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Chapter 6 
A framework for guiding Safe and Sustainable-by-Design 

innovations  

Abstract 
Assessing the safety and sustainability of technologies while they are still in early research & 
development stages is the most effective way to avoid undesired outcomes. However, the journey 
from idea to market is highly uncertain and involves intensive trial-and-error as developers attempt 
to optimise material choices and configurations. As designs evolve quickly, assessing their 
environmental impacts while numerous factors remain undetermined is not straightforward. Thus, 
assessors often revert to evaluating a limited subset of possible scenarios which are then used to 
guide design choices. However, selecting scenarios for hundreds of undetermined factors without 
a systematic sensitivity screening may preclude important improvement opportunities. To provide 
the best guidance, the evaluated scenarios should be defined by the factors that are most influential 
on the future environmental impacts of the technology. In this chapter we propose a broad 
approach that accomplishes this by incorporating a wide spectrum of undetermined factors –both 
intrinsic and extrinsic to the technology design– in integrated assessment models. These models 
are then screened for highly sensitive factors using global sensitivity analysis. Strategies to further 
reduce uncertainty on the most influential factors are proposed for a second iteration, and the 
residual factors for which uncertainty cannot be further reduced and remain influential are selected 
as a basis for development of “sensitive” scenarios. We demonstrate the framework by applying it 
to the life cycle assessment and ecological risk assessment of an emerging photovoltaic technology. 

Keywords: life cycle assessment, ecological risk assessment, emerging PV, safe-by-design, 
sustainable-by-design  
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6.1. Introduction 
Safety and sustainability criteria are taking an increasingly central role in guiding policy 
decisions for supporting and regulating new technology development.1 To better support 
decision-making during the early research and development (R&D) stages, safety and 
sustainability practitioners have scrambled to propose diverse prospective methods and 
criteria such as ex-ante LCA2 and prospective risk assessment.3 However, there is an 
important challenge in producing such environmental indicators, i.e. accounting for the 
uncertain evolution of technical, environmental and socioeconomic factors – both intrinsic 
and extrinsic to the technologies – that influence the future environmental implications of 
the technologies once they are deployed at commercial scale2–6. 

Traditional ex-post assessments of well-established technologies are already prone to 
inaccuracy and/or imprecision due to uncertainty and variability.7,8 A risk/impact estimate 
may deviate from its actual value in response to spatial and temporal variability of the 
underlying processes, as well as imprecise or unavailable data regarding the technology’s 
design and operational parameters.9–11 Errors may also be introduced in the broader 
environmental impact/risk assessment models, which are composed of mathematical 
relationships that can only offer limited approximations.12 At the very least, the impacts of 
existing technologies can –to some extent– be measured and validated empirically. Bereft 
of this possibility, even more uncertainty surrounds ex-ante/prospective assessments.13 

To further illustrate this challenge, we take the case of an emerging photovoltaic 
technology, III-V/Si tandem cells (III-V/Si).14,15 These cells have achieved record 
conversion efficiencies by adding layers of elements from groups III and V of the periodic 
table (e.g. gallium, indium, arsenic) on top of a silicon substrate to increase light absorption. 
However, especially the use of arsenic may raise concerns about the safety and 
sustainability of III-V/Si. Whether the trade-off between potential toxicity and improved 
solar cell performance is desirable depends on many factors. For example, at end-of-life 
(EOL) the panels could be recycled, and the arsenic recovered, or they could be 
incinerated or disposed of in a landfill or underground waste deposit. The extent to which 
arsenic is recovered from PV panels at EOL will depend on economic factors along with 
regulatory concerns surrounding e-waste or supply risks.16,17 Finally, there will be the ease 
and feasibility of current and future methods for physically separating the arsenic from the 
other panel constituents will be determinant. Since arsenic can take various forms once 
released, from high-toxicity (+3 oxidation) to a low-toxicity (methylated) state, uncertainty 
regarding the form of arsenic to which organisms are ultimately exposed will also be of 
importance.  

The influence of these numerous and interrelated factors which span multiple domains will 
remain unknown until the assessments are conducted and complemented with some form 
of sensitivity analysis18. A common strategy that has been applied across numerous 
modelling disciplines to deal with uncertain factors of presupposed relevance is scenario 
analysis. This approach has provided more confidence in the assessments, especially in 
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the presence of epistemic uncertainties. However, the number of uncertain factors and 
plausible scenarios that result from their combined interactions can easily be in the tens 
or even hundreds, especially when considering interactions across social, technical, and 
economic domains that influence a technology's performance. What is often observed in 
practice is that a handful of scenarios are selected, which can help as a benchmarking 
exercise and to identify hotspots.19,20 In this approach, however, the actual relevance of 
the selected scenarios to safety and sustainability implications is not evaluated before they 
are selected, whilst leaving potentially important scenarios outside of the analysis. 

In this chapter, we present a framework to identify the scenarios of most interest that can 
result from the different configurations of the most influential factors and use these to 
prioritize R&D efforts towards safe and sustainable-by-design (SSbD) innovation. We 
illustrate the framework by diving deeper into the case study of III-V/Si cells introduced 
above. The framework follows five steps (Figure 6-1): i) identify and map uncertain factors, 
with special attention to those specific to the forward-looking or ex-ante nature of the 
assessments; (ii) propose methods for the characterization and propagation of the 
uncertainties in these factors; (iii) identify the least sensitive factors and fix them to reduce 
model complexity (iv) apply strategies to reduce uncertainty in the most sensitive factors; 
(v) in a second iteration, select remaining sensitive factors as a basis to develop relevant
scenarios based on sensitivity, e.g. “sensitive scenarios”. Sensitive scenarios will highlight
opportunities for most effective safety and sustainability improvements for technology
designs that are in the early R&D.

