ = >)?

The solution to a functional E-MAJSAT problem is the optimal assignment σ∗.
We finally point to Littman et al.’s extended version of SSAT: XSSAT [111]. This

problem generalises the SSAT problem by, aside from existentially quantified
variables and randomly quantified variables, also allowing universally quanti-
fied variables, in arbitrary orders. A formal definition of this problem is outside
the scope of this work.

4.4.2 Probabilistic programming

In Section 2.6 we briefly described ProbLog [52] and motivated why we use its
decision-theoretic version DT-ProbLog [178] as a basis to build SC-ProbLog on.
However, ProbLog is not the only probabilistic programming languages that we
could have chosen. We now briefly discuss alternative languages and their uses.
For an extensive overview of the probabilistic logic programming literature, we
refer the reader to De Raedt & Kimmig’s recent survey [51].

As we mentioned in Section 2.3, a popular method for representing proba-
bility distributions, is Bayesian networks (BNs) [140]. One of the first languages
that extended Prolog to include probabilities, was Poole’s probabilistic Horn ab-
duction (PHA) language, designed as a representation language for Bayesian net-
works [146]. PHA assigns probabilities to facts, and computes these probabili-
ties by generating mutually exclusive explanations for these facts. Because these
explanations are disjoint, their individual probabilities can simply be summed
to obtain the probability of the fact that they explain. Dependencies are mod-
elled by inventing new hypotheses. Sato’s symbolic-statistical modelling lan-
guage PRISM [161, 162], Muggleton’s stochastic logic programs [129] and Poole’s
independent choice logic [147, 148] impose similar constraints on which facts can
be true at the same time.

Recall from Section 4.3 that ProbLog, and languages derived from it, do not
impose such constraints, as is evidenced by the fact that in the spread of influence
example of Example 4.3.1 there are multiple ways of converting somebody into a
customer, that do not need to exclude each other.

An interesting proposal for unifying the representations languages of BNs
and propositional logic are Kersting & De Raedt’s Bayesian logic programs [93, 94].
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BNs can be seen as an extension of propositional logic, adding quantitative in-
formation (probabilities) to the qualitative information (local influences between
random variables). As such, they inherit the limitations of propositional logic,
particularly its rigidity and inability to represent a variable number of objects
in the problem encoding, or a variable number of relations between those ob-
jects. This is something that probabilistic logic programming is much more suited
for. Bayesian logic programs is a representation language that generalises both BNs
and probabilistic logic programs, separating the qualitative information from the
quantitative information.

Finally, we mention another interesting paradigm related to probabilistic logic
programming, is that of probabilistic databases [170], with applications in data re-
trieval and reasoning over the web. Specifically, Fuhr’s probabilistic Datalog [68],
designed specifically as a language for such information retrieval, is very similar
to ProbLog in how it attaches probabilities to facts and rules. Its reasoning powers,
however, are limited compared to ProbLog’s [52].

4.4.3 Stochastic constraint programming

This work is also closely related to chance constraint programming [31] and proba-
bilistic constraint programming [172]. In particular, the problem we consider can be
framed as a single-stage stochastic constraint satisfaction problem (SCSP) [181].

As briefly discussed in Section 1.1, we limit ourselves in this work to single-
stage optimisation problems, because of restrictions on the probability distribu-
tions required by the SCP solving pipeline that we present in Chapter 6. We
briefly mention existing work on multi-stage stochastic optimisation problems,
for the interested reader.

In multi-stage SCPs, after a first set of decisions, the value of stochastic vari-
ables is revealed. This prompts another set of decisions to be made, after which
the value of another set of stochastic variables is revealed, and so on. The goal is to
either make an optimal first decision (with respect to a given objective function),
before the values of the stochastic variables of the first stage are even revealed,
or to develop a policy that allows the users to choose the decisions in the follow-
ing stages, based on what unfolds as the values of the stochastic variables are
revealed. Multi-stage SCPs are typically used to model planning and scheduling
problems [7, 113], and can be modelled as special cases of the SSAT problem [16],
where blocks of existentially quantified and randomly quantified variables al-
ternated in the prefix of the propositional formula (see also Section 4.4.1). The
authors of stochastic MiniZinc [150] implemented a generic framework to encode
multi-stage SCPs in a solver-agnostic manner.
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Note that, while SCPs are certainly related to constraint optimisation under
soft constraints [18], we impose hard constraints on probability distributions, and
thus refrain from a further discussion of soft constraints. We also stress that in
this work, we focus on finding exact solutions. There is an extensive literature on
approximation methods, see, e.g., [23, 35, 121, 143, 185], the discussion of which
is outside the scope of this work.

Mixed networks [125] essentially combine probabilistic graphical models, which
are used to model probability distributions, and constraint networks, which are
used to express constraints. The authors define the constraint (or conjunctive nor-
mal form (CNF)) probability evaluation (CPE) task for a problem that can be speci-
fied on a belief network (a type of probabilistic graphical model) and a set of con-
straints, which are expressed in a CNF. Their goal is to find the probability distri-
bution of the belief network, for all models of the CNF. As such, it corresponds
to computing Equation 2.7 for all possible queries, and is thus closely related to
SCP solving. Since we use a probabilistic propositional framework to represent
our models, we consider a detailed description of probabilistic graphical models,
although they are conceptually somewhat related to our framework, to be outside
the scope of this work.

As briefly mentioned in Section 1.1, our work distinguishes itself from earlier,
more generic, stochastic constraint programming approaches because we explic-
itly use the structure of the encoding of the underlying probability distributions
to speed up the solving process.

4.4.4 Knowledge compilation for SCP solving

Pipatsrisawat and Darwiche use knowledge compilation to solve E-MAJSAT
problems [145]. In their approach, all constraints are encoded together into one
diagram, which can cause it to blow up, depending on the number and type of
constraints that must be encoded. Additionally, by integrating all constraints into
one representation, they lose information about the structure of those constraints.
Constraint solvers typically exploit this information in dedicated constraint prop-
agators, an option that is no longer available once all constraints are encoded into
one diagram. Moreover, not all constraints can be (trivially) encoded into CNF,
which limits the expressiveness of the approach. In this work, we study if another
approach is possible.

In the CP literature, OBDDs and the similar multi-valued decision diagrams
(MDDs) are often used to encode all solutions for a constraint, and efficient prop-
agation algorithms for these data structures have been developed [70, 77, 179].
By associating MDD arcs in such encodings with probabilities, one can sample
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solutions to a constraint [141]. Note that, while this data structure is similar to
OBDDs, it is used to solve a fundamentally different problem than the one we
address in this work.

4.5 Problem settings

So far, we have been using the spread of influence problem and power grid relia-
bility problem as running examples to illustrate our methods. In the subsequent
chapters, we will use concrete instances of these problems to evaluate our meth-
ods. In addition, we will use problem instance from other domains, so we can
evaluate our proposed pipelines on a variety of problem types. Therefore, in this
section, we describe the problem settings that we consider in the experiments in
Sections 5.3, 6.5 and 7.3. Where relevant, we also describe how we processed the
input data sets to obtain individual problem instances for our experiments.

4.5.1 Theory compression or graph sparsification

The first problem setting that we consider in this work is one from the data min-
ing literature [50]. We are given a network of genes, proteins (both represented by
vertices) and their interactions (edges), where these interactions are probabilistic.
Furthermore, we are given knock-out pairs: pairs of vertices for which knocking
out one vertex leads to a positive or negative change in the expression level of
the other vertex. Paths of interaction can explain the positive or negative effect
of one vertex on another. Our goal is to obtain a sparser network that preserves
the pairwise interactions we are most interested in, in order to better understand
these interactions. This problem is known from the literature as a theory compres-
sion problem [50].

Let Φ+ and Φ− be our sets of interest, where events φu→v ∈ Φ+ represents
a vertex pair (u, v) for which a knock-out of protein u leads to an observed pos-
itive change in the expression level of gene v, and similar for events in Φ−. We
associate a decision variable d and a stochastic variable t with each edge in the
network. Here, the decision variable represents whether or not we select the cor-
responding edge to be part of the network that we extract, while the stochastic
variable represents the strength of the interaction of the vertices on which the
edge is incident.

We use a gene-protein and protein-protein interaction network called the
Signalling-regulatory Pathway INference (SPINE) [133] network. The full network
has 4 696 vertices that represent genes and proteins. It has a total of 5 568 directed
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protein-gene edges, and 15 147 undirected protein-protein edges. The SPINE net-
work provides probabilities for both the directed and undirected edges. We used
Gephi’s implementation of the Louvain community detection algorithm [19] to ex-
tract communities of different sizes, containing different sets of positive and neg-
ative vertex pairs, because the full network is too large to handle by our methods.
In the rest of this work, we refer to the problem instances from the SPINE network
as spine instances.

In our experiments, we consider some variants of this problem, which are each
combinations of an optimisation criterion and a constraint, where one of these
elements involves an expectation and the other the cardinality of the solution:

Variant 1: Maximise expectation, upper bound on solution cardinality. Given a
set of vertex pairs Φ ∈ {Φ+, Φ−}, our aim is to maximise the expected
number of pairs in this set in which there is interaction between the two
vertices in the pair, while placing an upper bound on the number of edges
we can pick for the extracted network:

maximise ∑
φ∈Φ

P (φ | σ) , subject to ∑
D∈D

D ≤ k, (4.5)

Variant 2: Minimise solution cardinality, lower bound on expectation. Here, the
goal is to minimise the size of the network induced on the extracted edges,
but to guarantee that the summed expected strength of interactions between
the vertex pairs meets a certain lower bound:

minimise ∑
D∈D

D, subject to ∑
φ∈Φ

P (φ | σ) ≥ θ, (4.6)

where again Φ ∈ {Φ+, Φ−} and θ ∈ R+ represents the lower bound on the
expectation.

Variant 3: Maximise expectation, upper bound on another expectation. This is a
setting in which we are less concerned with network size, but more with
how ‘pure’ the extracted network is in its ability to explain the interaction
between vertices from one set of interest only, and not the other:

maximise ∑
φ+∈Φ+

P
(
φ+ | σ

)
, subject to ∑

φ−∈Φ−
P
(
φ− | σ

)
≤ θ, (4.7)

or with the roles of Φ+ and Φ− reversed.

Variant 4: Maximise solution cardinality, upper bound on expectation. A slightly
less intuitive setting, where we aim to filter out a specific proportion of the
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interaction between the vertices in one set of interest:

maximise ∑
D∈D

D, subject to ∑
φ∈Φ

P (φ | σ) ≤ θ, (4.8)

where again Φ ∈ {Φ+, Φ−} and θ ∈ R+ a lower bound on the expectation.

Finally, for each (community, variant) pair we determined a threshold k or θ

that yields a hard problem to solve. We provide more details in Section 5.3.

4.5.2 Spread of influence

This is the problem setting described in Example 4.2.1, and is known from the
data mining literature [56, 92]. For our experiments, we relax some of the sim-
plifying assumptions made in Example 4.2.1. In particular, we set the probability
that a person turns into a customer when they receive a free product sample to
0.2. Similarly, if an existing customer influences a person, this person has a prob-
ability of 0.2 to turn into a customer themselves. We also apply this setting to
the spreading of ideas, research interests or even research styles within a scien-
tific community. In this problem setting, we associate decision variables with the
vertices of the network, and stochastic variables with both vertices and edges.

To generate problem instances, we took a directed multigraph that represents
user interactions on Facebook [180]. The full network comprises 46 952 users (ver-
tices) and 876 993 unweighted edges (wall posts). We then used Kempe et al.’s
approach [92] to create weighted edges between users, by assigning a weight of
1− (1− p)n to an edge (u, v) if u posted n times on v’s wall, with p = 0.1.

Additionally, we took the high-energy physics collaboration undirected net-
work [131], which was used in earlier publications on viral marketing [92]. The
full network has 7 610 authors (vertices) and 15 751 directed unweighted edges,
which we turn into probabilities, again following Kempe et al.’s approach. If an
edge (u, v) has weight n, where n is the number of times that author v cites au-
thor u, the edge gets a weight of 1− (1− p)n, where we choose p = 0.1. Note that
for this specific network, we may not be interested in spread of influence for the
purposes of word-of-mouth marketing. Rather, the spread of influence may refer
to the spread of ideas, research interest or even research styles within a scientific
community, by means of citation.

We used the Louvain community detection algorithm [19] to extract commu-
nities of suitable sizes. In this work, we refer to instances from these datasets as
facebook and hepth instances, respectively.

Again, we distinguish several variants, similar to the ones described above:
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Variant 1: Maximise expectation, upper bound on solution cardinality. This set-
ting is the one described in Section 1.1 and Example 4.2.1, where we aim to
maximise the expected number of eventual customers of our product, given
a fixed budget with which we send a free product sample to k people in the
given social network.

Variant 2: Minimise solution cardinality, lower bound on expectation. Here we
have a requirement that the expected number of people who will eventually
buy our product is at least θ, while we minimise the number of free samples
that we have to hand out to achieve this goal.

These are the only variants we consider, as the other ones do not make much
sense in this problem setting. Again, for each (community, variant) pair we de-
termined a threshold k or θ that yields a hard problem to solve. We provide more
details in Sections 5.3, 6.5 and 7.3.

4.5.3 Power grid reliability

This is the problem described in Example 4.2.2; we note that it is somewhat sim-
ilar to the theory compression or sparsification problem described above. Again, we
associate stochastic variables and decision variables with the edges of the net-
work.

However, in this problem we are not given a set of paired vertices, but two
sets of vertices, the source vertices and the target vertices; these vertices are not
paired. We wish to maximise the expected number of target vertices that can be
reached from at least one of the source vertices. Moreover, where in the sparsifi-
cation problem described above, setting a variable that represents an edge to false
is interpreted as removing that edge from the graph, in the power grid reliabil-
ity problem, its connection probability becomes lower, but not zero. Finally, the
graphs in the power grid reliability problem are undirected rather than directed.

We take network models of European and North-American high-voltage
power grids [183], extracted by GridKit3. We extract connected components from
geographic regions (countries for the European network and states for the North-
American network), making sure that they contain both source vertices (power
producers) and target vertices (power consumers).

For the survival probabilities of the power lines that are or are not reinforced,
we turn to the literature [61]. We associate a uniform survival probability with
each reinforced power line of 0.875, which drops to 0.4 when it is not reinforced.

3Available at github.com/bdw/GridKit
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In this work we refer to instances from this problem set as powergrid in-
stances. We only consider Variant 1-type problems in this work, where we as-
sume that a country or state has a fixed budget for power line maintenance and
aims to maximise the expected number of households that still have power af-
ter a natural disaster. We provide specifics about these instances in Sections 6.5
and 7.3.

4.5.4 Top fake news distributors

To investigate the interaction of the stochastic constraint with constraints other
than cardinality constraints, we also consider a frequent itemset mining (FIM) prob-
lem, based on the spread of influence problem as described above. Note that
FIM problems, like the problem setting described below, cannot currently fully
be modelled using SC-ProbLog, and thus require us to combine different repre-
sentation languages to model them.

A challenging problem of our times is the spread of fake news. Often-times,
fake news is released into specific ‘bubbles’, where it can then spread. It may
therefore be interesting to identify not necessarily which fake news distributors
are most influential, but which fake news distributors are most influential to the
same set of people. We can model this as a FIM problem as follows.

Given a social network, we aim to enumerate all sets of users U ⊆ V for
which the following holds. First, the selected users U are influential, directly or
indirectly, as determined by spread of influence: ∑v∈V P(φv | σU) ≥ θ, where φv

represents the event that a user v believes or adopts a piece of fake news, and σU

represents the ‘strategy’ in which all users in U are considered to be the initial
distributors of that news. In words: the collective influence of the users in U is
at least θ. Second, the selected users all directly influence the same large group
of other users: with each set of users U we can associate another set W ⊆ V of
users of size at least κ, such that there is an edge (u, w) in the network for each
user u ∈ U and for each user w ∈ W, meaning that u directly tries to influence
w. Intuitively, we can think of the users in set W as social media followers of a
fake news distributor u ∈ U. The cardinality constraint of |W| ≥ κ then expresses
the minimum following of u. This second constraint corresponds to a minimum
support constraint over a transaction database in FIM (see, e.g., [2]).

We create this transaction database D by including in it one transaction τ per
user v ∈ V. Here, τ represents the set of other users who influence v directly.
Thus, if fake news spreading user u ∈ U has a following of |W|, it means that u is
present in |W| transactions in D. We used the facebook [180] dataset to generate
communities as described above, and formulated a fifth problem variant:
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Variant 5: Lower bound on expectation, lower bound on support. We aim to
identify the sets of users U (itemsets) such that U ⊆ τ for at least κ indi-
vidual transactions τ ∈ D (making them frequent), where each itemset U
has a collective expected influence of at least θ.

Hence, we combine the stochastic constraint from Equation 1.1 with a minimum
support constraint, known from the FIM literature [164].

Note that, in all of the above example problems and problem settings, we are
summing over probabilities P(φ | σ) for different φ ∈ Φ. It is in this context
that multiple-rooted DDs (as mentioned in Section 2.4), and thus multiple-rooted
arithmetic circuits (ACs) (as mentioned in Section 2.5) are relevant.

We believe that the problem settings described above present a varied and
relevant set of problems for us to test our methods on. Specifically, we believe the
variety between the problem settings to be sufficient enough for us to evaluate
if there are approaches that seem to be universally suited for solving SCPs, or if
our methods may have more complementary properties when it comes to solving
problems from these different domains.

4.6 Conclusion

In this chapter, we provided a basic introduction to SCPs and how to model them
using our newly proposed language stochastic constraint probabilistic Prolog: SC-
ProbLog. Additionally, we provided an overview of work that is related to SCPs,
and to methods we use in this work to solve them, placing our modelling and
solving methods in the context of existing work on stochastic satisfiability prob-
lems, probabilistic logic programming, stochastic constraint programming and
the use of knowledge compilation for solving stochastic optimisation problems.
Finally, we described a variety of problems and problem settings that we will use
to evaluate our SCP solving methods in the next three chapters of this disserta-
tion. As such, this chapter can be seen as a thorough and extensive introduction
to the background required for remainder of this dissertation.
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solving SCPs

Solving stochastic constraint (optimisation) problems (SCPs) requires efficient prob-
abilistic inference and search. In this chapter, we propose a pipeline for effective
SCP solving, which consists of two stages. In the first stage, we compile the un-
derlying probability distribution of the input SCP into decision diagrams (DDs)
(ordered binary decision diagrams (OBDDs) or sentential decision diagrams (SDDs),
specifically). These diagrams are converted into arithmetic circuits (ACs), which
are decomposed into models that are solved using constraint programming (CP)
or mixed integer programming (MIP) solvers in the second stage. We show that,
to yield linear constraints in those models, DDs need to be compiled in a specific
form. We introduce a new method for compiling small SDDs in this form (OBDDs
are naturally in this form). We evaluate the effectiveness of several variations of
this pipeline on test cases in viral marketing and bioinformatics, and find that
MIP-based methods outperform CP-based methods on all our test instances. This
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chapter is based on the following publication:

� A.L.D. Latour, B. Babaki, A. Dries, A. Kimmig, G. Van den Broeck, and S. Nijs-
sen. ‘Combining Stochastic Constraint Optimization and Probabilistic Pro-
gramming — From Knowledge Compilation to Constraint Solving’. In: CP,
Springer. pp. 495–511. 2017.

5.1 Introduction

Recall from Section 4.1 that this work is partially motivated by the observations
that most SCP-related literature focuses on scheduling and planning problems,
whereas SCPs formulated on probabilistic networks remain much less studied,
and that there exists no generic language for programming stochastic constraint
optimisation problems. We addressed both of these limitations in Chapter 4.

The aim of this chapter is to advance the state of the art in SCP solving on a
third dimension, observing:

• There is no automatic pipeline for solving SCPs written in the new SC-ProbLog

language.

We address this limitation by building a pipeline on technology that is taken both
from the probabilistic reasoning literature and CP literature. For the probabilistic
reasoning component, we leverage knowledge compilation technology, demon-
strating how both OBDDs [26] and SDDs [46] can be used in this context, namely:
by putting hard constraints on DD representations of probability distributions.
In this chapter, our focus is primarily on SDDs, since they are known to lead to
smaller representations of distributions than OBDDs [24] (see also Section 2.4).

We remark that, in this work, we study the use of compiling propositional for-
mulae to OBDDs [26] and SDDs [46] to facilitate tractable weighted model counting
(WMC), in the context of SCP solving. Note that, in the constraint programming
(CP) literature, both OBDDs and SDDs are often employed as compact represen-
tations for the satisfying assignments of a constraint [70, 77]. Here, we use these
diagrams differently.

Specifically, we propose to convert the DDs into ACs, as described in Sec-
tion 2.5, which we can use to compute conditional probabilities in a time that is
linear in the size of the underlying DD. Part of the novelty of our approach lies
in then formulating a hard constraint on the AC and decomposing that constraint
(and thus the AC) into a set of local constraints.

We do this so we can translate a global constraint for which no propagation
algorithm exists, into a set of constraints for which propagation algorithms have
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been developed and optimised for decades, to see how much we can benefit from
these in the context of solving SCPs. Finally, we solve these constraints using CP
and MIP technology.

Note that this modular approach to building an SCP solver has the advantage
of allowing us to use the best building blocks for the pipeline that are on offer,
instead of having to integrate different elements into one single solver. By us-
ing knowledge compilation as part of this pipeline, part of the model counting
problem can be solved in a preprocessing phase, by the knowledge compiler. The
resulting DD can then be passed on to the next phase, where it is used to enable
repeated querying, which is useful in finding an optimal strategy, or finding a
strategy that respects a certain constraint.

Another key technical contribution of this work is that we show that SDDs
need to satisfy strict criteria in order for them to yield linear representations
of probabilistic constraints. We introduce a new algorithm for minimising SDDs
within this normal form. This allows us to reduce the size of the resulting ACs,
while keeping the resulting constraint optimisation model linear, rather than
quadratic, and thus easier to solve for MIP solvers.

The remainder of this chapter is organised as follows. In Section 5.2, we
demonstrate how stochastic constraints on OBDD- and SDD-representations of
probability distributions can be decomposed for solving with CP or MIP technol-
ogy. In that section we also introduce the aforementioned normal form and our
new SDD minimisation algorithm, as well as a solving pipeline based on DD de-
composition. We present an experimental evaluation in Section 5.3, and conclude
this chapter in Section 5.4.

5.2 Decomposing and solving stochastic constraints

In this section we describe the pipeline that we propose in this chapter in more
detail.

Recall from Section 2.5 that, once we have compiled a probability distribu-
tion into a DD, we can transform that DD into an ACs to compute conditional
probabilities. Specifically, we can use ACs to compute the success probabilities
of residual probability-weighted propositional formulae φ|σ. A key observation
is that the constraint in Equation 1.1 essentially is a constraint on the strategy σ.
Recall that we encode probability distributions using DDs. Taking OBDDs as an
example, we encode a strategy by adding weights to the outgoing arcs of the de-
cision nodes. Thus, we can see Equation 1.1 as a constraint on the outcome of the
AC that encodes P (φ|σ), given the weights on the outgoing arcs of the probabilis-
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tic nodes of the underlying OBDD. We can also see Equation 1.1 as a constraint
the weights we can put on the outgoing arcs of the decision nodes in that OBDD,
to reflect a strategy. Because σ specifies value assignments to Boolean variables,
we can cast solving Equation 1.1 as a discrete constraint satisfaction problem.

In this section, we demonstrate how we can decompose a constraint on an
AC representation of a probability distribution into a (linear) program that can
be solved by a CP or MIP solver. We first show how this can be done for ACs ob-
tained from OBDDs, and then describe how we can do the same for ACs obtained
from SDD representations. For the sake of brevity, we will often refer to “decom-
posing a constraint on an AC derived from a DD representation of a probability
distribution” as “decomposing a DD“.

We close this section with a proposal for a SCP solving pipeline that uses these
DD decompositions.

5.2.1 Decomposing a stochastic constraint on an OBDD

Recall from Section 2.5.1 that we represent a specific strategy by labelling the
outgoing arcs of OBDD nodes labelled with decision variables with the values 0
and 1. Our aim is to solve Equation 1.1, which we interpret as a constraint on the
values we can use to label those arcs. Therefore, we can interpret Equation 1.1
as a constraint on the AC induced by the OBDD that describes the probability
distribution of an SCP.

Decomposition of a global constraint on an OBDD

We now show how we can decompose this global constraint on the OBDD into a
multitude of smaller, local constraints.

Example 5.2.1 (Decomposition of a constraint on an OBDD representation of a
probability distribution). Figure 5.1 shows an example of an OBDD representation of
a formula φ. We impose the constraint P(φ|σ) ≥ 0.4. Figure 5.1 also shows an example
of a decomposition of P(φ|σ) ≥ 0.4 on the whole OBDD, adding auxiliary variables ZY1 ,
ZY2 and ZX , whose domains include real numbers. This decomposition represents a CP
or MIP model of the constraint P(φσ) ≥ 0.4.

The next step to solving the global constraint, is to simply feed this set of
smaller, local constraints to a CP or MIP solver. However, the decomposition in
Figure 5.1 contains quadratic constraints, as illustrated in the following example,
which are hard to solve for MIP solvers and CP solvers.
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P(φ)

X

Y1 Y2

0 1

0.9
0.1

0.4
0.6

0.7
0.3

P(φ | σ) ≥ 0.4

0.1 · ZY1 + 0.9 · ZX ≥ 0.4

ZX := (1− X) · ZY1 + X · ZY2

ZY1 := 0.6 ·Y
ZY2 := 0.6 ·Y + 0.3 · (1−Y)

X, Y ∈ {0, 1}
0 ≤ P(φ|σ) ≤ 0.6

0 ≤ ZX ≤ 0.6

0 ≤ ZY1 ≤ 0.6

0.3 ≤ ZY2 ≤ 0.6

Figure 5.1: A small OBDD (left) with three stochastic variables (circular nodes) and two
decision variables X and Y (rectangular nodes). The two nodes corresponding to decision
variable Y are indexed for clarity. The decomposition on the right is constructed using
Equation 2.11 (page 39).

Example 5.2.2 (Quadratic constraint). Figure 5.2 shows a graphical representation of
the constraint in Example 5.2.1. It particularly shows a relaxation (recall the discussion
of MIPs in Section 3.4) of the constraint. The coloured lines, labelled with values 0.0 to
0.7 represent contours on which the combination of (relaxed) X and Y values yield those
particular values for 0.1 · ZY1 + 0.9 · ZX , and thus for P(φ | σ).

