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Chapter 2

Some uniform bounds for
elliptic curves over Q

by Davide Lombardo and Sebastiano Tronto [LT21b]

1 Introduction

Let E/Q be an elliptic curve. Our purpose in this paper is to provide universal
bounds on several arithmetically relevant quantities attached to E, and more
precisely to its Galois representations. For each prime ` we denote by G`∞ the
image of the `-adic Galois representation attached to E/Q, and by G∞ the image
of the adelic representation (see Section 2.4 for details). We provide in particular:

1. a uniform upper bound for the index [Z×` : Z×` ∩G`∞ ] (Theorem 3.16), that
is, we show that for every prime ` the subgroup of scalars in the `-adic
image of Galois contains a fixed subgroup of Z×` for all elliptic curves E/Q;

2. a uniform upper bound on the exponent of the cohomology groups
H1(G∞, E[N ]), for all positive integers N (Theorem 4.8);

3. a uniform lower bound for the closed Z`-subalgebra Z`[G`∞ ] of Mat2×2(Z`)
generated by G`∞ ⊆ GL2(Z`) ⊂ Mat2×2(Z`): for each prime ` we com-
pute an optimal exponent m` such that Z`[G`∞ ] contains `m` Mat2×2(Z`)
(Theorem 5.8);
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60 CHAPTER 2. UNIFORM BOUNDS FOR ELLIPTIC CURVES OVER Q

4. a uniform lower bound on the degrees of the relative ‘Kummer extensions’
(Section 6), that is, the extensions Q( 1

N α,E[N ])/Q(E[N ]) obtained by ad-
joining all N -torsion points of E and all N -division points of a fixed rational
point α ∈ E(Q) (Theorem 6.5), provided that α and all its translates by
torsion points are not divisible by any d > 1 in the group E(Q).

We now elaborate on each of these four topics. It is well-known that, for a
fixed prime ` and number field K, the images of the `-adic Galois representations
attached to non-CM elliptic curves over K admit a uniform upper bound for the
index [GL2(Z`) : G`∞ ] (see for example [Ara08]). Since the CM case is easy to
handle, this implies the existence of a bound as in (1). However, the result of
[Ara08] is not effective, and a great deal of work has gone into classifying the
possible `-adic images of Galois even just for elliptic curves over Q (the so-called
‘Program B’ of Mazur), see for example [Maz77, RZB15, Zyw15a, BP11, LFL21,
GRSS14, Gre12]. Our results on (1), which rely heavily on many of these previous
developments, give a complete answer for all primes ` 6= 3, and a rather sharp
bound also for the remaining case ` = 3. With the exception of the case ` = 2,
that was already treated in [RZB15], we prove our estimates by group-theoretic
means (see in particular the criteria given by Corollary 3.7 and Proposition 2.A.1).
The advantage of such an approach is that our methods can easily be extended
to number fields other than Q. The price to pay is that we don’t get the sharpest
possible result for ` = 3, a direction we have decided not to pursue further also
due to the very recent work of Rouse, Sutherland and Zureick-Brown [RSZB21]
on the complete classification of 3-adic images of Galois for elliptic curves over
Q with a rational 3-isogeny (see also Remark 3.15).

Concerning (2), there is already a significant past literature on controlling the
cohomology groups H1(G`∞ , E[`k]), see for example [LW15], [Coa70, Lemma 10]
and [Cre97, Section 3]. Kolyvagin’s celebrated work on the Birch–Swinnerton-
Dyer conjecture also needs to rely on vanishing statements for the Galois H1

of the `-torsion of elliptic curves [Gro91, Proposition 9.1]. In this paper we go
beyond the known results in two different ways. On the one hand, we extend
the statements in [LW15] by giving a uniform upper bound on the exponents of
all the cohomology groups H1(G`∞ , E[`k]), where [LW15] mostly gave vanishing
conditions and did not extensively treat the cases when the cohomology does not
vanish. As we show in Section 7, these results for a fixed prime ` are rather sharp.
Secondly, and more importantly for our application (4), we also treat the Galois
action on the N -torsion of elliptic curves when N is not necessarily a prime power.
While the case N = `k follows easily from the existence of non-trivial scalars in
the image of Galois, the general case introduces a number of additional compli-
cations, connected with the possible ‘entanglement’ of torsion fields at different
primes. Since not even the classification of possible `-adic images is complete, the
problem of describing all possible entanglements between torsion fields seems to
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be out of reach for the moment (but see [Mor19], [CS19, §3], [CP20] and [DLM21]
for some positive results), so the computation of H1(G∞, E[N ]) cannot be ap-
proached directly. We are still able to obtain useful information on this group (in
particular, prove Theorem 4.8) by using the inflation-restriction exact sequence
and controlling the amount of entanglement by using our results on scalars and
the uniform bound on the degrees of prime-degree isogenies (Mazur’s theorem).
As in the case of (1), the intermediate technical results on the way to the proof of
Theorem 4.8 should hopefully apply in more general situations (see in particular
Proposition 4.5). Our numerical estimate on the exponent of H1(G∞, E[N ]) is
nowhere near as sharp as the corresponding bounds for the special case N = `k,
but notice that (unlike in that case) it is not a priori clear that a uniform bound
should even exist. We had in fact already shown the existence of such a bound
in [Chapter 1], but the result was not effective.

We remark that we have chosen to formulate our bounds in terms of divis-
ibility: we prove that multiplication by a suitable universal constant e kills the
abelian group H1(G∞, E[N ]), and therefore the exponent of this group divides
e. The numerical constant would be much smaller if we instead formulated the
result as an inequality (that is, if we were content with knowing that the expo-
nent of H1(G∞, E[N ]) does not exceed a certain constant e′), but we feel that
our version will be more useful in applications. In particular, we would like to
stress that – even ignoring the non-effective parts of the argument – the ideas
of [Chapter 1] would lead to a (divisibility) bound for H1(G∞, E[N ]) involving
primes up to several millions, while the value of e that we find with the new,
more streamlined proof given in the present paper is only divisible by the primes
up to 11 (which, as we show in Section 7, all need to appear as factors of e). In
other words, while our constant e is probably not optimal, it is at least supported
on the correct set of primes.

The algebra Z`[G`∞ ] considered in (3) is also a classical object in the field of
Galois representations, and its analogues in arbitrary dimension most famously
play an important role in Faltings’s proof of his finiteness theorems for abelian
varieties. While in many applications one needs control over the actual image
of Galois G`∞ , in several cases it is enough to get a handle on the sub-algebra
of Mat2×2(Z`) generated by it. In the hope that it will be useful in such cases,
we give explicit values m` with the property that `m` Mat2×2(Z`) is contained in
Z`[G`∞ ] for all elliptic curves E/Q, and we show that these values are optimal.

Finally, (4) was our original motivation for the work done in this paper: we
had already shown a similar result in [Chapter 1], but (lacking all the previous
information (1), (2), (3)) we could not make it explicit, or in fact even effective.
With all the preliminary work done in [Chapter 1] and in the other sections of this
paper, the desired result on Kummer extensions is now easy to prove. Notice that
the assumption on the (in)divisibility of the point α is necessary: if α = Nβ for
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some rational point β then Q( 1
N α,E[N ]) coincides with the torsion field Q(E[N ]),

and clearly no non-trivial lower bound for [Q( 1
N α,E[N ]) : Q(E[N ])] exists in this

case. On the other hand, it is possible to relax this assumption if one is willing
to accept a bound that depends on the largest integer d such that α is d-divisible
in E(Q)/E(Q)tors, but not on the curve E, see [Chapter 1, Remark 7.2].

We make two final comments. In order to get completely uniform results, we
also need to treat the case of CM elliptic curves: while the proofs are generally
easier than their non-CM counterparts, they are genuinely different and require
some additional observations. In several cases we also prove sharper results in
this context (see in particular Theorem 4.9 for a bound on the cohomology groups
attached to CM elliptic curves over number fields). For this reason, while it is
clear that one can obtain uniform statements that do not distinguish between CM
and non-CM curves (essentially, by taking the maximum of the bounds in the two
cases), we have chosen to formulate most of our results with a clear distinction
between the two situations.

Finally, we would like to point out that much of what we do in this paper
can be extended to number fields K having at least one real place, at least if one
is ready to believe the Generalised Riemann Hypothesis. Indeed, under GRH,
the uniform boundedness of isogenies of elliptic curves over K holds by [LV14,
Corollary 6.5]. Concerning the four topics above, we have already pointed out
that (1) is known to be true for all number fields, and the group-theoretic criteria
of Propositions 3.4 and 2.A.1 can in most cases make this explicit (in terms of
a bound on the possible degrees of cyclic isogenies). As for (2), the proof of
Theorem 4.8 can be repeated almost verbatim once one knows that the subgroup
of scalars in G`∞ is uniformly lower-bounded for all ` and that the degrees of
cyclic isogenies are also bounded. A bound as in (3) follows from Proposition 5.1,
Proposition 5.3 and Corollary 5.5. Finally, by the results of [Chapter 1] a bound
as in (4) can be obtained as a consequence of all the above. We do not pursue this
observation further since the result would in any case be conditional on GRH,
but we hope to have convinced the reader that the techniques in this paper have
wider applicability than just the case of rational numbers.

1.1 Structure of the paper

In Section 2 we recall some basic properties of `-adic numbers and of subgroups
of GL2(F`) for ` a prime number. We also introduce our notation for the Galois
representations attached to elliptic curves. In Section 3 we prove our first main
results, Theorems 3.16 and Proposition 3.18, which give a uniform lower bound for
the subgroup of scalars in the image of Galois representations attached to elliptic
curves over Q (in the non-CM and CM case respectively). In Section 4 we deduce
from this an estimate on the exponent of the first cohomology group for the action
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of Galois on the torsion points of an elliptic curve E/Q, see Theorem 4.8 and
Theorem 4.9 (which covers the CM case for elliptic curves over arbitrary number
fields). In Section 5 we describe the Z`-subalgebra of End(Z2

`) generated by
the image of an `-adic Galois representation attached to an elliptic curve over
Q. Finally, in Section 6 we combine the previous results to study the Kummer
theory of elliptic curves over Q, leading to a uniform estimate on the degrees
of Kummer extensions (Theorem 6.5). Section 7 gives some explicit examples
showing that at least some of our estimates are not too far from optimal. The
group-theoretic Appendix 2.A contains the proof of an auxiliary result needed in
Section 3 to study the case of 3-adic Galois representations.

1.2 Acknowledgements

We thank Peter Bruin for providing us with a reference for Lemma 5.4, and
Andrea Maffei for a useful discussion on reductive groups. We also thank Jeremy
Rouse and Michael Cerchia for fruitful discussions, for informing us of their work
in progress, and for suggesting some improvements to our results.

2 Preliminaries

2.1 The `-adic numbers

For every prime ` we denote by Z` the ring of `-adic integers, which we regard as
a profinite (topological) ring, and by v` the `-adic valuation on Z`. We denote by
Z+
` the underlying abelian group of Z`, which is topologically generated by any

element of `-adic valuation 0, and by Z×` its group of units. For n > 1 we let 1 +
`nZ` = {x ∈ Z` | v`(x− 1) > n}. Since the subgroup `nZ` of Z+

` is topologically
generated by any element of valuation n, from [Coh07, Proposition 4.3.12] one
obtains:

Lemma 2.1. Let n be a positive integer and let ` > 2 be a prime. Let G be a
closed subgroup of Z×` . If there is λ ∈ G such that v`(λ−1) = n, then G contains
1 + `nZ`.

There is group homomorphism F×` → Z×` , the Teichmüller lift, that sends

every λ ∈ F×` to the unique λ̃ ∈ Z×` such that λ̃` = λ̃ and λ̃ ≡ λ (mod `) (such a

λ̃ exists by Hensel’s lemma). The following well-known lemma (see e.g. [Gou97,
Corollary 4.5.10]) shows that Z×` is generated by 1 + `Z` and by the Teichmüller
lifts of all elements of F×` , a fact that will be used in Section 3.

Lemma 2.2. The short exact sequence

1→ 1 + `Z` → Z×` → F×` → 1
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is split by the Teichmüller lift.

If m and n are positive integers we extend v` to the additive group of m×n ma-
trices with coefficients in Z` as follows: if A = (aij)16i6m, 16j6n ∈ Matm×n(Z`)
we let v`(A) := min {v`(aij) | 1 6 i 6 m, 1 6 j 6 n}. The following is proven by
an immediate induction on v`(n):

Lemma 2.3. Let s be a positive integer and let h ∈ GLs(Z`). If v`(h− Id) > 0,
then v`(h

n − Id) > v`(n) for all positive integers n.

2.2 Cartan subgroups of GL2(F`)

We recall the definition and basic properties of Cartan subgroups of GL2(F`)
when ` is an odd prime.

Definition 2.4. Let ` > 2 be a prime and let δ ∈ F×` . We call

C`(δ) :=

{(
x δy
y x

)
| x, y ∈ F`, x2 − δy2 6= 0

}
⊆ GL2(F`)

the Cartan subgroup of GL2(F`) with parameter δ. We call C`(δ) split if δ is a
square in F`, and nonsplit otherwise. We also denote by N`(δ) the normalizer of
C`(δ) in GL2(F`).

Remark 2.5. Let λ ∈ F×` . Conjugating C`(δ) by

(
λ 0
0 1

)
gives C`(δλ

2), so that

a Cartan subgroup is determined (up to conjugacy in GL2(F`)) by the class of
δ ∈ F×` /F

×2
` , that is, only by whether or not δ is a square in F×` .

Lemma 2.6 ([LP17, Lemma 14]). Let ` > 2 be a prime and let δ ∈ F×` . The
Cartan subgroup C`(δ) has index 2 in N`(δ). More precisely, we have

N`(δ) = C`(δ) ∪
(

1 0
0 −1

)
· C`(δ) .

