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Chapter 1

Effective Kummer theory
for elliptic curves

by Davide Lombardo and Sebastiano Tronto [LT21a]

1 Introduction

1.1 Setting

Let E be an elliptic curve defined over a number field K (for which we fix an
algebraic closure K) and let α ∈ E(K) be a point of infinite order. The purpose
of this paper is to study the extensions of K generated by the division points of
α; in order to formally introduce these extensions we need to set some notation.

Given a positive integer M , we denote by E[M ] the group of M -torsion points
of E, that is, the set {P ∈ E(K) : MP = 0} equipped with the group law
inherited from E. Moreover, we denote by KM the M -th torsion field K(E[M ])
of E, namely, the finite extension of K obtained by adjoining the coordinates of
all the M -torsion points of E. For each positive integer N dividing M , we let
N−1α :=

{
β ∈ E(K) | Nβ = α

}
denote the set of N -division points of α and set

KM,N := K(E[M ], N−1α).

The field KM,N is called the (M,N)-Kummer extension of K (associated with α),
and both KM and KM,N are finite Galois extensions of K. It is a classical

13



14 CHAPTER 1. KUMMER THEORY FOR ELLIPTIC CURVES

question to study the degree of KM,N over KM as M,N vary, see for example
[Ber88, Théorème 1], [Hin88, Lemme 14], or Ribet’s foundational paper [Rib79].
In particular, it is known that there exists an integer C = C(E/K,α), depending
only on E/K and α, such that

N2

[KM,N : KM ]
divides C

for every pair of positive integers (M,N) with N | M . The aim of this paper is
to give an explicit version of this result, and to show that it can be made uniform
when the base field is K = Q. Our first result is that, under the assumption
EndK(E) = Z, the integer C can be bounded (explicitly) in terms of the `-adic
Galois representations attached to E and of divisibility properties of the point α,
and that this statement becomes false if we remove the hypothesis EndK(E) = Z.
On the other hand, the assumption EndK(E) = Z is always satisfied whenK = Q,
and we show that in this case C can be taken to be independent of E and α,
provided that α and all its translates by torsion points are not divisible by any
n > 1 in the group E(Q). This is a rather surprising statement, especially
given that such a strong uniformity result is not known for the closely connected
problem of studying the degrees of the torsion fields KM over K.

1.2 Main results

Our main results are the following.

Theorem 1.1. Assume that EndK(E) = Z. There is an explicit constant C,
depending only on α and on the `-adic torsion representations associated to E
for all primes `, such that

N2

[KM,N : KM ]
divides C

for all pairs of positive integers (M,N) with N dividing M .

The proof gives an explicit expression for C that depends on computable
parameters associated with E and α. We also show that all these quantities can
be bounded effectively in terms of standard invariants of the elliptic curve and of
the height of α, see Remark 5.17.

Theorem 1.2. There is a universal constant C > 0 with the following property.
Let E/Q be an elliptic curve, and let α ∈ E(Q) be a point such that the class of
α in the free abelian group E(Q)/E(Q)tors is not divisible by any n > 1. Then

N2

[QM,N : QM ]
divides C
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for all pairs of positive integers (M,N) with N dividing M .

The assumption on the divisibility of the point α is necessary: it is enough to

replace α with a multiple `α to gain an extra factor `2 in the ratio N2

[QM,N :QM ] when

N is divisible by a sufficiently high power of `. However, one can remove this
assumption and obtain a bound that depends only on the largest integer n such
that α is n-divisible in E(Q)/E(Q)tors, but not on the curve, see Remark 7.2.
Also observe that Theorems 1.1 and 1.2 immediately imply lower bounds of the
form [KM,N : KM ] > 1

CN
2.

We remark that recent work by Cerchia and Rouse [CR21] also investigates
similar questions – in particular, the problem of uniformity – but only focuses
on a single `-adic representation at a time (equivalently: the case when M,N
are both powers of some fixed prime `), while our results cover the more general
adelic situation. In fact, the main difficulty in the present work stems from the
possible interactions between the `-power torsion fields for different primes ` (the
so-called entanglement phenomenon), and it is to handle this difficulty that we
need to introduce some new ideas in Section 7. These ideas allow us to reduce
the study of the cohomology of the Galois modules E[N ] for general N to the
corresponding question for E[`k], where `k | N ; this is nontrivial precisely because
there can be interactions between torsion fields related to different primes. Our
main cohomological result (Theorem 7.5) can be stated as follows.

