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Chapter 4

Division in modules and
Kummer theory

by Sebastiano Tronto [Tro21]

1 Introduction

Let K be a number field and fix an algebraic closure K of K. If G is a connected
commutative algebraic group over K and A is a subgroup of G(K), we may
consider for every positive integer n the field extension K(n−1A) of K inside K
generated by all points P ∈ G(K) such that nP ∈ A. This is a Galois extension
of K containing the n-torsion field K(G[n]) of G.

If G = Gm is the multiplicative group, extensions of this kind are studied by
classical Kummer theory. Explicit results for this case can be found for example
in [PS19], [PST20b] and [PST20a]. The more general case of an extension of an
abelian variety by a torus is treated in Ribet’s foundational paper [Rib79]. Under
certain assumptions, for example if G is the product of an abelian variety and a
torus and A is free of rank r with a basis of points that are linearly independent
over EndK(G), it is known that the ratio

nrs

[K (n−1A) : K(G[n])]
(1.1)
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142 CHAPTER 4. DIVISION IN MODULES AND KUMMER THEORY

where s is the positive integer such that G(K)[n] ∼= (Z/nZ)s for all n > 1, is
bounded independently of n (see also [Ber88, Théorème 5.2] and [Hin88, Lemme
14]).

In the case of elliptic curves, one may hope to obtain an explicit version of
this result. Indeed the results of [Chapter 1] and [Chapter 3] provide such a
statement under the assumption that EndK(G) = Z, and they show that an
effective bound depends only on the abelian group structure of A and on the
`-adic Galois representations associated with the torsion of G for every prime `.

It is clear from the above discussion that the existence of non-trivial endo-
morphisms defined over K plays an essential role in this theory. Without loss of
generality we can take A to be an EndK(G)-module, as done by Javan Peykar in
his thesis [JP21]. This approach leads to an explicit “open image theorem” for
Kummer extensions for CM elliptic curves, albeit under certain technical assup-
tions on EndK(G).

Motivated by [JP21] and by the author’s previous results [Chapter 3], most
of this paper is devoted to developing a general abstract framework for the study
of certain division modules of a fixed R-module M , where R is any unitary ring.
We strive to develop this theory in a way that is independent from the “ambient
module” G(K), taking inspiration from [Pal04] as well.

We introduce a natural generalization of the concept of injective modules,
which to the author’s knowledge is new. We also define a category of (J, T )-
extensions, which shares many interesting properties with the category of field
extensions. We believe that these topics are interesting in their own right.

At the end of the paper we prove the following result, which was previously
known in this effective form only under certain restrictions on EndK(E):

Theorem. Let E be an elliptic curve over a number field K, let R = EndK(E)
and let M be an R-submodule of E(K). There exists a positive integer c, de-
pending only on the R-module structure of M and on the image of the Galois
representations associated with the torsion of E, such that for every positive in-
teger n

n2 rkR(M)

[K(n−1M) : K(E[n])]
divides c .

This result follows from Theorem 5.11, which is essentially an application
of Theorem 5.4, which in turn is a generalization of [Chapter 3, Theorem 5.9].
The results on Galois representations needed to apply this general theorem are
mostly taken from [Chapter 1], and it can be easily seen that the given bounds
only depend on the `-adic representations, so that the constant c of our main
theorem is effectively computable.
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1.1 Notation

In this paper, rings are assumed to be unitary, but not necessarily commutative;
subrings always contain the multiplicative unit 1. Unless otherwise specified, by
ideal of a ring we mean a right ideal and by module over a ring we mean a left
module. If R is a ring and n is a positive integer, we will denote by Matn×n(R)
the ring of n× n matrices with coefficients in R.

We denote by Z the integers and by Z>0 the set of positive integers. If p
is a prime number we denote by Zp the completion of the ring Z at the ideal

(p). We denote by Ẑ the product of Zp over all primes p, which we identify with
lim←−n∈Z>0

Z/nZ.

1.2 Structure of the paper

In Section 2 we introduce the concept of ideal filter and of division module by
an ideal filter. This provides us with a way to generalize the notion of injective
module, and we are able to show the equivalent of Baer’s criterion for injectivity
and the existence of the analogue of injective hulls in this setting. At the end of
Section 2 we prove a certain duality result for J-injective modules that will be
applied in Section 5.

In Section 3 we construct the category of (J, T )-extensions, our abstraction
for the modules of division points of an algebraic group. This category behaves
similarly to that of field extensions of a given field. After studying an interesting
pair of adjoint functors, we conclude this section by proving the existence of a
maximal (J, T )-extension, in analogy with field theory.

Section 4 is devoted to the study of automorphism groups of (J, T )-extensions.
The fundamental exact sequence of Theorem 4.10 gives us a framework to study
the Galois groups of Kummer extensions associated with a commutative algebraic
group, provided that some technical assumptions hold. This is what we do in
Section 5, and we conclude by applying these results to elliptic curves.
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2 J-injectivity

2.1 Ideal filters and division in modules

In order to study division in modules over a general ring, we take inspiration from
[JP21]. However, instead of using Steinitz ideals (that is, ideals of the completion
of a ring), we use a more general concept that we now introduce.

Definition 2.1. Let R be a ring. We call a non-empty set J of right ideals of R
an ideal filter if the following conditions hold:

1. If I, I ′ ∈ J then I ∩ I ′ ∈ J .

2. If I ∈ J and I ′ is a right ideal containing I, then I ′ ∈ J .

The minimal ideal filter is {R}, while the maximal ideal filter contains all
ideals (equivalently, it contains the zero ideal): we denote the former by 1 and
the latter by 0.

For any ring R and any set S of right ideals of R we call the ideal filter
generated by S the smallest ideal filter containing S: it consists of all ideals of R
which contain a finite intersection of elements of S.

Example 2.2. We will be interested in the ideal filters generated by the powers
of a given prime number p

p∞ := {I right ideal of R | I ⊇ pnR for some n ∈ N}

and the one generated by all non-zero integers

∞ := {I right ideal of R | I ⊇ nR for some n ∈ Z>0} .

Notice that if pn = 0 (resp. n = 0) for some n ∈ Z>0 then p∞ (resp.∞) is simply
the maximal ideal filter 0. We will often consider such ideal filters in the case
where R is a commutative integral domain of characteristic different from p (resp.
characteristic 0).

Fix for the remainder of this section a ring R.

Definition 2.3. If M ⊆ N are left R-modules, for any right ideal I of R we call

(M :N I) := {x ∈ N | Ix ⊆M}

the I-division module of M in N .

A similar concept for ideals of R is sometimes referred to as quotient ideal,
but we deemed a change of terminology appropriate.

We can easily generalize this notion to ideal filters of R.



2. J-INJECTIVITY 145

Definition 2.4. Let J be an ideal filter of R and let M ⊆ N be left R-modules.
We call

(M :N J) :=
⋃
I∈J

(M :N I)

the J-division module of M in N . One can easily check that (M :N J) is an
R-submodule of N .

Moreover, we call N [J ] := (0 :N J) the J-torsion submodule of N . We call N
a J-torsion module if N = N [J ].

Remark 2.5. If J = 0 then (M :N J) = N and M [J ] = M . On the other hand,
if J = 1 then (M :N J) = M and M [J ] = 0.

Remark 2.6. Let M ⊆ N be left R-modules and let J and J ′ be ideal filters of
R with J ′ ⊆ J . If M ′ ⊆ M and N ′ ⊆ N are submodules with M ′ ⊆ N ′, then it
is clear from the definition of J-division module that (M ′ :N ′ J

′) ⊆ (M :N J).

Definition 2.7. We say that an ideal filter J of R is complete if for every left
R-module N and every submodule M ⊆ N we have

((M :N J) :N J) = (M :N J) .

We say that an ideal filter J is product-closed if for any I, I ′ ∈ J we have
II ′ ∈ J .

Proposition 2.8. Let R be a ring and let J be a product-closed ideal filter of R.
If for every I ∈ J the left ideal RI is finitely generated, then J is complete. In
particular, every product-closed ideal filter over a left-Noetherian ring is complete.

Proof. Let J be a product-closed ideal filter of R and let M ⊆ N be left R-
modules. The inclusion (M :N J) ⊆ ((M :N J) :N J) is always true, so let us
prove the other inclusion. Let x ∈ N be such that there is I ∈ J with Ix ⊆
(M :N J). Let {y1, . . . yn} be a set of generators for the left ideal RI. Then for
every i = 1, . . . n there is Ii ∈ J such that Iiyix ⊆M . By definition of ideal filter
we have I ′ :=

⋂n
i=1 Ii ∈ J and since J is product-closed we have I ′I ∈ J . Since

{y1, . . . , yn} is a set of generators of the left ideal RI and I ′ is a right ideal we
have I ′Ix = I ′(RI)x ⊆M , which shows that J is complete.

Example 2.9. The ideal filters introduced in Example 2.2 are both product-
closed. If, for example, R is Noetherian, then they are also complete.

We conclude this subsection with a list of properties of division modules.

Lemma 2.10. Let M ⊆ N ⊆ P and M ′ be left R-modules and let J and J ′ be
ideal filters of R. Then the following properties hold:
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1. (M :N J) = (M :P J) ∩N .

2.
(
M :(M :NJ) J

)
= (M :N J).

3. (N/M)[J ] = (M :N J) /M .

4. (M :N J) = N if and only if N/M is J-torsion.

5. (M ⊕M ′)[J ] = M [J ]⊕M ′[J ].

Proof.

1. The inclusion “⊆” is obvious; for the other inclusion it suffices to notice
that if n ∈ N is such that In ⊆ M for some I ∈ J then by definition
n ∈ (M :N J).