Remark 2.7. Let ` > 2 be a prime and let δ ∈ F×` . Considering the matrix

g =

(
1 1
1 −1

)
, whose inverse is 1

2g, one sees that C`(1) is conjugate to the

subgroup

C∗` (1) := gC`(1)g−1 =

{(
t 0
0 w

)
| t, w ∈ F×`

}
of GL2(F`), whereas for δ 6= 1 it is conjugate to

C∗` (ε) := gC`(δ)g
−1 =

{(
x+ εw −w
w x− εw

)
| x,w ∈ F`, x2 + (1− ε2)w2 6= 0

}
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where ε = δ+1
δ−1 . Similarly, N`(δ) is conjugate to

N∗` (ε) = C∗` (ε) ∪
(

0 1
1 0

)
· C∗` (ε) ,

which is the normalizer of C∗` (ε).

2.3 Subgroups of GL2(F`) and GL2(Z`)

Since we will need to rely on it several times throughout the paper, we remind
the reader of the well-known classification of maximal subgroups of GL2(F`),
traditionally attributed to Dickson. For ` = 2 the group GL2(F2) is isomorphic to
S3, so its subgroup structure is well-known. Assume now that ` > 2. Recall that
a subgroup G of GL2(F`) is said to be Borel if it is conjugate to the subgroup of
upper-triangular matrices, and is said to be exceptional if its image in PGL2(F`)
is isomorphic to A4, S4 or A5. Also recall the definition of Cartan subgroups from
the previous section.

Theorem 2.8 (Dickson’s classification, cf. [Ser72, §2]). Let ` > 2 be a prime
number and G be a subgroup of GL2(F`).

• If ` divides the order of G, then G either contains SL2(F`) or is contained
in a Borel subgroup.

• If ` does not divide the order of G, then G is contained in the normaliser
of a (split or nonsplit) Cartan subgroup or in an exceptional group.

To handle the profinite groups that arise as Galois representations attached
to elliptic curves we will find it useful to employ a notion first introduced by Serre
[Ser97, IV-25]. We say that a non-abelian finite simple group Σ occurs in the
profinite group Y if there exist a closed subgroup Y1 of Y and an open normal
subgroup Y2 of Y1 such that Σ ∼= Y1/Y2. We notice in particular that PSL2(F`)
occurs in GL2(Z`). We will also need the following fact: for every exact sequence
of profinite groups 1→ N → G→ G/N → 1 and every non-abelian finite simple
group Σ, if Σ occurs in G then it occurs in at least one of N and G/N (and
conversely), see again [Ser97, IV-25].

2.4 Galois representations and torsion fields of elliptic curves

Let K be a number field and E/K be a fixed elliptic curve. We will say that E
is non-CM if EndK(E) is Z, or equivalently, if E does not have CM over K. We
will denote by Etors the group of all torsion points in E(K). Consider, for each
positive integer N , the natural Galois representation

ρN : Gal(K | K)→ Aut(E[N ])
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afforded by the N -torsion points of E(K). We will often assume that a basis of
the free Z/NZ-module E[N ] has been fixed, and therefore regard the image GN
of ρN as a subgroup of GL2(Z/NZ).

We denote by KN the field fixed by the kernel of ρN , or equivalently the
Galois extension of K generated by the coordinates of all N -torsion points of E.
When N = `n is a prime power, by passing to the limit in n we also obtain the
group G`∞ = Gal (K(E[`∞]) | K), which we consider as a subgroup of GL2(Z`),
and the corresponding fixed field K`∞ =

⋃
n>1K`n . Finally, we also denote by

K∞ the field generated by the various K`∞ as ` varies. One can also define the
adelic Tate module TE := lim←−N E[N ], isomorphic to Ẑ2, and the adelic Galois

representation ρ∞ : Gal(K | K)→ Aut(TE). The Galois group Gal(K∞ | K) is
then isomorphic to the image G∞ of ρ∞ (hence to the inverse limit lim←−N Im ρN ),

and may be considered – up to the choice of an isomorphism TE ∼= Ẑ2 – as a
subgroup of GL2(Ẑ). Finally we remark that, since all the representations ρN
are continuous and Gal(K | K) is a compact Hausdorff topological group, all
the groups just introduced are compact, and therefore closed in their respective
ambient spaces.

2.5 Modulo ` Galois representations of elliptic curves over Q
Our focus will be on elliptic curves defined over the field of rational numbers. The
Galois representations attached to such curves have been studied extensively, and
a number of powerful results on their possible images have been proven. We will
in particular need to rely on a famous theorem of Mazur concerning the degrees
of cyclic isogenies of elliptic curves defined over Q. To state it, let

T0 := {p prime | p 6 17} ∪ {37}.

Theorem 2.9 ([MG78, Theorem 1]). Let p be a prime number and E/Q be an
elliptic curve, and assume that E has a Q-rational subgroup of order p. Then
p ∈ T0 ∪ {19, 43, 67, 163}. If E does not have CM over Q, then p ∈ T0.

3 Scalars in the image of Galois representations

Let E be an elliptic curve over a number field K and let ` be a prime number.
Our purpose in this section is to study the intersection G`∞ ∩ Z×` · Id, that is,
the subgroup of scalar matrices in the image of the `-adic Galois representation
attached to E/K. We will focus mostly, but not exclusively, on the case K = Q.
The main result is Theorem 3.16, which – for each prime ` – describes a subgroup
of Z×` ·Id that is guaranteed to be contained in G`∞ for all non-CM elliptic curves
over Q (see also Proposition 3.18 for the CM case). To simplify the notation,
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we will often identify (Z/`nZ)× (resp. Z×` ) with the subgroup (Z/`nZ)× · Id
(resp. Z×` · Id) of GL2(Z/`nZ) (resp. GL2(Z`)).

Since it helps understanding the relevance of the criteria in the next sub-
section, we briefly contextualise the group-theoretic properties we are going to
consider in terms of the Galois representations attached to elliptic curves over Q.
Let E/Q be an elliptic curve and let G`∞ (respectively G`) be the image of the
corresponding `-adic (respectively mod `) Galois representation. To begin with,
one has det(G`∞) = Z×` , because for σ ∈ Gal(Q | Q) the determinant of ρ`∞(σ)
is simply χ`∞(σ), and it is well-known that the `-adic cyclotomic character χ`∞

is surjective. Moreover, when E is non-CM and ` 6∈ T0, by Theorem 2.9 we know
that G` acts irreducibly on E[`]; in particular, this holds for all ` > 37. We
prove in Lemma 3.6 below that if G` acts irreducibly on E[`] and ` | #G` then
G`∞ = GL2(Z`), so the most interesting case (for ` large) is ` - #G`. In this
case [Zyw15a, Proposition 1.13] (or equivalently [LFL21, Appendix B]) shows
that (up to conjugacy) there are only two possibilities for G`, namely a non-split
Cartan subgroup or the unique index-3 subgroup thereof. These are therefore
the most interesting situations, and are explored in Corollary 3.7. Finally, no-
tice that the image of a complex conjugation in G`∞ is a matrix of order 2 with
determinant −1, so – up to conjugation – when ` > 2 we may assume that it is(

0 1
1 0

)
. This explains the relevance of this specific matrix for the statement

of Proposition 3.4.

3.1 Group-theoretic criteria

In this section we establish several criteria that guarantee that a closed subgroup
G of GL2(Z`) contains an (explicit) open subgroup of Z×` . A further result of
the same kind, whose proof is however more involved, is stated and proved in
Appendix 2.A. The criteria in this section will be expressed in terms of G`,
the image of G under reduction modulo `. More generally, we will employ the
following notation:

Notation. Let G be a subgroup of GL2(Z`). We denote by G`n the image of G
under the reduction map GL2(Z`)→ GL2(Z/`nZ).

Lemma 3.1. Let ` be a prime and let g ∈ GL2(Z`) be such that g ≡ λ Id (mod `)
for some λ ∈ F×` . Let moreover λ̃ ∈ Z×` be the Teichmüller lift of λ. Then the

sequence {g`n}n>1 converges to λ̃ Id ∈ GL2(Z`).

Proof. By Lemma 2.2 we can write g = λ̃h, where h = Id +`h1 ∈ GL2(Z`) is
congruent to the identity modulo `. Then for any n > 1 we have g`

n

= λ̃`
n

h`
n

=
λ̃h`

n

. By Lemma 2.3 we have that v`((Id +`h1)`
n− Id) > n for every n > 0. This
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means that the sequence {h`n}n>1 converges to Id, hence
{
g`
n}

n>1
converges to

λ̃ Id.

Corollary 3.2. Let ` be a prime and let G be a closed subgroup of GL2(Z`).
Suppose that the image of G in GL2(F`) contains λ Id for some λ ∈ F×` . Then G

contains λ̃ Id.

Proof. Let g ∈ G reduce to λ Id modulo `. By the previous lemma the sequence
{g`n} converges to λ̃ Id, so this is an element of G since by assumption G is
closed.

The following result can be found in [Zyw11, Lemma 2.5], but we include the
proof here for ease of reference.

Lemma 3.3. Let n be a positive integer, let ` > 2 be a prime and let G be a
closed subgroup of GL2(Z`). Let

Hn := {g ∈ G | g ≡ Id (mod `n)} .

If det(G) = Z×` and ` - #G`, then det(Hn) = 1 + `nZ`.

Proof. Clearly det(Hn) ⊆ 1 + `nZ`, so we only need to prove the other inclu-
sion. Since det(G) = Z×` there is g ∈ G such that det(g) = 1 + `. Then by

Lemma 2.3 the element h := g`
n−1·#G` satisfies h ≡ Id (mod `n), so it belongs

to Hn. Moreover

det(h) = (1 + `)`
n−1·#G` ≡ 1 + #G``

n (mod `n+1)

and since ` - #G` we have v`(det(h) − 1) = n. By Lemma 2.1 we conclude that
det(H) contains 1 + `nZ`.

We now come to our criterion for the existence of scalars in G when ` - #G`.

Proposition 3.4. Let ` > 2 be a prime and G be a closed subgroup of GL2(Z`)

such that detG = Z×` . Assume that G` contains τ =

(
0 1
1 0

)
and that ` - #G`.

1. Suppose that G` contains an element u for which one of the following holds:

(a) u anti-commutes with τ , that is, uτ = −τu;

(b) there exists ε ∈ F×` \ {1} such that for all antidiagonal matrices A =(
0 x
y 0

)
we have uAu−1 =

(
0 εx

ε−1y 0

)
.

Then G contains 1 + `Z`.



3. SCALARS IN THE IMAGE OF GALOIS REPRESENTATIONS 69

2. Suppose that one of the assumptions of (1) holds, and that moreover G`
contains F×` . Then G contains Z×` .

Remark 3.5. It is immediate to check that the following elements of GL2(F`)
have the property required to apply part (1):

(1a) u =

(
a b
−b −a

)
, where a, b ∈ F` are such that det(u) = b2 − a2 6= 0.

(1b) u =

(
a 0
0 b

)
with a, b ∈ F×` , a 6= b.

Proof. By Lemma 2.1 the element 1 + ` generates 1 + `Z`, so it suffices to prove
that (1 + `) Id is in G. For this it suffices to show that (1 + `) Id is in G`n for
every n > 1. We prove this by induction. For n = 1 the statement holds trivially,
so assume that (1 + `) Id belongs to G`n and let C = (1 + `) Id +`nB be a lift of
this element to G`n+1 , which exists because the map G`n+1 → G`n is surjective.
Notice that we may consider B as an element of Mat2×2(F`). In addition, if
n = 1, thanks to Lemma 3.3 we may assume that det(C) 6≡ 1 (mod `2), and
consequently that tr(B) 6≡ −2 (mod `). If τ̃ is any lift of τ to G`n+1 , the element

C ′ := Cτ̃Cτ̃−1 = ((1 + `) Id +`nB)
(
(1 + `) Id +`nτ̃Bτ̃−1

)
= (1 + `)2 Id +(1 + `)`n(B + τ̃Bτ̃−1) + `2nBτ̃Bτ̃−1

≡ (1 + `)2 Id +`n(B + τ̃Bτ̃−1) (mod `n+1)

is in G`n+1 . Notice that D := B + τBτ−1 is congruent to

(
a b
b a

)
modulo `,

where a = tr(B) and b ∈ F`.

• Suppose that G` contains an element u as in part (1a). Then

uDu−1 ≡
(

a −b
−b a

)
(mod `) .

If ũ ∈ G`n+1 is a lift of u, the group G`n+1 contains

C ′ũC ′ũ−1 ≡
(
(1 + `)2 Id +`nD

) (
(1 + `)2 Id +`nũDũ−1

)
≡
(

(1 + `)2 Id +`n
(
a b
b a

))(
(1 + `)2 Id +`n

(
a −b
−b a

))
≡ (1 + `)4 Id +2a`n Id (mod `n+1)

which is a scalar matrix congruent to 1 + 4` modulo `2 if n > 1 or to
1 + 2`(2 + a) if n = 1.
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• Suppose that G` contains an element u as in part (1b). Then we have

Dk := ukDu−k =

(
a bεk

bε−k a

)
.

Letting ũ be a lift of u to G`n+1 we obtain that for every non-negative
integer k the group G`n+1 contains

ũkC ′ũ−k = (1 + `)2 Id +`nDk.

Thus, using the fact that
∑`−2
k=0 ε

k = ε`−1−1
ε−1 = 0, we see that G`n+1 also

contains

`−2∏
k=0

ũkC ′ũ−k ≡
`−2∏
k=0

(
(1 + `)2 Id +`nDk

)
(mod `n+1)

≡ (1 + `)2(`−1) Id +`n(1 + `)2(`−2)
`−2∑
k=0

Dk (mod `n+1)

≡ (1 + `)2(`−1) Id−`n
(
a 0
0 a

)
(mod `n+1),

which is a scalar matrix congruent to 1 − 2` modulo `2 if n > 1 or to
1− (2 + a)` if n = 1.

