

# Guiding safe and sustainable technological innovation under uncertainty: a case study of III-V/silicon photovoltaics

Blanco Rocha, C.F.

# Citation

Blanco Rocha, C. F. (2022, September 8). *Guiding safe and sustainable* technological innovation under uncertainty: a case study of III-V/silicon photovoltaics. Retrieved from https://hdl.handle.net/1887/3455392

| Version:         | Publisher's Version                     |
|------------------|-----------------------------------------|
| License:         | Leiden University Non-exclusive license |
| Downloaded from: | https://hdl.handle.net/1887/3455392     |

Note: To cite this publication please use the final published version (if applicable).

# Appendix

Supplementary Information

| Year | Authors                                  | Title                                                                                                              | PV technology                                             | Eligible | Reason for exclusion                                                       |
|------|------------------------------------------|--------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|----------|----------------------------------------------------------------------------|
| 2010 | García-Valverde<br>et al. <sup>1</sup>   | Life cycle analysis of organic photovoltaic technologies                                                           | Organic                                                   | Y        |                                                                            |
| 2010 | Ito et al. <sup>2</sup>                  | Life-cycle analyses of very-large scale PV systems using six types of PV modules                                   | Silicon<br>Thin Film Silicon                              | Z        | Impact scores not<br>harmonizable                                          |
| 2010 | Reijnders <sup>3</sup>                   | Design issues for improved environmental performance of dye-<br>sensitized and organic nanoparticulate solar cells | Dye-sensitized<br>Organic                                 | Z        | Not LCA                                                                    |
| 2011 | Bravi et al.4                            | Life cycle assessment of a micromorph photovoltaic system                                                          | Thin Film                                                 | Υ        |                                                                            |
| 2011 | Espinosa et al. <sup>5</sup>             | Life-cycle analysis of product integrated polymer solar cells                                                      | OPV                                                       | Z        | Integrated on other<br>device                                              |
| 2011 | Fthenakis & Kim <sup>6</sup>             | Photovoltaics: Life-cycle analyses                                                                                 | Silicon<br>Thin Film Silicon<br>Thin Film<br>Chalcogenide | Z        | Uses data from other<br>studies                                            |
| 2011 | Held & Ilg <sup>7</sup>                  | Update of environmental indicators and energy payback time of CdTe PV systems in Europe                            | Thin Film                                                 | Y        |                                                                            |
| 2011 | Kim & Fthenakis <sup>8</sup>             | Comparative life-cycle energy payback analysis of multi-junction a-<br>SiGe and nanocrystalline/a-Si modules       | Tandem                                                    | ¥        |                                                                            |
| 2011 | Nieves Espinosa<br>et al. <sup>9</sup>   | A life cycle analysis of polymer solar cell modules prepared using roll-to-roll methods under ambient conditions   | Organic                                                   | ¥        |                                                                            |
| 2011 | Şengül et al. <sup>10</sup>              | An environmental impact assessment of quantum dot photovoltaics (QDPV) from raw material acquisition through use   | Quantum Dot                                               | Y        |                                                                            |
| 2011 | van der Meulen<br>& Alsema <sup>11</sup> | Life-cycle greenhouse gas effects of introducing nano-crystalline<br>materials in thin-film silicon solar cells    | Thin Film                                                 | Y        |                                                                            |
| 2012 | Emmott et al. <sup>12</sup>              | Environmental and economic assessment of ITO-free electrodes for organic solar cells                               | OPV                                                       | Z        | System boundaries not<br>harmonizable<br>Impact scores not<br>harmonizable |
| 2012 | Espinosa et al. <sup>13</sup>            | Solar cells with one-day energy payback for the factories of the future                                            | OPV                                                       | Z        | Functional unit not<br>harmonizable                                        |

Table A. 1-1 Screened and eligible LCA studies of emerging PV technologies

A.1. Supplementary information to Chapter 2

| Not LCA                                                                         | Uses data from other<br>studies                                                                                              |                                                                                                              | Not LCA                                         | Uses data from other<br>studies<br>Geographical focus                                                     | Not LCA                                                                                                       | Not LCA                                                                                                                   | Integrated on other<br>device                                                                                                                                                                                                        | Uses data from other<br>studies                                                                          | Uses data from other studies                                             |                                                                                                                                  | Uses data from other<br>studies<br>Impact scores not<br>harmonizable                                                                                             |
|---------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------|-----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Z                                                                               | Z                                                                                                                            | Ч                                                                                                            | Z                                               | Z                                                                                                         | Z                                                                                                             | Z                                                                                                                         | Z                                                                                                                                                                                                                                    | Z                                                                                                        | Z                                                                        | Y                                                                                                                                | Z                                                                                                                                                                |
| Thin Film<br>Chalcogenide<br>Thin Film Silicon                                  | Thin Film<br>Chalcogenide<br>Thin Film Silicon                                                                               | Organic                                                                                                      | Thin Film<br>Chalcogenide                       | OPV                                                                                                       | Thin Film<br>Chalcogenide<br>Thin Film Silicon                                                                | Thin Film<br>Chalcogenide                                                                                                 | OPV                                                                                                                                                                                                                                  | Thin Film<br>Chalcogenide                                                                                | Quantum Dot                                                              | Tandem                                                                                                                           | Dye-sensitized                                                                                                                                                   |
| Sustainability metrics for extending thin-film photovoltaics to terawatt levels | Life Cycle Greenhouse Gas Emissions of Thin-film Photovoltaic<br>Electricity Generation: Systematic Review and Harmonization | Life cycle assessment of ITO-free flexible polymer solar cells prepared by roll-to-roll coating and printing | Potential Cd emissions from end-of-life CdTe PV | Deciphering the uncertainties in life cycle energy and<br>environmental analysis of organic photovoltaics | Considerations of resource availability in technology development strategies: The case study of photovoltaics | Comparative alternative materials assessment to screen toxicity hazards in the life cycle of CIGS thin film photovoltaics | OPV for mobile applications: an evaluation of roll-to-roll processed<br>indium and silver free polymer solar cells through analysis of life<br>cycle, cost and layer quality using inline optical and functional<br>inspection tools | Direct Te Mining: Resource Availability and Impact on Cumulative<br>Energy Demand of CdTe PV Life Cycles | Life Cycle Energy and Climate Change Implications of<br>Nanotechnologies | Environmental life cycle assessment of roof-integrated flexible<br>amorphous silicon/nanocrystalline silicon solar cell laminate | Development of dye sensitized solar cells: a life cycle perspective<br>for the environmental and market potential assessment of a<br>renewable energy technology |
| Fthenakis <sup>14</sup>                                                         | Kim et al. <sup>15</sup>                                                                                                     | Nieves Espinosa<br>et al. <sup>16</sup>                                                                      | Raugei et al. <sup>17</sup>                     | Yue et al. <sup>18</sup>                                                                                  | Zuser &<br>Rechberger <sup>19</sup>                                                                           | Eisenberg et al. <sup>20</sup>                                                                                            | Espinosa et al. <sup>21</sup>                                                                                                                                                                                                        | Fthenakis et al. <sup>22</sup>                                                                           | Kim &<br>Fthenakis <sup>23</sup>                                         | Mohr et al. <sup>24</sup>                                                                                                        | Parisi et al. <sup>25</sup>                                                                                                                                      |
| 2012                                                                            | 2012                                                                                                                         | 2012                                                                                                         | 2012                                            | 2012                                                                                                      | 2012                                                                                                          | 2013                                                                                                                      | 2013                                                                                                                                                                                                                                 | 2013                                                                                                     | 2013                                                                     | 2013                                                                                                                             | 2013                                                                                                                                                             |

|                                                                                                                                   | Functional unit not<br>harmonizable<br>System boundaries not<br>harmonizable<br>Impact scores not<br>harmonizable | Functional unit not<br>harmonizable<br>System boundaries not<br>harmonizable<br>Impact scores not<br>harmonizable |                                                                           | Technology not in<br>development                                                                |                                                                                                                                          | Uses data from other<br>studies                                                           | Geographical focus                                                                | Not LCA                                                                              |                                                                                     |                                                                                                                                  |
|-----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|
| Ч                                                                                                                                 | Z                                                                                                                 | Z                                                                                                                 | Y                                                                         | Z                                                                                               | Ч                                                                                                                                        | Z                                                                                         | Z                                                                                 | Z                                                                                    | Ч                                                                                   | Ч                                                                                                                                |
| Thin Film                                                                                                                         | OPV                                                                                                               | OPV                                                                                                               | Thin Film                                                                 | Silicon                                                                                         | Dye-sensitized                                                                                                                           | Silicon<br>Thin Film Silicon<br>Thin Film<br>Chalcogenide                                 | OPV                                                                               | Perovskite                                                                           | Perovskite                                                                          | Tandem                                                                                                                           |
| Life cycle environmental impacts from CZTS (copper zinc tin sulfide) and Zn3P2 (zinc phosphide) thin film PV (photovoltaic) cells | Life cycle analysis of organic tandem solar cells: When are they warranted?                                       | Large scale deployment of polymer solar cells on land, on sea and<br>in the air                                   | Life cycle assessment of cadmium telluride photovoltaic (CdTe PV) systems | The energy payback time of advanced crystalline silicon PV modules in 2020: a prospective study | The evolution of the dye sensitized solar cells from Grätzel prototype to up-scaled solar applications: A life cycle assessment approach | Illustrating Anticipatory Life Cycle Assessment for Emerging<br>Photovoltaic Technologies | Ecodesign of organic photovoltaic modules from Danish and<br>Chinese perspectives | Quantifying the Potential for Lead Pollution from Halide Perovskite<br>Photovoltaics | Perovskite photovoltaics: life-cycle assessment of energy and environmental impacts | Life-cycle greenhouse gas emissions and energy payback time of current and prospective silicon heterojunction solar cell designs |
| Collier et al. <sup>26</sup>                                                                                                      | Espinosa &<br>Krebs <sup>27</sup>                                                                                 | Espinosa et al. <sup>28</sup>                                                                                     | Kim et al. <sup>29</sup>                                                  | Mann et al. <sup>30</sup>                                                                       | Parisi et al. <sup>31</sup>                                                                                                              | Wender et al. <sup>32</sup>                                                               | Espinosa et al. <sup>33</sup>                                                     | Fabini <sup>34</sup>                                                                 | Gong et al. <sup>35</sup>                                                           | Louwen et al. <sup>36</sup>                                                                                                      |
| 2014                                                                                                                              | 2014                                                                                                              | 2014                                                                                                              | 2014                                                                      | 2014                                                                                            | 2014                                                                                                                                     | 2014                                                                                      | 2015                                                                              | 2015                                                                                 | 2015                                                                                | 2015                                                                                                                             |

|                                                                                                                    | Uses data from other<br>studies                                                              | System boundaries not<br>harmonizable                                                                                                |                                                                                         |                                                                                                             |                                                                                                               | Not LCA                                               | Not LCA                                                                                        |                                                                              | Uses data from other<br>studies                                                                          |                                                                                                       | Uses data from other<br>studies                                   |                                                                                                    |
|--------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| Х                                                                                                                  | Z                                                                                            | Z                                                                                                                                    | Y                                                                                       | Х                                                                                                           | Ч                                                                                                             | Z                                                     | Z                                                                                              | Х                                                                            | Z                                                                                                        | Y                                                                                                     | Z                                                                 | Y                                                                                                  |
| Perovskite                                                                                                         | Silicon<br>Thin Film Silicon<br>Thin Film<br>Chalcogenide                                    | Thin Film<br>Chalcogenide                                                                                                            | Perovskite                                                                              | Silicon                                                                                                     | Perovskite                                                                                                    | Perovskite                                            | Thin Film<br>Chalcogenide                                                                      | Perovskite                                                                   | Silicon<br>Thin Film<br>Chalcogenide<br>Thin Film Silicon<br>Tandem<br>III-V                             | Organic                                                                                               | Silicon<br>Thin Film<br>Chalcogenide<br>Quantum Dot               | Thin Film                                                                                          |
| Solution and vapour deposited lead perovskite solar cells:<br>Ecotoxicity from a life cycle assessment perspective | Tradeoff Evaluation Improves Comparative Life Cycle Assessment:<br>A Photovoltaic Case Study | Reducing the life cycle environmental impacts of kesterite solar photovoltaics: comparing carbon and molybdenum back contact options | Tin- and Lead-Based Perovskite Solar Cells under Scrutiny: An Environmental Perspective | Update of energy payback time and greenhouse gas emission data for crystalline silicon photovoltaic modules | Life Cycle Assessment of Titania Perovskite Solar Cell Technology<br>for Sustainable Design and Manufacturing | Toxicity of organometal halide perovskite solar cells | A framework for technological learning in the supply chain: A case study on CdTe photovoltaics | Life Cycle Assessment (LCA) of perovskite PV cells projected from lab to fab | Ecodesign perspectives of thin-film photovoltaic technologies: A review of life cycle assessment studies | Life Cycle Assessment and eco-efficiency of prospective, flexible, tandem organic photovoltaic module | Review of life cycle assessment of nanomaterials in photovoltaics | The Energy and Environmental Performance of Ground-Mounted<br>Photovoltaic Systems—A Timely Update |
| Nieves Espinosa<br>et al. <sup>37</sup>                                                                            | Prado-Lopez et<br>al. <sup>38</sup>                                                          | Scott et al. <sup>39</sup>                                                                                                           | Serrano-Lujan et<br>al. <sup>40</sup>                                                   | Wetzel &<br>Borchers <sup>41</sup>                                                                          | Zhang et al. <sup>42</sup>                                                                                    | Babayigit et al.43                                    | Bergesen & Su <sup>44</sup>                                                                    | Celik et al. <sup>45</sup>                                                   | Chatzisideris et<br>al. <sup>46</sup>                                                                    | Hengevoss et<br>al. <sup>47</sup>                                                                     | Kim et al. <sup>48</sup>                                          | Leccisi et al. <sup>49</sup>                                                                       |
| 2015                                                                                                               | 2015                                                                                         | 2015                                                                                                                                 | 2015                                                                                    | 2015                                                                                                        | 2015                                                                                                          | 2016                                                  | 2016                                                                                           | 2016                                                                         | 2016                                                                                                     | 2016                                                                                                  | 2016                                                              | 2016                                                                                               |

| System boundaries not<br>harmonizable                                                                                                                                 |                                                                                                                                          | Uses data from other<br>studies                                                                                                                                   |                                                                                                            |                                                                                                 | Integrated on other<br>device                                                   | System boundaries not<br>harmonizable                                                                                 |                                                                                                                                                                   | Geographical focus                                                                                                                                                       |                                                                  | Impact scores not<br>harmonizable                                                                                                               |                                                                                           |                                                                                                 |                                                                                                            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
| Z                                                                                                                                                                     | Х                                                                                                                                        | Z                                                                                                                                                                 | Х                                                                                                          | Ч                                                                                               | Ζ                                                                               | Ζ                                                                                                                     | Х                                                                                                                                                                 | Z                                                                                                                                                                        | Y                                                                | Z                                                                                                                                               | Y                                                                                         | Y                                                                                               | Ч                                                                                                          |
| Thin Film<br>Chalcogenide                                                                                                                                             | Organic                                                                                                                                  | OPV                                                                                                                                                               | Tandem                                                                                                     | Organic                                                                                         | OPV                                                                             | Perovskite                                                                                                            | Tandem                                                                                                                                                            | Silicon<br>Thin Film Silicon                                                                                                                                             | Tandem                                                           | Silicon<br>Thin Film<br>Chalcogenide                                                                                                            | Perovskite                                                                                | Perovskite                                                                                      | Perovskite                                                                                                 |
| Can Carbon Nanomaterials Improve CZTS Photovoltaic Devices?<br>Evaluation of Performance and Impacts Using Integrated Life-<br>Cycle Assessment and Decision Analysis | A comparative human health, ecotoxicity, and product<br>environmental assessment on the production of organic and silicon<br>solar cells | Life-cycle assessment of cradle-to-grave opportunities and<br>environmental impacts of organic photovoltaic solar panels<br>compared to conventional technologies | Environmental analysis of perovskites and other relevant solar cell technologies in a tandem configuration | Environmental Impacts from Photovoltaic Solar Cells Made with<br>Single Walled Carbon Nanotubes | Life-Cycle Assessment of Solar Charger with Integrated Organic<br>Photovoltaics | Environmental benefits of reduced electricity use exceed impacts from lead use for perovskite based tandem solar cell | Highly Efficient 3rd Generation Multi-Junction Solar Cells Using<br>Silicon Heterojunction and Perovskite Tandem: Prospective Life<br>Cycle Environmental Impacts | A comparison of the environmental impact of solar power generation using multicrystalline silicon and thin film of amorphous silicon solar cells: case study in Thailand | A life cycle assessment of perovskite/silicon tandem solar cells | Environmental impacts of PV technology throughout the life cycle:<br>Importance of the end-of-life management for Si-panels and CdTe-<br>panels | Comparison of life cycle environmental impacts of different perovskite solar cell systems | Perovskite Photovoltaic Modules: Life Cycle Assessment of Pre-<br>industrial Production Process | Relative impacts of methylammonium lead triiodide perovskite<br>solar cells based on life cycle assessment |
| Scott et al. <sup>50</sup>                                                                                                                                            | Tsang et al. <sup>51</sup>                                                                                                               | Tsang et al. <sup>52</sup>                                                                                                                                        | Celik et al. <sup>53</sup>                                                                                 | Celik et al. <sup>54</sup>                                                                      | dos Reis Benatto<br>et al. <sup>55</sup>                                        | Hauck et al. <sup>56</sup>                                                                                            | Itten & Stucki <sup>57</sup>                                                                                                                                      | Khaenson et al. <sup>58</sup>                                                                                                                                            | Lunardi et al. <sup>59</sup>                                     | Vellini et al. <sup>60</sup>                                                                                                                    | Zhang et al. <sup>61</sup>                                                                | Alberola-Borràs<br>et al. <sup>62</sup>                                                         | Alberola-Borràs<br>et al. <sup>63</sup>                                                                    |
| 2016                                                                                                                                                                  | 2016                                                                                                                                     | 2016                                                                                                                                                              | 2017                                                                                                       | 2017                                                                                            | 2017                                                                            | 2017                                                                                                                  | 2017                                                                                                                                                              | 2017                                                                                                                                                                     | 2017                                                             | 2017                                                                                                                                            | 2017                                                                                      | 2018                                                                                            | 2018                                                                                                       |

| 18       | Alberola-Borràs<br>et al. <sup>64</sup> | Evaluation of multiple cation/anion perovskite solar cells through life cycle assessment                                                          | Perovskite                                                         | Z | Functional unit not<br>harmonizable<br>Uses data from other<br>studies |
|----------|-----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|---|------------------------------------------------------------------------|
| m        | Amarakoon et<br>al. <sup>65</sup>       | Life cycle assessment of photovoltaic manufacturing consortium<br>(PVMC) copper indium gallium (di)selenide (CIGS) modules                        | Thin Film                                                          | X |                                                                        |
| œ        | Celik et al. <sup>66</sup>              | Energy Payback Time (EPBT) and Energy Return on Energy<br>Invested (EROI) of Perovskite Tandem Photovoltaic Solar Cells                           | Perovskite                                                         | X |                                                                        |
| ω        | Celik et al. <sup>67</sup>              | Life cycle analysis of metals in emerging photovoltaic (PV)<br>technologies: A modeling approach to estimate use phase leaching                   | Thin Film<br>Chalcogenide<br>Perovskite<br>Quantum Dot             | Z | System boundaries not<br>harmonizable                                  |
| ω        | Lunardi et al. <sup>68</sup>            | A comparative life cycle assessment of chalcogenide/Si tandem solar modules                                                                       | Tandem                                                             | Y |                                                                        |
| ω        | Lunardi et al. <sup>69</sup>            | Life cycle assessment on PERC solar modules                                                                                                       | Silicon                                                            | Υ |                                                                        |
| ω        | Mokhtarimehr et<br>al. <sup>70</sup>    | Environmental assessment of vacuum and non-vacuum techniques for the fabrication of Cu2ZnSnS4 thin film photovoltaic cells                        | Thin Film                                                          | X |                                                                        |
| $\infty$ | Moore et al. <sup>71</sup>              | Portfolio Optimization of Nanomaterial Use in Clean Energy<br>Technologies                                                                        | OPV                                                                | Z | Not LCA                                                                |
| 8        | Munshi et al. <sup>72</sup>             | Thin-film CdTe photovoltaics – The technology for utility scale sustainable energy generation                                                     | Thin Film                                                          | Z | Not LCA<br>Uses data from other<br>studies                             |
| $\infty$ | Pallas et tal. $^{73}$                  | Green and Clean: Reviewing the Justification of Claims for<br>Nanomaterials from a Sustainability Point of View                                   | Perovskite<br>Thin Film Silicon<br>Tandem<br>OPV<br>Dye-sensitized | Z | Uses data from other<br>studies                                        |
| ω        | Ravikumar et al. <sup>74</sup>          | Novel Method of Sensitivity Analysis Improves the Prioritization of<br>Research in Anticipatory Life Cycle Assessment of Emerging<br>Technologies | Thin Film<br>Chalcogenide<br>Thin Film Ribbon                      | Z | Uses data from other<br>studies                                        |