2. Follows directly from (1).

3. We have

(N/M)[J ] =
⋃
I∈J

(N/M)[I] =

=
⋃
I∈J
{n+M ∈ N/M | I(n+M) = M} =

=
⋃
I∈J
{n ∈ N | In ⊆M} /M =

=
⋃
I∈J

(M :N I) /M =

= (M :N J) /M .

4. By (3) we have that (N/M)[J ] = N/M if and only if (M :N J) = N .

5. For any right ideal I and any (m,m′) ∈M ⊕M ′ we have that I(m,m′) = 0
if and only if Im = Im′ = 0. This implies that (M⊕M ′)[I] = M [I]⊕M ′[I],
so we have

(M ⊕M ′)[J ] =
⋃
I∈J

(M ⊕M ′)[I] =

=
⋃
I∈J

M [I]⊕M ′[I] =

= M [J ]⊕M ′[J ].
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2.2 J-maps and J-extensions

Fix for this section a ring R and a complete ideal filter J of R. We introduce here
some simple notions that will lead us closer to our definition of (J, T )-extensions.

Definition 2.11. Let M be a left R-module. An R-module homomorphism
ϕ : M → N is called a J-map if (ϕ(M) :N J) = N . If ϕ is injective we will call
it a J-extension, and we say that N is a J-extension of M .

Remark 2.12. By Lemma 2.10(4) a homomorphism ϕ : M → N is a J-map if
and only if N/ϕ(M) is J-torsion. In particular, if J = 0, then every homomor-
phism of R-modules is a J-map.

It is clear from the definition that, if ϕ : M → N and ψ : M → P are two
J-maps, then any R-module homomorphism f : N → P such that f ◦ ϕ = ψ is
also a J-map.

The following lemma, which strongly relies on the assumption that J is com-
plete, shows moreover that R-modules and J-maps form a subcategory of the
category of R-modules.

Lemma 2.13. Let M,N and P be R-modules and let ϕ : M → N and ψ : N → P
be R-module homomorphisms. If ϕ and ψ are J-maps, then so is ψ ◦ ϕ.

Proof. Since J is complete we have

P = (ψ(N) :P J) =

=
((
ψϕ(M) :ψ(N) J

)
:P J

)
⊆

⊆ ((ψϕ(M) :P J) :P J) =

= (ψϕ(M) :P J)

hence (ψϕ(M) :P J) = P and ψ ◦ ϕ is a J-map.

Remark 2.14. Any homomorphism of R-modules ϕ : M → N such that N is J-
torsion is a J-map. In particular, the restriction of an R-module homomorphism
to the J-torsion submodule is a J-map.

The following lemma illustrates how certain properties of a J-map largely
depend on its restriction to the J-torsion submodule. Recall that an injective R-
module homomorphism f : M ↪→ N is called an essential extension if for every
submodule N ′ ⊆ N we have N ′ ∩ f(M) = 0 =⇒ N ′ = 0.

Lemma 2.15. A J-map ϕ : M → N is essential if and only if ϕ|M [J] : M [J ]→
N [J ] is.
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Proof. Notice that the statement is trivially true in case J = 0, so we may assume
that J 6= 0. If ϕ is essential then clearly so is ϕ|M [J], because any submodule N ′

of N [J ] such that N ′ ∩ϕ(M [J ]) = 0 is in particular a submodule of N such that
N ′ ∩ ϕ(M) = 0.

Assume than that ϕ|M [J] : M [J ] → N [J ] is essential. Let N ′ ⊆ N be a

non-trivial submodule and let n ∈ N ′ be a non-zero element. If n ∈ N [J ] then
N ′ ∩N [J ] is non-trivial, and since ϕ|M [J] is essential then N ′ ∩ ϕ(M)[J ] is non-

trivial as well. So we may assume that n 6∈ N [J ].
Since ϕ : M → N is a J-map, there is I ∈ J such that In ⊆ ϕ(M). In

particular, since 0 6∈ J and n is not J-torsion, there is r ∈ R such that 0 6= rn ∈
ϕ(M). Since N ′ is a submodule we have rn ∈ N ′ ∩ ϕ(M), so ϕ : M → N is an
essential extension.

Lemma 2.16. Let ϕ : M → N be a J-map and let f, g : N → P be R-module
homomorphisms such that f ◦ ϕ = g ◦ ϕ. Then for every n ∈ N we have that
f(n)− g(n) ∈ P [J ].

Proof. The statement is clearly true for J = 0, so we may assume that J 6= 0.
Since (ϕ(M) :N J) = N there is I ∈ J such that In ⊆ ϕ(M). In particular there
is a non-zero r ∈ I such that rn ∈ ϕ(M), say rn = ϕ(m) for some m ∈M . This
implies that

r(f(n)− g(n)) = f(ϕ(m))− g(ϕ(m)) = 0

thus f(n)− g(n) ∈ P [J ].

2.3 J-injective modules and J-hulls

Fix for this section a ring R and a complete ideal filter J of R. We introduce the
notion of J-injective module, which generalizes the classical notion of injectivity.

Definition 2.17. A left R-module Q is called J-injective if for every J-extension
i : M ↪→ N and every R-module homomorphism f : M → Q there exists a
homomorphism g : N → Q such that g ◦ i = f .

Remark 2.18. Notice that in case J = 0 the definition of J-injective R-module
coincides with that of injective module. Moreover, if J ′ is a complete ideal filter
of R such that J ′ ⊆ J , then a J-injective module is also J ′-injective.

Example 2.19. A Z-module is p∞-injective if and only if it is p-divisible as
an abelian group. The proof of this fact is completely analogous to that of the
well-known result that a Z-module is injective if and only if it is divisible.

The following proposition is an analogue of the well-known Baer’s criterion in
the classical case of injective modules.
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Proposition 2.20. A left R-module Q is J-injective if and only if for every
two-sided ideal I ∈ J and every R-module homomorphism f : I → Q there is an
R-module homomorphism g : R→ Q that extends f .

Proof. The “only if” part is trivial, because any two-sided ideal of R is also a left
R-module and I ↪→ R is a J-extension if I ∈ J . For the other implication, let i :
M ↪→ N be a J-extension and let f : M → Q be any R-module homomorphism.
By Zorn’s Lemma there is a submodule N ′ of N and an extension g′ : N ′ → Q
of f to N ′ that is maximal in the sense that it cannot be extended to any larger
submodule of N . If N ′ = N we are done, so assume that N ′ 6= N and let
x ∈ N \N ′.

Let I be the two-sided ideal of R generated by {r ∈ R | rx ∈ N ′}. Since
i(M) ⊆ N ′ and (i(M) :N J) = N there is I ′ ∈ J such that I ′x ⊆ N ′, which
implies I ′ ⊆ I, so also I ∈ J . By assumption the map I → Q that sends y ∈ I to
g′(yx) extends to a map h : R → Q. Since ker(R → Rx) is contained in ker(h),
the map h gives rise to a map h′ : Rx → Q by sending rx ∈ Rx to h(r). By
definition the restrictions of g′ and h′ to N ′ ∩ Rx coincide, so we can define a
map g′′ : N ′ + Rx → Q that extends both. This contradicts the maximality of
g′, so we conclude that N ′ = N .

Remark 2.21. Let R be an integral domain and let J be the ideal filter 0 on
R. Since R is an integral domain, the set of ideals J ′ = J \ {0} is an ideal filter.
Using Proposition 2.20 one can easily show that an R-module Q is J-injective if
and only if it is J ′-injective. Indeed, one implication holds, as remarked above,
because J ⊆ J ′, and for the other it is enough to notice that the unique map
0→ Q can always be extended to the zero map on R.

One advantage of using J ′ instead of J is that the J ′-torsion submodule may
be different from the whole module.

Example 2.22. Let M be an abelian group, let p be a prime and let J = p∞ be
the ideal filter of Z introduced in Example 2.2. Then the localization M [p−1] is a
J-injective Z-module. Indeed, if i : N ↪→ P is a J-extension and f : N →M [p−1]
is any homomorphism then for every x ∈ P there is k ∈ N such that pkx ∈ i(N),

and one can define g(x) := f(pkx)
pk

. It is easy to check that g is a well-defined
group homomorphism such that g ◦ i = f .

Proposition 2.23. Let M be a J-injective R-module. If f : M ↪→ N is an
essential J-extension, then it is an isomorphism.

Proof. By definition of J-injectivity there is a map g : N →M such that g ◦ f =
idM . Then g is surjective and since f is an essential extension g is also injective,
so it is an isomorphism.
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Recall that an injective hull of an R-module M is an essential extension
i : M ↪→ N such that N is injective as an R-module. It is well-known that every
R-module M admits an injective hull and that any two injective hulls i : M ↪→ Ω
and j : M ↪→ Γ are isomorphic via a (not necessarily unique) isomorphism that
commutes with i and j, see [Bae40], [ES53] or [Fle68].

Lemma 2.24. Let R be a ring and let M be a left R-module. If i : M ↪→ Ω is
an injective hull and j : M ↪→ N is an essential extension, there is an injective
R-module homomorphism ϕ : N ↪→ Ω such that ϕ ◦ j = i. Moreover, ϕ : N ↪→ Ω
is an injective hull.

Proof. Since Ω is injective there exists an R-module homomorphism ϕ : N → Ω
such that ϕ ◦ j = i. Since i is injective and j is an essential extension, then also
ϕ is injective.

The last part follows from the fact that Ω is injective and ϕ : N ↪→ Ω is an
essential extension, since i : M ↪→ Ω is.

We conclude this section by proving that every R-module admits a J-hull,
which is the generalization of an injective hull:

Definition 2.25. Let M be a left R-module. A J-extension ι : M ↪→ Ω is called
a J-hull of M if it is an essential extension and Ω is J-injective.

Remark 2.26. If J = 0 the definition of J-hull coincides with that of injective
hull.