In any case, using our assumption that a = tr(B) 6≡ −2 (mod `) if n = 1, we
see that G`n+1 contains a scalar matrix λ Id with v`(λ − 1) = 1. We can now
apply Lemma 2.1 to the subgroup of Z×` given by the inverse image of G`n+1 ∩
(Z/`n+1Z)× under the natural projection, and we conclude that (1+`) Id ∈ G`n+1

as desired.
Finally, if F×` is contained in G`, Lemma 3.1 shows that G contains a Te-

ichmüller lift of every element of F×` . By Lemma 2.2 this is enough to conclude
that G contains Z×` .

Lemma 3.6. Let ` > 5 be a prime number and G be a closed subgroup of GL2(Z`).
Suppose that det(G) = Z×` . If ` | #G` and G` acts irreducibly on F2

` , then
G = GL2(Z`).

Proof. Since ` | #G`, the classification of maximal subgroups of GL2(F`) (The-
orem 2.8) shows that either G` is contained in a Borel subgroup of GL2(F`),
or G` contains SL2(F`). However, any subgroup of a Borel acts reducibly on
F2
` by definition, hence we see that G` contains SL2(F`). By a lemma due to

Serre (see [Ser97, IV-23, Lemme 3] and [Lom15, Lemma 3.15] for this exact ver-
sion), this implies that G contains SL2(Z`). From det(G) = Z×` we then obtain
G = GL2(Z`) as desired.
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Corollary 3.7. Let ` > 2 be a prime and let G be a closed subgroup of GL2(Z`)
with det(G) = Z×` . Suppose that (at least) one of the following holds:

1. G` ⊆ GL2(F`) contains (up to conjugacy) the normaliser of a split or non-
split Cartan, and if ` | #G` then ` 6= 3.

2. ` ≡ 2 (mod 3), and G` ⊂ GL2(F`) contains (up to conjugacy) the subgroup
of cubes in the normaliser of a non-split Cartan.

Then G contains Z×` .

Proof. Suppose first that ` | #G` (hence in particular ` > 3). The normaliser
of a (split or non-split) Cartan, or an index-3 subgroup of a non-split Cartan,
acts irreducibly on F2

` , so Lemma 3.6 implies G = GL2(Z`), which in particular
contains Z×` .

Suppose on the other hand that ` - #G`. Notice that – since the scalar
matrices are contained in the centre of GL2(Z`) – the conclusion of Proposition 3.4
is invariant under a change of basis for Z2

` , so it suffices to check that the group
G satisfies the hypotheses of Proposition 3.4 after a suitable change of basis.

1. By what we already remarked, and up to conjugation in GL2(Z`), we may
assume that G` contains the group N∗` (ε) described in Remark 2.7, or an
index-3 subgroup thereof. The explicit description shows that every group

of the form N∗` (ε) contains

(
0 1
1 0

)
; since this matrix is equal to its cube,(

0 1
1 0

)
is also contained in the subgroup of cubes in N∗` (ε).

The normaliser of a split Cartan subgroup contains all anti-diagonal matri-

ces, hence in particular it contains u =

(
0 −1
1 0

)
. The normaliser of a

non-split Cartan contains u =

(
ε −1
1 −ε

)
. Finally, the subgroup of cubes

of such a normaliser contains

(
ε −1
1 −ε

)3

= (ε2 − 1)

(
ε −1
1 −ε

)
. In all

cases we have thus shown that G` contains an element of the form required
to apply Proposition 3.4 (1), see Remark 3.5.

2. As for hypothesis (2) of Proposition 3.4, observe that all scalar matrices are
contained in the normaliser of every (split or non-split) Cartan subgroup of
GL2(F`). When ` ≡ 2 (mod 3) they are also contained in the subgroup of
cubes of a non-split Cartan: indeed, in this case x 7→ x3 is an automorphism
of F×` , so every scalar matrix is a cube.
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3.2 Scalars in the presence of an isogeny

We now specialise to the case of G = G`∞ ⊆ GL2(Z`) being the image of the
`-adic representation attached to an elliptic curve E/Q. Our aim is again to
prove that G contains an (explicitly identifiable) subgroup of Z×` . We begin by
considering the case when ` > 7 and E admits an isogeny of degree ` defined over
Q. The relevant results are essentially already in the literature, and in this short
section we reformulate them in the form needed for our applications.

Definition 3.8 ([GRSS14, Definition 1.1]). Let ` be a prime. An elliptic curve
E over Q is called `-exceptional if E has an isogeny of degree ` defined over Q
and G`∞ does not contain a Sylow pro-` subgroup of GL2(Z`).

Combining [Gre12, Theorem 1] with [Gre12, Remark 4.2.1] and [GRSS14,
Theorem 5.5] one obtains:

Theorem 3.9. Let ` > 7 be a prime. There are no non-CM `-exceptional elliptic
curves defined over Q.

For the case ` = 5 we instead rely on the following result:

Theorem 3.10 ([Gre12, Theorem 2]). Let E/Q be a non-CM elliptic curve.
Suppose that E has an isogeny of degree 5 defined over Q. If none of the elliptic
curves in the Q-isogeny class of E has two independent isogenies of degree 5, then
E is not 5-exceptional. Otherwise, the index [GL2(Z5) : G5∞ ] is divisible by 5,
but not by 25.

Corollary 3.11. Let E/Q be a non-CM elliptic curve, let ` > 5 be a prime
number, and suppose that the Galois module E[`] is reducible. Then G`∞ contains
1 + `Z`.

Proof. A specific Sylow pro-` subgroup S of GL2(Z`) is given by

S =

{(
a b
c d

)
∈ GL2(Z`)

∣∣ a ≡ d ≡ 1 (mod `), c ≡ 0 (mod `)

}
.

It is clear that 1 + `Z` is contained in S. However, since all the pro-` Sylow
subgroups of GL2(Z`) are conjugate to each other and 1+`Z` lies in the center of
GL2(Z`) (hence is stable under conjugation), it follows that 1 + `Z` is contained
in all the Sylow pro-` subgroups of GL2(Z`). For ` > 7 the statement then
becomes a direct consequence of Theorem 3.9. For ` = 5 the claim similarly
follows from Theorem 3.10 if no elliptic curve in the Q-isogeny class of E admits
two independent 5-isogenies. To treat this last case, observe that the intersection
G`∞ ∩ Z×` is the same for all the elliptic curves in a given Q-isogeny class (see
e.g. [Gre12, §2.4]), so we may assume that E admits two independent 5-isogenies
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defined over Q. In particular, the Galois module E[5] decomposes as the direct
sum of two 1-dimensional modules, which implies that in a suitable basis G5

consists of diagonal matrices. Hence [GL2(F5) : G5] is divisible by 5, and on the
other hand 25 - [GL2(Z5) : G5∞ ] by Theorem 3.10 again. It follows immediately
that ker(GL2(Z5) → GL2(F5)), which is a pro-5 group, is entirely contained in
G5∞ , hence in particular that 1 + 5Z5 ⊆ G5∞ , as desired.

3.3 The 3-adic case

Let E/Q be a non-CM elliptic curve. Relying on the group-theoretic results of
Appendix 2.A we now prove that the 3-adic Galois representation attached to E
contains all scalars congruent to 1 modulo 27. We treat separately the two cases
when the Galois module E[3] is respectively irreducible or reducible.

Irreducible case

When E[3] is irreducible for the Galois action, it is not hard to prove that G3∞

contains all scalars:

Proposition 3.12. Suppose E[3] is an irreducible Galois module. Then G3∞

contains Z×3 .

Proof. Up to conjugation, we can assume that G3 contains

(
1 0
0 −1

)
(the image

of complex conjugation). A short direct computation shows that (up to conju-
gacy) there are only 3 possibilities for G3, namely GL2(F3), a 2-Sylow subgroup,

or the group H :=

〈(
0 1
1 0

)
,

(
0 −1
1 0

)〉
of order 8. In particular, in all cases

we may assume that H ⊆ G3. The hypotheses of Proposition 3.4 (2) are then
satisfied, hence G3∞ contains Z×3 .

Reducible case

We now consider the much harder case when E[3] is reducible under the Galois
action. Our analysis is based on the purely group-theoretic Proposition 2.A.1.
To motivate the hypotheses that appear in its statement, we consider a non-CM
elliptic curve E/Q for which the Galois module E[3] is reducible, and denote as
usual by G3n the image of the modulo-3n representation attached to E/Q and
by G3∞ the image of the 3-adic representation. The following hold:

1. Any elliptic curve Ẽ/Q that is Q-isogenous to E gives rise to a 3-adic Galois
image G̃3∞ for which G3∞ ∩ Z×3 = G̃3∞ ∩ Z×3 (notice that this equality is
independent of the choice of basis for T3E, T3Ẽ), see for example [Gre12,
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§2.4]. For all such curves Ẽ/Q, the Galois module Ẽ[3] is clearly reducible,
and at least one Ẽ of this form does not admit two independent cyclic
isogenies of degree 3 defined over Q. Hence, up to replacing E with Ẽ, we
may assume that G3 is contained (up to conjugacy) in a Borel subgroup
and that G3 only fixes one nontrivial F3-subspace of E[3]. This implies
3 | #G3.

2. G27 acts on E[27] without fixing any cyclic subgroup of order 27. Indeed,
the three rational points on X0(27) are two cusps and a single non-cuspidal
point corresponding to a CM elliptic curve [Ogg73, p. 229].

3. det(G3∞) = Z×3 : as already discussed, this follows from the surjectivity of
the 3-adic cyclotomic character.

4. G3∞ contains the image of (any) complex conjugation, which is an element
c of order 2 with determinant −1.

We now check that this information is sufficient to apply Proposition 2.A.1.
Up to a change of basis, we may assume that the element c ∈ G3∞ is represented

by the matrix C =

(
1 0
0 −1

)
. This easily implies that G3 is contained in the

Borel of upper- or lower-triangular matrices (see also Remark 2.A.4). Take now H
to be the pro-3 Sylow subgroup of G3∞ (which is normal, hence unique: it is the
inverse image in G3∞ of the 3-Sylow of G3, which is easily checked to be normal).
We claim that this group satisfies all the assumptions of Proposition 2.A.1 with
p = 3 and k = 3. Hypothesis (1) is satisfied by (1) above. Hypothesis (3) is clear
from the equality det(G3∞) = Z×3 , and (4) follows from the fact that C ∈ G3∞

and H is normal in G3∞ . As for (2), recall that G3 is contained in the upper- or
lower-triangular Borel subgroup, and this implies easily that G3∞ is generated
by H, C, and possibly − Id. Since both C and − Id are diagonal, we see that
if H33 is upper- or lower- triangular, then so is G33 , contradiction, because we
know that E does not admit any cyclic 27-isogeny defined over Q. Hence from
Proposition 2.A.1 we obtain:

Proposition 3.13. Let E/Q be a non-CM elliptic curve for which E[3] is a
reducible Galois module. Then G3∞ contains all scalars congruent to 1 modulo
27.

Combining this result with Proposition 3.12 we have then proved:

Corollary 3.14. Let E/Q be a non-CM elliptic curve. The group G3∞ contains
all scalars congruent to 1 modulo 27.

Remark 3.15. The results of [RSZB21], which appeared almost simultaneously
to the present work, imply that for every non-CM elliptic curve over Q with a
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rational 3-isogeny the group G3∞ contains all scalars congruent to 1 modulo 9
(hence, by Proposition 3.12, the same holds for every non-CM E/Q). The proof
in [RSZB21] relies on the explicit determination of the rational points of suitable
modular curves. As pointed out in the introduction, we think our approach –
which derives the result from properties of isogenies (hence relying only on the
more well-studied modular curves X0(N)) – has the advantage of being easier to
extend to number fields different from Q.

3.4 Main theorem

We are now ready to prove our uniform result for scalars in the image of Galois
representations:

Theorem 3.16. Let E be a non-CM elliptic curve over Q and let ` be a prime
number. Define

s` :=


4, if ` = 2

3, if ` = 3

1, if ` = 5, 7, 11, 13, 17, 37

0, if ` > 19 and ` 6= 37

The image G`∞ of the `-adic Galois representation attached to E/Q contains all
scalars congruent to 1 modulo `s` .

Proof. For ` = 2 and ` = 3 the theorem follows from the results of [RZB15] and
Corollary 3.14 respectively. We may therefore assume ` > 5. We distinguish
several cases:

1. the G`-module E[`] is reducible. The claim follows from Corollary 3.11.

2. the G`-module E[`] is irreducible and ` | #G`. By Lemma 3.6 we obtain
G`∞ = GL2(Z`), and the claim follows.

3. the G`-module E[`] is irreducible and ` - #G`. Suppose first that ` > 17:
then the claim follows from [Zyw15a, Proposition 1.13] (the exceptional j-
invariants correspond to elliptic curves for which G` does not act irreducibly
on E[`], see [Zyw15a, Theorem 1.10]). For ` = 5, 7, 11, Theorems 1.4, 1.5
and 1.6 in [Zyw15a] completely describe the possible mod-` images G`.
Since G` acts irreducibly on E[`] by assumption, we need to consider the
following cases:

(a) for ` = 5, up to conjugacy the group G` contains either the index-3
subgroup of a non-split Cartan or the full normaliser of a split Cartan.
In both cases we may apply Corollary 3.7. Similarly, for ` = 11, up
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to conjugacy the only possibility is that G` is the full normaliser of a
non-split Cartan, and again we conclude by Corollary 3.7.