| Uses data from other studies                                                            |                                                                                  | Uses data from other<br>studies                                   |                                                                                                                                            | Not LCA<br>Uses data from other<br>studies                                                         | System boundaries not<br>harmonizable                                                                                        |                                                                                                            |                                                                                                                        |
|-----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
| Z                                                                                       | Y                                                                                | Z                                                                 | Х                                                                                                                                          | Z                                                                                                  | Z                                                                                                                            | Y                                                                                                          | Ч                                                                                                                      |
| Silicon<br>Thin Film<br>Chalcogenide<br>Thin Film Silicon<br>Tandem<br>III-V            | Thin Film                                                                        | Silicon<br>Thin Film<br>Chalcogenide                              | Silicon                                                                                                                                    | Thin Film<br>Chalcogenide<br>OPV                                                                   | Perovskite                                                                                                                   | Tandem                                                                                                     | Tandem                                                                                                                 |
| A Fuzzy Based Model for Standardized Sustainability Assessment<br>of Photovoltaic Cells | Addressing Hotspots in the Product Environmental Footprint of CdTe Photovoltaics | LCA study of photovoltaic systems based on different technologies | Environmental Impacts of Photovoltaics: The Effects of<br>Technological Improvements and Transfer of Manufacturing from<br>Europe to China | Assessing the photovoltaic technology landscape: efficiency and energy return on investment (EROI) | Comparative evaluation of lead emissions and toxicity potential in<br>the life cycle of lead halide perovskite photovoltaics | Life cycle assessment of emerging technologies at the lab scale:<br>The case of nanowire-based solar cells | Environmental impacts of III-V/silicon photovoltaics: life-cycle assessment and guidance for sustainable manufacturing |
| Salim et al. <sup>75</sup>                                                              | Sinha & Wade <sup>76</sup>                                                       | Soares et al. <sup>77</sup>                                       | Stamford &<br>Azapagic <sup>78</sup>                                                                                                       | Zhou et al. <sup>79</sup>                                                                          | Billen et al. <sup>80</sup>                                                                                                  | Pallas et al. <sup>81</sup>                                                                                | Blanco et al. <sup>82</sup>                                                                                            |
| 2018                                                                                    | 2018                                                                             | 2018                                                              | 2018                                                                                                                                       | 2018                                                                                               | 2019                                                                                                                         | 2019                                                                                                       | 2020                                                                                                                   |

| LCIA<br>method  | Version | Impact category                               | Indicator<br>unit | Conversion<br>factor | Resulting<br>ILCD<br>indicator unit |
|-----------------|---------|-----------------------------------------------|-------------------|----------------------|-------------------------------------|
| CED             |         | Cumulative Energy Demand                      | CED               | 1                    | MJ                                  |
| CML             | 2014    | Abiotic Depletion Potential                   | CML-ADP           | 1                    | kg Sb eq                            |
| CML             | 2014    | Abiotic Depletion Potential                   | CML-ADPf          |                      | MJ                                  |
| CML             | 2014    | Acidification potential                       | CML-AP            | 1.19                 | kg SO2 eq                           |
| CML             | 2014    | Climate change                                | CML-CC            | 1                    | kg CO2 eq                           |
| CML             | 2014    | Eutrophication potential                      | CML-EP            | 0.28                 | kg PO4 eq                           |
| CML             | 2014    | Freshwater aquatic ecotoxicity potential      | CML-<br>FAETP     | 42.15                | kg 1,4 DB eq                        |
| CML             | 2014    | Human toxicity potential                      | CML-HTP           |                      | kg 1,4 DB eq                        |
| CML             | 2014    | Land Use                                      | CML-LU            |                      | m2.y                                |
| CML             | 2014    | Marine aquatic ecotoxicity<br>potential       | CML-<br>MAETP     |                      | kg 1,4 DB eq                        |
| CML             | 2014    | Ozone depletion potential                     | CML-ODP           | 1                    | kg CFC-11 eq                        |
| CML             | 2014    | Photochemical oxidation potential             | CML-<br>POCP      | 10.86                | kg C2H4 eq                          |
| CML             | 2014    | Terrestrial ecotoxicity<br>potential          | CML-<br>TETP      |                      | kg 1,4 DB eq                        |
| CML             | 2014    | Water depletion potential                     | CML-WDP           | 1                    | m3 water                            |
| EPBT            |         | Energy payback time                           | EPBT              | 1                    | years                               |
| ILCD            | 2011    | Resource use, minerals and metals             | ILCD-ADP          | 1                    | kg Sb eq                            |
| ILCD            | 2011    | Acidification                                 | ILCD-AP           | 1                    | molc H+ eq                          |
| ILCD            | 2011    | Climate change                                | ILCD-CC           | 1                    | kg CO2 eq                           |
| ILCD            | 2011    | Freshwater ecotoxicity                        | ILCD-FET          | 1                    | CTUe                                |
| ILCD            | 2011    | Freshwater eutrophication                     | ILCD-FEU          | 1                    | kg P eq                             |
| ILCD            | 2011    | Human toxicity potential -<br>cancer effects  | ILCD-<br>HT_CE    | 1                    | CTUh,c                              |
| ILCD            | 2011    | Human toxicity potential - non cancer effects | ILCD-<br>HT_NCE   | 1                    | CTUh,nc                             |
| ILCD            | 2011    | Ionizing radiation                            | ILCD-IR           | 1                    | kBq U235 eq                         |
| ILCD            | 2011    | Marine eutrophication                         | ILCD-<br>MEUP     | 1                    | kg N                                |
| ILCD            | 2011    | Ozone depletion                               | ILCD-ODP          | 1                    | kg CFC-11 eq                        |
| ILCD            | 2011    | Respiratory inorganics                        | ILCD-PM           | 1                    | kg PM2.5 eq                         |
| ILCD            | 2011    | Photochemical ozone formation                 | ILCD-<br>POCP     | 1                    | kg NMVOC<br>eq                      |
| ILCD            | 2011    | Terrestrial eutrophication                    | ILCD-<br>TEUP     | 1                    | mol N eq                            |
| ILCD            | 2011    | Water resource depletion                      | ILCD-<br>WRD      | 1                    | m3 water                            |
| Impact<br>2002+ | 2011    | Aquatic acidification                         | IM2-AC            | 1.21                 | kg SO2 eq                           |
| Impact<br>2002+ | 2011    | Climate change                                | IM2-CC            | 1                    | kg CO2 eq                           |

Table A.1-2 Conversion factors for LCA impact category indicators

| Impact<br>2002+ | 2011 | Ozone layer depletion               | IM2-OD        | 1        | kg CFC-11 eq   |
|-----------------|------|-------------------------------------|---------------|----------|----------------|
| Impact<br>2002+ | 2011 | Terrestrial ecotoxicity             | IM2-TE        |          | kg TEG eq      |
| Recipe          | 2008 | Agricultural land occupation        | R8-<br>ALO(H) |          | m2.y           |
| Recipe          | 2008 | Climate change (H)                  | R8-CC(H)      | 1        | kg CO2 eq      |
| Recipe          | 2008 | Fossil depletion                    | R8-FD(H)      |          | MJ             |
| Recipe          | 2008 | Freshwater ecotoxicity (H)          | R8-FET(H)     | 544.78   | kg 1,4 DB eq   |
| Recipe          | 2008 | Freshwater eutrophication potential | R8-FEU(H)     | 1        | kg P eq        |
| Recipe          | 2008 | Human toxicity (H)                  | R8-HT(H)      |          | kg 1,4 DB eq   |
| Recipe          | 2008 | Ionising radiation                  | R8-IR(H)      | 1        | kBq U235       |
| Recipe          | 2008 | Marine ecotoxicity (H)              | R8-<br>MET(H) |          | kg 1,4 DB eq   |
| Recipe          | 2008 | Marine eutrophication potential     | R8-<br>MEU(H) | 2.76     | kg N eq        |
| Recipe          | 2008 | Mineral resource depletion          | R8-<br>MRD(H) | 1.66E-06 | kg Fe eq       |
| Recipe          | 2008 | Natural land transformation         | R8-NLT(H)     |          | m2             |
| Recipe          | 2008 | Ozone depletion (H)                 | R8-OD(H)      | 1        | kg CFC-11 eq   |
| Recipe          | 2008 | Particulate matter                  | R8-<br>PMF(H) | 0.28     | kg PM10 eq     |
| Recipe          | 2008 | Photochemical oxidant formation     | R8-POF(H)     | 1        | kg NMVOC<br>eq |
| Recipe          | 2008 | Terrestrial acidification           | R8-TA(H)      | 1.32     | kg SO2 eq      |
| Recipe          | 2008 | Terrestrial ecotoxicity (H)         | R8-TET(H)     |          | kg 1,4 DB eq   |
| Recipe          | 2008 | Urban land occupation               | R8-<br>ULO(H) |          | m2.y           |
| Recipe          | 2008 | Water depletion                     | R8-WD(H)      | 1        | m3 water       |
| TRACI           | v2.1 | Acidification                       | TR-AC         | 1.21     | kg SO2 eq      |
| TRACI           | v2.1 | Climate change                      | TR-CC         | 1        | kg CO2 eq      |
| TRACI           | v2.1 | Ecotoxicity                         | TR-ET         | 1        | CTUe           |
| TRACI           | v2.1 | Eutrophication                      | TR-EU         | 0.13     | kg N           |

Table A.1-3 Pearson's correlations for impact as a function of year for each cell type

| Impact Category | Cell type                | Pearson's<br>Correlation<br>(Impact =<br>f(Year)) | Number of observations |
|-----------------|--------------------------|---------------------------------------------------|------------------------|
| CTUe            | Organic                  | -0.35                                             | 7                      |
| CTUe            | Perovskite               | -0.20                                             | 19                     |
| CTUe            | Silicon                  | NA                                                | 10                     |
| CTUe            | Tandem                   | 0.31                                              | 20                     |
| CTUe            | Thin Film (Chalcogenide) | -0.84                                             | 6                      |
| CTUh,c          | Organic                  | NA                                                | 2                      |
| CTUh,c          | Perovskite               | -0.07                                             | 10                     |
| CTUh,c          | Silicon                  | NA                                                | 6                      |

| CTUh,c       | Tandem                   | -0.04 | 17 |
|--------------|--------------------------|-------|----|
| CTUh,c       | Thin Film (Chalcogenide) | -0.13 | 4  |
| CTUh,nc      | Organic                  | NA    | 2  |
| CTUh,nc      | Perovskite               | 0.01  | 19 |
| CTUh,nc      | Silicon                  | NA    | 6  |
| CTUh,nc      | Tandem                   | -0.14 | 17 |
| CTUh,nc      | Thin Film (Chalcogenide) | -0.12 | 4  |
| kBq U235 eq  | Organic                  | NA    | 3  |
| kBq U235 eq  | Perovskite               | 0.82  | 4  |
| kBq U235 eq  | Tandem                   | 0.66  | 5  |
| kBq U235 eq  | Thin Film (Chalcogenide) | 1.00  | 2  |
| kg CFC-11 eq | Organic                  | 0.59  | 5  |
| kg CFC-11 eq | Perovskite               | 0.15  | 9  |
| kg CFC-11 eq | Silicon                  | NA    | 6  |
| kg CFC-11 eq | Tandem                   | -0.56 | 11 |
| kg CFC-11 eq | Thin Film (Chalcogenide) | -0.44 | 9  |
| kg CO2 eq    | Dye-sensitized           | NA    | 3  |
| kg CO2 eq    | Organic                  | -0.28 | 10 |
| kg CO2 eq    | Perovskite               | -0.07 | 21 |
| kg CO2 eq    | Quantum Dot              | NA    | 1  |
| kg CO2 eq    | Silicon                  | -0.27 | 14 |
| kg CO2 eq    | Tandem                   | 0.05  | 28 |
| kg CO2 eq    | Thin Film (Chalcogenide) | -0.33 | 13 |
| kg CO2 eq    | Thin Film (Si)           | -0.84 | 5  |
| kg N eq      | Organic                  | NA    | 3  |
| kg N eq      | Perovskite               | 0.94  | 6  |
| kg N eq      | Tandem                   | 0.93  | 5  |
| kg NMVOC eq  | Organic                  | 0.54  | 5  |
| kg NMVOC eq  | Perovskite               | 0.44  | 9  |
| kg NMVOC eq  | Silicon                  | NA    | 4  |
| kg NMVOC eq  | Tandem                   | 0.64  | 11 |
| kg NMVOC eq  | Thin Film (Chalcogenide) | -0.95 | 5  |
| kg P eq      | Organic                  | 0.49  | 5  |
| kg P eq      | Perovskite               | 0.37  | 15 |
| kg P eq      | Silicon                  | NA    | 10 |
| kg P eq      | Tandem                   | 0.34  | 20 |
| kg P eq      | Thin Film (Chalcogenide) | 0.68  | 5  |
| kg PM2.5 eq  | Organic                  | 0.51  | 5  |
| kg PM2.5 eq  | Perovskite               | 0.26  | 9  |
| kg PM2.5 eq  | Tandem                   | 0.59  | 9  |
| kg PM2.5 eq  | Thin Film (Chalcogenide) | 0.23  | 4  |
| kg Sb eq     | Organic                  | NA    | 3  |
| kg Sb eq     | Perovskite               | -0.22 | 16 |
| kg Sb eq     | Silicon                  | NA    | 10 |

| kg Sb eq   | Tandem                   | 0.78  | 14 |  |
|------------|--------------------------|-------|----|--|
| kg Sb eq   | Thin Film (Chalcogenide) | 0.53  | 3  |  |
| m3 water   | Organic                  | NA    | 3  |  |
| m3 water   | Perovskite               | -0.92 | 7  |  |
| m3 water   | Tandem                   | -1.00 | 3  |  |
| m3 water   | Thin Film (Chalcogenide) | NA    | 2  |  |
| MJ         | Dye-sensitized           | NA    | 3  |  |
| MJ         | Organic                  | -0.84 | 7  |  |
| MJ         | Perovskite               | -0.20 | 15 |  |
| MJ         | Quantum Dot              | NA    | 1  |  |
| MJ         | Silicon                  | NA    | 2  |  |
| MJ         | Tandem                   | NA    | 2  |  |
| MJ         | Thin Film (Chalcogenide) | 0.60  | 5  |  |
| MJ         | Thin Film (Si)           | NA    | 1  |  |
| mol N eq   | Tandem                   | 0.81  | 4  |  |
| mol N eq   | Thin Film (Chalcogenide) | NA    | 1  |  |
| molc H+ eq | Organic                  | 0.52  | 5  |  |
| molc H+ eq | Perovskite               | -0.18 | 12 |  |
| molc H+ eq | Quantum Dot              | NA    | 1  |  |
| molc H+ eq | Silicon                  | NA    | 6  |  |
| molc H+ eq | Tandem                   | 0.54  | 11 |  |
| molc H+ eq | Thin Film (Chalcogenide) | 0.31  | 10 |  |



Figure A.1-1 Identification, screening, selection and harmonization procedure flowchart



Figure A.1-1 Random effect model results sub-grouped by cell conversion efficiencies.

# A.2. Supplementary Information to Chapter 3



#### A.2.1. System flowcharts and boundaries

Figure A.2-1 System flowchart for Concept A (direct growth, bottom) and Concept B (bonding, top). UP = Ultrapure

# A.2.2. Life-cycle inventories: process descriptions and input/output data

#### A.2.2.1. Overview and general assumptions

Most of the foreground processes are sensitive to the wafer area that can be processed per run since materials and energy consumption scale proportionally with the treatable wafer area. We based our models on the use of a large MOVPE reactor prototype designed by AIXTRON, which can handle a run of 31 round 4-inch wafers. We assumed that all other processing steps would handle wafers of the same area.

We also note that some lab-based processes described below have been modelled considering only process inputs, while waste emissions have not been fully characterized. The characterization of waste streams and emissions is more relevant in industrial-scale implementations where recycling and reuse take a central role and differ significantly from waste management in a lab environment. However, based on extrapolation from similar processes, it is likely that these emissions would only have relatively minor contributions to the life cycle impacts of the electricity generation process.

#### A.2.2.2. Silicon wafer preparation

| Input                        | Flow | Quantity  | Data source                    |
|------------------------------|------|-----------|--------------------------------|
|                              | type |           |                                |
| CZ single-Si wafer           | Eco  | 100 units | TopSil, personal communication |
| HF                           | Eco  | 0.3 L     | TopSil, personal communication |
| HNO3                         | Eco  | 1.6 L     | TopSil, personal communication |
| HC2H2O2                      | Eco  | 0.1 L     | TopSil, personal communication |
| Treatment of wastewater from | Eco  | 2 L       | TopSil, personal communication |
| PV cell production           |      |           |                                |
| Output                       | Flow | Quantity  | Data source                    |
|                              | type |           |                                |
| Polished Si wafer            | Eco  | 100 units | TopSil, personal communication |

| Table A 2-1  | Process inni  | its and out | nuts for sil | licon wafer | nrenaration |
|--------------|---------------|-------------|--------------|-------------|-------------|
| 1 UOIE A.2-1 | I TOCESS INPL | us unu oui  | ραις jor su  | icon wajer  | preparation |

#### A.2.2.3. Ion implantation (p-n junction)

| Table A.2-2.   | Process  | inputs | and | outputs  | for | ion  | impi | antat  | ion  |
|----------------|----------|--------|-----|----------|-----|------|------|--------|------|
| 1 4010 11.2 2. | 11000000 | inputo | ana | outputo. | ,0, | 1011 | inpi | antiat | .011 |

| Input                                | Flow<br>type | Quantity             | Data source                        |
|--------------------------------------|--------------|----------------------|------------------------------------|
| Phosphine (PH <sub>3</sub> )         | Eco          | 3.4 g                | Fraunhofer, personal communication |
| Boron trifluoride (BF3)              | Eco          | 3.4 g                | Fraunhofer, personal communication |
| Ultrapure nitrogen (N <sub>2</sub> ) | Eco          | 14 m <sup>3</sup>    | Fraunhofer, personal communication |
| Cooling water                        | Eco          | 5 m <sup>3</sup>     | Fraunhofer, personal communication |
| Electricity, high voltage            | Eco          | 100 kWh              | Fraunhofer, personal communication |
| Compressed air                       | Eco          | 15 m <sup>3</sup>    | Fraunhofer, personal communication |
| Hazardous waste incineration         | Eco          | 0.009 kg             | Calculated                         |
| Output                               | Flow         | Quantity             | Data source                        |
|                                      | type         |                      |                                    |
| Doped wafer area (3400<br>wafers)    | Eco          | 26.69 m <sup>2</sup> | Fraunhofer, personal communication |

# A.2.2.4. Tube furnace annealing – high temperature

We assumed the use of a 4.2kW power furnace which can handle 100 wafers per batch. The wafers cannot be inserted at 1000°C; this must be done at <400°C, and then the temperature is ramped up at a rate of 10°C per minute. The annealing time is 1 hour at 1000°C and the temperature is then ramped down for removal of the wafers. We assume a worst-case scenario where the furnace operates at full power during ramp up and processing time. We assume no power is consumed during ramp-down. Annealing is conducted in an inert environment of ultrapure nitrogen, which flows at a rate of 30 SLM (standard litres per minute) during insertion and removal, and 15 SLM during annealing.

| Flow type                             | Flow<br>type | Quantity   | Data source                  |
|---------------------------------------|--------------|------------|------------------------------|
| Ultrapure nitrogen                    | Eco          | 0.9 m³     | AZUR, personal communication |
| Electricity                           | Eco          | 10.668 kWh | Calculated                   |
| Output                                | Flow         | Quantity   | Data source                  |
|                                       | type         |            |                              |
| Annealing of 1 m <sup>2</sup> of cell | Eco          | 1 unit     | Calculated                   |

Table A.2-3. Process inputs and outputs for high temperature tube furnace annealing

#### A.2.2.5. Atomic layer deposition (ALD)

This step considers the deposition of a 10nm film of  $Al_2O_3$  on the rear side. Process data for this step is based on Louwen et al.<sup>83</sup>, who reviewed various specifications and found average electricity use to be 0.29 kWh/m<sup>2</sup>, with values ranging 0.15 to 0.51 kWh/m2 (-48% to +76%). No materials input data and output data were available for this step.