We developed this framework considering two different types of environmental 
assessments: life cycle assessment (LCA), and human and ecological risk assessment 

Figure 6-1 Framework for guiding safe and sustainable-by-design innovation. Red arrows show examples of 
uncertain/evolving factors (X#) that may influence the material and energy exchanges associated to the 

technology’s life cycle, and the concomitant impacts and risks. Global Sensitivity Analysis (GSA) can be used 
to prioritize the most influential factors for targeting at the design stage.  
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(HERA). An introduction to each is provided by Guinée et al.21 and ECHA22, respectively. 
The combined use of LCA and HERA is seen as a promising approach for addressing the 
potential environmental concerns of emerging technologies23,24. Although we focus on 
these two methods, the framework we propose can be applied to other types of technology 
assessment models. 

6.2. Methodological framework 
6.2.1. Factors that determine the future environmental performance of 

emerging technologies 
The adoption of a new technology by society will trigger changes in the environment. 
These changes – whether desirable or undesirable – are quantified using indicators such 
as concentration of pollutants in air, area of ecosystem degraded, or risk quotients for 
endpoints such as aquatic species reproduction. Indicators vary in response to changes in 
factors that interact across different domains, forming a cause-effect chain (Figure 6-1, 
left). Some factors are farther removed from the technology design itself but may have a 
larger influence on the indicator. For example, they can reside in regulatory trends, which 
may set increasingly strict limitations on materials usage, or in social/economic/cultural 
trends, which may determine how much of the technology is used and where. In an LCA 
model, for example, a factor such as X8 may represent the amount of electricity that will 
be required by a chosen manufacturing method (X7). A change either in X8 or X7 will 
mediate the quantity of CO2 emitted, but this also depends on the source of electricity that 
is supplied (X3). These relationships -amongst others- determine the technology’s carbon 
footprint. Extrapolating this analysis to entire life cycles and related processes in the 
socioeconomic domains, as well as to other types of indicators beyond carbon footprint, 
makes evident that the number of cause-effect chains and the undetermined factors within 
them may easily fall in the hundreds or thousands.  

6.2.2. Sources of uncertainty in models of the future 
Uncertainty has been comprehensively studied in ex-post assessment models. A good 
overview is provided by Lloyd and Ries25, who classify uncertainties according to different 
LCA modelling components: parameter (input data), model (mathematical relationships), 
and scenario (normative choices). A similar set of uncertainty sources has been described 
in risk assessment26. Ex-ante assessments introduce additional sources of uncertainty due 
to the forward-looking nature of the assessments. Table 6-1 extends our previous work13 
and proposes a comprehensive typology for these new sources, along with relevant 
examples found in both HERA and LCA ex-ante models. It is important to note that there 
can be overlap between uncertainty types. For example, uncertainty in a physical constant 
such as a soil/water partitioning coefficient for a novel substance can be considered either 
parameter or model uncertainty. Uncertainty in a physical constant can even be classified 
as scenario uncertainty whereby each scenario represents a future world where the 
constant has a different value from a range of possible values.  
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6.2.3. Model parametrization: putting uncertainty types at the same level 
The first step in our framework is to translate as many uncertainties as possible to a 
parameter type of uncertainty. This requires all potentially influential factors, such as those 
listed in Table 6-1 to be represented as variable parameters in a single integrated model. 
This is straightforward for the “parameter” types of uncertainties listed. Scenario 
uncertainties of type I, III, V and VII, which are often assessed independently, can also be 
parametrized using the approach we demonstrated in Chapter 4, where alternative 
scenarios exist simultaneously in a model and are activated or deactivated stochastically 
using binomially distributed parameters as triggers.13 Model uncertainties can be 
incorporated in a similar way, as described by Saltelli et al.27 and Mendoza-Beltrán et al.28 

6.2.4. Characterization of ex-ante uncertainty 
The second step involves expressing the range of possible values for all parameters -
including triggers for alternative models and scenarios- as probability distributions. Since 
we are referring to future events, we must first specify what is meant by probability. We 
will advocate for a Bayesian interpretation of probability, but briefly describe other 
approaches as well to support our case: 

§ A frequentist approach determines probability distributions by conducting numerous 
tests (or collecting numerous samples) and recording the frequencies of occurrence
of each value. Such tests or samples can only be collected once a technology is
deployed so the approach is of limited use in ex-ante assessments.

§ The classical approach determines the likelihood of occurrence of each value, based 
on all possible values. This approach can be useful in ex-ante assessments, e.g., if
we know beforehand that there are only three possible processing routes for a given 
component of the technology. This gives each route 1/3 chance of success. An
important limitation of this approach is that all possible values are given equal odds
of occurrence.

