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Assessing the sustainability of emerging technologies: a 
probabilistic LCA method applied to advanced photovoltaics 

Abstract 
A key source of uncertainty in the environmental assessment of emerging technologies is the 
unpredictable manufacturing, use, and end-of-life pathways a technology can take as it progresses 
from lab to industrial scale. This uncertainty has sometimes been addressed in life cycle assessment 
(LCA) by performing scenario analysis. However, the scenario-based approach can be misleading 
if the probabilities of occurrence of each scenario are not incorporated. It also brings about a 
practical problem; considering all possible pathways, the number of scenarios can quickly become 
unmanageable. We present a modelling approach in which all possible pathways are modelled 
as a single product system with uncertain processes. These processes may or may not be selected 
once the technology reaches industrial scale according to given probabilities. An uncertainty 
analysis of such a system provides a single probability distribution for each impact score. This 
distribution accounts for uncertainty about the product system’s final configuration along with 
other sources of uncertainty. Furthermore, a global sensitivity analysis can identify whether the 
future selection of certain pathways over others will be of importance for uncertainty in the impact 
score. We illustrate the method with a case study of an emerging technology for front-side 
metallization of photovoltaic cells. 

Keywords: life cycle assessment; uncertainty analysis; global sensitivity analysis; emerging 
technologies; LCA; sustainability assessment 
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4.1. Introduction 
Whenever a new technology is proposed, the main concern from an environmental 
perspective is whether it will satisfy certain societal needs at the expense of introducing 
unwanted environmental burdens. This has happened often in the past, sometimes 
resulting in global-scale environmental issues that were not foreseen. Life cycle 
assessment (LCA) is until now the only environmental assessment method that can 
systematically reveal undesired environmental trade-offs that may result when an existing 
technology is replaced by a new one1. Because of this, the application of LCA in early 
research and development (R&D) stages has gained considerable traction in recent years2 
and is even recognized by the European Union as an essential component of the R&D 
projects it is funding3.  

The LCA method was originally developed to study systems for which sufficient 
information about material and energy inputs and outputs, as well as the cause-effect 
relationships throughout the entire supply-chain of a technology is obtainable. This is 
already challenging for well-established technologies, let alone for technologies that are in 
development and have not yet been commercialized. In both cases, many uncertainties 
arise from missing or inaccurate data, spatial and temporal variability of process 
parameters, spatial and temporal variability of characterization models, and inaccuracy of 
characterization models, amongst other sources4–6. The standard approach for dealing 
with these uncertainties in LCA is to represent them using stochastic parameters with 
probability distributions (e.g., uniform, normal or lognormal) instead of fixed values, and 
then propagate them by random sampling and calculation of the resulting impacts in 
numerous Monte Carlo simulations. Rather than a single impact score, this approach 
produces a probability distribution for the impact score which can also be described by its 
mean, mode, variance, percentiles, and/or other statistical descriptors7.  

For emerging technologies, the challenge of dealing with uncertainty is even greater 
because these technologies have not been tested in a real operating environment and 
many design aspects have not been settled yet8–11. At any given point in time during the 
R&D process, there are many unknowns as to how the numerous technical and economic 
roadblocks to a successful marketable product will be eventually overcome, if they are 
overcome at all. In addition to this, the technology must be evaluated in the future 
economic and environmental context in which it will be deployed. An LCA model that 
attempts to forecast the impacts of such an unproven and immature technology therefore 
has potentially larger and more diverse sources of uncertainty (Table 4-1).  

Following the typology of Huijbregts et al.4, some of these uncertainties can be represented 
as “parameter” uncertainties, e.g., when the quantities of material and energy inputs and 
outputs required in each manufacturing step may decrease as a result of future process 
optimizations. If reasonable estimates for the expected changes in these quantities is within 
reach, then this type of variation can be incorporated via the aforementioned Monte Carlo 
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methods using most LCA software. Other perhaps more consequential types of 
uncertainty are related to which specific manufacturing steps will ultimately enable the 
early design or concept to become technically and economically feasible. Numerous and 
widely diverse engineering solutions are proposed and tested during early R&D stages, 
and these may or may not be a part of a technology’s future product system configuration 
once it reaches maturity. We refer to these different possible configurations as 
“technological pathways”, each of which is further pursued and investigated in subsequent 
R&D stages in order to find the one that ensures technical and economic feasibility. This 
type of uncertainty can be classified as “scenario uncertainty” and has often been 
addressed in LCA by modelling each technological pathway as a separate scenario2,8,12.  