#### A.2.2.6. Back-side passivation

Back-side passivation is conducted by plasma-enhanced chemical vapour deposition (PECVD) of a SiNx layer.

| Input                           | Flow<br>type | Quantity | Data source                        |
|---------------------------------|--------------|----------|------------------------------------|
| Electricity                     | Eco          | 39,93 Wh | Fraunhofer, personal communication |
| Cooling water                   | Eco          | 5,27 L   | Fraunhofer, personal communication |
| Nitrogen                        | Eco          | 12,57 L  | Fraunhofer, personal communication |
| Compressed dry air              | Eco          | 5,02 L   | Fraunhofer, personal communication |
| Silane (SiH4)                   | Eco          | 0,03 L   | Fraunhofer, personal communication |
| NH <sub>3</sub>                 | Eco          | 0,06 L   | Fraunhofer, personal communication |
| Output                          | Flow         | Quantity | Data source                        |
|                                 | type         |          |                                    |
| Back-side passivation of 1 cell | Eco          | 1 unit   | Fraunhofer, personal communication |

Table A.2-4. Energy and material inputs and outputs for PECVD back-side passivation

#### A.2.2.7. III-V Metalorganic Vapor Phase Epitaxy (MOVPE)

| Input                     | Flow | Quantity             | Data source                     |
|---------------------------|------|----------------------|---------------------------------|
|                           | type |                      |                                 |
| TMGa                      | Eco  | 11.48 g              | Aixtron, personal communication |
| TMIn                      | Eco  | 0.1 g                | Aixtron, personal communication |
| TMAI                      | Eco  | 0.17 g               | Aixtron, personal communication |
| AsH3                      | Eco  | 11.76 g              | Aixtron, personal communication |
| PH3                       | Eco  | 17.84 g              | Aixtron, personal communication |
| H2                        | Eco  | 3.34 m3              | Aixtron, personal communication |
| N2                        | Eco  | 3.44 m3              | Aixtron, personal communication |
| Cooling water             | Eco  | 27.51 m3             | Aixtron, personal communication |
| Electricity               | Eco  | 105.06 kWh           | Aixtron, personal communication |
| Hazardous waste treatment | Eco  | 0.035 kg             | Calculated                      |
| Output                    | Flow | Quantity             | Data source                     |
|                           | type |                      |                                 |
| III-V layer area          | Eco  | 2905 cm <sup>2</sup> | Aixtron, personal communication |

Table A.2-5. Process inputs and outputs for MOVPE III-V direct growth

#### A.2.2.8. Front metal contacts

We based our model on a "seed and plate" metallization technique, which involves nanoink printing of a seed layer of fingers, then electroplating to increase the thickness of the fingers. Conventional screen-printing methods are considered for 3 busbars that cross the fingers.

#### A.2.2.8.1. Seed layer (nano) inkjet printing

<u>Materials</u>: The pattern to be printed on the cells for the seed layer consists of 6 fingers 2 mm wide, 75 mm long and 0.1  $\mu$ m thick (height) on average. The total quantity of nanoink required is calculated by the total volume of this pattern multiplied by the density of the nanoink (reported by the manufacturer). To this quantity, we added 10% to account for ink that remains in the filter and is discarded as hazardous waste. Therefore, we have the following inputs, per cell:

# fingers Finger width Finger length Finger thickness Ink density Loss factor (Eq. A.2-1)  

$$6 \cdot \left(2 \ mm \cdot \frac{1 \ m}{1E3 \ mm}\right) \cdot \left(75 \ mm \cdot \frac{1 \ m}{1E3 \ mm}\right) \cdot \left(0.1 \ \mum \cdot \frac{1 \ m}{1E6 \ \mum}\right) \cdot \frac{1.27E3 \ kg}{m^3} \cdot 110\% = 1.25E - 7 \ kg \ Cu \ ink$$

<u>Printer electricity.</u> A sample tested at Joanneum Research Center facilities was approximately 10 cm. long and took 5 minutes to print, with only 2 nozzles in use out of a total possible of 210. We estimated the printing speed as:

$$\frac{10 \text{ cm}}{5 \text{ min}} \cdot \frac{210 \text{ nozzles}}{2 \text{ nozzles}} \cdot \frac{60 \text{ min}}{1 \text{ h}} \cdot \frac{1 \text{ m}}{100 \text{ cm}} = \frac{126 \text{ m}}{\text{ h}}$$
(Eq. A.2-2)

The total length of the 6 printed fingers is 0.45 m, and the printer has a maximum power rating of 1kW. We assume it operates at 75% power on average. To calculate electricity consumption of the printing process (per cell) we have:

$$\frac{0.45 m}{cell} \cdot \frac{1 h}{126 m} \cdot 1 \ kW \cdot 75\% = \frac{0.027 \ kWh}{cell}$$
(Eq. A.2-3)

#### A.2.2.8.2. Seed layer sintering: laser

<u>Laser electricity</u>: The length of the pattern that has to be sintered is calculated from the data in the previous section (0.45 m). We used a laser scan speed of 0.01 m/s, and the optical power delivered by the laser is 1.4 W. The wall-plug to optical efficiency of YAG type lasers is typically around  $25\%^{84}$ , so we estimate the electricity consumption for laser sintering as:

$$\frac{0.45 m}{cell} \cdot \frac{s}{0.01 m} \cdot \frac{1 h}{3600 s} \cdot 1.4E - 3 kW \cdot \frac{1}{25\%} = \frac{5.6E - 5 kWh}{cell}$$
(Eq. A.2-4)

Materials: Laser-sintering of both Cu and Ag ink is done in open air.

| Input                         | Flow<br>type | Quantity   | Data source                      |
|-------------------------------|--------------|------------|----------------------------------|
| Cu nanoink                    | Eco          | 1.25E-7 kg | Joanneum, personal communication |
| Electricity                   | Eco          | 0.0271 kWh | Joanneum, personal communication |
| Output                        | Flow<br>type | Quantity   | Data source                      |
| Finger seed layers for 1 cell | Eco          | 1 unit     | Joanneum, personal communication |

Table A.2-6. Process inputs and outputs for seed-layer inkjet printing

#### A.2.2.8.3. Seed layer sintering: chemical (Cu ink only)

Sintering of Cu ink requires a reducing environment, while Ag ink can be sintered in open air. For the Cu ink, a sintering test was conducted at Joanneum Research Center facilities, where for a  $1 \text{ cm}^2$  sample 5 mL of ethanol (3.95 g @ 789g/L), 50 mL formic acid, and 70 L of ultrapure nitrogen were required.

# A.2.2.8.4. Fingers electroplating

Electroplating consists of submerging the cell with the seed pattern in an electrolyte bath, where the patterned cell will serve as an ion-receiving cathode and a copper in the solution will serve as an anode. For copper, the electrolyte solution consists of a mix of cupric sulphate and sulphuric acid. Driving an electric current through the solution will force the metallic ions from the cathode to deposit on the seed pattern until the desired geometry is obtained.

<u>Electricity:</u> A conventional electroplating setup is used, where 10 mA of applied current with an average voltage of 0.5 V provides 250 nm of plating per minute. The electrical power can be calculated from the current and voltage:

$$P = I \cdot V = \left(10 \ mA \ \cdot \frac{1 \ A}{1000 \ mA}\right) \cdot (0.5 \ V) = 5E - 3 \ W = 5E - 6 \ kW \tag{Eq. A.2-5}$$

The amount of electricity consumed is calculated by multiplying the power by the time required to plate the desired finger thickness of  $12.5\mu m$ .

$$\frac{5E - 6 \, kW}{cells} \cdot \frac{1 \, min}{0.25 \, \mu m} \cdot 12.5 \, \mu m \cdot \frac{1 \, h}{60 \, min} = \frac{4.16E - 6 \, kWh}{cell} \tag{Eq. A.2-6}$$

<u>Materials</u>: Pure metal anodes donate the ions that ultimately deposit on the pattern (cathode). The ions are first passed from the electrolyte solution to the cathode, and are then replenished from the anode to the solution. Therefore, the anode is sacrificed according to the amount of metal deposited in the cell, and we assume 10% losses.

(Eq. A.2-7)

$$Cu: \ 6 \cdot \left(2 \ mm \ \cdot \frac{1 \ m}{1E3 \ mm}\right) \cdot \left(75 \ mm \ \cdot \frac{1 \ m}{1E3 \ mm}\right) \cdot \left(12.4 \ \mum \ \cdot \frac{1 \ m}{1E6 \ \mum}\right) \cdot \frac{8.96E3 \ kg}{m^3} \cdot 110\% = 1.09E - 4 \ kg \ Cu$$

We consider a standard cupric sulphate electrolyte solution that consists of 200 g cupric sulphate and 25 mL sulphuric acid in sufficient deionized water to prepare 1 L of electrolyte solution. This amount of solution is used for electroplating on one cell; however, we consider that it can be used for the production of 10-100 wafers based on lab experience, and test the sensitivity of this parameter.

| Input                    | Flow | Quantity    | Data source                      |
|--------------------------|------|-------------|----------------------------------|
|                          | type |             |                                  |
| Copper                   | Eco  | 1.09E-4 kg  | Joanneum, personal communication |
| Electricity              | Eco  | 4.16E-6 kWh | Joanneum, personal communication |
| Electrolyte solution     | Eco  | 0.1 L       | Joanneum, personal communication |
| Output                   | Flow | Quantity    | Data source                      |
|                          | type |             |                                  |
| Electroplating of 1 cell | Eco  | 1 unit      | Joanneum, personal communication |

Table A.2-7. Energy and material inputs and outputs for electroplating of fingers

#### A.2.2.8.5. Busbars screen printing

<u>Screen printing electricity</u>: We use data from a screen printer running a squeegee motor with a power of 1.16 kW. The printer can process a sheet of 400x400mm in 30 seconds.

$$\frac{1 \text{ sheet}}{4 \text{ cells}} \cdot 1.16 \text{ kW} \cdot 30 \text{ s} \cdot \frac{1 \text{ h}}{3600 \text{ s}} = \frac{2.41E - 3 \text{ kWh}}{\text{ cell}}$$
(Eq. A.2-8)

<u>Curating electricity</u>: Cu busbars are grown over the Cu fingers by screen-printing. However, instead of co-firing, the Cu busbars are curated at lower temperature (250°C) in an atmosphere of pure nitrogen<sup>85</sup>. This is done in a furnace that has a power rating of 3.4 kW and can process 1000 cells per batch, for a curating time of 10 minutes.

$$\frac{3.4 \ kW}{1000 \ cells} \cdot 10 \ min \cdot \frac{1 \ h}{60 \ min} = \frac{5.67E - 4 \ kWh}{cell}$$
(Eq. A.2-9)

<u>Materials:</u> We consider 3 busbars, 1 mm wide, 156 mm long and 13.5  $\mu$ m thick on average. We assume 10% losses from the paste during screen-printing. Per cell, we have:

(Eq. A.2-10)

$$3 \cdot \left(1 \ mm \ \cdot \frac{1 \ m}{1E3 \ mm}\right) \cdot \left(156 \ mm \ \cdot \frac{1 \ m}{1E3 \ mm}\right) \cdot \left(13.5 \ \mum \ \cdot \frac{1 \ m}{1E6 \ \mum}\right) \cdot \frac{8.96E3 \ kg}{m^3} \cdot 110\% = 6.23E - 5 \ kg \ Cu$$

| Input                     | Flow<br>type | Quantity   | Data source                      |
|---------------------------|--------------|------------|----------------------------------|
| Copper                    | Eco          | 6.23E-5 kg | Joanneum, personal communication |
| Electricity               | Eco          | 3E-3 kWh   | Joanneum, personal communication |
| Output                    | Flow         | Quantity   | Data source                      |
| Screen printing of 1 cell | Eco          | 1 unit     | Joanneum, personal communication |

Table A.2-8. Energy and material inputs and outputs for screen printing of busbars

#### A.2.2.9. Rear-side metal contacts

Data for the rear-side metal contacts are taken from the inventories for existing single-Si PV cells (ecoinvent v3.4)<sup>86</sup>.

# A.2.2.10. Tube furnace annealing - low temperature

The data for this process was calculated as for the high temperature annealing in section 2.4; however we discard ramp up energy and gas flow requirements, since the cells can be inserted and removed at this lower process temperature (<400°C).

# A.2.2.11. Carrier gases

# A.2.2.11.1. Ultrapure hydrogen

Two alternatives are considered for the supply of ultrahigh purity hydrogen: off-site source (commercially available hydrogen produced from Steam Methane Reforming) and on-site generation with a proton exchange membrane (PEM) system. In both alternatives, additional purification with a two-step adsorber/getter is considered.

*Off-site generation: Commercial*  $H_2$  *gas* + *adsorber/getter.* Commercial production of hydrogen gas is modelled based on the steam methane reforming process (SMR), which accounts for over 90% of the world production. This production method was modelled in an LCA study by NREL<sup>87</sup> and more recently by other authors<sup>88,89</sup>. We use the process data reported by Cetinkaya et al.<sup>89</sup>, which is in close accordance with figures reported by Mehmeti et al.<sup>88</sup> The inputs required for generating electricity that is consumed in the SMR process are also included in the inventory.

| Input                             | Flow<br>type | Quantity                | Data source                    |
|-----------------------------------|--------------|-------------------------|--------------------------------|
| Concrete                          | Eco          | 5.26E-06 m <sup>3</sup> | Cetinkaya et al. <sup>89</sup> |
| cast iron                         | Eco          | 0.049 g                 | Cetinkaya et al. <sup>89</sup> |
| steel, low-alloyed                | Eco          | 4.029 g                 | Cetinkaya et al. <sup>89</sup> |
| aluminium, cast alloy             | Eco          | 0.033 g                 | Cetinkaya et al. <sup>89</sup> |
| water, deionised                  | Eco          | 19,776.2 g              | Cetinkaya et al. <sup>89</sup> |
| natural gas; 44.1 MJ/kg           | Env          | 165 MJ                  | Cetinkaya et al. <sup>89</sup> |
| Coal, hard, unspecify., in ground | Env          | 132.49 g                | Cetinkaya et al. <sup>89</sup> |
| Oil, crude, in ground             | Env          | 8.76 g                  | Cetinkaya et al. <sup>89</sup> |

Table A.2-9. Process inputs and outputs for production of hydrogen via steam methane reforming

|          | Output | Flow<br>type | Quantity | Data source                    |
|----------|--------|--------------|----------|--------------------------------|
| Hydrogen |        | Eco          | 1 kg     | Cetinkaya et al. <sup>89</sup> |

The purifier (adsorber + getter) commercialized by SAES Gas handles a flow of 100 Nm<sup>3</sup>/h at an average power consumption of 26kW, therefore 0.26kWh/Nm<sup>3</sup>. It also consumes 60 L/min of cooling water, therefore 0.036 m<sup>3</sup> water/Nm<sup>3</sup>. In this case we include transportation from SMR plant to consumer, using the same values as for liquid hydrogen specified in EcoInvent v3.4.

| Input                                        | Flow | Quantity             | Data source                       |
|----------------------------------------------|------|----------------------|-----------------------------------|
|                                              | type |                      |                                   |
| Hydrogen                                     | Eco  | 0.08988 kg           | SAES product spec sheet           |
| Electricity                                  | Eco  | 0.26 kWh             | SAES product spec sheet           |
| Cooling water                                | Eco  | 0.036 m <sup>3</sup> | SAES product spec sheet           |
| transport, freight train                     | Eco  | 0.0004 t*km          | EcoInvent v3.4                    |
| transport, freight, light commercial vehicle | Eco  | 1.62E-05 t*km        | EcoInvent v3.4                    |
| transport, freight, lorry,                   | Eco  | 0.00051 t*km         | EcoInvent v3.4                    |
| unspecified                                  |      |                      |                                   |
| Output                                       | Flow | Quantity             | Data source                       |
| -                                            | type | -                    |                                   |
| Ultrapure hydrogen                           | Eco  | 1 Nm <sup>3</sup>    | SAES / Proton product spec sheets |

Table A.2-10. Process inputs and outputs for purification of hydrogen

On-site generation: PEM on-site generator + adsorber/getter. The proton exchange membrane (PEM) generator commercialized by Proton delivers 30 Nm<sup>3</sup>/hr, consuming 5.8 kWh / Nm<sup>3</sup> on average. (For consistency check, we compare with Mehmeti et al.<sup>88</sup> who separately report a consumption of 54.6 kWh/kgH2 = 4.5 kWh/Nm<sup>3</sup>. Balahi et al.<sup>90</sup> report a consumption of 4.775 kWh/Nm<sup>3</sup>). The Proton PEM generator also requires 26.9 L/h of deionized water per hour and 167 L/min coolant. The purifier (adsorber + getter) commercialized by SAES Gas handles a flow of 100 Nm<sup>3</sup>/h at an average power consumption of 26kW, therefore 0.26kWh/Nm<sup>3</sup>. It also consumes 60 L/min of cooling water, therefore 0.036 m<sup>3</sup> water/Nm<sup>3</sup>. Data for the combined processes is presented in Table A.2-11.

| Input              | Flow | Quantity            | Data source                       |
|--------------------|------|---------------------|-----------------------------------|
|                    | type |                     |                                   |
| Electricity        | Eco  | 6.022 kWh           | SAES / Proton product spec sheets |
| DI water           | Eco  | 0.897 kg            | Proton product spec sheet         |
| Cooling water      | Eco  | 0.34 m <sup>3</sup> | SAES product spec sheet           |
| Output             | Flow | Quantity            | Data source                       |
|                    | type | -                   |                                   |
| Ultrapure hydrogen | Eco  | 1 Nm <sup>3</sup>   | SAES / Proton product spec sheets |

# A.2.2.11.2. Ultrapure nitrogen

We consider the use of commercially available liquid nitrogen, which is produced via cryogenic air separation and delivered to consumers in the European market as per EcoInvent v3.4.<sup>86</sup> Although the nitrogen produced via this method is of high purity (99.9999%), we consider additional purification on-site using data for a commercially available SAES purifier.

| Input              | Flow | Quantity              | Data source              |
|--------------------|------|-----------------------|--------------------------|
|                    | type |                       |                          |
| Nitrogen           | Eco  | 1.25 kg               | EcoInvent v3.4           |
| Electricity        | Eco  | 3.3E-4<br>kWh         | SAES product spec sheet  |
| Cooling water      | Eco  | 6.4E-4 m <sup>3</sup> |                          |
| Output             | Flow | Quantity              | Data source              |
|                    | type |                       |                          |
| Ultrapure nitrogen | Eco  | 1 Nm <sup>3</sup>     | SAES product spec sheets |

| <i>Table A.2-12.</i> | Process inputs and                    | outputs for pur                         | ification of ni | trogen for MO | VPE application |
|----------------------|---------------------------------------|-----------------------------------------|-----------------|---------------|-----------------|
|                      | · · · · · · · · · · · · · · · · · · · | - · · · · · · · · · · · · · · · · · · · |                 |               | 11              |

#### A.2.2.11.3. Hydride gases

Hydride gases arsine and phosphine were taken directly from the EcoInvent v3.4 database.<sup>86</sup> It is known that further purification may be required to reduce acids and humidity that result from cylinder use, and this can be achieved by commercially available purifiers that use an adsorbent medium. However, no specific data for this purification process was available at the time of this report. It is flagged, however, as an important follow-up area due to the potential generation of significant amounts of hazardous waste in the form of adsorbent media.