Theorem 1.3. There is a positive integer C1 such that, for every elliptic curve
E/Q, the exponent of H1(Gal(Q(E(Q)tors) | Q), E(Q)tors) divides C1.

It is not hard to see that this statement would follow from a positive answer
to Serre’s well-known uniformity question concerning the Galois representations
attached to elliptic curves over Q (see e.g. [Ser72, §4.3]). In order to obtain
an unconditional proof we need to combine several ingredients: in addition to
some cohomological tools, including the inflation-restriction sequence, our proof
of this theorem relies on several deep results on the images of the modulo-` Galois
representations attached to elliptic curves, including the uniform boundedness of
isogenies for elliptic curves defined over Q (Theorem 3.14). The fact that similar
results are not known for general number fields is the main reason why at present
we cannot easily generalise Theorem 1.2 to number fields other than Q.

1.3 Structure of the paper

We start with some necessary general preliminaries in Section 2, leading up to
a factorisation of the constant C of Theorem 1.1 as a product of certain con-
tributions which we dub the `-adic and adelic failures (corresponding to E, α,
and a fixed prime `). In the same section we also introduce some of the main
actors of this paper, in the form of several Galois representations associated with
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the torsion and Kummer extensions. In Section 3 we then recall some important
properties of the torsion representations that will be needed in the rest of the
paper. In Sections 4 and 5 we study the `-adic and adelic failures respectively.
In Section 6 we show that one cannot hope to näıvely generalise some of the
results in section 4 to CM curves. Finally, in Section 7 we prove Theorem 1.2 by
establishing several auxiliary results about the Galois cohomology of the torsion
modules E[M ] that might have an independent interest.

2 Preliminaries

2.1 Notation and definitions

The letter K will always denote a number field, E an elliptic curve defined over
K, and α a point of infinite order in E(K). For n a positive integer, we denote
by ζn a primitive root of unity of order n. Given a prime `, we denote by v`
the usual `-adic valuation on Q and on Q`. If X is a vector in Zn` or a matrix
in Matm×n(Z`), we call valuation of X, denoted by v`(X), the minimum of the
`-adic valuations of its coefficients.

We shall often use divisibility conditions involving the symbols `∞ (where `
is a prime) and ∞. Our convention is that every power of ` divides `∞, every
positive integer divides ∞, and `∞ divides ∞. Recall from the Introduction
that we denote by KM the field K(E[M ]) generated by the coordinates of the
M -torsion points of E, and by KM,N (for N | M) the field K(E[M ], N−1α).
We extend this notation by setting K`∞ =

⋃
nK`n , K∞ =

⋃
M KM , and more

generally, for M,N ∈ N>0 ∪ {`∞,∞} with N |M ,

KM =
⋃
d|M

Kd, KM,N =
⋃
d|M

⋃
e|d
e|N

Kd,e

If H is a subgroup of GL2(Z`), we denote by Z`[H] the sub-Z`-algebra of
Mat2(Z`) topologically generated by the elements of H. Let G be a (profinite)
group. We write G′ for its derived subgroup, namely, the subgroup of G (topo-
logically) generated by commutators, and Gab = G/G′ for its abelianisation,
namely, its largest abelian (profinite) quotient. We say that a finite simple group
S occurs in a profinite group G if there are closed subgroups H1, H2 of G, with
H1 / H2, such that H2/H1 is isomorphic to S. Finally, we denote by expG the
exponent of a finite group G, namely, the smallest integer e > 1 such that ge = 1
for every g ∈ G.
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2.2 The `-adic and adelic failures

We start by observing that it is enough to restrict our attention to the case
N = M :

Remark 2.1. Suppose that there is a constant C > 1 such that

M2

[KM,M : KM ]
divides C

for all positive integers M . Then for any N | M , since [KM,M : KM,N ] divides
(M/N)2, we have that

N2

[KM,N : KM ]
=
N2[KM,M : KM,N ]

[KM,M : KM ]
divides

M2

[KM,M : KM ]
,

which in turn divides C.