§ The Bayesian or subjective approach uses probability distributions to represent the
degree of belief that an observer has in a particular outcome.29,30 The Bayesian
approach has been applied in risk assessment31 and to a lesser extent in LCA32. It
is especially useful for ex-ante assessment, if not essential; many possible future
states cannot be simulated in a frequentist way. While frequentists have long argued 
that subjectivity is a strong limitation (or outright invalidating the scientific nature
of the exercise), it is also a key strength in that it incorporates other sources of
relevant information where actual measurement data is scant or unavailable. Bayes’ 
Theorem provides a formal method for updating the beliefs (represented by so-
called prior probability distributions) once new data becomes available to produce
a posterior distribution.30 This naturally fits the research & development process,
which iterates a technology through additional testing and gradual upscaling in
order to optimize it until it is ready for commercialization.
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The question then is how best to establish prior distributions for uncertainties and 
variabilities of the types listed in Table 6-1, and then how to update them. Prior 
distributions must reflect beliefs about parameters that describe the uncertainty of the true 
(future) state of a factor, e.g., the probability that manufacturing method A will be used 
instead of B for a particular component once the technology reaches industrial scale. The 
most conservative attempt would be to start with flat or "non-informative" prior 
distributions, which distribute probabilities evenly across all possible parameter values. 
However, there is a trade-off regarding how informative subsequent posteriors will be. 
Wolpert et al.33 describe this situation very well and offer that -with important caveats and 
limitations- “collateral evidence” such as that obtained from field studies of similar 
environmental systems, expert elicitation, and laboratory studies of the related process 
can be used to inform priors.33 

Another often-applied rule of thumb in Bayesian statistics is to choose priors from a 
“conjugate distribution family”. Conjugate priors ensure that the functional form of the 
resultant posterior distribution is the same as that of the prior, i.e. a PERT prior probability 
density function will be updated to a PERT posterior probability density function.30 
Conjugate priors also make the estimation of posterior distributions a far simpler and more 
intuitive exercise once additional data or observations are obtained (see Box 6-1).  

6.2.5. Propagation of uncertainty and variability 
Two approaches for propagating uncertainties are commonly applied; analytic and 
numerical34. The models’ complexity and the fact that integrated assessments require 
interaction between different types of models make analytical solutions impractical for this 
type of framework.35 The preferable alternative is Monte Carlo simulation36,37, which 
generates numerous random samples from the underlying probability distribution of the 
model’s input parameters and calculates an equal number of values for the model’s output. 
The frequency distribution of the obtained values is used to construct a probability 
distribution. 

When propagating uncertainty, it is often the case that two or more elements in a model 
share a source of uncertainty. When this happens, the values for both parameters are 
dependent.35 Correlations have been identified between many elements of ex-post LCA 
models.38,39 They also exist amongst the ex-ante uncertain parameters listed in Table 6-1. 
For example, a future increase in ambient temperature may affect the amount of cooling 
needed to safely operate a novel battery technology, increasing energy consumption and 
CO2 emissions of the system. The same factor may affect precipitation and cloud cover. 
Both mechanisms will have a global warming impact that to some extent depends on the 
same uncertain factor.  
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Integrating models presents an important opportunity to account for dependencies 
between parameters across different processes, scales and domains. This is not trivial to 
our goal: a factor that has dependencies can have additional indirect influence on the 
model’s output, i.e., it may become more relevant. A convenient way to address 
correlations is to isolate each shared source of uncertainty or variability in one single 
parameter. The random values for the Monte Carlo simulation can be pre-sampled, 
ensuring the same value for all occurring instances of the shared parameter is used within 
each Monte Carlo run.50 This strategy already prepares the data required for the next step. 

6.2.6. Global sensitivity analysis: screening for relevant factors 
A global sensitivity analysis (GSA) reveals “how uncertainty in the output of a model 
(numerical or otherwise) can be apportioned to different sources of uncertainty in the 
model input”51. In our framework, GSA is used as the “sieve” which selects the most 
relevant factors from all those identified. The characteristics of the integrated models we 
use place certain constraints on the type of GSA that can be performed. First, it is likely 
that the resulting models will be highly dimensional with numerous uncertainty 
parameters. This requires calculation algorithms for sensitivity indices that can be 
performed in a reasonable computational time. Second, the models are usually integrated 
by passing output data as input data between them (as in the integration of economic 
demand with emissions and fate models in Chapter 5), which makes analytical GSA 
methods not practicable. “Black box” or model-independent GSA methods such as the 
delta measure introduced by Borgonovo52 are thus favoured. Third, the introduction of 
binomial and other discrete distributions for parameters may sometimes result in 
multimodal output distributions. Therefore, variance-based methods may not be suitable 
and moment-independent methods are preferred.52,53  

As we showed in Chapter 4, and elsewhere13,41, one GSA method that meets these 
requirements is the Borgonovo delta sensitivity measure54. The Borgonovo delta 
represents the influence of a parameter as its ability to shift the model’s output distribution 
curve. This is illustrated by Figure 6-2, where the red probability distribution curve is the 
environmental risk of a technology when all uncertain factors are left to vary freely across 
their entire spectrum of possibilities, according to their underlying distributions 
(unconditional). If one factor in the risk model can be fixed at a value representing one 
scenario, the curve will shift by moving along the x-axis (lower or higher risk depending on 
the value assumed by the parameter) and will become narrower (lower 
uncertainty/dispersion in the model output or risk score). The new blue curve (conditional) 
is the environmental risk for the specified scenario. For an environmental indicator, it is 
usually desirable that the output distribution curve moves towards the origin on the x-axis 
(lower risk/impact) and becomes narrower (less uncertainty). The curve shift is defined by 
Borgonovo as the non-overlapping area between both curves. The delta sensitivity 
measure is the probability-weighted average of all possible shifts induced by the parameter 
when it is fixed at its possible values.54  