We have added the extra constraint of ∑D∈{X,Y} D ≤ 1 to the figure, resulting in a
SCP that corresponds to the constraint satisfaction problem (CSP) in Example 3.3.2,
and shaded the feasible region. It is easy to read from the figure that the only solution is
(X = 0, Y = 1), with value 0.6, as in Example 3.3.2

Linearising quadratic constraints

Note that, while we can easily read the only solution to the SCP described above
directly from Figure 5.2, the curved lines, due to the quadratic constraint, make it
harder for the MIP solvers in particular to apply techniques such as branch-and-
bound and cutting planes to narrow down the search towards integer solutions.

We therefore linearise this decomposition, for easier solving. A constraint of
the form A = B · C can be linearised in the following cases:

1. At least one of the two variables in {B, C} is a constant.

2. At least one of the two variables in {B, C} is a Boolean variable.
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Figure 5.2: Visualisation of the quadratic constraint 0.1 · ZY1 + 0.9 · ZX ≥ 0.4 from Fig-
ure 5.1, as function of the values of X and Y. The added constraint X + Y ≤ 1 makes this
SCP correspond to the one described in Example 3.3.2.

We obtain constraints that encode the OBDD by simply applying Equa-
tion 2.11, which we repeat here, for convenience:

v(r) := w(r) · v
(
r+
)
+ (1− w(r)) · v

(
r−
)

,

to all (internal) nodes of the OBDD. An OBDD node r can be labelled either with a
decision variable, or with a stochastic variable. If r is labelled with a decision vari-
able, we can apply the big-M method [127] (with M ≤ 1, because all real values
are probabilities) to linearise the constraint expressed by Equation 2.11. If r is la-
belled with a stochastic variable, the arguments on either side of the ‘+’-sign each
consist of a real number (w(r) or 1−w(r)), multiplied by an expression (v(r+) or
v(r−)). If an expression is linear, multiplication with a real number preserves lin-
earity. Summing two linear expressions yields another linear expression, making
the constraint obtained by applying Equation 2.11 linear if r is labelled with a
stochastic variable. Consequently, one of the above two cases always holds for
all multiplications in the decomposition of a stochastic constraint on an OBDD
representation of a probability distribution.

We illustrate this with the following example:

Example 5.2.3 (Linearising a quadratic stochastic constraint). The quadratic con-
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straint ZX := (1− X) · ZY1 + X · ZY2 in Figure 5.1 (where X is a Boolean, as shown in
Figure 5.1) can be linearised as follows:

ZX := ZX> + ZX⊥

0 ≤ ZX> ≤ 1

0 ≤ ZX⊥ ≤ 1

ZX> ≤ X

ZX> ≤ ZY2 + (1− X)

ZX> ≥ ZY2 − (1− X)

ZX⊥ ≤ 1− X

ZX⊥ ≤ ZY1 + X

ZX⊥ ≥ ZY1 − X

(5.1)

We linearise the model by repeating this method for all quadratic constraints.

5.2.2 Decomposing a stochastic constraint on an SDD

The decomposition of a constraint on a probability distribution represented by
an SDD is very similar to that of a constraint on a probability distribution that
is represented by an OBDD. One important difference is that not every SDD can
be decomposed into a linear program. In the general case, SDDs yield quadratic
programs, which are typically harder or impossible to solve for MIP solvers than
linear programs. As we expect these constraints to be nonpositive semidefinite in
the general case, we expect that we cannot apply quadratically constrained quadratic
program (QCQP) solvers, either. We delegate the finding of a proof for this hunch
to future work.

We first show why SDDs cannot be decomposed into linear models in the
general case . Then, we identify a specific property of SDDs that does allow SDDs
with that property to be decomposed into linear programs. Finally, we show how
we can create an SDD minimisation algorithm for SDDs with this property.

From SDD to CP or MIP model

To see why we cannot linearise any decomposed constraint on an SDDs, recall
the method for creating a linear model out of a constraint on an OBDD represen-
tation of a probability distribution as described in Section 5.2.1, and observe the
difference between Equation 2.11 and Equation 2.12, which we repeat here for
convenience:

Equation 2.11: v(r) := w(r) · v
(
r+
)
+ (1− w(r)) · v

(
r−
)

, (OBDD node), and

Equation 2.12: v(r) := v
(

p`
)
· v
(

s`
)
+ v (pr) · v (sr) (SDD node).

While constraints generated with Equation 2.11 can always be linearised (be-
cause w(r) and (1−w(r)) are either constants or Booleans), this is not the case for
constraints generated with Equation 2.12. In that equation, the two arguments on
either side of the ‘+’-sign are each a product of two expressions, e.g., v

(
p`
)

and
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v
(

s`
)

on the left-hand side of the ‘+’. Even if those two expressions are them-
selves linear, their product can only be linearised efficiently if at least one of the
expressions is constructed using only constants (i.e., weights corresponding to
stochastic variables, in which case the product is trivially linear), or using only
decision variables (in which case the product can be linearised using the big-M
method).

We now identify a class of SDDs whose decompositions can be linearised.

Single-mixed path vtrees

Recall the description of vtrees in Section 2.4.3, and recall that they generalise
the concept of variable order. Recall also that, while SDDs do not require a total
order, we can derive a total order O from a vtree by traversing it in a left to right
manner, noting the variables that label the leaves in the order in which they are
encountered in this traversal. Different vtrees can thus correspond to the same
total order O.

We now show that it suffices to constrain the vtrees to ensure that the decom-
position of the SDDs that respect them can be linearised. Recall that for each SDD
decomposition node, the respected vtree determines the scopes of sub formulae
represented by the prime and the sub. We observe the following: if all left-hand
(right-hand) descendants of an internal vtree node n are stochastic variables, then
for each SDD decomposition node (p, s) whose parent respects n, it holds that all
variables occurring in n’s prime p (sub s) are stochastic as well. A similar property
holds for decision variables.

Recall from Section 5.2.2 that if the sub or the prime of a decomposition node
represents a constant or a Boolean variable, this means that the constraints asso-
ciate with those decomposition nodes can be linearised. Note that, if sc(p) ⊆ T,
the only variables in the scope of prime p are stochastic ones. Since stochastic vari-
ables can be considered as constants for the MIP model, we can precompute the
corresponding value for the prime, effectively eliminating the MIP model vari-
able associated with that prime. Similarly, if sc(p) ⊆ D, the sub formula rep-
resented by a prime p consists only of decision variables, which can only take
Boolean values in the decomposition. Since we can linearise all operations on
Boolean variables [127], any prime containing only decision variables can be ex-
pressed by a Boolean variable with linear relations to other variables. Thus, in
each of these two cases, the expression represented by the prime can be linearised
and hence the product represented by the SDD decomposition node as well. The
same holds for subs.

This leads us to define the concept of mixed and pure nodes in a vtree. A pure
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node is an internal node whose leaf descendants all are variables of the same type
(either stochastic or decision), while a mixed node is an internal node that has leaf
descendants of both types. We state that an SDD can be linearised into a MIP
model if the vtree that it respects has the single mixed path (SMP) property.

Definition 5.2.1. Given a vtree on variables of two distinct classes (e.g. decision and
stochastic). This vtree has the single mixed path (SMP) property (and is called an SMP
vtree) if, for each of its internal nodes n, the following holds: either both children of n are
pure nodes, or one child of n is pure and the other child is mixed. As a consequence, if an
SMP vtree has mixed nodes, all mixed nodes occur on the same path from the root of the
vtree to the lowest mixed node.

SMP-preserving SDD minimisation

Recall that SDDs that respect right-linear vtrees are equivalent to OBDDs. One
can easily verify that a right-linear vtree has the SMP property: if it has an single
mixed path, it is on the right spine of the vtree. From this follows that OBDDs can
be linearised. However: right-linear vtrees generally do not yield the smallest
SDDs. Since the size of the SDD determines the size of the resulting MIP model,
and thus likely the solving time, small SDDs are preferable as input for the MIP
model builder.

Choi and Darwiche have proposed a local search algorithm for SDD minimi-
sation [36]. This algorithm considers three operations on the vtree: right-rotate,
left-rotate (each well-known operations on binary trees) and swap. When a swap
operation is applied to an internal node, the sub vtrees rooted at its children are
swapped. Given a (sub) vtree, the greedy local search algorithm of Choi and Dar-
wiche loops through its neighbourhood of different vtrees by applying consecu-
tive rotate and swap operations, trying to find a vtree that yields a smaller SDD.
Recall from Section 2.4.1 that we expect SDD minimisation to be NP-hard.

Generally, this minimisation produces vtrees that do not have the SMP prop-
erty, even if the initial vtree did, because rotation may remove this property.

A desirable property of Choi and Darwiche’s algorithm is the following: the
three local moves considered are sufficient to turn any vtree on a certain set of
variables into any other vtree on the same set of variables. Consequently, the local
moves in principle allow complete traversal of the search space of vtrees.

Here, we propose a simple modification of Choi and Darwiche’s algorithm:
we use the same local moves as their algorithm does, but any move that leads to
a vtree that violates the SMP property is immediately rejected.

While this modification is conceptually easy, a relevant fundamental question
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Figure 5.3: Rotate operations on an SMP vtree. Node LL is the lowest variable in the vari-
able ordering induced by these vtrees. Nodes x and y are internal; a and b are sub vtrees.

is whether under this modification it is still possible to traverse the space of SMP
vtrees on a fixed set of variables completely. We show that this is indeed the case.

In the following we refer to the leaf node that represents the variable that is
lowest in the order associated with a vtree as LL (lowest leaf).

Lemma 5.2.1. Let y be the parent and x the grandparent of the LL in an SMP vtree.
Right rotate on x maintains the SMP property for the vtree rooted at y.

Proof. Consider the left SMP vtree in Figure 5.3. Given that this vtree satisfies the
SMP property by assumption, sub vtrees a and b cannot both be mixed, but one
of them can be. Now consider the following cases:

Both a and b are pure and of the same class as LL: Lemma 5.2.1 holds trivially.

Both a and b are pure, not each of the same class as LL: Any class assignment
to a and b will preserve the SMP property.

Node b is pure, node a is mixed: Since b is of the same class as LL (by assump-
tion), node y is pure and node x is mixed. After applying right-rotate on
node y, both y and x are mixed, and the SMP property is preserved.

Node b is mixed, node a is pure: Node a can belong to any class, since both node
y and node x are mixed before as well as after applying right-rotate to y,
preserving the SMP property under rotation.

These cases cover all possibilities for the classes of a and b.

Note that the SMP vtree described above may be a sub vtree of a larger vtree.
The fact that the right-rotate operation does not change the nature (mix or pure)
of the root of this sub vtree, leads to the following corollary:

Corollary 5.2.1. A right-rotate operation on the grandparent of the LL node does not
change the SMP status of the full vtree.
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Lemma 5.2.2. Given an SMP vtree, from which we derive total variable order O and a
particular node LL. We can always obtain an SMP vtree from which we can derive the
same total order O, in which the LL is the left child of the root, through a series of right-
rotate operations, without ever in the process transforming it into a vtree that violates the
SMP property.

Proof. A right-rotate operation on an internal vtree node decreases its left child’s
distance to the root of the vtree by one. Repeated applications of right-rotate on
LL’s grandparent ultimately makes LL’s parent the vtree’s root. By Lemma 5.2.1
and Corollary 5.2.1, the SMP status of the vtree never changes in this process.

Lemma 5.2.3. Given an SMP vtree on order O, we can always obtain a right-linear
vtree on the same order, through a series of right-rotate operations, without ever in the
process transforming it into a vtree that violates the SMP property.

Proof. By Lemma 5.2.2 we can turn any SMP vtree in one for which the LL is the
left child of the root. This vtree can be made right-linear by recursively applying
this method to the root’s right child.

Lemma 5.2.4. A right-linear SMP vtree with variable order O can be transformed in
any SMP vtree on the same variable order by a series of left-rotate operations without ever
in the process transforming into a vtree without the SMP property.

Proof. Since left-rotate is the dual operation of right-rotate, a sequence of right-
rotate moves transforming any vtree to a right-linear one through right-rotate
operations, can simply be reversed through left-rotate operations to turn a right-
linear vtree in any other (on the same variable order).

Note that rotate operations preserve the derived total order of the vtree,
traversing the vtree from left to right, we still encounter the leaves in the same
order. The only thing that changes, is the vtree’s shape. However, the space of
possible vtrees on a fixed set of variables is larger, since different total variable
orders exist. The total order of variables is only changed by the application of
swap operations.

Lemma 5.2.5. Any right-linear vtree on variable order O can be transformed into a
right-linear vtree on any other total variable order O′ through a series of rotate and swap
operations without ever in the process transforming into a vtree that violates the SMP
property.

Proof. Observe that any right-linear vtree satisfies the SMP property. Observe that
if we can reverse the mutual total order of two adjacent variables (e.g. A ≺ B ≺
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C ≺ D becomes A ≺ C ≺ B ≺ D), we can create any total variable order by
repeatedly reversing the orders of adjacent variables. This reversal in the total
order is simple to achieve. Suppose that node b in the right vtree of Figure 5.3
is a single variable, as is LL. We can make LL and b swap places by applying a
left-rotate on y, resulting in the left vtree of Figure 5.3, and then applying a swap
operation on y, followed by a right-rotate operation on x.

Theorem 5.2.1. Any SMP vtree can be transformed into any other SMP vtree on the
same variable through a series of rotation and swap moves, without ever in the process
transforming into a vtree that does not have the SMP property.

We conclude that an SMP-preserving minimisation algorithm that applies
only swap and rotate operations can in principle convert any SMP vtree into any
other SMP vtree on the same variables. Note that, in principle, we could use an
unrestricted minimisation algorithm. However, the search space of possible SMP
vtrees on a given total orderO is only a small part of the search space of all vtrees
on O. Therefore, it might not be easy or quick to transform a minimised SDD
that violates the SMP property back into one that respects it, and we choose to
adapt the minimisation algorithm in such a way that the vtree never loses the
SMP property. Thanks to the above theorem, it is possible to traverse the entire
search space of SMP vtree for a given total order, even though the path from one
vtree to another might be very long.

Using the insights above, we implemented a greedy SMP-preserving min-
imisation algorithm as follows, building on the minimisation algorithm imple-
mented in UCLA’s sdd 1.1.1 library1. First, we compile an SDD without any min-
imisation. Since in the default settings, the resulting SDD respect a right-linear
vtree, by Definition 5.2.1 this SDD has the SMP property. We then minimise this
SDD by iteratively selecting an internal vtree node and exploring the neighbour-
hood of possible vtrees by performing SMP-preserving left-rotate, right-rotate
and swap operations on it. We greedily choose that operation that reduces the
size of the SDD the most. We repeat this process until the SDD size converges.

5.2.3 A decomposition-based SCP solving pipeline

In Sections 4.2 and 4.3 we showed how to model and program SCPs, and in Sec-
tion 1.3 we identified two components to SCP solving complexity: probabilistic
inference and search space traversal. Then, in Section 2.5, we showed how we
can use the compact truth table representations that decision diagrams offer to

1Available at reasoning.cs.ucla.edu/sdd
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5.2 Decomposing and solving stochastic constraints

tractably perform online probabilistic inference. We briefly argued for the use of
CP and MIP technology for efficient search space traversal in Sections 3.3 and 3.4.

In this chapter we described how we can combine these ingredients to create
constraint programs and mixed-integer programs that encode SCPs that can be
solved efficiently.

In order to solve SCPs, we propose the following decomposition-based
pipeline, see also Figure 5.4:

Step 1: Model the problem using a probabilistic network and (stochastic) con-
straint(s) or optimisation criterion.

Step 2: Program the problem using SC-ProbLog.

Step 3: Model the program for the queries present in the optimisation criterion
of the SCP into a set of propositional formulae Φ.

Step 4: Compile a multi-rooted OBDD or SDD ∆, such that each root encodes
the conditional success probability P(φ | σ) of one of the queries φ ∈
Φ, using possibly SMP-preserving minimisation algorithms for the SDD
compilation to guarantee linearised models.

Step 5: Convert ∆ into a multi-rooted AC (see Section 2.5), and then decompose
this AC into a set of constraints, using the big-M method to linearise con-
straints when appropriate.

Step 6: Add the (stochastic) constraints to the set of constraints.

Step 7: Add the (stochastic) optimisation criterion to the resulting CP or MIP
model.

Step 8: Use an off-the-shelf CP or MIP solver to find the optimal solution.

Note that, while we include OBDDs in the pipeline for reasons of general-
ity, in this chapter, the focus in primarily on SDDs. Recall from Section 2.5 that
SDDs that respect a right-linear vtree are actually OBDDs and that SDDs can be
more succinct than OBDDs, once minimised. This motivates our choice to focus
on SDDs in this chapter.
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c d0.4
0.8

0.1
0.3

maximise ∑φ∈Φ ρφ · P (φ | σ),

subject to ∑D∈D D ≤ k

person(alexa). person(claire). 0.4:: dir(alexa ,behrouz). 0.8:: dir(alexa ,claire).

person(behrouz). person(daniel). 0.1:: dir(behrouz ,claire). 0.3:: dir(claire ,daniel).

?:: gets_free_sample(P) :- person(P).

influences(X,Y) :- dir(X,Y). buys(X) :- gets_free_sample(X).

influences(X,Y) :- dir(Y,X). buys(X) :- influences(X,Y), buys(Y).

{ gets_free_sample(P) => 1 :- person(P). } k. #maximise { buys(P) => 1 :- person(P). }.

φa = Da ∨ (Db ∧ (Tab ∨ (Tbc ∧ Tac))) ∨ (Dc ∧ (Tac ∨ (Tab ∧ Tbc))) ∨ (Dd ∧ Tcd ∧ (Tac ∨ (Tab ∧ Tbc)))

...

φd = Dd ∨ (Dc ∧ Tcd) ∨ (Db ∧ Tbc ∧ Tcd) ∨ (Da ∧ Tac ∧ Tcd) ∨ (Db ∧ Tba ∧ Tac ∧ Tce) ∨ (Da ∧ Tab ∧ Tbc ∧ Dcd)

OBDD

or

SDD

CP

solver

Gecode

or

MIP

solver

Gurobi

Figure 5.4: Overview of the decomposition-based SCP solving pipeline we propose in this
chapter.
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5.3 Experimental evaluation

We state some questions about the approach described in the previous section.
Then we describe the experiments that we performed to answer these questions.

5.3.1 Research questions

Recall that the size of a MIP or CP model is linear in the size of the SDD represen-
tation of the probability distribution on which we impose a stochastic constraint.
We expect smaller models to be faster to solve. However: minimising an SDD
takes time. Furthermore, when quadratic constraints are allowed, we expect to
obtain smaller SDDs; however, solving quadratic problems using CP may take
longer than solving MIPs. We pose the following questions:

Q2 How do SDD sizes depend on the choice of minimisation algorithm?

Q3 How do the calculation times for the full toolchain compare for CP and MIP
solvers, with and without appropriate minimisation?

Q4 How do the computation times for different phases of the algorithm compare
to each other?

To answer these questions, and to demonstrate that SC-ProbLog programs can
be solved in practice, we apply our algorithms to different SCPs. Of course, the
constraints determine problem hardness, which begs the question:

Q1 Which threshold settings are useful for an evaluation of the solving times?

5.3.2 Experimental setup

We briefly describe our experimental setup and some details on the problem in-
stances we used for our experiments.

Software and hardware

We implemented the stochastic constraint component of SC-ProbLog2 in Python

3.4, building on the existing ProbLog 2.1 [59] implementation. ProbLog 2.1 uses
UCLA’s sdd 1.1.1 library [36], which is implemented in C, for SDD compilation.3

We built on this code to implement our SMP-preserving SDD-minimisation algo-
rithm. To convert constraints on SDDs representations of probability distributions
into MIP models, we used Gurobi 6.52, which provides a convenient modelling

2Available at github.com/ML-KULeuven/problog/tree/sc-problog.
3Available at reasoning.cs.ucla.edu/sdd.
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Table 5.1: Some characteristics of the problem instances for the experiments in this sec-
tion. We give the extracted community and variant of the problem we formulate on that
network (see Section 4.5). We also provide the size of the set(s) of interest |Φ| and the
number of decision variables |D| in the SC-ProbLog encoding of each problem. For each
problem, we give the constraint threshold k or θ and objective value vobj (‘n/a’ denotes a
problem that has no solution for that threshold).

instance problem type |Φ| |D| threshold vobj

spine16, variant 1 sparsification 23 33 k = 15 14.4
spine16, variant 2 sparsification 23 36 θ = 6.9 8
spine27, variant 1 sparsification 13 76 k = 25 10.2
spine27, variant 2 sparsification 13 76 θ = 6.5 8
spine27, variant 3 sparsification 26 86 θ = 1.3 9.5
spine27, variant 4 sparsification 13 71 θ = 6.5 52
hepth47, variant 1 spread of influence 20 20 k = 10 3.2
hepth47, variant 2 spread of influence 20 20 θ = 2 6
hepth5, variant 1 spread of influence 10 33 k = 20 2.8
hepth5, variant 2 spread of influence 10 33 θ = 5 n/a

interface through gurobipy.4 We built our CP models using Gecode 5.0.0. We used
Gurobi 6.52 as MIP solver and Gecode 5.0.0 as CP solver.5

We ran our experiments on a machine that we call JABBA. It has an Intel Xeon
E5-2630 processor and 512GB RAM, running under Red Hat 4.8.3-9. For each in-
dividual computational step of the pipeline (Steps 3, 4 and 8) we used a timeout
on our experiments of 3 600 s (1 hour).

Problem instances

For our experiments we use instances obtained from the spine [133] and
hepth [131] datasets described in Section 4.5. We selected specific communities
that we refer to as spine16, spine27, hepth47 and hepth5 in our results, and sum-
marise some of the characteristics of the resulting problem instances in Table 5.1.

5.3.3 Results

To answer Q1, Figure 5.5 shows solving times for the hepth47-v1 problem, for
different thresholds. As expected, we find that thresholds that are not very strict

4Available at www.gurobi.com.
5Available www.gecode.org.
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Table 5.2: Performance in seconds of the different methods on the hardest instances (see
Table 5.1) for the full pipeline. We show the solving times for SDDs obtained with compi-
lation with no minimisation (tnone), with SMP minimisation (tsmp) and with default min-
imisation (tde f ault) for Gurobi and Gecode. We indicate a timeout with ‘t/o’.

Gurobi Gecode

instance tnone tsmp tnone tde f ault

spine16, variant 1 3.9 3.4 1 389.5 591.4
spine16, variant 2 4.1 3.9 70.9 31.4
spine27, variant 1 5.9 5.6 t/o t/o
spine27, variant 2 4.7 5.7 t/o 1 878.2
spine27, variant 3 443.2 471.3 t/o t/o
spine27, variant 4 23.3 21.9 222.9 8.6
hepth47, variant 1 545.8 412.7 t/o 130.9
hepth47, variant 2 188.6 163.8 2 859.9 6.9
hepth5, variant 1 2 076.8 1 185.7 t/o t/o
hepth5, variant 2 364.6 346.4 t/o t/o

or loose, require the longest solving times. We performed similar experiments for
the other problem settings to systematically identify the threshold for which each
problem was the hardest, which we then chose as test cases for the SCP solving
method comparison.

To answer Q2, Figure 5.6 shows a comparison of the size reductions obtained
by the SMP-minimisation algorithm and the default minimisation algorithm pro-
vided by the sdd library. We find that the SMP minimisation algorithm typically
halves the size of the initial SDD. The default minimisation typically reduces the
size of the SDD by one or two orders of magnitude.

To answer Q3, we summarise the performance of the four methods on our
test cases in Table 5.2. For the hepth5 problem we selected the ten highest-degree
nodes for the queries, since the program could not be grounded within one hour if
we selected all 33 nodes in the problem for querying. This reduced the grounding
time to about 120 seconds. For the other test cases we have selected all queries in
the problem, with grounding times in the range of 1–5 seconds.

We observe that without any minimisation of the SDD, Gurobi consistently
outperforms Gecode. Furthermore, we observe that the difference made by SDD
minimisation is larger for the Gecode methods than for the Gurobi methods. This
can largely be explained by the results in Figure 5.6, and by those in Figure 5.7,
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Figure 5.5: Example of performance of
Gurobi on a decomposed non-minimised
SDD for different thresholds, for problem
hepth47, variant 1.
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Figure 5.8: Comparison of full pipeline
solving times for the two solvers.

which answers Q4. The latter results show that generally, compiling SDDs is a
matter of seconds, whether they are being minimised or not. The exception is the
hepth5 problem, which takes tens of seconds to compile into an SDD when using
SMP minimisation. Observe from the table that minimisation is still useful here,
as it reduces solving time enough to make up for the extra minimisation time. We
note that the minimisation algorithms are based on heuristics, and minimisation
speed-up may lie in the improvement of these heuristics.
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Finally, Figure 5.8 shows that the time that is gained during the optimisation
part of the entire solving chain, can be orders of magnitude larger than the time
lost by minimising the SDD. We do note that, since compiling the SDD can be
done in seconds, this effect is less noticeable for the smaller problems.

5.4 Conclusion

In this chapter, and in Section 4.3, we showed how we can combine generic
probabilistic programming technology (in the form of the SC-ProbLog program-
ming language and knowledge compilation) and CP and MIP solvers (Gecode and
Gurobi) to solve the type of SCPs that we described in Section 1.2. We combined
these elements into a pipeline for solving these problems.

In constructing this pipeline, we presented two key contributions. The first is
the decomposition of a hard constraint on an AC representation of a probability
distribution (derived from its SDD representation), into a multitude of local con-
straints, such that they can be fed directly into an off-the-shelf CP or MIP solver.

The second key contribution in this chapter is the SDD minimisation algo-
rithm that preserves properties that ensure that a constraint on an SDD repre-
sentation of a probability distribution can be translated into a MIP model that is
linearisable, while minimising the size of the SDD. This minimisation algorithm
preserves a property of the vtree that defines the variable order of the SDD, which
we call the SMP property.

In our experiments, we evaluated different variants of this pipeline on a range
of problem instances from two different domains, exploring different combina-
tions of stochastic constraints and optimisation criteria, and linear constraints
and optimisation criteria. We showed that the pipeline that uses the MIP solver
Gurobi consistently solved these instances faster than the pipeline that used the
CP solver Gecode.