(b) for ` = 7, up to conjugacy we have that G` is the normaliser of a (split

or non-split) Cartan subgroup, or that it contains 〈
(

2 0
0 4

)
,

(
0 2
1 0

)
〉.

The first case is handled as above. In the other case, one checks

that G` contains

(
0 1
1 0

)
, and clearly it contains

(
2 0
0 4

)
, so the

hypothesis of Proposition 3.4 (1b) is satisfied (see Remark 3.5) and
the claim follows.

This only leaves the prime ` = 13. By [Zyw15a, §1.6], the maximal proper
subgroups of GL2(F13) not contained in a Borel are (up to conjugacy) the
normalisers of (split and non-split) Cartan subgroups and the group

GS4
=

〈(
2 0
0 2

)
,

(
2 0
0 3

)
,

(
0 −1
1 0

)
,

(
1 1
−1 1

)〉
.

The main result of [BDM+19] (precisely, Theorem 1.1 and Corollary 1.3
in op. cit.) shows that G13 is not conjugate to a subgroup of a (split or
non-split) Cartan. It remains to understand the case G13 ⊆ GS4

. Consider
the collection C of subgroups H ⊆ GS4 that satisfy all of the following
conditions:

(a) detH = F×13;

(b) H contains an element h with h2 = Id and tr(h) = 0;

(c) the projective image H/(H ∩ F×13) has exponent at least 3;

(d) H acts irreducibly on E[13].

If E is a non-CM elliptic curve over Q such that G13 is contained (up to
a choice of basis for E[13]) in GS4

and not contained in a Borel subgroup,
then G13 is a member of C: (a) follows from the surjectivity of the mod-
13 cyclotomic character over Q, (b) holds because the image of complex
conjugation has these properties, (c) holds by [Dav11, Lemma 2.4], and (d)
is true by definition. One checks easily that all the groups H in class C

contain both

(
0 1
1 0

)
and

(
0 1
−1 0

)
, hence once again Proposition 3.4

(1) applies to show that 1 + 13Z13 ⊆ G13∞ , as desired.

Remark 3.17. Theorem 1.1 in the very recent preprint [BDM+21], combined
with [BC14], gives the finite list of j-invariants of non-CM elliptic curves E/Q
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for which G13 is contained (up to conjugation) in GS4
. For each of these elliptic

curves, the image of G13 in PGL2(F13) is isomorphic to S4: while this is not
necessary for our proof, it can be used to simplify the case ` = 13 of the previous
argument.

We also have a similar result in the CM case:

Proposition 3.18. Let E/Q be an elliptic curve with CM and let ` be a prime
number. Define

n′` =


3, if ` = 2

1, if ` = 3, 7, 11, 19, 43, 67, 163

0, if ` 6= 2, 3, 7, 11, 19, 43, 67, 163

The image G`∞ of the `-adic Galois representation attached to E/Q contains all
scalars congruent to 1 modulo `n

′
` . Moreover, for ` > 5 the image G`∞ contains

a scalar not congruent to ±1 (mod `).

Proof. Let K be the imaginary quadratic field of complex multiplication of E, let
∆K be its discriminant, and let OK,f be the endomorphism ring of EQ, seen as a
subring of OK (here f denotes the conductor of the order OK,f in OK). It is well-
known that there are 13 possible pairs (K, f), given by K = Q(i) and f = 1, 2,
K = Q(ζ3) and f = 1, 2, 3, K = Q(

√
−7) and f = 1, 2, and K = Q(

√
−d)

for d = 2, 11, 19, 43, 67, 163 with f = 1 (see for example [Sil94, Appendix A,
§3]). If ` - 2f∆K , then by [LR18, Theorem 1.2 (4) and Theorem 1.4] the `-
adic image G`∞ contains all scalars. If ` | f∆K and ` > 2, then G`∞ contains
Z×2
` by [LR18, Theorem 1.5]: notice that by the above this is only possible for

` = 3, 7, 11, 19, 43, 67, 163, and that for ` > 7 the group Z×2
` contains scalars not

congruent to ±1 (mod `). Finally, for ` = 2 we have by [LR18, Theorems 1.6,
1.7, 1.8] that G2∞ contains all scalars congruent to 1 modulo 8.

Remark 3.19. A slightly worse result can be obtained more easily (without the
need to distinguish cases) by applying [Lom17, Theorem 1.5].

3.5 Complements to Theorem 3.16

For future use, we record here the following modest strengthening of Theo-
rem 3.16:

Proposition 3.20. Let E/Q be a non-CM elliptic curve. Let ` ∈ {13, 17, 37}.
The image of the `-adic Galois representation attached to E/Q contains a scalar
λ with v`(λ

2 − 1) = 0.
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Proof. By Corollary 3.2 it suffices to show that G` contains a scalar different
from ±1. For ` = 17, 37, this follows directly from the results of [Zyw15a] (specif-
ically, Theorem 1.10 and Proposition 1.13). For ` = 13, by Theorem 2.8 and the
fact that G13 has surjective determinant we know that G13 satisfies one of the
following:

1. G13 = GL2(F13): in this case the conclusion is obvious.

2. G13 is contained up to conjugacy in a Borel subgroup: by [Zyw15a, The-
orem 1.8], the possible groups that arise in this way all contain a scalar
different from ±1.

3. G13 is contained up to conjugacy in the normaliser of a (split or nonsplit)
Cartan subgroup: this is impossible by the main result of [BDM+19].

4. the projective image of G13 is isomorphic to a subgroup of S4 or A5: the
claim follows from Lemma 3.21 below.

Lemma 3.21. Let G be a subgroup of GL2(F13) having projective image isomor-
phic to a subgroup of S4 or A5. Suppose that det(G) = F×13: then G contains a
scalar different from ± Id.

Proof. The hypothesis implies that the cyclic group F×13 is a quotient of G, so
G contains an element of order 12. If the claim were false, the projection map
G→ PGL2(F13) would have kernel of order at most 2. The maximal order of an
element in S4 is 4, and in A5 is 5. It would follow that the maximal order of an
element in G is at most 10, contradiction.

4 Galois cohomology of torsion points

In this section we show that there exists a universal constant e > 0 such that, for
all elliptic curves E/Q and all positive integers M,N with N |M , the cohomology
group H1(Gal(QM | Q), E[N ]) is killed by multiplication by e (which we denote
by [e]). We also provide an explicit admissible value for e.

We begin by showing that it suffices to consider the cohomology groups
H1(G∞, E[N ]).

Lemma 4.1. Let E/K be an elliptic curve over a number field K and let M,N
be positive integers with N |M . Suppose that H1(G∞, E[N ]) is killed by [e]: then
H1(Gal(KM | K), E[N ]) is also killed by [e].
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Proof. Denote by H the kernel of the natural map G∞ → Gal(KM | K). As H
acts trivially on E[N ] by the assumption N | M , the inflation-restriction exact
sequence gives an injection of H1(G∞/H,E[N ]) = H1(Gal(KM | K), E[N ]) into
H1(G∞, E[N ]), and the claim follows.

On the other hand, if H1(Gal(KM | K), E[N ]) is killed by [e] for all M divis-
ible by N , passing to the limit in M we also obtain that [e] kills H1(G∞, E[N ]).
The statement we aim for is thus equivalent to saying that, for every E/Q and
positive integer N , the group H1(G∞, E[N ]) has finite exponent dividing e. Our
main tool for bounding the exponent of cohomology groups is the following lemma
(see for example [BR03, Lemma A.2] for a proof).

Lemma 4.2 (Sah’s Lemma). Let G be a profinite group, let M be a continuous
G-module and let g be in the centre of G. Then the endomorphism x 7→ gx − x
of M induces the zero map on H1(G,M). In particular, if x 7→ gx − x is an
isomorphism, then H1(G,M) = 0.

Remark 4.3. In our applications of Lemma 4.2 we will have G ⊆ GL2(R) for a

certain ring R – either Z` for some prime ` or Ẑ – and M will be a submodule of
(Q`/Z`)2

or (Q/Z)
2
. Notice that these objects carry a natural action of GL2(Z`)

and GL2(Ẑ) respectively. We will take g to be a scalar multiple of the identity,
that is, g = λ Id for some λ ∈ R×. The conclusion is then that the R-module
H1(G,M) is killed by λ − 1; when R = Z`, this is equivalent to saying that
H1(G,M) is killed by `v`(λ−1).

Generalising the results of [LW15] we now give a uniform result on the coho-
mology of torsion points of elliptic curves over Q for all powers of primes.

Theorem 4.4. Let ` be a prime number and let E/Q be a non-CM elliptic curve.
For every m > 1, the exponent of H1(G`∞ , E[`m]) divides `n` , where

n` :=


3 for ` = 2, 3,

1 for ` = 5, 7, 11,

0 for ` > 13 .

(4.1)

Proof. For ` > 2 we apply Lemma 4.2 (in the form of Remark 4.3) with g = λ Id,
where λ ∈ Z×` ∩ G`∞ is such that v`(λ − 1) = n`. Note that such a λ exists by
Theorem 3.16 and Proposition 3.20.

For ` = 2 the proof is based on the classification of all possible 2-adic images
provided by [RZB15], and is in part computational. As G2∞ is the inverse limit of
the groups G2n , it suffices to show that for all integers n > m > 1 the exponent of
H1(G2n , E[2m]) divides 8. If G2∞ contains a scalar λ with v2(λ−1) 6 3 the result
follows immediately from Lemma 4.2 as above, so let us assume that this is not
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the case. This leaves us with only 8 groups left, namely those with Rouse–Zureick-
Brown labels X238a, X238b, X238c, X238d, X239a, X239b, X239c, X239d. All
of these groups are the inverse images of their reduction modulo 25 and contain
17 Id. Let now ξ : G2n → E[2m] be a 1-cocycle and let λ ∈ G2n be the scalar 17 Id.
Notice that there is nothing to prove if m 6 3, so we may assume n > m > 4.
Reasoning as in the proof of Sah’s lemma, we observe that

ξ(λg) = ξ(gλ)⇒ (λ− 1)ξ(g) = g · ξ(λ)− ξ(λ).

This formula shows both that 16ξ is a coboundary, and that ξ(λ) is such that
g · ξ(λ)− ξ(λ) is divisible by 16 in E[2m]. Imposing this condition for g varying
in a set of generators of G2∞ (recall that we only have finitely many groups to
test) we obtain that ξ(λ) is divisible by 8. Let us write ξ(λ) = 8a for some
(non-unique) a ∈ E[2m]. As a consequence, we have that for every g ∈ G2n

8 · 2ξ(g) = g · ξ(λ)− ξ(λ) = 8(g · a− a).

Letting ψ be the coboundary g 7→ g ·a−a we then obtain that 2ξ is cohomologous
to the cocycle 2ξ − ψ, which by the above takes values in E[8]. A direct verifi-
cation, for which we give details below, shows that H1(G2n , E[8]) has exponent
dividing 4 for all n > 3. This implies in particular that 4 · (2ξ) : G2n → E[8]
is a coboundary, hence a fortiori 8ξ : G2n → E[2m] is also a coboundary, and
therefore [8] kills H1(G2n , E[2m]) as desired.

To check that H1(G2n , E[8]) has exponent dividing 4 we proceed as fol-
lows. Notice first that by Lemma 4.1 it suffices to show that [4] is zero on
H1(G2∞ , E[8]). On the other hand, consider an element g ∈ G2∞ that is the 8-th
power of an element h congruent to the identity modulo 8, and let ξ : G2∞ → E[8]
be any cocycle. As h acts trivially on E[8], the restriction of ξ to the subgroup
generated by h is a homomorphism, hence ξ(g) = ξ(h8) = 8ξ(h) = 0. This proves
that ξ factors via the finite quotient

G2∞/〈g8 : g ≡ Id (mod 8)〉.

For all the cases of interest we know from [RZB15] that G2∞ contains all matrices
congruent to 1 modulo 25, hence 〈g8 : g ≡ Id (mod 8)〉 contains all matrices
congruent to Id modulo 28. We are thus reduced to considering the group Q :=
G28/〈g8 : g ≡ Id (mod 8)〉 and checking that the exponent of H1(Q,E[8]) divides
4, which we do by explicit computations in MAGMA.

In order to bound the exponent of H1(G∞, E[N ]) we will apply the following
technical result, which is worth stating in a general form.

Proposition 4.5. Let G∞ be a closed subgroup of GL2(Ẑ) and for every prime
` denote by G`∞ the projection of G∞ in GL2(Z`). Let J` be the kernel of the



4. GALOIS COHOMOLOGY OF TORSION POINTS 81

projection G∞ → GL2(Z`) and J` be the image of J` in
∏
p prime GL2(Fp). Fi-

nally let T be any G∞-submodule of (Q/Z)2. Assume that for every prime ` there
are a positive integer a` and non-negative integers n`,m` such that the following
hold:

1. For all but finitely many primes ` we have v`(a`) = n` = m` = 0.

2. For every prime ` the exponent of H1(G`∞ , T [`∞]) divides `n` .

3. For every prime ` there is a scalar g` ∈ G`∞ such that v`(g` − 1) 6 m`.

4. For every prime ` and every x ∈ J` the image of [g̃`, x
a` ] in J` is contained

in [J`, J`] for some lift g̃` ∈ G∞ of g`, where g` is as above.

The cohomology group H1(G∞, T ) has finite exponent dividing
∏
` `
n`+m`+v`(a`).

Proof. We will write elements x of G∞ as sequences (xp)p indexed by the prime
numbers p, where each xp is in GL2(Zp). Denoting the `-part of T by T [`∞] we
have

T =
⊕
`

T [`∞]

and since cohomology of profinite groups commutes with direct limits (see [Har20,
Proposition 4.18]), hence with direct sums, we get

H1(G∞, T ) ∼=
⊕
`

H1(G∞, T [`∞]).