#### A.2.2.12. Metalorganic precursors

We used the input/output data for the synthesis of metalorganic precursors for III-V MOVPE reported by Smith et al.  $(2018)^{91}$ .

#### A.2.2.13. Scrubbing of MOVPE and ion implant exhaust gas

We assumed dry scrubbing systems, in which the main component is an adsorbent granulate. Energy is only required to operate the equipment systems and monitors, but not for the reaction, therefore it was assumed negligible. Based on tests run at Fraunhofer ISE facilities, 17 kg of hydride gases (arsine or phosphine) from an MOVPE reactor were absorbed in 130 kg of granulate.

Granulate composition is not disclosed by manufacturers, but a review of literature, patents, safety data sheets and technical brochures indicates that the industry is moving towards chemisorption by copper oxide catalyst impregnated on a supporting medium of alumina  $(Al_2O_3)$  or silicate  $(SiO_2)^{92-95}$ . Another option is the use of zeolite (a microporous aluminosilicate mineral) exchanged with a copper cation. After adsorption, the granulate

is collected and reprocessed externally into new copper for other industrial uses. No information could be found on intermediate processing steps.

For the zeolite based adsorbent, we modelled the process described Wang and colleagues<sup>96</sup> for the adsorption of arsine, which is similar to the process described by Li and colleagues<sup>97</sup> for phosphine. We chose the best performing alternative presented by the authors, a copper-loaded zeolite, which is produced by impregnating the zeolite in a 50 mL solution of copper II nitrate with a concentration of 0.2 mol/L Cu(NO<sub>3</sub>)<sub>2</sub>. Based on the preparation procedure reported by the authors, the inputs and outputs are:

| Input                     | Flow | Quantity | Data source                        |
|---------------------------|------|----------|------------------------------------|
|                           | type |          |                                    |
| Zeolite adsorbent         | Eco  | 7.65 kg  | Fraunhofer, personal communication |
| Hazardous waste, for      | Eco  | -8.65 kg | Calculated as mass of adsorbent +  |
| underground deposit       |      |          | mass of treated gas.               |
| Output                    | Flow | Quantity | Data source                        |
|                           | type |          |                                    |
| III-V waste gas treatment | Eco  | -1 kg    | Fraunhofer, personal communication |

Table A.2-13. Process inputs and outputs for purification of scrubbing of arsine and phosphine

| Table A.2-14. | Process inputs and | outputs for pr | oduction of c | copper zeolite | adsorbent granulate |
|---------------|--------------------|----------------|---------------|----------------|---------------------|
|               | 1                  | 1 2 1          |               | 11             | 0                   |

| Input             | Flow<br>type | Quantity | Data source                                                                                                                                                        |
|-------------------|--------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Zeolite powder    | Eco          | 10 g     | Wang et al. <sup>96</sup>                                                                                                                                          |
| Copper II nitrate | Eco          | 2.95 g   | Wang et al. <sup>96</sup> . Based on molar mass of $Cu(NO_3)_2$ Authors report 10% $Cu(II)$ content by weight in final adsorbent. Starting mass of zeolite is 10 g |
| Output            | Flow         | Quantity | Data source                                                                                                                                                        |
|                   | type         |          |                                                                                                                                                                    |
| Zeolite adsorbent | Eco          | 12.95 g  | Wang et al. <sup>96</sup> .                                                                                                                                        |

#### A.2.2.14. III-V MOVPE growth on GaAs substrate

| Table A.2-15. | Process inputs and | outputs for MOVPE III-V | growth on GaAs substrate/ |
|---------------|--------------------|-------------------------|---------------------------|
|---------------|--------------------|-------------------------|---------------------------|

| Input                     | Flow | Quantity  | Data source                     |
|---------------------------|------|-----------|---------------------------------|
|                           | type |           |                                 |
| TMGa                      | Eco  | 5.26 g    | Aixtron, personal communication |
| TMIn                      | Eco  | 1.23 g    | Aixtron, personal communication |
| TMAI                      | Eco  | 3.17 g    | Aixtron, personal communication |
| AsH3                      | Eco  | 19.96 g   | Aixtron, personal communication |
| PH3                       | Eco  | 4.15 g    | Aixtron, personal communication |
| H2                        | Eco  | 0.93 m3   | Aixtron, personal communication |
| N2                        | Eco  | 2.24 m3   | Aixtron, personal communication |
| Cooling water             | Eco  | 17.89 m3  | Aixtron, personal communication |
| Electricity               | Eco  | 68.33 kWh | Aixtron, personal communication |
| Hazardous waste treatment | Eco  | 0.024 kg  | Calculated                      |

| Output           | Flow<br>type | Quantity             | Data source                     |
|------------------|--------------|----------------------|---------------------------------|
| III-V layer area | Eco          | 2905 cm <sup>2</sup> | Aixtron, personal communication |

#### A.2.2.15. Bonding

The bonding process as described by Heitmann et al.<sup>98</sup> requires 4 steps: HF clean, spray pyrolysis, adhesion and hot press. For the hot-press we used parameters from a commercial wafer bonding tool (https://www.suss.com/en/products-solutions/wafer-bonder/sb6-sb8-gen2). The tool has a power rating of 4.2kW and can process up to 8 wafers simultaneously. We assumed a bonding time of 20 minutes.

Table A.2-16. Process inputs and outputs for bonding

| Input                      | Flow<br>type | Quantity     | Data source                            |
|----------------------------|--------------|--------------|----------------------------------------|
| HF                         | Eco          | 3.44 g       | Fraunhofer ISE, personal communication |
| Spray pyrolysis solution   | Eco          | 120 mL       | Fraunhofer ISE, personal communication |
| Electricity                | Eco          | 0.175<br>kWh | Fraunhofer ISE, personal communication |
| Output                     | Flow         | Quantity     | Data source                            |
|                            | type         |              |                                        |
| Bonding of 1 III-V/Si cell | Eco          | 1 unit       |                                        |

Table A.2-17. Process inputs and outputs for bonding of spray pyrolysis solution.

| Input                    | Flow<br>type | Quantity | Data source                               |
|--------------------------|--------------|----------|-------------------------------------------|
| Zinc 2,4 pentanedione    | Eco          | 1.7 g    | Fraunhofer ISE, personal<br>communication |
| Methanol                 | Eco          | 20.0 g   | Fraunhofer ISE, personal communication    |
| Indium trichloride       | Eco          | 1.32 g   | Fraunhofer ISE, personal communication    |
| Output                   | Flow         | Quantity | Data source                               |
|                          | type         |          |                                           |
| Spray pyrolysis solution | Eco          | 1 L      |                                           |

There are several routes for the industrial synthesis of zinc 2,4 pentanedione (which is a metal acetylacetonate)<sup>99</sup>; we consider a reaction of the zinc chloride salt with acetylacetone and use stoichiometric calculations to estimate the amounts and assume 10% losses.

Table A.2-18. Process inputs and outputs for preparation of zinc 2,4 pentadionate.

| Input         | Flow<br>type | Quantity | Data source |
|---------------|--------------|----------|-------------|
| Vinyl acetate | Eco          | 0.22 kg  |             |
| Zinc chloride | Eco          | 0.15 kg  |             |

| Output                | Flow<br>type | Quantity | Data source |
|-----------------------|--------------|----------|-------------|
| Zinc 2,4 pentanedione | Eco          | 0.34 kg  |             |

Table A.2-19. Process inputs and outputs for synthesis of zinc chloride.

| Input             | Flow<br>type | Quantity | Data source |
|-------------------|--------------|----------|-------------|
| Hydrochloric acid | Eco          | 0.08     |             |
| Zinc              | Eco          | 0.07     |             |
| Output            | Flow         | Quantity | Data source |
|                   | type         |          |             |
| Zinc chloride     | Eco          | 0.14     |             |

# A.2.2.16. Lift-off

# A.2.2.16.1. Laser lift-off

For lift-off practiced on a 10x10mm sample, the total energy consumption of the laser equipment was measured at 0.002 kWh (we disregard power consumption during startup and shutdown, assuming a large number of cells can be processed continuously). To this, we add 0.04 kWh for the ventilation equipment, which must operate after processing on the GaAs sample for safety reasons. The laser stage has an area of 762 x 432 mm, so we assume that 70 x 40 samples can be ventilated at a given time. Extrapolating this linearly to a cell (area 78.3 cm2), we get a total of:

$$\left(\frac{0.002 \ kWh}{10 \ \times 10 \ mm^2} + \frac{0.04 \ kWh}{70 \times 40 \times 10 \times 10 \ mm^2}\right) \cdot \frac{100 \ mm^2}{cm^2} \cdot \frac{78.3 \ cm^2}{cell} = \frac{0.16 \ kWh}{cell}$$
(Eq. A.2-11)

#### A.2.2.16.2. Chemical lift-off

To compare the laser lift-off with a chemical method, we modelled a wet chemical process used to etch the bonding layer. Based on projections for state of the arte wet-chemical etching system, we assumed a consumption of 1,25 ml of 50% HF etching solution per wafer. The recyclability of the etching solution is very high, therefore we disregarded the wastewater treatment from this process.

#### A.2.2.17. GaAs substrate reuse and reclaim

We assumed that the GaAs substrate can be reused 100 times. However, this requires periodical chemical-mechanical polishing (CMP) of the GaAs substrate<sup>100</sup> which is done every 5 reuse cycles. We assume 98% process losses.

| Input       | Flow<br>type | Quantity | Data source                  |
|-------------|--------------|----------|------------------------------|
| CMP slurry  | Eco          | 0.2 L    | Matovu et al. <sup>100</sup> |
| electricity | Eco          | 2 kWh    |                              |

Table A.2-20. Process inputs and outputs for reclaiming of GaAs substrate

| Output                      | Flow<br>type | Quantity | Data source |
|-----------------------------|--------------|----------|-------------|
| Reclaim of 1 GaAs substrate | Eco          | 1 unit   |             |

| Input             | Flow | Quantity | Data source                  |
|-------------------|------|----------|------------------------------|
|                   | type |          |                              |
| Activated silica  | Eco  | 100 g    | Matovu et al. <sup>100</sup> |
| Hydrogen peroxide | Eco  | 33.33 g  | Matovu et al. <sup>100</sup> |
| Water, deionised  |      | 866.67 g | Matovu et al. <sup>100</sup> |
| Output            | Flow | Quantity | Data source                  |
|                   | type |          |                              |
| CMP slurry        | Eco  | 1 L      |                              |

Table A.2-21. Energy and material inputs and outputs for CMP slurry

#### A.2.2.18. III-V/Si PV electricity generation

The III-V/Si cells can be a drop-in replacement for commercially available single-Si PV systems. To make all infrastructure and BOS components equal in the III-V/Si and single-Si systems, we duplicated the ecoinvent (v3.4) process for generation of 1 kWh from a roof-mounted installation. We then replaced the single-Si cell for the III-V cell in the panel which was supplied to the installation, using the same cell area. The area of cell required to generate a given amount of electricity is inversely proportional to the conversion efficiency of the cell, so we applied the increased efficiency factor to the electricity output of the III-V/Si plant. The efficiency of the single-Si module in ecoinvent is 15.4%, and for the III-V/Si module is 30%, giving a conversion factor of (0.3/0.154) = 2.22. We applied this directly to the output of the III-V/Si installation, where instead of generating 1kWh it would generate 2.22 kWh with the same ancillary infrastructure and BOS components.



#### A.2.3. Sensitivity analysis of technological improvements

Figure A.2-2 Change in impact scores as a result of technological improvements. 2009: Reference data (2009) for silicon, module and BOS supply chains from ecoinvent v3.4; 2015: Updated IEA PVPS data (2015) for silicon, module and BOS supply chains; n: module efficiency; EMR.: Energy consumption for a single MOVPE run of 37 wafers (2905 cm2).

# A.3. Supplementary information to Chapter 4

# A.3.1. Implementation notes: Setting up an uncertain product system

The Bernoulli and Categorical distributions are not available in the most commonly used LCA software packages. They can be implemented in MatLab (or Python, following similar algorithms) using the Binomial and Multinomial distributions, which are a general case of each. Section A.3.1.3 presents an alternative for implementation in publicly available software packages (e.g. OpenLCA, SimaPro, GaBi) that allow the use of uncertain user-defined parameters and formulas.

In the following code snippets, values in blue are examples, which can be replaced by the user according to their case. The code is designed for matrix-based LCA calculations as described by Heijungs and Suh<sup>101</sup>.

| A.3.1.1. | Product system with    | two alternative, | mutually exclusive | processes: | using the |
|----------|------------------------|------------------|--------------------|------------|-----------|
| bir      | nomial distribution in | MatLab.          |                    |            |           |

| n = 1;                                                                             | Number of trials, always 1                                                                          |
|------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
| x = 4088;<br>y = 4089;                                                             | Column number for process X in the technology matrix                                                |
| z = 4090;                                                                          | Column number for process Z in the technology matrix                                                |
| fx = 2;                                                                            | Quantity of product from process X going to process Z                                               |
| iy = 4;                                                                            | Quantity of product from process Y going to process Z                                               |
| Px = 0.3;                                                                          | Probability of process X                                                                            |
| T = binornd(n,Px);                                                                 | Random number from Binomial Distribution. Will give T a value of 1 depending on the probability Px. |
| $\begin{aligned} A(x,z) &= fx \cdot T; \\ A(y,z) &= fy \cdot (1-T); \end{aligned}$ | Multiply the flows in the technology matrix by the corresponding trigger value                      |

The corresponding function in Python to generate a random number from a binomial distribution, using the same variable designations as above is:

numpy.random.binomial(n, Px, size=None)

| A.3.1.2. | Setting up a product system with three or more alternative, mutually exclusive |
|----------|--------------------------------------------------------------------------------|
| pro      | ocesses: using the multinomial distribution in MatLab.                         |

| n = 1;                                                                              | Number of trials, always 1                                                                                                                                                                                                   |
|-------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| x = 4088;<br>y = 4089;<br>w = 4090;<br>z = 4091;                                    | Column number for process X in the technology matrix<br>Column number for process Y in the technology matrix<br>Column number for process W in the technology matrix<br>Column number for process Z in the technology matrix |
| fx = 2;<br>fy = 4;<br>fw = 3;                                                       | Quantity of product from process X going to process Z<br>Quantity of product from process Y going to process Z<br>Quantity of product from process W going to process Z                                                      |
| Px = 0.2;<br>Py = 0.2;<br>Pw = 0.6;                                                 | Probability of process X<br>Probability of process Y<br>Probability of process W                                                                                                                                             |
| p = [Px Py Pw];                                                                     | Create vector with probabilities of each event                                                                                                                                                                               |
| T = mnrnd(n,p);                                                                     | Random number from Multinomial Distribution. Will create a random vector <i>r</i> equal to either [1 0 0], [0 1 0] or [0 0 1] based on the respective probabilities Px, Py and Pz.                                           |
| $A(x,z) = fx \cdot T(1);$<br>$A(y,z) = fy \cdot T(2);$<br>$A(w,z) = fw \cdot T(3);$ | Multiply the flows in the technology matrix by the corresponding trigger value                                                                                                                                               |

The corresponding function in Python to generate a random number from a multinomial distribution, using the same variable designations as above is:

numpy.random.multinomial(n, p, size=None)

# A.3.1.3. Setting up a product system with two or more alternative, mutually exclusive processes. Using the round() function and user-defined (local) parameters in OpenLCA, SimaPro or GaBi.

OpenLCA and SimaPro allow flow quantities to be entered as formulas rather than fixed numbers. These formulas contain parameters that can be uncertain, hence sampled randomly according to given probability distributions. For the case presented in section A.3.1.1 we can model this as:

$$T = round(rand() + (0.5 - Px))$$
 (Eq. A.3-1)

Alternatively, we can define a local parameter Pd which is has a uniform distribution with min: 0.5-Px and max: 1+0.5-Px. Then,

$$T = round(Pd) \tag{Eq. A.3-2}$$

Then we can multiply the incoming flows from processes X and Y by the corresponding quantities, *T* and *T*-1. Note that in the equation above, *rand()* selects a uniformly distributed

value between 0 and 1, which will round to 0 on 50% of the cases and to 1 on the other 50%. By adding 0.5 - Px, the random number will round to 0 on Px of the cases and to 1 on 1-Px of the cases.

The parameter(s) will be recalculated in each Monte Carlo run, making T adopt a value of 1 or 0 according to the probability Px.

If there are more than two competing unit processes for the same element of the technology's product system, the same method can be applied by nesting the alternatives so that their combined probabilities result in the desired individual probabilities (see Figure A.3-1). For example, we may have three alternative competing processes X, Y and W with probabilities of 25, 35 and 40% respectively. In this case we set the probability of process XY as 60% (25 + 35), the probability of process X as 41.6% (so that when multiplied by 60% we get 25%) and the probability of process Y as 58.3% (so that when multiplied by 60% we get 35%). The probability of process W is set at 40%.



Figure A.3-1 Product system configuration for more than 2 competing alternative unit processes

# A.3.2. Global sensitivity analysis: MatLab implementation

To estimate the Borgonovo delta uncertainty importance measures  $^{102}$  we used a MatLab function *betaKS3.mat*  $^{103}$  developed by Elmar Plischke and provided by the authors upon request. The *betaKS3* function takes two main inputs: a matrix *X* with all of the uncertain input parameters (rows) and their sampled value in each MC run (columns), and a vector *Y* with the impact score in each MC run. For all other options we used the default settings.

For the case study we only supplied the uncertain inputs in the foreground system, which were the focus of our investigation. Additional options for the betaKS3 function include the partition size, which we set at 15, and used Monte Carlo sample size of 10,000.

However, the uncertain inputs can also include variable and uncertain parameters from the ecoinvent background. These may be found in both the technology (A) and the environmental (B) matrix. The delta method accounts for interactions between parameters, and only those parameters that somehow affect the output can be provided to the function to reduce computational intensity. Therefore, three filters can be applied to the total set of uncertain input parameters from the A and B matrices to significantly reduce computational time:

- From the A and B matrices, include only uncertain flows from processes that are part of the calculated product system.
- From the B matrix, include only uncertain environmental flows that have a characterization factor for the impact type that is being assessed.
- From the A matrix, include only economic flows from processes that have an environmental flow *at any point upstream* that has a characterization factor for the impact type that is being assessed.

For our case study, we also include the values in each MC run of the different probabilities [Px, Py, Pw...] used to set the triggers for the alternative processes of the emerging technology. These can be appended to the input matrix at the end.

The function returns a vector with the sensitivity index for each parameter in the same order as they were listed in the input matrix X. The scores can be ranked (while recording the original position) in order to find out the relative importance of each to the variance in the impact score.

Code snippets for implementation of the filters in MatLab are provided below. For the code, we have stored all the uncertain flows in the LCA database along with their position (row | column) and their MC sampled values in two matrices: *inDA* (economic flows), *inDB* (environmental flows). These matrices have the following structure:

| Row     | Col         | Run 1 | Run 2 | Run 3 | Run N |
|---------|-------------|-------|-------|-------|-------|
| 1       | 1           | 3.26  | 3.17  | 3.48  | 3.21  |
| 1       | 2           | 0.24  | 0.23  | 0.25  | 0.24  |
| 1       | 5           | 1.17  | 1.22  | 1.09  | 1.21  |
|         |             |       |       |       |       |
| # flows | # processes | 25.38 | 24.17 | 27.19 | 23.02 |

In the code below, we apply the two filters (i) and (ii) to these matrices, copying them subsequently to inDA  $\rightarrow$  inDAf1, and inDB  $\rightarrow$  inDBf1  $\rightarrow$  inDBf2.