We also compared the running times of the pipelines when they use no SDD
minimisation (which makes the compilation step fast, but results in larger mod-
els), or when they use SMP minimisation (in the case of the pipeline that uses
Gurobi) or default minimisation (in the case of the pipeline that uses Gecode). Here
we found that in both pipelines, minimisation consistently leads to shorter over-
all running times. In some cases minimisation makes the difference between a
problem being solvable within the one hour time limit, or not. For the problems
that are solvable within that time, minimisation can decrease the overall solving
time with up to two orders of magnitude.

We note that a somewhat related study by Hemmi et al. also proposes a
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decomposition-based approach to solving SCPs [78]. There are, however, some
important differences in both the scope and approach between their work and
ours. While Hemmi et al. solve multi-stage SCPs, our focus is on single-stage ones.
In multi-stage SCPs, the solution consists of a policy that dictates which decisions
should be made in each stage as a scenario unfolds. Hemmi et al.’s methods solve
multi-stage SCPs by generating all possible scenarios for the next stage, solving
the SCP for each scenario, and continuing recursively. This decouples the stages
from each other (which they call “relaxation”), and hence may cause constraints
on decisions that span multiple stages to become decoupled. They address this
by detecting which constraints are violated, pruning those partial solutions from
the search space, and iteratively refine the solution.

Hemmi et al.’s approach is suitable for multistage problems, while ours only
supports single-stage problems. However, since their method requires all scenar-
ios to be generated, it can only handle small problems. While their experiments
show results for problems with up to a total of 343 possible scenarios and 150
decisions (all solved within 800 seconds), the largest problem in our problem set
has 6.7 million scenarios, and 86 decisions (solved within 444 seconds by our
fastest method, but not solved within an hour by our slowest). Note that the ap-
proach of Hemmi et al. is highly parallelisable, and their results were run using a
parallelised implementation, using 32 hyper threaded cores. In our experiments,
Gurobi is the only solver that is parallelised and attempts to use as many threads
as possible, which was 8 in our case.

While the results presented in this chapter are clearly encouraging, the meth-
ods we presented do have some weaknesses. Chief among them is that, in de-
composing the constraint on the AC, we lose information about the structure of
the underlying SDD. We expect that a dedicated propagation algorithm for such
a constraint that exploits the structure instead of erasing it, may well outperform
the CP-based implementation of the decomposition method, if such a propaga-
tor can be devised and implemented. The resulting method may then become
competitive with the MIP-based decomposition method.
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In this chapter, we first show that a weakness of the decomposition methods pre-
sented in the previous chapter is that they do not guarantee generalised arc consis-
tency (GAC). This may cause them to not prune parts of the search space that do
not contain any solutions. Here, we show why that is the case, and that a straight-
forward modification of these methods such that they do guarantee GAC, does
not notably improve solving times. For the specific case of stochastic constraint
(optimisation) problems (SCPs) on monotonic probability distributions (which are
the probability distributions on which stochastic constraint (optimisation) problems
on monotonic distributions (SCPMDs) are formulated), we propose an alternative
method: a new propagator for a global ordered binary decision diagram (OBDD)-
based constraint. We show that this propagator has a time complexity that is
linear in the size of the OBDD and maintains GAC. We experimentally evalu-
ate the effectiveness of this global constraint in comparison to decomposition-
based approaches, using problems from the data mining literature. We find that
the approach that uses this global stochastic constraint on monotonic distributions
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(SCMD) propagator outperforms the constraint programming (CP)-based decom-
position methods and performs complementarily to the mixed integer program-
ming (MIP)-based decomposition method. This chapter is based on the following
publication:

� A.L.D. Latour, B. Babaki, S. Nijssen. ‘Stochastic Constraint Propagation for
Mining Probabilistic Networks’. In: IJCAI, ijcai.org. pp. 1137–1145. 2019.

6.1 Introduction

Recall the spread of influence and power grid reliability examples of SCPs de-
scribed in Section 1.1. We observe that, in the spread of influence problem, adding
a person to the set of people who receive a free product sample can never de-
crease the expected number of people that will become customers. Similarly, in
the power grid reliability problem, we observe that adding a power line to the set
of lines that are reinforced can never decrease the expected number of households
that still have power after a disaster.

Clearly, the probability distributions in these SCPs have a characteristic in
common: the probabilities and expectations are higher if more nodes or edges
are selected, which makes these probability distributions monotonic. This makes
them special cases of SCPs, namely stochastic constraint (optimisation) problems on
monotonic distributions (SCPMDs).

While this characteristic seems limiting, problems that have this property
are plentiful in network analysis; examples include the applications mentioned
above, but also the signalling-regulatory pathway inference problem described in
the bioinformatics literature [50, 133] and in Section 4.5.1, and a variant on the
landscape connectivity problem [185].

In this chapter we present an approach to solving SCPMDs (which can only be
applied to those, not to SCPs in general). We use OBDDs to model the probability
distributions and impose a stochastic constraint on the arithmetic circuit (AC) that
can be used to compute probabilities from these OBDD representations. Crucially,
we exploit structures in those OBDD representations that result from monotonic-
ity to obtain a global constraint propagation algorithm for solving SCMDs. Recall
from Section 3.3.3 that global constraints can have greater propagation and search
tree pruning power than local constraints, like the ones used in the decomposi-
tion method of Chapter 5. Thus, provided that the time and space complexity
of a global constraint are polynomial, global constraints can have an advantage
over local constraints by potentially pruning the search space better (by removing
more values from the domains of free variables during inference).
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The main algorithmic contributions in this chapter are the following:

1. We show that the decomposition approach described in Section 5.2.1 is not
GAC, thus causing it to prune the search space insufficiently (Section 6.2), and
that a straightforward arc consistent modification of this approach does not
significantly improve performance (Section 6.5).

2. To address this inefficiency in the search, we introduce a global constraint on
OBDD representations of monotonic distributions, which we call the SCMD
(Section 6.3), and introduce a GAC-by-design propagation algorithm for this
constraint (Section 6.4).

In summary, the benefits of the decomposition methods described in Chapter 5
and Section 6.2 are:

• They are applicable to the more generic SCPs (Section 1.2).

• Different types of decision diagrams (DDs) can be used to represent the proba-
bility distributions (Sections 5.2.1 and 5.2.2).

• The implementation is straightforward and compatible with different off-the-
shelf CP or MIP solvers (Section 5.2.3).

Conversely, the benefits of our global constraint specifically for SCPMDs are:

• It guarantees GAC by design, contrary to decomposition methods that do not
guarantee GAC, and therefore traverses the search space more efficiently (Sec-
tion 6.4.1).

• Its space complexity is better than that of decomposition methods that do guar-
antee GAC (Sections 6.2 and 6.4.3).

• Its worst-case time complexity is O(m + n) with OBDD size m and n decision
variables (Section 6.4.3).

• It outperforms CP-based decomposition methods and complements MIP-
based methods, while scaling better with OBDD size than MIP-based methods
(Section 6.5).

The main feature that distinguishes our work from similar works on stochas-
tic constraint satisfaction and optimisation is that we exploit the structure of the
probability distribution in our global SCMD propagator. These structures arise
from the fact that SCPMDs are formulated on monotonic distributions. In exploiting
those structures, our method distinguishes itself from more general approaches
taken earlier [181], and from the majority of existing methods, which sample sce-
narios from a distribution, and hence ignore such structures [78].
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The remainder of this chapter is organised as follows. First, in Section 6.2 we
revisit probabilistic inference with OBDD representations of probability distri-
butions, showing how the decomposition methods of Chapter 5 can be made to
guarantee GAC. We then define monotonic probability distributions and how
they relate to OBDDs in Section 6.3, using this monotonicity to define a SCMD.
Then, in Section 6.4, we describe three global SCMD propagation algorithms that
each preserve GAC by design: a naı̈ve algorithm with quadratic time complexity,
a more efficient algorithm with linear time complexity, and an incremental ver-
sion of that last algorithm that has the potential to be more efficient in practice.
In Section 6.5, we compare the performance of the linear-time global propaga-
tion algorithms to CP-based and MIP-based decomposition methods in solving
SCPMDs. We conclude this chapter in Section 6.6 with a brief summary of our
approach and results, and recommendations for future research.

6.2 OBDDs and generalised arc consistency

When using a CP solver to solve the decomposed constraint on the probability
distribution represented by an OBDD, we encounter the following problem:

Theorem 6.2.1. Propagation on the decomposed representation of the SCMD as de-
scribed in Section 5.2.1 is not GAC.

Proof. Assume that propagation in the decomposition method in Section 5.2.1 is
GAC (Section 3.3). Then, the following counterexample leads to a contradiction.

Consider the OBDD in Figure 5.1 and associated constraint P(φ | σ) ≥ 0.4.
Observe that the four possible strategies yield these conditional probabilities:

P(φ | X = Y = 0) = 0 P(φ | X = 1, Y = 0) = 0.3

P(φ | X = Y = 1) = 0.6 P(φ | X = 0, Y = 1) = 0.6

From this, we conclude that only those strategies in which Y = 1 holds can pos-
sibly satisfy the constraint. A propagator that ensures GAC on the Boolean vari-
ables will detect this before the start of the search and fix Y := 1.

Suppose a constraint propagator is called on the decomposed model in Fig-
ure 5.1, before the search starts. This propagator may start by trying to infer the
minimum value that ZY1 needs to take if ZX takes its maximum possible value.
To do this, the propagator assumes that ZX = 0.6 holds. Now it can infer that,
in order for the constraint to be satisfied, Zy1 ≥ (0.4− 0.9 · 0.6)/0.1 = −1.4 should
hold. Unfortunately, it already knew that dom(Y) = {0, 1} and thus does not in-
clude −1.4. Based on this, it cannot remove 0 from dom(Y). Repeating a similar
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procedure to determine a bound for ZX , ZY1 and ZY2 does not yield conclusive
evidence to deduce that Y must be fixed to 1, either.

As a result, the search tree of a CP system is unnecessarily large. One solution
may seem to create a decomposed representation that is GAC. We can achieve this
by means of two modifications to the decomposition method. First, we replace the
encoding of the score of OBDD node rD, v(rD) := v

(
r+D
)

if D = > and v(rD) :=
v
(
r−D
)

if d = ⊥, with v (rD) := max
(
d · v

(
r+D
)

, (1− D) · v
(
r−D
))

, because this
improves propagation in cases where D is yet unassigned. Additionally, we add
the (redundant) constraint v|D=0(root) < θ → D := 1 to the decomposition for
each decision variable d. Here, v|D=0(root) represents the expression at the root
of the diagram, as obtained from Equation 2.11, conditioned on D = ⊥. Note that
adding the extra constraint for each decision variable D requires us to make a
copy of the original diagram, only with D = ⊥.

The downside of this approach is that we need to add a large number of linear
constraints to the model, resulting in a space complexity of O(|D| · |OBDD| · τ)
for this approach, where D is the set of decision variables, |OBDD| the number
of nodes in the OBDD, and τ the depth of the search tree. We demonstrate the
practical inferiority of this approach in Section 5.3.

6.3 Monotonicity

A special case of the constraint in Equation 1.1 is one where we require each
probability distribution P (φ|σ) to be monotonic.

6.3.1 Monotonic probability distributions

Intuitively, taking the spread of influence problem as an example, monotonic-
ity means that adding a person to the set of people who receive a free prod-
uct sample, cannot decrease the expected number of eventual customers (Ex-
ample 4.2.1). Likewise, taking the power grid reliability problem as an example,
adding a power line to the set of lines that receive maintenance cannot decrease
the expected number of households that still have power after a natural disaster
(Example 4.2.2).

We formally define a monotonic probability distribution as follows:

Definition 6.3.1. Let φ(D, T) be a propositional formula on Boolean decision variables
D and Boolean stochastic variables T, as defined in Section 1.2. We call the probability
distribution P(φ|σ) a monotonic distribution if, for all strategies σ and each D ∈ D,
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the following holds:
P (φ|σD=⊥) ≤ P (φ|σD=>) , (6.1)

where strategies σD=⊥ and σD=> only differ in the truth values that they assign to D (⊥
and >, respectively).

6.3.2 Local monotonicity

For OBDD representations of probability distributions, we also define the concept
of local monotonicity:

Definition 6.3.2. Let φ(D, T), σ and P(φ|σ) be defined as in Section 1.2. We call an
OBDD representation of a probability distribution whose score at the root equals P(φ|σ)
locally monotonic, iff the following holds for any projected σ (see Section 2.5.1):

v
(
r−D
)
≤ v

(
r+D
)

(6.2)

for each OBDD node rD labelled with decision variable D ∈ D, using Equation 2.11
(page 39) to compute v

(
r−D
)

and v
(
r+D
)
.

Theorem 6.3.1. If a probability distribution P(φ|σ) can be represented by a locally
monotonic OBDD as defined in Definition 6.3.2, then it is a monotonic distribution,
as per Definition 6.3.1.

Proof. In the following, we use v (r|σD=⊥) to denote the score of an OBDD node r,
computed using Equation 2.11, for an OBDD with strategy σ, in which decision
variable D = ⊥, and analogously for D = >. Since the root of the OBDD is
an OBDD node, the task is to prove that, for any node r in a locally monotonic
OBDD, it holds that v (r|σD=⊥) ≤ v (r|σD=>). Here, σD=⊥ and σD=> only differ in
the truth assignment of D. We prove this by induction.

The inequality holds trivially if r is a leaf, and is in fact an equality in this
case. We now assume that the inequality holds for all descendants of a node r,
and distinguish the following cases:

1. Node r is labelled with decision variable D.

2. Node r is labelled with a decision variable other than D.

3. Node r is labelled with a stochastic variable.

For the first case, the inequality holds by Definition 6.3.2. For the second case, v(r)
is determined by only one child, because σ assigns a truth value to each decision
variable, which fixes w(r) to either 0 or 1 in Equation 2.11. Since the inequality
holds for this one child, it also holds for r. For the third case, the inequality holds

122



6.3 Monotonicity

P(φ1)

T′

D D

T T

01
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monotonic

p′ 1− p′
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(a) An OBDD representation of φ1 = (D ∧ T′) ∨
(¬D ∧ T). Probabilities are such that 0 < p <

p′ < 1.

P(φ2)

S

D

T

01

pS

1− pS

p 1− p

(b) An OBDD representation of φ2 = (D ∧ S) ∨
T. Here, pS = (p′ − p)/(1− p), and 0 < p < pS <

p′ < 1.

Figure 6.1: Two different OBDD representations of the same probability distribution.

for the two children. Since v(r) is the weighted sum of those two children, the
inequality also holds for r.

It is yet unknown if the reverse of Theorem 6.3.1 holds. Ensuring that dis-
tributions are monotonic is relatively easy in the weighted model counting (WMC)
approach: for any representation written using ProbLog [52, 64] (and thus in SC-

ProbLog) without negation, the resulting OBDD representation is locally mono-
tonic, which renders the probability distribution monotonic. Note that this does
not represent a strong limitation, since all problems discussed earlier can be writ-
ten in this form.

The following example illustrates why distributions encoded using negation
do not always yield locally monotonic OBDDs.

Example 6.3.1 (An OBDD that is not locally monotonic). Recall the power grid reli-
ability problem of Example 4.2.4, and let us focus on encoding the survival probability of
a single power line. The decision to reinforce this power line or not, is denoted by Boolean
decision variable D. Following the notation used in Example 4.2.4, we denote its survival
probability when it is not reinforced p, and its survival probability when it is reinforced
with p′, such that 0 < p < p′ < 1. The associated stochastic variables are T and T′,
which take value > if the line survives and the value ⊥ if it does not. We then encode the
event φ1 of survival of this power line, with the following formula:

φ1 = (D ∧ T) ∨
(
¬D ∧ T′

)
. (6.3)
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Global SCMD propagation

When we fix D := >, this formula has two models: {T = >, T′ = ⊥} (with probability
p · (1 − p′)) and {T = T′ = >} (with probability p · p′), yielding a total success
probability of P(φ1|D=>) = p. Similarly, we can show that P(φ1|D=⊥) = p′. Since
p′ > p by assumption, flipping D’s truth value from ⊥ to > does not decrease the
survival probability of the power line, and thus the distribution is monotonic, according
to Definition 6.3.1.

An example OBDD encoding of this formula is shown in Figure 6.1a. Consider the
decision node on the right. If we set D := ⊥, the score of that node is p. However, if we set
D := >, then the score in that node is 0. Consequently, flipping the value of D from⊥ to
> is not locally monotonic (see Definition 6.3.2), even though the behaviour in the root
of the OBDD remains monotonic. This local non-monotonic behaviour is directly due to
the fact that we can falsify φ1 by fixing D := >, because of the second clause.

The following example shows how we can construct a monotonic probability
distribution that does yield a locally monotonic OBDD.

Example 6.3.2 (A locally monotonic OBDD). Taking the same example of computing
the survival probability of a single power line, consider this alternative encoding:

φ2 = (D ∧ S) ∨ T, (6.4)

again with decision variable D, and stochastic variable T corresponding to survival of a
power line that is not reinforced, with corresponding probability p. We associate a prob-
ability pS = (p′ − p)/(1− p) with stochastic variable S, which exists to encode the prob-
abilistic survival of the power line if it is reinforced. Note how Equation 6.4 does not
contain negation. If we fix D = >, the corresponding models of the residual formula are
{S = >, T = ⊥} (with probability pS · (1 − p)), {S = T = >} (with probability
p · pS) and {S = ⊥, T = >} (with probability (1− pS) · p), bringing the total survival
probability to

P (φ2|D=>) =
p′ − p
1− p

· (1− p) + p · p′ − p
1− p

+

(
1− p′ − p

1− p

)
· p

= (p′ − p) + p ·
(

p′ − p
1− p

+ 1− p′ − p
1− p

)
= p′ − p + p = p′

Similarly, we can show that P (φ2|D=⊥) = p. Again, since p′ > p by assumption, this
distribution is monotonic, according to Definition 6.3.1.

An example of an OBDD encoding of this formula is shown in Figure 6.1b. Note
that the decision node in this OBDD displays locally monotonic behaviour, and thus the
OBDD itself is locally monotonic, according to Definition 6.3.2.
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6.4 Global SCMD propagation

We will use the notion of local monotonicity to define a global propagation
algorithm for SCMDs that guarantees GAC by design, in Section 6.4 .

6.3.3 Stochastic constraint on monotonic distributions

Using the notion of local monotonicity, we now define a corresponding SCMD as
follows:

Definition 6.3.3. For a set of propositional formulae Φ, threshold θ ∈ R+ and utilities
ρφ ∈ R+, we call

∑
φ∈Φ

ρφ · P(φ|σ) > θ (6.5)

a stochastic constraint on monotonic distributions if, and only if, all P(φ|σ) can be
represented by locally monotonic OBDDs.

Given a partial strategy σ, a GAC-guaranteeing propagator for the SCMD will,
for each unbound decision variable D ∈ D, remove value false from dom(D) if,
and only if,

∑
φ∈Φ

ρφ · P (φ|σ′) ≤ θ (6.6)

holds for each possible extension of partial strategy σ to a full strategy σ′ that
includes D = ⊥.

6.4 Global SCMD propagation

We propose three global SCMD propagation algorithms that operate on the
OBDD representations of monotonic probability distributions directly, and guar-
antee GAC by design. First, we describe a naı̈ve version of such an algorithm,
which has a time complexity that is quadratic in the size of the OBDD on which
it operates. We then show how to improve this algorithm to make its complex-
ity linear, instead. Then, we propose some optimisations to make this algorithm
potentially even faster in practice. We end this section with a brief overview of a
corresponding SCPMD solving pipeline.

In the general case, different propositional formulae can be encoded in one
OBDD with multiple roots (one for each formula), avoiding redundancy if they
share sub formulae (as discussed in Section 2.4). For simplicity of discussion and
notation, we will only consider constraints over one propositional formula φ in
this section, and thus only single-rooted OBDDs. This makes the corresponding
utility ρ irrelevant in the discussion and limits the domain of threshold θ to (0, 1),
to which we compare a probability rather than an expectation.
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Global SCMD propagation

6.4.1 Naı̈ve SCMD propagation

For maintaining GAC, a key observation is that our scoring function (the expected
utility in Equation 6.5) is monotonic; hence, the largest possible score is obtained
by assigning the value true to all unbound decision variables. Given an OBDD
representation of φ(D, T), mapped to an AC, the following process for each un-
bound decision variable D ∈ D would be GAC:

Step 1: Fix variable D to the value ⊥.

Step 2: Fix all remaining unbound variables to the value >.

Step 3: Calculate the root node score for the resulting assignment with Equa-
tion 2.11.

Step 4: If the score is lower than or equal to threshold θ, remove⊥ from dom(D).

Fixing all unbound variables to > in Step 2 ensures that we compute an upper
bound on the score given the current partial assignment and D := ⊥ in Step 3,
because of the local monotonicity of the OBDD, as defined in Definition 6.3.2.
Consequently, if that upper bound is lower than θ, we know that extending the
current partial assignment to decision variables with D := ⊥, results in a partial
assignment that cannot be extended with assignments to the unbound variables
into a solution whose score exceeds θ. Thus, we update D’s domain in Step 4
to guarantee GAC. This algorithm does not require us to put constraints on the
variable order of the OBDD to obtain the strict bound in Step 3, in contrast to pre-
vious work using sentential decision diagrams (SDDs) and deterministic decomposable
negation normal forms (d-DNNFs) [145].

Let n be the number of unbound decision variables, and let m be the size
of the OBDD (the number of nodes in the OBDD). Then the complexity of this
naı̈ve SCMD propagator is O(m · n): for every unbound variable, we perform a
bottom-up traversal of the OBDD. Since propagation is the most computationally
intensive part of search algorithms under our constraint, it is important to obtain
better performance. Therefore, will show now how to improve this complexity to
O(n + m).

6.4.2 A full-sweep SCMD propagator

The key idea behind improving the naı̈ve propagator is that we calculate a partial
derivative

∂ f (D, σ′ \ {D})
∂D

= f
(
σ′
)
− f

(
D = ⊥, σ′ \ {D}

)
(6.7)
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6.4 Global SCMD propagation

for each unbound decision variable D. The function f represents the scoring func-
tion defined by Equation 2.11 on the root of the OBDD. The strategy σ′ represents
an assignment to all decision variables obtained by taking a partial assignment σ

and extending it by assigning true to each unbound decision variable in D.
We use the derivative to remove the value false from the domains of variables

that do not meet the following condition:

f (σ′)− ∂ f (D, σ′ \ {D})
∂D

> θ. (6.8)

The main question becomes how to calculate the partial derivative for all un-
bound variables efficiently. Here, we build on ideas introduced by Darwiche [42,
44] to build a linear algorithm that can furthermore maintain derivatives incre-
mentally. We first need to define the concept of path weight:

Definition 6.4.1. Let rm be a node labelled with variable Xm in an OBDD with variable
order X1 ≺ . . . ≺ Xn. We define the path weight of rm with respect to root r as

π(rm) := ρr ∑
`∈Lrm

∏
ri∈`

u(i), (6.9)

where ` is a path from the root of the OBDD to rm, ρr is the reward associated with the
query at root r, and Lrm is the set of all such paths that are valid. A path is valid if it
does not include the hi (respectively, lo) arc from a node labelled with a decision variable
that is false (true or unbound, respectively).

We define u(i) as follows. For the outgoing arcs of decision nodes that can be part of a
valid path, we use u(i) := 1; for outgoing arcs that cannot be part of a valid path, we use
u(i) := 0. For the outgoing arcs of stochastic nodes labelled with a stochastic variable Xi

that has weight w(i), we use:

u(i) :=

w(i) if we take the hi arc of ri;

1− w(i) if we take the lo arc of ri.
(6.10)

The path weight π(rm) is expressed in terms of variables Xi ≺ Xm only. In
the general case, the path weights are initialised at the roots of the diagram (one
root for each query) using the corresponding utility ρ. Because, for simplicity, we
assume the diagram to have just a single root in this section, ρ is irrelevant and
the path weight at the root is initialised to 1. In the case of a multi-rooted OBDD,
we simply sum all the πr(rm)’s for each root r that is an ancestor of rm.

Our global SCMD propagation algorithm is based on the following:
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Theorem 6.4.1. The partial derivative of the OBDD with respect to an unbound decision
variable D can be calculated as follows:

∂ f (D, σ′ \ {D})
∂D

= ∑
rD∈OBDDD

π(rD)
(
v(r+D)− v(r−D)

)
, (6.11)

where OBDDD is the set of OBDD nodes labelled with decision variable D.

Proof. Observe that Equation 6.7 can be read as:

∂ f (D, σ′ \ {D})
∂D

= v|σ′\{D},D=>(r)− v|σ′\{D},D=⊥(r) (6.12)

=
(

ur→r+ · v|σ′\{D},D=>(r
+) + ur→r− · v|σ′\{D},D=>(r

−)
)
−(

ur→r+ · v|σ′\{D},D=⊥(r
+) + ur→r− · v|σ′\{D},D=⊥(r

−)
)

,

(6.13)

where r denotes the root of the OBDD and v|σ′\{D},D=⊥(r) the score at root r
(calculated using Equation 2.11), conditioned on partial strategy σ, extended by
fixing D to ⊥ and all other unbound decision variables to >.

The expression in Equation 6.12 states that the partial derivative of f equals
the difference of the score of Equation 2.11 taken at the root of the OBDD, condi-
tioned on σ′ and either D = > or D = ⊥. In Equation 6.13, we have expanded the
expressions on each side of the ‘−’-sign according to Equation 2.11. Here, r+ and
r− represent the hi and lo children of the OBDD root r, respectively, and ur→r+

and ur→r− are the corresponding weights of the outgoing arcs, according to the
definition above.

We can continue this expansion recursively, until we find the v|σ′\{D},D=>(rD)

or v|σ′\{D},D=⊥(rD) terms, where we are computing Equation 2.11 in a node rD

labelled with the unbound decision variable D for which we are computing the
derivative. The result is an expression that contains the following types of terms:

1. Constant terms, where we have expanded until we found either the ‘0’ or the
‘1’ leaf of the OBDD and replace the corresponding term accordingly.