Fix now a prime `. The inflation-restriction exact sequence for J` / G∞ gives

0→ H1
(
G`∞ , T [`∞]J`

)
→ H1 (G∞, T [`∞])→ H1(J`, T [`∞])G`∞ . (4.2)

Since J` acts trivially on T [`∞] we have

T [`∞]J` = T [`∞] and H1(J`, T [`∞]) = Hom(J`, T [`∞]),

and the action of G`∞ on the latter group is given, for every g ∈ G`∞ , every
ϕ ∈ Hom(J`, T [`∞]) and every x ∈ J`, by

(gϕ)(x) = gϕ(g̃−1xg̃)

where g̃ ∈ G∞ is any element mapping to g in G`∞ (see for example [Ros95,
Theorem 4.1.20]). By assumption, the cohomology group H1(G`∞ , T [`∞]J`) is
killed by `n` .
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Since every element of T [`∞] has order a power of ` and the kernel of the
quotient map J` → J` is contained in the product of pro-p groups for p 6= `,
every group homomorphism from J` to T [`∞] factors via J`. Moreover, since
T [`∞] is abelian, we have

Hom(J`, T [`∞]) = Hom(J
ab

` , T [`∞]) .

Assume now that ϕ ∈ Hom(J`, T [`∞]) is G`∞-invariant. For every x ∈ J`
and any lift g̃` ∈ G∞ of g` such that [g̃`, x

a` ] ∈ [J`, J`] (hence in particular
ϕ([g̃`, x

a` ]) = 0) we have

a`ϕ(x) = ϕ(xa`) = (g`ϕ)(xa`) = g`ϕ(g̃−1
` xa` g̃`) = a`g`ϕ(x),

so we get a`(g`−1)ϕ(x) = 0. Since v`(g`−1) 6 m` we have that Hom(J`, T [`∞])G`∞

is killed by `m`+v`(a`). From these estimates and the exact sequence (4.2) we con-
clude that the exponent of H1(G∞, T ) divides∏

`

`n`+m`+v`(a`) ,

as required.

Remark 4.6. If, in the previous proposition, one does not assume that g` be
a scalar, the conclusion still holds by letting m` be a non-negative integer such
that v`(det(g` − Id)) 6 m`. This may be established by a slight variation of
the argument above: we only need to notice that a`(g` − Id)ϕ(x) = 0 implies
a` det(g` − Id)ϕ(x) = 0 (this can be seen for example by multiplying by the
adjoint of g` − Id). The more specialised statement given above will allow us to
obtain better numerical constants at the end.

Lemma 4.7. Let G be a subgroup of GL2(Ẑ), let G be the image of G under the

quotient map GL2(Ẑ)→
∏
` prime GL2(F`), and let p > 5 be a prime. If PSL2(Fp)

occurs in G (see §2.3), then G contains SL2(Fp)×
∏
` 6=p {1}.

Proof. Consider the kernel N of the quotient map G →
∏
` GL2(F`). Every

composition factor of N is abelian, and a composition factor of G that does not
occur in N must occur in G. In particular, since PSL2(Fp) is simple and non-
abelian, it must occur in G. Consider now the projection G →

∏
` 6=p GL2(F`)

and let N ′ be its kernel: since PSL2(Fp) does not occur in GL2(F`) for ` 6= p,
it must occur in N ′. Then by [Ser97, IV-25] we must have that G contains
SL2(Fp)×

∏
` 6=p {1}.

We now come to our main result on the Galois cohomology of elliptic curves
over Q.
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Theorem 4.8. Let E be a non-CM elliptic curve over Q and let N be a positive
integer. The cohomology group

H1(Gal(Q(Etors) | Q), E[N ])

has finite exponent dividing

e := 212 × 38 × 53 × 73 × 112 .

Proof. After fixing an isomorphism Etors
∼= (Q/Z)2, let G∞ ⊆ GL2(Ẑ) be the

image of the adelic Galois representation associated with E/Q and let G`∞ , J`
and J` be as in the statement of Proposition 4.5. For every prime ` we let n` be as
in Equation (4.1) and λ` ∈ G`∞ be a scalar such that v`(λ`−1) = n`+v`(2) and,
for ` > 13, such that λ2

` 6≡ 1 (mod `). The elements λ` exists by Theorem 3.16
and Proposition 3.20. Let g ∈ G∞ be an element whose `-component is λ` and
set g̃` := g2. Finally, let

a` = lcm {exp PGL2(Fp) | p ∈ T0, p 6= `}

and m` = n`+v`(4). We now check that these choices satisfy all the assumptions
of Proposition 4.5, with T = E[N ]. Clearly v`(a`) = n` = m` = 0 for all but
finitely many primes `, and one checks that v`(λ`

2 − 1) = m` for all primes `.
Theorem 4.4 shows that H1(G`∞ , T [`∞]) is killed by `n` . It only remains to check
property (4), that is, we wish to prove that for every x = (xp)p ∈ J` the image
h of h = [g̃`, x

a` ] in J` is contained in [J`, J`]. To see this, notice first of all
that the `-component of h in J` is trivial, since x` = 1. The p-component of h
is trivial for every prime p ∈ T0, because xa`p ∈ GL2(Fp) is a scalar (its image

in PGL2(Fp) is trivial). Moreover, the p-component of h is also trivial for every
prime p 6∈ T0 such that Gp is contained in the normalizer of a Cartan subgroup.
To see this, notice that a` is even and the p-component of g̃` is a square (since
g̃` itself is a square), so that both (g̃`)p and xa` belong to the Cartan subgroup
itself, which is abelian.

For all other primes p, the mod-p Galois representation is surjective. Indeed
by Theorem 2.9 we know that Gp acts irreducibly on E[p] (since p 6∈ T0), by
[Maz77, p. 36] we know that Gp is not contained in an exceptional subgroup, and
by assumption Gp is not contained in the normaliser of a Cartan subgroup. By
Theorem 2.8 we then obtain SL2(Fp) ⊆ Gp, so in particular PSL2(Fp) occurs in
G∞. Since by [Ser97, p. IV-25] it cannot occur in G`∞ , which is a subgroup of
GL2(Z`), it must occur in J`. Then by Lemma 4.7, applied to G = J`, we have
that Sp := SL2(Fp)×

∏
q 6=p {1} is contained in J` for such primes p.

For each prime p, let Hp be the trivial group if p is in T0, if ρp is not surjective,
or if p = `, and let Hp = SL2(Fp) otherwise. By the above, we have (h)p = Id ∈
Hp for p = `, for all p ∈ T0, and for all p such that ρp is not surjective, and
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(h)p ∈ Hp = SL2(Fp) for all other p. We now show that [J`, J`] contains
∏
pHp.

This product is topologically generated by the groups Sp for p 6∈ T0∪{`} such that
the mod-p representation attached to E is surjective, so it suffices to show that
the closed subgroup [J`, J`] contains Sp for every such p. This follows from the
fact that SL2(Fp) is a perfect group, that is it coincides with its own commutator
subgroup, so [J`, J`] ⊇ [Sp, Sp] = Sp. Thus we get h ∈

∏
pHp ⊆ [J`, J`].

We have then checked all the hypotheses needed to apply Proposition 4.5,
and we conclude by noting that

v`(a`) =


4 if ` = 2,

2 if ` = 3,

1 if ` = 5, 7,

0 if ` > 11.

In the CM case we can say something much stronger: we prove a bound that is
valid for all number fields and only depends on the degree of the field of definition
of the elliptic curve.

Theorem 4.9. Let K be a number field of degree d and let E/K be an elliptic
curve such that EK has CM by an order R in the quadratic imaginary field F .
Let h = #R× ∈ {2, 4, 6} and g = [FK : K] ∈ {1, 2}. For every prime `, let
e` = mina∈Z×`

v`(a
hd − 1). Then e` is finite for all primes ` and zero for all but

finitely many `, and the exponent of the cohomology group H1(G∞, T ) divides
g
∏
` `
e` for all Galois submodules T of Etors.

Proof. Let H = Gal(K∞ | KF ), so that H is a subgroup of G∞ of index g (recall
that the field of complex multiplication is contained in K∞). Let Cor and Res
denote respectively the corestriction map from H1(H,−) to H1(G∞,−) and the
restriction map from H1(G∞,−) to H1(H,−). As is well-known, one has the
equality Cor ◦ Res = [g]. Let e be the exponent of H1(G∞, T ) and e′ be the
exponent of H1(H,T ). Observe now that [e′] is zero on H1(H,T ), so one gets

[ge′] = [e′] ◦ Cor ◦ Res = Cor ◦ [e′] ◦ Res = Cor ◦ [0] = [0]

on H1(G∞, T ). Thus the exponent of this latter group divides ge′; it now suffices
to bound e′.

By the theory of complex multiplication the Galois group H is abelian. We
identify this group with a subgroup of

∏
` GL2(Z`), and regard g ∈ H as a

collection (g`)` of elements in GL2(Z`). Since H is abelian, Lemma 4.2 applies
to any (g`)` ∈ H, so H1(H,T ) is killed by (g` − 1)`. Writing H1(H,T ) =
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⊕
`H

1(H,T [`∞]), we see that each direct summand H1(H,T [`∞]) (which is the
pro-` part of H1(H,T )) is killed by g` − 1 for every (g`)` ∈ H.

Let now H`∞ be the projection of H to GL2(Z`), or equivalently the image
of the `-adic representation attached to E/FK. We know from [Lom17, Theo-
rem 6.6] (or [BC20a, Theorem 1.1(a)]) that H`∞ is contained in (R ⊗ Z`)×, and
that [(R⊗Z`)× : H`∞ ] | h2 [FK : Q]. Notice that [Lom17, Theorem 6.6] only gives
an inequality, but it is clear from the proof that we actually have divisibility. In
particular, [Z×` : Z×` ∩ H`∞ ] divides h

2 [FK : Q], so for every a ∈ Z×` the scalar

ah[FK:Q]/2 is in H`∞ , and multiplication by ah[FK:Q]/2−1 kills H1(H,T [`∞]). No-
tice that h[FK : Q]/2 divides hd, so the same statement holds with ah[FK:Q]/2−1
replaced by ahd − 1. As H1(H,T [`∞]) is a (pro-)` group, this shows that the ex-
ponent of H1(H,T [`∞]) is finite and divides `e` . Finally, for `−1 > hd, choosing
a that is a primitive root modulo ` gives v`(a

hd − 1) = 0, hence e` = 0 and
H1(H,T [`∞]) is trivial for all such primes. The theorem now follows from the
fact that the exponent e′ of H1(H,T ) is the least common multiple of the expo-
nents of the groups H1(H,T [`∞]) as ` varies among the primes.

In the special case K = Q we may further improve the previous result.

Proposition 4.10. Let E/Q be an elliptic curve such that EQ has CM. The expo-

nent e of the cohomology group H1(G∞, T ) divides 22 ·3 for all Galois submodules
T of Etors.

Proof. Let F be the field of complex multiplication of E, let O be the endo-
morphism ring of EF , and let H = ρ∞(Gal(F/F )), considered as a subgroup of

GL2(Ẑ). There are inclusions Ẑ× ∩ H ⊆ H ⊆ (O ⊗ Ẑ)×, and [Ẑ× : Ẑ× ∩ H] 6
[(O⊗ Ẑ)× : H]. Suppose first j 6∈ {0, 1728}. Then [(O⊗ Ẑ)× : H] 6 2 by [BC20a,

Corollary 1.5], hence [Ẑ× : Ẑ× ∩H] 6 2. This implies easily that H (hence G∞)

contains an element λ = (λ`) ∈
∏
` Z
×
` = Ẑ× with v2(λ2 − 1) 6 2, v3(λ3 − 1) 6 1

and v`(λ`−1) = 0 for all ` > 5 (for ` = 2 notice that a subgroup of index at most

2 of Ẑ× cannot be trivial modulo 8). The claim in this case thus follows from
Lemma 4.2. When j ∈ {0, 1728} the argument is similar, but one also needs to
rely on the classification of the possible `-adic images of Galois for ` 6 7 provided
by [LR18]. We give some more details for ` = 2, the other cases being similar
and easier.

Suppose that all the scalars λ = (λ`) in H ∩ Ẑ× satisfy v2(λ2 − 1) > 3. Then

[Ẑ× : Ẑ× ∩ H] is a multiple of 4, which (since Ẑ× is a normal subgroup of H)

implies 4 | [(O⊗Ẑ)× : H]. Due to [BC20a, Corollary 1.5] this must be an equality,
and we must have O = Z[i] and j = 1728. On the other hand, from the proof of
Theorem 4.9 we know that the 2-part of the exponent of H1(G∞, T ) is at most
twice the 2-part of the exponent of H1(H,T ), so if the latter is not divisible by 4
we are already done. Moreover, 4 can divide this exponent only if all the scalars
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in ρ2∞(Gal(F/F )) are congruent to 1 modulo 4. By [LR18, Theorem 1.7], this

implies that [(O⊗Z2)× : ρ2∞(Gal(F/F ))] = 4. Combined with [(O⊗Ẑ)× : H] =
4, this shows that H is the product ρ2∞(Gal(F/F )) ×

∏
`>3(O ⊗ Z`)×. By

[LR18, Theorem 1.7] again, the factor ρ2∞(Gal(F/F )) contains a scalar λ2 with
v2(λ2 − 1) = 2. Since H is the above direct product, we obtain that H (hence
G∞) contains (λ2,−1,−1, . . .). Applying Sah’s lemma to this element then shows
that the 2-part of the exponent of H1(G∞, T ) divides 4.

To conclude this section we discuss the case of Serre curves, namely those
elliptic curves over Q for which [GL2(Ẑ) : G∞] is minimal (hence equal to 2,
see [Ser72]). It is known that, when ordered by height, 100% of elliptic curves
over Q are Serre curves [Jon10], so our next theorem describes the ‘generic’
situation. The proof combines many of the same ingredients that already appear
in Theorems 4.8 and 4.4.