We now describe a decomposition of the ratio N2

[KN,N :KN ] into two arithmeti-

cally meaningful parts. Elementary field theory gives

N2

[KN,N : KN ]
=

∏
`|N

` prime

`2n`

[KN,`n` : KN ]
=

=
∏
`|N

` prime

`2n`

[K`n` ,`n` : K`n` ]
· [K`n` ,`n` : K`n` ]

[KN,`n` : KN ]
=

=
∏
`|N

` prime

`2n`

[K`n` ,`n` : K`n` ]
· [K`n` ,`n` ∩KN : K`n` ]

where n` = v`(N). To see why the first equality holds, recall that the degree
[KN,`n` : KN ] is a power of `, so the fields KN,`n` are linearly disjoint over KN ,
and clearly they generate all of KN,N .

Definition 2.2. Let ` be a prime and N a positive integer. Let n := v`(N). We
call

A`(N) :=
`2n

[K`n,`n : K`n ]

the `-adic failure at N and

B`(N) :=
[K`n,`n : K`n ]

[KN,`n : KN ]
= [K`n,`n ∩KN : K`n ]

the adelic failure at N (related to `). Notice that both A`(N) and B`(N) are
powers of `.
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Example 2.3. It is clear that the `-adic failure A`(N) can be nontrivial, that
is, different from 1. Suppose for example that α = `β for some β ∈ E(K): then
we have

K`n,`n = K`n(`−nα) = K`n(`−n+1β),

and the degree of this field over K`n is at most `2(n−1), so `2 | A`(N). In Example
4.5 we will show that the `-adic failure can be non-trivial also when α is strongly
`-indivisible (see Definition 4.1).

Example 2.4. We now show that the adelic failure B`(N) can be non-trivial as
well. Consider the elliptic curve E over Q given by the equation

y2 = x3 + x2 − 44x− 84

and with Cremona label 624f2 (see [LMF22, label 624f2]). One can show that
E(Q) ∼= Z ⊕ (Z/2Z)2, so that the curve has full rational 2-torsion, and that
a generator of the free part of E(Q) is given by P = (−5, 6). The 2-division
points of P are given by (1 +

√
−3,−3 + 7

√
−3), (−11 + 3

√
−3, 27 + 15

√
−3),

and their Galois conjugates, so they are defined over Q(ζ3) ⊆ Q3, and we have
B2(6) := [Q2,2 ∩ Q6 : Q2] = [Q(ζ3) : Q] = 2. These computations have been
checked with SageMath [The].

2.3 The torsion, Kummer and arboreal representations

In this section we introduce three representations of the absolute Galois group
of K that will be our main tool for studying the extensions KM,N . For further
information about these representations see for example [JR10, Section 3], [BP21],
and [LP21].

The torsion representation

Let N be a positive integer. The group E[N ] of N -torsion points of E is a
free Z/NZ-module of rank 2. Since the multiplication-by-N map is defined over
K, the absolute Galois group of K acts Z/NZ-linearly on E[N ], and we get a
homomorphism

τN : Gal(K | K)→ Aut(E[N ]).

The field fixed by the kernel of τN is exactly the N -th torsion field KN . Thus,
after fixing a Z/NZ-basis of E[N ], the Galois group Gal(KN | K) is identified
with a subgroup of GL2(Z/NZ) which we denote by HN .

As N varies, and provided that we have made compatible choices of bases,
these representations form a compatible projective system. We can therefore pass

http://www.lmfdb.org/EllipticCurve/Q/624f2/
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to the limit over the powers of a fixed prime number ` to obtain the `-adic torsion
representation τ`∞ : Gal(K | K) → GL2(Z`). We can also take the limit over
all integers N (ordered by divisibility) to obtain the adelic torsion representation

τ∞ : Gal(K | K) → GL2(Ẑ). We denote by H`∞ (resp. H∞) the image of
τ`∞ (resp. τ∞). The group H`∞ (resp. H∞) is isomorphic to Gal(K`∞ | K)
(resp. Gal(K∞ | K)).