2. Terms with v(r+D) (from expansions of the v|σ′\{D},D=>(r) term in Equa-
tion 6.12).

3. Terms with v(r−D) (from expansions of the v|σ′\{D},D=⊥(r) term in Equa-
tion 6.12).

The terms of type 1 correspond to paths from the OBDD root to a leaf that do not
contain an OBDD node labelled with D. Therefore, the terms on the right of the
‘−’-sign in Equation 6.13 cancel out those on the left.
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6.4 Global SCMD propagation

Given a particular node rD in the OBDD, we have at least two terms for this
node in the remaining expression: ur→r+ · . . . · urD→r+D

· v(r+D) and −ur→r− · . . . ·
urD→r−D

· v(r−D). These two terms correspond to the same node rD and the same
path ` from the root r to rD. Hence, we can rewrite these terms as follows:

ur→r+ · . . . · urD→r+D
· v(r+D)− ur→r− · . . . · urD→r−D

· v(r−D)

= ur→r+ · . . . · urD→r+D
·
(
v(r+D)− v(r−D)

)
,

(6.14)

where we use that urD→r+D
= urD→r−D

= 1 for outgoing arcs of unbound deci-
sion nodes. Note that for all valid paths from the root to nodes labelled with D,
we find at least one such term in the expanded expression for ∂ f (D, σ′ \ {d})/∂D.
Hence, for a particular node rD, we can group all terms together, obtaining
π(rD) ·

(
v(r+D)− v(r−D)

)
. Summing over all particular nodes rD yields Equa-

tion 6.11.

We use the observation above to create an O(m + n) algorithm for calculating
all derivatives in two stages:

1. A top-down pass over the complete OBDD for calculating all path weights.

2. A bottom-up pass for calculating the values for all nodes in the complete
OBDD, calculating the derivatives for each variable in the process.

The top-down pass operates as follows. We initialise the path weight π(r) of each
internal node with 0, and the path weights of the roots are initialised with the
utilities of the corresponding queries. We update the path weight of its children
r+ and r− as follows if r is labelled with a decision variable d:

π
(
r+
)

:= π
(
r+
)
+ π(r) if D is unbound or true;

π
(
r−
)

:= π
(
r−
)
+ π(r) if D is false;

(6.15)

If r is labelled with a stochastic variable with weight w, we assign π (r+) + w ·
π(r) to π (r+) and π (r−) + (1− w) · π(r) to π (r−).

We compute the node values in a bottom-up pass, using Equation 2.11 with
w(r) = 0 if r corresponds to a decision variable that is false, and w(r) = 1 other-
wise.

During this bottom-up pass, we can recompute the derivatives for all decision
variables that are still unbound using Equation 6.11, and evaluate Equation 6.8 for
each of those to see if we can remove false from their domain.

Clearly, the overall calculation can be completed in time O(n + m).
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6.4.3 A partial-sweep SCMD propagator

We now explore whether we can further reduce the empirical running time of the
algorithm above, by avoiding the unnecessary traversal of parts of the OBDD.
The following observations allow for potentially more efficient propagation:

O1 As noted before, the expression for the path weight of an OBDD node la-
belled with variable Xm (Equation 6.9) only contains variables Xi < Xm. We
conclude that fixing a decision variable D can only affect the path weights of
nodes below the nodes labelled with that variable D.

O2 Path weights below unbound decision nodes are not changed when we fix
an unbound decision node to true. Therefore, our propagator only needs to
update path weights if we fix a decision variable to false.

O3 Similarly, fixing a variable can only affect the scores of the nodes labelled with
that variable, and of those above them in the OBDD. Again, only fixing a vari-
able to false requires the propagator to update scores.

O4 We do not need to maintain the scores for any of the ancestors of the decision
nodes that are closest to the root of the OBDD. For each of these ancestors r,
it holds that there is no path from the root to r that passes through a deci-
sion node. Therefore, we will never need to calculate the derivative for any
variable in that part of the diagram.

O5 Similarly, we do not need to maintain path weights for the descendants of the
decision nodes closest to the leaves. For each of these descendants, it holds
that there is not path from it to one of the leaves that passes through a deci-
sion node. Therefore, we will never need to calculate the derivative for any
variable in that part of the diagram.

It can be shown that by only maintaining the part of the OBDD between two
borders of unbound decision variables (the active part of the OBDD), one can
calculate the derivatives exactly, as well as calculate the score of the solution.

O6 Some parts of the OBDD will no longer be connected to the root as a conse-
quence of partial assignments. We thus do not need to update those parts of
the OBDD.

O7 We can exploit partial derivatives as well as O4 and O5 in branching heuris-
tics to guide the search. For example: if we always branch on the variable with
the largest derivative, we are likely to find failing partial strategies quickly.
Alternatively, by branching on the highest or lowest decision variable (ap-
plying O4 and O5, respectively), we reduce the size of the active part of the
OBDD.
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We improve the full-sweep OBDD propagation algorithm by addressing these
observations. Here, we give a short overview of how we do so; we refer the reader
to Chapter A for the pseudocode of the resulting partial-sweep algorithm.

O1 to O3 are addressed by using priority queues; we initialise and update
them such that we start traversing the OBDD downwards (upwards) at the places
where path weights (scores) may change due to decision variable assignments.

In our implementation of the partial-sweep algorithm, we maintain for each
OBDD node r three counters, addressing O4 to O6. Maintaining these counters
requires two extra passes through part of the OBDD each time the propagator is
called. However, they allow us to traverse an ever-decreasing part of the OBDD
in each pass.

We call the first counter FreeIn[r]. It indicates the number of parents r′ of r
for which there is at least one valid path from an unbound decision node above
r′ to r′. If FreeIn[r]=0, we need not update scores of nodes above r if the score
of r changes (O4).

The second indicates the number of children r′ for which there is at least one
valid path from r′ to an unbound decision node below r′; we call this counter
FreeOut[r]. If its value is 0, any changes in r’s path weight need not be propa-
gated down from r, because of O5.

Because of O6, we use a third counter, which we call Reachable[r].
It counts the number of parents of r through which there is a valid path from

the root to r, thus counting through how many of its parents r is reachable from
the root. If there is no valid path from the root to r, r’s path weight is 0, and
changes in its score need not be propagated. Note that we need the Reachable[r]
counter despite the fact that we have the FreeIn[r] counter, because it can hap-
pen that a part of the OBDD becomes disconnected from the root while there are
still free decision nodes in that part. If those decision nodes are ancestors of r,
we would keep updating their scores if we only rely on the FreeIn[r] counter
to stop that upwards traversal through the OBDD for that part. Note that for a
multi-rooted OBDD, Reachable[r] counts the number of parents of r through
which r is reachable from at least one of the roots.

Note that, as observed in O6, some decision nodes labelled with free decision
variables may become disconnected from the root. Consequently, we do not use
their scores to compute the derivative in Equation 6.11. If the OBDD represen-
tation of the probability distribution is not locally monotonic (Definition 6.3.2),
it may happen that the contributions of the active nodes cause us to compute a
negative partial derivative. Consequently, the algorithm is no longer be able to
guarantee GAC, and may even compute a wrong score for the optimal solution.
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Figure 6.2: Illustration of the partial-sweep propagator on an OBDD representation of
Equation 2.10.
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Example 6.4.1 (Partial-sweep propagation). Figure 6.2 shows an example of an ex-
ecution of the partial-sweep algorithm on an OBDD representation of Equation 2.10.
When unbound decision nodes become fixed, we remove one of their outgoing arcs to in-
dicate their truth assignment. This may cause nodes to become no longer reachable from
the root. Nodes that are inactive because of this, or because they are not on a path from one
unbound decision node to another, are coloured grey. Note that there is no need to update
the scores and path weights of nodes that have been greyed out, because of O4 to O6. In
each iteration of the algorithm, we use the partial derivatives to check if the upper bound
on the score in the root of the diagram is still high enough to satisfy the constraint on the
probability. Next to each node, we indicate its current score s and current path weight π.
We only show the scores and path weights that change in an iteration. The Reachable,
FreeIn and FreeOut counters are not shown in the figure. Suppose we have to find a
strategy σ, such that P(φd|σ) > 0.2 holds.

Figure 6.2a shows the state of this OBDD just after initialisation. The current partial
strategy is σ′ = ∅, since no assignments to decision variables have been made. The partial
derivatives are: ∂ f/∂Da = 0, ∂ f/∂Db = 0, ∂ f/∂Dc = 0 and ∂ f/∂Dd = 0.7. Since Equation 6.7
holds for all derivatives, we cannot fix any decision variables to true. The upper bound
on the score of the diagram is s(root) = 1.

Suppose we now branch on Dc := ⊥ in Figure 6.2b. Because there are no active
nodes above the nodes labelled with Dc, no scores will change in this iteration. However,
there are active nodes below the nodes labelled with Dc, causing some of the path weights
to change. Note that the middle node labelled with Tcd becomes unreachable. While its
Reachable counter was 2 in Figure 6.2a, now it equals 0. Similarly, the FreeIn counters
of all nodes labelled with Tcd or Dc become 0.

We now update the upper bound on the score of the diagram to P
(

φe|{Dc=⊥}

)
=

P (φe|∅) − ∂ f/∂Dc = 1 − 0 = 1, and compute new partial derivatives: ∂ f/∂Da = 0,
∂ f/∂Db = 0 and ∂ f/∂Dd = 0.754. Again, this is not enough to infer that a specific decision
variable must be fixed to true.

In Figure 6.2c we branch on Db := ⊥ next. Note that the nodes labelled with Db re-
main active, as they are on paths from unbound decision nodes to other unbound decision
nodes, and therefore, their FreeIn and FreeOut counters remain larger than 0. Since the
scores of the nodes labelled with Db happen to not change in this case, we do not need to
update the scores of the active nodes above them in the OBDD. However, we do need to up-
date the path weight of one of the nodes below them. We can update the upper bound on the
score of the diagram to P

(
φd|{Db=Dc=⊥}

)
= P

(
φe|{Dc=⊥}

)
− ∂ f/∂Db = 1− 0 = 1.

We compute the new partial derivatives: ∂ f/∂Da = 0 and ∂ f/∂Dd = 0.7576. Again, this
does not give us reason to fix any remaining decision variables to true.

Next, we branch on Dd := ⊥ (see Figure 6.2d). There are no active nodes below those
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nodes labelled with Dd (their FreeOut counters equal 0), so no path weights are updated
in this iteration. However, many scores do change. The upper bound on the score for
the root of the diagram also changes: P

(
φd|{Db=Dc=Dd=⊥}

)
= P

(
φe|{Db=Dc=⊥}

)
−

∂ f/∂Dd = 1− 0.7576 = 0.2424.
The last remaining partial derivative is: ∂ f/∂Da = 0.2424. Now we know that this

decision variable must be fixed to true, because P
(

φe|{Db=Dc=Dd=⊥}

)
− ∂ f/∂Da =

(0.2424 − 0.2424) < 0.2. We therefore fix Da = > and conclude that σ = {Da =

>, Db = Dc = Dd = ⊥} is a solution to the constraint P (φd|σ) > 0.2, and one with
value P (φd|σ) = 0.2424.

Note that in the example above we fix only one decision variable per iteration.
Our implementation also allows multiple decision variables to be fixed at the
same time, for example by another constraint, such as a linear constraint on the
cardinality of the solution, as would be the case in Examples 4.2.1 and 4.2.2.

Finally, we address O7 by implementing different variable branching heuristics:
Top, which always branches on the unbound variable highest in the OBDD, and
its counterpart, Bottom. Each can be combined with a value branching heuristics:
either branch first on value 0, or on value 1. These heuristic are static during the
search and depend on the variable order underlying the OBDD. We also imple-
ment two regret-based [27] branching heuristics that use the calculated deriva-
tives: Derivative-1 and Derivative-0. The former (latter) selects the unbound deci-
sion variable with the largest (smallest) absolute derivative and first branches on
1 (0). These heuristics are dynamically computed during the search, but do not
present much overhead, since we need to compute the derivatives anyway.

Note that the space complexity of this approach is only O(|OBDD| · τ), where
τ is the depth of the search tree. This is less than that of the GAC-guaranteeing
decomposition method from Section 6.2.

Relation to cost-multi-valued decision diagram (MDD) propagators. Our
partial-sweep propagation algorithm bears some resemblance to cost-MDDs
propagation algorithms in general [55, 69], and a recently proposed optimisa-
tion to such an algorithm in particular [142]. Both algorithms have a notion of
“up” and “down” scores that they update and use for maintaining arc consis-
tency. Both algorithms’ implementations avoid unnecessary work by being smart
about which nodes really need their scores updated. However, there are some
important differences. Cost-MDDs are used to encode constraints, while we use
DDs to encode probability distributions on which we formulate a constraint. In cost-
MDDs, each path from the root to the “true” leaf corresponds to a valid solution
to the constraint. However, in this dissertation, a valid solution consists of vari-
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able assignments such that a weighted sum computed over several paths in the
OBDD exceeds a certain threshold value. This is reflected in the scores that are be-
ing maintained for each node. In cost-MDDs propagators, these scores are sums
over single paths, whereas in our propagator, these scores are weighted sums
over multiple paths. A second difference is that in our algorithm, a node that be-
comes inactive (such that its scores are no longer updated) remains inactive un-
til it might be reactivated due to backtracking, and due to backtracking only. In
cost-MDDs propagators, on the other hand, as the branch-and-bound algorithm
traverses deeper into the search tree, the values of a node may not be updated in
one iteration, and then be updated again in the next. The final difference is in how
nodes are selected for having their values updated. In the cost-MDD propagator,
node values are updated if they may change due to arc removal. In our propa-
gator there are cases in which we do not update node values, even though they
change, because we do not need their values to compute the partial derivatives.

6.4.4 A global constraint SCPMD solving pipeline

In the previous two sections we described global SCMD solving algorithms. Re-
calling Section 5.2.3, we now give a brief summary of how these algorithms fit
into a pipeline for solving SCPs.

Figure 6.3 shows this pipeline. The first three steps are exactly the same as the
pipeline described in Section 5.2.3, except that we have the extra requirement on
the input problems that the probability distributions involved in the stochastic
constraint or optimisation criterion, must be locally monotonic (Definition 6.3.2):

Step 1: Model the problem using a probabilistic network and (stochastic) con-
straint(s) or optimisation criterion that involves a monotonic probability
distribution.

Step 2: Model the problem using SC-ProbLog, without using negation.

Step 3: Ground the program for the queries present in the optimisation criterion
of the SCP into a set of propositional formulae Φ.

Step 4: Compile a multi-rooted OBDD, such that each root encodes the condi-
tional success probability P (φ|σ) of one of the queries φ ∈ Φ.

The pipeline differs from our earlier one in the next steps:

Step 5: Create a global stochastic constraint or stochastic optimisation criterion
based on the OBDD encoding of the probability distribution, using either
the full-sweep or partial-sweep implementation of the SCMD propagator.
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propagation algorithm,
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(Steps 5 and 6)

solve with

CP solver OscaR

(Step 7)

a

b

c d0.4
0.8

0.1
0.3

maximise ∑φ∈Φ ρφ · P (φ|σ),

subject to ∑D∈D D ≤ k

person(alexa). person(claire). 0.4:: dir(alexa ,behrouz). 0.8:: dir(alexa ,claire).

person(behrouz). person(daniel). 0.1:: dir(behrouz ,claire). 0.3:: dir(claire ,daniel).

?:: gets_free_sample(P) :- person(P).

influences(X,Y) :- dir(X,Y). buys(X) :- gets_free_sample(X).

influences(X,Y) :- dir(Y,X). buys(X) :- influences(X,Y), buys(Y).

{ gets_free_sample(P) => 1 :- person(P). } k. #maximise { buys(P) => 1 :- person(P). }.

φa = Da ∨ (Db ∧ (Tab ∨ (Tbc ∧ Tac))) ∨ (Dc ∧ (Tac ∨ (Tab ∧ Tbc))) ∨ (Dd ∧ Tcd ∧ (Tac ∨ (Tab ∧ Tbc)))

...

φd = Dd ∨ (Dc ∧ Tcd) ∨ (Db ∧ Tbc ∧ Tcd) ∨ (Da ∧ Tac ∧ Tcd) ∨ (Db ∧ Tba ∧ Tac ∧ Tce) ∨ (Da ∧ Tab ∧ Tbc ∧ Dcd)

OBDD

full or partial

CP

solver

OscaR

Figure 6.3: Overview of the global constraint SCP solving pipeline we propose in this
chapter.

136



6.5 Experimental evaluation

Step 6: Add any other constraints and optionally an optimisation criterion to the
CP model.

Step 7: Solve using a CP solver.

6.5 Experimental evaluation

We experimentally evaluate the performance of CP-based and MIP-based OBDD
decomposition methods (described in Sections 5.2.1 and 6.2), as well as the full-
sweep and partial-sweep global SCMD propagators on OBDDs (described in Sec-
tions 6.4.2 and 6.4.3).

The remainder of this section is organised as follows. First, we formulate our
research questions. We then provide details on experimental setup, hardware and
software we use in Section 6.5.2, as well as an overview of the different pipelines
evaluated. Finally, we report and analyse the results we obtained in our experi-
ments, answering our questions in Section 6.5.3.

6.5.1 Research questions

In the work presented in this chapter, we leverage techniques from knowledge
compilation (with a focus on OBDDs) in combination with readily available CP
and MIP solvers for efficient SCP solving. The experiments in this section are de-
signed to evaluate the efficiency of decomposition methods and global constraint
methods that use these elements. Specifically, we aim to answer the following
questions:

Q1 How do solving times depend on the CP encoding of the constraint (decom-
posed versus our new global constraint)?

Q2 How do branching heuristics (Section 6.4.3) affect solving times for the global
constraint?

Q3 How do solving times for the global SCMD constraint compare to those of a
decomposed constraint solved with a MIP solver?

Q4 How do the performances of decomposed and global approaches depend on
OBDD size?

Q5 How effective is the partial-sweep propagation algorithm compared to the
full-sweep algorithm in practice?

Q6 How does our propagator perform in combination with other constraints?
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6.5.2 Experimental setup

The implementations of our propagation algorithms are available at
github.com/latower/SCMD-solving.

Software and hardware

For modelling the probability distributions, we used the SC-ProbLog language
proposed in Section 4.3, which is based on ProbLog 2.1 [59] and DT-ProbLog [178],
running in Python 3.6.9.1 We use the Cython binding of the dd 0.5.4 library to
CUDD 3.0.0 [168] for OBDD compilation, and use its implementation of the Sifting
algorithm [156] for dynamic minimisation.2

We implemented the MIP-based decomposition methods by building and
solving MIP models with Gurobi 9.0.0, because it is freely available to academics
and provides a convenient modelling interface through gurobipy.3 The CP-based
decomposition was implemented in Gecode 6.0.1, because it is a well-known,
well-performing, open source solver that is used by industry.4

We implemented the global OBDD propagators proposed in Sections 6.4.2
and 6.4.3 in the Scala 2.12 library OscaR 4.0.0 [132]. This library contains a state-
of-the-art implementation of the CoverSize constraint [164], which we needed to
answer Q6.5 Since OscaR does not support floating point variables, we could not
implement the decomposition methods in OscaR.

Our experiments in Section 6.5.3 were run on two different machines, for rea-
sons of availability. The first, which we refer to as PASCALINE, is equipped with
24GB of RAM and eight Intel Xeon E5540 CPUs, each with four cores and 8192
KB of cache, running at 2.53 GHz, under CentOS Linux 7.4.1708. The second,
GRACE, is a cluster with 32 nodes, each equipped with 94GB of RAM and two In-
tel Xeon E5-2683 CPUs with 16 cores, a cache size of 40MB, running at 2.10 GHz
under CentOS Linux 7.7.1908. Unless indicated otherwise, all experiments in Sec-
tion 6.5.3 were run on PASCALINE. Note that whenever running times need to
be compared directly, they were obtained from experiments that ran on the same
machine. Running times were measured in wall clock time, using the solver’s re-
ports on their running times, which exclude time for reading in or constructing
the models and thus measure solving time alone.

1Available at github.com/ML-KULeuven/problog/tree/sc-problog.
2Available at pypi.org/project/dd.
3Available at www.gurobi.com.
4Available at www.gecode.org.
5Available at sites.uclouvain.be/cp4dm/fim.
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6.5 Experimental evaluation

Overview of solving methods

We briefly outline the different solving methods evaluated in this section. As de-
scribed in Sections 5.2.3 and 6.4.4, a full SCPMD solving pipeline starts with mod-
elling the problem in SC-ProbLog (as demonstrated in Section 4.3) and ground-
ing the resulting logical program into propositional formulae φi on Boolean de-
cision variables and Boolean stochastic variables (see examples in Section 4.2).
We then use knowledge compilation to compile these formulae into OBDDs and
impose the stochastic constraint of Equation 1.1 on the probability distributions
encoded by those OBDDs. We then either decompose the resulting constraint on
the OBDDs into a set of smaller, local constraints, or keep it as a global constraint.
We then solve this model with a CP or MIP solver. In the experiments in this
section we only evaluate the solving part of the pipelines, which starts after the
model has been loaded into the solver. We evaluate the entire pipeline in the ex-
periments presented in Chapter 6.

CP-based decomposition. In Sections 5.2.1 and 5.2.2, we described how con-
straints on probability distributions modelled by OBDDs and SDDs can be
decomposed into linear programs. Using this decomposition, we proposed a
method that uses Gecode to solve a CP encoding of the stochastic constraint on
a multi-rooted OBDD that does not guarantee GAC (Sections 3.3 and 5.2.1). We
therefore refer to the solving step in this pipeline as no-GAC CP decomposition. In
Section 6.2, we briefly discussed how we can turn this CP encoding into one that
does guarantee GAC. We also solve the resulting CP programs from this encoding
with Gecode, and refer to this pipeline as GAC CP decomposition.

MIP-based decomposition. Since MIP solvers have been shown to be very ef-
fective in solving linear programs, we also evaluate an OBDD variant of the MIP-
based pipeline described in Chapter 5. The OBDD-to-MIP pipeline converts the
propositional formulae φi into a multi-rooted OBDD, and converts this OBDD,
and the stochastic constraint imposed on it, into a linear program that is then
solved using Gurobi.

Global SCMD propagation. Finally, we evaluate the two variants of the new
global SCMD propagator on probability distributions represented by OBDDs, im-
plemented in OscaR: full-sweep (Section 6.4.2) and partial-sweep (Section 6.4.3).
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Table 6.1: Characteristics of our set of 52 problem instances, including their range of size
of the set of interest |Φ|, number of stochastic variables |T|, number of decision variables
|D| and the number of test instances of each type.

name problem type |Φ| |T| |D| # instances

spine sparsification 13–23 33–60 33–60 3
hep-th spread of influence 20–33 51–90 20–33 2
facebook spread of influence 10–18 40–98 20–30 11
high-voltage power grid reliability 2–20 32–154 15–45 36

Parameter settings

While, in the next chapter, we will do a thorough analysis of the influence of pa-
rameter settings on the performance of our methods, in these first experiments,
we use the default settings for all software, unless indicated otherwise. In the
experiments to answer Q1, we constrain both CP solvers to branch on the vari-
ables in lexicographical order, branching first on false and then on true. In doing
so, we fix the branching order in an attempt to take the influence of branching
heuristics out of the equation, and thus to compare only the speed and effect of
propagation. For the other experiments, the global SCMD propagators use the
branching heuristic Derivative-1 (Section 6.4.3), because it seems to outperform
the other branching heuristics, as is shown in Table 6.3.

Problem instances

For our experiments we consider a total of 52 instances from the spine [133],
hepth [131], facebook [180] and powergrid [183] data sets described in Sec-
tion 4.5. For all these instances, we choose a problem setting of Variant 1 (see
Section 4.5). We summarise some characteristics of these instances in Table 6.1.

For presentation purposes we selected a representative subset of ten instances
from this set, for which we will show our results in this work. We provide some
characteristics of the instances in this subset in Table 6.2.

For each problem instance, we select a constraint threshold in the form of an
upper bound on the cardinality of the solution k. Specifically, we run each exam-
ple for nine values of k, based on the number of decision variables in the problem
instance. For sparsification problems, k represents an upper bound on the size of
the network that we extract. For spread-of-influence problems, k represents an
upper bound on the number of people to whom we can give a free sample of the
product. Finally, for power grid reliability problems, we make the simplifying as-
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Table 6.2: Some characteristics of the test instances we use in Section 6.5.3. In particular:
what entities the decision variables are associated with, the size of the set of interest |Φ|,
the number of stochastic variables |T| and the number of decision variables |D|, the OBDD
size without minimisation (|OBDDnm|) and with dynamic minimisation (|OBDDdm|) [156]
during the compilation, the OBDD compilation time without minimisation tnm, the dif-
ference in compilation times ∆t for these two compilation methods (compilation with dy-
namic minimisation always takes longer than compilation without minimisation).

instance |Φ| |T| |D| |OBDDnm| |OBDDdm| tnm [s] ∆t [s]

sparsification
spine16 23 33 33 80 80 0.09 0.01
spine27a 13 60 60 1 898 266 0.08 0.03
spine27b 13 55 55 9 350 476 0.08 1.13

spread of influence
hep-th47 20 51 20 10 815 3 658 0.12 0.59
hep-th5 33 90 33 14 555 8 865 0.43 13.25
facebook12 12 61 23 7 836 794 0.09 0.07
facebook25 25 72 25 6 981 2 198 0.10 0.22

power grid reliability
croatia 6 66 21 4 873 429 0.20 0.13
illinois 20 96 32 68 019 3 040 0.37 0.60
russia 16 94 34 1 616 947 0.42 0.55

sumption that the cost of reinforcing power lines is uniform, such that we can
replace the budget β by an upper bound on the number of power lines we can
reinforce, k. We do this to avoid overcomplicating the experiments.

For our experiments on the frequent itemset mining (FIM) problem setting, in
which we aim to detect top fake news distributors, we used communities in the
facebook dataset. We generated 25 OBDDs, which we combined with different
minimum expectation thresholds θ and different minimum support thresholds κ

to create FIM problem instances. The problems have sets of interest of size 50–65
and the same numbers of decision variables. The numbers of stochastic variables
range from 151–225, and the databases contain 33–52 transactions. Finally, the
OBDD sizes range from roughly 20 thousand to 2.5 million nodes.
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Figure 6.4: Solving times of CP-decomposition methods and global SCMD methods. Cut-
off time is 3 600 s (1 hour). Vertical axes are log scale.