Theorem 4.11. Suppose E/Q is a Serre curve. For every Galois submodule T
of Etors we have

H1(G∞, T ) =

{
Z/2Z, if T [2] 6= {0}
{0}, if T [2] = {0}.

Proof. The description of Serre curves given in [Jon10, Section 5] implies that G∞
contains SL2(Ẑ). We will make use of two special elements of SL2(Ẑ) ⊂ G∞: one

is − Id, while the other is h = (h2, Id, Id, . . .), where h2 =

(
0 −1
1 −1

)
∈ SL2(Z2).

Notice that h2 − Id is invertible over Z2. Let ξ : G∞ → Etors be any cocycle and
let g ∈ G∞ be arbitrary. We have the equality

ξ(− Id)− ξ(g) = ξ((− Id) · g) = ξ(g · (− Id)) = ξ(g) + gξ(− Id).

Choosing g = h gives −2ξ(h) = (h− Id) · ξ(− Id) in T =
⊕

` T [`∞]. Taking into
account that the 2-adic component of h− Id is invertible, while multiplication by
2 is invertible on T [`∞] for each ` > 2, we obtain that ξ(− Id) is divisible by 2 in
T . Writing ξ(− Id) = −2a for some a ∈ T we then have 2(ξ(g)− (g · a− a)) = 0,
that is, the cocycle ξ is cohomologous to the cocycle g 7→ ξ(g)− (g · a− a) with
values in T [2].

We have thus shown that the natural map H1(G∞, T [2]) → H1(G∞, T ) is
surjective. It is also injective, as one sees by taking the cohomology of the ex-
act sequence 0 → T [2] → T → 2T → 0 and observing that H0(G∞, T ) =
H0(G∞, 2T ) = (0). Hence H1(G∞, T ) = H1(G∞, T [2]). We now describe this
group. Let N = ker(G∞ → G2∞), so that G∞/N ∼= G2∞ = GL2(Z2). The
inflation-restriction sequence yields

0→ H1(G/N, T [2])→ H1(G∞, T [2])→ H1(N,T [2])G∞ ,
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so it suffices to show that H1(GL2(Z2), T [2]) is either trivial or isomorphic to
Z/2Z according to whether T [2] is trivial or not, while H1(N,T [2])G∞ vanishes.
We prove the latter statement first. Since N acts trivially on T [2] by construction
we have H1(N,T [2])G∞ = Hom(N,T [2])G∞ . The conjugation action of h ∈ G∞
on N is trivial (the only nontrivial coordinate of h is h2, while elements of N have
trivial 2-adic component), so a homomorphism ϕ ∈ Hom(N,T [2]) is h-invariant
if and only if for all n ∈ N we have ϕ(n) = (hϕ)(n) = h · ϕ(h−1nh) = h · ϕ(n).
Since h acts on T [2] via h2, which has no nonzero fixed points on T [2], this
implies that the only h-invariant homomorphism N → T [2] is the trivial one.
Thus H1(N,T [2])G∞ vanishes as claimed. Finally consider H1(GL2(Z2), T [2]).
Notice that T [2] is a Galois submodule of E[2], so we either have T [2] = E[2]
or T [2] = {0}. In the latter case the cohomology group certainly vanishes, so
we can assume T [2] = E[2]. As in the proof of Theorem 4.4, every cocycle
GL2(Z2) → E[2] factors via GL2(Z2)/〈g2 : g ≡ Id (mod 2)〉, hence in particular
via GL2(Z/8Z). Thus it suffices to check that H1(GL2(Z/8Z), E[2]) = Z/2Z,
which is easy to do directly with the help of a computer algebra sofware.

5 The algebra Z`[G`∞]

Following the strategy suggested by [Chapter 1, Proposition 4.12], in order to
study the degrees of Kummer extensions in the next section we now study the
algebra A = Z`[G`∞ ], by which we mean the closed subalgebra of Mat2×2(Z`)
generated by G`∞ ⊆ Mat2×2(Z`). The hardest case is when the action of G` on
E[`] is reducible, and to handle this situation we rely on the following general
estimate for A.

Proposition 5.1. Let E be an elliptic curve over a number field K having at
least one real place. Let ` > 2 be a prime number. Suppose that G` acts reducibly
on E[`] and let `m be the maximal degree of an `-power cyclic isogeny E → E′

defined over K. The algebra A = Z`[G`∞ ] contains `m Mat2×2(Z`).

Proof. We claim that there exists a basis of T`E with respect to which G`∞ con-

tains

(
1 0
0 −1

)
. To see this, let τ ∈ Gal(K/K) be a complex conjugation,

corresponding to a real embedding K ↪→ R (one exists by assumption), and let
h = ρ`∞(τ). Then we have h2 = Id and deth = χ`∞(τ) = −1, which implies that
the eigenvalues of h are ±1. It follows that h can be diagonalised over Q`, and
also over Z` since its eigenvalues are distinct modulo ` 6= 2. As the conclusion
of the proposition is independent of the choice of basis, we may assume that

h = ρ`∞(τ) =

(
1 0
0 −1

)
∈ A. It follows that E11 :=

(
1 0
0 0

)
= 1

2 (1 + h)
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and E22 :=

(
0 0
0 1

)
= 1

2 (1− h) are in A. By assumption, E does not admit a

cyclic isogeny of degree `m+1 defined over K. In terms of the matrix representa-
tion of the Galois action, this implies in particular that G`∞ contains a matrix
M1 whose coefficient in position (2, 1) is nonzero modulo `m+1 (for otherwise,

〈
(

1
0

)
〉 ⊂ (Z/`m+1Z)2 ∼= E[`m+1] would be a Galois-stable cyclic subgroup of

order `m+1), and similarly it also contains a matrix M2 whose (1, 2)-coefficient is

nonzero modulo `m`+1. Thus we have E22M1E11 =

(
0 0
a 0

)
with v`(a) 6 m and

E11M2E22 =

(
0 b
0 0

)
with v`(b) 6 m. The four matrices E11, E22, E22M1E11

and E11M2E22 are all in A, and their Z`-span contains `m Mat2×2(Z`).

Remark 5.2. The exponent m is optimal. Indeed, if E admits a K-rational
isogeny of degree `m, choosing a suitable basis of T`E we can ensure that G`m

consists of upper-triangular matrices. In particular, the (2,1)-coefficient of all
matrices in Z`[G`∞ ] is divisible by `m, so that the result cannot be improved.

We also give a variant of the previous result for ` = 2. Notice that in this
case we do not require that E[2] be reducible.

Proposition 5.3. Let E be an elliptic curve over a number field K having at
least one real place. Let 2m be the maximal degree of a 2-power cyclic isogeny
E → E′ defined over K (including m = 0 if there are no such isogenies). The
algebra A = Z2[G2∞ ] contains 2m+1 Mat2×2(Z2).

Proof. Let τ ∈ Gal(K | K) be a complex conjugation. There is a basis of
T2E whose first element is fixed by ρ2∞(τ): indeed, τ fixes all torsion points in
E(R), whose identity component is isomorphic to the circle group, hence con-
tains a compatible family of 2n-torsion points. It follows easily that ρ2∞(τ) is

GL2(Z2)-conjugate to either

(
1 0
0 −1

)
or

(
1 1
0 −1

)
. In the first case one may

reason as in Proposition 5.1 to obtain that Z2[G2∞ ] contains 2E11, 2E22, 2E22M1,
and 2M2E22, hence that it contains 2m+1 Mat2×2(Z2). In the second case, sup-
pose first that G2 acts on E[2] with a fixed point P , which is necessarily the
first 2-torsion point in the given basis of E[2] ∼= T2E/2T2E. Let E → E′ be
the 2-isogeny with kernel 〈P 〉. The 2-adic representations attached to E,E′

differ by conjugation by

(
2 0
0 1

)
. The 2-adic representation attached to E′

maps τ to

(
1 2
0 −1

)
, which is GL2(Z2)-conjugate to

(
1 0
0 −1

)
. More-

over, the maximal degree of a 2-power isogeny E′ → E′′ is at most 2max{m−1,1}
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The previous arguments then apply to E′, hence the corresponding algebra A′

contains 2max{m−1,1}+1 Mat2×2(Z2). Conjugating back we find that A contains
2max{m,2}+1 Mat2×2(Z2), and a direct check for m = 1 finishes the proof in this

case. Finally, if ρ2∞(τ) =

(
1 1
0 −1

)
and E[2] is an irreducible Galois mod-

ule (hence m = 0), then G2 = GL2(F2) (notice that #G2 is even since ρ2(τ)
is nontrivial). This implies G2 = GL2(F2), from which it follows that the re-
duction modulo 2 of A is all of Mat2×2(F`). By Nakayama’s lemma we obtain
A = Mat2×2(Z2).

For the irreducible case (and ` > 2) we rely instead on the following two
observations. The first one is well-known (see for example [BJR91, Remark after
Theorem 2]); it is usually stated for elliptic curves over Q, but – as in the previous
propositions – it only depends on the number field having a real place.

Lemma 5.4. Let K be a number field having at least one real place, ` > 2 be
a prime number, E/K be an elliptic curve, and G` ⊆ GL2(F`) be the image of
the mod-` Galois representation. The action of G` on E[`] is either reducible or
absolutely irreducible.

Corollary 5.5. Let K be a number field having at least one real place, ` > 2 be
a prime number, and E/K be an elliptic curve. If E[`] is an irreducible Galois
module, then the algebra A = Z`[G`∞ ] is all of Mat2×2(Z`).

Proof. Let A ⊆ Mat2×2(F`) be the image of A under reduction modulo `. By
Nakayama’s lemma, it suffices to prove that A = Mat2×2(F`). Notice that A =
F`[G`]. AsG` acts irreducibly on E[`] ∼= F2

` by assumption, Lemma 5.4 shows that

it also acts irreducibly on E[`]⊗F` F`, hence the natural module F`
2

for A⊗F` F`
is irreducible. By [EGH+11, Theorem 3.2.2] we obtain A ⊗F` F` = Mat2×2(F`),
which implies A = Mat2×2(F`).

We now specialise to the case K = Q. For ` = 2 we have the following.

Proposition 5.6. Let E be an elliptic curve over Q. The algebra Z2[G2∞ ] con-
tains 24 Mat2×2(Z2), and if E has potential complex multiplication it also contains
23 Mat2×2(Z2).

Proof. If E does not have complex multiplication over Q we can check the claim
directly by a short computer calculation, looping over all subgroups of GL2(Z2)
that can arise as the image of the 2-adic representation (the list of such groups
is known as a consequence of the results in [RZB15]). If E has CM over Q, then
every 2-power isogeny E → E′ defined over Q has degree dividing 4 (see for
example [BC20b, Remark 5.2]). It follows from Proposition 5.3 that A contains
23 Mat2×2(Z2).
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Remark 5.7. The result is optimal. This follows from [RZB15] in the non-CM
case, while in the CM case it suffices to consider an elliptic curve with CM by
Z[
√
−4], see [LR18, Theorem 1.6].

We are now ready to obtain a uniform lower bound on the algebra A.

Theorem 5.8. Let E be an elliptic curve over Q and let ` be a prime number.
Set

mnon-CM,` =


4, if ` = 2

2, if ` = 3, 5

1, if ` = 7, 11, 13, 17, 37

0, otherwise

mCM,` =


3, if ` = 2, 3

1, if ` = 7, 11, 19, 43, 67, 163

0, otherwise

and m` = mCM,` or m` = mnon-CM,` according to whether or not EQ has CM.
The algebra A = Z`[G`∞ ] contains `m` Mat2×2(Z`).

Proof. The case ` = 2 is covered by Proposition 5.6. If ` 6∈ T0 ∪ {19, 43, 67, 163}
(or just ` 6∈ T0 if E is not CM), by Theorem 2.9 the curve E does not admit any
rational subgroup of order `, so E[`] is irreducible as a G`-module and we can
apply Corollary 5.5. For the remaining cases we apply Proposition 5.1, reading
from [Ken82, Theorem 1] the maximal degrees of cyclic isogenies of `-power de-
gree. Notice that isogenies of degree 33 are possible only for CM elliptic curves,
see [Ogg73, p. 229]. Also notice that `-isogenies between rational CM elliptic
curves are only possible for ` ∈ {2, 3, 7, 11, 19, 43, 167}, as follows for example
from [BC20b, §5].

6 Kummer degrees

Let E be an elliptic curve over a number field K and let α ∈ E(K) be a point of
infinite order. We give a brief description of the construction of the Kummer ex-
tensions of K attached to (E,α), and refer the reader to [Chapter 1, Section 2.3],
[JR10, Section 3], [BP21], or [LP21] for more details.

Let (M,N) be either a pair of positive integers with N | M , or (∞, N) with
N a positive integer. We define KM,N as the extension of KM generated by the
coordinates of all points β ∈ E(K) such that Nβ = α. The homomorphism

κM,N : Gal(K | KM ) → E[N ]
σ 7→ σ(β)− β (6.1)

is independent of the choice of β ∈ E(K) such that Nβ = α, and has kernel
Gal(K | KM,N ), hence identifies Gal(KM,N | KM ) with a subgroup of E[N ]. We
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will also need to pass to the limit in N : if ` is a prime number, we denote by
K∞,`∞ the extension of K∞ generated by the coordinates of the points β ∈ E(K)
that satisfy `nβ = α for some n > 0. Similarly, we write K∞,∞ for the extension
of K∞ generated by the coordinates of the points β ∈ E(K) that satisfy Nβ = α
for some N > 1. Passing to the limit in N in Equation (6.1) we obtain an
identification of Gal(K∞,`∞ | K∞) with a Z`-submodule V`∞ of T`E ∼= Z2

` , and

of Gal(K∞,∞ | K∞) with a Ẑ-submodule V∞ of TE ∼= Ẑ2. We remark that V`∞

is the projection of V∞ to Z2
` , and since V`∞ is a pro-` group and there are no

nontrivial continuous morphisms from a pro-` group to a pro-`′ group for ` 6= `′

we have V∞ =
∏
` V`∞ . Finally, we recall the following fact, which will be crucial

in our applications.