Apply filter (i) to matrices A and B:

| N = 10000                                                                              | Number of Monte Carlo runs                                                                      |
|----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| $s = A \setminus f;$                                                                   | Calculates the scaling vector for the demand vector f, from the technology matrix A.            |
| inDAf1 = [inDA zeros(size(inDA,1),1)];<br>inDBf1 = [inDB zeros(size(inDB,1),1)];       | Add a column of zeros at the end of each matrix to place tag                                    |
| for i = 1:size(inDAf1,1)<br>if s(inDAf1(i,2))==0<br>inDAf1(i,N+3)=1;<br>end<br>end     | If process is not part of product system, scaling vector in that row==0. Tag that row with a 1. |
| for i = 1: size(inDBf1,1)<br>if s(inDBf1(i,2))==0<br>inDBf1(i,N+3)=1;<br>end<br>end    | Repeat as above, this time for B matrix.                                                        |
| inDAf1(inDAf1(:,size(inDAf1,2))==1,:)=[];<br>inDBf1(inDBf1(:,size(inDBf1,2))==1,:)=[]; | Delete rows with unused processes that are tagged with 1.                                       |

Apply filter (ii) to matrix B:

| Iref = 482                                                | Row position for impact type in Q matrix.                                                                                                                                                                 |
|-----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| envflowsCC = find(Q_mat(Iref,:));                         | Find the flows in the Q matrix that have a characterization factor for impact <i>Iref</i> . The function <i>find()</i> returns the index (column) for non-zero values in row <i>Iref</i> of the Q matrix. |
| inDBf2 = inDBf1(ismember(inDBf1(:,1),<br>envflowsCC), :); | Copy to inDBf2 only those flows that have been listed in envflowsCC.                                                                                                                                      |

# Prepare input matrix for GSA and run GSA:

We can now concatenate the inputs from A and B matrices along with the uncertain foreground parameters and triggers. We have previously stored the randomly sampled foreground input parameters in matrix *inPar* with each row representing each parameter (including the triggers) and each column the corresponding value for reach MC run. We have also stored the impact assessment results for the impact category in a vector *Ygsa*, with one result for each run.

| Xgsa = cat(1,inDAf1, inDBf2); | Concatenate the A and B inputs into a single matrix |
|-------------------------------|-----------------------------------------------------|
| Xgsa(:,[1 2]) = [];           | Delete first two columns with position information  |
| Xgsa(:,end) = [];             | Delete last column with the tag from filter (i)     |

| Xgsa = cat(1, Xgsa, inPar); | Concatenate the A and B inputs with the foreground<br>uncertain input<br>parameters and triggers |
|-----------------------------|--------------------------------------------------------------------------------------------------|
| Xgsa = transpose(Xgsa);     | Transpose the matrix                                                                             |
| d = deltamim(Xgsa, Ygsa);   | Run <i>deltafast</i> function. <i>d</i> will contain a vector with the sensitivity indices.      |

Note: All uncertain inputs in the background and foreground are pre-sampled and stored in arrays, prior to running the Monte Carlo simulation, in order to ensure that the sampling of compared systems is dependent as recommended by Henriksson et al.<sup>104</sup> In each run, the Monte Carlo simulation picks the same pre-stored value for both systems.

#### A.3.3. Case study: process descriptions and input/output data

#### A.3.3.1. Fingers: seed layer (nano) inkjet printing

<u>Materials</u>: The pattern to be printed on the cell for the seed layer consists of 6 fingers 2 mm wide, 75 mm long and 0.1  $\mu$ m thick on average. The total quantity of nanoink required is calculated by the total volume of this pattern multiplied by the density of each nanoink (reported by the manufacturers). To this quantity, we add 10% to account for ink that remains in the filter and is discarded as hazardous waste. Therefore, for each type of ink we have the following inputs, per cell:

$$\# fingers \ Finger width \ Finger length \ Finger thickness \ Ink \ density \ Loss \ factor$$
 (Eq. A.3-3)  

$$6 \cdot \left(2 \ mm \ \cdot \frac{1 \ m}{1E3 \ mm}\right) \cdot \left(75 \ mm \ \cdot \frac{1 \ m}{1E3 \ mm}\right) \cdot \left(0.1 \ \mum \ \cdot \frac{1 \ m}{1E6 \ \mum}\right) \cdot \frac{1.27E3 \ kg}{m^3} \cdot 110\% = 1.25E - 7 \ kg \ Cu \ ink$$

$$6 \cdot \left(2 \ mm \ \cdot \frac{1 \ m}{1E3 \ mm}\right) \cdot \left(75 \ mm \ \cdot \frac{1 \ m}{1E3 \ mm}\right) \cdot \left(0.1 \ \mum \ \cdot \frac{1 \ m}{1E6 \ \mum}\right) \cdot \frac{1.45E3 \ kg}{m^3} \cdot 110\% = 1.44E - 7 \ kg \ Ag \ ink$$

<u>Printer electricity.</u> The current sample being tested is approx. 10 cm. long and takes 5 minutes to print, with only 2 nozzles in use out of a total possible of 210. We estimate the printing speed as:

$$\frac{10 \text{ cm}}{5 \text{ min}} \cdot \frac{210 \text{ nozzles}}{2 \text{ nozzles}} \cdot \frac{60 \text{ min}}{1 \text{ h}} \cdot \frac{1 \text{ m}}{100 \text{ cm}} = \frac{126 \text{ m}}{\text{ h}}$$
(Eq. A.3-4)

From the data above, the total length of the 6 printed fingers is 0.45 m, and the printer has a maximum power rating of 1kW. We assume it operates at 75% power on average. To calculate electricity consumption of the printing process (per cell) we have:

$$\frac{0.45 m}{cell} \cdot \frac{1 h}{126 m} \cdot 1 \, kW \cdot 75\% = \frac{0.027 \, kWh}{cell} \tag{Eq. A.3-5}$$

#### A.3.3.2. Fingers: seed layer sintering

<u>Laser electricity</u>: The length of the pattern that must be sintered is calculated from the data in the previous section (0.45 m). We use a laser scan speed of 0.01 m/s, and the optical power delivered by the laser is 1.4 W. The wall-plug to optical efficiency of YAG type lasers is typically around 25% <sup>84</sup>, so we estimate the electricity consumption for laser sintering as:

$$\frac{0.45 m}{cell} \cdot \frac{s}{0.01 m} \cdot \frac{1 h}{3600 s} \cdot 1.4E - 3 kW \cdot \frac{1}{25\%} = \frac{5.6E - 5 kWh}{cell}$$
(Eq. A.3-6)

Materials: Laser-sintering of both Cu and Ag ink is done in open air.

#### A.3.3.3. Fingers: electroplating

Electroplating consists of submerging the cell with the seed pattern in an electrolyte bath, where the patterned cell will serve as an ion-receiving cathode and a copper anode in the solution will serve as a cathode. The electrolyte solution consists of a mix of cupric sulfate and sulfuric acid. Driving an electric current through the solution will force the metallic ions from the cathode to deposit on the seed pattern until the desired geometry is obtained.

<u>Electricity</u>: A conventional electroplating setup is used, where 10 mA of applied current with an average voltage of 0.5 V provides 250 nm of plating per minute. The electrical power can be calculated from the current and voltage:

$$P = I \cdot V = \left(10 \ mA \ \cdot \frac{1 \ A}{1000 \ mA}\right) \cdot (0.5 \ V) = 5E - 3 \ W = 5E - 6 \ kW \tag{Eq. A.3-7}$$

The amount of electricity consumed is calculated by multiplying the power by the time required to plate the desired finger thickness of  $12.5\mu m$ .

$$\frac{5E - 6 \, kW}{cells} \cdot \frac{1 \, min}{0.25 \, \mu m} \cdot 12.5 \, \mu m \cdot \frac{1 \, h}{60 \, min} = \frac{4.16E - 6 \, kWh}{cell} \tag{Eq. A.3-8}$$

<u>Materials</u>: Pure metal anodes donate the ions that ultimately deposit on the pattern (cathode). The ions are first passed from the electrolyte solution to the cathode and are then replenished from the anode to the solution. Therefore, the anode is sacrificed according to the amount of metal deposited in the cell, and we assume 10% losses.

$$Cu: \ 6 \cdot \left(2 \ mm \ \cdot \ \frac{1 \ m}{1E3 \ mm}\right) \cdot \left(75 \ mm \ \cdot \ \frac{1 \ m}{1E3 \ mm}\right) \cdot \left(12.4 \ \mum \ \cdot \ \frac{1 \ m}{1E6 \ \mum}\right) \cdot \frac{8.96E3 \ kg}{m^3} \cdot \ 110\% = 1.09E - 4 \ kg \ Cu = 1.09E - 4 \ Kg$$

We consider a standard cupric sulfate electrolyte solution that consists of 200 g cupric sulfate and 25 mL sulfuric acid in sufficient deionized water to prepare 1 L of electrolyte solution. This amount of solution is used for electroplating on one cell; however, we consider that it can be used for the production of 10-100 wafers based on lab experience, and test the sensitivity of this parameter.

#### A.3.3.4. Busbars: screen printing

<u>Screen printing electricity</u>: We use data from a screen printer running a squeegee motor with a power of 1.16 kW. The printer can process a sheet of 400x400mm in 30 seconds.

$$\frac{1 \text{ sheet}}{4 \text{ cells}} \cdot 1.16 \text{ kW} \cdot 30 \text{ s} \cdot \frac{1 \text{ h}}{3600 \text{ s}} = \frac{2.41E - 3 \text{ kWh}}{\text{ cell}}$$
(Eq. A.3-10)

<u>Curating electricity</u>: Cu busbars are grown over the Ag or Cu fingers by screen-printing. However, instead of co-firing, the Cu busbars are curated at lower temperature (250°C) in an atmosphere of pure nitrogen<sup>85</sup>. This is done in a furnace that has a power rating of 3.4 kW and can process 1000 cells per batch, for a curating time of 10 minutes.

$$\frac{3.4 \ kW}{1000 \ cells} \cdot 10 \ min \cdot \frac{1 \ h}{60 \ min} = \frac{5.67E - 4 \ kWh}{cell} \tag{Eq. A.3-11}$$

<u>Materials:</u> We consider 3 busbars, 1 mm wide, 156 mm long and 13.5 µm thick on average. We assume 10% losses from the paste during screen-printing. Per cell, we have:

(Eq. A.3-12)

$$3 \cdot \left(1 \ mm \ \cdot \frac{1 \ m}{1E3 \ mm}\right) \cdot \left(156 \ mm \ \cdot \frac{1 \ m}{1E3 \ mm}\right) \ \cdot \left(13.5 \ \mum \ \cdot \frac{1 \ m}{1E6 \ \mum}\right) \cdot \frac{8.96E3 \ kg}{m^3} \cdot 110\% = 6.23E - 5 \ kg \ Cu$$

# A.4. Supplementary information to Chapter 5

# A.4.1. Model overview

This risk assessment was conducted in six integrated steps:

- <u>III-V/Si PV electricity demand scenarios</u>: Projected the expected PV demand (in MW<sub>p</sub> or GW<sub>p</sub>) in each geographical scale over a period of 100 years using logistic growth curves.
- <u>Dynamic stock flows</u>: Determined the quantity of III-V/Si PV panels (in m<sup>2</sup> of PV installation) manufactured, installed, and recycled/incinerated/landfilled in each year to meet the electricity demands of the previous step.
- <u>Emissions</u>: Determined the quantities of III-V materials emitted to the environment from III-V/Si PV panels at each life cycle stage.
  - *Manufacturing:* Emissions from this phase were deemed negligible as all waste goes to underground hazardous waste storage and/or is reused.
  - *Use phase*: Calculated the emissions that may occur from panel breakage which exposes the III-V materials in the PV cells to leaching during rain events.
  - End-of-life phase:

• Recycling: no direct emissions to the environment were considered during PV materials separation and repurposing, only the generation of waste.

- ${\bf cs}$  Incineration: Calculates emissions of III-V materials that vaporize and are not captured by the abatement system, escaping to air.
- C Landfilling: Calculates emissions from III-V materials that leach from the waste to the landfill leachate, and later escape the landfill through uncontrolled leakage to the surrounding soil. Also calculates emissions that can volatize to air in the landfill.
- <u>Environmental fate</u>: Models the distribution of emitted III-V materials (in kg) in each environmental compartment in each scale and calculates the predicted environmental concentrations (PEC).
- <u>Risk Ouotient</u>: Evaluates the risk as a ratio of predicted environmental concentrations (PEC) to concentrations at which no observable effects are reported (PNEC).

These steps are described in detail in the following sections, along with the assumptions and calculation notes. The values and probability distributions taken for all model input parameters are listed in Table A.4-2.

#### A.4.2. Demand scenarios

Demand scenarios for three geographical scales were modelled; one for Europe (continental, "SKY\_EUR"), one for the city of Amsterdam (regional, "RES\_AMS"), and an intentionally loaded smaller area (~16 km<sup>2</sup>) containing a floating utility-scale PV plant with surrounding rooftop PV and EOL treatment facilities within it (local, "UTI\_LOC"). The scales are embedded in the model, so that the PV demand (and corresponding emissions) in the local scale is added to the regional scale, and the regional scale is added to the continental scale. In the SimpleBox fate models, materials are allowed to be transported across scales.

With an expected 28% panel conversion efficiency, III-V/Si panels will have a rating of 280  $W_p/m^2$ . This is equivalent to the power output of the panel under standard irradiance conditions of 1000 W/m<sup>2</sup>. The rating can also be expressed in terms of efficiency, as the ratio of power output to power input. To translate PV installed capacity to PV installation size (as total Area of panels, in m<sup>2</sup>) we used Equation A.4-1.

$$Area = \frac{PV \ Capacity}{Rating} = \frac{PV \ Capacity}{efficiency \cdot 1000 \ W/m^2}$$
(Eq. A.4-1)

#### A.4.2.1. Continental scale: Europe

We modelled a first scenario based on possible future electricity demand in Europe according to the Shell Sky Scenario<sup>105</sup>, which sets the most ambitious targets for electrification and solar generation in Europe from the different scenarios presented by Shell. In this scenario, total PV electricity demand will rise to 18.43 EJ (=5,138 TWh) by the year 2100, split equally between distributed and utility. If the IEA's "High GaAs" market shares are taken 15% of the utility share and 5% of the rooftop share would be taken by III-V/Si panels, the installed capacity of III-V/Si panels is 10%, or 513.8 TWh. We translate this electricity demand to installed capacity by assuming a 1200 kWh/kW<sub>p</sub> average yield in Europe<sup>106</sup>, although this can vary if the location of new PV installations shifts significantly to the north or south. Based on these data, we used a logistic growth curve (equations A.4-2 and A.4-3) to project installed capacity at any given time *C(t)*, starting with an initial capacity addition of  $C_0 = 100 MW_p$  in the year 2031 and stabilizing at  $C_f = 430 GW_p$ . We took the growth rate k = 14.1% from the 75<sup>th</sup> percentile of 1100 different PV deployment scenarios in Europe that were reviewed and harmonized by Jaxa-Rozen et. al.<sup>107</sup>

$$C(t) = \frac{C_f}{1+A \cdot e^{-kt}}$$
(Eq. A.4-2)  

$$A = \frac{C_f - C_0}{C_0}$$
(Eq. A.4-3)

Of the total amount of III-V/Si PV panels produced each year, we assumed 25% would be installed on rooftop installations, while 75% would be installed in utility-scale plants, following the IEA's "High GaAs" scenario.<sup>108</sup> We further assumed that a fraction of utility-scale corresponding to 13.3% of utility (~10% of total generation) is supplied by floating

structures on surface water bodies (lakes) based on projections made by Cazzaniga et al. for floating PV installations.<sup>109</sup> In lieu of data, we assumed an equal split between rooftop installations that drain to freshwater and those that drain to soil (Figure A.4-1).



Fig A.4-1. Projected distribution of III-V/Si modules in Europe based on installation type and location.

# A.4.2.2. Regional scale: Amsterdam area

The second scenario we modelled was based on the stated policies of the Amsterdam municipality<sup>110</sup>. The number of installed solar panels has grown by approximately 50% annually from 2012 to mid-2019. The city's aspiration is to reach 550 MW by 2030, which is half of the total potential of roofs (large and small). Afterwards, the city is committed to "leave no roof unused", with a roof potential of 1100 MW. Floating PV and ground-based installations will be kept as an option only if the targets are not achievable otherwise. Following these stated aspirations, for this scenario we assume III-V/Si enters the market after 2030 with an initial installed capacity of 100 kWp and grows at the pace of 20% annually to take up 10% of the total rooftop potential. As per Equations A.4-2 and A.4-3, this can be represented by setting C0 = 0.1 MW, Cf = 110 MW, and k = 0.2. The distributions according to type of installation are shown in Figure A.4-2.



Fig A.4-2. Projected distribution of III-V/Si modules in Amsterdam based on installation type and location.

# A.4.2.3. Local scale: Floating utility plant and surrounding rooftop installations

The third scenario represents a very localized situation, largely based on the current status (2020) of the Sloterplas lake area in Amsterdam. The number of rooftop panels currently installed in the encircled area (Figure A.4-3) is approximately 50,000. For this scenario, we

assume all the panels are replaced for III-V/Si panels in 2030. We also assumed all panels in this area will drain directly to soil, or towards the lake. In addition to this, 50 MW of III-V/Si panels are assumed to be installed in 2030 as a floating utility installation on the lake, taking up approximately 20% of the lake area.



Fig A.4-3. Current PV installations around the Sloterplas lake in Amsterdam (red: on houses, purple: on nonhouses or mixed).\*

# A.4.3. Stock flows

According to the current European Union regulations, 85% of solar panels by weight must be collected for recycling.<sup>111</sup> The base (conservative) case considers current PV recycling practices, which largely focus on the aluminum framing, glass, and plastic components of the panel while the cell is discarded (Figure A.4-4). Based on interviews we conducted with industry representatives, it is believed that if an amount of arsenic in the order of 100 ton per year would become available for recycling, then this additional recycling step would become economically feasible. This alternative is tested in a sensitivity analysis where *f.rec.reu=98%* and *f.rec.rej=2%*.

<sup>\*</sup>https://maps.amsterdam.nl/zonnepanelen/?LANG=en.



Fig A.4-4. Distribution of III-V/Si panels at EOL. Percentage values represent the base (conservative) case with no arsenic recovery during recycling.

# A.4.4. Emissions

# A.4.4.1. Use $phase^{t}$

The model supposes III-V materials emissions during the use phase may occur if there is leaching from broken panels during rain events. The potentially released amounts were determined by calculating the release per second per broken panel, and multiplying this by the exposure time to rainwater, number of panels, and fraction of panels with glass breakage. The release of arsenic/gallium/indium per broken panel is dependent on the speciation in the panel which consists of two factors: dissolution at the crack surface of directly exposed material (modelled according to Celik et al.<sup>67</sup>) and transport of arsenic on non-exposed parts that gets dissolved by water ingress and is transported to the crack where it is then released.

The total release can be expressed as:

 $R.system = (R.crack + trans.crack) \cdot t.exp \cdot n.system \cdot f.cracked$ (Eq. A.4-4)

Where:

R.system = total release of a metal from a specific speciation from the PV system in g/year R.crack = dissolution rate of metal where the metal is directly exposed to the solvent due to the crack in g/s

*trans.crack* = transport of dissolved metal from the rest of the panel to the crack in g/s

<sup>&</sup>lt;sup>†</sup> The "use phase" calculations presented in this section are based on the RIVM/Wageningen University and Research internship report by Matthias Hof, *"Environmental risk assessment of photovoltaic-panels applied on surface waters*" (April 15, 2021). Supervised by Joris Quik, Michiel van Kuppevelt (RIVM), Bart Koelmans (WUR).