6.5.3 Results

We study how the decomposition methods (Sections 5.2.1 and 5.2.2) compare to
the global SCMD propagators (Sections 6.4.2 and 6.4.3) in terms of solving time,
which we measure by using the wall-clock time reported by the different solvers
as the time actually spent on solving (and not on I/O). We aggregate some of our
results by computing the penalised average runtime with penalty factor 10 (PAR10)
values of solving times.

Comparison of CP solvers. We address Q1 by comparing the solver search
times of the implementations of the full-sweep (Section 6.4.2) and partial-sweep
(Section 6.4.3 versions of our propagator with two decomposed approaches in
Gecode: the GAC CP composition method and the no GAC CP decomposition
method (Sections 5.2.1 and 5.2.2). We keep the branching order for the search
process fixed to a lexicographical one, branching first on false and then on true.
This allows us to directly compare the propagation strength and speed on these
CP methods, because the ones that guarantee GAC have the same search trees.
The constraint threshold k indicates the maximum allowed cardinality of the so-
lution: from small (strict) to large (loose). We run these propagators on OBDDs
that are obtained using dynamic minimisation. Figure 6.4 shows that the global
SCMD propagators outperform both decomposition methods on our set of test in-
stances. While the full-sweep version of the SCMD propagator outperforms the
partial-sweep version, this difference is less pronounced.
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Table 6.3: PAR10 values in seconds for six branching heuristics used by the full-sweep
propagation algorithm on 52 test instances. Cutoff time is 3 600 s.

Top-0 Top-1 Bottom-0 Bottom-1 Derivative-0 Derivative-1

1 502 1 575 1 526 1 385 2 412 27
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Figure 6.5: Solving times of MIP-based OBDD decomposition method, compared to the
full-sweep and partial-sweep methods. Cutoff time is 3 600 s (1 hour). Vertical axes are log
scale.

Branching heuristics. We answer Q2 by evaluating the performance of the six
branching heuristics described in Section 6.4.3. We ran the full-sweep and partial-
sweep propagation algorithm on our set of 52 instances described in Table 6.1,
using an upper bound of k = b |D|/2e on the cardinality of the solution, where |D|
denotes the number of decision variables of the given instance. We repeated this
for the six branching heuristics from Section 6.4.3, using a cutoff time of 3 600 s,
and compute the PAR10. We present the results in Table 6.3. Clearly, Derivative-1
seems to be the most efficient branching heuristic for the full-sweep propagator
on our set of test instances.

Comparison of global CP and decomposed MIP encoding. Figure 6.5 com-
pares the performance of the full-sweep and partial-sweep OBDD propagators to
that of the OBDD decomposition method using Gurobi for solving the problem
(OBDD-to-MIP). For the global propagators, we have used branching heuristic
Derivative-1. We observe that the global SCMD propagators perform comparably,
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and often complementarily, to the OBDD-to-MIP method, answering Q3.

Scaling. We address Q4 in Figure 6.6, where we show how the full and partial-
sweep SCMD propagators scale for OBDDs of different size, obtained by run-
ning an OBDD compiler with and without minimisation for the same set of prob-
lems. Note that the SCMD propagators have the same search tree regardless of
the shape and size of the OBDD they operate on. We observe that the global
SCMD propagators seem to scale much more favourably with OBDD size than
the OBDD-to-MIP decomposition method. For example, on facebook12, the min-
imised OBDD is one order of magnitude smaller than the non-minimised OBDD.
Both full-sweep and partial-sweep propagators seem to indeed scale linearly with
that difference in size. However, the solving times for the OBDD-to-MIP decom-
position method increase by over two orders of magnitude when the OBDD size
increases by one order of magnitude.

Full-sweep versus partial-sweep. Recall that the full-sweep algorithm tra-
verses the entire OBDD twice per iteration of the propagator, while the partial-
sweep algorithm is designed to traverse only part of the OBDD in each propa-
gation. This renders the partial-sweep algorithm potentially more efficient than
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Figure 6.7: Solving times of the full-sweep and partial-sweep SCMD propagators on dy-
namically minimised and non-minimised OBDDs, for 52 instances (Table 6.1). We compare
two branching heuristics: Derivative-1 and Top-0. Cutoff time is 3 600 s (1 hour).

the full-sweep version, especially for branching strategies that work to reduce
the active part of the OBDD. While this comes at the price of some overhead,
we expect the overhead to become less important as OBDD size increases, since
for larger OBDDs, the benefits of not traversing the entire OBDD become more
pronounced.

To answer Q5, we therefore ran both propagators on the dynamically min-
imised and non-minimised OBDDs of all 52 test instances from Table 6.1. We ran
each solver on each OBDD, using nine constraint thresholds k. We performed
this experiment using two different branching heuristics: Derivative-1 and Top-0.
Figure 6.7 and Table 6.4 summarise our results.

Looking at the left plot in Figure 6.7, we observe that the full-sweep propaga-
tor tends to solve instances faster than partial-sweep when using the Derivative-1
branching heuristic. This is also reflected in the results in Table 6.4, where we see
that the PAR10 value for the partial-sweep propagator is 1.6 times that of the full-
sweep propagator. However, when we look at the top 5% largest OBDDs only,
these PAR10 values are more similar.

This effect is stronger when we use the Top-0 branching heuristic. Recall that
this heuristic attempts to reduce the size of the active part of the OBDD during
the search, by always branching on the free decision variable that is highest in the
OBDD. The right plot in Figure 6.7 shows that, when using the Top-0 branching
heuristic, the partial-sweep propagator outperforms the full-sweep algorithm on
many instances. This is also reflected in the PAR10 values in Table 6.4: on the
full set of OBDDs, the PAR10 value of partial-sweep is now only 1.2 times higher
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Table 6.4: PAR10 values (cutoff time of 3 600 s) for full-sweep and partial-sweep SCMD
propagators on dynamically minimised and not minimised OBDDs, for 52 instances (Ta-
ble 6.1), and the top 5% largest OBDDs in this set. We ran them on nine values of threshold
k per OBDD, and compare two branching heuristics: Derivative-1 and Top-0. We indicate
in parentheses the total number of instances, and how many times out of the total number
of instances a solver timed out. We also indicate the partial/full ratio of the PAR10 values.

All OBDDs (936) Top 5% largest OBDDs (45)
Derivative-1 Top-0 Derivative-1 Top-0

full 847 s (21) 2 366 s (59) 13 817 s (17) 21 028 s (26)
partial 1 373 s (33) 2 470 s (61) 16 389 s (20) 19 585 s (24)

partial/full 1.6 1.0 1.2 0.9

than that of full-sweep. Again, partial-sweep has a smaller PAR10 value than full-
sweep on the largest 5% of OBDDs.

These results confirm that branching heuristics that aim to minimise the size
of the active part of the OBDD can indeed give partial-sweep the edge over full-
sweep for large OBDDs. Derivative-1, on the other hand, leads to smaller search
trees. As the active part of OBDDs in this case does not get much smaller, the par-
tial sweep algorithm entails an overhead compared to the full-sweep approach,
and partial sweep does not offer substantial benefits. Nevertheless, even with a
branching heuristic that aims to minimise the size of the search tree (Derivative-1),
we see an indication that partial-sweep becomes competitive with full-sweep, as
OBDD size increases.

Interaction with other constraints. We conclude our evaluation of the global
constraint propagation algorithm with experiments on FIM instances, which we
performed on GRACE. In all earlier experiments, we combined the stochastic con-
straint with a cardinality constraint. To answer Q6, in this experiment, we have
evaluated the interaction of the global propagator with a CoverSize constraint.
We note that, in contrast with the other experiments reported in this section, this
is a constraint solving rather than a constraint optimisation setting. Note also that
we enumerate all solutions to the constraint solving problem.

We looked at the solving time of the top fake news distributors problem in-
stances for different minimum support thresholds κ and minimum expected in-
fluence thresholds θ. We present the results for a typical example problem in-
stance in Figure 6.8a, which shows the running time for the full-sweep propa-
gator with branching heuristic Derivative-1 for different combinations of θ and κ.

146



6.6 Conclusion

5 10
min. sup. κ

100

101

102

so
lv

in
g

ti
m

e
[s

]
CoverSize constraint

E = 2
E = 4
E = 6
E = 8

0 5 10
min. exp. infl. E

100

101

102

Stochastic constraint

κ = 2
κ = 4
κ = 6
κ = 8
κ = 10

(a) Solving times as a function of minimum support thresh-
old κ and minimum expected influence threshold θ, for a
typical example with the following characteristics: |Φ| =
65, |D| = 65, |T| = 225, |OBDD| = 493 241, and 52 trans-
actions in the database.

10−2 100 102

partial-sweep

10−2

100

102

fu
ll

-s
w

ee
p

Solving times [s]

2

4

6

8

10

12

m
in

.
su

p
.
κ

(b) Solving times of 25 top fake
news distribution problem instances,
for different (instance, κ, E) combina-
tions, using the full- and partial-sweep
propagators. Colour indicates mini-
mum support threshold κ.

Figure 6.8: Experimental results on the top fake news distributors problem setting (Sec-
tion 4.5).

Lower values of θ and κ correspond to looser constraints. As expected, we see
that solving times decrease as the constraints become stricter.

In Figure 6.8b, we compare the solving times of the full-sweep and partial-
sweep propagators (using branching heuristic Derivative-1) on the full set of 25
FIM problem instances, each combined with different (κ, θ) combinations. The
colour indicates the minimum support threshold κ. We observe that the full-
sweep propagator outperforms the partial-sweep version on almost all instances.
However, for large values of κ, we see that the partial-sweep propagator becomes
more competitive with, and in some cases even faster than, the full-sweep prop-
agator. We explain this by observing that for large values of κ, itemsets whose
support meet the threshold will likely be small. In the CoverSize algorithm, this
means that most decision variables will be fixed early in the search. Since in the
partial-sweep algorithm, the size of the active part of the OBDD tends to decrease
when decision variables are fixed, the active part likely shrinks dramatically early
on in the search. The benefits of the reduction in size then start to outweigh the
larger overhead.

6.6 Conclusion

In this chapter, we identified a problem with the decomposition approach to solv-
ing stochastic constraint (optimisation) problems (SCPs) as described in Chap-
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ter 5: it does not guarantee generalised arc consistency (GAC) and may therefore
traverse the search space inefficiently. Instead, we proposed a new method that
guarantees GAC by design and is specifically suited for solving global stochastic
constraints on monotonic distributions (SCMDs). It operates on OBDD encod-
ings of probability distributions, leveraging the monotonicity of the underlying
probability distributions.

We gave an extensive description of two implementations of this global SCMD
constraint propagator, and showed that their incremental way of propagating re-
sults in linear time complexity. The benefit of the partial sweep implementation
is that it does not need traverse the complete OBDD in all cases; however, addi-
tional data structures are required to make this possible; the full sweep propaga-
tor always considers the full OBDD, but incurs a smaller overhead in its passes
through the OBDD.

We implemented both versions in the CP solver OscaR [132]. In an initial set
of experiments on a set of 52 examples problems from four different domains,
we demonstrated that our global SCMD propagation method is superior to a CP-
decomposition method. However, when comparing the global SCMD approach
in its two variations with the MIP-decomposition approach, we found that the
approaches perform complementarily, with none of the approaches consistently
outperforming the other. Small trends can however be observed.

Specifically, the global SCMD propagators scale better with the size of the
OBDD than the MIP-decomposition method. For smaller OBDDs, the full-sweep
implementation of the global SCMD propagator outperforms the partial-sweep
version, while this is less pronounced for larger OBDDs. The branching heuristics
in CP are important; a branching order that focuses on reducing the size of the
active part of the OBDD, leads to more efficient propagation for the partial-sweep
implementation, but also to larger search trees. Overall, the choice of parameter
settings is important to obtain good performance for both the SCMD and MIP
methods.

We also presented results that suggest that for larger OBDDs, the partial-
sweep algorithm becomes competitive with and might even outperform the full-
sweep algorithm. The bottleneck for creating larger OBDDs for our experiments
was ProbLog’s speed in grounding the probabilistic programs. Perhaps with dif-
ferent tools, we could create larger monotonic OBDDs. Recently, promising ef-
forts have been made towards opening up that grounding bottleneck [175], which
opens up a concrete avenue for future work on exploring the performances of the
full-sweep and partial-sweep algorithms further.

In this dissertation in general and this chapter in particular, we have limited
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our attention to applications in network analysis, because such problems are com-
plex and have interesting monotonicity properties, and to applications that re-
quire maximisation of an expected value. It would be interesting to study how
well these approaches work in other types of problems. For example, we believe
our constraint propagation algorithm to be easily modifiable such that it can be
applied to problems where we require a lower bound on an expected value and
minimise the cardinality of the solution. We also expect our methods to find pos-
sible applications in the domains of FIM and in scheduling and vehicle routing
problems. Here we can exploit the fact that it is easy to combine our constraint
with other constraints in CP.

Naturally, some questions remain. While the theoretical asymptotic worst-
case time complexity of the partial-sweep propagator is the same as that of the
full-sweep propagator, in practice we find that the overhead of this propagator is
large. Based on our experiments, the cost of the overhead does not outweigh the
benefits of traversing a smaller part of the diagram, except for sufficiently large
instances and branching orders that reduce the size of the active part of the dia-
grams. Even so, whether an alternative approach can be developed with a smaller
overhead remains an open question.

A first step towards answering that question may be to take a careful look at
the observations presented in Section 6.4.2. Notice that addressing the first three
observations does not require the addition of much extra overhead; they could
all be dealt with by using priority queues. An obvious next step may therefore be
to implement a version of the SCMD propagator that is somewhat in between the
full-sweep and the partial-sweep propagator. For example: one that only imple-
ments the optimisations implied by O1 to O3, or a subset thereof.

Another direction of interest is to generalise the concept of monotonicity to
SDDs, and to develop a corresponding propagation algorithm. The partial-sweep
OBDD propagation algorithm that we presented in this chapter heavily relies on
the fact that OBDD nodes split on variable values. In SDDs however, nodes split
on how entire sub formulae, and thus on the values of sets of variables. Hence the
generalisation of our partial-sweep propagation algorithm to SDDs is not trivial.
Since SDDs can be made more succinct than OBDDs, we do think that this could
be an interesting line of future research.

We implemented our SCMD propagation algorithm in OscaR, so it is avail-
able to any OscaR user. However, for the benefit of those unfamiliar with OscaR

or those unwilling or unable to use OscaR, it would be good to implement ver-
sions of this propagation algorithm in other CP solvers as well. A key feature of
OscaR is its use of reversible data structures, providing convenient and efficient
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support for backtracking. It would be interesting to know if and how our SCMD
propagation algorithms can be implemented efficiently in other CP systems.

A different question is whether we can develop stochastic constraint propa-
gators that do not require that the probability distribution be monotonic. These
constraints may either be more general, or also especially designed to work on
probability distributions with specific properties. Another interesting line of pos-
sible future work is to ask if we can develop propagation algorithms that operate
on SDDs rather than OBDDs. After all, SDDs can be more compact than OBDDs
and thus maybe yield propagation algorithms that are more efficient in practice.
We believe that the performance of the SCMD propagator, as presented in this
chapter, should provide sufficient encouragement to a future researcher to ex-
plore the research directions outlined above.
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7
Applying PbO to exact SCPMD

solving

In the previous two chapters we presented several stochastic constraint (optimisa-
tion) problem (SCP) solving pipelines, based on stochastic constraint decomposi-
tion (Chapter 5) and global stochastic constraint propagation (Chapter 6). How-
ever, we did not explore in much detail how parameter settings affect the perfor-
mance of our proposed methods, nor did we explore many alternatives for the
design choices we made in the process.

We address these two open ends in this chapter, by applying the paradigm
of programming by optimisation (PbO) to the methods described in the previous
two chapters. Specifically, we implement and expose myriad alternative design
choices for different elements of the solving pipelines, and then use automated al-
gorithm configuration (AAC) to find application-specific optimised configurations
of these pipelines. After configuration, we find that the global stochastic constraint
on monotonic distributions (SCMD) solving pipeline from Chapter 6 outperforms
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its closest competitor (a mixed integer programming (MIP)-based decomposition
pipeline from Chapter 5) on all test sets we considered by up to two orders of
magnitude in terms of PAR10 scores. This chapter is based on the following peer-
reviewed workshop paper and journal paper:

� D. Fokkinga, A.L.D. Latour, M. Anastacio, S. Nijssen, and H. Hoos. ‘Program-
ming a Stochastic Constraint Optimisation Algorithm, by Optimisation’. In:
Data Science meets Optimization workshop 2019 (DSO 2019), colocated with IJCAI
2019, Macao, 2019.

� A.L.D. Latour, B. Babaki, D. Fokkinga, M. Anastacio, H.H. Hoos, and S. Nijs-
sen. ‘Exact Stochastic Constraint Optimisation with Applications in Network
Analysis’. In: Artificial Intelligence, vol 304, 2022.

7.1 Introduction

As the results in Sections 5.3 and 6.5 show, different variants of solving meth-
ods behave differently on different problem instances. Based on this, we cannot
decide what the optimal configuration is for each pipeline, or accurately predict
how these or alternative configurations will behave on new problem types. Addi-
tionally, we largely relied on default parameter settings, with some minimal ex-
ploration of alternatives. Since generic solvers like Gurobi have many parameters,
their defaults are unlikely to be optimal for a specific type of problem. While this
might give us an indication of how well the decomposition method works ‘out
of the box’, to assess its true potential, we need to tune its parameters. Finally, by
learning which parameter settings yield shorter solving times for specific prob-
lems, we may also learn more about those problems and how to solve them more
efficiently, potentially sparking interesting ideas for future research.

To address these observations, we leverage the PbO paradigm [80], which we
briefly explained in Section 3.5. Specifically, in this chapter we make the following
contributions:

1. We develop several design alternatives for different parts of decomposition-
based and global constraint optimisation pipelines from Chapters 5 and 6 and
expose them as configurable parameters (Section 7.2).

2. We apply AAC [79] to these configurable algorithms and demonstrate their
effectiveness on benchmarks from two application domains (Section 7.3.3).

3. We then demonstrate how the optimised configurations of these methods gen-
eralise to harder problems and different problem settings (Section 7.3.4).
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Automated optimisation techniques and tools such as SMAC [86] have been used
to solve optimisation problems in approximate probabilistic inference [149], con-
straint programming (CP) solving [99] and MIP solving [85]. However, to the best
of our knowledge, they have not yet been applied to the optimisation of the con-
figuration of exact probabilistic inference methods.

In the remainder of this chapter, we first describe how we have applied
the PbO paradigm to different elements of the stochastic constraint (optimisation)
problem on monotonic distributions (SCPMD) solving pipelines described in Sec-
tion 6.5.2. We then present our experiments in Section 7.3, and conclude this chap-
ter in Section 7.4.

7.2 Design space of SCPMD solving pipelines

In Chapters 5 and 6 we described several approaches to solving SCPMDs. Fig-
ure 7.1 shows these different methods schematically, and visualises how they
relate to each other. As we discussed above, in this chapter we apply the PbO
paradigm on these methods. In this section we describe the different design
choices that arise in the last three steps of the methods.

In this section we describe how we implemented alternative design choices
where necessary, and how the addition of these design choices influences the size
of the parameter space. As an illustration of the size of the parameter space in
each step of the methods, Figure 7.1 shows the number of tuneable parameters,
and their domain types, where applicable.

Note that we differ in our approach from earlier AAC approaches [85] by
separating ‘special values’ of parameters from their regular domains. Parameters
may have, for example, the domain of N+, but are turned off or tuned auto-
matically when they take value 0. Contrary to earlier approaches, we split these
parameters into a switch parameter and the normal parameter; the former turns the
latter on or off, and the latter is only configured if the switch is on.

In the remainder of this section we discuss the different design choices avail-
able to us, or added by us, for the different solving methods in Figure 7.1. Note
that Figure 7.1 shows the three pipelines as described in Section 6.5.2, with the
one difference that the decomposition-based pipelines can now also compile the
probability distributions to sentential decision diagrams (SDDs), instead of only to
ordered binary decision diagrams (OBDDs). Details on the exact domains and the
default values can be found at github.com/latower/SCPMD-solving.
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Figure 7.1: Overview of the different SCPMD solving methods that we evaluate in this
chapter, along with an indication of the number of parameters that we configure in each
step, with switch, Boolean, categorical, integer, and real domains.
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7.2.1 Knowledge compilation step

The algorithms described in Chapter 5 take constraints on OBDD or SDD rep-
resentations of probability distributions and decompose them into CP or MIP
models. The algorithms proposed in Chapter 6 only operate on OBDDs represen-
tations. We summarise the parameters for the knowledge compilation step of our
pipelines in Table 7.1.

Specifically, Table 7.1a shows the Diagram parameter, which we use to
let the configurator choose between OBDD and SDD representations in the
decomposition-based pipelines. For both types of decision diagrams (DDs), we let
the configurator tune if the knowledge compiler should attempt to minimise the
diagram during compilation. Finally, the configurator can also tune whether the
compilation algorithm should try to minimise the algorithm after compilation.

Table 7.1b shows the parameters related to minimisation in the CUDD

3.0.0 [168] compiler. In particular, we allow the configurator to exploit different
minimisation algorithms: Sifting (Sif) [156], Symmetric Sifting (SymSif) [136], Group
Sifting (GSif) [135], Window Permutation (WP) [89], a Simulated Annealing (SA) ap-
proach similar one from literature [21], a Genetic Algorithm (GA) inspired by one
from the literature [58] and a randomised variable reordering algorithm based on
the Sifting algorithm (Rand). They can be applied either to dynamic minimisation
during the OBDD compilation, or we can make a call to a minimisation algorithm
after compiling the OBDD.

The resulting parameter space for OBDD minimisation consists of two cate-
gorical parameters, one Boolean parameter, two integer-valued parameters and
one real-valued parameter.

We use the SDD minimisation algorithm proposed in Section 5.2.2 as the only
option for SDD compilation, as we must make sure that the resulting decom-
posed constraints can be linearised, for Gurobi to be able to find a solution in all
cases. Otherwise, we expose all available parameters for configuration, resulting
in eight Boolean parameters, five integer- and four real-valued parameters that
can be tuned for the SDD minimisation.

One of these parameters, ConvThreshold, is used to define convergence: if the
relative size reduction of the diagram is below this threshold, the algorithm has
converged. All other parameters either limit the size of intermediate results, or
the time that it takes to execute them, for the three vtree operations described in
Section 5.2.2. Details are shown in Table 7.1c.

Combining these with the parameters in Table 7.1 results in a total of six cat-
egorical parameters, eight switch parameters, ten integer- and five real-valued
parameters for the configuration of the compilation phase.
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Table 7.1: The configuration space of the knowledge compilation step of our pipelines, in
which the probability distributions are compiled into DDs. Note that some of the param-
eters are conditional on the value of other parameters. For brevity, we denote the Boolean
domain of {True, False} with B, and use k, M and B to indicate thousands, millions and
billions, respectively.

(a) Parameters for compilation in general.

parameter domain description

Diagram {OBDD, SDD} Compile φ(D, T) into an OBDD or SDD.
DynMinimise B Use dynamic minimise during compilation

(if Minimise = True).
Minimise B Minimise DD after compilation or not.

(b) Parameters for OBDD compilation with CUDD, all conditioned on Diagram = OBDD and
(Minimise = True or DynMinimise = True).

parameter domain description

VarOrder {Sif, SymSif,
GSif, WP, SA,
GA, Rand}

Variable reordering algorithm used for
OBDD minimisation.

Converging B Repeat variable reordering algorithm until
no improvement on OBDD size is found (if
VarOrder ∈ {Sif, SymSif, GSif, WP}).

MaxSwap [1, 3M] Upper bound on number of times two vari-
ables can be swapped in the variable order
(if VarOrder ∈ {Sif, SymSif, GSif}).

MaxSift [1, 3k] Upper bound on number of variables that
are sifted, i.e., moved up or down in the
variable order (if VarOrder ∈ {Sif, SymSif,
GSif}).

MaxGrowth [0.0, 2.0] Upper bound on relative OBDD size in-
crease during minimisation (if VarOrder ∈
{Sif, SymSif, GSif}).

WSizes {2, 3, 4} Evaluate permutations of WSizes consecu-
tive variables in the variable order at a time
(if VarOrder = WP).
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(c) Parameters for for SDD compilation with the SDD package, all conditioned on Diagram = SDD
andand (Minimise = True or DynMinimise = True).

parameter domain description

ConvThreshold [0.0, 50.0] Vtree convergence threshold.
RRCartProdLimOn B Turn Cartesian product limit for right-rotate op-

erations on.
RRCartProdLim [1, 65 536] Maximum allowed size of a Cartesian prod-

uct created by right-rotate operation (if
RRCartProdLimOn = True).

SWCartProdLimOn B Turn Cartesian product limit for swap opera-
tions on.

SWCartProdLim [1, 65 536] Maximum allowed size of a Cartesian prod-
uct created by right-rotate operation (if
SWCartProdLimOn = True).

RRTimeLimOn B Turn time limit for right-rotate operations on.
RRTimeLim [1, 25B] Time limit on right-rotate operation (if

RRTimeLimOn = True).
SWTimeLimOn B Turn time limit for swap operations on.
SWTimeLim [1, 25B] Time limit on swap operation (if SWTimeLimOn =

True).
LRTimeLimOn B Turn time limit for left-rotate operations on.
LRTimeLim [1, 25B] Time limit on left-rotate operation (if

LRTimeLimOn = True).
RRSizeLimOn B Turn size growth limit for right-rotate opera-

tions on.
RRSizeLim [1.0, 2.0] Size growth limit on right-rotate operation (if

RRSizeLimOn = True).
SWSizeLimOn B Turn size growth limit for swap operations on.
SWSizeLim [1.0, 2.0] Size growth limit on swap operation (if

SWSizeLimOn = True).
LRSizeLimOn B Turn size growth limit for left-rotate operations

on.
LRSizeLim [1.0, 2.0] Size growth limit on left-rotate operation (if

LRSizeLimOn = True).
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7.2.2 Encoding step

We consider two main ways of encoding stochastic constraints. One is the de-
composition approach presented in Chapter 5, the other is the global approach
presented in Chapter 6.

For the decomposition approach, we take a constraint on a SDD or OBDD rep-
resentation of the probability distribution, and either encode it into a MIP-model
or a CP-model. For the CP-encoding of OBDDs specifically, we consider two vari-
ants: one that guarantees generalised arc consistency (GAC) (Section 6.2) and one
that does not (Sections 5.2.1 and 5.2.2). Since one of the goals in this work is to de-
velop an efficient SCMD propagation algorithm that guarantees GAC and uses an
OBDD for the probability distribution encoding, we consider developing a GAC-
guaranteeing CP encoding of stochastic constraints on probability distributions
represented by SDDs to be outside the scope of this work.

