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INTRODUCTION

Prediction models for survival outcomes are important for clinicians who wish to 
estimate a patient’s risk (i.e. probability) of experiencing a future outcome. The term 
‘survival’ outcome is used to indicate any prognostic or time-to-event outcome, such as 
death, progression, or recurrence of disease. Such risk estimates for future events can 
support shared decision making for interventions in high-risk patients, help manage the 
expectations of patients, or stratify patients by disease severity for inclusion in trials.1 
For example, a prediction model for persistent pain after breast cancer surgery might 
be used to identify high risk patients for intervention studies.2 

Once a prediction model has been developed it is common to first assess its performance 
for the underlying population. This is referred to as internal validation, which can be 
performed using the dataset on which the model was developed, for example by cross-
validation or bootstrapping techniques.3 External validation refers to performance in a 
plausibly related population, which requires an independent dataset which may differ 
in setting, time or place.4, 5

Ample guidance exists for assessing the performance of prediction models for binary 
outcomes, where the logistic regression model is most commonly used for model 
development.6–8 Validation of a survival model poses more of a challenge due to the 
censoring of observation times when a patient’s outcome is undetermined during the 
study period. If assessing 5-year survival, for instance, some subjects may have less than 
5 years of follow-up without experiencing the event of interest.3 Moreover, predictions 
can be evaluated over the entire range of observed follow up times or for the event 
occurring by a fixed time horizon of interest. The international STRengthening Analytical 
Thinking for Observational Studies (STRATOS) initiative (http://stratos-initiative.org) 
began in 2013 and aims to provide accessible and accurate guidance documents for 
relevant topics in the design and analysis of observational studies.9 

This STRATOS article aims to provide guidance for assessing discrimination, calibration, 
and clinical usefulness for survival models, building on the methodological literature for 
survival model evaluation.10–12 For illustration, we consider the performance of a Cox 
model to predict recurrence free survival (i.e. being alive and without breast cancer 
recurrence) at 5 years in breast cancer patients. We also describe how to assess the 
improvement in predictive ability and decision-making when adding a prognostic 
biomarker.

ABSTRACT

Risk prediction models need thorough validation to assess their performance. 
Validation of models for survival outcomes poses challenges due to the censoring of 
observations and the varying time horizon at which predictions can be made. We aim to 
give a description of measures to evaluate predictions and the potential improvement 
in decision making from survival models based on Cox proportional hazards regression. 
As a motivating case study, we consider the prediction of the composite outcome of 
recurrence and death (the ‘event’) in breast cancer patients following surgery. We develop 
a Cox regression model with three predictors as in the Nottingham Prognostic Index 
in 2982 women (1275 events within 5 years of follow-up) and externally validate this 
model in 686 women (285 events within 5 years). The improvement in performance was 
assessed following the addition of circulating progesterone as a prognostic biomarker.

The model predictions can be evaluated across the full range of observed follow up 
times or for the event occurring by a fixed time horizon of interest. We first discuss 
recommended statistical measures that evaluate model performance in terms of 
discrimination, calibration, or overall performance. Further, we evaluate the potential 
clinical utility of the model to support clinical decision making. SAS and R code is 
provided to illustrate apparent, internal, and external validation, both for the three-
predictor model and when adding progesterone. 

We recommend the proposed set of performance measures for transparent reporting 
of the validity of predictions from survival models. 

Key words: Cox regression model; survival analysis; validation; discrimination; 
calibration; decision analysis; STRATOS Initiative
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the two cohorts (Rotterdam cohort, 6.7 years; German cohort, 4.9 years).

Prediction of survival outcomes
The Cox proportional hazards model is a standard for analysing survival data in biomedical 
settings18 A Cox model estimates log hazard ratios, but for prediction, estimation of the 
baseline survival is also required. Both are needed for a full assessment of performance 
of a survival model in new patients (external validation, Box 1). 

Box 1. The Cox proportional hazards model to make predictions for new patients 
Hazard ratios express how baseline patient characteristics (or predictors) are associated with the 
hazard rate, that is the instantaneous rate of the event occurring at time t, having survived until 
time t. Mathematically, the Cox model for the hazard rate, h(t), is
 
	 h(t) = h0(t) exp(β1χ1 + β2χ2 + β3χ3 + … + βpχp) = h0(t)exp(PI),

where the β’s are regression coefficients for the p predictors x1 to xp (e.g., the patient’s age, 
disease stage, comorbidity). These regression coefficients are the log of the hazard ratios.  The 
prognostic index, PI, represents the sum of the regression coefficients multiplied by the value 
of their respective predictors. The Cox model assumes that hazards for different values of a 
predictor are proportional during follow-up. For example, if the hazard of the event for patient A 
is half that of patient B at time t, the hazard ratio of 0.5 holds for these two patients at any other 
time point. 

The baseline hazard function h0(t) is the same for all patients analogous to the intercept in linear 
or logistic regression models. If the primary focus of an analysis is relative risk estimation, the Cox 
model can be used to obtain hazard ratios without worrying about baseline hazard estimation. 
For estimating the risk that a patient experiences the event, i.e. absolute risk estimation, we 
require the baseline survival function S0(t) which is the predicted risk of survival for the patient 
whose predictor values are the reference categories (for categorical predictors) or zero/the mean 
(for continuous predictors). By integrating the hazard function from time 0 to t we obtain the 
cumulative hazard function, , where h0(t) is the baseline cumulative hazard function. H0(t) is then 
used to estimate the probability of survival up to time t , i.e. not experiencing the event up to 
time t:

	 S(t) = S0(t)exp (β1χ1+β2χ2+β3χ3+…+βpχp) = S0(t)exp(PI)

where H(t) = H0(t)exp(PI) , the baseline survival at time t (e.g., t = 5 years after surgery). The absolute 
risk of an event within t years is calculated as 1 – S(t). The baseline hazard of a Cox model is often 
estimated non-parametrically in contrast to parametric survival models such as the accelerated 
failure time model. 

Estimates of absolute risk are necessary for many of the performance measures discussed 
below. A model development study hence needs to have reported the baseline hazard function 
or baseline survival function, or at least survival at the time point of interest, and a specification of 
calculation of the PI. This is analogous to a logistic regression model to predict a binary outcome, 
which additionally needs reporting of a model intercept rather than only odds ratios.