Remark 2.27. If fi : Mi ↪→ Ni, for i = 1, . . . , k, are J-hulls, then the finite sum

⊕ifi :

k⊕
i=1

Mi ↪→
k⊕
i=1

Ni

is a J-hull. Indeed
⊕

iNi is J-injective because it is a finite direct sum of J-
injective modules, and it is easy to see that it is also an essential J-extension of⊕

iMi.

Lemma 2.28. Let Q be a J-injective R-module and let P ⊆ Q be any submodule.
Then (P :Q J) is J-injective.

Proof. Let i : M ↪→ N be a J-extension and let f : M → (P :Q J) be any R-
module homomorphism. Denote by j : (P :Q J) ↪→ Q the inclusion. Since Q is J-
injective, there is a map g : N → Q such that g◦i = j◦f . For every x ∈ N there is
some I ∈ J such that Ix ⊆ i(M) and thus Ig(x) = g(Ix) ⊆ g(i(M)) = j(f(M)),
which means that the image of g is contained in (P :Q J). This shows that
(P :Q J) is J-injective.
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Theorem 2.29. Every left R-module M admits a J-hull. Moreover, the following
holds for any J-hull ι : M ↪→ Ω of M :

1. For every J-extension i : M ↪→ N there is a J-hull j : N ↪→ Ω with j◦i = ι.

2. For every J-hull ι′ : M ↪→ Ω′ there is an isomorphism ϕ : Ω
∼→ Ω′ with

ϕ ◦ ι = ι′.

Proof. Let ι : M ↪→ Γ be an injective hull of M and let Ω := (ι(M) :Γ J). Since
ι : M ↪→ Γ is an essential extension then also ι : M ↪→ Ω is, and by Lemma 2.10(2)
we have (ι(M) :Ω J) = Ω, so ι : M ↪→ Ω is a J-extension of M . By Lemma 2.28
the R-module Ω is J-injective, so it is a J-hull of M .

For (1), since Ω is J-injective there is a map j : N → Ω such that j ◦ i = ι.
Moreover since ι : M ↪→ Ω is an essential extension also j : N ↪→ Ω is, so it is a
J-hull.

For (2), let ι : M ↪→ Ω and ι′ : M ↪→ Ω′ be two J-hulls. Since Ω′ is J-injective
there is an R-module homomorphism f : Ω→ Ω′ such that f ◦ ι = ι′, so since ι is
an essential extension f is injective. But then, since idΩ : Ω ↪→ Ω is a J-hull by
(1), there is an R-module homomorphism g : Ω′ → Ω such that g ◦ f = idΩ, so in
particular g is surjective. But we also have g ◦ ι′ = ι, and since ι′ is an essential
extension then g must be injective too, hence it is an isomorphism.

Example 2.30. Let M be a finitely generated abelian group, let p be a prime
number and let J = p∞ be the ideal filter of Z introduced in Example 2.2. Write
M as

M = Zr ⊕
k⊕
i=1

Z/peiZ⊕M [n]

where n is a positive integer coprime to p and the ei’s are suitable exponents.
Let

Γ = (Z[p−1])r ⊕ (Z[p−1]/Z)k ⊕M [n]

and

ι : M → Γ

(z, (si mod pei)i, t) 7→
(
z
1 ,
(

s
pei mod Z

)
i
, t
)

Then ι : M → Γ is a J-hull. To see this it is enough to show that f : Zr ↪→
(Z[p−1])r and gi : Z/peiZ ↪→ Z[p−1]/Z for every i = 1, . . . , k are J-hulls, and that
M [n] is J-injective, being trivially an essential extension of itself. The assertions
about f and M [n] follow from Example 2.22, noticing that multiplication by p is
an automorphism of M [n] and that Zr ↪→ (Z[p−1])r is an essential J-extension.
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So we are left to show that for every positive integer e the map g : Z/peZ ↪→
Z[p−1]/Z defined by (s mod pe) 7→ ( spe mod Z) is a J-hull. It is a J-extension,

because the Prüfer group Z[p−1]/Z itself is J-torsion, and it is also essential
because every subgroup of Z[p−1]/Z is of the form 1

pd
Z, so it intersects the image

of g in 1
pmin(e,d)Z.

Finally, Z[p−1]/Z is divisible as an abelian group, so in particular it is J-
injective, since in this case it is equivalent to being p-divisible.

2.4 Duality

Fix again a ring R and a complete ideal filter J of R. Fix as well a left R-module
M and a J-injective and J-torsion left R-module T and let E = EndR(T ).

In this section we prove an elementary duality result that will be key to the
proof of our main Kummer-theoretic results (Theorem 5.3).

Definition 2.31. If V is a subset of HomR(M,T ) we denote by ker(V ) the
submodule of M given by

ker(V ) :=
⋂
f∈V

ker(f)

and we call it the joint kernel of V .

If M ′ is a submodule of M we will identify HomR(M/M ′, T ) with the sub-
module {f ∈ HomR(M,T ) | ker(f) ⊇M ′} of HomR(M,T ).

Proposition 2.32. If V is a finitely generated E-submodule of HomR(M,T ) we
have V = HomR(M/ ker(V ), T ).

Proof. Notice that the inclusion V ⊆ HomR(M/ ker(V ), T ) is obvious. For the
other inclusion we want to show that every homomorphism g : M → T with
ker(g) ⊇ ker(V ) belongs to V . Let then g be such a map and let g : M/ ker(V )→
T be its factorization through the quotient M/ ker(V ). Let {f1, . . . , fn} be a set
of generators for V as an E-module and let

ε : M → Tn

x 7→ (f1(x), . . . , fn(x))

We have ker(ε) = ker(V ), so that ε factors as an injective map ε : M/ ker(V )→
Tn. Since T is J-torsion, so is Tn, hence ε is a J-extension. Since T is J-injective
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there is an R-linear map λ : Tn → T such that λ◦ε = g, or equivalently λ◦ε = g.

T

M M/ ker(V )

Tn
ε

g

g

ε

λ

Since HomR(Tn, T ) ∼=
⊕n

i=1 EndR(T ), there are elements e1, . . . , en ∈ EndR(T )
such that λ(t1, . . . , tn) = e1(t1) + · · · + en(tn) for every (t1, . . . , tn) ∈ Tn. Then
for x ∈M we get

λ(ε(x)) = λ(f1(x), . . . , fn(x))

= e1(f1(x)) + · · ·+ en(fn(x))

which means that g = e1 ◦ f1 + · · ·+ en ◦ fn ∈ V because V is an E-module.

Remark 2.33. Proposition 2.32 is a generalization of the following fact from
linear algebra: let V be a finite-dimensional vector space over a field K and let
f1, . . . , fn : V → K be linear functions. If f : V → K is a linear function such
that ker(f) ⊇

⋂n
i=1 ker(fi), then f is a linear combination of f1, . . . , fn.

Definition 2.34. Let N and Q be left R-modules. We say that Q is a cogenerator
for N if ker(HomR(N,Q)) = 0.

Theorem 2.35. Let R be a ring and let J be a complete ideal filter on R. Let
T be a J-injective and J-torsion left R-module and let M be any left R-module.
Assume that T is a cogenerator for every quotient of M and that HomR(M,T )
is Noetherian as an EndR(T )-module. The maps

{R-submodules of M} → {EndR(T )-submodules of HomR(M,T )}
M ′ 7→ HomR(M/M ′, T )

ker(V ) ← [ V

define an inclusion-reversing bijection between the set of R-submodules of M and
that of EndR(T )-submodules of HomR(M,T ).

Proof. Notice first the above maps are well-defined and they are both inclusion-
reversing. Since HomR(M,T ) is Noetherian as an EndR(T )-module, every sub-
module is finitely generated, so we may apply Proposition 2.32. Since T is a
cogenerator for every quotient of M we can conclude that the two given maps
are inverse of each other.
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Example 2.36. Let R = Z, let J = ∞ and let T = (Q/Z)s for some positive
integer s. Let M be a finitely generated abelian group. Notice that T is J-torsion
and, since it is injective, it is in particular J-injective. Since Q/Z is a cogenerator

for every abelian group, so is T . We have EndR(T ) = Mats×s(Ẑ) and since M

is finitely generated HomR(M,T ) is Noetherian over Mats×s(Ẑ). We are then in
the setting of Theorem 2.35.

3 The category of (J, T )-extensions

Fix for this section a ring R, a complete ideal filter J of R and a J-torsion and
J-injective left R-module T .

In this section we introduce (J, T )-extensions, which are essentially J-exten-
sions whose J-torsion is contained in an R-module T as above (see Definition
3.12). These extensions of R-modules share many interesting properties with
field extensions, and in fact at the end of this section we will be able to prove
the existence of a “maximal” (J, T )-extension, analogous to an algebraic closure
in field theory.

3.1 T -pointed R-modules

In order to define (J, T )-extensions we first introduce the more fundamental con-
cept of T -pointed R-module.

Definition 3.1. A T -pointed R-module is a pair (M, s), where M is a left R-
module and s : M [J ] ↪→ T is an injective homomorphism.

If (L, r) and (M, s) are two T -pointed R-modules, we call an R-module ho-
momorphism ϕ : L → M a homomorphism or map of T -pointed R-modules if
s ◦ ϕ|L[J] = r.

In the following we will sometimes omit the map s from the notation and
simply refer to the T -pointed R-module M .

Remark 3.2. A map ϕ : (L, r)→ (M, s) of T -pointed R-modules is injective on
L[J ]. Indeed s ◦ ϕ|L[J] = r is injective, so ϕ|L[J] must be injective as well.

Definition 3.3. If (M, s) is a T -pointed R-module we denote the T -pointed R-
module (M [J ], s) by tor(M, s), or simply by tor(M). We will denote the natural
inclusion tor(M) ↪→M by tM .