 

LLCCAA  pphhaassee  UUnncceerrttaaiinnttyy  
ssoouurrccee  

UUnncceerrttaaiinnttyy  
ttyyppee  

CCoonntteexxtt  iinn  LLCCAA  ooff  eemmeerrggiinngg  tteecchhnnoollooggiieess  

Goal and 
scope 

Functional unit Scenario The technology may ultimately be used in ways 
different than the one projected initially, or it may 
be used for multiple/different purposes. 

System 
boundary: end-
of-life (EOL) 

Scenario The possibilities for reuse/recycling often 
develop after the technology has been deployed, 
and/or when it is economically feasible. It is not 
known if and how this will happen. 
Regulations may change with respect to EOL 
requirements. 

Inventory Unit process Scenario The manufacturing methods will most likely 
change as the technology moves from the lab to 
industrial scale. 

Flow quantities Parameter Cost and process optimizations will likely lead to 
reduced or substituted material and energy 
input/output flows. 

Allocation Parameter The parameters used to establish the criteria for 
allocation of multifunctional processes might 
change in time. E.g., forecasted market values in 
the case of economic allocation. 

Impact 
assessment 

Characterization 
model 

Model Novel materials may have unknown or 
insufficiently studied impact mechanisms or 
pathways. 

Characterization 
model: fate 

Parameter Landscape parameters that affect transport and 
fate of substances may change in time, e.g., global 
temperature. 

Characterization 
model: 
exposure 

Parameter Parameters that affect exposure e.g., population 
densities or diets may change in time.  

Characterization 
model: effect 

Model Marginal changes may result in exponentially 
larger effects as the baseline condition 
deteriorates. E.g., impact of increased radiative 
forcing on ecosystems. 

 

Table 4-1 Additional uncertainty sources specific to LCA of emerging technologies. 
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Assessing and comparing different scenarios  is useful when a design choice can be made 
on sustainable grounds13. However, the usefulness of this approach is more limited when 
there is no choice, rather a technological pathway that will eventually emerge as the –often 
only - economically and technically viable option. If the LCA results are meant to guide 
funding decisions that must be made with the current state of information, a comparative 
assessment of two or more scenarios can be misleading, even more so if the probability of 
one occurring is higher than the other. Another limitation is of a more practical nature; 
considering all the different possible technological pathways, the number of scenarios will 
most likely become unmanageable and their interpretation confusing if not impracticable. 

To address these limitations, in this paper we propose a probabilistic approach in which 
all technological pathways being pursued by the developer are combined in a single 
product system. The competing pathways are activated or deactivated in each Monte 
Carlo run according to their probabilities of success by stochastic triggers or switches that 
are built into the LCA model. This type of model setup builds upon those proposed by 
other authors for combining different scenarios and/or modelling choices in single product 
systems4,14–16. It has been shown that these models allow the joint propagation of 
parameter, scenario and model uncertainties, producing a single probability distribution 
for the studied system’s impact score.  

The framing and methods we propose extend and refine the previous work of these 
authors in various ways. First, in applying this approach to emerging technologies we 
propose a clear separation between (i) uncertainty about the potential success of 
competing technological pathways, and (ii) uncertainty introduced by subjective modelling 
choices or preferences related to allocation, system boundaries, and future external 
scenarios. The former constitutes an inherent uncertainty about the product system and 
its effect is appropriately reflected by a single output impact score distribution. The latter, 
on the other hand, is best investigated as separate scenarios, in order to distinguish the 
effects of subjective choices and make them more transparent. 

To further differentiate between (i) and (ii), we note that the stochastic triggers we use in 
(i) to activate technological pathways are objective parameters with a true value: each
pathway either can or cannot overcome the technical and economic barriers the
technology concept faces, but this is unknown at present by the developer. This true value
–the uncertainty of which is adequately characterized by a Bernoulli distribution - will only
be found by future R&D and testing. On the other hand, subjective value choices as in (ii)
do not have an empirical “true” value and their joint propagation risks masking the effect
of such subjective choices, reducing model transparency15.