One can also pass to the limit on the torsion subgroups themselves, obtaining
the `-adic Tate module T`E = lim←−nE[`n] ∼= Z2

` and the adelic Tate module

TE = lim←−M E[M ] ∼= Ẑ2 ∼=
∏
` Z2

` .

The Kummer representation

Let M and N be positive integers with N | M . Let β ∈ E(K) be a point such
that Nβ = α. For any σ ∈ Gal(K | KM ) we have that σ(β)− β is an N -torsion
point, so the following map is well-defined:

κN : Gal(K | KM ) → E[N ]
σ 7→ σ(β)− β.

Since any other N -division point β′ of α satisfies β′ = β + T for some T ∈
E[N ], and the coordinates of T belong to KN ⊆ KM , the map κN does not
depend on the choice of β. It is also immediate to check that κN is a group
homomorphism, and that the field fixed by its kernel is exactly the (M,N)-
Kummer extension of K. Fixing a basis of E[N ] we can identify the Galois group
Gal(KM,N | KM ) with a subgroup of (Z/NZ)2. It is then clear that KM,N is
an abelian extension of KM of degree dividing N2, and the Galois group of this
extension has exponent dividing N . In the special case M = N we denote by VN
the image of Gal (KN,N | KN ) in (Z/NZ)2.

By passing to the limit in the previous constructions we also obtain the fol-
lowing:

(i) There is an `-adic Kummer representation κ`∞ : Gal(K | K`∞) → T`E
which factors via a map Gal(K`∞,`∞ | K`∞)→ T`E (still denoted by κ`∞).

(ii) The image V`∞ of κ`∞ is a sub-Z`-module of T`E ∼= Z2
` , and it is isomorphic

to Gal(K`∞,`∞ | K`∞) as a profinite group. We therefore identify the Galois
group Gal(K`∞,`∞ | K`∞) with V`∞ .

(iii) We can identify the Galois group Gal(K∞,`∞ | K∞) with a Z`-submodule
W`∞ of V`∞ (hence also of T`E) via the representation κ`∞ .

(iv) We can identify the Galois group Gal(K∞,∞ | K∞) with a sub-Ẑ-module

W∞ of TE ∼= Ẑ2.
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Notice that W`∞ is the projection of W∞ in Z2
` , and since W`∞ is a pro-`

group and there are no nontrivial continuous morphisms from a pro-` group to a
pro-`′ group for ` 6= `′ we have W∞ =

∏
`W`∞ .

The arboreal representation

Fix a sequence {βi}i∈N of points in E(K) such that β1 = α and NβM = βM/N

for all pairs of positive integers (N,M) with N | M . For every N > 1 fix

furthermore a Z/NZ-basis {TN1 , TN2 } of E[N ] in such a way that NTM1 = T
M/N
1

and NTM2 = T
M/N
2 for every pair of positive integers (N,M) with N | M . For

every N > 1, the map

ωN : Gal(KN,N | K)→ (Z/NZ)
2 o GL2 (Z/NZ)

σ 7→ (σ(βN )− βN , τN (σ))

is an injective homomorphism (similarly to [JR10, Proposition 3.1]) and thus

identifies the group Gal(KN,N | K) with a subgroup of (Z/NZ)
2 o GL2 (Z/NZ).

It will be important for our applications to notice that VN comes equipped
with an action of HN coming from the fact that VN is the (abelian) kernel of the
natural map Gal(KN,N | K) → HN . More precisely, the action of h ∈ HN on
v ∈ VN is given by conjugating the element (v, Id) ∈ (Z/NZ)2 o GL2(Z/NZ) by
(0, h). Explicitly, we have

(0, h)(v, Id)(0, h)−1 = (hv, h)(0, h−1) = (hv, Id),

so that the action of HN on VN is induced by the natural action of GL2(Z/NZ)

on (Z/NZ)
2
. We obtain similar statements by suitably passing to the limit in N :

Lemma 2.5. For every positive integer N , the group VN is an HN -submodule
of (Z/NZ)2 for the natural action of HN 6 GL2(Z/NZ) on VN 6 (Z/NZ)2.
Similarly, both V`∞ and W`∞ are H`∞-modules.