Example 3.4. Let R = Z and let J be the complete ideal filter ∞ on Z. Let
T = (Q/Z)2, which is ∞-injective and ∞-torsion. The abelian group M =
Z ⊕ Z/6Z ⊕ Z/2Z together with the map s : Z/6Z ⊕ Z/2Z that sends (1, 0) to(

1
6 , 0
)

and (0, 1) to
(
0, 1

2

)
is a T -pointed R-module.
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As is the case with field extensions, pushouts do not always exist in our newly-
defined category. However the pushout of two maps of T -pointed R-modules
exists if at least one of the two is injective and “as little a J-map as possible”.

Definition 3.5. We say that a map f : L→M of T -pointed R-modules is pure
if (f(L) :M J) = f(L) +M [J ].

Proposition 3.6. Let (L, r), (M, s) and (N, t) be T -pointed R-modules and let
f : L → M and g : L → N be maps of T -pointed R-modules. Assume that f is

injective and pure. Then the pushout M P Ni j
of f along g exists

in the category of T -pointed R-modules.
Moreover the pushout map j : N → P is injective, and if g is injective the

pushout map i : M → P is injective.

Proof. We have to show that there is a T -pointed R-module (P, u) with maps
i : M → P and j : N → P such that the diagram

L M

N P

g

f

i

j

commutes and such that for every T -pointed R-module (Q, v) with maps k :
M → Q and l : N → Q with k ◦ f = l ◦ g there is a unique map ϕ : L→ Q such
that the diagram

L M

N P

Q

g

f

i
k

j

l

ϕ

commutes.
Let P ′ be the pushout of f along g as maps of R-modules, and let i′ : M →

P ′ and j′ : N → P ′ be the pushout maps. Write P ′ as (M ⊕ N)/S where
S = {(f(λ),−g(λ)) | λ ∈ L}. Let π : P ′ → P be the quotient by the submodule

K := 〈{[(m,−n)] | for all m ∈M [J ], n ∈ N [J ] such that s(m) = t(n)}〉

and let i = π ◦ i′ and j = π ◦ j′. Notice that i ◦ f = j ◦ g.
We claim that P ′[J ] is generated by i′(M [J ]) and j′(N [J ]). The claim is

obviously true if J = 0, so we may assume that J 6= 0. To prove the claim, notice
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that by Lemma 2.10(3) we have P ′[J ] = (S :M⊕N J) /S, so any element of P ′[J ]
is represented by a pair (m,n) such that I(m,n) ⊆ S for some I ∈ J . Then since
f is a pure map we have m = f(λ) + tm for some λ ∈ L and some tm ∈M [J ].

Let I ′ ∈ J be such that I ′tm = 0. Then I ∩ I ′ ∈ J and for any nonzero
h ∈ I ∩ I ′ we have (f(hλ), hn) = h(m − tm, n) = h(m,n) ∈ S, which means
that hn = −g(hλ + z) for some z ∈ ker(f). Since f is injective we have that
n = −g(λ) + tn for some tn ∈ N [J ]. It follows that the class of (m,n) in P ′[J ] is
the same as that of (tm, tn), which proves our claim.

Since K ⊆ P ′[J ], it follows easily from our claim that P [J ] = P ′[J ]/K and
thus that the map

u : P [J ]→ T

[(m,n)] 7→ s(m) + t(n)

is well-defined and injective. This shows that (P, u) is a T -pointed R-module and
that i : M → P and j : N → P are maps of T -pointed R-modules.

Let now (Q, v), k and l be as above. By the universal property of the pushout
there is a unique R-module homomorphism ϕ′ : P ′ → Q such that ϕ′ ◦ i′ = k
and ϕ′ ◦ j′ = l. Since k is a map of T -pointed R-modules, this implies that
v ◦ ϕ′ ◦ i′ = s and v ◦ ϕ′ ◦ j′ = t, so that ϕ′ factors through P as a T -pointed
R-module homomorphism ϕ : P → Q.

For the last assertion we first notice that if g is injective, then so is the R-
module pushout map i′. Then we claim that i′(M)∩K = 0. Indeed if [(m0, 0)] =
[(m,−n)] in P ′ for some m0 ∈ m, m ∈M [J ] and n ∈ N [J ] such that s(m) = t(n),
then there is some λ ∈ L such that m − m0 = f(λ) and n = g(λ). Since g is
injective λ is J-torsion, and we have r(λ) = s(m) − s(m0) = t(n). But, since
s(m) = t(n), we must have m0 = 0, and we conclude that i′(M) ∩ K = 0. It
follows that i = π ◦ i′ is injective. Analogously, injectivity of f implies that of
j.

Remark 3.7. Let R = Z, J = 2∞, T = Z
[

1
2

]
/Z, L = Z and M = N = 1

2Z. The
R-modules L, M and N are T -pointed via the zero map, since their J-torsion
is trivial. Let f : L ↪→ M and g : L ↪→ N be the natural inclusion and notice
that they are maps of T -pointed R-modules that are not pure. We claim that
the pushout of f along g does not exist in the category of T -pointed R-modules.

Suppose instead that (P, u) is a pushout of f along g and consider the T -
pointed R-module

(
1
2Z⊕ Z/2Z, z

)
, where z : Z/2Z → T is the only possible

injective map. Consider the diagram
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L M

N P

1
2Z⊕

Z
2Z

g

f

i k

j

l

ϕ

where the maps k and l are defined as

k : 1
2Z → 1

2Z⊕
Z
2Z l : 1

2Z → 1
2Z⊕

Z
2Z

and

1
2 7→

(
1
2 , 0
)

1
2 7→

(
1
2 , 1
)

Notice that k and l are maps of T -pointed R-modules such that k ◦ f = l ◦ g.
Then by assumption there exists a unique map of T -pointed R-modules ϕ : P →
1
2Z ⊕ Z/2Z that makes the diagram commute. In particular we have ϕ(j( 1

2 )) 6=
ϕ(i( 1

2 )), which implies that j( 1
2 ) 6= i( 1

2 ). But since 2j( 1
2 ) = j(g(1)) = i(f(1)) =

i( 1
2 ) we have that t := j( 1

2 )− i( 1
2 ) is a 2-torsion element of P , and we must have

u(t) = 1
2 .

Consider now the map k′ : M → 1
2Z ⊕ Z/2Z mapping 1

2 to
(

1
2 , 0
)
, just as

l does. This is again a map of T -pointed R-modules such that k′ ◦ f = l ◦ g,
so there must be a map of T -pointed R-modules ϕ′ : P → 1

2Z ⊕ Z/2Z that
makes this new diagram commute. Such a map ϕ′ must map t to 0, because
ϕ′(j( 1

2 )) =
(

1
2 , 0
)

= ϕ′(i( 1
2 )). But then the diagram of structural maps into T

P [J ]

T

Z
2Z

u

ϕ′|
P [J]

z

would not commute, which is a contradiction. This proves our claim.

The class of T -pointed R-modules whose torsion submodule is isomorphic to
T will be particularly important for us.

Definition 3.8. Let (M, s) be a T -pointed R-module. We say that (M, s) is
saturated if tM : M [J ] ↪→ T is surjective (and hence an isomorphism).

Remark 3.9. The map tM is a pure and injective map.
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Every T -pointed R-module can be embedded in a saturated module, and
the smallest saturated module containing a given one can be constructed as a
pushout.

Definition 3.10. If (M, s) is a T -pointed R-module we call saturation of (M, s),
denoted by sat(M, s) or simply by sat(M), the T -pointed R-module (P, u) which
is the pushout (in the category of T -pointed R-modules) of the diagram

M [J ] M

T P

s

tM

sM

We will also denote by sat(s) the map u and by sM the pushout map M → P .

Remark 3.11. Notice that the pushout map T → P of Definition 3.10 is an
isomorphism onto P [J ]. Indeed by definition of T -pointed R-module the following
diagram commutes:

T = T [J ]

T

P [J ]

idT

sat(s)

where the vertical map on the left is the pushout map. It follows that sat(s),
which is injective by definition, is also surjective, hence an isomorphism, and
the pushout map is its inverse. In other words, the saturation of a T -pointed
R-module is saturated.

3.2 (J, T )-extensions

We can finally introduce the main object of study of this section.

Definition 3.12. Let (M, s) be a T -pointed R-module. A (J, T )-extension of
(M, s) is a triple (N, i, t) such that (N, t) is a T -pointed R-module and i : M ↪→ N
is a map of T -pointed R-modules and a J-extension.

If (N, i, t) and (P, j, u) are two (J, T )-extensions of (M, s) we call a homo-
morphism of T -pointed R-modules ϕ : N → P a homomorphism or map of
(J, T )-extensions if ϕ ◦ i = j.

We denote by JT(M, s) the category of (J, T )-extensions of (M, s).
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In the following we will sometimes omit the maps i and t from the notation
and simply refer to the (J, T )-extension N of M.

Remark 3.13. Let (N, i, t) and (P, j, u) be (J, T )-extensions of the T -pointed
R-module (M, s) and let ϕ : N → P be a map of (J, T )-extensions. Then (P,ϕ, u)
is a (J, T )-extension of (N, t). In fact we have

(ϕ(N) :P J) ⊇ (j(M) :P J) = P .

Example 3.14. Let R = Z, let J be the complete ideal filter 2∞ of Z and let T be

the 2∞-torsion and 2∞-injective Z-module
(
Z
[

1
2

]
/Z
)2

. If M = Z⊕Z/2Z⊕Z/2Z
then the map s : Z/2Z⊕Z/2Z→ T that sends (1, 0) to

(
1
2 , 0
)

and (0, 1) to
(
0, 1

2

)
turns (M, s) into a T -pointed R-module.