METHODS AND RESULTS

In the following, we discuss three key issues for the evaluation of predictions from survival 
prediction models. We then describe our breast cancer case study, present how we can 
predict survival outcomes with the Cox proportional hazards model, perform validation of 
predictions, and assess the potential clinical usefulness of a prediction model.

Key issues when validating a survival model
Three major issues differentiate the validation of survival models from models for binary 
outcomes. First, we need to decide on a time point or time range over which to assess 
the validation. This choice needs to be grounded in both the available data and the 
intended practical use of the model predictions. Altman considers a case where a model 
will be used for individual risk stratification in advanced pancreatic cancer patients.13 In 
such a case a quite short time horizon is indicated of e.g. 18 months. Other situations 
with longer follow-up might use 3, 5, 10, or even 20 years. 

A second issue is whether to consider prediction only up to a fixed time point or over 
an entire range of follow-up. In our case study we focus on 5 years from enrollment as 
the upper limit. For a cutoff of 5 years, we need to decide if only the binary outcome 
of whether the event occurred before or after 5 years is of interest, or also the ability 
to distinguish between survival of 1 and 4 years, for instance. We will give measures of 
performance for both settings. 

A last technical issue is that estimation of the baseline survival S0(t)  from the Cox model 
is necessary for full validation of a prediction model. However, many published reports 
do not provide this function (see Box 1 for further details).10 

Description of the case study
We analysed data from patients who had primary surgery for breast cancer between 
1978 and 1993 in Rotterdam.14, 15 Patients were followed until 2007. After exclusions, 
2982 patients were included in the model development cohort (Table 1). The outcome 
was recurrence-free survival, defined as time from primary surgery to recurrence or 
death. Over the maximum follow-up time of 19.3 years, 1,713 events occurred, and 
the estimated median potential follow-up time, calculated using the reverse Kaplan-
Meier method, was 9.3 years.16 Out of 2,982 patients, 1,275 suffered a recurrence or 
death within the follow-up time of interest, which was 5 years, and 126 were censored 
before 5 years. An external validation cohort consisted of 686 patients with primary 
node positive breast cancer from the German Breast Cancer Study Group,17 where 285 
suffered a recurrence or died within 5 years of follow-up, and 280 were censored before 
5 years. Five-year predictions were chosen as that was the lowest median survival from 
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Table 2: Cox regression models predicting event free survival in Rotterdam breast cancer 
development dataset (n=2982), without and with PGR

Without PGR With PGR
Hazard ratio
(95% CI)

Hazard ratio
(95% CI)

Size (mm)
    ≤20 1 1
    21-50 1.47 (1.29 to 1.67) 1.44 (1.26 to 1.63)
    >50 1.94 (1.62 to 2.32) 1.90 (1.59 to 2.27)

Number of nodes
    0 1 1
    1 to 3 1.43 (1.24 to 1.66) 1.46 (1.26 to 1.70)
    >3 2.89 (2.52 to 3.32) 2.88 (2.51 to 3.31)

Tumour grade
    1 or 2 1 1
    3 1.46 (1.27 to 1.67) 1.37 (1.19 to 1.58)

PGR (ng/ml)
1.46§ (1.27 to 1.68)

PGR1§

25 
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§Since PGR was fitted as a restricted cubic spline function, it is presented as an interquartile 
HR to aid interpretation i.e. the hazard of mortality for the 25th percentile value (i.e. PGR=4 
ng/ml) versus the hazard of mortality for the 75th percentile value (198 ng/ml).  
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Measures of performance
Model performance was assessed in the development dataset (apparent validation) and 
in the German dataset (external validation). Internal validation was assessed using the 
bootstrap resampling approach which provides stable estimates of performance for the 
population where the sample originated from. The difference between the apparent 
performance and the internal performance represents the “optimism” in performance 
of the original model (see Appendix 1 for further details).

Discrimination
A first question is how well the model predictions separate high from low risk patients: 

Table 1: Characteristics of the breast cancer cohorts used for model development and external 
validation14, 17

Characteristic Development cohort 
(n=2982, 1275 events
 <5 years)

Validation cohort 
(n=686, 285 events
 <5 years)

Size (mm) ≤20 1387 (46.5) 180 (26.2)
21-50 1291 (43.3) 453 (66.0)
>50 304 (10.2) 53 (7.7)

Number of Nodes 0 1436 (48.2) 0 (0.0)
1 to 3 764 (25.6) 376 (54.8)
>3 782 (26.2) 310 (45.2)

Grade of Tumour 1 or 2 794 (26.6) 525 (76.5)
3 2188 (73.4) 161 (23.5)

Age (years: median (IQR)) 54 (45 to 65) 53 (46 to 61)
Circulating progesterone (PGR, ng/mL: median (IQR)) 41 (4 to 198) 33 (7 to 132)

Numbers (%) unless otherwise stated

Model development in the case study
A Cox regression model was fit to estimate recurrence free survival using three 
predictors: number of lymph nodes (0, 1-3, >3), tumour size (≤20mm, 21-50mm, >50mm) 
and pathological grade (1, 2, 3, see Table 2). Although we emphasize that it is generally 
poor practice to categorise continuous variables, tumour size was not available in 
continuous form in the dataset, and number of lymph nodes was categorised to match 
its form in the well-known Nottingham Prognostic Index.1920 Since we were interested in 
predictons up to 5 years, we applied administrative censoring at 5 years. The Cox model 
assumes that hazards for different values of a predictor are proportional during follow-
up. While found some evidence of non-proportional hazards (p<0.001, Grambsch and 
Therneau global test), we chose to ignore this violation here since it was relatively minor 
at graphical inspection. Furthermore, predictions made at the time of administrative 
censoring (5 years here) have been shown to be robust regardless of such violations.21

The formula for the prognostic index was estimated as follows:
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The baseline survival at 5 years (0.802) applies to the reference categories for the three 
predictors in the model (see R and SAS code in https://github.com/danielegiardiello/
Prediction_performance_survival). So, a woman with a tumor size <=20mm, no nodes, 
and grade<3, has an estimated risk of 1 – 0.8021 = 19.8% of recurrence or breast cancer 
mortality within 5 years.
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discriminative ability. Patients with an earlier event time should exhibit a higher risk and 
those with later event time a lower risk.