6.2.7. Second iteration: further reducing uncertainty 
The first GSA iteration may result in several factors that have higher sensitivity. Before 
producing recommendations or making any decisions on the technology design, three 
avenues can be used first to further reduce uncertainty in the model. For subjective 
probabilities: structured expert knowledge elicitation protocols such as DELHPI, aimed 
at reducing bias while furthering consensus55,56. Some of these methods have even 
been extended to incorporate the experts’ beliefs regarding their own uncertainty57–59  
For other uncertain factors, more refined modelling can be applied specifically to the 
nature of the parameter, e.g. hydrological, geochemical, or economic models based on 
market research. A third recourse is to collect additional data from lab or pilot-scale 
tests, such as leaching tests or process consumption and emissions measurements. 
Bayesian inference can then be used to update the probability distributions for the 
factors for which new data was obtained (see Box 6-1). 

6.2.8. Proposing safe and sustainable by design strategies 
Once the possibilities to further reduce uncertainty have been exhausted, a 
second uncertainty propagation and GSA iteration will produce the residual most 
relevant factors. These factors can then be used to construct “sensitive” scenarios, which 
by this point will likely consist of a much smaller, but highly relevant subset. These 
scenarios can be used to engage with technology developers and other stakeholders 
(e.g., suppliers, consumers, policymakers, funding agencies and environmental 
advocacy groups) around the prioritization of design changes and/or other measures 
that can be taken to show the most efficient measures towards a safe and sustainable 
deployment of the technology.  

The sensitive scenarios point to the factors which are most influential while still subject to 
considerable change. This presents an opportunity to influence these factors by attempting 
to fix them at a desirable value or at least reduce their uncertainty/variability towards a 
smaller and more desirable range (shift the distribution to the left and make it narrower). 
Because the factors can span different model domains, their nature may vary significantly 
as will the possible ways to influence them. A well-tested guiding principle that has been 
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Figure 6-2 Graphical representation of Borgonovo’s delta sensitivity measure in an environmental model. 
The non-overlapping area (blue + red) represents the shift in the curve when the model is evaluated 

conditional to an uncertain fixed at one of its possible values (Adapted from Borgonovo52). 
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applied for several decades in risk management is the hierarchy of risk control measures, 
which leads the decision-maker to prioritize strategies according to the order (i) 
elimination, (ii) substitution, (iii) engineering control, (iv) procedural control and (v) 
personal protective equipment. Such strategies are already very visible in proposals for 
emerging PV technologies, such as in-situ sequestration of lead in perovskite solar cells60 
(engineering control), replacement of lead for tin (substitution)61, and administrative 
management of the risk (e-waste regulations17,62).  

6.3. Case study of an emerging solar energy technology 

6.3.1. III-V/Si photovoltaic system 
To demonstrate the proposed framework, we apply it to the III-V/Si PV technology. In 
Chapter 3 we conducted a life cycle assessment of this technology largely based on lab-
scale and pilot data from a European R&D project.63,64 In the following sections we take 
this as a starting point and develop the different steps of the framework. The iterations 
result in different versions of the LCA and RA models, each representing our state of 
knowledge at different points in time as the R&D project advanced. 

6.3.2. Life cycle assessment 
The manufacturing of III-V/Si cells involves numerous processing steps, most of which 
are already at industrial scale and used in the mainstream silicon PV industry. Two key 
steps, however, are still early-stage concepts which could only be tested at lab and pilot-
scale. The first is the deposition of the top cell’s III-V layers, which are grown via 
Metalorganic Vapour Phase Epitaxy (MOVPE).65 In the initial phase of the project (t=0) 
we considered state-of-the-art MOVPE reactors that are currently used in related 
industries. These reactors have a high energy consumption with low throughputs (7 round 
4” wafers per run at 3.5-hour runtime). For a future III-V/Si PV industry, this would not be 
economically viable or environmentally advantageous.64 Therefore, this was an R&D 
priority and by the end of the project (t=1), a pilot-scale reactor achieved a throughput of 
31 round 4” wafers per run at 2.5 hours runtime.  

It was determined, however, that even larger throughputs would be required to make the 
technology economically feasible. Further projections of throughput increase and runtime 
reductions were elicited from experts, based on what they would consider feasible future 
improvements in the reactor (t=2). Such improvements include switching to larger wafers 
(square M2 wafers) and increasing throughput to 50 wafers per run at 0.5 hours runtime. 
A PERT distribution was used to represent this uncertain evolution via two factors: 
MOVPE power consumption per wafer area and MOVPE process runtime. The 
distributions’ minimum, mode and maximum parameters were adjusted accordingly 
between t=0 and t=2 based on the R&D achievements and experts’ projections for what 
would ultimately be feasible.  
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The second key processing step is the metallization of the front contacts, for which a 
decision had to be made between nanosilver and nanocopper ink as described in Chapter 
4.13 The analysis made in this previous work represented the state of knowledge at an 
initial state of the project (t=0). Additional research and testing were conducted, showing 
more promising results for copper. We use this Boolean factor to illustrate Bayesian 
updating within the framework (see Box 6-1) and how it can be updated in an intermediate 
step (t=1) and towards the end of the project (t=2) based on the results of lab tests.  