The other main encoding approach is to keep the stochastic constraint as a
global constraint on the OBDD representation of the probability distribution. For
now, we consider only one such encoding. The accompanying propagation algo-
rithm (Section 6.4) guarantees GAC by design.

Consequently, the encoding step actually only has one parameter, and only if
we choose to model the probability distributions with OBDDs and then use the
CP-based decomposition method to solve the problem: it determines whether we
use the GAC-preserving encoding in this case, or not.

7.2.3 Solving step

In the following, we will briefly discuss the parameter spaces of the three solvers
that we use in this work: Gecode, Gurobi and OscaR.

Solving with the decomposition method

For the methods that make use of Gecode and Gurobi to solve a linear program1

obtained by decomposing a stochastic constraint on probability distributions (SCPD),
we enable the configuration of all parameters that are relevant for the speed of
solving the problem exactly. We base the choices for domains and default values
on earlier work on the automated configuration of Gurobi [85] and Gecode [99].
Considering the fact that Gecode and Gurobi already offer a wide range of branch-
ing heuristics, we refrained from exploring additional heuristics for these solvers.

1Even though Gurobi can handle quadratic constraints, we limit ourselves to linearised decompo-
sitions, as described in Section 7.2.1.
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Table 7.2: The configuration space of OscaR, when using the global SCMD propagator
from Section 6.4. Some of the parameters are conditional on the value of other parameters.

parameter domain description

Sweep {Full, Partial} Full or partial-sweep propagator.

VarSelHeur {Top, Bottom, Derivative,
Degree, Influence,
Triangle, Similarity,
Simmelian, ForestFire,
Betweenness, Random}

Heuristics to select which variable to
branch on next.

ValSelHeur B Heuristics to select which value to
branch on first.

TimeSteps [1, 1k] If VarSelHeur = Influence.

NumSamples [1, 100] If VarSelHeur = Betweenness.

FireProb [0.0, 1.0] If VarSelHeur = ForestFire.

EdgesBurnt [0.0, 1.0] If VarSelHeur = ForestFire.

The resulting configuration space for solving linear program encodings of
SCPs with Gecode consists of two Boolean parameters, three categorical param-
eters, three integer- and one real-valued parameter. The configuration space of
solving linear program encodings of SCPs with Gurobi consists of 49 switch pa-
rameters, 11 Boolean parameters, 10 categorical parameters, 37 integer- and 5
real-valued parameters. For practical reasons, we do not list the specific parame-
ters here, but refer the reader to the above-mentioned repository for more details.

Solving with the global SCMD propagation method

Our experiments in Section 6.5 showed that branching order has an important
impact on search efficiency. Because we study a variety of problems with different
properties (Section 4.5), we decided to add a range of problem-specific branching
heuristics to explore this result in more detail.

Table 7.2 shows the parameters for the global SCMD solving algorithm. Aside
from the parameter to choose between using the full or partial-sweep algorithm,
all parameters are directly related to branching.

The Top, Bottom and Derivative variable branching heuristics (with correspond-
ing value branching heuristics) are described in Section 6.4.3. These heuristics are
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derived from the topology of the OBDD (in the case of Top and Bottom) or dynam-
ically determined during the search (in the case of Derivative).

We propose seven new heuristics that take a different approach: they are de-
rived directly from the probabilistic network on which the SCPMD is defined. An
eighth new heuristic branches on variables that are selected uniformly at random.

In problems where decision variables are associated with nodes in a network
(e.g., Example 4.2.1), the Degree heuristic branches based on the unweighted,
undirected degree of the nodes. Similarly, Influence estimates the influence of
nodes in order to quickly find a high-quality solution, inspired by work on social
influence [23]. We translate the influence heuristic to problems with decision vari-
ables associated with the edges in the underlying network (e.g., Example 4.2.2),
by taking for each edge the sum of the influence scores of its endpoints. We com-
pute a degree-based score for edges using the local-degree measure from [109].

We observe that problems such as the theory compression problem of the
spine problem instances or the power grid reliability problem of Example 4.2.2
are very similar to graph sparsification problems. We therefore derived the Trian-
gle, Similarity, Simmelian and ForestFire heuristics from recent work on this prob-
lem [109, 163]. For the Triangle heuristic, we simply take the number of triangles
that a node or edge is part of (not taking into account weights or directionality),
to create versions of this heuristic that are suitable for problems with decision
variables on nodes or edges, respectively. We translated the Similarity, Simmelian
and ForestFire heuristics to problems with decision variables associated with the
nodes in the underlying network (e.g., Example 4.2.1), by summing the scores of
all incident edges on a node (not taking into account their weights or directional-
ity). Finally, we use an estimate of either node or edge betweenness centrality as
a proxy for the importance of a decision variable in the Betweenness heuristic.

Note that some branching heuristics incur preprocessing time, and that the
computational complexity of this preprocessing as well as the quality of the re-
sulting heuristic may depend on additional parameters. We mention these pa-
rameters in Table 7.2, but discussing them in detail is beyond the scope of this
work. The resulting parameter space of the global SCMD propagator, consists of
two Boolean parameters, one categorical parameter, two integer-valued parame-
ters and two real-valued parameters.

7.3 Experimental evaluation

In this section, we report on experiments using AAC to determine which pipeline
outperforms the others on two sets of problem instances, and to gauge how much
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each pipeline benefits from being automatically configured for these specific sets
of problem instances. We first discuss the specific research questions that we are
trying to answer. Next, we provide some details on the experimental setup in
Section 7.3.2. Finally, we analyse the results of our experiments in Section 7.3.3,
to answer the questions.

7.3.1 Research questions

The experiments in this section were designed to answer the following questions:

Q1 How much can we improve the performance of the decomposition methods
and the global SCMD method on different real-world problems by automat-
ically configuring these methods for those specific instance sets?

Q2 Which automatically configured method solves these problems best?

Q3 What can we learn about these solvers from the configuration results?

Q4 How do our optimised configurations generalise to harder instances of the
same problem type and to instances of a different problem type?

7.3.2 Experimental setup

We briefly review the software, hardware and problem instances that we used
for our experiments. In addition to the results in this section, the reader can find
more, and more detailed, results at github.com/latower/SCPMD-solving.

Software and hardware

For our configuration experiments, we mostly used the software as described
in Section 6.5.2. We used the NetworkX 2.2 and NetworKit 5.0.1 Python toolkits
for computing the scores used for variable branching heuristics, as described in
Section 7.2.3.2

SDDs were compiled using a version of the sdd 1.1.1 package [36] we adapted
to generate SDDs that can be decomposed into linear programs, as described in
Section 5.2.2.3

Because of the nature of the parameters described in Section 7.2, we expect
that a model-based search process for optimal configurations will yield the best

2Available at networkx.github.io and networkit.github.io.
3Available at reasoning.cs.ucla.edu/sdd/ and

github.com/ML-KULeuven/problog/tree/sc-problog.
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Table 7.3: Summary of characteristics of the benchmark sets we used in our experiments.
We provide the range of sizes of the set of interest |Φ|, numbers of stochastic variables |T|,
numbers of decision variables |D|, OBDD sizes |OBDD| and the sizes of the training and
test sets.

name problem type |Φ| |T| |D| |train| |test|

facebook spread of infl. 15–30 16–107 15–30 412 411
high-voltage power grid rel. 6–39 30–300 15–150 51 50

results. For our configuration experiments, we chose the general-purpose config-
urator SMACv3 [86], because it is one of the best-performing configurators that
are model-based and freely available.

All experiments in this section were performed on GRACE, a cluster with 32
nodes, each equipped with 94 GB of RAM and two Intel Xeon E5-2683 CPUs
with 16 cores, a cache size of 40 MB, running at 2.10 GHz using CentOS Linux
7.7.1908. Running times were measured in CPU seconds. We report on aggregated
results by using penalised average runtime with penalty factor 10 (PAR10) values as a
measure for running time performance.

In our experiments, we chose default values for compilation, CUDD, Gecode
and Gurobi based on the literature [85, 99], on the results from Section 5.3, and on
their own default settings. The default settings for OscaR were chosen based on
the experiments in Section 6.5.3.

Benchmark sets

For automated algorithm configuration, we require a large set of instances. This is
because we need disjoint training and testing of sufficient size for the configura-
tor to learn from different instances (training) and then validate its performance
on a sufficiently varied set of instances (testing). We created these instances us-
ing the processes described in Section 4.5 and summarise them in Table 7.3. All
of the SCPMD instances we formulate on these problems are of Variant 1 (see
Section 4.5).

For the facebook benchmark set, we select all nodes in a problem instance
as our set of interest. We choose the upper bound on the cardinality of the solu-
tion to be constant in these examples. Specifically, we use k = 10, because it can
be expected to yield challenging problems, as seen in our results in Section 6.5.
Additionally, fixing this threshold to one value, even for problems with different
sizes, is a realistic choice for real-life applications in this setting. After all, com-
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Table 7.4: PAR10 values in CPU seconds for the default (def.) and optimised (opt.) config-
urations of the three solving methods, for both the training set and the test set. We indicate
in brackets the number of examples that hit our cutoff time (600 CPU s). We highlight the
smallest PAR10 values on the test sets in bold.

CP-decomposition MIP-decomposition global SCMD
train test train test train test

facebook (412 training instances, 411 test instances)
def. 4 338 (295) 4 270 (289) 1 888 (124) 1 664 (108) 797 (52) 782 (51)
opt. 2 518 (168) 2 615 (174) 594 (39) 627 (41) 751 (49) 682 (44)

high-voltage (51 training instances, 50 test instances)
def. 4 386 (37) 4 351 (36) 3 686 (31) 3 989 (33) 2 379 (20) 2 782 (23)
opt. 4 379 (37) 4 452 (37) 3 188 (27) 3 031 (25) 2 260 (19) 2 669 (22)

panies likely have a marketing budget that does not depend very directly on the
size of the social network data they have access to.

We choose the threshold values for the high-voltage benchmark set differ-
ently. For these examples, we use k = b |D|/2e, such that we can reinforce at most
half of the total number of power lines in any given problem instance. We believe
this to be realistic for real-life applications, since we can assume that the mainte-
nance budgets for power grids might be roughly proportional to their size.

7.3.3 Configuration results

To address Q1 to Q3, we performed fifteen independent 48-hour runs of SMAC on
each solving pipeline (Section 7.2), on the two training sets in Table 7.3, minimis-
ing the PAR10 (penalised average running time with penalty factor 10) and using
a cutoff time of 600 CPU seconds. Then, for each method and each dataset, we
evaluated the final incumbent (the configuration with the smallest PAR10 value)
on the appropriate test set.

The results in Table 7.4 show that the MIP-decomposition method makes the
largest relative improvement after configuration, which answers Q1. We explain
this by noting that Gurobi has a relatively large configuration space (which gives
many options for improvement), compared to Gecode and OscaR, and by noting
that we used default settings for Gurobi as our default configuration, while we
chose our default configuration of OscaR based on our results in Section 6.5.

We also observe that, even with configuration, the CP-decomposition method
is not competitive with the MIP-decomposition method and global SCMD
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method, similar to what we see in Figure 6.4. Interestingly, for the CP-
decomposition method, the automated configurator chooses the encoding that
does not guarantee GAC for both the facebook and the high-voltage dataset.
Once more, it appears that, for CP encodings of SCMDs, a global encoding is
more favourable than a decomposed one. However, we see that the performance
of the MIP-decomposition method and global SCMD method are comparable and
complimentary after configuration, similar to what we see in Figure 6.5: on the
facebook instances, MIP works better, while on the high-voltage datasets, the
global constraint works better; this answers Q2.

We provide the optimised configurations obtained from these experiments on-
line at github.com/latower/SCPMD-solving. To answer Q3, we first note that for
the CP-decomposition and MIP-decomposition pipelines, SMAC always chooses
to encode the probability distributions as OBDDs, rather than SDDs. Further-
more, here and in the global SCMD propagation pipeline, SMAC tends to favour
the group sifting algorithm for OBDD minimisation, which is CUDD’s default
minimisation algorithm. Remarkably, the optimised configurations for the face-
book and high-voltage sets agree on all parameter choices for OscaR: SMAC

chooses to use the full-sweep version of the propagator, combined with the
Derivative-1 branching heuristic. We believe that further, detailed analysis of these
and similar results of configuration experiments could provide useful directions
for improvements to SCMD solving pipelines and see this as a promising direc-
tion for future work.

Finally, we note that the improvement in running time on the high-voltage
benchmark set is less impressive (and even negative, in the case of CP-
decomposition) than on the facebook benchmark set. We explain this by noting
that the high-voltage example set is much smaller than the facebook set (and
thus has fewer examples to learn from), while the problems tend to be larger (see
Table 7.3), causing relatively many examples to hit the cutoff time.

7.3.4 Generalisation of automated configuration results

We addressed Q4 by running the default and optimised configurations obtained
from Section 7.3.3 on the examples in Table 7.3 that were not solved by any solver
during the configuration experiment in Section 7.3.3 and therefore represent the
hardest instances in the training and test sets. In this new experiment, however,
we used a cutoff time of 3 600 CPU seconds instead of 600. Rather than using
just one threshold k per problem instance, we ran each configuration with nine
different thresholds per example, like we did for the experiments in Section 6.5.

In the configuration experiments, 19 of the high-voltage examples in the train-
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ing set were never solved. Since we now use these examples again to evaluate the
generalisation results, there is some leakage of information. However, since this
is only 19

351 and thus roughly 5% of the instances, we do not expect this to affect
the results much. For the facebook set there are 5 such instances, which is less
than 1%.

Similarly, we ran the optimised configuration obtained on the facebook
dataset on the hepth and facebook examples described in Table 6.1, since these
are spread-of-influence problems. Finally, we ran the optimised configurations
obtained on the high-voltage dataset on the spine and high-voltage examples,
because of their similarity. Note that, for practical reasons, there is a small overlap
(at most 5%) in the instances used for training in Section 7.3.3 and the facebook
and high-voltage test sets we are using in this experiment. We present the results
in Table 7.5 and observe patterns similar to those in Table 7.4.

From Table 7.5a, we see that the results for the harder examples with the larger
cutoff time are very similar to the ones shown in Table 7.4 and conclude that
our configuration results translate predictably to harder instances of the same
problem type, answering part of Q4.

Table 7.5b shows very similar results for the facebook and high-voltage prob-
lem instances. This is unsurprising, since they are taken from the same datasets
and represent the same problem types as the ones used for the configuration ex-
periments. For the spine and hepth examples, we notice dramatic improvement
in the performance of the MIP-decomposition pipeline, but not so much for the
global SCMD pipeline, with negative results for hepth. Still, the global SCMD
pipeline outperforms the MIP-decomposition pipeline on these examples, with
both the default and the optimised configurations. We conclude that the results
obtained in Section 7.3.3 translate reasonably to problem instances of different
types, with a small advantage for the global SCMD approach, answering the re-
mainder of Q4.

7.4 Conclusion

In order to make a fair comparison between the SCMD solving pipelines pro-
posed in Chapters 5 and 6, we applied the paradigm of PbO to these pipelines.
This resulted in three highly configurable pipelines, with alternative design
choices for the knowledge compilation, encoding and solving components. We
used AAC to automatically configure these pipelines for instances from two dif-
ferent real-world application domains.

Our findings indicate that after configuration, the pipeline that encodes proba-
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Table 7.5: PAR10 values in CPU seconds for the default and optimised configurations on
two test sets. We indicate in brackets the total number of (problem, k) combinations in the
first column. In the other columns, we indicate in brackets how many of those combina-
tions reached the cutoff time of 3 600 CPU seconds. For each problem set, we highlight the
lowest PAR10 value for the optimised configurations in bold.

(a) Results for the problems in the benchmark sets in Table 7.3, that were not solved by any of the
solvers in the configuration experiment of Section 7.3.3.

CP-decomp. MIP-decomp. global SCMD

facebook (558)
def. 35 398 (548) 28 780 (441) 11 330 (168)
opt. 32 607 (504) 18 528 (278) 10 716 (158)

high-voltage (351)
def. 34 325 (334) 33 523 (326) 29 300 (285)
opt. 32 597 (317) 31 302 (304) 29 186 (284)

(b) Results on the full set of 52 examples in Table 6.1, with 9 threshold values for each example.

CP-decomp. MIP-decomp. global SCMD

spine (27)
def. 12 308 (9) 569 (0) 17 (0)
opt. 16 220 (12) 35 (0) 17 (0)

hepth (18)
def. 30 177 (15) 6 493 (3) 65 (0)
opt. 26 254 (13) 568 (0) 68 (0)

facebook (99)
def. 19 100 (52) 4 428 (11) 58 (0)
opt. 15 482 (42) 791 (2) 51 (0)

high-voltage (324)
def. 8 808 (77) 8 410 (74) 55 (0)
opt. 8 538 (75) 4 447 (39) 52 (0)

bility distributions as OBDDs and then solves the SCPMD using the global SCMD
propagator proposed in Chapter 6 tended to outperform the other pipelines. This
effect was particularly noticeable in the experiments in which we tested how well
the optimised configurations generalise to larger instances, and to instances from
different application domains. Note that this is also the pipeline that can only be
applied to solving SCPMDs, and not to SCPs in general.

We also found that pipelines tended to favour OBDD representations of prob-
ability distributions over SDD representations and that a regret-based branching
heuristic is always favoured for the SCMD propagation algorithm.

We applied AAC in the current study with a focus on running time minimi-
sation. Other criteria can be of interest as well. For example, the memory use of
knowledge compilers can be prohibitively large, so optimising solving methods
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to use less memory could increase the applicability of those methods. Further-
more, to the best of our knowledge, this work represents the first use of AAC in
exact probabilistic inference. The configuration results we presented in this work
encourage us to expect automated solver configuration to also be beneficial for
optimisation solvers for other exact probabilistic inference tasks than the ones
discussed in this work.
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8
Conclusion and outlook

Only a question has the capacity to
be flexible enough to be wisdom.

Dr. Hannah Gadsby

In this dissertation, we set out to develop solving methods for stochastic constraint
(optimisation) problems (SCPs) that strike a good balance between convenience,
generality and speed. We wanted our methods to solve real-world problems fast
enough to be useful, to not be dedicated to a particular problem but support
problem settings from a range of application domains, and to be easy to use and
accessible. We focused on solving single-stage SCPs that are formulated on prob-
abilistic networks. Our work was motivated by three key limitations of existing
methods for solving SCPs:

1. Most existing methods focus on scheduling and planning problems, and are
less suited for solving problems formulated on probabilistic networks.

2. There was no language for conveniently modelling stochastic constraint opti-
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misation problems on probabilistic networks in particular.

3. There was no automatic pipeline for solving SCPs, once they are modelled.

Below, we discuss how we addressed these limitations and how we met our con-
venience, generality and speed goals, by answering the research questions stated
in Section 1.4. We also briefly discuss interesting remaining challenges that can be
addressed in future research, and end this chapter, and indeed this dissertation,
with some final closing remarks.

8.1 Research questions, revisited

We now revisit the main research questions that we formulated in Section 1.4, an-
swer them, and reflect on how our contributions addressed the above limitations
of existing SCP solving methods.

MRQ1 How can we conveniently model SCPs and specify them to a computer?

Our answer to this question is: SC-ProbLog. As described in Section 4.3, our newly
proposed SCP programming language SC-ProbLog provides a convenient way to
model the complex probability distributions that are generated by formulating
SCPs on probabilistic networks, because it is built on the probabilistic logic pro-
gramming language ProbLog [52, 64]. Additionally, it provides support for mod-
elling maximisation problems on both stochastic variables and decision variables,
because it is also built on ProbLog’s successor, DT-ProbLog. We extended DT-

ProbLog by adding functionality for both minimisation and maximisation prob-
lems, and by adding support for stochastic and linear constraints. It does not (yet)
support more complex constraints, such as the CoverSize constraint necessary for
modelling frequent itemset mining (FIM) problems.

We argued that, because of its declarative nature, we expect SC-ProbLog to
provide a very easy-to-learn and quick way for a user to specify highly complex
probability distributions, particularly those that arise from the probabilistic net-
works on which the SCPs that we study in this work, are formulated.

MRQ2 How can we leverage constraint programming (CP), mixed integer program-
ming (MIP) and knowledge compilation technology to solve SCPs?

In Chapters 5 and 6 we presented a number of SCP solving pipelines. Each
takes as input an SC-ProbLog model of an SCP, compiles the underlying proba-
bility distribution into either ordered binary decision diagrams (OBDDs) or sentential
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decision diagrams (SDDs), formulates a stochastic constraint on those decision dia-
grams (DDs) representations of the probability distributions, and feeds an encod-
ing of that constraint on the DDs into a CP or MIP solver.

Combining the benefits of knowledge compilation for tractable probabilistic
inference and CP and MIP solvers for efficient search is not a trivial task. It re-
quires a translation of a constraint on a DD representation of a probability distri-
bution into the appropriate solver in a manner that is not only efficient, but also
easy to use.

Our first approach, the decomposition method presented in Chapter 5, lever-
ages existing CP and MIP solving technology by simply decomposing the con-
straint on the DD into a multitude of local constraints, which are then fed to the
solver. It is straightforward to implement and can in principle be used in any
CP or MIP solver that supports variables with real domains, including Gurobi,
Gecode, CPLEX, and CPOptimizer. We can use both OBDDs and SDDs to encode
the probability distributions.

A downside of the decomposition method is that the search can be ineffi-
cient for CP implementations, since it does not guarantee generalised arc consis-
tency (GAC). We addressed this in Chapter 6 by developing a dedicated stochas-
tic constraint propagation algorithm, which does guarantee GAC, but can only
be applied to constraints on probability distributions that exhibit a certain mono-
tonic property. We call the corresponding constraint the stochastic constraint on
monotonic distributions (SCMD).

We reflect some more on the role that OBDDs and SDDs play in these meth-
ods, and on monotonic probability distributions, in our answer to MRQ3.

Note that, in our contributions that answer MRQ2, we have presented an idea
that we expect to be useful in other contexts as well: solving SCPs by means of
a modular approach that decouples knowledge compilation from search. A key
benefit of this approach is that we need not reinvent (or rather: reimplement) the
wheel, and can use whichever tools are the current state of the art for each element
of the pipeline. This makes the resulting pipeline easy to keep up-to-date with
the latest developments, and allows for flexible tool-building, where the user can
choose between different tools that can fulfil the same role in pipeline. We reflect
some more on this in answering MRQ4.

MRQ3 How can we leverage the properties of SDDs and OBDDs for faster SCP
solving?

We provided two different answers to this question. In Chapter 5, we identified
a special property of SDDs that allows global constraints on probability distribu-
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tions that are represented by SDDs with that property, to be decomposed into a
multitude of linear, instead of quadratic, constraints, making them faster to solve
by both CP and MIP solvers. We also implemented an SDD minimisation algo-
rithm that preserves this property.

All OBDDs already have that property, and thus always yield constraint de-
compositions that can be linearised. Studying OBDDs, however, we presented a
way to exploit the specific property of OBDDs that their internal nodes are la-
belled with variables, to develop a global constraint propagation algorithm, in
Chapter 6. A limitation of this algorithm is that it is only suitable for solving con-
straints on monotonic probability distributions (stochastic constraints on monotonic
distributions (SCMDs)).

However, as we have argued in Chapter 6, this limitation on the types of prob-
ability distributions that can be handled by the propagator is not very limiting in
practice, since real-life applications that exhibit these monotonic distributions are
plentiful. That being said, an interesting line of future work would be to inves-
tigate either more general GAC-guaranteeing propagators, or other specialised
propagators that guarantee GAC. We also see potential for future work in study-
ing SDDs more carefully to identify properties that may result in SCMD propaga-
tion algorithms that are even more efficient in practice than the ones presented in
Chapter 6, due to the fact that SDDs can be made to more succinct than OBDDs.

MRQ4 How can we fairly and informatively evaluate the running time perfor-
mance of complex solving pipelines on problems from different appli-
cation domains, and ultimately employ these pipelines for solving real-
world SCPs?

In Chapter 7, we applied the paradigm of programming by optimisation (PbO) [80]
to all our solving methods. In doing so, we attempted to take away any bias in
our analysis from design choices that favour certain problem types, as well as
find optimised parameter settings for problem instances from different applica-
tion domains, thus taking full advantage of the solving power of our SCP solv-
ing pipelines. Instead, we implemented many alternative design choices for the
different parts of our SCP solving pipelines. We then used automated algorithm
configuration (AAC) to automatically configure the resulting, highly configurable,
pipeline for different problem settings.

In our experiments, we found that the global constraint propagation approach
presented in Chapter 6 outperformed the decomposition methods from Chapter 5
in terms of running time. The experiments presented in Chapter 7 are also en-
couraging, because they indicate that configuration for specific applications is ef-
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fective. Moreover, we find that the application-specific optimised configurations
tend to generalise well to larger (harder) instances from the same application do-
main. In addition, we found that, for the SCP solving pipeline that uses a MIP
solver in particular, the optimised configurations also generalise well between
application domains, at least for application domains whose SC-ProbLog models
have a similar structure.

A direction that we touched upon, yet remained relatively unexplored in the
work presented in Chapter 7 is that of parameter importance. Some AAC tools
provide functionality for analysing which parameters have a large influence on
the performance of an algorithm. While we identified some parameter settings
that seem to work universally well in our experiments (mostly related to search
heuristics and OBDD minimisation), we leave it to future research to analyse
these results more carefully. We believe that such an analysis can be useful to ex-
tract insights into specific properties of the solving methods as well as the specific
problems studied, which can serve as inspiration for the development of future
SCP solving methods.

8.2 Future work

Having answered our main research questions, some technical challenges remain.
We now discuss those, as well as other interesting directions for future research.

Having demonstrated the power of SC-ProbLog in modelling SCPs, we see a
number of ways in which this modelling language can be further developed to
extend its expressiveness. First and foremost, we note that SC-ProbLog’s support
for constraints and optimisation criteria is still limited to linear and stochastic
ones. It does not yet provide support for other constraints and optimisation func-
tions. Chief among them is a lack of support for the CoverSize constraint neces-
sary for modelling FIM problems, such as the top fake news distributors problem
described in Section 4.5.4. Another interesting direction of the further develop-
ment of ProbLog would be to add functionality for multi-objective optimisation
problems.