*t.exp* = exposure time to solvent (rainwater) per year in s/year *n.system* = number of panels in the PV system *f.cracked* = fraction of panels in the system with glass panel breakage

The exposure time to solvent (rainwater) per year is calculated as:

$$t.exp = t.rain \cdot t.removal/365$$
(Eq. A.4-5)

Where:

*t.rain* = days of rain per year

*t.removal* = days until removal after breakage of panel

The dissolution rate of arsenic directly exposed at the cracks of a broken panel can be calculated as:  $^{\rm 67}$ 

$$R.\,crack = A.\,crack \cdot \left(\frac{D}{d}\right) \cdot (Cs - Cb) \tag{Eq. A.4-5}$$

Where:

A.crack = cumulative surface area of cracks in m2

D = diffusion coefficient of metal in m2/s

d = thickness boundary layer of diffusion in m

Cs = saturated mass concentration of metal in water in g/m3

Cb = concentration of metal in bulk solvent (rainwater) in g/m3

In Equation A.4-5, the saturated mass concentration Cs is given by:

$$Cs = MW \cdot Ss \tag{Eq. A.4-6}$$

Where:

*MW* = Molecular weight of metal atom in g/mol

Ss = saturated molar concentration of metal ions in mol/l

The saturated molar concentration Ss is:

$$Ss = \left(\frac{x}{y}\right)^{\frac{y}{x+y}} \cdot Ksp^{\frac{1}{x+y}}$$
(Eq. A.4-7)

Where:

x = number of metal ions in soluble speciation

y = number of anions in soluble speciation

Ksp = solubility constant of soluble speciation

Finally, the cumulative crack surface is calculated as:

$$A. crack = n. cr \cdot (W. cr \cdot L. cr)$$
(Eq. A.4-8)

Where:

*n.cr* = number of cracks

W.cr = width of the crack in m L.cr = length of the crack in m

In addition to direct dissolution at the crack surface, III-V materials in the rest of the panel may be exposed to the solvent through the ingress of rainwater. We assumed that ingressed water is continuously present in the panel, and the concentration of dissolved III-V materials in the ingressed water was assumed to be saturated due to the long residence time. The release of metal through the crack can thus be described by the transport from its position in the panel to the crack through diffusion.

The transport of dissolved metal to crack is calculated as:

$$trans. crack = J. crack \cdot A. cr. sides$$
(Eq. A.4-9)

Where:

J.crack = the flux of dissolved metal to the crack in g/m<sup>2</sup>/s

A.cr.sides = the surface of the diffusion interface between the panel and the crack, which is the surface of the sides of the crack in m<sup>2</sup>.

The flux of dissolved metal to crack is given by:

$$J.crack = D \cdot \frac{Cs - Cb}{distance.cr}$$
(Eq. A.4-10)

Where:

*distance.cr* = the average travel distance of the metal from any point in the panel to the crack

The surface of the diffusion interface can be calculated by the width and length of the crack, and the "depth" of the crack, or the thickness of the space between sheets of the panel through which the rainwater can ingress. Due to the possibility of multiple cracks on the panel, the total surface of the diffusion interface is the sum of the sides of multiple cracks. The total surface of the diffusion interface can be calculated as follows:

$$A. cr. sides = (n. cr \cdot 2(W. cr + L. cr) \cdot D. cr$$
(Eq. A.4-11)

Where:

D.cr = depth of crack in m.

If the panel is regarded as a two-dimensional sheet, the average travel distance of dissolved metal from any point in the panel to the crack can be described by the average distance between two random points in a rectangle of a certain size. The average distance between two random points in a rectangle is described by Mathai et al.<sup>112</sup>:

 $avg.dis.panel = 1/15 \cdot ((L.panel^3)/(W.panel^2)) + (W.panel^3)/(L.panel^2) + d(-(L.panel^2)/(W.panel^2)) - (W.panel^2)/(L.panel^2)) + 5/2((W.panel^2)/(A.panel) ln ((L.panel + LW)/(W.panel)) + (L.panel^2)/(W.panel) ln ((W.panel + LW)/(L.panel))))$ 

Where:

*avg.dis.panel* = the average distance between two random points in a rectangle with sides L.panel and W.panel in m

(Eq. A.4-12)

*L.panel* = the length of the panel in m *W.panel* = the width of the panel in m

 $LW = (L. panel^2 + W. panel^2)^{1/2}$ 

L.panel > W.panel

Because of the possibility of multiple cracks forming on the panel, the actual distance from any point on the panel to the crack would be smaller than the average distance between two points. As far as we are aware, there is no formula for the average distance between multiple random points in a rectangle. To approximate this decrease in distance with multiple cracks, the average distance calculated by Eq. A.4-12 was divided by the number of cracks on the panel:

$$distance. cr = \frac{avg.dis.panel}{n.cr}$$
(Eq. A.4-13)

This underestimates the actual distance when cracks are not uniformly distributed, however this was deemed preferable over overestimating the distance as the latter leads to underestimating the release of metals and resulting ecotoxicological risk.

Finally, the amount of metal that can be released through direct dissolution at the crack with the Celik et al.<sup>67</sup> formula was limited to the amount of metal directly exposed to the outside environment (using an IF statement):

| $IF((R.crack \cdot t.exp) < Mu.crack; (R.crack \cdot t.exp); Mu.crack)$ | (Eq. A.4-14) |
|-------------------------------------------------------------------------|--------------|
| The mass of metal directly exposed at crack is equal to:                |              |
| $Mu.crack = Mu.spec \cdot f.crack$                                      | (Eq. A.4-15) |
| The amount of metal of specific speciation in panel is:                 |              |
| $Mu.spec = Mu.PVarea \cdot L.panel \cdot W.panel \cdot f.spec$          | (Eq. A.4-16) |
| The fraction of panel surface exposed by crack is:                      |              |
| $f.crack = \frac{A.crack}{A.pv.panel}$                                  | (Eq. A.4-17) |

Where:

Mu.crack = amount of metal directly exposed to outside environment in g
Mu.spec = total weight of metal of specific speciation in panel in g
A.crack = total crack surface area in m2
Mu.PVarea = weight of metal per surface aera of PV panel in g/m2
f.spec = ratio of metal from specific speciation to total amount of that metal in the panel

Similarly, the total amount of metal that can be released from the panel trough dissolution in ingressed water and subsequent diffusion can be limited by:

```
IF((trans.crack \cdot t.exp) < Mu.ingress; (trans.crack \cdot t.exp); Mu.ingress) (Eq. A.4-18)
```

The amount of metal of specific speciation in panel that is not directly exposed by crack is:

```
Mu.ingress = Mu.PVarea \cdot A.pv.panel - Mu.crack (Eq. A.4-19)
```

Where:

*Mu.ingress* = weight of metal not directly exposed to outside environment in g.

# A.4.4.2. End-of-life

# A.4.4.2.1. Landfilling

A simplified landfill model based on EPA's Composite Model for Leachate Migration with Transformation Products (EPACMTP)<sup>113,114</sup> was used to determine how much arsenic will dissolve from the PV discarded in landfills into the landfill leachate, and how much of the leachate containing these elements will escape the landfill into the surrounding environment. For simplicity, we assumed each cohort (yearly installation) will be disposed in a new landfill cell, all of which constitute monofills (only PV waste).

Once a landfill cell has been closed, it is expected that the concentration of an element in the leachate will decrease over time as the available quantity embedded in the waste is depleted. As per the EPACMTP model, this constitutes a "depleting source scenario", where the leachate concentration at a given time (t) is a linear function of the remaining concentration in the waste Cw(t):

$$C_L(t) = K_W \cdot C_W(t)$$

(Eq. A.4-20)

In equation A.4-20,  $K_W$  is a waste/leachate partitioning coefficient.  $K_W$  values for arsenic were suggested by EPA<sup>115</sup>, based largely on previously reported leachate extraction test results and modeling using the MINTEQA2 geochemical speciation model.

A mass balance can then be performed at any given time *t*, where the difference between the initial concentration in the waste and the concentration at time *t* should equal the total amount lost via leaching. Assuming all the waste is composed of the same PV waste (monofil), this mass balance can be expressed as:

$$A_W \cdot D_{LF} \cdot \rho_W \cdot \frac{dc_W}{dt} = A_W \cdot I \cdot C_L(t)$$
(Eq. A.4-21)

 $C_W$  can be substituted for  $C_L$  using equation A.4-20 and equation A.4-21 can be rearranged to obtain:

$$\frac{dC_L}{dt} = \frac{-I}{D_{LF} \cdot \rho_W \cdot K_W} C_L \tag{Eq. A.4-22}$$

Equation A.4-22 can be integrated to give:

$$C_L(t) = C_L^0 \cdot exp\left\{ \left( \frac{-I}{D_{LF} \cdot \rho_{W} \cdot K_W} \right) t \right\}$$
(Eq. A.4-23)

In equation A.4-23,  $C_L^o$  represents the initial concentration of the element in the leachate at the time of landfill cell closure.

A small fraction of arsenic present in the landfill waste was assumed to be volatized due to biological processes. We took a range of values of 0.02-0.1% as reported by Webster et al.<sup>116</sup> for microbially mediated volatilization in anaerobic environments. It is likely that or monofils with reduced microbial activity this value is on the lower range if not negligible. This process is assumed to occur within the simulation time step of 1 year, and so is immediately subtracted from the amount available for leakage.

# A.4.4.2.2. Incineration

During incineration, arsenic in PV waste can be reduced to bottom ash or volatized. In the latter case, it will join the flue gas which is mostly captured by an electrostatic precipitator (ESP) while a small fraction escapes to air. Arsenic in bottom ash and captured in the ESP (fly ash) are assumed to be sent to the same PV landfill cells used described in section A.4.4.2.1.

We based our assumptions on a study by Uryu et al.<sup>117</sup>, who modelled the distribution of arsenic in GaAs FET semiconductors in mobile phones that are burned in hazardous waste incineration plants in Japan. Of the incinerated amount, 90% of arsenic was present in the gas phase at high incineration temperatures. 0.2% of arsenic present in the gas was found to escape to air while the remaining fraction (bottom ash and fly ash) was sent to a landfill.

# A.4.5. Environmental fate

The Excel spreadsheets and annotated R scripts to run the fate model as described in Section 5.2.5 of Chapter 5 are available at https://github.com/jormercury/SimpleBox. The emissions were sent to specific compartments in SimpleBox as indicated in Table A.4-1.

| Emission                                    | SKY_EUR                               | AMS_RES                         | UTI_LOC         |
|---------------------------------------------|---------------------------------------|---------------------------------|-----------------|
| Use phase – leaching,<br>utility (ground)   | Continental<br>agricultural soil, s2C | Regional agricultural soil, s2R | Local soil, sL  |
| Use phase – leaching,<br>utility (floating) | Continental<br>freshwater, w1C        | Regional freshwater,<br>w1R     | Local water, wL |
| Use phase – leaching,<br>distributed        | Continental<br>freshwater, w1C        | Regional freshwater,<br>w1R     | Local water, wL |
| EOL phase – incineration                    | Continental air, aC                   | Regional air, aR                | Local air, aL   |
| EOL phase – landfill<br>leaching            | Continental<br>agricultural soil, s2C | Regional natural soil, s1R      | Local soil, sL  |
| EOL phase – landfill volatilization         | Continental air, aC                   | Regional air, aR                | Local air, aL   |

Table A.4-1 Receiving compartments for Use and EOL phase emissions

| distributions |   |
|---------------|---|
| uncertaintv   |   |
| and           |   |
| parameters    |   |
| input         | - |
| Model         |   |
| 4.4-21        |   |
| Lable 1       |   |

|                                                     |               |       | SK    | Y_EUR SCENARIO                       | RES   | _AMS SCENARIO              | 5     | LOC SCENARIO              |             |
|-----------------------------------------------------|---------------|-------|-------|--------------------------------------|-------|----------------------------|-------|---------------------------|-------------|
| Model input parameter                               | Variable      | Units | Base  | Distribution parameters <sup>1</sup> | Base  | Distribution               | Base  | Distribution              | Refs.       |
|                                                     | name          |       | value |                                      | value |                            | Value |                           |             |
| Installation parameters                             |               |       |       |                                      |       |                            |       |                           |             |
| Panel conversion efficiency                         | pv.eff        | %     | 28%   | P, a=25%, b=28%,<br>c=31%            | 28%   | P, a=25%, b=28%,<br>c=31%  | 28%   | P, a=25%, b=28%,<br>c=31% | 82          |
| Panel lifetime                                      | LT            | years | 30    | N, µ=30, σ=5                         | 30    | N, μ=30, σ=5               | 30    | N, μ=30, σ=5              | 82          |
| Mass of element per m <sup>2</sup><br>cell: arsenic | Mu.PVare<br>a | g/m²  | 8.81  | U, min=7.93, max=9.69                | 8.81  | U, min=7.93,<br>max=9.69   | 8.81  | U, min=7.93,<br>max=9.69  | 5           |
| Mass of element per m <sup>2</sup><br>cell: gallium | Mu.PVare<br>a | g/m²  | 15.06 | U, min=13.55,<br>max=16.57           | 15.06 | U, min=7.93,<br>max=9.69   | 15.06 | U, min=7.93,<br>max=9.69  |             |
| Mass of element per m <sup>2</sup><br>cell: indium  | Mu.PVare<br>a | g/m²  | 0.02  | U, min=0.018,<br>max=0.022           | 0.02  | U, min=7.93,<br>max=9.69   | 0.02  | U, min=7.93,<br>max=9.69  |             |
| Demand scenarios                                    |               |       |       |                                      |       |                            |       |                           |             |
| Initial capacity addition                           | CO            | MM    | 100   | N/A                                  | 0.1   | N/A                        | 64    | N/A                       | m           |
| Carrying capacity                                   | Cf            | MM    | 4.3e5 | N/A                                  | 110   | N/A                        | 64    | N/A                       | 105,110     |
| Yearly growth rate                                  | Y             | ı     | 11.4% | N/A                                  | 20%   | N/A                        | 0     | N/A                       | 107         |
| Fraction utility vs. rooftop                        | f.utility     | ı     | 75%   | P, a=25%, b=75%,<br>c=90%            | 0     | P, a=0, b=0.1, c=0.2       | 78.1% | N/A                       | 108         |
| Fraction utility floating vs.<br>ground             | f.float       | ·     | 13.3% | P, a=5%, b=13.3%,<br>c=20%           | 0     | P, a=5%, b=13.3%,<br>c=20% | 100%  | N/A                       | 109         |
| Fraction rooftop draining<br>to water vs. soil      | f.roof.wat    | ı     | 50%   | P, a=10%, b=50%,<br>c=90%            | 50%   | P, a=10%, b=50%,<br>c=90%  | 50%   | P, a=10%, b=50%,<br>c=90% | 4           |
| Collected PV waste for<br>recycling                 | f.EOL.rec     | ı     | 85%   | U, min=85%,<br>max=99.9%             | 85%   | U, min=85%,<br>max=99.9%   | 85%   | U, min=85%,<br>max=99.9%  | 111         |
| Fraction of arsenic<br>recovered for reuse          | f.rec.reu     | '     | 95%   | U, min=90%,<br>max=99.9%             | 95%   | U, min=90%,<br>max=99.9%   | 95%   | U, min=90%,<br>max=99.9%  | 118–<br>120 |

<sup>&</sup>lt;sup>1</sup> P: PERT, N: Normal, L: Lognormal, U: Uniform, T: Student's T, E: Exponential. <sup>2</sup> Internal calculations from the SiTaSol project (<u>http://sitasol.com</u>). <sup>3</sup> Assumed prior, see Chapter 6. <sup>4</sup> Assumed prior, see Chapter 6.

| 118-<br>120                                | 118-<br>120                               | Ω.                                   |                     | 121                                     |                               | 67                     |                         | 122                            | 123                               | 124                                 | 124                                 | 67                                       | 125                                      |                               | 113                 |                                 | 116                                       | 113                                     |
|--------------------------------------------|-------------------------------------------|--------------------------------------|---------------------|-----------------------------------------|-------------------------------|------------------------|-------------------------|--------------------------------|-----------------------------------|-------------------------------------|-------------------------------------|------------------------------------------|------------------------------------------|-------------------------------|---------------------|---------------------------------|-------------------------------------------|-----------------------------------------|
| U, min=90%,<br>max=99.9%                   | U, min=90%,<br>max=99.9%                  | N/A                                  |                     | U, min=0.03%<br>max=0.12%               | U, min=1 max=10               | U, min=0.01 max=1      | P, a=1, b=10, c=30      | P, a=240, b=840,<br>c=1080     | P: a=5e-10, b=1.2e-9,<br>c=1.9e-9 | P, a=6e-10, b=7.9e-10,<br>c=1.9e-9  | P, a=6e-10, b=9.8e-10,<br>c=1.9e-9  | U, min=0.1 max=1                         | U, min=98%,<br>max=99.9%                 |                               | E, <b>λ</b> =0.35   | P, a=1, b=1.38, c=2             | U, min=2% max=10%                         | P, a=0, b=0.07, c=0.14                  |
| 95%                                        | 95%                                       | 100%                                 |                     | 0.06%                                   | 5                             | 1                      | 10                      | 840                            | 1.2E-9                            | 7.9e-10                             | 9.8e-10                             | 0.1                                      | %66                                      |                               | 2.9                 | 1.38                            | 6.5%                                      | 0.07                                    |
| U, min=90%,<br>max=99.9%                   | U, min=90%,<br>max=99.9%                  | N/A                                  |                     | U, min=0.03%<br>max=0.12%               | U, min=1 max=10               | U, min=0.01 max=1      | P, a=1, b=10, c=30      | P, a=240, b=840,<br>c=1080     | P, a=5e-10, b=1.2e-9,<br>c=1.9e-9 | P, a=6e-10, b=7.9e-<br>10, c=1.9e-9 | P, a=6e-10, b=9.8e-<br>10, c=1.9e-9 | U, min=0.1 max=1                         | U, min=98%,<br>max=99.9%                 |                               | E, <i>λ</i> =0.35   | P, a=1, b=1.38, c=2             | U, min=2% max=10%                         | P, a=0, b=0.07,<br>c=0.14               |
| 95%                                        | 95%                                       | 100%                                 |                     | 0.06%                                   | വ                             | 1                      | 10                      | 840                            | 1.2E-9                            | 7.9e-10                             | 9.8e-10                             | 0.1                                      | %66                                      |                               | 2.9                 | 1.38                            | 6.5%                                      | 0.07                                    |
| U, min=90%,<br>max=99.9%                   | U, min=90%,<br>max=99.9%                  | P, a=25%, b=50%,<br>c=75%            |                     | U, min=0% max=0.12%                     | U, min=1 max=10               | U, min=0.01 max=1      | P, a=1, b=10, c=30      | P, a=240, b=840,<br>c=1080     | P, a=5e-10, b=1.2e-9,<br>c=1.9e-9 | P, a=6e-10, b=7.9e-10,<br>c=1.9e-9  | P, a=6e-10, b=9.8e-10,<br>c=1.9e-9  | U, min=0.01 max=0.1                      | U, min=98%,<br>max=99.9%                 |                               | E, λ=0.35           | P, a=1, b=1.38, c=2             | U, min=2% max=10%                         | P, a=0, b=0.07, c=0.14                  |
| 95%                                        | 95%                                       | 50%                                  |                     | 0.06%                                   | 2                             | 1                      | 10                      | 840                            | 1.2e-9                            | 7.9e-10                             | 9.8e-10                             | 0.01                                     | %66                                      |                               | 2.9                 | 1.38                            | 6.5%                                      | 0.07                                    |
| ı                                          | I.                                        | ı                                    |                     | ı                                       |                               | шш                     | cm                      | Ч                              | m²/s                              | m²/s                                | m²/s                                | ШШ                                       | ı                                        |                               | E                   | kg/L                            | I                                         | m/yr                                    |
| f.rec.reu                                  | f.rec.reu                                 | f.EOL.inc                            |                     | f.cracked                               | n.cr                          | W.cr                   | L.cr                    | t.rain                         | D                                 | D                                   | D                                   | q                                        | f.roof.wtp                               |                               | lf.d                | waste.dens                      | f.lf.air                                  | lf.inf                                  |
| Fraction of gallium<br>recovered for reuse | Fraction of indium<br>recovered for reuse | Fraction not recycled to incinerator | Use phase emissions | Yearly fraction of panels with breakage | Number of cracks per<br>panel | Average width of crack | Average length of crack | Average hours of rain per year | Diffusion coefficient of arsenic  | Diffusion coefficient of gallium    | Diffusion coefficient of indium     | Thickness boundary layer<br>of diffusion | Frac. rooftop drainage<br>removed at WTP | EOL phase emissions: landfill | Landfill cell depth | PV waste density<br>(compacted) | Fraction of arsenic volatized in landfill | Effective infiltration through landfill |

581 <sup>5</sup> Assumed prior, see Chapter 6.