Box 6-1 – Bayesian updating applied to uncertainty in material compositions 
In building an ex-ante LCA of an emerging photovoltaic cell design, it was found that two alternative 
materials for the front metallic contacts were under consideration: nanosilver and nanocopper 
particles.13 The material that shows best electrical properties will ultimately be incorporated in the 
cell design, but this may depend on evolving intrinsic and extrinsic factors. Thus, we want to use a 
probability distribution to represent the chance of copper performing better than silver, so that the 
choice of material can be used in a probabilistic LCA model. The competition between copper and 
silver can be simulated as a binomial process, where the success of copper over silver in any given 
trial is described by Equation 6-1: 

!~#$%(1, )) (Eq. 6-1) 

If copper is successful, xx will take a value of 1 while if silver is successful, xx will take a value of 0. 
The uncertain parameter of interest is pp, which is the probability of copper having better properties 
than silver in a random trial*. We don’t know this probability and must make a subjective estimate 
of it. The data we have is the following: Six trials have been conducted to date. Copper showed 
better properties (success) on 4 of the 6 trials. 

Establishing a prior: Choosing a beta distribution to describe pp greatly simplifies inference of 
binomial parameters.* From the data we have, we set the mean µµ=4/6 from a sample size nn=6. The 
parameters α00 and β00 of the (prior) beta distribution for pp can be calculated from µµ and nn using 
Equations 6-2 and 6-3. Our prior beta distribution for pp is then specified by parameters α00 = 4 and 
β00 = 2 (Figure 6-3, “Prior”). 

+! = - ∙ %              (Eq. 6-2) /! = (1 − -) ∙ % (Eq. 6-3) 

Updating to a posterior: A posterior distribution for pp can be obtained when additional testing is 
performed. Following the analytical updating procedure of DeGroot66, if 3 additional laboratory 
tests (trials) are performed and copper shows better performance in 2 out of 3 tests, the posterior 

distribution (Figure 6-3, Post1) will also have a beta form, this 
time with α11 = α0 + 2 and β11 = β0 + 1. Here, 2 and 1 represent 
successes and failures of copper to perform better than silver in 
the new trials, respectively. If an additional test is performed 
where copper is again successful, we again update our posterior 
beta distribution (Post2) with α2= α1 + 1 and β2= β1 + 0 (Post2). 

The x-axis in Figure 6-3 plots pp, which is the chance of success 
of copper, and the y-axis plots the probability of the x-value for 
parameter pp being correct. Updating pp with new test results 
moves the chances in favour of copper but also reduces the 
spread of the distribution curve. 

Figure 6-3 Bayesian updating of the 
probability of success of copper over 

silver 
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Some additional parameters in the background silicon supply chain and other non-cell 
components were also updated between t=0 and t=2 to better reflect state-or-the-art, 
following the work of Cucurachi et al.41 Table 6-2 summarizes how we represented the 
evolution of these factors in the model using different probability distributions.  

The resulting impact score distributions for climate change for each snapshot of the 
technology is shown in Figure 6-4. The figure clearly illustrates how successive iterations 
reduce not only the impact (by any measure of central tendency) but the dispersion as 
well. The Bayesian updating of the front metallization route in favour of copper with a laser 
sintering route shifted the distribution slightly to the left and reduced dispersion at t=1. In 
the final period of the R&D project (t=2), two key achievements resulted in a significant 
improvement and reduction in uncertainty: the successful demonstration of the pilot 
reactor with significantly lower power requirements, and the decision to fully abandon the 
silver metallization route as well as the chemical sintering method in favour of the copper 
with laser sintering route.  

In the first iteration (t=0), the global sensitivity analysis (Figure 6-5) highlighted the 
sensitivity importance of the power consumption of the MOVPE tool (P_movpe_tool)*, 
followed by MOVPE runtime (RT_movpe) and panel lifetime (LT_panel). A second tier of 
importance consisted of several factors in the background silicon supply chain as well as 
the choice between copper and silver nanoink (Cu_vs_Ag) for the front metallization, and 
the chances of success of the different nanoparticle synthesis and ink sintering routes (p1-
p5).  In the case of binomially distributed factors, the underlying probabilities px of each 
were more influential than the factors themselves. This contrasts with the result we had 
obtained for similar distributions in the simplified case study of Chapter 4. 

Figure 6-4 Frequency distribution for climate change impact scores (in kg CO2 eq) of the emerging III-V/Si 
technology in three successive snapshots in time: t0=midpoint through the R&D project, t1=after additional 

lab tests for different front metallization configurations, and t2=at the end of the R&D project.  

* See Table 6-2 for factor/parameter definitions.
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ctors related to the metallization route. In the final tier with lowest relevance were factors Table 6-2 - Evolution of key factors in an LCA model of the III-V/Si tandem photovoltaic technology 

FFaaccttoorr  IIdd  FFaaccttoorr  ddeessccrriippttiioonn  IInniittiiaall  mmooddeell  ((tt==00))  FFiinnaall  mmooddeell  ((tt==22))  

MOVPE 
P_movpe MOVPE tool power load 

per processed wafer area 
pert (min=1, mode=509, 
max=509, shape=4) 

pert(min=13.3, mode=119, 
max=119, shape=4) 

RT_movpe MOVPE runtime pert(min=0.5, mode=3.5, 
max=3.5) 

pert(min=0.5, mode=1, 
max=2.5) 

Scru_cons Scrubber granulate 
consumption 

triang(min=2.55, mode=7.65, 
max=7.65) 

No change 

Front metal* 
Cu_v_Ag Choice of Cu nanoink vs. 