In addition, we see opportunities for extending SC-ProbLog’s support to also
include constraints relevant to scheduling and vehicle routing problems, since we
expect both those kinds of problems to have variants in which probability and
relations play a key role. This would include, e.g., interval constraints for speci-
fying the time window in which a task must be completed, or maybe constraints
for specifying ranked preferences of users for drivers. The work presented in this
dissertation shows that SC-ProbLog is an effective and convenient tool for mod-
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elling SCPs, and has the potential to become a flexible and powerful modelling
tool for a wide range of applications. Extending SC-ProbLog’s syntax and seman-
tics to add support for the kinds of constraints as described above is a first, but
vital, step towards fulfilling that full potential.

Alternatively, future research may focus on the development of new ProbLog-
based languages. Much like SC-ProbLog was built on DT-ProbLog, we see poten-
tial for new languages to be developed based on, or inspired by, SC-ProbLog.

While the pipeline model used for our SCP solving methods has the advan-
tages of being flexible and easy to keep up-to-date with the latest technological
advances, it does require a significant effort from the user to make sure that all
components are installed correctly. An obvious direction of future work is to take
the lessons learnt in this work and to use them to create a dedicated solver for
SCPs, naturally still taking a PbO-based approach.

Another challenge is scalability. The experiments presented in Chapters 5 to 7
are performed on problem instances with at most a few hundred stochastic vari-
ables and decision variables. While problem instances of this size are not un-
common in real-world domains like the power grid reliability problem described
in Section 4.5.3 or the signalling regulatory pathway problem described in Sec-
tion 4.5.1, modern social networks typically contain millions, rather than hun-
dreds, of users.

For those applications we would need a different approach. Here, we see dif-
ferent possibilities. Firstly, we could simply ‘shrink’ the problem by sampling the
network or aggregating nodes, if possible. The network analysis community has
produced many effective network sampling techniques that could be applied to
the probabilistic networks that are integral to the problems studied in this work,
see, e.g., [72, 105]. While these methods are promising, their use requires some,
and perhaps even prohibitively much, expertise from the user, since different
sampling techniques should be used for different types of networks and different
sampling goals.

A perhaps more obvious approach would be to simply not solve the SCP ex-
actly, but rather approximately. Throughout this dissertation, we have assumed
that the probabilities are given, but we have never questioned the accuracy of
those probabilities (and rightly so, because that is out of the scope of the work
here presented). However, it is fair to ask what it really means that someone “has
a 30% chance of influencing their friend”? And how do we know that it is 30%
and not 25% or even 50%? How much does it matter? How much precision in the
exact probability makes sense here? Given these questions, it may seem strange
that we are solving SCPs exactly, and with arbitrary precision. Additionally, in
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practice we likely do not need arbitrary precision, although exact methods can be
very useful when evaluating the precision of approximate methods.

We now briefly list some ideas on how to incorporate approximations in SCP
solving techniques. A first class of methods would maintain the steps in the
pipelines as presented in this work.

One first alternative to the exact solving pipelines is an anytime solving
pipeline. When we use the SCMD propagators presented in Chapter 6 to solve
problems with a stochastic optimisation criterion, we can simply treat the con-
straint optimiser as an anytime solver. The longer it runs, the better the solu-
tion, but the user can stop the process at any time if they are satisfied with the
best-found solution thus far. In this context, an interesting line of future research
would be to develop branching heuristics aimed at finding a very good solution
very quickly, even if finding the optimal solution takes longer.

In addition, we could investigate the use of local search and sampling in the
solving of the SCP, finding local optima in the search space and losing the guar-
antees of exact optimisation. Stochastic local search techniques and decomposi-
tion techniques for approximation have been used widely in constraint satisfaction
problem (CSP) solving and probabilistic inference alike [78, 154]. We expect that all
methods described in this work are, or can easily be made, compatible with these
techniques. Similarly, we could further explore, e.g., local search and sampling al-
gorithms for the minimisation of DD representations of probability distributions,
or continue our search for minimisation algorithms that yield DDs with specific
properties that can be effectively exploited for faster SCP solving.

In Sections 2.4 and 2.5, we argued that a knowledge compilation approach
to probabilistic inference has many advantages, especially in a context in which
we may want to re-evaluate certain probabilities. A downside of this approach,
however, is that knowledge compilation may require amounts of memory that
are exponential in the input size of the problem, which can become prohibitive
when problems are too large. Additionally, compiled diagrams contain all the
information needed for exact inference, but, as we argued above, this might not
be needed or necessary. An interesting line of future research would therefore
ask how to compile ‘approximate’ DDs, that only contain all information needed
to compute probabilities within a certain, pre-specified precision. Alternatively,
maybe these diagrams could be compiled as much as the solver expects is needed
to verify if a stochastic constraint is satisfied, or even iteratively refined if need be
during the solving process. All these forms of approximate compilation could be
part of an SCP solving pipeline like the ones presented in this dissertation.

We also have some ideas on approximate SCP solvers that move away from
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the pipelines presented in this work. For example, we consider an interesting line
of research to be one in which we do not use knowledge compilation, but instead
go back to the model counters on which most knowledge compilers are based.
Contrary to knowledge compilers, most (weighted) model counters give the user
the option to limit their memory use, thus guaranteeing that probabilities can be
computed without exceeding the memory of the machine. There is a wide range
of exact and approximate (weighted) model counters that can be employed as
part of a SCP solving system, e.g., [29, 63, 74, 75, 128, 134, 166, 169, 173]. Note
that, in this approach, we would let go of the pipeline model and instead focus
on developing a dedicated solver.

Perhaps more interestingly, we could modify modern DPLL-based (weighted)
model counters to obtain a solver similar to Littman et al.’s algorithm for solving
extended SSAT (XSSAT) [111]. This system would solve SCPs by encoding them
in conjunctive normal form (CNF) and combining DPLL with branch-and-bound,
in order to not have to traverse the entire search tree, but still be able to find an
optimal value for a stochastic objective function or check if a stochastic constraint
is satisfied. Naturally, this could also come in the form of an anytime algorithm,
or the form of another kind of approximation algorithm.

Alternatively, it could be used to, e.g., find bounds on the value of the objec-
tive function. Note that this approach would require all constraints to be encoded
into a CNF, which may not be possible for all constraints, or make the CNF blow
up too much to be feasible. In addition, algorithms of this kind put strong con-
straints on the order in which the DPLL algorithm branches on the variables,
which hinders the solver’s ability to keep the search tree small. Much like bucket
elimination-style algorithms, these constraints on the branching order can be re-
laxed to find approximations rather than exact solutions.

Finally, we believe that the methods we presented can also be applied in other
contexts than those studied here. Many possibilities particularly remain for the
further integration of CP and probabilistic programming, given the limitations on
the types of constraints and probabilistic models studied in this work. As men-
tioned in the discussion of MRQ1, extending SC-ProbLog’s syntax and semantics
to include support for a wider variety of constraints would go a long way towards
achieving this, but we also imagine that other types of stochastic constraints, and
the implementation of their propagators, would be a valuable contribution to-
wards making the techniques presented in this work more widely applicable.
We hope that future researchers will specifically take a GAC-by-design approach
to propagator development when crafting new, or improved, propagation algo-
rithms for constraints on probability distributions, like we did in Chapter 6.
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Additionally, it is our hope that Chapter 7 serves as inspiration for future re-
searchers. We not only believe that a PbO-based approach to algorithm develop-
ment can aid in unlocking the full potential of solving methods, we also believe
that an AAC-based approach to evaluating the resulting methods is a good anti-
dote against the cherry picking of results. We believe that a thorough, AAC-based
evaluation of solving methods for any problem, but NP-hard ones in particular,
provides the reader with an honest and nuanced insight into the strengths and
weaknesses of these methods. It is our hope that this work contributes to nurtur-
ing a scientific work ethic that includes PbO and AAC as standard elements in
algorithm design and software development.

8.3 Conclusion

Scientists [133], policy makers [185] and companies [7, 150, 181] have to make
decisions under constraints and uncertainty on a daily basis. When the stakes are
high, e.g., because they must allocate large sums of money or take decisions that
influence the lives of people, we want those decisions to be optimal with respect
to some kind of objective. Even if the stakes are lower, we want our decisions to
be as good as possible.

In this work we focused on developing exact methods for solving single-stage
stochastic constraint (optimisation) problems (SCPs) that are formulated on proba-
bilistic networks. We chose to focus on this particular subset of SCPs because
we found that the literature lacked tools for solving such problems, despite their
ubiquity. We believe that we presented the reader with encouraging results, and
thus motivation for further research into this topic.

We also believe that the way in which we performed our research is exem-
plary of what we believe should be the standard in computer science research
in general: by taking a PbO-based approach to algorithm development, and an
AAC-based approach to evaluating our methods and exploiting their full poten-
tial. While AAC has already shown its power in the realm of MIP and CP solving
to some extent already [85, 99], to the best of our knowledge, this work presents
the first attempt at applying PbO and AAC to the development of exact proba-
bilistic inference methods. It is our hope that this work establishes the use of PbO
and AAC as a new best practice in the probabilistic inference community.

We conclude this chapter by observing that, in answering the four main re-
search questions listed in Section 1.4, we have addressed the three key limitations
of the existing work on SCP solving listed at the beginning of this chapter. Our
goal was to develop SCP solving methods that strike a good balance between con-
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venience, generality and speed. As discussed above, we indeed sometimes had
to make choices that sacrificed generality over speed, speed over convenience, or
convenience over generality, demonstrating once again that there is no such thing
as a free lunch. We do, however, believe that we explored the trade-offs between
these three goals, and struck a reasonable balance, resulting in practical tools. The
above demonstrates that, even though we made significant progress in SCP solv-
ing in the work presented in this dissertation, our work also opens many avenues
to future research in both exact and approximate methods.

We thus believe that we have made a significant and promising contribution
to helping humans in science and society make better choices, even when faced
with limitations and an uncertain universe.
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[142] G. Perez and J. Régin. Soft and cost MDD propagators. In S. Singh and
S. Markovitch, editors, Proceedings of the 31st Conference on Artificial Intelli-
gence (AAAI-17), pages 3922–3928. AAAI Press, 2017.

[143] W. Ping, Q. Liu, and A. T. Ihler. Decomposition bounds for marginal MAP.
In Advances in Neural Information Processing Systems 28: Annual Conference
on Neural Information Processing Systems (NIPS-15), pages 3267–3275, 2015.

[144] K. Pipatsrisawat and A. Darwiche. New compilation languages based on
structured decomposability. In Proceedings of the 33rd AAAI Conference on
Artificial Intelligence (AAAI-08), pages 517–522. AAAI Press, 2008.

[145] K. Pipatsrisawat and A. Darwiche. A new d-DNNF-based bound compu-
tation algorithm for functional E-MAJSAT. In Proceedings of the 21st Inter-
national Joint Conference on Artificial Intelligence (IJCAI-09), pages 590–595,
2009.

[146] D. Poole. Probabilistic Horn abduction and Bayesian networks. Artificial
Intelligence, 64(1):81–129, 1993.

[147] D. Poole. Exploiting the rule structure for decision making within the inde-
pendent choice logic. In Proceedings of the 11th Annual Conference on Uncer-
tainty in Artificial Intelligence (UAI-95), pages 454–463. Morgan Kaufmann,
1995.

[148] D. Poole. The independent choice logic and beyond. In Probabilistic Induc-
tive Logic Programming, volume 4911 of Lecture Notes in Computer Science,
pages 222–243. Springer, 2008.

192



BIBLIOGRAPHY

[149] T. Rainforth, T. A. Le, J. van de Meent, M. A. Osborne, and F. D. Wood.
Bayesian optimization for probabilistic programs. In Advances in Neural
Information Processing Systems 29: Annual Conference on Neural Information
Processing Systems (NIPS-16), pages 280–288, 2016.

[150] A. Rendl, G. Tack, and P. J. Stuckey. Stochastic MiniZinc. In Proceedings of
the 20th International Conference on Principles and Practice of Constraint Pro-
gramming (CP-14), volume 8656 of Lecture Notes in Computer Science, pages
636–645. Springer, 2014.

[151] J. Renkens, A. Kimmig, and L. De Raedt. Lazy explanation-based approxi-
mation for probabilistic logic programming. CoRR, abs/1507.02873, 2015.

[152] J. Renkens, A. Kimmig, G. Van den Broeck, and L. De Raedt. Explanation-
based approximate weighted model counting for probabilistic logics. In
Proceedings of the 28th AAAI Conference on Artificial Intelligence (AAAI-14),
pages 2490–2496. AAAI Press, 2014.

[153] S. Riedel. Improving the accuracy and efficiency of MAP inference for
Markov logic. In Proceedings of the 24th Conference in Uncertainty in Artificial
Intelligence (UAI-08), pages 468–475. AUAI Press, 2008.

[154] F. Rossi, P. van Beek, and T. Walsh, editors. Handbook of Constraint Program-
ming, volume 2 of Foundations of Artificial Intelligence. Elsevier, 2006.

[155] D. Roth. On the hardness of approximate reasoning. Artificial Intelligence,
82(1-2):273–302, 1996.

[156] R. Rudell. Dynamic variable ordering for ordered binary decision dia-
grams. In Proceedings of the 1993 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD-93), pages 42–47. IEEE, 1993.

[157] T. Sang, F. Bacchus, P. Beame, H. A. Kautz, and T. Pitassi. Combining com-
ponent caching and clause learning for effective model counting. In Online
Proceedings of the 7th International Conference on Theory and Applications of
Satisfiability Testing (SAT-04), 2004.

[158] T. Sang, P. Beame, and H. A. Kautz. Performing Bayesian inference by
weighted model counting. In Proceedings of the 20th National Conference
on Artificial Intelligence (AAAI-05), pages 475–482. AAAI Press / The MIT
Press, 2005.

193



BIBLIOGRAPHY

[159] T. Sang, P. Beame, and H. A. Kautz. A dynamic approach for MPE and
weighted MAX-SAT. In Proceedings of the 20th International Joint Conference
on Artificial Intelligence (IJCAI-07), pages 173–179, 2007.

[160] T. Sato. A statistical learning method for logic programs with distribution
semantics. In Proceedings of the 12th International Conference on Logic Pro-
gramming (ICLP-95), pages 715–729. MIT Press, 1995.

[161] T. Sato and Y. Kameya. PRISM: A language for symbolic-statistical model-
ing. In Proceedings of the 15th International Joint Conference on Artificial Intel-
ligence (IJCAI-97), pages 1330–1339. Morgan Kaufmann, 1997.

[162] T. Sato and Y. Kameya. Parameter learning of logic programs for symbolic-
statistical modeling. Journal of Artificial Intelligence Research, 15:391–454,
2001.

[163] V. Satuluri, S. Parthasarathy, and Y. Ruan. Local graph sparsification for
scalable clustering. In Proceedings of the ACM SIGMOD International Confer-
ence on Management of Data (SIGMOD-11), pages 721–732. ACM, 2011.

[164] P. Schaus, J. O. R. Aoga, and T. Guns. CoverSize: A global constraint for
frequency-based itemset mining. In Proceedings of the 23rd International Con-
ference on Principles and Practice of Constraint Programming (CP-17), volume
10416 of Lecture Notes in Computer Science, pages 529–546. Springer, 2017.

[165] B. Selman and H. A. Kautz. Knowledge compilation and theory approxi-
mation. Journal of the ACM, 43(2):193–224, 1996.

[166] S. Sharma, S. Roy, M. Soos, and K. S. Meel. GANAK: A scalable prob-
abilistic exact model counter. In Proceedings of the Twenty-Eighth Interna-
tional Joint Conference on Artificial Intelligence (IJCAI-19), pages 1169–1176.
ijcai.org, 2019.

[167] S. E. Shimony. Finding MAPs for belief networks is NP-hard. Artificial
Intelligence, 68(2):399–410, 1994.

[168] F. Somenzi. CUDD: CU Decision Diagram package-release 2.4.0, 2004. Uni-
versity of Colorado at Boulder.

[169] M. Soos and K. S. Meel. BIRD: engineering an efficient CNF-XOR SAT
solver and its applications to approximate model counting. In Proceedings
of the 33rd AAAI Conference on Artificial Intelligence (AAAI-19), pages 1592–
1599. AAAI Press, 2019.

194



BIBLIOGRAPHY
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A
Pseudocode of partial-sweep

algorithm

Because the pseudo code for our partial-sweep SCMD propagation algorithm is
too lengthy to include in the main part of this paper, we provide it in this ap-
pendix.

Note that OscaR [132] uses reversible data structures that provide very con-
venient support for backtracking. We do not include any ‘undo’ operations for
backtracking in our algorithm, as those mechanisms are already provided by the
reversible data structures implemented in OscaR.

A.1 Notation and terminology

We use r to refer to a node in the ordered binary decision diagram (OBDD), and r−

and r+ to its lo and hi child, respectively. We use var(r) to indicate variable that
labels a node r, and we use w(r) to indicate its weight in case var(r) is a stochas-
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tic variable. The path weight of r is denoted by π(r), and its score according to
Equation 2.11 by s(r).

We assume that the nodes of the OBDD are indexed in a topological way, such
that any path from a root to a leaf corresponds to a series of increasing indices. In
most of the top-down and bottom-up sweep algorithms we use queues to limit
the number of nodes we visit during the sweep. In our pseudo code, a queue
corresponding to a downward sweep is represented by Q (such that elements in
the queue are sorted in increasing order of OBDD node index), while a queue
used for an upward sweep is denoted with U (with elements in the queue sorted
in decreasing order of OBDD node index). Note that we treat these queues as sets:
they only contain unique elements.

We often iterate over OBDD nodes that are labelled with a particular decision
variable D. We denote this set of particular decision nodes with OBDDD.

For compactness, we refer to a node labelled with a stochastic variable as a
stochastic node. We use similar shorthands for free or unbound decision nodes, bound
decision nodes, true decision nodes and false decision nodes.

In the case of decision nodes, we define the active child of a node as follows. A
child of a decision node is active if it is the hi child of a free or true decision node,
or if it is the lo child of a false decision node (see Algorithm 9).

We think of propagation as the act of removing outgoing arcs of decision
nodes when we fix the corresponding decision variable (recall Figure 6.2 in Sec-
tion 6.4.3). Specifically, we remove an OBDD arc (p, c) from a parent p to child c
if we fix var(p) to true and c is p’s lo child, or if we fix var(p) to false and c is p’s
hi child (see Algorithm 9).

Through this process of removing arcs, we effectively remove valid paths (re-
call the definition of a valid path from Section 6.4.2) from the OBDD. Valid paths
from OBDD roots to internal OBDD nodes, or to or from active decision nodes
can determine whether or not we consider OBDD nodes to still be relevant, given
the current partial strategy and corresponding removed arcs.

There are two ways in which a node r can be relevant. In the first case, it is a
free decision node and it is reachable through a valid path from an OBDD root. In
the second case, it is itself not a free decision node, but there is at least one valid
path from a free decision node above r in the diagram down to r and there is a
valid path from r itself down to a free decision node below it (see Algorithm 9).

In order to determine if a node is relevant, and to keep track of the part of
the OBDD that is active (see Section 6.4.3), we associate three counters with each
node r:

Reachable[r] Indicates the number of valid paths from the artificial root (see be-
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low) of the OBDD down to r. The counter for this artificial root itself (and
for the actual OBDD roots) is always 1.

FreeIn[r] Indicates the number of incoming arcs that are a part of a valid path
from free decision nodes above r in the OBDD. This counter can take the
values 0–|parents(r)|.

FreeOut[r] Indicates the number of arcs outgoing of r that are a part of a valid
path from r down to free decision nodes below r. For each node of the
OBDD, this counter can take the values 0–2. For the leaves, this counter
is always equal to 0.

In the general case, an OBDD may have multiple roots, each one corresponding
to a query in the original . In order to define the Reachable counter in our imple-
mentation, we have added an artificial root to the OBDD, with one outgoing arc
to each of the original roots.

The intuition behind the Reachable counter is the following: during search
and propagation, assignments to decision variables may disconnect part of the
OBDD from the root, because we remove arcs accordingly (O6 in Section 6.4.3).
This happens for example in Figure 6.2b.

The FreeIn counter of a node r has a value in the same domain as the
Reachable counter, but represents a different concept. As addressed in O4 in Sec-
tion 6.4.3, only score changes in nodes that are descendants of free decision nodes,
can influence the scores of those decision nodes. Therefore, during the bottom-up
traversal of the OBDD to update the scores (Algorithm 4), we do not always need
to propagate all the way to the roots. Once we encounter a node r whose score
has changed due to recent value assignment to decision variables, but from which
there is no valid path back to the artificial OBDD root that passes through a free
decision node, we do not need to enqueue the parents of r for score updates. We
keep track of this by counting how many of the incoming arcs of node r are on
such a path.

The logic behind the FreeOut counter is similar to that of the FreeIn counter.
However: instead of stopping an upward sweep, it serves to stop the downward
sweep for path weight computation, to address O5 in Section 6.4.3. The value of
the FreeOut counter for a node r is either 0, 1 or 2, as it represent the number
of children of the FreeOut counter that are on valid paths down to free decision
nodes. Observe that if a node r is a fixed decision node, the value of its FreeOut
counter can never exceed 1, as one of the outgoing arcs of r is removed by fixing
the corresponding decision variable.
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A.2 An SCPMD solving algorithm

Algorithm 1 shows the basic steps needed for solving an SCPMD in the maximise
expectation setting (to which both problems described in Examples 4.2.1 and 4.2.2
belong).

Recall that these problems seek to maximise an expected score. We use the
stochastic constraint on monotonic distributions (SCMD) for solving these problems
by solving the constraint

∑
r∈roots

ρr · P(r | σ) > θ, (A.1)

and, as soon as we have found a solution with score s∗, we update θ to take that
value, and continue the search until we find a new solution, with a larger score.

A.3 Initialisation

Before the search for a solution to the stochastic constraint of Equation 1.1 begins,
we initialise the data structures needed for enforcing the SCMD with the function
INITIALISESCMD(OBDD, D), as given in Algorithm 2.

A.4 Partial-sweep propagation algorithm

During the search, as more and more decision variables become fixed, we repeat-
edly call the PROPAGATESCMD function in Algorithm 3 to recompute scores,
path weights, partial derivatives and the score of the partial strategy, but also to
keep track of the relevant part of the OBDD.

We first update arrays that record the current scores and path weights of the
nodes in the OBDD, using the functions in Algorithms 4 and 5. Then, we de-
tect currently free decision variables that must be fixed to true in order to obtain a
score larger than the current value of θ with the ENFORCEDOMAINCONSISTENCY

function in Algorithm 6. This function also fixes these variables accordingly. Fi-
nally, we maintain the relevant part of the OBDD by updating the counters pre-
sented in Section A.1, using the functions in Algorithms 7 and 8. To increase the
readability of our pseudocode, we use the helper functions specified in Algo-
rithm 9.
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Algorithm 1 Solving an stochastic constraint (optimisation) problem on monotonic dis-
tributions (SCPMD), in the maximise expectation setting.

Input: an OBDD, a set of decision variables D, a maximum cardinality k.
These are all considered to be global variables.

Output: the optimal strategy σ∗ and its corresponding score s(σ∗).

1: procedure BRANCH(σ′, D, a)
2: Dfree ← Dfree \ {D}
3: F ← {D} . The set of decision variables that are fixed in this call to the

BRANCH function.
4: σ′ ← σ′ ∪ {D = a} . Update partial strategy.
5: (conflict, σ′, F)← PROPAGATESCMD(σ′, F) . See Algorithm 3.
6: if conflict then return and BACKTRACK end if
7: (conflict, σ′, F)← PROPAGATECARDINALITYCONSTRAINT(σ′, F) .

Assumed given, outside the scope of this work.
8: if conflict then return and BACKTRACK end if
9: SOLVE(σ′)

10: procedure SOLVE(σ′)
11: if Dfree = ∅ and s(σ′) > s∗ then
12: σ∗ ← σ′

13: s∗ ← s(σ∗) . Score is computed incrementally (see Algorithm 3).
14: UPDATESCMDTHRESHOLD(s∗)
15: return and BACKTRACK

16: for D ∈ Dfree do . There are different selection strategies for determining
which D to branch on next.

17: a← SELECTVALUE(dom(D)) . And different strategies for
determining on which value to branch.

18: BRANCH(σ′, D, a)
19: BRANCH(σ′, D, a)
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20: INITIALISESCMD . See Algorithm 2.
21: INITIALISECARDINALITYCONSTRAINT(D, k) . Assumed given, outside the

scope of this work.
22: Dfree ← D . Set of free decision variables, global variable.
23: σ∗ ← {D = ⊥ | D ∈ D}, s∗ ← 0 . Optimal strategy and corresponding

score, global variables.
24: σ′ ← ENFORCEDOMAINCONSISTENCY(D f ree) . Fix those variables that must

be true to obtain partial strategy (Algorithm 6).
25: SOLVE(σ′)
26: return σ∗, s(σ∗)
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Algorithm 2 Initialisation of data structures. Note that OBDD and D are consid-
ered to be global variables.

1: procedure INITIALISEFREEIN

2: for r ∈ OBDD do FreeIn[r]← 0 end for
3: for r ∈ SORTED(OBDD) do . Downward sweep.
4: if var(r) is decision OR FreeIn[r] > 0 then
5: FreeIn[r−]← FreeIn[r−] + 1
6: FreeIn[r+]← FreeIn[r+] + 1

7: procedure INITIALISEFREEOUT

8: for r ∈ OBDD do FreeOut[r]← 0 end for
9: for r ∈ REVERSED(SORTED(OBDD)) do . Upward sweep.