Fixed time point discrimination 
Measures that assess the prediction by a fixed time point are the similar to those for 
binomial outcomes. A primary issue that arises, however, is censoring in the validation 
data set. If we choose an evaluation time of 5 years, for instance, how are subjects 
who are censored before 5 years in the validation set to be assessed? For these we 
have a predicted risk at 5 years from the model, but do not have an observed value 
of the outcome at 5 years. One approach is to use inverse probability of censoring 
weights (IPCW), to reassign the case weights of those censored to other observations 
with longer follow up (see Table S1).

Uno applies such inverse weights, and this is our recommended method for assessing 
discrimination at a fixed time point, though many others exist.22, 23 It assesses all pairs 
of patients where one experiences the event before the chosen time point and the 
other remains event free up to that time and calculates the proportion of those pairs 
for which the first mentioned patient has highest estimated risk (Table S2). Uno’s IPCW 
approach for 5 year prediction was 0.71 [95% CI 0.69 to 0.73] at model development 
(apparent validation). Internal validation suggested no statistical optimism (remained 
0.71 using 500 bootstrap samples), while external validation showed a slightly poorer 
performance (0.69 [95% CI 0.63 to 0.75], Table 3). 

Time range discrimination 
Harrell’s concordance index (C) is commonly used to assess global performance.24 It is 
calculated as a fraction where the denominator is the number of all possible pairs of 
patients in which one patient experiences the event first and the other later. Harrell’s C 
quantifies the degree of concordance as the proportion of such pairs where the patient 
with a longer survival time has better predicted survival (lower PI). Using our time range 
of 0 to 5 years, Harrell’s C was 0.67 [95% CI 0.66 to 0.69] at apparent validation. Again, 
no optimism was noted (C=0.67) and a slightly lower performance at external validation 
(C=0.65 [95% CI 0.62 to 0.69]). Uno’s C uses a time dependent weighting that more fully 
adjusts for censoring (more details in appendix 2).25 Uno’s C was also 0.67 [95% CI 0.66 
to 0.69] at apparent validation, 0.67 at internal validation and 0.64 [95% CI 0.60 to 0.68] 
for external validation in our case study. 
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observed event rates against the predicted risks is used for assessment of moderate 
calibration. 
The relation between the outcome at a fixed time point and predictions can be visualised 
by plotting the predicted risk from another ‘secondary’ Cox model against the predicted 
risk from the development model.27 The details are presented in Appendix 3 and Table S1.

The calibration plot shows good agreement between the developed and refitted models 
(Figure 1A). This plot can be characterized further by some calibration metrics. The 
Integrated Calibration Index (ICI) is the mean absolute difference between smoothed 
observed proportions and predicted probabilities. The E50 and E90 denote the 
median and the 90th percentile absolute difference between observed and predicted 
probabilities of the outcome.27 For our validation cohort, we estimated ICI was 0.03 [95% 
CI 0.01 to 0.07], E50=0.03 [95% CI 0.007 to 0.07] and E90=0.06 [95% CI 0.02 to 0.14]. 

Strong calibration
Ideally, we would check for strong calibration by comparing predictions to the observed 
event rate for every covariate pattern observed in the validation data. However, this 
is hardly ever possible due to limited sample size and/or the presence of continuous 
predictors.

Time range calibration
Mean calibration can be assessed by comparing observed to predicted event counts, 
a method that is closely related to the standardized mortality ratio (SMR), common in 
epidemiology.28, 29 For the validation cohort, the total number of observed recurrent 
free survival endpoints was 285 versus an expected number of 269.9 (ratio 1.06 
[0.94 to 1.19]). This agrees with the 5-year fixed time results. For weak and moderate 
calibration assessment, a similar path to the fixed time approach can be followed using 
a Poisson model with the predicted cumulative hazard from the original Cox model as 
an offset. The weak calibration results gave a calibration slope of 1.05 [95% CI 0.80 to 
1.30] respectively, again confirming very good calibration. Computational details are in 
Appendix 3.

Overall performance
Another common measure used at validation of predictions up to a fixed time point, 
encompassing both discrimination and calibration, is the Brier score.30–32 This measure 
also involves inverse weights and is the mean squared difference between observed 
survival at a fixed time point (event =1 or 0) and the predicted risk by that time point.

The Brier score for a model can range from 0 for a perfect model to 0.25 for a non-
informative model in a dataset with a 50% event rate by the fixed time point. When the 

bootstrap on 500 samples with replacement.
 

Calibration
A second important question to answer when validating a model is ‘how well do 
observed outcomes agree with model predictions? This relates to calibration.8, 11 
Assessment of calibration is essential at external validation 3, 26. Below we describe a 
hierarchy of calibration levels and its application to survival model predictions, in line 
with a previously proposed framework.8 

Mean calibration
Mean calibration (or calibration-in-the-large) refers to agreement of the predicted and 
observed survival fraction. 

Fixed time point mean calibration is typically expressed in terms of the ratio of the 
observed survival fraction and the average predicted risk. The observed survival fraction 
at the chosen time point needs to be estimated due to censoring, which can be done 
using the Kaplan-Meier estimator. For the external validation cohort, the Kaplan-Meier 
estimate of experiencing the event within 5 years was 51%, while the average predicted 
probability was 49%. This indicates a minor deviation from perfect mean calibration (a 
ratio of 1.04, 95% CI [0.95 to 1.14], Table 3).

Weak calibration
The term ‘weak’ refers to the limited flexibility in assessing calibration. We are essentially 
summarising calibration of the observed proportions of outcomes versus predicted 
probabilities using only two parameters i.e. a straight line. In other words, perfect weak 
calibration is defined as mean calibration and calibration slope of unity. Mean calibration 
indicates systematic underprediction or overprediction. The calibration slope indicates 
the overall strength of the PI, which can be interpreted as the level of overfitting (slope 
<1) or underfitting (slope>1). 