Let N = 1
2Z⊕ Z/4Z⊕ Z/2Z. The maps

t1 : Z/4Z⊕ Z/2Z → T

(1, 0) 7→
(

1
4 , 0
)

(0, 1) 7→
(
0, 1

2

) and

t2 : Z/4Z⊕ Z/2Z → T

(1, 0) 7→
(
0, 1

4

)
(0, 1) 7→

(
1
2 , 0
)

define two different T -pointed R-module structures (N, t1) and (N, t2) on N . The
componentwise inclusion f : M ↪→ N is a 2∞ extension. Since it is compatible
with all the maps to T , both (N, f, t1) and (N, f, t2) are (2∞, T )-extensions of M .
They are not isomorphic as (2∞, T )-extensions, because they are not isomorphic
as T -pointed R-modules.

We can immediately see some similarities between (J, T )-extensions and field
extensions: every map is injective, and every surjective map is an isomorphism.

Lemma 3.15. Every map of (J, T )-extensions is injective.

Proof. Let (N, i, t) and (P, j, u) be (J, T )-extensions of the T -pointed R-module
(M, s) and let ϕ : N → P be a map of (J, T )-extensions. Let n ∈ kerϕ. Since
i : M ↪→ N is a J-extension there is I ∈ J such that In ⊆ i(M). But since
j : M ↪→ P is injective and ϕ(In) = 0, we must have In = 0, hence n is J-
torsion. But since ϕ is a map of T -pointed R-modules it is injective on M [J ] (see
Remark 3.2) so n = 0.

Corollary 3.16. Every surjective map of (J, T )-extensions is an isomorphism.

Proof. Let (N, i, t) and (P, j, u) be (J, T )-extensions of the T -pointed R-module
(M, s) and let ϕ : N → P be a map of (J, T )-extensions. In view of Lemma 3.15 it
is enough to show that if ϕ is an isomorphism of R-modules, then its inverse ϕ−1 :
P
∼→ N is also a map of (J, T )-extensions. But the fact that ϕ−1 ◦ j = i follows

directly from ϕ ◦ i = j while t = u ◦ ϕ|−1
P [J] = u follows from u ◦ ϕ|N [J] = t.
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Proposition 3.17. Let (M, s) be a T -pointed R-module, let (N, i, t) be a
(J, T )-extension of (M, s) and let (P, j, u) be a (J, T )-extension of (N, t).
Then (P, j ◦ i, u) is a (J, T )-extension of (M, s).

Proof. The map j ◦ i is clearly a J-injective map of T -pointed R-modules, and it
is a J-map by Lemma 2.13.

3.3 Pullback and pushforward

One can recover much information about the (J, T )-extensions of a certain T -
pointed R-module by studying the extensions of its torsion submodule and of its
saturation – see for example our construction of the maximal (J, T )-extension in
Section 3.4. In order to study the relation between these categories, we introduce
the more general pullback and pushforward functors which, interestingly, form
an adjoint pair.

Definition 3.18. If ϕ : L → M is a map of T -pointed R-modules and (N, i, t)
is a (J, T )-extension of M , we let

ϕ∗N := (i(ϕ(L)) :N J) , ϕ∗i := i|ϕ(L) , ϕ∗t := t|(ϕ∗N)[J]

and we call them the pullback along ϕ of N , i and t respectively.

Lemma 3.19. Let ϕ : L→M be a map of T -pointed R-modules and let (N, i, t)
be a (J, T )-extension of M . Then (ϕ∗N,ϕ∗i, ϕ∗t) is a (J, T )-extension of ϕ(L).

Proof. Clearly (ϕ∗N,ϕ∗t) is a T -pointed R-module and

ϕ∗t ◦ ϕ∗i|ϕ(L)[J] = t ◦ i|ϕ(L)[J] = s|ϕ(L)

so ϕ∗i : (ϕ(L), s|ϕ(L))→ (ϕ∗N,ϕ∗t) is an injective map of T -pointed R-modules.

Moreover (ϕ∗i(ϕ(L)) :ϕ∗N J) = ϕ∗N by definition and by Lemma 2.10(2), so
that (ϕ∗N,ϕ∗i, ϕ∗t) is a J-extension.

Definition 3.20. If ϕ : L→M is a map of T -pointed R-modules, N and P are
(J, T )-extensions of M and f : N → P is a map of (J, T )-extensions, the map

f |ϕ∗N : ϕ∗N → ϕ∗P

is a map of (J, T )-extensions of ϕ(L), which we denote by ϕ∗f .

Proposition 3.21. Let ϕ : L → M be a map of T -pointed R-modules. The
diagram
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(N, i, t) (ϕ∗N,ϕ∗i, ϕ∗t)

(P, j, u) (ϕ∗P,ϕ∗j, ϕ∗u)

f ϕ∗f

defines a functor from JT(M, s) to JT(ϕ(L), s|ϕ(L)).

Proof. In view of Lemma 3.19 we only need to check that ϕ∗ behaves well with
the respect to the composition of maps of (J, T )-extensions. If

N
f−→ P

g−→ Q

are maps of (J, T )-extensions of (M, s), we have

ϕ∗g ◦ ϕ∗f = g|ϕ∗P ◦ f |ϕ∗N = (g ◦ f)|ϕ∗N = ϕ∗(g ◦ f) .

Definition 3.22. We call the functor of Proposition 3.21 the pullback along ϕ,
and we denote it by ϕ∗.

Definition 3.23. If ϕ : L → M is an injective and pure map of T -pointed R-
modules and (N, i, t) is a (J, T )-extension of L we denote by ϕ∗i : M → ϕ∗N the
pushout of i along ϕ.

Lemma 3.24. Let ϕ : L → M be an injective and pure map of T -pointed R-
modules and let (N, i, t) be a (J, T )-extension of L. Then (ϕ∗N,ϕ∗i, ϕ∗t) is a
(J, T )-extension of (M, s).

Proof. This follows from the fact that ϕ∗i is injective and ϕ∗N/(ϕ∗i)(M) ∼=
N/i(L) is J-torsion, because i : L→ N is a J-extension.

Lemma 3.25. Let ϕ : L → M be an injective and pure map of T -pointed R-
modules, let (N, i, t) and (P, j, u) be (J, T )-extensions of L and let f : N → P
be a map of (J, T )-extensions. Then there is a unique map of (J, T )-extensions
of M

ϕ∗f : ϕ∗N → ϕ∗P

such that the diagram

N ϕ∗N

P ϕ∗P

f ϕ∗f
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commutes, where the horizontal maps are the pushout maps.

Proof. It is enough to apply the universal property of the pushout of ϕ∗N to the
diagram

L M

N ϕ∗N

P ϕ∗P

i

ϕ

ϕ∗i ϕ∗j

f

ϕ∗f

Indeed the map ϕ∗f : ϕ∗N → ϕ∗P , whose existence is ensured by the universal
property, is such that ϕ∗P/ϕ∗f(ϕ∗N) ∼= P/f(N) is J-torsion.

Proposition 3.26. Let ϕ : L → M be an injective and pure map of T -pointed
R-modules. The diagram

(N, i, t) (ϕ∗N,ϕ∗i, ϕ∗t)

(P, j, u) (ϕ∗P,ϕ∗j, ϕ∗u)

f ϕ∗f

where ϕ∗f is as in Lemma 3.25, defines a functor from JT(L, r) to JT(M, s).

Proof. In view of Lemmas 3.24 and 3.25 it is enough to show that ϕ∗ behaves well
with respect to the composition of maps of (J, T )-extensions. This is immediate
from the construction in Lemma 3.25 and the uniqueness part of the universal
property of the pushout.

Definition 3.27. We call the functor of Proposition 3.26 the pushforward along
ϕ, and we denote it by ϕ∗.

Theorem 3.28. Let ϕ : (L, r) ↪→ (M, s) be an injective pure map of T -pointed
R-modules. Then the functor ϕ∗ is left adjoint to ϕ∗.

Proof. Since ϕ is injective we will, for simplicity, denote ϕ(L) by L.
Let (N, i, t) be a (J, T )-extension of L and let (P, j, u) be a (J, T )-extension

of M . We want to show that we have

HomJT(L,r)(N,ϕ
∗P ) ∼= HomJT(M,s)(ϕ∗N,P )

naturally in N and P .
Let f : N → ϕ∗P be a map of (J, T )-extensions of L; notice that in particular

f ◦ i = ϕ∗j. Composing f with the natural inclusion ϕ∗P ↪→ P we get a map of
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T -pointed R-modules f ′ : N → P such that f ′ ◦ i = j ◦ ϕ, so by the universal
property of the pushout there exists a unique map g : ϕ∗N → P that is a map
of (J, T )-extensions of M .

We define a map

ΨN,P : HomJT(L,r)(N,ϕ
∗P )→ HomJT(M,s)(ϕ∗N,P )

by letting ΨN,P (f) := g. The map Ψ is natural in N and P , since it is defined by
means of a universal property. Indeed, if h : N ′ → N is a map of (J, T )-extensions
of L and f ′ = f ◦h then ΨN ′,P (f ′) is by definition the unique map ϕ∗N

′ → P that
makes the pushout diagram commute so it must coincide with g ◦ϕ∗h. Similarly
if k : P → P ′ is a map of (J, T )-extensions of M then ΨN,P ′(ϕ

∗k ◦ f) must
coincide with k ◦ g.

To see that the map ΨN,P is injective, let f ′ : N → ϕ∗P be another map and
assume that ΨN,P (f) = ΨN,P (f ′). But then the composition of ΨN,P (f) with
the pushout map N → ϕ∗N coincides with the composition of f and the natural
inclusion ϕ∗P ↪→ P , and analogously for f ′, so we conclude that f = f ′.