<sup>&</sup>lt;sup>6</sup> Waste/leachate partitioning coefficients were calculated from the regression equation derived by Allison & Allison<sup>115</sup>. *log Kw = 0.7 log Kpsoil + 0.3*. The relation has a low correlation coefficient (R2 = 0.4) and the obtained values "must be regarded as highly uncertain". To preserve correlations between Kw and Kpsoil, the Kpsoil (solid/water partitioning coefficient) values used in this formula in every model iteration were the same as those used in the SimpleBox fate model (see "Substance parameters" section in this Table).

| 129                            | 129                           | 129                                   | 129                         | 129                            | 130                            | 130                       | 130                                 | 130                           | 130                                      | 130                                | 130                               | 130                                 | 130                                   | 130                                                               | 130                                          |
|--------------------------------|-------------------------------|---------------------------------------|-----------------------------|--------------------------------|--------------------------------|---------------------------|-------------------------------------|-------------------------------|------------------------------------------|------------------------------------|-----------------------------------|-------------------------------------|---------------------------------------|-------------------------------------------------------------------|----------------------------------------------|
| N/A                            | N/A                           | N/A                                   | N/A                         | N/A                            | T, mix=-10, mode=12,<br>max=35 | PERT, a=0, b=5.1,<br>c=18 | T, min=77, mode=400,<br>max=1338    | PERT, a=350, b=700,<br>c=2400 | PERT, a=1, b=3, c=15                     | T, min=1, mode=3,<br>max=10        | N/A                               | T, min=0.003,<br>mode=0.2, max=0.67 | T, min=0.5, mode=0.8,<br>max=0.999    | L, μ=0.1, σ=0.04                                                  | L, μ=24.4, σ=23.5                            |
| 0.08                           | 0                             | 0                                     | 0                           | 0,92                           | 12                             | 4.65                      | 605                                 | 925                           | 4.7                                      | 4,7                                | N/A                               |                                     |                                       | 0.1                                                               | 24.4                                         |
| N/A                            | N/A                           | N/A                                   | N/A                         | N/A                            | T, mix=-10, mode=12,<br>max=35 | PERT, a=0, b=5.1,<br>c=18 | T, min=77,<br>mode=400,<br>max=1338 | PERT, a=350, b=700,<br>c=2400 | PERT, a=1, b=3, c=5                      | T, min=1, mode=3,<br>max=10        | N/A                               | T, min=0.003,<br>mode=0.2, max=0.67 | T, min=0.5,<br>mode=0.8,<br>max=0.999 | L, µ=0.1, σ=0.04                                                  | L, μ=24.4, σ=23.5                            |
| 0.24                           | 0                             | 0.18                                  | 0.58                        |                                | 12                             | 4.65                      | 605                                 | 925                           | 2.6                                      | 4,7                                | N/A                               |                                     |                                       | 0.1                                                               | 24.4                                         |
| N/A                            | N/A                           | N/A                                   | N/A                         | N/A                            | T, mix=-10, mode=12,<br>max=35 | PERT, a=0, b=5.1,<br>c=18 | T, min=77, mode=400,<br>max=1338    | PERT, a=350, b=700,<br>c=2400 | PERT, a=1, b=3, c=15                     | T, min=1, mode=3,<br>max=10        | T, min=1, mode=3,<br>max=10       | T, min=0.003,<br>mode=0.2, max=0.67 | T, min=0.5, mode=0.8,<br>max=0.999    | L, µ=0.1, σ=0.04                                                  | L, μ=24.4, σ=23.5                            |
| 0.03                           | 0.27                          | 0.60                                  | 0.70                        |                                | 12                             | 4.65                      | 605                                 | 925                           | 4.7                                      | 4,7                                | 4,7                               | 0.29                                | 0.77                                  | 0.1                                                               | 24.4                                         |
| ı                              | ı                             | ī                                     | I                           | ı                              | °                              | m/s                       | E                                   | yr<br>yr                      | E                                        | cm                                 | cm                                | ı                                   | 1                                     |                                                                   | mg/L                                         |
| FRACfresh                      | FRACnats<br>oil.              | FRACagso<br>il.                       | FRACothe<br>rsoil.          | FRACsoil                       | TEMP                           | WINDspee<br>d.            | HEIGHT.a                            | RAINrate.                     | DEPTHfre<br>shwater                      | DEPTH.sd<br>1                      | DEPTH.sd<br>2                     | FRACw.s                             | FRACw.sd                              | CORG.sus<br>p1                                                    | SUSP.w1                                      |
| Fraction of area<br>freshwater | Fraction of area natural soil | Fraction of area<br>agricultural soil | Fraction of area other soil | Fraction of soil (local scale) | Temperature                    | Average wind speed        | Mixed height air<br>compartment     | Average rainfall              | Average depth freshwater<br>compartments | Mixed depth of freshwater sediment | Mixed depth of marine<br>sediment | Volume fraction water in soil       | Volume fraction water in sediment     | Mass fraction organic<br>carbon in suspended<br>matter freshwater | Concentration suspended matter in freshwater |

| 130                                                             | 130                                        | 130                                                       | 130                                                     | 130                                     | 130                                      | 130                                       | 130                                          | 130                                                             | 130                                                           | 130                                                                            | 130                                                                                  | 130                              |
|-----------------------------------------------------------------|--------------------------------------------|-----------------------------------------------------------|---------------------------------------------------------|-----------------------------------------|------------------------------------------|-------------------------------------------|----------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|----------------------------------|
| N/A                                                             | N/A                                        | L, μ=0.05, σ=0.04                                         | N/A                                                     | L, μ=0.05, σ=0.04                       | L, μ=1.0E-3, σ=1.0E-3                    | T, min=5.0E3,<br>mode=2.0E4,<br>max=3.5E4 | T, mix=3.0E-6,<br>mode=2.9E-5,<br>max=3.0E-5 | T, min=5, mode=10,<br>max=20                                    | N/A                                                           | T, min=2.78E-6/3,<br>mode=2.78E-6,<br>max=2.78E-6*3                            | T, min=2.78E-8/3,<br>mode=2.78E-8,<br>max=2.78E-8*3                                  | T, min=0, mode=0.03,<br>max=0.06 |
| N/A                                                             | N/A                                        | 0.05                                                      | N/A                                                     | 0.05                                    | 1.0E-3                                   | 2.0E4                                     | 2.1E-5                                       | 12                                                              | N/A                                                           | 4.0E-6                                                                         | 4.0E-8                                                                               | 0.03                             |
| N/A                                                             | N/A                                        | L, µ=0.05, σ=0.04                                         | N/A                                                     | L, μ=0.05, <b>σ</b> =0.04               | L, μ=1Ε-3, σ=1.0Ε-3                      | T, min=5.0E3,<br>mode=2.0E4,<br>max=3.5E4 | T, mix=3.0E-6,<br>mode=2.9E-5,<br>max=3.0E-5 | T, min=5, mode=10,<br>max=20                                    | N/A                                                           | T, min=2.78E-6/3,<br>mode=2.78E-6,<br>max=2.78E-6*3                            | T, min=2.78E-8/3,<br>mode=2.78E-8,<br>max=2.78E-8*3                                  | T, min=0, mode=0.03,<br>max=0.06 |
| N/A                                                             | N/A                                        | 0.05                                                      | N/A                                                     | 0.05                                    | 1.0E-3                                   | 2.0E4                                     | 2.1E-5                                       | 12                                                              | N/A                                                           | 4.0E-6                                                                         | 4.0E-8                                                                               | 0.03                             |
| L, μ=0.1, σ=0.04                                                | L, μ=24.4, σ=23.5                          | L, µ=0.05, σ=0.04                                         | L, µ=0.05, σ=0.04                                       | L, μ=0.05, σ=0.04                       | L, μ=1.0E-3, σ=1.0E-3                    | T, min=5.0E3,<br>mode=2.0E4,<br>max=3.5E4 | T, mix=3.0E-6,<br>mode=2.9E-5,<br>max=3.0E-5 | T, min=5, mode=10,<br>max=20                                    | T, min=0.5, mode=1.0,<br>max=2.0                              | T, min=2.78E-6/3,<br>mode=2.78E-6,<br>max=2.78E-6*3                            | T, min=2.78E-8/3,<br>mode=2.78E-8,<br>max=2.78E-8*3                                  | T, min=0, mode=0.03,<br>max=0.06 |
| 0.1                                                             | 24.4                                       | 0.05                                                      | 0.05                                                    | 0.05                                    | 1.0E-3                                   | 2.0E4                                     | 2.1E-5                                       | 12                                                              | 1.2                                                           | 4.0E-6                                                                         | 4.0E-8                                                                               | 0.03                             |
| ı                                                               | mg/L                                       | ı                                                         | ı                                                       | ı                                       | m/s                                      | ı                                         | m/s                                          | g/m²<br>/yr                                                     | g/m²<br>/yr                                                   | m/s                                                                            | m/s                                                                                  | yr<br>yr                         |
| CORG.sus<br>p2                                                  | SUSP.w2                                    | CORG.sd1                                                  | CORG.sd2                                                | CORG.s                                  | AEROSOL<br>deprate                       | COLLECT<br>eff                            | SETTLvel<br>ocity                            | PRODsusp<br>.w1                                                 | PRODsusp<br>.w2                                               | Kwsd.wate<br>r.w                                                               | Kwsd.sed.<br>sd                                                                      | EROSION.<br>s                    |
| Mass fraction organic<br>carbon in suspended<br>matter seawater | Concentration suspended matter in seawater | Mass fraction organic<br>carbon in freshwater<br>sediment | Mass fraction organic<br>carbon in sediment<br>seawater | Mass fraction organic<br>carbon in soil | Deposition velocity<br>aerosol particles | Aerosol collection<br>efficiency          | Settling velocity<br>suspended particles     | Autochtonous production<br>of suspended matter in<br>freshwater | Autochtonous production<br>of suspended matter in<br>seawater | Partial mass transfer<br>coefficient water side of<br>water/sediment interface | Partial mass transfer<br>coefficient sediment side<br>of water/sediment<br>interface | Erosion of soil                  |

| 130                                                                            | 130                                                           | 130                                       |
|--------------------------------------------------------------------------------|---------------------------------------------------------------|-------------------------------------------|
| T, min=0, mode=0.25,<br>max=0.50                                               | T, min=0, mode=0.25,<br>max=0.50                              | T, min=2.0E3,<br>mode=2.5E3,<br>max=3.0E3 |
| 0.25                                                                           | 0.25                                                          | 2.5E3                                     |
| T, min=0, mode=0.25,<br>max=0.50                                               | T, min=0, mode=0.25,<br>max=0.50                              | T, min=2.0E3,<br>mode=2.5E3,<br>max=3.0E3 |
| 0.25                                                                           | 0.25                                                          | 2.5E3                                     |
| T, min=0, mode=0.25,<br>max=0.50                                               | T, min=0, mode=0.25,<br>max=0.50                              | T, min=2.0E3,<br>mode=2.5E3,<br>max=3.0E3 |
| 0.25                                                                           | 0.25                                                          | 2.5E3                                     |
| 1                                                                              | I                                                             | Kg/m<br>³                                 |
| FRACrun.s                                                                      | FRACinf.s                                                     | RHOsolid                                  |
| Volume fraction of<br>precipitation on soil<br>running off to surface<br>water | Volume fraction of<br>precipitation infiltrating<br>into soil | Mineral density sediment<br>and soil      |

# References

- 1. García-Valverde, R., Cherni, J. A. & Urbina, A. Life cycle analysis of organic photovoltaic technologies. *Prog. Photovoltaics Res. Appl.* **18**, 535–558 (2010).
- Ito, M., Komoto, K. & Kurokawa, K. Life-cycle analyses of very-large scale PV systems using six types of PV modules. *Curr. Appl. Phys.* 10, S271–S273 (2010).
- 3. Reijnders, L. Design issues for improved environmental performance of dye-sensitized and organic nanoparticulate solar cells. *J. Clean. Prod.* **18**, 307–312 (2010).
- 4. Bravi, M., Parisi, M. L., Tiezzi, E. & Basosi, R. Life cycle assessment of a micromorph photovoltaic system. *Energy* **36**, 4297–4306 (2011).
- 5. Espinosa, N., García-Valverde, R. & Krebs, F. C. Life-cycle analysis of product integrated polymer solar cells. *Energy Environ. Sci.* **4**, 1547 (2011).
- 6. Fthenakis, V. M. & Kim, H. C. Photovoltaics: Life-cycle analyses. *Sol. Energy* **85**, 1609–1628 (2011).
- 7. Held, M. & Ilg, R. Update of environmental indicators and energy payback time of CdTe PV systems in Europe. *Prog. Photovoltaics Res. Appl.* **19**, 614–626 (2011).
- Kim, H. C. & Fthenakis, V. M. Comparative life-cycle energy payback analysis of multi-junction a-SiGe and nanocrystalline/a-Si modules. *Prog. Photovoltaics Res. Appl.* 19, 228–239 (2011).
- Espinosa, N., García-Valverde, R. & Urbina, A. A life cycle analysis of polymer solar cell modules prepared using roll-to-roll methods under ambient conditions. *Sol. Energy Mater. Sol. Cells* 95, 1293–1302 (2011).
- 10. Şengül, H. & Theis, T. L. An environmental impact assessment of quantum dot photovoltaics (QDPV) from raw material acquisition through use. *J. Clean. Prod.* **19**, 21–31 (2011).
- van der Meulen, R. & Alsema, E. Life-cycle greenhouse gas effects of introducing nano-crystalline materials in thin-film silicon solar cells. *Prog. Photovoltaics Res. Appl.* 19, 453–463 (2011).
- Emmott, C. J. M., Urbina, A. & Nelson, J. Environmental and economic assessment of ITO-free electrodes for organic solar cells. *Sol. Energy Mater. Sol. Cells* 97, 14–21 (2012).
- 13. Espinosa, N., Hösel, M., Angmo, D. & Krebs, F. C. Solar cells with one-day energy payback for the factories of the future. *Energy Environ. Sci.* **5**, 5117–5132 (2012).
- 14. Fthenakis, V. Sustainability metrics for extending thin-film photovoltaics to terawatt levels. *MRS Bull.* **37**, 425–430 (2012).
- Kim, H. C., Fthenakis, V., Choi, J.-K. & Turney, D. E. Life Cycle Greenhouse Gas Emissions of Thin-film Photovoltaic Electricity Generation. *J. Ind. Ecol.* 16, S110–S121 (2012).

- 16. Espinosa, N. *et al.* Life cycle assessment of ITO-free flexible polymer solar cells prepared by roll-to-roll coating and printing. *Sol. Energy Mater. Sol. Cells* **97**, 3–13 (2012).
- 17. Raugei, M., Isasa, M. & Fullana Palmer, P. Potential Cd emissions from end-of-life CdTe PV. *Int. J. Life Cycle Assess.* **17**, 192–198 (2012).
- Yue, D., Khatav, P., You, F. & Darling, S. B. Deciphering the uncertainties in life cycle energy and environmental analysis of organic photovoltaics. *Energy Environ. Sci.* 5, 9163 (2012).
- Zuser, A. & Rechberger, H. Considerations of resource availability in technology development strategies: The case study of photovoltaics. *Resour. Conserv. Recycl.* 56, 56–65 (2011).
- Eisenberg, D. A., Yu, M., Lam, C. W., Ogunseitan, O. A. & Schoenung, J. M. Comparative alternative materials assessment to screen toxicity hazards in the life cycle of CIGS thin film photovoltaics. *J. Hazard. Mater.* 260, 534–542 (2013).
- 21. Espinosa, N. *et al.* OPV for mobile applications: an evaluation of roll-to-roll processed indium and silver free polymer solar cells through analysis of life cycle, cost and layer quality using inline optical and functional inspection tools. *J. Mater. Chem. A* **1**, 7037 (2013).
- Fthenakis, V. & Anctil, A. Direct Te mining: Resource availability and impact on cumulative energy demand of CdTe PV life cycles. in 2012 IEEE 38th Photovoltaic Specialists Conference (PVSC) PART 2 1–6 (IEEE, 2012). doi:10.1109/PVSC-Vol2.2012.6656725.
- 23. Kim, H. C. & Fthenakis, V. Life Cycle Energy and Climate Change Implications of Nanotechnologies. *J. Ind. Ecol.* **17**, 528–541 (2013).
- Mohr, N. J., Meijer, A., Huijbregts, M. A. J. & Reijnders, L. Environmental life cycle assessment of roof-integrated flexible amorphous silicon/nanocrystalline silicon solar cell laminate. *Progress in Photovoltaics: Research and Applications* (2013) doi:10.1002/pip.2157.
- Parisi, M., Maranghi, S., Sinicropi, A. & Basosi, R. Development Of Dye Sensitized Solar Cells: A Life Cycle Perspective For The Environmental And Market Potential Assessment Of A Renewable Energy Technology. *Int. J. Heat Technol.* **31**, 143–148 (2013).
- Collier, J., Wu, S. & Apul, D. Life cycle environmental impacts from CZTS (copper zinc tin sulfide) and Zn3P2 (zinc phosphide) thin film PV (photovoltaic) cells. *Energy* 74, 314–321 (2014).
- Espinosa, N. & Krebs, F. C. Life cycle analysis of organic tandem solar cells: When are they warranted? *Sol. Energy Mater. Sol. Cells* 120, 692–700 (2014).
- 28. Espinosa, N., Hösel, M., Jørgensen, M. & Krebs, F. C. Large scale deployment of polymer solar cells on land, on sea and in the air. *Energy Environ. Sci.* **7**, 855 (2014).

- 29. Kim, H., Cha, K., Fthenakis, V. M., Sinha, P. & Hur, T. Life cycle assessment of cadmium telluride photovoltaic (CdTe PV) systems. *Sol. Energy* **103**, 78–88 (2014).
- Mann, S. A., de Wild-Scholten, M. J., Fthenakis, V. M., van Sark, W. G. J. H. M. & Sinke, W. C. The energy payback time of advanced crystalline silicon PV modules in 2020: a prospective study. *Prog. Photovoltaics Res. Appl.* 22, 1180–1194 (2014).
- Parisi, M. L., Maranghi, S. & Basosi, R. The evolution of the dye sensitized solar cells from Grätzel prototype to up-scaled solar applications: A life cycle assessment approach. *Renew. Sustain. Energy Rev.* 39, 124–138 (2014).
- 32. Wender, B. A. *et al.* Illustrating anticipatory life cycle assessment for emerging photovoltaic technologies. *Environ. Sci. Technol.* **48**, 10531–10538 (2014).
- 33. Espinosa, N., Laurent, A. & Krebs, F. C. Ecodesign of organic photovoltaic modules from Danish and Chinese perspectives. *Energy Environ. Sci.* **8**, 2537–2550 (2015).
- 34. Fabini, D. Quantifying the Potential for Lead Pollution from Halide Perovskite Photovoltaics. *J. Phys. Chem. Lett.* **6**, 3546–3548 (2015).
- 35. Gong, J., Darling, S. B. & You, F. Perovskite photovoltaics: life-cycle assessment of energy and environmental impacts. *Energy Environ. Sci.* **8**, 1953–1968 (2015).
- Louwen, A., van Sark, W. G. J. H. M., Schropp, R. E. I., Turkenburg, W. C. & Faaij, A. P. C. Life-cycle greenhouse gas emissions and energy payback time of current and prospective silicon heterojunction solar cell designs. *Prog. Photovoltaics Res. Appl.* 23, 1406–1428 (2015).
- Espinosa, N., Serrano-Luján, L., Urbina, A. & Krebs, F. C. Solution and vapour deposited lead perovskite solar cells: Ecotoxicity from a life cycle assessment perspective. *Sol. Energy Mater. Sol. Cells* **137**, 303–310 (2015).
- 38. Prado-Lopez, V. *et al.* Tradeoff Evaluation Improves Comparative Life Cycle Assessment: A Photovoltaic Case Study. *J. Ind. Ecol.* **20**, 710–718 (2016).
- Scott, R. P. & Cullen, A. C. Reducing the life cycle environmental impacts of kesterite solar photovoltaics: comparing carbon and molybdenum back contact options. *Int. J. Life Cycle Assess.* 21, 29–43 (2016).
- 40. Serrano-Lujan, L. *et al.* Tin- and Lead-Based Perovskite Solar Cells under Scrutiny: An Environmental Perspective. *Adv. Energy Mater.* **5**, 1501119 (2015).
- 41. Wetzel, T. & Borchers, S. Update of energy payback time and greenhouse gas emission data for crystalline silicon photovoltaic modules. *Prog. Photovoltaics Res. Appl.* **23**, 1429–1435 (2015).
- Zhang, J., Gao, X., Deng, Y., Li, B. & Yuan, C. Life Cycle Assessment of Titania Perovskite Solar Cell Technology for Sustainable Design and Manufacturing. *ChemSusChem* 8, 3882–3891 (2015).
- 43. Babayigit, A., Ethirajan, A., Muller, M. & Conings, B. Toxicity of organometal halide perovskite solar cells. *Nat. Mater.* **15**, 247 (2016).