For a fixed time point assessment of weak calibration, we can predict the outcome at 5 
years for every patient but we need to determine the observed outcome at 5 years even 
for those who were censored before that time. One way to do this is to fit a new ‘secondary’ 
Cox model using all of the validation data with the PI from the development model as the 
only covariate. The calibration slope is the coefficient of the PI. In our case study it was 1.07 
[95% CI 0.82 to 1.32] for the 5 year predictions, confirming very good calibration.

Moderate calibration
Moderate calibration concerns whether among patients with the same predicted risk, 
the observed event rate equals the predicted risk.6 A smooth calibration plot of the 
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where Pt is the predicted probability at time t , 1 – S(t, X=1) the observed event probability 
for those classified as positive, and P(X=1) is the probability of a positive classification.
Considering only one single risk threshold for evaluation of Net Benefit is usually too 
limited, since the perceived harms and benefits of treatment may differ between 
decision makers and be context-dependent. Hence, we specify a range of reasonable 
thresholds which would be acceptable for treatment decisions.39 The Net Benefit can be 
visualised for this range of clinically relevant thresholds using a decision curve. Decision 
curve analysis allows us to compare the Net Benefit for different prediction models to 
the default strategies of treating all or no patients (‘treat all’ and ‘treat none’).37, 40 7

Based on previous research we focused on a range of thresholds from 14% to 23% for 
adjuvant chemotherapy (Figure 1B).41 If we choose the threshold of 23% the model has a 
Net Benefit of 0.27. This means that the model would identify 27 patients per 100 who will 
have recurrent breast cancer or die within 5 years of surgery and thus require adjuvant 
chemotherapy. The decision curve based on the development data shows that the model 
Net Benefit is only marginally greater than a ‘treat all’ reference strategy at the highest 
threshold within the acceptable range of 23%. However, in the external validation dataset, 
the model is not useful as it has similar Net Benefit values to the ‘treat all’ strategy for 
the full range of clinically acceptable thresholds. Therefore it is unlikely that the model is 
useful to support decisions around adjuvant chemotherapy (Figure 1C). 

All the methods we have described are summarised in the Appendix (Table S2).

Model extension with a marker
We recognize that a key interest in contemporary medical research is whether a 
particular marker (e.g. molecular, genetic, imaging) adds to the performance of an 
existing prediction model. Validation in an independent dataset is the best way to 
compare the performance of a model with and without a new marker. We extended 
our model by adding the progesterone (PGR) biomarker at primary surgery to the Cox 
model (Table 2). The results are described in appendix 4 and presented in Table 3. 
Briefly, at external validation the improvement in fixed time point discrimination was 
from 0.693 to 0.722 (delta AUC of 0.029), the improvement in time range discrimination 
was from 0.639 to 0.665 (delta C of 0.026). There was an improvement in net benefit 
(0.367 versus 0.362), which means we need to measure PGR in 200 patients for one 
additional net true positive classification.

Software
All analyses were done in SAS v 9.4 (SAS Institute Inc., Cary, NC, USA) and R version 3.6.3, 
R Foundation for Statistical Computing, Vienna, Austria). Code is provided at https://
github.com/danielegiardiello/Prediction_performance_survival.

event rate is lower, the maximum score for a non-informative model is lower, which 
complicates interpretation. A solution is to scale the Brier score, B, at 0 – 100% by 
calculating a scaled Brier score as 1-B/B0, where B0 is the Brier score when using the 
same estimated risk (the overall Kaplan-Meier estimate) for all patients.33 

At apparent validation, the Brier score was 0.210 [95% CI 0.204 to 0.216], with a null 
model Brier score B0 of 0.245, so a scaled Brier score of 14.3% [95% CI 11.8% to 16.8%]. 
The internal validation results were very similar to the apparent validation. At external 
validation, the Brier score was slightly higher at 0.224 [95% CI 0.210 to 0.240] and the 
scaled Brier score lower at 10.2% [95% CI 4.0% to 15.9%] (Table 3).

Approaches to assess clinical usefulness
Measures of discrimination and calibration quantify a model’s predictive ability from a 
statistical perspective. However, they fall short with regard to evaluating whether the model 
may actually improve clinical decision making.34–36 Specifically, we may wish to determine 
whether a model is useful to support targeting of an additional treatment to high risk 
patients. This is what decision curve analysis aims to do by calculating the Net Benefit of 
a model.36, 37 First, we need to define a clinically motivated risk threshold to decide who 
should be treated. For example, we may offer chemotherapy to patients with a 5-year 
risk of recurrence or death exceeding 20%. Using this 20% threshold, treatment benefit 
is obtained for patients who would die or whose cancer would recur within 5-years and 
have a risk ≥20%: true positive classifications. Harm of unnecessary treatment is caused 
to those patients who would not die or whose cancer would not recur within 5-years but 
have a risk ≥20%: false-positive classifications. 38If the harm of unnecessary treatment 
(i.e. a false positive decision) is small then a risk threshold close to 0% is sensible, as it 
would lead to treating most patients. However, if overtreatment is harmful, such as major 
surgery, then a higher risk threshold may be apt. The odds of the risk threshold equals the 
harm-to-benefit ratio. Realizing this, we can now calculate the Net Benefit by calculating 
the proportion of true positives (that benefit) and substracting from that the proportion of 
false positives (that are harmed), weighted by the harm-to-benefit ratio (w): 38
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B Decision curve analysis in development data

C Performance in external validation data

Figure 1A Calibration plot of model predicting recurrence within 5 years for patients with primary 
breast cancer in external validation data for fixed time assessment (A). Decision curves for predicted 
probabilities without (green line) and with (blue line) PGR in (B) development dataset; (C) external 
validation dataset.
A External validation: Fixed time assessment (predicted risk at 5 years from original model 
versus secondary model)