Second, our method investigates the effects of uncertainty about the probabilities (chances 
of success) of each pathway/scenario, which most likely exists in early R&D. This 
uncertainty about the input probabilities is often called second-order uncertainty17,18. We 
characterize these uncertainties using different types of probability distributions for these 
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parameters other than uniform, allowing for a more refined and realistic representation of 
the expectations of technology developers.  

Finally, we demonstrate the application of a global sensitivity analysis (GSA) method that 
is suitable for such a model and highlights which uncertainties - including those from 
competing technological pathways as well as second-order uncertainties - are most 
relevant from an environmental perspective. Our aim with this is to identify incentives to 
more actively pursue research towards resolving the most sensitive ones. If they cannot 
be resolved, the information can and should be used to select the more relevant pathways 
that merit further investigation via e.g., local sensitivity analysis. In this case, the definition 
of scenarios for further investigation as a subsequent step becomes more objective and 
systematic, as the modeller will have quantitative criteria to select those that are most 
relevant.  

4.2. Methods 

4.2.1. Configuring the parametrized product system 
To perform LCA calculations on a single system that combines different technological 
pathways, we use random parameters that activate or deactivate the inputs from the 
competing processes according to their underlying probabilities of occurrence (i.e., 
chances of success). To each competing process, we attach a random trigger that takes 
on a value of 0 or 1, so that it activates or deactivates the process flow according to a 
defined Bernoulli distribution function. The Bernoulli distribution is a discrete distribution 
that has two possible outcomes: success (=1) occurs with probability π, and failure (=0) 
occurs with probability 1- π, where 0<p<1 19.  

Step 1: Identify the relevant technological pathways.  The first step is to screen for the possible 
technological pathways that are being pursued, and the corresponding unit processes that 
are to be included in the single product system. This can be aided by a quick-scan lab-
scale LCA and by eliciting expert knowledge and expectations of technology developers. 
The result of this step is a tree of possibilities that includes a number of pathways to fulfil 
the intended function(s) of the technology. This step would screen for alternative 
competing unit processes in all life-cycle stages, including manufacturing but also use and 
end-of-life options. 

Step 2: Set up the product system. The competing unit processes (process X and process Y) 
are connected as providing simultaneous inputs to process Z as shown in Figure 4-1.  

Step 3: Determine the required flows. Each competing process may contribute in a different 
way. For example, process Z may use either 1 kg of the product made by process X or 2 
kg of the product made by process Y. Both quantities are added to the process Z as if they 
occur simultaneously, so the inputs of process Z are 1 kg of product from process X and 
2 kg of product from process Y. 
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Figure 4-1 Product system with a process (Z) that requires an input from two competing, mutually exclusive 
process (X or Y). 

Step 4: Determine the probabilities of occurrence of each flow. The probability of occurrence of 
X or Y will most likely be determined based on expert knowledge or expectations from 
the technology developers about technical and/or economic feasibility. For example, they 
may be estimated by looking at trends in related technologies, or by using economic 
forecasts for each alternative as a proxy. The criteria should be tightly linked to the 
functional unit of the technology, and the chances each option has of contributing to this 
function in an optimal (technical and economic) way.  We define π as the probability of 
process X being selected, where π is a value between 0 and 1. Then the probability of 
process Y being selected is 1- π.  

Step 5: Define parameter T.  We will use a random number T to switch each flow on or off, 
by taking 1 for ‘on’ and 0 for ‘off’. We generate T from a Bernoulli distribution, which is 
equivalent to a binomial distribution with 1 single trial (n=1) and probability π. 

T ~ bin(n=1, π) 

If there are more than two competing unit processes for the same element of the 
technology’s product system, the generalized version of the Bernoulli distribution can be 
used, namely the categorical distribution. In this case we would define the probability of 
process X as πx, the probability of process Y as πy, and the probability of process Z would 
be πz = 1 - (πx + πy). A similar result can be achieved by nesting the alternatives so that 
their combined probabilities result in the desired individual probabilities (see Appendix 
Section A.3.1 for implementation notes).  
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Step 6: Apply the triggers to each flow. Because they are competing processes, only one flow 
can be activated at a time. This is achieved by multiplying process Z’s input from process 
X by [T] and the input from process Y by [1-T].  