Remark 2.6. Let N ∈ N ∪ {`∞} and M ∈ N ∪ {`∞,∞} with N |M . Then the
group Gal(KM,N | KM ) can be identified with a subgroup of VN : this follows
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from inspection of the diagram

KM,N

KM KN,N

KM ∩KN,N

KN

which shows that Gal(KM,N | KM ) is isomorphic to Gal(KN,N | KM ∩KN,N ),
which in turn is clearly a subgroup of Gal(KN,N | KN ) ∼= VN .

2.4 Curves with complex multiplication

If EndK(E) 6= Z we say that E has complex multiplication, or CM for short. In
this case EndK(E) is an order in an imaginary quadratic field, called the CM-field
of E. The torsion representations in the CM case have been studied for example
in [Deu53] and [Deu58]. In this case, the image of the torsion representation τ`∞

is closely related to the Cartan subgroup of GL2(Z`) corresponding to EndK(E),
defined as follows:

Definition 2.7. Let F be a reduced Q`-algebra of degree 2 and let A` be a
Z`-order in F . The Cartan subgroup corresponding to A` is the group of units
of A`, which we embed in GL2(Z`) by fixing a Z`-basis of A` and considering
the left multiplication action of A×` . If A is an order in an imaginary quadratic
number field, the Cartan subgroup of GL2(Z`) corresponding to A is defined by
taking A` = A⊗ Z` in the above.

More precisely, when E/K is an elliptic curve with CM, the image of the `-
adic torsion representation τ`∞ is always contained (up to conjugacy in GL2(Z`))
in the normaliser of the Cartan subgroup corresponding to EndK(E), and is
contained in the Cartan subgroup itself if and only if the complex multiplication
is defined over the base field K.

In order to have a practical representation of Cartan subgroups, we recall the
following definition from [LP17]:
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Definition 2.8. Let C be a Cartan subgroup of GL2(Z`). We say that (γ, δ) ∈ Z2
`

are parameters for C if C is conjugated in GL2(Z`) to the subgroup{(
x δy
y x+ γy

)
: x, y ∈ Z`, v`(x(x+ γy)− δy2) = 0

}
. (2.1)

Parameters for C always exist, see [LP17, §2.3].

Remark 2.9 (([LP17, Remark 9])). One may always assume that γ, δ are inte-
gers. Furthermore, one can always take γ ∈ {0, 1}, and γ = 0 if ` 6= 2.

We also recall the following explicit description of the normaliser of a Cartan
subgroup [LP17, Lemma 14]:

Lemma 2.10. A Cartan subgroup has index 2 in its normaliser. If C is as in
(2.1), its normaliser N in GL2(Z`) is the disjoint union of C and

C ′ :=

(
1 γ
0 −1

)
· C .

3 Properties of the torsion representation

Torsion representations are studied extensively in the literature; we have in par-
ticular the following fundamental theorem of Serre [Ser72], which applies to all
elliptic curves (defined over number fields) without complex multiplication:

Theorem 3.1 (Serre). If EndK(E) = Z, then H∞ is open in GL2(Ẑ). Equiva-
lently, the index of HN in GL2(Z/NZ) is bounded independently of N .

There is also a CM analogue of Theorem 3.1, which is more easily stated by
introducing the following definition:

Definition 3.2. Let E/K be an elliptic curve and ` be a prime number. We
say that the image of the `-adic representation is maximal if one of the following
holds:

(i) E does not have CM over K and H`∞ = GL2(Z`).

(ii) E has CM over K by an order A in the imaginary quadratic field F , the
prime ` is unramified in F and does not divide [OF : A], and H`∞ is
conjugated to the Cartan subgroup of GL2(Z`) corresponding to A.

(iii) E has CM overK (but not overK) by an orderA in the imaginary quadratic
field F , the prime ` is unramified in F and does not divide [OF : A], and
H`∞ is conjugated to the normaliser of the Cartan subgroup of GL2(Z`)
corresponding to A.
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Theorem 3.3 ([Ser72, Corollaire on p. 302]). Let E/K be an elliptic curve ad-
mitting CM over K. Then the `-adic representation attached to E/K is maximal
for all but finitely many primes `.