Footnote: The solid red line represents a restricted cubic spline between the predicted risk from the developed 
model and the predicted risk from the refitted Cox model at 5 years. The dashed lines represent the 95% 
confidence limits of the predicted risks from the refitted model. At the bottom of the plots is the density function 
for the predicted risk from the developed model. 
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reasonable. This may not be the case for patients who are lost to follow-up, where 
censoring may depend on predictors in the model and other characteristics. As well as 
the IPCW and secondary modelling approaches presented here, other approaches are 
possible, for example using pseudo-observations, which often makes the assumption 
of fully uninformative censoring. Extensions that can deal with covariate-dependent 
censoring have been proposed.45, 46

Recommendations
We provide some recommendations for assessing the performance of a survival prediction 
models (Box 2 and Table S3). For calibration at external validation, we recommend 
plotting a smooth calibration curve (moderate calibration) and reporting both mean and 
weak calibration. Where no baseline survival is reported from the development study, 
only crude visual calibration and discrimination assessment may be possible (Appendix 5). 
Moreover, we recommend that researchers developing or validating a prognostic model 
follow the TRIPOD checklist to ensure transparent reporting.7

Box 2. Recommendations for assessing performance of prediction models for survival outcomes
Assessment
•	 For overall performance, we recommend reporting a scaled Brier score for a fixed time point assessment.
•	 For discrimination, report time-dependent area under the ROC curve at the time point(s) of primary 

interest. We recommend Uno’s weighted approach. For assessment over a time range we recommend 
either Harrell’s C or Uno’s C.

•	 For calibration in an external dataset, while moderate calibration is essential, we recommend following the 
calibration hierarchy and also reporting mean and weak calibration. 

Clinical utility
•	 If the model is to support clinical decision making, use decision curve analysis to assess the Net Benefit for 

a range of clinically defendable thresholds. 

Publication
•	 When reporting development of a prediction model, include the baseline survival and ideally a link to 

a dataset containing the full baseline survival so others can validate the model at a fixed time point or 
over a range of follow up time. Report model coefficients or the hazard ratios. Both baseline survival and 
coefficients are essential for independent external validation of the model. 

•	 Use the TRIPOD checklist for reporting prediction model development and validation.

Net Benefit, with visualisation in a decision curve, is a simple summary measure to 
quantify the potential clinical usefulness when a prediction model intends to support 
clinical decision-making. Discrimination and calibration are important but not sufficient 
for clinical usefulness. For example, the decision threshold for clinical decisions may 
be outside the range of predictions provided by a model, even if that model has a high 
discriminatory ability. Furthermore, poor calibration can ruin Net Benefit, such that 
using a model can lead to worse decisions than without a model.47

DISCUSSION

This article provides guidance for different measures that may be used to assess the 
performance of a Cox proportional hazards model. The performance measures were 
illustrated for use at model development and external validation. At model development, 
the apparent performance can directly be assessed for a prediction model, and internal 
validity is commonly assessed by cross-validation or bootstrapping techniques. External 
validation is considered a stronger test for a model. We first illustrated how to evaluate 
the quality of predictions using measures of discrimination, calibration and overall 
performance. We then showed how to evaluate the quality of decisions according to 
Net Benefit and decision curve analysis. Finally, we illustrated that the performance 
measures are also applicable when assessing the added value of a new predictor, where 
specific interest may be in improvement in discrimination and Net Benefit.

We made a distinction between measures that can be used to assess the performance of 
predictions for specific time points (e.g. 5- or 10-year survival) and over a range of follow 
up time. Prediction at specific timepoints will often be most relevant since clinicians 
and patients are usually interested in prognosis within a specified period of time. As 
described, AUC, smooth calibration curves and Brier score focus on such specific time 
points. Of note, estimation of the baseline survival is treated as an optional extra step in 
most statistical software packages. The consequence is that such key information is not 
available for most prediction models that are based on the Cox model. This may lead 
to the misconception that the Cox model does not give estimates of absolute risk. If the 
baseline survival for specific times points is given together with the estimated log hazard 
ratios, external validation is feasible (see Table S3). The discrimination and Brier score 
methods presented here can easily be applied to parametric survival models such as 
Weibull or more flexible approaches42 

In the breast cancer study, the optimism in all performance measures was minimal at 
internal validation. This reflects the relatively large sample size in relation to the small 
number of predictors, which allows for robust statistical modeling. The performance at 
external validation was slightly poorer, as can in general be expected and may reflect 
slightly differential prognostic effects, but also differences in case-mix and censoring 
distribution.43 We have not addressed the common problem of missing values for 
predictors, which needs somewhat more complex handling than for binary outcome 
prediction.44 

Dealing with censoring is a key challenge in the assessment of performance of a 
prediction model for survival outcomes. If censoring is merely by end of study period 
(‘administrative censoring’), the assumption of censoring being non-informative may be 
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External validation
It is preferable to have prediction models that are transportable to new (external) 
populations that are ‘plausibly related’ to those used to develop the model.6–8 The 
simplest example involves the application of the model in patients from a different 
location. Evaluating this type of external transportability is referred to as geographical 
validation. Of specific interest is the evaluation of the heterogeneity in performance 
across many locations.9 However, because populations at any given location tend 
to change over time, for example due to changes in patient care, another type of 
external validation involves the evaluation of a model in more recent patients from the 
model development location. This is referred to as temporal validation. In addition to 
geographical and temporal validation, it may also be relevant to determine whether a 
model performs well for a different type of population than the one it was developed 
on (domain validation).10 For example, does a model that predicts mortality within 5 
years from the point of diagnosis of early breast cancer, predict accurately for patients 
diagnosed with locally advanced breast cancer?.11

Externally validating a survival prediction model is problematic if the published article 
does not report the estimate of the baseline survival function for any follow-up times. 