Step 7: If applicable and known, add uncertainty to the probability of occurrence (success) of each 
flow. The probabilities of each flow occurring may be given as a range, rather than fixed. 
For example, “the chance of using process X instead of process Y may be between 30% 
and 50%”. In this case, a uniform distribution with minimum 0.3 and maximum 0.5 can be 
used. The uncertainty about the probabilities can be characterized in even more detail by 
using non-uniform distributions. Such is the case when a range of probabilities is expected, 
but there is more confidence around a certain value. For example, the chance of using 
process X instead of process Y is between 30% and 50%, but most likely 40%. This can be 
characterized by a triangular distribution with min 0.3, max 0.5 and mode 0.4. To 
implement this, the uncertainty distribution is directly applied to parameter π in the 
equations above. Wide ranges can be used in this step when there is limited knowledge 
about the probabilities. The relevance of this second-order uncertainty will be investigated 
afterwards in the global sensitivity analysis, indicating whether further efforts are necessary 
to make the predictions more accurate. 

Step 8: Run the Monte Carlo simulation.  The Monte Carlo simulation is run for the single 
product system. In each run, uncertain flows and characterization factors will take on 
random values according to their underlying probability distributions, and the effects 
propagated towards the calculation of the impact score. In the same way, the random 
triggers will randomly activate or deactivate the alternative technological pathways, 
according to their chances of success. The sampling in each run is done in a dependent 
way as recommended by Henriksson et al.20 and Mendoza Beltran et al.21, in order to 
ensure that shared unit processes across both systems take the same random values in 
each run. The inventory or impact assessment output will represent a future system that 
has a probability π of using process X and a probability π -1 of using process Y.  

Step 9: Global sensitivity analysis.  Several sensitivity indices and the corresponding 
algorithms to calculate or estimate them have been proposed for GSA22. These methods 
can calculate or estimate how much each uncertain input contributes to the model’s output 
variance, for all or a subset of uncertain input parameters. For our model we propose the 
delta moment-independent sensitivity measures23 which had previously been 
implemented in LCA by Cucurachi et al.24. Various methods have been proposed to 
estimate the delta measures25,26; we used the betaKS3 MatLab subroutine developed and 
provided by E. Plischke and E. Borgonovo upon request27 (see Appendix Section A.3.2).  

The sensitivity measure and corresponding estimation algorithm we propose present 
several important advantages for our model: (i) it accounts for possible correlations 
between uncertain input parameters; (ii) it has a significantly faster computation time and 
less memory usage, which is essential for models with tens or hundreds of thousands of 
uncertain parameters as in the case of large LCA databases like ecoinvent28; (iii) it is 
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independent of the model and only requires the values taken by the uncertain input 
parameters and the outputs (impact scores) in each Monte Carlo run, making them easy 
to apply in LCA; (iv) it is moment-independent, i.e. reflects expected changes in the actual 
output distribution rather than an approximated curve fit (typically a lognormal distribution 
with an estimated mean and variance). This is especially important in our framing given 
that, as we will show, the superposition of different technological pathways may produce 
output impact score distributions with more than one peak (multimodal or 
heteroscedastic). In such cases, variance-based sensitivity measures would not provide 
accurate estimates of importance. Finally, (v) it can take uncertain input parameters with 
discrete distributions, such as the binomially distributed triggers we used. 

4.2.2. Case study of emerging photovoltaic technologies 
We applied the method to a real-life case study in order to determine whether it was 
computationally feasible, if the results are in line with expectations and to further explore 
what types of conclusions can be drawn from the analysis. For this, we chose an emerging 
technology for metallization of the front electric contacts of photovoltaic (PV) cells that 
uses silver or copper metallic nanoinks. The special properties of the nanoparticles in the 
ink enhance the cell’s performance by reducing the shadow, i.e. the area of cell that is 
covered by the metallic patterns and does not receive sunlight. It can also reduce the 
amount of silver required vs. traditional screen-printing methods. The case study is an 
ideal situation to investigate whether secondary materialization is occurring, while many 
possible configurations of the manufacturing and mainstream use of the technology are 
yet to be resolved. The concept of secondary materialization, introduced by Williams et 
al.29, suggests that “technological progress tends to increase energy and material use associated 
with products and is thus a counterforce to efficiency improvements attributed to 
dematerialization”. 