In the rest of this section we recall various important properties of the tor-
sion representations: we shall need results that describe both the asymptotic
behaviour of the mod `n torsion representation as n→∞ (§3.1 and 3.2) and the
possible images of the mod ` representations attached to elliptic curves defined
over the rationals (§3.3).

3.1 Maximal growth

We recall some results on the growth of the torsion extensions from [LP21, §2.3].

Proposition 3.4. Let ` be a prime number. Let δ = 2 if E has complex multi-
plication and δ = 4 otherwise. There exists a positive integer n` such that

#H`n+1/#H`n = `δ for every n > n`.

Proof. This follows from Theorem 3.1 in the non-CM case and from classical
results in the CM case. See also [LP21, Lemma 10 and Remark 13] for a more
general result.

Definition 3.5. We call an integer n` as in Proposition 3.4 a parameter of
maximal growth for the `-adic torsion representation. We say that it is minimal
if n` − 1 is not a parameter of maximal growth; when ` = 2, we require that the
minimal parameter be at least 2.

Remark 3.6. In the non-CM case we can give an equivalent definition of n`
as follows. Consider the fundamental system of open neighbourhoods of Id in
GL2(Z`) given by the normal subgroups

· · · ⊆ Id + `n Mat2(Z`) ⊆ · · · ⊆ Id + `2 Mat2(Z`) ⊆ Id + `Mat2(Z`) ⊆ GL2(Z`).

If E does not have CM over K, Theorem 3.1 implies that H`∞ has finite index
in GL2(Z`), so it must contain a subgroup of the form I + `n Mat2(Z`). Then it
is easy to see that n` is the minimal such positive integer n. One can also give
similar, but more complicated, characterisations of n` in the CM case using the
structure of the Cartan subgroup associated with the `-adic Galois representation
attached to E/K.

Remark 3.7. The assumption n` > 2 when ` = 2 is needed to apply [LP21,
Theorem 12].
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Remark 3.8. Given an explicit elliptic curve E/K and a prime `, the prob-
lem of determining the optimal value of n` can be solved effectively (see [LP21,
Remark 13]). However, computing n` can be challenging in practice, because
the näıve algorithm requires the determination of the Galois groups of the split-
ting fields of several large-degree polynomials. The situation is usually better
for smaller primes `, and especially for ` = 2, for which the 2-torsion tower is
known essentially explicitly (see [RZB15] for a complete classification result when
K = Q, and [Yel15] for a description of the 2-torsion tower of a given elliptic curve
over a number field).

The following lemma, originally due to Serre, is very close in spirit to Propo-
sition 3.4, and gives some control on the growth of the image of the `-adic repre-
sentation when the residual mod-` representation is surjective:

Lemma 3.9 (Serre, [Ser97, IV-23, Lemma 3]). Let ` > 5 be a prime and let
G ⊆ SL2(Z/`kZ) be a subgroup. Let π : SL2(Z/`kZ)→ SL2(Z/`Z) be the reduc-
tion homomorphism and suppose that π(G) = SL2(Z/`Z): then G = SL2(Z/`kZ).

In Section 5 we will need to bound the minimal parameter of maximal growth
for the `-adic torsion representation defined over certain extensions of the base
field. We will do so with the help of the following Lemma:

Lemma 3.10. Let K̃ be a finite extension of K. Let n` (resp. ñ`) be the minimal
parameter of maximal growth for the `-adic torsion representation attached to
E/K (resp. E/K̃). Then ñ` 6 n` + v`([K̃ : K]).

Proof. Let n0 := n` + v`([K̃ : K]) + 1 and consider the following diagram:

K̃`n0

K̃`n` K`n0

K̃`n` ∩K`n0K̃

K`n`

K̃ ∩K`n`

K
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Since clearly [K̃`n` ∩ K`n0 : K`n` ] divides [K̃`n` : K`n` ], which in turn divides
[K̃ : K], and since [K̃`n0 : K̃`n` ] = [K`n0 : K̃`n` ∩K`n0 ], we have

v` ([K`n0 : K`n` ]) = v`

(
[K`n0 : K̃`n` ∩K`n0 ]

)
+ v`

(
[K̃`n` ∩K`n0 : K`n` ]

)
6 v`

(
[K̃`n0 : K̃`n` ]

)
+ v`

(
[K̃ : K]

)
.