Ag nanoink 
bin(1, p1) 
p1 ~ beta(4,2) 

1 (resolved) 

Synth_Ag Choice of chemical vs 
physical synthesis for Ag 

bin(1, p2) 
p2 ~ pert(1000, 0.5,0.7,0.8) 

N/A 

Synth_Cu Choice of chemical vs 
physical synthesis for Cu 

bin(1, p3) 
p3 ~ pert(1000, 0.5,0.7,0.8) 

No change 

Sint_Cu Choice of laser vs. 
chemical sintering for Cu 

bin(1, p4); 
p4 ~ pert(min=0.1, mode=0.2, 
max=0.3, shape=4) 

1 (resolved) 

Sint_Ag Choice of laser vs. 
chemical sintering for Ag 

bin(1, p5); 
p5 ~ unif(1000, 0,1) 

N/A 

Performance parameters 

Eff_panel Panel efficiency pert(min=0.25, mode=0.28, 
max=0.31, shape=4) 

No change 

PR_syst Performance ratio of PV 
system 

pert(min=0.8, mode=0.85, 
max=0.9, shape=4) 

No change 

LT_panel Panel lifetime norm(30, 5) No change 
Background supply chain 
Cu_scrub Scrubber granulate copper 

fraction 
pert(min=0.2, mode=0.3, 
max=0.7, shape=4) 

No change 

Cu_rec Recycling of copper from 
granulate 

bin(n=1, p= 0.5) No change 

Al_panel Aluminium in panel lnorm(gm= 2.63, gsd=1) unif(1000, min=1.6, max=2) 
Glass_panel Glass in panel lnorm(gm=10.08, gsd=1.22) unif(1000, min=5.04, 

max=7.56) 
Elec_panel Electricity to manufacture 

panel 
lnorm(gm=4.71, gsd=1) unif(1000, min=12.22, 

max=15.27) 
Elec_siem Electricity consumption 

Siemens process 
lnorm(gm=110, gsd=1) unif(1000, min=34.1, 

max=44.3) 
Heat_siem Heat consumption Siemens 

process 
lnorm(gm=185, gsd=1) unif(1000, min=57.24, 

max=74.52) 
Elec_CZ Electricity consumption 

Czochralski process 
lnorm(gm=85.6, gsd=1.22) unif(1000, min=43.4, 

max=69.3) 
Si_CZ Silicon consumption for 

Czochralski process 
lnorm(gm=1.07, gsd=1) triang(1000, min=0.4, 

mode=0.66, max=0.75) 
*For the Front metal components, the five uncertain choices are represented by two uncertain factors each: the choice (a 
variable equal to 1 or 0) and the chances of success for the given choice, which is represented by an uncertain factor px. 
The initial model then has 25 uncertain factors in total.
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Figure 6-5 Delta sensitivity measures (relative to other factors) in three successive snapshots in time: t=0: 
midpoint through the R&D project, t=1: after additional lab tests for different front metal configurations, and 

t=2: at the end of the R&D project. The description of each factor is provided in Table 6-2.  

At the end of the R&D project (t=2), the influence of MOVPE power consumption is largely 
reduced and the  most sensitive factor by a considerable margin is now the panel’s lifetime. 
This presents an interesting opportunity; on one hand, III-V cells have been designed in 
the past to withstand extreme radiation for their applications in space and there is a good 
case for III-V/Si cells to last longer than conventional silicon ones. Following the hierarchy 
of risk controls suggested in section 6.2.8, this would constitute a very effective engineering 
control. In addition to this, the high efficiency of III-V/Si cells means that they are less 
likely to become obsolete before they reach their end-of-life.  

6.3.3. Risk assessment 
In Chapter 5 we conducted a detailed prospective ecological risk assessment of the 
III-V/silicon tandem PV technology throughout its various life cycle stages, with a focus
on the III-V materials that constitute the top cell (gallium, arsenide, indium). The model
underpinning the assessment presented reflects the current state-of-knowledge and
concluded that the risks are low to negligible in the explored scenarios. An earlier
preliminary version of the assessment was conducted ca. 2 years earlier with more limited
knowledge.67 Here we present for illustration purposes how this first version of the model
was refined and how the conclusions changed considerably after applying the framework.
The key model settings and assumptions that changed are described in Table 6-3.

Figure 6-6 shows the distribution for the risk quotient obtained for arsenic emissions to 
soil in a no-recycling scenario (no arsenic recovered from PV panels collected for 
disposal). A global sensitivity analysis of this preliminary model highlighted the leaking rate 
and the leaching rate as the most sensitive parameters. Thus, increased focus was placed 
on the landfill emissions component of the model during the final 2 years of the R&D 
program. The model was refined as presented in Chapter 5, with leaching processes 
reparametrized in terms of a solid/waste partitioning coefficient (ksw) for which more than 
100 datapoints were available. Leakage processes were also reparametrized in terms of 
landfill infiltration, for which again more than 100 datapoints were available.  
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Table 6-3 - Evolution of key factors in the ecological risk assessment model of the III-V/Si tandem 
photovoltaic technology 

FFaaccttoorr  ddeessccrriippttiioonn  PPrreelliimmiinnaarryy  mmooddeell  ((tt==00))  CCuurrrreenntt  mmooddeell  ((tt==11))  FFuuttuurree  mmooddeell  ((tt==22))  

PV capacity 
demand 

Steady state 5 GW capacity 
addition per year 

Dynamic, logistic growth 
curve based on >1000 
datapoints.  