Preparation of the metallic nanoinks starts with the manufacturing of metallic 
nanoparticles via one of two possible routes; physical (or “top-down”) methods apply 
energy to fracture larger particles to nanoscale sizes, and chemical (or “bottom-up”) 
methods create the nanoscale particles from even smaller molecules using chemical 
reactions 30. We based our calculations for these processes on the life-cycle inventories 
reported by Pourzahedi and Eckelman31 and Slotte and Zevenhoven32. The nanoinks 
consist of a solution of metallic nanoparticles in alcohol/hydrocarbon (for silver) or 
polymer (for copper) and are deposited in patterns on the front side of the cell by inkjet 
printing to form an initial “seed layer”. The printed patterns then have to be sintered, using 
either a thermal (laser) or a chemical process that consolidates the metallic particles in the 
pattern 33. Sintering of silver nanoparticles can be done in open air, while copper nanoink 
requires an oxygen-free atmosphere to avoid formation of undesired oxides on the 
contacts34. Once sintered, the fingers are grown to a final thickness of 12.5µm by 
electroplating. Three busbars are placed on the cell using the conventional screen-printing 
methods that are used for the fingers in most commercially available silicon PV cells.  
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Figure 4-2  and Table 4-2 show the different competing alternatives and the parameter values 
used in the model. Additional calculation notes are presented in Appendix Section A.3.3. 

In addition to the five stochastic triggers T1-T5 and their uncertain probabilities of success 
π1- π5, we also included three input parameters subject to the more conventional form of 
uncertainty commonly addressed in LCA. First, we varied the amount of sintering gas 
mixture consumed per PV cell, dividing it by a random, triangularly distributed value (P6) 
with min:1, mode:5 and max:10. Second, we considered uncertainty in the amount of 
electrolyte solution consumed in electroplating per PV cell, i.e. how many cells can be 
treated per batch. We represented this by a parameter P7 that divided the amount of 
solution required by a random, triangularly distributed value with min:10, mode:50 and 
max:100. Finally, we considered a potential increase in cell conversion efficiency of 
between 0.5 and 2%. We represented this by a parameter P8 that multiplied the PV cell 
area required to produce 1 kWh by a uniformly distributed value between 0.98 and 0.995. 

Figure 4-2. Product system for the generation of electricity using a solar cell with nanoink-printed front 
contacts, considering different alternative manufacturing pathways. T variables identify the triggers that 

select one or the other of the competing alternatives. 
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We then ran a (dependent) Monte Carlo simulation of n=1000 runs to calculate and 
compare the impact scores of the nanoink printed PV cell with a conventional screen-
printed PV cell. For this comparison we defined the functional unit as the generation of 
1 kWh of electricity. For the conventional cell, we used the inventory data for single-Si 

Table 4-2 Parameter definitions for possible manufacturing pathways of nanoink printed front contacts in 
photovoltaic cells. T variables identify the triggers (Figure 4-2) and π values the probability for the least likely 
unit process in the competing pair. 

TT  DDeessccrriippttiioonn  ππ  
EExxppeecctteedd  
cchhaannccee  ooff  
ssuucccceessss  

UUnncceerrttaaiinnttyy  
aabboouutt  

cchhaannccee  ooff  
ssuucccceessss  ππ::  

ttyyppee  

UUnncceerrttaaiinnttyy  
aabboouutt  

cchhaannccee  ooff  
ssuucccceessss  ππ::  
ppaarraammeetteerrss  

JJuussttiiffiiccaattiioonn  

T1 Synthesis route 
for Cu 
nanoparticles. 
Success = 
chemical route, 
failure = 
physical route.  

π1 0.7 Triangular Min: 0.5 
Mode: 0.7 
Max: 0.8 

Chemical methods 
provide more control over 
particle size and shape, 
which may ultimately be 
more important for the 
nanoink.  

T2 Synthesis route 
for Ag 
nanoparticles. 
Success = 
chemical route, 
failure = 
physical route. 