Appendix 2 Further details on methods for assessing discrimination
Time-dependent AUC
The standard approach of ROC curve analysis considers outcome status for a patient 
as being binary. However, in the survival setting the result depends on the timepoint 
of interest since the proportion of events changes over time. Recent research has 
incorporated this dependency on time into the estimation of sensitivity and specificity 
(and hence the AUC). This means that since the disease status can be observed at 
each time point, we may obtain different values of sensitivity and specificity throughout 
follow-up. This may be useful to determine how well the model performs for patients 
early in follow-up compared to longer term survivors. Three different approaches to 
estimating time-dependent sensitivity and specificity have been proposed. Each differ 
with regards to the time-dependent manner that the outcome status is handled.12 In 
prognostic modelling the goal is generally to predict an outcome that occurs within a 
time period of clinical interest (e.g. within 5 years in our case study). Under this scenario 
we propose to focus on one suitable approach to estimate sensitivity and specificity 
(and hence the AUC) called ‘cumulative sensitivity and dynamic specificity’. Here, at each 
time point each patient is classed as either a case or a non-case where a case is a 
patient who experiences the outcome between baseline and the time point of interest, 
t (e.g., 5 years), and a non-case is a patient who remains outcome free at t. The AUC 
evaluates whether predicted probabilities were higher for those who experience the 
outcome at or prior to t than for those who still have to experience the outcome.12 

APPENDICES

Assessing performance in prediction models with survival outcomes: practical 
guidance
Appendix 1: Types of validation
Apparent performance
Apparent performance is the model’s performance estimated on the same data that 
was used for developing the model. It is usually optimistic and therefore a poor estimate 
of the predictive performance in new individuals, even if those individuals are from the 
same population. The ultimate aim of a prediction model is to apply it on new patients 
for whom the outcome is still unknown. This is why it is important to conduct internal 
and external validation.

Internal validation
After model development it is important that we at least assess performance of the 
model’s predictions for patients from the same underlying population.1 The most well-
known method splits the data into a model development part and a model testing part. 
The model is developed on the first set of data, and its performance is assessed on the 
second. While simple and transparent, this method is often inefficient2: the available 
data is split into two smaller parts, such that both model development and performance 
assessment become more uncertain. It is better to develop the model on all available 
data to maximize development sample size, and to use resampling methods for internal 
validation. The most common methods are cross-validation and bootstrapping. Cross-
validation is a generalization of the split-sample method which involves splitting the data 
into groups. With splitting by decile, the model is estimated on 90% of the data and tested 
on the remaining 10%. This is repeated another 9 times, each time using the next 10% 
for testing. The average performance is calculated over the 10 repetitions. For more 
stability, such a 10-fold cross-validation procedure can be repeated 10 times (10x10-fold 
cv).3 Alternatively, internal validation can be done using bootstrapping, which provides 
even more stable estimates of performance (at the price of increased computation time) 
for the population where the sample originated from. This method involves generating 
samples from the underlying population by drawing n samples (in the case study we used 
n=500) with replacement from the original dataset. Each of the n samples are the same 
size as the original dataset.3 The model development process is repeated in each of the 
bootstrap samples and their performance assessed (bootstrap performance). Each of the 
models is then applied to the original dataset and test performance assessed. The average 
difference in the bootstrap and test performance is the ‘optimism’ in performance of the 
original model. Optimism-corrected performance is estimated as apparent performance 
minus optimism. It is an estimate of internal validity, reflecting validation for the underlying 
population where the data originated from.4, 5
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Table S1: Approaches to deal with censoring in the analysis of performance at a fixed time point 
for a survival outcome
Approach Concept Assumption Applications Data illustration ^
Inverse probability 
of censoring 
weights (IPCW)

Set the weights of 
patients censored 
before time t to 
zero, reassigning 
their mass to other 
patients still at risk at 
time t.

Can also be extended 
to a time dependent 
IPCW.

 

Fully uninformative 
censoring*

Weighted Brier 
score; Uno’s 
approach to 
discrimination

Uno’s C uses a time 
dependent weighting 
(more details in 
appendix 2)16

Redistribute the 
weight of 280 
patients who are 
censored before 
5 years to the 406 
with either an 
event or no event 
observed at 5 years

Use of a secondary 
model 

Impute censored 
observations by 
predictions from a 
flexible secondary 
model using the 
complementary 
log-log transformed 
predicted risk at t 
years as the only 
covariate. 

Uninformative 
censoring given 
the risk score, and 
proportional hazards 
**

Austin et al (2020) 
approach to 
calibration.18

 

Analyze 686 
patients

Pseudo values Impute censored 
patients by estimated 
survival captured in 
pseudo values

Fully uninformative 
censoring but 
extensions can 
deal with covariate-
dependent censoring.

Assess calibration 
and discrimination 
with pseudo values

Analyze 686 
patients (including 
280 censored 
patients) with 
pseudo values 

^ 280/686 GBSG (external validation dataset) subjects are censored before 5 years
* This assumption is stronger than at model development, where censoring is assumed to be uninformative given 
the risk score (as modeled from predictors or outcome). However, methods are available to make the weights 
covariate dependent19

** This assumption is similar to model development with Cox regression.

The Kamarudin review identified eight methods of evaluating the time-dependent AUC 
using the cumulative sensitivity and dynamic specificity approach and we illustrate one in 
our case study that is recommended by Blanche et al, 2013;12, 13 the inverse probability of 
censoring weighting approach by Uno et al, 2007.14 This approach allows us to reassign 
the case weights of those censored to other observations with longer follow up (see 
Table S1 for details of various methods for dealing with censored patients).

Concordance
Concordance (C) is one of the most popular measures of discrimination. C is defined 
as the fraction of all pairs of observations for which the rank order of the predictions 
agrees with the rank order of the actual response, i.e., the prediction model got them 
in the right order. Observation pairs that have the same response are not used, while 
pairs that have the same predicted value count as 1/2 an agreement. For a continuous 
response this definition is equivalent to Somers’ d, for a binomial response it leads 
to the area under the curve (AUC), and for a survival response to Harrell’s C. C is only 
equivalent to the AUC for binomial outcomes which has caused confusion for applied 
researchers who incorrectly use these terms interchangeably in the survival setting.15 
For survival data, Harrell’s C is the most commonly applied, however, it does not account 
for censored data. Two important refinements to C for survival data are the addition 
of administrative censoring at the time point of interest, t, and the addition of a time 
dependent weighting that more fully adjusts for censoring.16 If interest is focused on 
predicted survival up to t=5 years, for instance, then relative rankings between patient 
pairs who both have events beyond 5 years might be considered irrelevant. For the 
example data, the estimated 5-year concordance for prediction in the development 
and validation data sets was 0.674 (95% CI 0.660 to 0.688) and 0.652 (95% CI 0.619 
to 0.685), respectively, using Harrell’s C]). Uno’s C uses a time dependent weighting 
that more fully adjusts for censoring. Using Uno’s C, the estimated 5-year concordance 
was 0.673 (95% CI 0.657 to 0.689) in the development data and 0.639 (95% CI 0.602 
to 0.676) in the external data. It has been shown that the bias from Harrell’s C is more 
pronounced when it is greater than 0.8 which is rare for prediction modelling in the 
absence of overfitting.17 Weighted measures such as Uno have been shown to become 
biased when censoring is large leading to extreme weights.17 
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Lemeshow test including tests proposed by Grønnesby and Borgan,30 which should not 
be used for similar reasons.