To see that ΨN,P is surjective, let g′ : ϕ∗N → P be a map of (J, T )-extensions
of M . Then by definition of pullback its composition with N → ϕ∗N factors
through ϕ∗P ↪→ P as a map of (J, T )-extensions f ′ : N → ϕ∗P , and again by
the uniqueness of the map of the universal property of the pushout one can check
that ΨN,P (f ′) = g′.

Remark 3.29. Let ϕ : L ↪→ M be an injective and pure map of T -pointed R-
modules and let (N, i, t) and (P, j, u) be (J, T )-extensions of L andM respectively.
We can give an explicit description of the unit

ηN : N → ϕ∗ϕ∗N

and the counit
εP : ϕ∗ϕ

∗P → P

of the adjunction.
Notice that the pushout map N → ϕ∗N is injective. Moreover, since N is a J-

extension of L, the image of this map is contained in ϕ∗ϕ∗N = (ϕ∗i(ϕ(L)) :ϕ∗N J).
The resulting inclusion N ↪→ ϕ∗ϕ∗N is the unit ηN .

By definition ϕ∗P is contained in P , and the diagram

L M

ϕ∗P P

ϕ

j

commutes, so by the universal property of the pushout there exists a map
ϕ∗ϕ

∗P → P . This map is the counit εP .
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The following examples of pullback and pushforward functors are of particular
importance to us, because they will be key to the construction of maximal (J, T )-
extensions.

Definition 3.30. Let M be a T -pointed R-module and let tM : M [J ] → M be
the natural inclusion of its torsion submodule. We will call the pullback functor
t∗M the torsion functor and we will denote it by tor.

Remark 3.31. For every (J, T )-extension of tor(M) the unit map

ηN : tor((tM )∗N)→ N

is an isomorphism. Indeed, we have tor((tM )∗N) = ((tM )∗N)[J ] = N [J ], and
since N is a (J, T )-extension of a J-torsion module and J is complete then
N [J ] = N .

Notice that the inclusion sM of a T -pointed R-module into its saturation is
injective and pure.

Definition 3.32. Let M be a T -pointed R-module and let sM : M → sat(M)
be the inclusion into its saturation. We will call the pushforward functor (sM )∗
the saturation functor and we will denote it by sat.

Remark 3.33. The counit map εP : P → sat(s∗MP ) is an isomorphism. Indeed,
one can see from the definition of pullback that s∗MP = P is saturated, hence it
coincides with its own saturation.

3.4 Maximal (J, T )-extensions

Maximal (J, T )-extensions are the analogue of algebraic closures in field theory.
The main result of this section is the proof of the existence of a maximal (J, T )-
extension for any T -pointed R-module, and we achieve this by first constructing
such an extension for its torsion and its saturation.

Definition 3.34. A (J, T )-extension Γ of the T -pointed R-module M is called
maximal if for every (J, T )-extension N of M there is a map of (J, T )-extensions
ϕ : N ↪→ Γ.

The definition of T -pointed R-module already provides a maximal (J, T )-
extension for any J-torsion module.

Lemma 3.35. Let (M, s) be a T -pointed R-module. If M is J-torsion, then
(T, s, idT ) is a maximal (J, T )-extension of (M, s).
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Proof. If (N, i, t) is a (J, T )-extension of M , then in particular we have

N = (i(M) :N J) =
((

0 :i(M) J
)

:N J
)
⊆ ((0 :N J) :N J) = (0 :N J) = N [J ]

so N is J-torsion. Then t : N ↪→ T satisfies t ◦ i = s and idT ◦t = t, so it is a
map of (J, T )-extensions.

The existence of a maximal (J, T )-extension of a saturated module comes from
the existence of a J-hull, and it requires only a little more technical work.

Lemma 3.36. Let (M, s) be a saturated T -pointed R-module and let ι : M ↪→ Γ
be a J-hull of M . Then

1. ι|M [J] : M [J ] ↪→ Γ[J ] is an isomorphism.

2. (Γ, ι, τ) is a maximal (J, T )-extension of (M, s), where τ := s ◦ ι|−1
M [J].

Proof. For (1) notice that ι|M [J] : M [J ] ↪→ Γ[J ] is an essential extension by
Lemma 2.15, so it is an isomorphism by Proposition 2.23.

For (2) we have that Γ is a (J, T )-extension of M , because it is a J-extension
and τ ◦ ι|M [J] = s. Let (N, i, t) be any (J, T )-extension of M . Since i : M ↪→ N is
a J-extension, there is a homomorphism ϕ : N → Γ such that ϕ◦i = ι. Moreover,
since t◦ i|M [J] = s and τ ◦ (ϕ ◦ i)|M [J] = τ ◦ ι|[M [J] = s, we have τ ◦ ϕ|N [J] = t, so

ϕ is a map of (J, T )-extensions. It follows that Γ is a maximal (J, T )-extension
of M .

Finally we can construct a (J, T )-extension of any T -pointed R-module.

Proposition 3.37. Let (Γ, ι, τ) be a (J, T )-extension of the T -pointed R-module
(M, s) such that Γ is saturated. Then Γ is a maximal (J, T )-extension of M if
and only if sat(Γ) is a maximal (J, T )-extension of sat(M).

Proof. Assume first that Γ is a maximal (J, T )-extension of M and let (N, i, t) be
a (J, T )-extension of sat(M). Then there is a map ϕ : s∗MN → Γ of (J, T )-
extensions of M , so there is a map sat(ϕ) : sat(s∗MN) → sat(Γ) of (J, T )-
extensions of sat(M). By Remark 3.33 we have N ∼= sat(s∗MN), so there is also
a map N → sat(Γ). This proves that sat(Γ, ι, τ) is a maximal (J, T )-extension of
sat(M).

Assume now that sat(Γ) is a maximal (J, T )-extension of sat(M). Let (N, i, t)
be a (J, T )-extension of M . Then there is a map of (J, T )-extensions f : sat(N)→
sat(Γ) completing the following diagram:
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M [J ] M

N [J ] N Γ

T sat(M)

T sat(N) sat(Γ)

s

i|M[J]

sM

i ι

t sN

ϕ

sΓ
sat(s)−1

idT

sat(i)

sat(ι)

sat(t)−1 f

Notice that since Γ is saturated the map sΓ : Γ ↪→ sat(Γ) is an isomorphism. So
we can define ϕ := s−1

Γ ◦ f ◦ sN : N → Γ and we have

sΓ ◦ ϕ ◦ i = f ◦ sN ◦ i = f ◦ sat(i) ◦ sM = sat(ι) ◦ ss = sΓ ◦ ι

hence ϕ ◦ i = ι. Moreover, since sat(τ) ◦ sΓ = τ , we have

τ ◦ ϕ|N [J] = τ ◦ s−1
Γ ◦ f ◦ sN |N [J] =

= τ ◦ s−1
Γ ◦ f ◦ sat(t)

−1 ◦ t =

= τ ◦ s−1
Γ ◦ sat(τ)−1 ◦ t =

= t

so ϕ is a map of (J, T )-extensions. Hence Γ is a maximal (J, T )-extension of
M .

Theorem 3.38. Every T -pointed R-module M admits a maximal (J, T )-extension.
Moreover, for any maximal (J, T )-extension Γ of M the following hold:

1. If Γ′ is another maximal (J, T )-extension of M , then Γ ∼= Γ′ as (J, T )-
extensions;

2. The module Γ is saturated;

3. The module Γ is J-injective;

4. If (N, i, t) is a (J, T )-extension of M and ϕ : N → Γ is a map of (J, T )-
extensions, then (Γ, ϕ, τ) is a maximal (J, T )-extension of (N, t).
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Proof. Let j : sat(M) ↪→ Γ be a J-hull of the saturation of M and let τ :=

sat(s) ◦ j|−1
sat(M)[J]. By Lemma 3.36 we have that (Γ, j, τ) is a maximal (J, T )-

extension of sat(M). By Remark 3.33 we have that (Γ, ι, τ) = t∗M (Γ, j, τ) is a
(J, T )-extension of M such that sat(Γ, ι, τ) ∼= (Γ, j, τ), so by Proposition 3.37 we
conclude that it is a maximal (J, T )-extension of M .

Let now (Γ′, ι′, τ ′) be another maximal (J, T )-extension of (M, s). Then there
is a map of (J, T )-extensions f : Γ ↪→ Γ′ which is an essential J-extension by
Lemma 2.15, as it is an isomorphism on the J-torsion. Since Γ is J-injective we
have that f is an isomorphism by Proposition 2.23. This shows that any maximal
(J, T )-extension of M is isomorphic to Γ, which proves (1), (2) and (3) at once.

For (4) it is enough to notice that if j : sat(M) ↪→ Γ is a J-hull, then so
is sat(ϕ), thus by the same argument as above Γ is a maximal (J, T )-extension
of N .

4 Automorphisms of (J, T )-extensions

Fix for this section a ring R, a complete ideal filter J of R and a J-torsion and
J-injective left R-module T . Fix moreover a T -pointed R-module (M, s) and a
maximal (J, T )-extension (Γ, ι, τ) of (M, s).

4.1 Normal extensions

We define normal extensions in analogy with field theory.

Definition 4.1. A (J, T )-extension i : M ↪→ N is called normal if every injective
J-map f : N ↪→ Γ such that f ◦ i = ι has the same image.

Notice that we are considering all injective J-maps that respect ι : M ↪→ Γ,
even if they are not maps of (J, T )-extensions, that is even if they do not respect
the embeddings of the torsion submodules into T .

Remark 4.2. Although we will not make use of it, it interesting to notice that
the group AutM (N) acts on EmbM (N,Γ) by composition on the right. It is then
easy to see that N is normal if and only if this action is transitive.