π2 0.7 Triangular Min: 0.5 
Mode: 0.7 
Max: 0.8 

Chemical methods 
provide more control over 
particle size and shape, 
which may ultimately be 
more important for the 
nanoink. 

T3 Sintering 
method for Cu 
nanoink. 
Success = 
chemical 
sintering, failure 
= laser sintering. 

π3 0.2 Triangular Min: 0.1 
Mode: 0.2 
Max: 0.3 

Based on initial trials, the 
chemical sintering method 
had not performed as well 
as the laser methods. In 
addition to this, it may be 
easier to upscale the laser 
process. 

T4 Sintering 
method for Ag 
nanoink. 
Success = 
thermal 
sintering, failure 
= laser sintering. 

π4 0.5 Uniform Min: 0 
Max: 1 

At the time of assessment, 
there was no particular 
indication of the 
performance of each 
method. 

T5 Metallic 
nanoink used 
for seed printing 
of front 
contacts. 
Success = Cu 
nanoink, failure 
= Ag nanoink. 

π5 0.8 Triangular Min: 0.5 
Mode: 0.5 
Max: 0.8 

Based on preliminary tests 
for technical feasibility, 
copper-based nanoink 
seemed “more promising”, 
while silver-based nanoink 
was not discarded. 
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photovoltaics from the LCA database ecoinvent v228, and incorporated uncertainty in the 
background input/output flows provided by ecoinvent. We focused on four impact 
categories: climate change, ozone depletion, human toxicity and freshwater aquatic 
ecotoxicity, all based on the ReCiPe impact assessment method35.  

We then used the modified null hypothesis significance test proposed by Heijungs et al. 
(2016) to determine whether the differences in impact scores between the types of systems 
were statistically significant. The choice of the modified version of the test responds to the 
fact that it is well suited for early stages in technology development, where we the size (or 
relevance) of the difference is important. In other words, differences that are not relevant 
enough should not provide a basis to deter continued research and development while the 
potential benefits of the technology are still uncertain. To implement the modified null 
hypothesis significance test we used the excel based tools developed by Mendoza-Beltrán 
et al.21. 

4.3. Results and discussion 

4.3.1. Comparative impact assessment of PV systems 
The distribution of the climate change impact scores for both types of PV systems 
(nanoink-printed and conventional screen-printed cells) are shown in Figure 4-3. The 
impact score distributions of both systems mostly overlap around 0.08 kg CO2eq, except 
for an additional peak around 0.15 kg CO2eq for the nanoink-printed cells. This is in line 
with our expectation to find multimodal output distribution curves, and further strengthens 
the case for the use of moment-independent global sensitivity measures (this is further 
discussed in Section 3.2). By looking at the impact contributions of the individual 
foreground processes, we were able to determine that the additional peak around 0.15 kg 
CO2eq corresponded to the chemical sintering pathway for the copper nanoink option 

Figure 4-3 Comparison of climate change impacts of a PV system with nanoink-printed cells (nano) and a 
conventional screen-printed cells (ref) 



____ 
72 

which had a low probability of success (hence the lower frequencies), but was the only 
pathway that could result in impacts in this higher range.  

Having a single probability distribution for the impact scores, we can draw general 
conclusions about the expected impacts of the nanoink-printed PV technology. For 
climate change, for example, the impacts will range between 0.05-0.2 kg CO2 eq, and the 
impact will remain below 0.167 kg CO2 eq for the 95th percentile. These and other 
statistics are summarized in Table 4-3..  

The boxplot in Figure 4-4 shows the mean and percentiles for the differences in impact 
scores, relative to the reference system and for the four impact categories investigated. A 
positive percentage value (above the dotted red line) means a higher impact score for the 
nanoink printed cells. The medians (central black lines) of all values are higher, suggesting 
a slightly worse performance for the nanoink-printed cells. However, the difference in 
performance does not appear to be strongly conclusive, given that an important part of 
the boxes (25th and 75th percentiles) in all cases remains below 0%. 

Table 4-3 Statistical descriptors for the impact score distributions of the nanoink-printed PV system and the 
conventional screen-printed system (Ref system). 