No change 

Arsenic waste 
leaching in landfill 

Constant rate (% 
mass/year). Empirical, based 
on two datapoints, a 
lognormal distribution was 
assumed with mean 0.8 and 
variance 0.3. 

Dynamic, calculated from 
empirical solid/waste 
partitioning coefficient (ksw) 
based on >100 datapoints. 

Leachate pH controlled 
resulting in higher ksw 
(now sampled only from 
the upper quartile of the 
distribution used in t=1). 

Leakage of landfill 
leachate to 
surrounding soil 
compartment 

Constant leakage rate of 
landfill leachate to the 
surrounding soil 
compartment (%/year): 
based on 1 datum, a 
lognormal distribution was 
assumed with mean 2.0 and 
variance 0.7. 

Constant, calculated from 
landfill infiltration rates 
based on >100 datapoints. 

No change 

Landfill cell depth Not applicable Empirical, exponential 
distribution with a peak at 
10 and lower value 0.5m. 
based on >100 datapoints.   

Increased landfill depths 
(PERT distribution with 
min=5, mode=7.5 
max=10 m.) 

Recycling rate 85%-99.9% panels collected 85%-99.9% panels 
collected 

Increased to 95%-99.9% 
panels collected 

Incinerator 
abatement 

98-99.9% arsenic captured in 
electrostatic precipitator

No change Improved to 99.5-99.9% 
arsenic captured in 
electrostatic precipitator 

Figure 6-6 Frequency distribution of risk quotient for III-V/Si arsenic emissions to soil in the European 
continent 
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Both processes -along with the growth in PV demand- were modelled dynamically rather 
than steady-state, recognizing the relevance of the temporal dimension and to reflect more 
realistic scenarios. As a result, the risk quotient for arsenic in the soil compartment in 
Europe was reduced by several orders of magnitude, becoming negligible. We note that 
dispersion increased considerably with the model refinement that took place between t=0 
and t=1. This is likely attributed to the refined landfill model where the new parameters – 
especially the waste/leachate partitioning coefficient - introduced a large variability. 
Arguably, it is best to first improve accuracy, even if it at the expense of precision.12  

The GSA in Chapter 5 (corresponding to t=1) pointed to four factors to target and 
strategies to address them: the waste/leachate partitioning in the landfill, the landfill depth, 
the recycling rate, and the incinerator abatement. The combined effect of these actions 
can be evaluated in an “optimistic” future scenario t=2, where the risk could be reduced 
by an additional order of magnitude as a result of specific strategies. Figure 6-6 shows how 
the risk is further reduced by nearly an order of magnitude.  

6.4. Discussion 

6.4.1. Insights obtainable through the framework 
Applying our framework to the LCA of the III-V/Si PV system highlighted a very 
interesting point regarding the lifetime of PV panels, which resulted in the most sensitive 
factor after three iterations. While it is common in LCAs of PV to standardize the lifetime 
parameter to a fixed value68 e.g., 25 or 30 years, there is an important variability coming 
from two different sources. On one hand there is the stability of the cell/panel and its 
ability to withstand weathering and degrade slowly. Some opportunities for improvement 
in this sense lie within the grasp of the technology developer. III-V/Si cells already present 
an important advantage as they can withstand high radiation for long periods of time 
without degrading.  

Further work on improved cell coatings and panel glass framing may offer important 
avenues for more sustainable design. On the other hand, there is the proper maintenance 
and protection of the panel during its use phase. Together with the decision to use the 
panel throughout its entire useful life and not replace it earlier than needed, this 
opportunity is on the side of the consumer. Our analysis indicates that if the technology 
developer undertakes all foreseeable actions to improve the manufacturing and design, 
then the influence the consumer has over the panel reaching its EOL too early will 
significantly outweigh additional marginal improvements that can be achieved on the 
design side. Furthermore, we note that the performance ratio (PR_syst), which can also be 
influenced by the user via adequate maintenance/cleaning and proper installation setup, 
had a moderate ranking in sensitivity (Figure 6-5). In a way, these recommendations follow 
the progression of the hierarchy of risk controls, where engineering controls (design 
changes) are exhausted and administrative controls (e.g., consumer behaviour) follow next. 
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To better illustrate the potential implications of improved panel lifetime management, we 
can observe the shift in the climate change impact score distributions when panel lifetime 
is fixed at its min (25 years) and max (35 years) values for a pessimistic and optimistic 
case, respectively. For the distributions in Figure 6-7, the mode shifts from ca. 0.045 in the 
pessimistic case to 0.03 kg CO2 eq. in the optimistic case, an impressive potential for 
impact reduction of 33%. After three iterations, the LCA model was simplified from 25 
underspecified factors to 15, without ignoring the remaining 10. Rather they were 
systematically assessed and then fixed at an average value, since their uncertainty was 
proven unimportant. Of the remaining 15 factors, it would now be justifiable to prioritize 3 
or 4 factors (panel lifetime and MOVPE process parameters).   