Fig S1A: Time range assessment of O/E in external dataset
Note: the solid red line represents O/E at each month up to 5 years and the dashed lines represent the 
95% confidence limits of O/E

For survival outcomes, estimation of the calibration slope is possible using a Poisson 
model. This is done by including the PI in the validation dataset (using the coefficients from 
the original Cox model) as a predictor in a Poisson model with the difference between 
the log cumulative hazard and PI as an offset and using a log link.22 The regression 
coefficient for PI represents the calibration slope. In our study the calibration slope was 
1.05 (95% CI 0.80 to 1.30), so close to the ideal value of 1. The calibration intercept is just 
the intercept term before exponentiating in the previous section on mean calibration. 
This approach is termed weak calibration because of its limited flexibility in assessing 
calibration. We are essentially summarising calibration (of the observed proportions of 
outcomes versus predicted probabilities) using only two parameters. However, more 
subtle violations of miscalibration may remain undetected. 

Moderate calibration
The relation between the outcome over the time range and predictions can be 
visualised by plotting the predicted cumulative hazard from the Poisson model against 
the predicted risk from the development model. In the external dataset, the PI from 

Appendix 3 Calibration assessment 
Calibration can be evaluated either across all follow up time points (time range 
assessment) or at one specific time point. Time range assessment refers to the evaluation 
of estimated risks at the time of the event (or censoring) for each patient. Evaluating 
models over the time range requires the availability of the development dataset, or 
at least the baseline survival for all time points. Here we describe the methods for 
assessment of calibration over the time range:

Mean calibration
When we wish to assess calibration across all time points then one method to deal 
with this is to consider a comparison of the total number of observed events (O) as 
compared to expected events (E), counts instead of probabilities. The expected count 
for each subject is defined as the predicted cumulative hazard for that subject, under the 
model, up until that subject’s event time or censoring. This approach has a long history 
in epidemiology where sum(observed)/sum(expected) is known as a standardized 
incidence ratio (SIR).24, 25 Such data can be analysed using standard Poisson methods 
and software (Berry, 1983).26 However, in order to estimate the cumulative hazard, the 
dataset used to develop the original model or, at least, the baseline survival for all time 
points is required.22 Failing that, linear interpolation may be used if the baseline survival 
is available at several time points.

For the Rotterdam dataset, there are 1275 events within 5 years of study entry. Using 
the German Breast Cancer Study Group (GBCSG) validation dataset, there are 285 
observed events while the Rotterdam model applied to that data predicts 269.9, giving 
an O/E ratio of 1.06. Using the individual observed (as outcome) and expected values 
(log cumulative hazard as an offset term) a Poisson model, estimates an intercept term 
of 0.054 with a standard error of 0.059. The exponential of this value leads to exactly the 
same O/E estimate of 1.06, and a confidence interval of (0.94, 1.19). Fig S1A shows how 
O/E changes over time, remaining stable from 18 months.

Weak calibration
For binary outcomes, calibration can be inspected visually using a calibration plot of 
the observed proportion of outcome associated with a model’s predicted risk. The PI is 
regressed on the observed outcomes using a logistic calibration model.27 The coefficient 
of PI is the calibration slope and its value indicates whether there is overfitting (slope<1) 
or underfitting (slope>1).28 Since the calibration slope does not involve grouping 
patients and provides a measure of the magnitude and direction of miscalibration with 
95% confidence interval, it is preferred to the Hosmer-Lemeshow goodness-of-fit test, 
the use of which is discouraged due to focus on p-values and poor test performance 
characteristics.28, 29 For the Cox model, there are different variations of the Hosmer-
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Appendix 4 Incremental value of PGR
We extended the model by adding the progesterone (PGR) biomarker at primary surgery 
to the Cox model. Following examination for non-linearity, PGR was fitted as a restricted 
cubic spline function with 3 knots (see Figure S2). We repeated the apparent, internal 
and external validation processes on this extended model.
 
Performance in development dataset
PGR had additional predictive value when added to the original model, increasing 
the model chi-squared from 483.7 to 516.7 (LR statistic 33.0, df=2, P<0.001) in the 
development dataset. Overall performance showed a small increase: Brier score 
decreased from 0.210 to 0.209, and the scaled Brier score increased from 14.3% to 
14.9% (Table 4). The discriminative ability at 5 years follow-up also increased marginally 
(e.g., Uno’s weight approach increased from 0.712 to 0.720). 

For a threshold of 23%, the model with PGR included had a slightly larger net benefit 
than the model without PGR (0.274 versus 0.267) (Figure 1B). Hence, at this particular 
cut-off, the model with PGR would be expected to lead to one more net true positive 
classification per 154 patients (1/0.0065) at the same number of false positive 
classifications.