10: if var(r) is decision OR FreeOut[r] > 0 then
11: for p ∈ PARENTS(r) do FreeOut[p]← FreeOut[p] + 1 end for

12: procedure INITIALISEREACHABLE

13: for r ∈ OBDD do Reachable[r]← 0 end for
14: Reachable[root]← 1
15: for r ∈ SORTED(OBDD) do . Downward sweep.
16: Reachable[r−]← FreeIn[r−] + 1
17: Reachable[r+]← FreeIn[r+] + 1

18: procedure INITIALISESCORES

19: for r ∈ REVERSED(SORTED(OBDD)) do . Upward sweep.
20: if var(r) is decision then
21: s(r)← s(r+)
22: else
23: s(r)← w(r) · s(r+) + (1− w(r)) · s(r−)
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24: procedure INITIALISEPATHWEIGHTS

25: for r ∈ OBDD do π(r)← 0 end for
26: for r ∈ SORTED(OBDD) do . Downward sweep.
27: if r is an original root of the OBDD then
28: π(r)← π(r) + ρr

29: else
30: for p ∈ PARENTS(r) do
31: if var(p) is decision then
32: if r is hi child of p then w← 1 else w← 0
33: else
34: if r is hi child of p then w← w(p) else w← (1− w(p))

35: π(r)← π(r) + π(p) · w

36: procedure INITIALISESCMD
37: INITIALISEFREEIN

38: INITIALISEFREEOUT

39: INITIALISEREACHABLE

40: INITIALISESCORES

41: INITIALISEPATHWEIGHTS

42: θ ← 0 . The current best score to beat.

Algorithm 3 SCMD propagation algorithm for propagating the consequences of
a given partial strategy σ′. Note that the set of currently free decision variables
D f ree is a global variable.

1: procedure PROPAGATESCMD(σ′, sold, F)
2: s← sold . Score of previous partial strategy.
3: δ← UPDATESCORES(F) . δ is sum of derivatives of decision variables

that were recently fixed to false, see also Algorithm 4.
4: s← s− δ . score of current partial strategy σ′

5: if s ≤ θ then return (true, σ′, F) end if . If we cannot satisfy the
constraint, we must return and backtrack.

6: UPDATEPATHWEIGHTS(F) . See Algorithm 5.
7: (σ′, F)← ENFORCEDOMAINCONSISTENCY(σ′, F, s) . See Algorithm 6.
8: UPDATEREACHABLEFREEIN(F) . See Algorithm 7.
9: UPDATEFREEOUT(F) . See Algorithm 8.

10: return ( f alse, σ′, F)
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Algorithm 4 Given a set F of decision variables that were recently fixed (either
by branching or by propagation), update the node scores (using Equation 2.11 on
page 39) that may have changed due to these new truth assignments. See Algo-
rithm 9 for helper functions.

1: procedure UPDATESCORES(F) . Upward sweep.
2: U ← {r | var(r) ∈ F ∧ var(r) = ⊥∧ Reachable[r] > 0} . Max heap (treat

as set).
3: δ← 0 . The combined derivative for all variables that are fixed to false in

this round.
4: sold ← 0 . Old score of an OBDD node.
5: while U 6= ∅ do
6: r ← U .DEQUEUE

7: sold ← s(r)
8: if var(r) ∈ D then . r is a decision node.
9: s(r)← s (ACTIVECHILD(r))

10: if var(r) ∈ F and var(r) is false then
11: δ← δ + π(r) · (s(r+)− s(r−))

12: else . r is a stochastic node.
13: snew ← w(r) · s(r+) + (1− w(r)) · s(r−)
14: if snew 6= sold then . We do not need to continue the propagation if the

score for r has not changed.
15: s(r)← snew

16: for p ∈ PARENTS(r) do
17: if not REMOVED(p, r) then ENQUEUERELEVANT(U , p) end if

18: return δ
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Algorithm 5 Given a set F of decision variables that were fixed (either by branch-
ing or by propagation), update the path weights that may have changed due to
this. See Algorithm 9 for helper functions.

1: procedure UPDATEPATHWEIGHTS(F) . Downward sweep.
2: Q ← ∅ . Min heap (treat as set).
3: for r ∈ {r | var(r) ∈ F ∧ Reachable[r] > 0} do
4: if var(r) is false then
5: Q.ENQUEUE(r−)
6: Q.ENQUEUE(r+)

7: while Q 6= ∅ do
8: r ← Q.DEQUEUE

9: πold ← π(r)
10: if r is an original root of the OBDD then πnew ← ρr else πnew ← 0

. Roots have a path weight of ρr, which is the utility of the corresponding
query.

11: for p ∈ PARENTS(r) do
12: if var(p) is decision variable then . r is a decision node
13: if ACTIVECHILD(p) = r then w← 1 else w← 0
14: else . r is a stochastic node
15: if r is hi child of p then w← w(p) else w← (1− w(p))

16: πnew ← πnew + π(p) · w
17: if πnew 6= πold then . We do not need to continue the propagation if

the path weight has not changed.
18: π(r)← πnew

19: if var(r) is stochastic variable then . r is a stochastic node.
20: ENQUEUERELEVANT(Q, r−)
21: ENQUEUERELEVANT(Q, r+)
22: else . r is a decision node.
23: ENQUEUERELEVANT(Q, ACTIVECHILD(r))
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Algorithm 6 Enforce domain consistency by fixing free variables to true if we find
that fixing them to false cannot lead to a solution to the stochastic constraint.

1: procedure ENFORCEDOMAINCONSISTENCY(σ′, F, s)
2: for D ∈ D f ree do
3: ∆← 0 . Partial derivative for free decision variable D.
4: for r ∈ {r ∈ OBDDD | Reachable[r]} do
5: ∆← ∆ + π(r) · (s(r−)− s(r+)) . Update the partial derivative for

D.
6: if s− ∆ ≤ θ then . The current partial strategy cannot be extended to

a valid solution if we fix D to false.
7: σ′ ← σ′ ∪ {d = true} . Infer that D must be true.
8: D f ree ← D f ree \ {D}
9: F ← F ∪ {D}

10: return (σ′, F)
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Algorithm 7 Update the Reachable and FreeIn counters after fixing decision
variables F. See Algorithm 9 for helper functions.

1: procedure UPDATEREACHABLEFREEIN(F) . Downward sweep.
2: Q ← ∅ . Min heap (treat as set).
3: procedure ENQUEUEIFNEEDTOPROPAGATE(r)
4: if FreeOut[r] > 0 and (FreeIn[r] = 0 OR Reachable = 0) then
5: Q.ENQUEUE(r)

6: S← {r | var(r) ∈ F and Reachable[r] > 0 and FreeOut[r] > 0}
7: for r ∈ S do
8: a← ACTIVECHILD(r)
9: i← INACTIVECHILD(r)

10: if a is not a leaf and FreeIn[r] = 0 then
11: FreeIn[a]← FreeIn[a]− 1
12: if a 6∈ S then ENQUEUEIFNEEDTOPROPAGATE(a) end if

13: if i is not a leaf then
14: FreeIn[i]← FreeIn[i]− 1
15: Reachable[i]← Reachable[i]− 1
16: if i 6∈ S then ENQUEUEIFNEEDTOPROPAGATE(i) end if

17: while Q 6= ∅ do
18: r ← Q.DEQUEUE

19: if Reachable[r] = 0 then
20: for c ∈ CHILDREN(r) do
21: if c is not a leaf and REMOVED(r, c) then
22: FreeIn[c]← FreeIn[c]− 1
23: Reachable[c]← Reachable[c]− 1
24: ENQUEUEIFNEEDTOPROPAGATE(c)

25: else
26: if FreeIn[r] = 0 and var(r) is decision and var(r) is bound then
27: for c ∈ CHILDREN(r) do
28: if c is not a leaf and not REMOVED(r, c) then
29: FreeIn[c]← FreeIn[c]− 1
30: ENQUEUEIFNEEDTOPROPAGATE(c)
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Algorithm 8 Update the FreeOut counter after fixing decision variables V. See
Algorithm 9 for helper functions.

1: procedure UPDATEFREEOUT(V) . Upward sweep.
2: U ← {r | var(r) ∈ V ∧ Reachable[r] > 0∧ FreeIn[r] > 0} . Max heap

(treat as set).
3: while U 6= ∅ do
4: r ← U .DEQUEUE

5: if var(r) ∈ V then
6: if FreeOut[ACTIVECHILD(r)] > 0 then FreeOut[r] ← 1 else

FreeOut[r]← 0

7: if FreeOut[r] = 0 and (var(r) is stochastic variable OR var(r) is bound)
then

8: for p ∈ PARENTS(r) do
9: if not REMOVED(p, r) and RELEVANT(p) then

10: FreeOut[p]← FreeOut[p]− 1
11: U .ENQUEUE(p)
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Algorithm 9 Helper functions for the update algorithms.

Upon finding a solution with score s, update the threshold θ, which is the
next score to beat.

1: procedure UPDATESCMDTHRESHOLD(s)
2: θ ← s

For free and true variables, the hi child is active. For false variables the lo child
is active. This function returns the active child of node r.

3: procedure ACTIVECHILD(r)
4: switch var(r) do
5: case var(r) is free
6: return r+

7: case var(r) is true
8: return r+

9: case var(r) is false
10: return r−

Fixing variables to values corresponds to removing their other outgoing arc
(corresponding to the opposite value) from the diagram. This function checks
if an arc is removed.

11: procedure REMOVED(p, r)
12: if var(p) is not free and ACTIVECHILD(p) 6= r then
13: return true

14: return false

A node is relevant if it corresponds to a free decision variable that has a con-
nection to the root, or if the node corresponds to a stochastic variable and is
on a path from one free decision node to another.

15: procedure RELEVANT(r)
16: if var(r) is free and Reachable[r] > 0 then
17: return true

18: else if FreeIn[r] > 0 and FreeOut[r] > 0 then
19: return true

20: else
21: return false

22: procedure ENQUEUERELEVANT(Q, r)
23: if RELEVANT(r) then Q.ENQUEUE(r) end if
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03 Daniël Harold Telgen (UU), Grid Manufacturing; A Cyber-Physical

Approach with Autonomous Products and Reconfigurable Manufac-
turing Machines

04 Mrunal Gawade (CWI), Multi-core Parallelism in a Column-store
05 Mahdieh Shadi (UVA), Collaboration Behavior

225



SIKS Dissertation Series

06 Damir Vandic (EUR), Intelligent Information Systems for Web Product
Search

07 Roel Bertens (UU), Insight in Information: from Abstract to Anomaly
08 Rob Konijn (VU) , Detecting Interesting Differences:Data Mining in

Health Insurance Data using Outlier Detection and Subgroup Discov-
ery

09 Dong Nguyen (UT), Text as Social and Cultural Data: A Computational
Perspective on Variation in Text

10 Robby van Delden (UT), (Steering) Interactive Play Behavior
11 Florian Kunneman (RUN), Modelling patterns of time and emotion in

Twitter #anticipointment
12 Sander Leemans (TUE), Robust Process Mining with Guarantees
13 Gijs Huisman (UT), Social Touch Technology - Extending the reach of

social touch through haptic technology
14 Shoshannah Tekofsky (UvT), You Are Who You Play You Are: Mod-

elling Player Traits from Video Game Behavior
15 Peter Berck (RUN), Memory-Based Text Correction
16 Aleksandr Chuklin (UVA), Understanding and Modeling Users of

Modern Search Engines
17 Daniel Dimov (UL), Crowdsourced Online Dispute Resolution
18 Ridho Reinanda (UVA), Entity Associations for Search
19 Jeroen Vuurens (UT), Proximity of Terms, Texts and Semantic Vectors

in Information Retrieval
20 Mohammadbashir Sedighi (TUD), Fostering Engagement in Knowl-

edge Sharing: The Role of Perceived Benefits, Costs and Visibility
21 Jeroen Linssen (UT), Meta Matters in Interactive Storytelling and Seri-

ous Gaming (A Play on Worlds)
22 Sara Magliacane (VU), Logics for causal inference under uncertainty
23 David Graus (UVA), Entities of Interest — Discovery in Digital Traces
24 Chang Wang (TUD), Use of Affordances for Efficient Robot Learning
25 Veruska Zamborlini (VU), Knowledge Representation for Clinical

Guidelines, with applications to Multimorbidity Analysis and Litera-
ture Search

26 Merel Jung (UT), Socially intelligent robots that understand and re-
spond to human touch

27 Michiel Joosse (UT), Investigating Positioning and Gaze Behaviors of
Social Robots: People’s Preferences, Perceptions and Behaviors

28 John Klein (VU), Architecture Practices for Complex Contexts

226



29 Adel Alhuraibi (UvT), From IT-BusinessStrategic Alignment to Perfor-
mance: A Moderated Mediation Model of Social Innovation, and En-
terprise Governance of IT”

30 Wilma Latuny (UvT), The Power of Facial Expressions
31 Ben Ruijl (UL), Advances in computational methods for QFT calcula-

tions
32 Thaer Samar (RUN), Access to and Retrievability of Content in Web

Archives
33 Brigit van Loggem (OU), Towards a Design Rationale for Software

Documentation: A Model of Computer-Mediated Activity
34 Maren Scheffel (OU), The Evaluation Framework for Learning Analyt-

ics
35 Martine de Vos (VU), Interpreting natural science spreadsheets
36 Yuanhao Guo (UL), Shape Analysis for Phenotype Characterisation

from High-throughput Imaging
37 Alejandro Montes Garcia (TUE), WiBAF: A Within Browser Adaptation

Framework that Enables Control over Privacy
38 Alex Kayal (TUD), Normative Social Applications
39 Sara Ahmadi (RUN), Exploiting properties of the human auditory sys-

tem and compressive sensing methods to increase noise robustness in
ASR

40 Altaf Hussain Abro (VUA), Steer your Mind: Computational Explo-
ration of Human Control in Relation to Emotions, Desires and Social
Support For applications in human-aware support systems

41 Adnan Manzoor (VUA), Minding a Healthy Lifestyle: An Exploration
of Mental Processes and a Smart Environment to Provide Support for
a Healthy Lifestyle

42 Elena Sokolova (RUN), Causal discovery from mixed and missing data
with applications on ADHD datasets

43 Maaike de Boer (RUN), Semantic Mapping in Video Retrieval
44 Garm Lucassen (UU), Understanding User Stories - Computational

Linguistics in Agile Requirements Engineering
45 Bas Testerink (UU), Decentralized Runtime Norm Enforcement
46 Jan Schneider (OU), Sensor-based Learning Support
47 Jie Yang (TUD), Crowd Knowledge Creation Acceleration
48 Angel Suarez (OU), Collaborative inquiry-based learning

2018 01 Han van der Aa (VUA), Comparing and Aligning Process Representa-
tions

02 Felix Mannhardt (TUE), Multi-perspective Process Mining

227



SIKS Dissertation Series

03 Steven Bosems (UT), Causal Models For Well-Being: Knowledge Mod-
eling, Model-Driven Development of Context-Aware Applications,
and Behavior Prediction

04 Jordan Janeiro (TUD), Flexible Coordination Support for Diagnosis
Teams in Data-Centric Engineering Tasks

05 Hugo Huurdeman (UVA), Supporting the Complex Dynamics of the
Information Seeking Process

06 Dan Ionita (UT), Model-Driven Information Security Risk Assessment
of Socio-Technical Systems

07 Jieting Luo (UU), A formal account of opportunism in multi-agent sys-
tems

08 Rick Smetsers (RUN), Advances in Model Learning for Software Sys-
tems

09 Xu Xie (TUD), Data Assimilation in Discrete Event Simulations
10 Julienka Mollee (VUA), Moving forward: supporting physical activity

behavior change through intelligent technology
11 Mahdi Sargolzaei (UVA), Enabling Framework for Service-oriented

Collaborative Networks
12 Xixi Lu (TUE), Using behavioral context in process mining
13 Seyed Amin Tabatabaei (VUA), Computing a Sustainable Future
14 Bart Joosten (UVT), Detecting Social Signals with Spatiotemporal Ga-

bor Filters
15 Naser Davarzani (UM), Biomarker discovery in heart failure
16 Jaebok Kim (UT), Automatic recognition of engagement and emotion

in a group of children
17 Jianpeng Zhang (TUE), On Graph Sample Clustering
18 Henriette Nakad (UL), De Notaris en Private Rechtspraak
19 Minh Duc Pham (VUA), Emergent relational schemas for RDF
20 Manxia Liu (RUN), Time and Bayesian Networks
21 Aad Slootmaker (OUN), EMERGO: a generic platform for authoring

and playing scenario-based serious games
22 Eric Fernandes de Mello Araujo (VUA), Contagious: Modeling the

Spread of Behaviours, Perceptions and Emotions in Social Networks
23 Kim Schouten (EUR), Semantics-driven Aspect-Based Sentiment Anal-

ysis
24 Jered Vroon (UT), Responsive Social Positioning Behaviour for Semi-

Autonomous Telepresence Robots
25 Riste Gligorov (VUA), Serious Games in Audio-Visual Collections
26 Roelof Anne Jelle de Vries (UT),Theory-Based and Tailor-Made: Moti-

vational Messages for Behavior Change Technology

228



27 Maikel Leemans (TUE), Hierarchical Process Mining for Scalable Soft-
ware Analysis

28 Christian Willemse (UT), Social Touch Technologies: How they feel and
how they make you feel

29 Yu Gu (UVT), Emotion Recognition from Mandarin Speech
30 Wouter Beek, The ”K” in ”semantic web” stands for ”knowledge”: scal-

ing semantics to the web

2019 01 Rob van Eijk (UL),Web privacy measurement in real-time bidding sys-
tems. A graph-based approach to RTB system classification

02 Emmanuelle Beauxis Aussalet (CWI, UU), Statistics and Visualizations
for Assessing Class Size Uncertainty

03 Eduardo Gonzalez Lopez de Murillas (TUE), Process Mining on
Databases: Extracting Event Data from Real Life Data Sources

04 Ridho Rahmadi (RUN), Finding stable causal structures from clinical
data

05 Sebastiaan van Zelst (TUE), Process Mining with Streaming Data
06 Chris Dijkshoorn (VU), Nichesourcing for Improving Access to Linked

Cultural Heritage Datasets
07 Soude Fazeli (TUD), Recommender Systems in Social Learning Plat-

forms
08 Frits de Nijs (TUD), Resource-constrained Multi-agent Markov Deci-

sion Processes
09 Fahimeh Alizadeh Moghaddam (UVA), Self-adaptation for energy ef-

ficiency in software systems
10 Qing Chuan Ye (EUR), Multi-objective Optimization Methods for Al-

location and Prediction
11 Yue Zhao (TUD), Learning Analytics Technology to Understand

Learner Behavioral Engagement in MOOCs
12 Jacqueline Heinerman (VU), Better Together
13 Guanliang Chen (TUD), MOOC Analytics: Learner Modeling and Con-

tent Generation
14 Daniel Davis (TUD), Large-Scale Learning Analytics: Modeling

Learner Behavior & Improving Learning Outcomes in Massive Open
Online Courses

15 Erwin Walraven (TUD), Planning under Uncertainty in Constrained
and Partially Observable Environments

16 Guangming Li (TUE), Process Mining based on Object-Centric Behav-
ioral Constraint (OCBC) Models

17 Ali Hurriyetoglu (RUN),Extracting actionable information from micro-
texts

18 Gerard Wagenaar (UU), Artefacts in Agile Team Communication

229



SIKS Dissertation Series

19 Vincent Koeman (TUD), Tools for Developing Cognitive Agents
20 Chide Groenouwe (UU), Fostering technically augmented human col-

lective intelligence
21 Cong Liu (TUE), Software Data Analytics: Architectural Model Discov-

ery and Design Pattern Detection
22 Martin van den Berg (VU),Improving IT Decisions with Enterprise Ar-

chitecture
23 Qin Liu (TUD), Intelligent Control Systems: Learning, Interpreting,

Verification
24 Anca Dumitrache (VU), Truth in Disagreement - Crowdsourcing La-

beled Data for Natural Language Processing
25 Emiel van Miltenburg (VU), Pragmatic factors in (automatic) image de-

scription
26 Prince Singh (UT), An Integration Platform for Synchromodal Trans-

port
27 Alessandra Antonaci (OUN), The Gamification Design Process applied

to (Massive) Open Online Courses
28 Esther Kuindersma (UL), Cleared for take-off: Game-based learning to

prepare airline pilots for critical situations
29 Daniel Formolo (VU), Using virtual agents for simulation and training

of social skills in safety-critical circumstances
30 Vahid Yazdanpanah (UT), Multiagent Industrial Symbiosis Systems
31 Milan Jelisavcic (VU), Alive and Kicking: Baby Steps in Robotics
32 Chiara Sironi (UM), Monte-Carlo Tree Search for Artificial General In-

telligence in Games
33 Anil Yaman (TUE), Evolution of Biologically Inspired Learning in Ar-

tificial Neural Networks
34 Negar Ahmadi (TUE), EEG Microstate and Functional Brain Network

Features for Classification of Epilepsy and PNES
35 Lisa Facey-Shaw (OUN), Gamification with digital badges in learning

programming
36 Kevin Ackermans (OUN), Designing Video-Enhanced Rubrics to Mas-

ter Complex Skills
37 Jian Fang (TUD), Database Acceleration on FPGAs
38 Akos Kadar (OUN), Learning visually grounded and multilingual rep-

resentations
2020 01 Armon Toubman (UL), Calculated Moves: Generating Air Combat Be-

haviour
02 Marcos de Paula Bueno (UL), Unraveling Temporal Processes using

Probabilistic Graphical Models

230



03 Mostafa Deghani (UvA), Learning with Imperfect Supervision for Lan-
guage Understanding

04 Maarten van Gompel (RUN), Context as Linguistic Bridges
05 Yulong Pei (TUE), On local and global structure mining
06 Preethu Rose Anish (UT), Stimulation Architectural Thinking during

Requirements Elicitation - An Approach and Tool Support
07 Wim van der Vegt (OUN), Towards a software architecture for reusable

game components
08 Ali Mirsoleimani (UL),Structured Parallel Programming for Monte

Carlo Tree Search
09 Myriam Traub (UU), Measuring Tool Bias and Improving Data Quality

for Digital Humanities Research
10 Alifah Syamsiyah (TUE), In-database Preprocessing for Process Mining
11 Sepideh Mesbah (TUD), Semantic-Enhanced Training Data Augmenta-

tionMethods for Long-Tail Entity Recognition Models
12 Ward van Breda (VU), Predictive Modeling in E-Mental Health: Explor-

ing Applicability in Personalised Depression Treatment
13 Marco Virgolin (CWI), Design and Application of Gene-pool Optimal

Mixing Evolutionary Algorithms for Genetic Programming
14 Mark Raasveldt (CWI/UL), Integrating Analytics with Relational

Databases
15 Konstantinos Georgiadis (OUN), Smart CAT: Machine Learning for

Configurable Assessments in Serious Games
16 Ilona Wilmont (RUN), Cognitive Aspects of Conceptual Modelling
17 Daniele Di Mitri (OUN), The Multimodal Tutor: Adaptive Feedback

from Multimodal Experiences
18 Georgios Methenitis (TUD), Agent Interactions & Mechanisms in Mar-

kets with Uncertainties: Electricity Markets in Renewable Energy Sys-
tems

19 Guido van Capelleveen (UT), Industrial Symbiosis Recommender Sys-
tems

20 Albert Hankel (VU), Embedding Green ICT Maturity in Organisations
21 Karine da Silva Miras de Araujo (VU), Where is the robot?: Life as it

could be
22 Maryam Masoud Khamis (RUN), Understanding complex systems im-

plementation through a modeling approach: the case of e-government
in Zanzibar

23 Rianne Conijn (UT), The Keys to Writing: A writing analytics approach
to studying writing processes using keystroke logging

24 Lenin da Nobrega Medeiros (VUA/RUN), How are you feeling, hu-
man? Towards emotionally supportive chatbots

231



SIKS Dissertation Series

25 Xin Du (TUE), The Uncertainty in Exceptional Model Mining
26 Krzysztof Leszek Sadowski (UU), GAMBIT: Genetic Algorithm for

Model-Based mixed-Integer opTimization
27 Ekaterina Muravyeva (TUD), Personal data and informed consent in

an educational context
28 Bibeg Limbu (TUD), Multimodal interaction for deliberate practice:

Training complex skills with augmented reality
29 Ioan Gabriel Bucur (RUN), Being Bayesian about Causal Inference
30 Bob Zadok Blok (UL), Creatief, Creatieve, Creatiefst
31 Gongjin Lan (VU), Learning better – From Baby to Better
32 Jason Rhuggenaath (TUE), Revenue management in online markets:

pricing and online advertising
33 Rick Gilsing (TUE), Supporting service-dominant business model eval-

uation in the context of business model innovation
34 Anna Bon (MU), Intervention or Collaboration? Redesigning Informa-

tion and Communication Technologies for Development
35 Siamak Farshidi (UU), Multi-Criteria Decision-Making in Software

Production
2021 01 Francisco Xavier Dos Santos Fonseca (TUD), Location-based Games for

Social Interaction in Public Space
02 Rijk Mercuur (TUD), Simulating Human Routines:Integrating Social

Practice Theory in Agent-Based Models
03 Seyyed Hadi Hashemi (UVA), Modeling Users Interacting with Smart

Devices
04 Ioana Jivet (OU), The Dashboard That Loved Me: Designing adaptive

learning analytics for self-regulated learning
05 Davide Dell’Anna (UU), Data-Driven Supervision of Autonomous Sys-

tems
06 Daniel Davison (UT), “Hey robot, what do you think?” How children

learn with a social robot
07 Armel Lefebvre (UU), Research data management for open science
08 Nardie Fanchamps (OU), The Influence of Sense-Reason-Act Program-

ming on Computational Thinking
09 Cristina Zaga (UT), The Design of Robothings. Non-Anthropomorphic

and Non-Verbal Robots to Promote Children’s Collaboration Through
Play

10 Quinten Meertens (UvA), Misclassification Bias in Statistical Learning
11 Anne van Rossum (UL), Nonparametric Bayesian Methods in Robotic

Vision
12 Lei Pi (UL), External Knowledge Absorption in Chinese SMEs

232



13 Bob R. Schadenberg (UT), Robots for Autistic Children: Understanding
and Facilitating Predictability for Engagement in Learning

14 Negin Samaeemofrad (UL), Business Incubators: The Impact of Their
Support

15 Onat Ege Adali (TU/e), Transformation of Value Propositions into Re-
source Re-Configurations through the Business Services Paradigm

16 Esam A. H. Ghaleb (UM), BIMODAL EMOTION RECOGNITION
FROM AUDIO-VISUAL CUES

17 Dario Dotti (UM), Human Behavior Understanding from motion and
bodily cues using deep neural networks

18 Remi Wieten (UU), Bridging the Gap Between Informal Sense-Making
Tools and Formal Systems - Facilitating the Construction of Bayesian
Networks and Argumentation Frameworks

19 Roberto Verdecchia (VU), Architectural Technical Debt: Identification
and Management

20 Masoud Mansoury (TU/e), Understanding and Mitigating Multi-
Sided Exposure Bias in Recommender Systems
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