SSttaattiissttiiccaall  ppaarraammeetteerr  NNaannooiinnkk  pprriinntteedd  
ssyysstteemm  

RReeff  ssyysstteemm  

Climate change (kg CO2 eq) 
Arithmetic mean 0,088 0,077 
Geometric mean 0,083 0,076 
Median 0,077 0,075 
5th percentile 0,064 0,057 
95th percentile 0,167 0,103 

Ozone depletion (kg CFC-11 eq) 
Arithmetic mean 1,73E-08 1,54E-08 
Geometric mean 1,62E-08 1,50E-08 
Median 1,50E-08 1,49E-08 
5th percentile 1,17E-08 1,03E-08 
95th percentile 3,25E-08 2,25E-08 

Human toxicity (kg 1,4 DCB eq) 
Arithmetic mean 0,229 0,212 
Geometric mean 0,185 0,173 
Median 0,170 0,159 
5th percentile 0,085 0,081 
95th percentile 0,534 0,502 

Freshwater ecotoxicity (kg 1,4 DCB eq) 
Arithmetic mean 0,0026 0,0024 
Geometric mean 0,0024 0,0022 
Median 0,0023 0,0021 
5th percentile 0,0013 0,0013 
95th percentile 0,0049 0,0043 
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Figure 4-4 Distribution of difference in impact scores of nanoink-printed cell, relative to the impact score of the 
screen-printed cell (ref). CC: Climate Change; OD: Ozone Depletion; HT: Human Toxicity; FET: Freshwater 

Ecotoxicity. 

In order to discern whether these differences were statistically significant or not, we used 
the modified null hypothesis significance test 36 with an alpha-value of 0.05 and a d-value 
of 0.2. The test concluded that only the climate change and freshwater ecotoxicity impact 
scores of the reference screen-printed cell was lower. For the other impact categories, the 
differences were not statistically significant. 

4.3.2. Global Sensitivity Analysis (GSA) 
The Borgonovo delta sensitivity measures23 are listed for the stochastic triggers and other 
uncertain foreground parameters in Table 4-4.. The most important contribution to variance 
in the climate change impact score comes from trigger T3, which selects between the 
chemical and laser sintering for the copper nanoink pathway. This is followed in order of 
importance by trigger T5, which selects between the copper and silver nanoink front 
contacts for the cell. The third most important parameter was not a trigger, but the amount 
of gas mixture that could be used to treat each cell in the chemical sintering procedure. 
The three most sensitive parameters are therefore in the copper nanoink with chemical 
sintering route. These can all be traced to the potentially very large impact contribution 
that can result from formic acid consumption in the chemical sintering route for copper.   
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4.3.3. Factor fixing 
With the sensitivity ranking obtained from the GSA, we proceeded to factor fixing37 in 
order to investigate further how the environmental profile of the technology would change 
if the most sensitive parameters were fixed. In this case, we tested trigger T3, which by the 
final stages of this study was looking less likely to favour a chemical sintering route for 
copper nanoink due to various technical challenges. Therefore, we updated T3 to a 
constant value of 0 so that the laser sintering route was always chosen for copper-based 
nanoink. We then ran a similar Monte Carlo simulation for the updated system and 
produced the results shown in Figure 4-5.  

Figure 4-5 Comparison of climate change impacts of a PV system with nanoink-printed cells with both laser 
and chemical sintering alternatives for copper nanoink (nano) and with only laser sintering alternative for 

copper nanoink (nano(f)). 

Table 4-4 Delta sensitivity measure estimates for the climate change impacts of the PV system with nanoink 
printed front contacts. 

Uncertain input parameter δ est. Rank 
π1: Chance of success of T1 0.01 10 
π2: Chance of success of T2 0.00 6 
π3: Chance of success of T3 0.02 5 
π4: Chance of success of T4 0.02 4 
π5: Chance of success of T5 0.02 9 
T1: Chem. vs. phys. synthesis of Cu nanoparticles 0.00 12 
T2: Chem. vs. phys. synthesis of Ag nanoparticles 0.01 11 
T3: Chem. Vs. laser sintering: Cu ink 0.20 1 
T4: Thermal vs. laser sintering: Ag ink 0.01 13 
T5: Cu vs. Ag printed front contacts 0.10 2 
Qty. of gas mix required for Cu nanoink sintering 0.04 3 
Qty. of solution required for electroplating 0.01 7 
Cell conversion efficiency increase 0.01 8 
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With all other triggers left to vary freely, the impact profile of this updated technology 
improved considerably. The peak around 0.15 kg CO2eq disappeared, and the spread of 
the impact score distribution diminished noticeably. The geometric mean of the climate 
change impact score for the updated system decreased by 10% (75 g CO2 eq) and the 95th 
percentile by 46% (90 g CO2 eq). The geometric means for ozone depletion, human 
toxicity and freshwater ecotoxicity decreased by 15%, 3% and 8% respectively.  