Performance in external dataset
Comparing the above performance measures for the model with and without PGR in 
the external dataset, the former was better overall. The improvement in fixed time 
point discrimination was from 0.693 to 0.722 (delta AUC of 0.029) at external validation 
while improvement across the time range was from 0.639 to 0.665 (delta C of 0.026). 
Globally, the total number of observed recurrent free survival endpoints was 285 versus 
an expected number of 279.0. Using the Poisson model this equated to a calibration-
in-the-large SIR of 1.02 (95% CI 0.91 to 1.15)). The calibration slope was 1.16 (95% 
CI 0.93 to 1.40). Mean calibration on average showed some improvement with PGR 
included. The calibration plot of O/E across all time points up to 5 years shows relatively 
consistent results from 18 months onwards (Figure S3A). The calibration plot of the 
predicted cumulative hazard in the original Cox model versus the Poisson model shows 
good agreement, although some underprediction in the higher risk patients (Figure 
S3B). Focusing on calibration at the fixed time point of 5 years we found that the Kaplan-
Meier estimate of experiencing the event within 5 years was 0.49, while the average 
predicted probability was 0.50. The calibration plot (Figure S3C) shows evidence of good 
agreement overall for predictions of mortality over 5 years. The ICI decreased from 
0.03 to 0.02 when PGR was included and E50 dropped from 0.03 to 0.01. The scaled 
Brier score increased from 10.2% to 13.6% at external validation. Hence a substantial 
improvement in statistical performance was found.

the original Cox model is modelled as a restricted cubic spline in a Poisson model with 
the log of the cumulative hazard as the offset. Predictions from this Poisson model 
represent a proxy to the observed outcomes for all patients including those who were 
censored. The calibration plot shows good agreement between the Cox and Poisson 
models (Fig S1B). 

Figure S1B: Calibration plot of predicted cumulative hazard of recurrence over the time range for 
Cox model versus Poisson model 
Note: the solid red line represents the relationship between the predicted cumulative hazard from 
the developed model and the predicted cumulative hazard from the Poisson model. The dashed lines 
represent the 95% confidence limits of the predicted cumulative hazard from the Poisson model.
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Figure S3: Calibration plots of Cox model with PGR predicting recurrence within 5 years for patients 
with primary breast cancer in the external validation data.

A O/E across the time range

B Predicted cumulative hazard from original model versus Poisson model

With PGR in the model, the risk groups are well separated in both the development and 
validation datasets which implies that the model discriminates well in these cohorts 
(Figure S4). However, from approximately 3 years into follow-up the middle two risk 
groups converge for the external dataset.

In the external dataset, the net benefit was similar for models with or without PGR 
(Figure 1C). However, at the risk threshold of 23% the model without PGR was no better 
than treating all patients. The model with PGR had a slightly larger net benefit (0.367 
versus 0.362), or one additional net true positive classification per 200 patients (1/0.005) 
at the same number of false positive classifications.

Figure S2: Plot showing unadjusted (univariable) relations between PGR and predicted probability 
of recurrence (solid curve) with 95% confidence bands. The relation was non-linear characterised 
by a restricted cubic spline function with 3 knots. 
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Appendix 5 What to do if the development dataset (or its baseline hazard) is not 
available
In case the baseline hazard/survival function (either as a look-up table or mathematical 
function) of a survival model is not available then there is not enough information 
to formally assess calibration. However, if the development paper reported Kaplan-
Meier curves for risk groups of the PI then it is possible to compare these with the 
corresponding Kaplan-Meier curves from the validation cohort.21, 32 This is not a strict 
comparison between observed and predicted values since we are using Kaplan-Meier 
estimates and not the Cox model-based predictions. If the survival curves for risk groups 
overlap between the development and validation datasets, then this may provide an 
indication of agreement. Further, plots where the curves are widely separated between 
risk groups provides informal evidence of discrimination. 

In the case study, we centred the PI for the model including PGR at average risk by 
subtracting its mean of 0.65 and then categorised it into quarters. The groups at the 
extreme ends represent the lower and upper fourth of the risk of recurrence. This 
procedure was done in both the development and validation datasets. For the validation 
dataset the PI was calculated based on the coefficients from the model fitted to the 
development dataset (Figure S4). In the development dataset the four risk groups are 
well separated which implies that the model has discriminative ability in this cohort. 
However, the curves for the second and third fourths are close together in the validation 
data suggesting that the model does not discriminate well between these two groups. 
Otherwise, the discrimination is broadly similar between the two datasets. The curves 
do not agree too well in absolute risks between the two datasets suggesting that there 
is a degree of miscalibration. The percentage of patients within the four groups in the 
validation dataset were 8.8%, 21.0%, 36.3% and 34.0% respectively so there are more in 
the two highest risk fourths and fewer in the lowest risk fourth than in the development 
dataset. The mean (SD) PI was 0.24 (0.50) in the validation dataset, implying that the 
prognostic profile was somewhat worse than in the development dataset. This is evident 
from Table 1 which shows that women in the validation dataset had larger tumours and 
more nodes.

C Predicted risk from original model versus secondary model at 5 years
Note: In A, the solid red line represents O/E at each month up to 5 years and the dashed lines represent the 95% 
confidence limits of O/E; In B, the solid red line represents the relationship between the predicted cumulative hazard 
from the developed model and the predicted cumulative hazard from the Poisson model. The dashed lines represent 
the 95% confidence limits of the predicted cumulative hazard from the Poisson model. In C, the solid red line represents 
a restricted cubic spline between the predicted risk from the developed model and the predicted risk from the refitted 
model at 5 years. The dashed lines represent the 95% confidence limits of the predicted risks from the refitted model. At 
the bottom of the plots is the density function for the predicted risk from the developed model. 

Table S3 What calibration assessments can I do based on the model development 
information I have?
What development data 
do you have?

Fixed 
timepoint 
assessment

Continuous 
time 
assessment

Methods

Whole dataset used to 
develop model

P P See section on calibration and appendix 3 for 
calibration methods 

Table of baseline survival 
at all observed time points 
+ PI

P P See section on calibration and appendix 3 for 
calibration methods

Baseline survival at 
multiple (but not all) time 
points (e.g., yearly) + PI

P P Use interpolation methods to estimate baseline 
survival (Crowson et al, 2016).22 Then see section on 
calibration and appendix 3 for calibration methods.

A predicted survival curve 
based on the model + PI

P P Use digitisation software to estimate baseline 
survival (Guyot et al, 2012).31 Then see the section of 
calibration and appendix 3 for calibration methods.

Baseline survival at time 
point of interest + PI

P See section on calibration and appendix 3 for 
calibration methods at fixed time points.

Published Kaplan-Meier 
curves for risk groups

Formal assessment not possible. Can visually 
compare Kaplan-Meier curves to those from 
validation data (Appendix 5; Royston and Altman, 
2013)21

None of the above Calibration assessment not possible
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