6.4.2. Feasibility and resources required 
One concern is whether applying all the steps of the framework is possible considering the 
time and resources typically allocated to such assessments. Fortunately, despite there 
being large theoretical work underpinning each step of the framework, the tools for 
implementation have been developed over time and can now be run in matters of minutes 
with average computational power.41 Compared to the effort typically invested in 
conventional ex-post assessments, the only step that may require significant additional 
time and data collection is the characterization of uncertainty with probability distributions. 
In practice, many information exchanges will and should take place between a 
sustainability practitioner and a technology developer. Framing these exchanges in the 
context of uncertainty as we have presented here will provide more structure to the 
conversations and optimize the learning process (for both the practitioner and the 
technology developer, as we have often observed in practice).  

Furthermore, the most time-consuming refinement is expected to happen during the 
second iteration, which will -after GSA- only consider a handful of uncertain factors in the 
model. The alternatives to our proposed approach could be equally or more time-
consuming, e.g., developing and communicating numerous ad-hoc scenarios or 
developing more detailed modelling such as process engineering upscaling for all 

Figure 6-7 Frequency distribution for climate change impact scores (in kg CO2 eq) of the emerging III-V/Si 
technology in three “sensitive scenarios”: with a short panel lifetime of 25 years (LT_pess), with a long panel 
lifetime of 35 years (LT_opt) and with an uncertain panel lifetime distributed according to the final model at 

the end of the R&D project. 
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uncertain parameters. Our framework ensures that the additional resources required by 
ex-ante are devoted to the things that matter.  

6.4.3. On subjective probability distributions 
Another concern is whether it is realistic, robust, and transparent to introduce largely 
subjective probability distributions that may cause some confusion about models’ 
operations and outputs. Here we argue that exactly the opposite is the case; the subjective 
assumptions are not only clearly stated but they are represented in a way that obeys the 
rules of probability. Their effects are systematically introduced, analysed and interpreted. 
Two types of subjective information are introduced in our framework when subjective 
distributions are used. First, the shape of the distribution (e.g., uniform, PERT, triangular) 
and second, the parameters of the distribution (e.g., min, max and mode). The case study 
offers a good example of how we introduced boundaries and realistic assumptions in the 
energy consumption of the MOVPE process. We chose a PERT distribution bounded by 
the maximum power loading, which is given by the best result achieved to date. This is 
reasonable as it was already established that the current consumption is not economically 
viable. The minimum is a very low value which resembles that of in-line tools used in high-
throughput production of commercial silicon cells which have 30 or more years advantage. 
For a conservative approach, we set the mode equal to the maximum. We could have 
chosen a triangular shape using this minimum and maximum boundaries. However, a 
PERT shape is more realistic in that increases in energy efficiency get more difficult with 
each subsequent attempt.  

This example shows how relevant and objective information which would be lost 
otherwise is included in the distribution. On the other hand, making no assumption is in 
many ways an assumption. For example, not attaching probability to different scenarios 
may well result in the unconscious attachment of equal probability to each scenario during 
the interpretation and/or decision-making phase.13 Interpretation and decision-making 
will necessarily involve probabilistic weighing, whether it is done by the practitioner or the 
decision-maker, consciously or unconsciously. Given the rigor introduced here, we 
advocate it is best to place probabilistic weighing as much as possible within the scope of 
the assessment itself. In addition to this, it must be recognized that ex-ante assessments 
must be conducted in a low-information environment. Therefore, all information available 
should be used, including beliefs, constraints and plausibilities that narrow the space for 
ambiguity.  

6.5. Conclusions 
The popular expression “you are only as strong as your weakest link” has great relevance 
in the context of ex-ante environmental assessments for safe and sustainable designs. If an 
element of an integrated model has a resolution far coarser than the rest, then there is a 
high chance that the benefits of increased precision in the rest of the model are lost. In the 
same way, if great effort is spent in modifying a factor that has only limited influence on 
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the environmental outcomes, then this effort is lost. Scenario analysis has proven to be a 
useful tool in ex-ante assessments; however, with the proposed framework we are pushing 
back against overreliance on scenario analysis without a previous and comprehensive 
sensitivity screening. Selecting scenarios to assess only based on preconceived notions 
may often result in that the compared scenarios are not significantly different therefore are 
not useful to act upon. This shifts an already stretched focus from decision-makers to 
aspects that are ultimately unimportant.  

Our framework successfully addresses this shortcoming with robust systematic and 
quantitative methods to support decision-making. It also offers a useful structure for the 
information exchange between environmental modellers and technology developers 
throughout the R&D process. Furthermore, it iteratively simplifies models by allowing non-
influential factors to be fixed. Less complex models will allow for clearer and more 
meaningful analysis, as well as communication and discussion of the findings amongst 
stakeholders.  

There are important improvements of the framework that may be of interest for ex-ante 
LCA and RA researchers to further develop. We particularly see two valuable future 
developments. First, the incorporation of multivariate Bayesian approaches which can 
allow inference on more complex or underspecified distributions. Second, the 
incorporation of strategies to deal with correlations between observations from lab/pilot 
test results. In combination, these two improvements could significantly strengthen the 
framework and broaden its applicability. 
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