We performed a similar significance test on the updated results in order to confirm if – 
under these new constraint –statistically significant differences could be observed. The 
results indicate that discarding the chemical sintering of copper nanoink as an optional 
pathway results in a statistically significantly lower climate change impact score for the 
nanoink-printed cells vs. the conventional screen-printed cells. For other impact 
categories, there are no statistically significant differences.  

4.3.4. Insights from the application of the method 
An important aspect addressed in our method is the fact that the chances of success π are 
uncertain and must be determined using subjective criteria to a certain degree. The 
implementation of Step 7 allowed us to factor this in and investigate the relevance of these 
uncertainties by including the uncertain parameters π in the global sensitivity analysis. The 
results of our case study suggested that these second-order uncertainties about the 
probabilities of success π of each trigger did not have important effects on the model’s 
output variance.  

There are theoretical reasons to believe that uncertainty about the probability π has no 
influence on the overall result in a Monte Carlo type of sampling. After all, when we sample 
from a binomial distribution with probability π and sample size n (say, 1000), the expected 
number of times we have chosen a certain technological pathway is n×π. When we modify 
the setup and use a binomial distribution with probability equal to π+ε, where ε is, for 
instance normally distributed with mean 0 and standard deviation σ, the expected number 
of times we have chosen this technological pathway is n×π+0=n*π, because the expected 
value of this normal distribution is 0.  

To further verify this, we fixed parameter π3 in order to give a certain chance of success 
for T3 of 20% and repeated the Monte Carlo simulation. The results are shown in Figure 
4-6, showing only a very small shift in the distribution curves as expected. Further
exploration of this perhaps unexpected finding is out of scope for this study, but we believe
worthy of investigation in future work. Nevertheless, addressing uncertain probabilities in
the method makes an important step in moving from probability theory to possibility
theory 38, without yet making the full turn.
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Figure 4-6. Comparison of climate change impacts of a PV system with nanoink-printed cells with uncertain 
chance of success for chemical sintering alternatives for Cu nanoink (nano) and with certain probability of 

success (nano(f_pi3)). 

4.4. Conclusions 
The application of the probabilistic method to the case study proved that calculation of 
such a model is feasible and the results fall within expectations as verified by the shapes 
of the distributions in Figure 4-6. Additionally, we demonstrated the important analytical 
possibilities offered by the method, and successfully addressed the conceptual and 
practical limitations of the scenario approach for the specific case of uncertain 
technological pathways. This probabilistic approach better represents the fundamental 
reality of the technological system under scrutiny when these pathways will only be 
resolved in a future stage. In early R&D stages, and with the existing state of knowledge 
of the system, these possible branches of the technology are better represented as a single 
system with a single range of potential impacts and specific probabilities attached to each 
value. This interpretation is fundamentally different from making numerous if/then 
conclusions about the system’s environmental performance in different scenarios. It can 
especially provide a more robust basis and –if desired- a more conservative basis for 
considering future environmental impacts in current decisions.  

The proposed framing also demonstrated to be better suited for a global sensitivity analysis 
that allowed us to identify the most sensitive parameters from a wider spectrum of 
uncertainty sources, including whether the future selection of one unit process instead of 
another is relevant for the variance in the system’s impact score. The combination of the 
probabilistic LCA model with GSA can now be used to answer two fundamental questions 
about the sustainability of an emerging technology in a more robust and realistic way. The 
first question being whether an emerging technology with unresolved pathways is likely to 
outperform the incumbent technology, and to what degree of confidence. The second 
question being to what extent the assessment depends on the chances of success of the 
technological pathways being pursued. 

____ 
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