- 44. Bergesen, J. D. & Suh, S. A framework for technological learning in the supply chain: A case study on CdTe photovoltaics. *Appl. Energy* **169**, 721–728 (2016).
- 45. Celik, I. *et al.* Life Cycle Assessment (LCA) of perovskite PV cells projected from lab to fab. *Solar Energy Materials and Solar Cells* vol. 156 157–169 (2015).
- Chatzisideris, M. D. & Laurent, A. Ecodesign perspectives of thin-film photovoltaic technologies: A review of life cycle assessment studies. *Sol. Energy Mater. Sol. Cells* 156, 2–10 (2016).
- Hengevoss, D., Baumgartner, C., Nisato, G. & Hugi, C. Life Cycle Assessment and eco-efficiency of prospective, flexible, tandem organic photovoltaic module. *Sol. Energy* 137, 317–327 (2016).
- 48. Kim, J., Rivera, J. L., Meng, T. Y., Laratte, B. & Chen, S. Review of life cycle assessment of nanomaterials in photovoltaics. *Sol. Energy* **133**, 249–258 (2016).
- 49. Leccisi, E., Raugei, M. & Fthenakis, V. The Energy and Environmental Performance of Ground-Mounted Photovoltaic Systems—A Timely Update. *Energies* **9**, 622 (2016).
- Scott, R. P., Cullen, A. C., Fox-Lent, C. & Linkov, I. Can Carbon Nanomaterials Improve CZTS Photovoltaic Devices? Evaluation of Performance and Impacts Using Integrated Life-Cycle Assessment and Decision Analysis. *Risk Anal.* 36, 1916–1935 (2016).
- 51. Tsang, M. P., Sonnemann, G. W. & Bassani, D. M. A comparative human health, ecotoxicity, and product environmental assessment on the production of organic and silicon solar cells. *Prog. Photovoltaics Res. Appl.* **24**, 645–655 (2016).
- Tsang, M. P., Sonnemann, G. W. & Bassani, D. M. Life-cycle assessment of cradle-tograve opportunities and environmental impacts of organic photovoltaic solar panels compared to conventional technologies. *Sol. Energy Mater. Sol. Cells* 156, 37–48 (2016).
- 53. Celik, I. *et al.* Environmental analysis of perovskites and other relevant solar cell technologies in a tandem configuration. *Energy Environ. Sci.* **10**, 1874–1884 (2017).
- Celik, I., Mason, B. E., Phillips, A. B., Heben, M. J. & Apul, D. Environmental Impacts from Photovoltaic Solar Cells Made with Single Walled Carbon Nanotubes. *Environ. Sci. Technol.* 51, 4722–4732 (2017).
- 55. A. dos Reis Benatto, G., Espinosa, N. & Krebs, F. C. Life-Cycle Assessment of Solar Charger with Integrated Organic Photovoltaics. *Adv. Eng. Mater.* **19**, 1700124 (2017).
- Hauck, M., Ligthart, T., Schaap, M., Boukris, E. & Brouwer, D. Environmental benefits of reduced electricity use exceed impacts from lead use for perovskite based tandem solar cell. *Renew. Energy* 111, 906–913 (2017).
- 57. Itten, R. & Stucki, M. Highly efficient 3rd generation multi-junction solar cells using silicon heterojunction and perovskite tandem: Prospective life cycle environmental impacts. *Energies* **10**, 841 (2017).

- 58. Khaenson, W., Maneewan, S. & Punlek, C. A comparison of the environmental impact of solar power generation using multicrystalline silicon and thin film of amorphous silicon solar cells: case study in Thailand. *J. Ecol. Eng.* **18**, 1–14 (2017).
- 59. Monteiro Lunardi, M., Wing Yi Ho-Baillie, A., Alvarez-Gaitan, J. P., Moore, S. & Corkish, R. A life cycle assessment of perovskite/silicon tandem solar cells. *Prog. Photovoltaics Res. Appl.* **25**, 679–695 (2017).
- 60. Vellini, M., Gambini, M. & Prattella, V. Environmental impacts of PV technology throughout the life cycle: Importance of the end-of-life management for Si-panels and CdTe-panels. *Energy* **138**, 1099–1111 (2017).
- Zhang, J., Gao, X., Deng, Y., Zha, Y. & Yuan, C. Comparison of life cycle environmental impacts of different perovskite solar cell systems. *Sol. Energy Mater. Sol. Cells* 166, 9–17 (2017).
- 62. Alberola-Borràs, J.-A. *et al.* Perovskite Photovoltaic Modules: Life Cycle Assessment of Pre-industrial Production Process. *iScience* **9**, 542–551 (2018).
- Alberola-Borràs, J.-A. *et al.* Relative impacts of methylammonium lead triiodide perovskite solar cells based on life cycle assessment. *Sol. Energy Mater. Sol. Cells* 179, 169–177 (2018).
- 64. Alberola-Borràs, J.-A., Vidal, R. & Mora-Seró, I. Evaluation of multiple cation/anion perovskite solar cells through life cycle assessment. *Sustain. Energy Fuels* **2**, 1600–1609 (2018).
- Amarakoon, S. *et al.* Life cycle assessment of photovoltaic manufacturing consortium (PVMC) copper indium gallium (di)selenide (CIGS) modules. *Int. J. Life Cycle Assess.* 23, 851–866 (2018).
- Celik, I. *et al.* Energy Payback Time (EPBT) and Energy Return on Energy Invested (EROI) of Perovskite Tandem Photovoltaic Solar Cells. *IEEE J. Photovoltaics* 8, 305– 309 (2018).
- 67. Celik, I., Song, Z., Phillips, A. B., Heben, M. J. & Apul, D. Life cycle analysis of metals in emerging photovoltaic (PV) technologies: A modeling approach to estimate use phase leaching. *J. Clean. Prod.* **186**, 632–639 (2018).
- 68. Monteiro Lunardi, M. *et al.* A comparative life cycle assessment of chalcogenide/Si tandem solar modules. *Energy* (2018) doi:10.1016/J.ENERGY.2017.12.130.
- M. Lunardi, M., Alvarez-Gaitan, J. P., Chang, N. L. & Corkish, R. Life cycle assessment on PERC solar modules. *Sol. Energy Mater. Sol. Cells* 187, 154–159 (2018).
- Mokhtarimehr, M., Forbes, I. & Pearsall, N. Environmental assessment of vacuum and non-vacuum techniques for the fabrication of Cu <sub>2</sub> ZnSnS <sub>4</sub> thin film photovoltaic cells. *Jpn. J. Appl. Phys.* 57, 08RC14 (2018).
- Moore, E. A., Babbitt, C. W., Gaustad, G. & Moore, S. T. Portfolio Optimization of Nanomaterial Use in Clean Energy Technologies. *Environ. Sci. Technol.* 52, 4440–4448 (2018).

- 72. Munshi, A. H. *et al.* Thin-film CdTe photovoltaics The technology for utility scale sustainable energy generation. *Sol. Energy* **173**, 511–516 (2018).
- Pallas, G., Peijnenburg, W., Guinée, J., Heijungs, R. & Vijver, M. Green and Clean: Reviewing the Justification of Claims for Nanomaterials from a Sustainability Point of View. *Sustainability* 10, 689 (2018).
- Ravikumar, D., Seager, T. P., Cucurachi, S., Prado, V. & Mutel, C. Novel Method of Sensitivity Analysis Improves the Prioritization of Research in Anticipatory Life Cycle Assessment of Emerging Technologies. *Environ. Sci. Technol.* acs.est.7b04517 (2018) doi:10.1021/acs.est.7b04517.
- Bani Salim, M., Emre Demirocak, D. & Barakat, N. A Fuzzy Based Model for Standardized Sustainability Assessment of Photovoltaic Cells. *Sustainability* 10, 4787 (2018).
- Sinha, P. & Wade, A. Addressing Hotspots in the Product Environmental Footprint of CdTe Photovoltaics. *IEEE J. Photovoltaics* 1–5 (2018) doi:10.1109/JPHOTOV.2018.2802786.
- 77. Soares, W. M., Athayde, D. D. & Nunes, E. H. M. LCA study of photovoltaic systems based on different technologies. *Int. J. Green Energy* **15**, 577–583 (2018).
- Stamford, L. & Azapagic, A. Environmental Impacts of Photovoltaics: The Effects of Technological Improvements and Transfer of Manufacturing from Europe to China. *Energy Technol.* 6, 1148–1160 (2018).
- 79. Zhou, Z. & Carbajales-Dale, M. Assessing the photovoltaic technology landscape: efficiency and energy return on investment (EROI). *Energy Environ. Sci.* **11**, 603–608 (2018).
- 80. Billen, P. *et al.* Comparative evaluation of lead emissions and toxicity potential in the life cycle of lead halide perovskite photovoltaics. *Energy* **166**, 1089–1096 (2019).
- Pallas, G., Vijver, M. G., Peijnenburg, W. J. G. M. & Guinée, J. Life cycle assessment of emerging technologies at the lab scale: The case of nanowire-based solar cells. *J. Ind. Ecol.* jiec.12855 (2019) doi:10.1111/jiec.12855.
- 82. Blanco, C. F. *et al.* Environmental impacts of III–V/silicon photovoltaics: life cycle assessment and guidance for sustainable manufacturing. *Energy Environ. Sci.* **13**, 4280–4290 (2020).
- Louwen, A., Van Sark, W. G. J. H. M., Schropp, R. E. I., Turkenburg, W. C. & Faaij, A. P. C. Life-cycle greenhouse gas emissions and energy payback time of current and prospective silicon heterojunction solar cell designs. *Progress in Photovoltaics: Research and Applications* vol. 23 1406–1428 (2015).
- 84. Paschotta, R. Wall-plug efficiency. RP Photonics Encyclopedia (2019).
- 85. Wood, D. *et al.* Passivated Busbars from Screen-printed Low-temperature Copper Paste. *Energy Procedia* **55**, 724–732 (2014).
- 86. Wernet, G. *et al.* The ecoinvent database version 3 (part I): overview and methodology. *Int. J. Life Cycle Assess.* **21**, 1218–1230 (2016).

- 87. Spath, P. L. & Mann, M. K. Life cycle assessment of hydrogen production via natural gas steam reforming. National Renewable Energy Laboratory (2001).
- Mehmeti, A., Angelis-Dimakis, A., Arampatzis, G., McPhail, S. & Ulgiati, S. Life Cycle Assessment and Water Footprint of Hydrogen Production Methods: From Conventional to Emerging Technologies. *Environments* 5, 24 (2018).
- 89. Cetinkaya, E., Dincer, I. & Naterer, G. F. Life cycle assessment of various hydrogen production methods. *Int. J. Hydrogen Energy* **37**, 2071–2080 (2012).
- Balaji, R. *et al.* Development and performance evaluation of Proton Exchange Membrane (PEM) based hydrogen generator for portable applications. *Int. J. Hydrogen Energy* 36, 1399–1403 (2011).
- Smith, B. L., Babbitt, C. W., Horowitz, K., Gaustad, G. & Hubbard, S. M. Life Cycle Assessment of III-V Precursors for Photovoltaic and Semiconductor Applications. *MRS Adv.* 3, 1399–1404 (2018).
- 92. Guerin, J. An increased portfolio for waste gas abatement. *Compound Semiconductors* 18–22 (2016).
- Hsu, J.-N., Tsai, C.-J., Chiang, C. & Li, S.-N. Silane Removal at Ambient Temperature by Using Alumina-Supported Metal Oxide Adsorbents. *J. Air Waste Manage. Assoc.* 57, 204–210 (2007).
- 94. Pacaud, B., Popa, J.-M. & Cartier, C.-B. Purification of silane gas. (1990).
- 95. CS Clean Systems. Safety Data Sheet Cleansorb CS3C. (2014).
- 96. Wang, X. *et al.* Arsine adsorption in copper-exchanged zeolite under low temperature and micro-oxygen conditions. *RSC Adv.* **7**, 56638–56647 (2017).
- 97. Li, W.-C. *et al.* Metal Loaded Zeolite Adsorbents for Phosphine Removal. *Ind. Eng. Chem. Res.* **47**, 1501–1505 (2008).
- 98. Heitmann, U. et al. Novel Approach for the Bonding of III-V on Silicon Tandem Solar Cells with a Transparent Conductive Adhesive. in 2018 IEEE 7th World Conference on Photovoltaic Energy Conversion, WCPEC 2018 - A Joint Conference of 45th IEEE PVSC, 28th PVSEC and 34th EU PVSEC 201–205 (IEEE, 2018). doi:10.1109/PVSC.2018.8548276.
- 99. Chaudhuri, M. K. et al. Process for making metal acetylacetonates. (2002).
- Matovu, J. B., Ong, P., Leunissen, L. H. A., Krishnan, S. & Babu, S. V. Fundamental Investigation of Chemical Mechanical Polishing of GaAs in Silica Dispersions: Material Removal and Arsenic Trihydride Formation Pathways. *ECS J. Solid State Sci. Technol.* 2, P432–P439 (2013).
- Heijungs, R. & Suh, S. *The Computational Structure of Life Cycle Assessment*. vol. 11 (Springer Netherlands, 2002).
- Borgonovo, E. A new uncertainty importance measure. *Reliab. Eng. Syst. Saf.* 92, 771–784 (2007).

- Borgonovo, E. & Iooss, B. Moment-Independent and Reliability-Based Importance Measures. in *Handbook of Uncertainty Quantification* (eds. Ghanem, R., Higdon, D. & Owhadi, H.) 1265–1287 (Springer International Publishing, 2017). doi:10.1007/978-3-319-11259-6\_37-1.
- 104. Henriksson, P. J. G. *et al.* Product carbon footprints and their uncertainties in comparative decision contexts. *PLoS One* **10**, 1–11 (2015).
- 105. Shell International B.V. Sky Scenario. *Shell Scenarios SKY Meeting the Goals of the Paris Agreement* https://www.shell.com/energy-and-innovation/the-energy-future/scenarios/shell-scenario-sky.html (2018).
- 106. Global Solar Atlas. https://globalsolaratlas.info/map?c=50.958427,15.512695,4&s=47.338823,5.976563 &m=site.
- 107. Jaxa-Rozen, M. & Trutnevyte, E. Sources of uncertainty in long-term global scenarios of solar photovoltaic technology. *Nat. Clim. Chang.* **11**, 266–273 (2021).
- 108. IEA. The Role of Critical Minerals in Clean Energy Transitions. (2021).
- 109. Cazzaniga, R. & Rosa-Clot, M. The booming of floating PV. *Sol. Energy* **219**, 3–10 (2021).
- 110. City of Amsterdam. Policy: Renewable energy. *Policy: Sustainability and energy* https://www.amsterdam.nl/en/policy/sustainability/renewable-energy/.
- 111. European Parliament; Council of the European Union. *Directive 2012/19/EU of the European Parliament and of the Council of 4 July 2012 on waste electrical and electronic equipment (WEEE)*. (2012). doi:10.3000/19770677.L\_2012.197.eng.
- 112. Mathai, A. M., Moschopoulos, P. & Pederzoli, G. Random points associated with rectangles. *Rend. del Circ. Mat. di Palermo* **48**, 163–190 (1999).
- 113. U.S. Environmental Protection Agency Office of Solid Waste. *EPA's Composite Model* for Leachate Migration with Transformation Products (EPACMTP) Parameters/Data Background Document. https://www.epa.gov/smm/epas-composite-model-leachatemigration-transformation-products-epacmtp#:~:text=Related Topics%3A-,EPA's Composite Model for Leachate Migration with Transformation Products (EPACMTP,constituents to the subsurface environment. (2003).
- 114. U.S. Environmental Protection Agency Office of Solid Waste. *EPA's Composite Model* for Leachate Migration with Transformation Products (EPACMTP) Technical Background Document. (2003).
- Allison, J. D. & Allison, T. L. Partitioning Coefficients for Metals in Surface Water, Soil and Waste. https://cfpub.epa.gov/si/si\_public\_record\_report.cfm?Lab=NERL&dirEntryId=1357 83 (2005).
- Webster, T. M. *et al.* Anaerobic Disposal of Arsenic-Bearing Wastes Results in Low Microbially Mediated Arsenic Volatilization. *Environ. Sci. Technol.* 50, 10951–10959 (2016).

- 117. Uryu, T., Yoshinaga, J. & Yanagisawa, Y. Environmental Fate of Gallium Arsenide Semiconductor Disposal. *J. Ind. Ecol.* **7**, 103–112 (2003).
- Zhan, L., Wang, Z., Zhang, Y. & Xu, Z. Recycling of metals (Ga, In, As and Ag) from waste light-emitting diodes in sub/supercritical ethanol. *Resour. Conserv. Recycl.* 155, (2020).
- Van Den Bossche, A., Vereycken, W., Vander Hoogerstraete, T., Dehaen, W. & Binnemans, K. Recovery of Gallium, Indium, and Arsenic from Semiconductors Using Tribromide Ionic Liquids. ACS Sustain. Chem. Eng. 7, 14451–14459 (2019).
- Zhan, L., Xia, F., Xia, Y. & Xie, B. Recycle Gallium and Arsenic from GaAs-Based E-Wastes via Pyrolysis-Vacuum Metallurgy Separation: Theory and Feasibility. ACS Sustain. Chem. Eng. 6, 1336–1342 (2018).
- Köntges, M. et al. Review of Failures of Photovoltaic Modules. https://iea-pvps.org/wpcontent/uploads/2020/01/IEA-PVPS\_T13-01\_2014\_Review\_of\_Failures\_of\_Photovoltaic\_Modules\_Final.pdf (2014).
- 122. Hosseinzadehtalaei, P., Tabari, H. & Willems, P. Climate change impact on shortduration extreme precipitation and intensity–duration–frequency curves over Europe. *J. Hydrol.* **590**, 125249 (2020).
- 123. Tanaka, M. *et al.* The difference of diffusion coefficients in water for arsenic compounds at various pH and its dominant factors implied by molecular simulations. *Geochim. Cosmochim. Acta* **105**, 360–371 (2013).
- 124. Vanýsek, P. Ionic conductivity and diffusion at infinite dilution. in *Handbook of Chemistry and Physics* (5-111)-(5-113) (CRC Press, 1992).
- 125. Sun, L., Lu, M., Li, Q., Jiang, H. & Yin, S. Research progress of arsenic removal from wastewater. *IOP Conf. Ser. Earth Environ. Sci.* **218**, 012142 (2019).
- 126. Jung, C. ., Matsuto, T., Tanaka, N. & Okada, T. Metal distribution in incineration residues of municipal solid waste (MSW) in Japan. *Waste Manag.* **24**, 381–391 (2004).
- 127. Blasenbauer, D. *et al.* Legal situation and current practice of waste incineration bottom ash utilisation in Europe. *Waste Manag.* **102**, 868–883 (2020).
- Sheppard, M. I., Sheppard, S. C. & Grant, C. A. Solid/liquid partition coefficients to model trace element critical loads for agricultural soils in Canada. *Can. J. Soil Sci.* 87, 189–201 (2007).
- 129. Vermeire, T. G. *et al.* European Union System for the Evaluation of Substances (EUSES). Principles and structure. *Chemosphere* **34**, 1823–1836 (1997).
- 130. Bakker, J., Brandes, L. J., den Hollander, H. A., van de Meent, D. & Struijs, J. *Validating SimpleBox-Computed Steady-state Concentration Ratios.* (2003).