This is reminiscent of Galois theory à la Grothendieck. One might wonder
if, assuming the necessary finiteness conditions on automorphism groups hold,
the category of (J, T )-extensions is indeed a Galois category with fundamental
functor EmbM (−,Γ). Unfortunately, the fact that in general pushouts of (J, T )-
extensions do not exist (see Remark 3.7) implies that this is not the case.

We may refine this question as follows: does the category of (J, T )-extensions
embed as the subcategory of connected objects of some Galois category?

Proposition 4.3. Every saturated (J, T )-extension of M is normal.
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Proof. Assume that M is saturated, let i : M ↪→ N be a (J, T )-extension and let
f, g : N ↪→ Γ be injective J-maps with f ◦ i = g ◦ i = ι. If f(N) 6= g(N), we may
assume without loss of generality that there is n ∈ N with f(n) 6∈ g(N). Then
t := f(n) − g(n) ∈ Γ[J ] by Lemma 2.16. Since N is saturated and g is injective
we have t ∈ g(N), thus f(n) = g(n) + t ∈ g(N), a contradiction. We deduce that
f(N) = g(N), so N is normal.

Corollary 4.4. Every maximal (J, T )-extension is normal.

4.2 A fundamental exact sequence

Proposition 4.5. Let (N, i, t) be a normal (J, T )-extension of (M, s) and let
AutM+N [J](N) denote the subgroup of AutM (N) consisting of those automor-
phisms that restrict to the identity on the submodule of N generated by i(M) and
N [J ]. Then the restriction map along sN : N → sat(N)

Autsat(M)(sat(N))→ AutM+N [J](N)

is a well-defined group isomorphism.

Proof. Let us identify for simplicity N with its image sN (N) in sat(N), and let
σ ∈ Autsat(M)(sat(N)). To see that the image of σ|N is contained in N , let
f : sat(N) ↪→ Γ be a map of (J, T )-extensions of sat(M), which is necessarily also
a map of (J, T )-extensions of M . Since sat(s) is an isomorphism, also f ◦ σ is a
map of (J, T )-extensions of sat(M), and since N is normal we have that the image
of N in Γ under f and under f ◦ σ are the same, which shows that σ(N) = N .
Since this holds for both σ and its inverse, we have that σ|N ∈ AutM (N), and
clearly σ is the indentity on N [J ].

To show that the restriction to N is an isomorphism, we construct an inverse.
Let now σ ∈ AutM+N [J](N), and recall that we can see it as a map of (J, T )-
extensions of (M, s)

σ : (N, t)→ (N, t ◦ σ|N [J]) .

Composing it with sN we get a map

sN ◦ σ : (N, t)→ (sat(N), (sN )∗(t ◦ σ|N [J])) .

Moreover, the map sat(i) is also a map of (J, T )-extensions

sat(i) : (sat(M), (sM )∗s)→ (sat(N), (sN )∗(t ◦ σ|N [J]))

so by the universal property of the pushout there is a map of (J, T )-extensions

σ′ : (sat(N), (sN )∗t), (sat(N), (sN )∗(t ◦ σ|N [J])) .
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It is straightforward to check that σ 7→ σ′ provides an inverse for the restriction
map Autsat(M)(sat(N))→ AutM (N), which is then an isomorphism.

Proposition 4.6. Let (N, i, t) be a (J, T )-extension of (M, s). Then the map

ϕ : AutM+N [J](N)→ Hom

(
N

i(M) +N [J ]
, N [J ]

)
σ 7→ (ϕσ : [n] 7→ σ(n)− n)

is an isomorphism of groups. In particular, Autsat(M)(sat(N)) is abelian.

Proof. We will denote by [n] the class of an element n ∈ N in N/(i(M) +N [J ]).
Notice that for any σ ∈ AutM+N [J](N) we have σ(n)−n ∈ N [J ] by Lemma 2.16,
and ϕσ is a homomorphism of R-modules. To see that σ 7→ ϕσ is a group
homomorphism, let σ′ ∈ AutM+N [J](N). Then, since σ is the identity on N [J ]
and σ′(n)− n ∈ N [J ], we have

σ(σ′(n))− n = σ(σ′(n))− n+ σ′(n)− n− σ(σ′(n)− n)

= σ(n)− n+ σ′(n)− n

which shows that ϕ is a group homomorphism. It is also clearly injective, because
if ϕσ(n) = n then σ must be the identity.

To prove surjectivity it is enough to show that for any R-module homomor-
phism h : N/(i(M) +N [J ])→ N [J ] the map

σh : N → N

n 7→ n+ h([n])

which is clearly the identity on i(M) + N [J ], is an automorphism of N . It is
injective, because if n = −h([n]) then in particular n is torsion and thus [n] = 0.
It is also surjective, because for any n ∈ N we have

σh(n− h([n])) = n− h([n]) + h([n− h([n])])

= n− h([n]− [n+ h([n])])

= n

Corollary 4.7. Let (N, i, t) be a normal (J, T )-extension of M . Denoting for
simplicity by sat(M) the image of sat(M) inside sat(N) we have

Autsat(M)(sat(N)) ∼= Hom

(
sat(N)

sat(M)
, tor(N)

)
.
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Proof. The claim follows from the two propositions above and the fact that

N

i(M) +N [J ]
∼=

sat(N)

sat(M)
.

To see that the two quotients are isomorphic, consider the following map:

N → sat(N)/sat(M)

n 7→ sN (n) + sat(M)

Its kernel is i(M) +N [J ] and it is surjective because sat(N) is generated by the
images of N and T .

Remark 4.8. Let N be a (J, T )-extension of M and let σ ∈ AutM (N). The
restriction of σ to N [J ] is an element of AutM [J](N [J ]). Indeed, the image of a
J-torsion element under a map of (J, T )-extensions is again a J-torsion element;
since this is true for both σ and σ−1 we can conclude that σ|N [J] : N [J ]→ N [J ]
is an automorphism.

Lemma 4.9. If (N, i, t) is a normal (J, T )-extension of (M, s), the restriction
map

AutM (N)→ AutM [J](N [J ])

is surjective.

Proof. Let σ ∈ AutM [J](N [J ]). Notice that (N, i, t ◦ σ) is also a (J, T )-extension
of M , and let f : (N, i, t) ↪→ (Γ, ι, τ) and g : (N, i, t ◦ σ) ↪→ (Γ, ι, τ) be maps of
(J, T )-extensions. Since N is normal we have f(N) = g(N), thus f−1 ◦ g is an
automorphism of N that restricts to σ.

The exact sequence appearing in the following theorem has been studied, in
some particular cases, in [JP21], [Pal14] and [Chapter 3].

Theorem 4.10. Let M be a T -pointed R-module and let N be a normal (J, T )-
extension of M . Then there is an exact sequence of groups

1→ Hom

(
sat(N)

sat(M)
, tor(N)

)
→ AutM (N)→ Auttor(M)(tor(N))→ 1

Moreover Auttor(M)(tor(N)) acts on Hom(sat(N)/sat(M), tor(N)) by composi-
tion.

Proof. By Lemma 4.9 the map AutM (N)→ Auttor(M)(tor(N)) is surjective and
its kernel is Auti(M)+N [J](N) by definition. By Proposition 4.5 this group is
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isomorphic to Autsat(M)(sat(N)) via the restriction under sN : N → sat(N).
Combining this with Corollary 4.7 we get the desired exact sequence.

The fact that Auttor(M)(tor(N)) acts on Auti(M)+N [J] by conjugation is a
standard result on short exact sequences with abelian kernel, and one can trace
this action under the isomorphisms described above to check that on
Hom(sat(N)/sat(M), tor(N)) this action is indeed the composition of maps, sim-
ilarly to [Chapter 3, Proposition 3.12].

5 Kummer theory for algebraic groups

5.1 General theory

Let K be a field and fix a separable closure Ks of K. Let G be a commu-
tative algebraic group over K, let R ⊆ EndK(G) be a subring of the ring of
K-endomorphisms of G and let M ⊆ G(K) be an R-submodule. Let J be a

complete ideal filter of R, let T := G(K)[J ] and let Γ :=
(
M :G(K) J

)
.

We are interested in studying the field extension K(Γ) of K, that is the
fixed field of the subgroup of Gal(Ks | K) that acts trivially on Γ, and we
want to do so using the theory of (J, T )-extensions introduced in the previous
section. A necesary and sufficient condition in order to proceed this way is that
T = G(K)[J ] be J-injective: indeed in this case Γ is a saturated, and thus normal,
(J, T )-extension of M .

Remark 5.1. The condition that T is J-injective for some, and in fact for all,
ideal filters J , holds for example if G is a simple abelian variety with R a maximal
order in the division algebra EndK(G) ⊗ Q. Indeed in this case every non-zero
element r of R is surjective on G(K), which implies that T is divisible: if an
element u ∈ G(K) is such that ru = t ∈ T and I ∈ J is such that It = 0, then
since I is a right ideal we have Iu = 0, so u ∈ T ; hence r : T → T is surjective
and T is divisible.

It follows that T is injective: this is a well-known statement if R is a Dedekind
domain, but the proof can be adapted to the non-commutative case as follows.
Let I be a left ideal of R and let f : I → T be a map that we wish to extend to
a map f̃ : R→ T . By [Rei75, Theorem 22.7] there is a right fractional ideal J of
R such that IJ = R and 1 ∈ JI ⊆ R. In particular there are non-zero elements
b1, . . . , bn ∈ J and a1, . . . , an ∈ I such that

∑n
i=1 biai = 1, and since T is divisible

there are x1, . . . , xn ∈ T such that aixi = f(ai). It follows that for every y ∈ I
we have

f(y) = f

(
y

n∑
i=1

biai

)
=

n∑
i=1

(ybi)f(ai) = y

n∑
i=1

(biai)xi
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and we can let f̃(r) = r
∑n
i=1(biai)xi for every r ∈ R.