Lemma 6.1 ([Chapter 1, Lemma 2.5]). For every prime `, the Z`-module V`∞ ⊆
Z2
` is also a module for the natural action of G`∞ ⊆ GL2(Z`) on Z2

` .

We are interested in studying the degrees

[KM,N : KM ] (6.2)

as the positive integers N | M vary. As explained above, the Galois group
Gal(KM,N | KM ) is isomorphic to a subgroup of E[N ], which has order N2, so
the ratio

N2

[KM,N : KM ]
(6.3)

is an integer. It is well-known that (6.3) is bounded independently of the integers
M and N (see for example [Ber88, Théorème 1], [Hin88, Lemme 14], or [Rib79]).
In [Chapter 1] we have shown that, if K = Q and the image of α in the free
abelian group E(K)/E(K)tors is not divisible by any n > 1, this ratio can be
bounded independently also of E and α. We will now provide an explicit value
for this bound.

Remark 6.2. It is immediate to check that the ratio (6.3) divides
N2

[K∞,N : K∞] ’

which in turn divides the index of V∞ in Ẑ2.

Lemma 6.3. Let E be an elliptic curve over a number field K and let α ∈ E(K)
be a point whose image in the free abelian group E(K)/E(K)tors is not divisible
by any n > 1. Let e be a positive integer such that, for all positive integers N ,
the group H1(G∞, E[N ]) has exponent dividing e. For every prime ` the group
V`∞ contains an element of `-adic valuation at most v`(e).

Proof. This follows immediately from [Chapter 1, Lemma 7.8(1)] since for any
positive integers M,N with N | M the exponent of H1(GM , E[N ]) divides e
(Lemma 4.1).
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Lemma 6.4. Let E be an elliptic curve over a number field K and let α ∈ E(K).
Suppose that V`∞ contains an element v of `-adic valuation at most d and that
Z`[G`∞ ] ⊇ `n Mat2×2(Z`) for some non-negative integer n. Then [T`E : V`∞ ]
divides `n+2d.

Proof. We may assume without loss of generality that v has exact valuation d.

Up to a choice of isomorphism T`E ∼= Z2
` we may then further assume v = `d

(
1
0

)
.

The Z`[G`∞ ]-module V`∞ contains `n Mat2×2(Z`) ·v, hence in particular contains

`n+d

(
0
1

)
, and the claim follows immediately.

Theorem 6.5. Let E be an elliptic curve defined over Q and let

Bnon-CM := (224 × 316 × 56 × 76 × 114)× (24 × 32 × 52 × 7× 11× 13× 17× 37)

BCM := (24 × 32)× (23 × 33 × 7× 11× 19× 43× 67× 163).

Set B = BCM or B = Bnon-CM according to whether or not EQ has complex
multiplication. For all positive integers M and N with N | M the ratio (6.3)
divides B.

Proof. Let e be a positive integer such that [e] kills H1(G∞, E[N ]) for all positive
integers N . For every prime ` let m` be a non-negative integer such that Z`[G`∞ ]
contains `m` Mat2×2(Z`). As explained above, the ratio (6.3) divides

[Ẑ2 : V∞] =
∏
`

[Z2
` : V`∞ ] ,

and by Lemmas 6.3 and 6.4 we have that

[Z2
` : V`∞ ] divides `m`+2v`(e).

The conclusion then follows by taking e as in Theorem 4.8 (for the non-CM case)
or as in Proposition 4.10 (for the CM case), and m` as in Theorem 5.8.

Remark 6.6. Taking into account Remark 3.15, one can take v3(e) = 6 instead
of 8 in Theorem 4.8, so that the exponent of 3 in Bnon-CM can be improved from
18 to 14.

7 Examples

In this short section we give examples showing that most of our results are sharp
or close to being sharp. We start with Theorems 4.4 and 4.8. For every positive
integer N we have an exact sequence of Gal(Q | Q)-modules

0→ E[N ]→ Etors
[N ]−−→ Etors → 0,
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and taking Galois cohomology we get

0→ E(Q)tors

NE(Q)tors
→ H1(G∞, E[N ])→ H1(G∞, Etors)[N ]→ 0.

As it is well-known that there exist elliptic curves over Q with torsion points of
order 23, 32, 5, 7, taking N equal to each of these numbers in turn shows that the
constant of Theorem 4.8 has to be divisible at least by 23 · 32 · 5 · 7. Moreover,
by [LW15, Theorem 1] we know that there exists an elliptic curve E/Q with
H1(G11, E[11]) 6= 0. Thus in particular all the primes appearing in the constant
of Theorem 4.8 are necessary. A simple variant of this argument, working with
E[`∞] instead of Etors, also shows that Theorem 4.4 is optimal at least for ` 6= 3.
As already remarked in the introduction we do not seek to obtain the best possible
value for ` = 3, but in any case our estimate is not far from sharp: the previous
argument shows that the optimal value of n3 is at least 2, while Theorem 4.4
shows that 3 suffices.

Consider now the CM case and Proposition 4.10. The elliptic curve with
LMFDB label 27.a2 [LMF22, 27.a2] admits a rational 3-torsion point and no
other 3-isogenies defined over Q, hence it satisfies the hypotheses of [LW15, The-
orem 1], which proves that for this curve H1(G3, E[3]) 6= 0. Thus the factor 3 in
Proposition 4.10 is necessary. As for the power of 2, the curve with LMFDB label
32.a2 [LMF22, 32.a2] has potential CM and a rational 4-torsion point, which as
above shows that H1(G2∞ , E[4]) has exponent 4. Thus Proposition 4.10 is sharp.

Finally we turn to the primes that can appear in the ratio of Equation (6.3).
In order to find examples where a given prime ` divides the degree (6.3) we
proceed as follows. Let E/Q be a rational elliptic curve and let P ∈ E(Q) be a
point not divisible by any n > 1 in E(Q)/E(Q)tors. For a fixed prime ` > 2, we
write the multiplication by ` map as

[`](x, y) =

(
φ`(x)

ψ`(x)2
,
ω`(x, y)

ψ`(x)3

)
as in [Sil09, Exercise 3.7] and consider the polynomial g(x) = φ`(x)−x(P )ψ`(x)2 ∈
Q[x]. Suppose that this polynomial has an irreducible factor g1(x) ∈ Q[x] of de-

gree strictly less than `2

2 (equivalently, for ` > 2, that g(x) is reducible), and let
L be the field generated over Q by a root x1 of g1(x). Over an at most quadratic
extension L′ of L, the elliptic curve E admits a point Q with x-coordinate equal

to x1. It follows that [`]Q =
(
φ`(x1)
ψ`(x1)2 , y([`]Q)

)
= (x(P ), y([`]Q)) = ±P , because

the only two points on E with x-coordinate equal to x(P ) are ±P . In particular,
at least one `-division point of P (namely ±Q) is defined over L′, which has
degree strictly less than `2 over Q. Since all `-division points of P are obtained
from ±Q by adding a `-torsion point, the field Q`,` is the compositum of L′ and

https://www.lmfdb.org/EllipticCurve/Q/27/a/2
https://www.lmfdb.org/EllipticCurve/Q/32/a/2
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` E LMFDB Label P

2 y2 + xy + y = x3 − x2 − 41x+ 96 117.a3 (2,−6)

3 y2 + y = x3 + x2 − 7x+ 5 91.b2 (−1, 3)

5 y2 = x3 − x2 − x− 1 704.c3 (2, 1)

7 y2 + xy = x3 − x2 − 389x− 2859 338.c1 (26, 51)

11 y2 + xy + y = x3 − x2 − 32693x− 2267130 1089.c1 (212, 438)

13 y2 + y = x3 − 8211x− 286610 441.a1 (235, 3280)

17 y2 + xy + y = x3 − x2 − 27365x− 1735513 130050.gu2 ( 4047
4

, 249623
8

)

37 y2 + xy + y = x3 + x2 − 208083x− 36621194 1225.b1 (1190, 36857)

Table 2.1: Primes ` dividing the relative Kummer degree (6.3), non-CM curves.

Q(E[`]), hence [Q`,` : Q(E[`])] 6 [L′ : Q] < `2. It follows that in this case the
prime ` divides the ratio (6.3) for M = N = `.

We have considered several pairs (E,P ) taken from the LMFDB [LMF22], and
have computed (for well-chosen primes `) the factorisation of the polynomial g(x)
above. For each prime ` appearing as a factor of the constants of Theorem 6.5,
we have thus been able to find examples of pairs (E,P ) for which ` divides the
index (6.3) in the case M = N = `, and this both for CM and non-CM curves
(for ` = 2 we proceeded differently and explicitly computed the field generated
by the 2-division points of P ; this easily yields examples). In particular, this
shows that the prime factors of the constants of Theorem 6.5 are all necessary.

We would like to point out that for most primes ` we have found several
examples of the behaviour described above (for ` = 163 we have only been able
to test two curves, and only one of them yielded an example). It is hard to
make conjectures based on the limited evidence we have collected, but it seems
plausible that ` divides the Kummer degree (6.3) (with M = N = `) for a positive
proportion of rank-1 curves E/Q whose mod-` Galois representation lands in a
Borel (when P is taken to be a generator of the free part of E(Q)). In Tables 2.1
and 2.2 we give one explicit example for every relevant prime, both for non-CM
and CM curves, specifying the curve E/Q together with its LMFDB label and
the point P ∈ E(Q).

The points P43 and P67 are given by P43 =

(
66276734

29929
,−419567566482

5177717

)
and

P67 =

(
49970077554856210455913

1635061583290810756
,

10956085084392718114395997318977993

2090745506172424414999081096

)

https://www.lmfdb.org/EllipticCurve/Q/117/a/3
https://www.lmfdb.org/EllipticCurve/Q/91/b/2
https://www.lmfdb.org/EllipticCurve/Q/704/c/3
https://www.lmfdb.org/EllipticCurve/Q/338/c/1
https://www.lmfdb.org/EllipticCurve/Q/1089/c/1
https://www.lmfdb.org/EllipticCurve/Q/441/a/1
https://www.lmfdb.org/EllipticCurve/Q/130050/gu/2
https://www.lmfdb.org/EllipticCurve/Q/1225/b/1
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` E LMFDB Label P

2 y2 = x3 − 36x 576.c3 (−2,−8)

3 y2 + y = x3 − 34 225.c1 (6, 13)

7 y2 = x3 − 1715x− 33614 784.f2 (57, 232)

11 y2 + y = x3 − x2 − 887x− 10143 121.b1 (81, 665)

19 y2 + y = x3 − 13718x− 619025 361.a1 (2527, 126891)

43 y2 + y = x3 − 1590140x− 771794326 1849.b1 P43

67 y2 + y = x3 − 33083930x− 73244287055 4489.b1 P67

163
y2 + y = x3 − 57772164980x

−5344733777551611
26569.a1 P163

Table 2.2: Primes ` dividing the relative Kummer degree (6.3), CM curves.

respectively. The point P163 is the unique generator of E(Q) ∼= Z with positive
y-coordinate; it has canonical height approximately equal to 373.48, so its co-
ordinates are too large to be displayed here, but they can be found at [LMF22,
Elliptic Curve 26569.a1].

We have also considered the divisibility of (6.3) by higher powers of `. Exper-
iments analogous to the above are computationally intensive, so we only studied
the very small primes 2 and 3. An example where the index (6.3) is divisible by
16 was found by Rouse and Cerchia [CR21]: letting E : y2 = x3 − 343x + 2401
and P = (0,−49), there is a point P4 ∈ E(Q(E[8])) such that 4P4 = P . This im-
plies that 24 divides (6.3) for N = 4,M = 8. We found several other examples in
which (6.3) is divisible by 24 for suitable values of M,N , but no example involving
higher powers of 2. This might in part be due to the fact that – for computational
reasons – we have only been able to extend our search to M = 8, N |M .

Remark 7.1. J. Rouse recently informed us that he constructed an example
where (6.3) is divisible by 26 when M and N are sufficiently large powers of 2.

For ` = 3 we consider

E : y2 + y = x3 − 6924x+ 221760

and P = (2354/49,−176/343), which is a generator of E(Q)/E(Q)tors. Write g(x)
for the polynomial whose roots are the x-coordinates of the 9-division points of
P : one may check that g(x) ∈ Q[x] has an irreducible factor g1(x) of degree 9.
Further denote by ψ9(x) the 9-th division polynomial of E, whose roots are the x-
coordinates of the points in E[9]. We have also computed that the Galois groups

https://www.lmfdb.org/EllipticCurve/Q/576/c/3
https://www.lmfdb.org/EllipticCurve/Q/225/c/1
https://www.lmfdb.org/EllipticCurve/Q/784/f/2
https://www.lmfdb.org/EllipticCurve/Q/121/b/1
https://www.lmfdb.org/EllipticCurve/Q/361/a/1
https://www.lmfdb.org/EllipticCurve/Q/1849/b/1
https://www.lmfdb.org/EllipticCurve/Q/4489/b/1
https://www.lmfdb.org/EllipticCurve/Q/26569/a/1
https://www.lmfdb.org/EllipticCurve/Q/26569/a/1
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of ψ9(x), g1(x) and ψ9(x)g1(x) over Q have order 462, 27 and 3 · 462 respectively.
This proves that the Galois group of g1(x) over Q(E[9]) has order 3, hence in
particular that g1(x) becomes reducible over Q(E[9]). A 9-division point of P is
then defined over an extension of Q(E[9]) of degree at most (and in fact exactly)
3. As before, all other 9-division points are defined over the same field, hence
the relative Kummer degree (6.3) is divisible by 33 for M = N = 9. We have
found other examples where 33 divides (6.3), but none involving a factor 34; as
with ` = 2, it is entirely possible that this is only due to the limits of our search
range.

2.A Scalars in pro-p subgroups of GL2(Zp)
In this appendix we prove an abstract group-theoretic result, used in Section 3.3
to study the subgroup of scalar matrices in the image of the 3-adic representation
attached to a non-CM elliptic curve over Q. In the statement and proof of
Proposition 2.A.1 we will employ the notation Hpn for the reduction modulo pn

of a closed subgroup H of GL2(Zp) (cf. Section 3.1).

Proposition 2.A.1. Let p be an odd prime, H be a closed pro-p subgroup of
GL2(Zp), and k be a positive integer. Suppose that the following hold:

1. Hp has order p,

2. Hpk is not contained in the subgroup of upper- or lower-triangular matrices;

3. det(H) = 1 + pZp;

4. H is normalised by C :=

 1 0

0 −1

.

Then H contains all scalars congruent to 1 modulo pk.

Remark 2.A.2. From a group-theoretic point of view this result is optimal, at
least in the case p = 3, k = 3 that we are interested in. The subgroup H of
GL2(Z3) given by the inverse image of the subgroup of GL2(Z/33Z) generated
by the matrices  10 0

0 16

 ,

 10 9

23 10


satisfies all the properties (1)-(4) in the statement, and

H ∩ Z×3 = {λ ∈ Z×3 : λ ≡ 1 (mod 33)}.
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Remark 2.A.3. We also note that the methods of [Pin93] and [Lom15, §4] are
not easily applicable here, since there is no reason to expect a group H as in
the statement of Proposition 2.A.1 to be open in GL2(Zp). This implies that the
Zp-integral Lie algebra L attached to H by [Pin93] could be quite small, with
L/[L,L] infinite, which makes it hard to extract useful information from the main
theorem of [Pin93].

The proof of the proposition is by induction: we will show that, for every
n > k, the group Hpn contains all scalars congruent to 1 modulo pk. Since H is
closed this gives the desired conclusion.

Remark 2.A.4. The group Hp is cyclic, generated by any element g of order p.
The condition that H be stable under conjugation by C implies easily that g is
either upper- or lower-unitriangular (that is, triangular with diagonal coefficients

equal to 1). This shows in particular that for every h =

 a b

c d

 ∈ H we have

a ≡ d ≡ 1 (mod p), so that the diagonal entries of h− Id are divisible by p. Any
h ∈ H may therefore be written as h = λ Id +D + A, where λ = 1

2 tr(h) ≡ 1
(mod p), D is diagonal, tr(D) = 0, D ≡ 0 (mod p), and A is anti-diagonal. This
decomposition will play an important role in the proof.

The following lemma will be key in our approach.

Lemma 2.A.5. Let p be an odd prime, let Hpn be a p-subgroup of GL2(Z/pnZ)

stable under conjugation by C :=

 1 0

0 −1

, and let M be an element of Hpn .

Consider the sequence of elements of Hpn defined by M0 = M and Mi+1 =
Mi · CMiC

−1. Then:

1. for every i > 0, the elements detMi and detM generate the same subgroup
of (Z/pnZ)×;

2. write each Mi as λi Id +Di +Ai, where Di is diagonal and has trace 0 and
Ai is anti-diagonal. Then there exists a scalar µi ∈ (Z/pnZ)× such that
Di = µiD0;

3. the matrix Mi is diagonal for all i > n.

Proof. For the first statement we have det(Mi+1) = det(Mi)
2 and the map

x 7→ x2 is an automorphism of the abelian p-group det(H). Write now Mi =
λi Id +Di + Ai as in the statement. It follows from Remark 2.A.4 that Di ≡ 0
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(mod p). One computes CMiC
−1 = λi Id +Di −Ai and therefore

Mi+1 = (λi Id +Di +Ai) (λi Id +Di −Ai)
= λ2

i +D2
i + 2λiDi −A2

i + [Ai, Di].

Notice that D2
i is a multiple of the identity (since the two diagonal elements of

Di are opposite to each other, hence have the same square), and so is A2
i , while

[Ai, Di] is anti-diagonal. Hence{
Di+1 = 2λiDi

Ai+1 = [Ai, Di],

which immediately implies the statement about Di since (2λi, p) = 1. Moreover,
since vp(Di) > 1 we have vp(Ai+1) > vp(Ai) + 1: in particular, for i > n we have
vp(Ai) > n, hence for such i the matrix Ai is 0 and Mi is diagonal.

We notice in particular the following immediate consequence of the previous
lemma:

Corollary 2.A.6. Let Hpn be a p-subgroup of GL2(Z/pnZ) stable under con-
jugation by C, and let Dn be the subgroup of diagonal matrices in Hpn . Then
det(Hpn) = det(Dn).

Proof. The group det(Hpn) is contained in (Z/pnZ)×, hence is cyclic. Let M ∈
Hpn be a matrix whose determinant generates det(Hpn): by the previous lemma,
we can find a diagonal matrix whose determinant generates the same subgroup
as det(M).

Before proving Proposition 2.A.1 we need one further definition:

Definition 2.A.7. For n > 1 we let Ln be the image of the map

ker(Hpn+1 → Hpn) → Mat2×2(Fp)

g 7→ g−Id
pn .

The formulas

(Id +pnM1)(Id +pnM2) ≡ Id +pn(M1 +M2) (mod pn+1)

and (Id +pnM)p ≡ Id +pn+1M (mod pn+2), valid for all n > 1, show that the
set Ln is an additive subgroup of Mat2×2(Fp), and that moreover Ln ⊆ Ln+1 for
all n > 1.

We further observe that since C normalises H the subspace Ln of Mat2×2(Fp)
is stable under conjugation by C. Since p is odd, the conjugation action of C
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on Mat2×2(Fp) decomposes it as the direct sum of the subspaces of diagonal and
anti-diagonal matrices. We then have a corresponding decomposition Ln = dn ⊕
an, where dn (respectively an) is the subspace of diagonal (resp. anti-diagonal)
matrices in Ln. We are now ready to begin the proof proper.

Proof of Proposition 2.A.1. We show by induction on n that Hpn contains all
scalar matrices congruent to 1 modulo pk. Notice that the claim is trivial for
n 6 k, so we only need to take care of the inductive step. For each positive
integer n we denote by Dn the subgroup of diagonal matrices in Hpn and by
Λn the subgroup {λ ∈ (Z/pnZ)× : λ ≡ 1 (mod p)} of (Z/pnZ)×. By Corollary
2.A.6 and the hypothesis det(H) = 1 + pZp (hence det(Hpn) = Λn) we have
#Dn > #Λn = pn−1 for all n > 1. The kernel of the reduction map Dn+1 → Dn
is isomorphic to dn by construction. Notice that #dn ∈ {1, p, p2}.

If #dn = p2, the map Dn+1 → Dn is p2-to-1, which implies that, for every
element in Dn, all its p2 diagonal lifts to GL2(Z/pn+1Z) are in Dn+1. In par-
ticular, since (1 + pk) Id mod pn is an element of Dn by the inductive hypothesis
and (1 + pk) Id mod pn+1 is one such possible lift, we obtain immediately that
(1 + pk) Id is in Hpn+1 , and the induction step is complete (notice that the cyclic
subgroup generated by (1+pk) Id contains all scalars congruent to 1 modulo pk).

Suppose on the other hand that #dn | p. Then, using the fact that #di
divides #di+1, we obtain immediately

#Dn+1 = #D1 ·#d1 · · ·#dn | pn,

which combined with our previous observation #Dn+1 > pn implies #Dn+1 = pn.
In particular,

det : Dn+1 → Λn+1

is a surjective group homomorphism between groups of the same order, hence is
an isomorphism. This also implies that the only diagonal matrix in Hpn+1 with
determinant 1 is the identity.

Let now d : Λn+1 → Dn+1 be the isomorphism given by the inverse of the
determinant, which we write as

d(x) =

α(x) 0

0 β(x)


for suitable group homomorphisms α(x), β(x) : Λn+1 → Λn+1. As Λn+1 is a
cyclic group, we have α(x) = xa and β(x) = xb for suitable integers a, b. Since
d(x) is inverse to the determinant, we have x = det(d(x)) = α(x)β(x) = xa+b,
so that in particular a+ b is relatively prime to p. This implies that at least one
between a and b is prime to p.
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We now show that the intersection Sn+1 := Hpn+1 ∩ SL2(Z/pn+1Z) consists
of matrices of the form λ Id +A, where λ ∈ Z/pn+1Z is a scalar and A is antidi-
agonal. To see this, let M ∈ Sn+1, and write it as M = λ Id +D + A, with D
diagonal of trace 0 and A antidiagonal. Lemma 2.A.5 yields a diagonal matrix
M ′ = λ′ Id +D′ in Sn+1 (in particular, det(M ′) = 1) with D′ = µD for some
scalar µ prime to p. Since the only diagonal matrix with determinant 1 in Hpn+1

is the identity, we get λ′ = 1 and D′ = 0. As µ is invertible, this implies D = 0
as desired.

On the other hand, Sn+1 – being the kernel of the determinant – is normal in
Hpn+1 , hence in particular is stable under conjugation by the diagonal matrices
d(x). Let M = λ Id +A be any element of Sn+1 and let x ∈ Λn+1. Then Sn+1

also contains d(x) ·M · d(x)−1 and their product M · d(x) ·M · d(x)−1, that is,

(λ Id +A)(λ Id +d(x) ·A · d(x)−1). (2.A.1)

Like all elements of Sn+1, this matrix has the form λ′ Id +A′ for some scalar λ′

and some anti-diagonal matrix A′. The diagonal part of (2.A.1) is λ2 +A · d(x) ·
A · d(x)−1, so A · d(x) · A · d(x)−1 is a multiple of the identity modulo pn+1.

Writing A =

0 y

z 0

, the condition becomes

yz

(
α(x)

β(x)
− β(x)

α(x)

)
≡ 0 (mod pn+1). (2.A.2)

We will show below that there exists M ∈ Sn+1, M = λ Id +

 0 y

z 0

, with

vp(yz) 6 k − 1. Assuming for now that we have such an M , in Equation (2.A.2)

we may assume vp(yz) 6 k − 1, hence we obtain
(
α(x)
β(x)

)2

≡ 1 (mod pn+2−k).

Recalling that α(x) = xa, β(x) = xb, this rewrites as xa ≡ xb (mod pn+2−k)
(notice that x 7→ x2 is an automorphism of Λn+1). Raising to the pk−1-th power

we get xp
k−1a ≡ xpk−1b (mod pn+1), hence

xp
k−1a Id = xp

k−1b Id = d
(
xp

k−1
)
∈ Hpn+1

for every x ∈ Λn+1. Recall now that at least one between a and b is prime to
p, say (a, p) = 1: then x 7→ xa is an automorphism of Λn+1, so it follows that
all the pk−1-th powers of the scalars ≡ 1 (mod p) are in Hpn+1 . The induction
step is now complete, because all scalars congruent to 1 modulo pk are pk−1-th
powers in Λn+1.
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It only remains to show that we can find an element M ∈ Sn+1 such that,

writing M = λ Id +

 0 y

z 0

, we have vp(yz) 6 k − 1. We first prove that it

is enough to find N =

n11 n12

n21 n22

 ∈ Hpn+1 with vp(n12n21) 6 k − 1. Indeed,

given such an N , we know from above that there is a diagonal matrix Q =q11 0

0 q22

 ∈ Hpn+1 with det(Q) = det(N)−1. Notice that q11, q22 are invertible.

ThenNQ =

q11n11 q22n12

q11n21 q22n22

 belongs to Sn+1, so it is automatically of the form

λ Id +A, and its anti-diagonal part satisfies vp(q22n12 q11n21) = vp(n12n21) 6 k−1
as desired. Thus it suffices to find N ∈ Hpn+1 , of arbitrary determinant, with
vp(n12n21) 6 k − 1.

By Remark 2.A.4, there exists g ∈ H that reduces modulo p to

 1 1

0 1


or

 1 0

1 1

: for simplicity of exposition, we only discuss the former case, the

latter being completely analogous. Consider the image

g11 g12

g21 g22

 of g in Hpk :

since vp(g12) = 0, if vp(g21) 6 k − 1 we are done by taking N = g mod pn+1.

Otherwise, let h ∈ H be an element whose image

h11 h12

h21 h22

 in Hpk satisfies

vp(h21) 6 k − 1: such an element exists, for otherwise Hpk would be contained
in the subgroup of upper-triangular matrices. If vp(h12) = 0 we are done by
taking N = h mod pn+1, while if vp(h12) > 0 it is easy to check that we can take
N = hg mod pn+1.

Remark 2.A.8. Part of the proof is inspired by the structure theorem for re-
ductive groups. Indeed, in the course of the argument we prove that the di-
agonal torus of Hpn+1 is isomorphic to Λn+1, which is the pro-p subgroup of
Gm(Z/pn+1Z), that Sn+1 = Hpn+1 ∩ SL2(Z/pn+1Z) (morally, the derived sub-
group) intersects the diagonal torus trivially, and finally that the conjugation
action of the torus on the “semisimple part” Sn+1 is (essentially) trivial, so that
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the diagonal torus (essentially) consists of scalar matrices. This is reminiscent of
the decomposition G = Z(G).G′ that holds for reductive groups, and indeed hy-
pothesis (2) of the proposition may be seen as a discrete analogue of the statement
“H is reductive”.