Let us then assume that T = G(K)[J ] is J-injective, so that Γ is a saturated,
therefore normal, (J, T )-extension of M . Then the standard exact sequence of
groups coming from the tower of Galois extensions K ⊆ K(T ) ⊆ K(Γ) maps into
the exact sequence 4.10 via the Galois action on the points of G, and we obtain
the following commutative diagram of groups with exact rows:

1 Gal(K(Γ) | K(T )) Gal(K(Γ) | K) Gal(K(T ) | K) 1

1 Hom
(

Γ
sat(M) , T

)
AutM (Γ) Auttor(M)(T ) 1

κ ρ τ

Notice that the action of AutM [J](T ) on Hom(Γ/(M + T ), T ) restricts to an
action of Im(τ) on Im(κ).

Definition 5.2. In the situation described above we will call the maps κ, τ and ρ
the Kummer representation, the torsion representation and the torsion-Kummer
representation, respectively.

As in Section 2.4, if N and P are R-modules and S is a subset of HomR(N,P )
we let ker(S) =

⋂
f∈S ker(f).

Theorem 5.3. There is an exact sequence of abelian groups

0→
(
sat(M) :sat(G(K)) J

)
sat(M)

→ ker(Im(κ))→ H1(Im(τ), T )

Proof. By Lemma 2.16 for any b ∈ G(K(T )) we may define a map

ϕb : Im(κ)→ T

σ 7→ σ(b)− b

which is a cocycle. It follows that the map

ϕ : G(K(T ))→ H1(Im(τ), T )

b 7→ ϕb

is a group homomorphism. Moreover its kernel is

ker(ϕ) = {b ∈ G(K(T )) | ϕb is a coboundary}
= {b ∈ G(K(T )) | ∃ t ∈ T such that σ(b)− b = σ(t)− t∀σ ∈ Im(κ)}
= {b ∈ G(K(T )) | ∃ t ∈ T such that σ(b− t) = b− t∀σ ∈ Im(κ)}
= G(K) + T
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so that we have an exact sequence

0→ G(K) + T → G(K(T ))→ H1(Im(τ), T )

and considering the intersection of the first two terms with Γ we get

0→ Γ ∩ (G(K) + T )→ Γ ∩G(K(T ))→ H1(Im(τ), T ) .

Since M + T ⊆ Γ ∩ (G(K) + T ) we also have

0→ Γ ∩ (G(K) + T )

M + T
→ Γ ∩G(K(T ))

M + T
→ H1(Im(τ), T ) .

Rewriting M + T = sat(M) and G(K) + T = sat(G(K)), noticing that

Γ ∩ sat(G(K)) =
(
sat(M) :sat(G(K)) J

)
and that

ker(Im(κ)) =

{
x ∈ Γ

M + T
| f(x) = 0∀ f ∈ Im(κ)

}
=
{x̃ ∈ Γ | σ(x̃) = x̃ ∀σ ∈ Im(κ)}

M + T

=
Γ ∩G(K(T ))

M + T

we get the desired exact sequence.

The following theorem generalizes [Chapter 3, Theorem 5.9].

Theorem 5.4. Assume that the End(T )-submodule of Hom(Γ/sat(M), T ) gen-
erated by Im(κ) is finitely generated. Suppose that the following three conditions
hold

1. There is a positive integer d such that

d ·
(
sat(M) :sat(G(K)) J

)
⊆ sat(M) .

2. There is a positive integer n such that

n ·H1(Im(τ), T ) = 0 .

3. There is a positive integer m such that the subring of End(T ) generated by
Im(τ) contains

m · End(T ) .
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Then Im(κ) contains dnm ·Hom(Γ/sat(M), T ).

Proof. Let V be the End(T )-submodule of Hom(Γ/sat(M), T ) generated by Im(κ)
and let X = Γ/sat(M). From (1) and (2) it follows that ker(V ) = ker(Imκ) ⊆
X[dn]. Since V is finitely generated as an End(T )-module, by Proposition 2.32
we have

V = Hom

(
X

ker(V )
, T

)
⊇ Hom

(
X

X[dn]
, T

)
⊇ dn ·Hom(X,T ) .

Since Im(κ) is an Im(τ)-module, we have

Im(κ) = Im(τ) · Im(κ) ⊇ m · End(T ) · Im(κ) = m · V ⊇ dnm ·Hom(X,T )

and we conclude.

5.2 Elliptic curves over number fields

We keep the notation of the previous section and we further assume that K
is a number field, that G = E is an elliptic curve and that R = EndK(E). In
particular we have that Ks = K and that R is either Z or an order in an imaginary
quadratic number field. Up to replacing K by an extension of degree 2 we may
assume that EndK(E) = EndK(E).

Notice that T = E(K)[J ] is contained in E(K)tors: indeed, if x ∈ T then
there is I ∈ J such that Ix = 0. Since R is an order in a number field there is
some non-zero integer n ∈ I, so nx = 0 and x is torsion.

Proposition 5.5. The R-module E(K)[J ] is J-injective.

Proof. By [LJ96, Proposition 5.1] the R-module E(K)tors is injective, thus in par-

ticular J-injective. Since E(K)[J ] =
(

0 :E(K)tors
J
)

it follows from Lemma 2.28

that E(K)[J ] is J-injective.

Remark 5.6. Although not necessary for our applications, it is interesting
to notice that in this setting Γ is a maximal (J, T )-extension of M . Indeed
E(K)/E(K)tors is a torsion-free module over the commutative integral domain
R, so it is injective. Then the short exact sequence of R-modules

0→ E(K)tors → E(K)→ E(K)/E(K)tors → 0

splits, so that E(K) ∼= E(K)/T ⊕ T as R-modules and since R is Noetherian it
follows that E(K) is injective. As in the above proposition we may conclude that
Γ is J-injective, thus it is a maximal (J, T )-extension of M .
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We now specialize to the case J =∞.

Remark 5.7. Notice that in case J =∞ we have T = G(K)tors and

Γ =
{
x ∈ E(K) | nx ∈M for some n ∈ Z>0

}
.

If R = Z then EndR(T ) is isomorphic, after fixing an isomorphism T ∼= (Q/Z)2,

to Mat2×2(Ẑ). If R is instead an order in an imaginary quadratic field then

EndR(T ) ∼= R⊗ZẐ. Indeed, fix for every prime p a Zp-basis for Rp := R⊗ZZp and

consider the Ẑ-subalgebra C =
∏
p Cp of Mat2×2(Ẑ) =

∏
p Mat2×2(Zp), where Cp

is the image of the embedding of Rp into Mat2×2(Zp) given by its multiplication

action on the Zp-module Z2
p
∼= Rp. Then R⊗Z Ẑ ∼= C is a Ẑ-algebra free of rank

2 as a Ẑ-module, since every Cp is a Zp-algebra of rank 2. Then for a suitable
choice of an isomorphism T ∼= (Q/Z)2 we have

EndR(T ) = {ϕ ∈ EndZ(T ) | f(r(t)) = r(f(t))∀r ∈ R, t ∈ T}

=
{
ϕ ∈ Mat2×2(Ẑ) | fc = cf ∀c ∈ C

}
= C

where the last equality follows by applying the Centralizer Theorem to the central
simple Qp-subalgebra R⊗ZQp of Mat2×2(Qp) and then restricting the coefficients
to Zp.

In both cases, the map τ coincides with the usual Galois representation asso-
ciated with the torsion of E.

Proposition 5.8. Assume that the abelian group structure of E(K) is known
and that M is given in terms of set of generators for E(K). Then there exists
an effectively computable positive integer d such that

d ·
(
sat(M) :sat(G(K)) ∞

)
⊆ sat(M) .

Proof. First of all notice that sat(M) = M +T and sat(G(K)) = G(K) +T seen
as subgroups of E(K). We conclude thanks to the considerations of [Chapter 3,
Section 6.1].

Proposition 5.9. There exists an effectively computable positive integer n such
that

n ·H1(Im(τ), T ) = 0 .

Proof. This follows from [Chapter 3, Proposition 6.3] and [Chapter 3, Corol-
lary 6.8] in the non-CM case and from [Chapter 3, Proposition 6.12] in the CM
case.
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Proposition 5.10. There exists an effectively computable positive integer m such
that the subring of EndR(T ) generated by Im(τ) contains m · EndR(T ).

Proof. This follows again from [Chapter 3, Corollary 6.8] in the case R = Z and
from [Lom17, Theorem 1.5] in the CM case.

Theorem 5.11. Assume that the abelian group structures of E(K) and M are
effectively computable. Then there exists an effectively computable positive con-
stant c such that the index of Im(κ) in Hom(Γ/sat(M), T ) divides c.

Proof. This is a direct consequence of Theorem 5.4 and the three propositions
above.

Remark 5.12. Since Theorem 5.4 is stated in a fairly general form, one might
wonder if it can be applied to obtain a version of Theorem 5.11 for higer-
dimensional abelian varieties.

Provided that one is in, or can reduce to, a case in which T is a J-injective R-
module (for example if the abelian variety is simple and its endomorphism ring is
a maximal order in a division algebra, see Remark 5.1), the key steps are finding
effective bounds for the integers n and m of Theorem 5.4. Effective bounds for
m are known, see for example [RG20, Théorème 1.5(2)].

It is also known (see [Chapter 1]) that a bound for n can be obtained by finding
explicit homotheties in Im(τ). This seems a harder problem to tackle, but one can
hope to reduce to finding homotheties in the images of the `-adic representations,
as done in [Chapter 1, Section 7]. Explicit results on the existence of homotheties
in the image of `-adic representations attached to abelian varieties are obtained
for example in [GM20].