By [LP21, Theorem 12] we have

v` ([K`n0 : K`n` ]) = δ(n0 − n`) = δ
(
v`

(
[K̃ : K]

)
+ 1
)
,

where δ is as in Proposition 3.4, and we get

v`

(
[K̃`n0 : K̃`n` ]

)
> δ + (δ − 1)v`

(
[K̃ : K]

)
> (δ − 1)(n0 − n`).

Consider now the tower of extensions K̃`n` ⊆ K̃`n`+1 ⊆ · · · ⊆ K̃`n0 and notice
that by the pigeonhole principle for at least one n ∈ {n`, n` + 1, . . . , n0 − 1} we
must have [K̃`n+1 : K̃`n ] > δ. But then by [LP21, Theorem 12] we have maximal

growth over K̃ from n < n0. Thus we get ñ` 6 n` + v`

(
[K̃ : K]

)
as claimed.

3.2 Uniform growth of `-adic representations

The results in this subsection and the next will be needed in Section 7. We start
by recalling the following result, due to Arai:

Theorem 3.11 ([Ara08, Theorem 1.2]). Let K be a number field and let ` be a
prime. Then there exists an integer n > 0, depending only on K and `, such that
for any elliptic curve E over K with no complex multiplication over K we have

τ`∞(Gal(K | K)) ⊇ {M ∈ GL2(Z`) : M ≡ Id (mod `n)}.

For the next result we shall need a well-known Lemma about twists of elliptic
curves:

Lemma 3.12. Let E1, E2 be elliptic curves over K such that (E1)Q is isomorphic
to (E2)Q. There is an extension F of K, of degree dividing 12, such that E1 and
E2 become isomorphic over F .

Proof. Fixing a Q-isomorphism between E1 and E2 allows us to attach to E2 a
class in the cohomology group H1

(
Gal(K | K),Aut(E1)

)
. Since

H1
(
Gal(K | K),Aut(E1)

) ∼= K×/K×n
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for some n ∈ {2, 4, 6} (see [Sil09, Proposition X.5.4]), the class of E2 corresponds
to the class of a certain [α] ∈ K×/K×n. Letting F = K( n

√
α), whose degree over

K divides 12, it is clear that [α] ∈ F×/F×n is trivial, so the same is true for
[E2] ∈ H1(Gal(F | F ),Aut(E1)), which means that E2 is isomorphic to E1 over
F as desired.

Corollary 3.13. Let K be a number field and ` be a prime number. There
exists an integer n` with the following property: for every elliptic curve E/K, the
minimal parameter of maximal growth for the `-adic representation attached to
E is at most n`.

Proof. Let n be the integer whose existence is guaranteed by Theorem 3.11.
By the general theory of CM elliptic curves, we know that there are finitely
many values j1, . . . , jk ∈ Q such that for every CM elliptic curve E/K we have
j(E) ∈ {j1, . . . , jk}. For each such ji, fix an elliptic curve Ei/K with j(Ei) = ji.
To every Ei/K corresponds a minimal parameter of maximal growth for the `-
adic representation that we call mi. Let n` = max{n,mi + 2

∣∣ i = 1, . . . , k}:
we claim that this value of n` satisfies the conclusion of the Corollary. Indeed,
let E/K be any elliptic curve. If E does not have CM, the minimal parameter
of maximal growth for its `-adic representation is at most n 6 n`. If E has
CM, then there exists i such that j(E) = ji = j(Ei), so E is a twist of Ei. By
Lemma 3.12 the curves E and Ei become isomorphic over an extension F/K of
degree dividing 12, so if m (resp. m̃, resp. m̃i) denotes the minimal parameter of
maximal growth for E/K (resp. for E/F , resp. for Ei/F ) we have

m 6 m̃ = m̃i 6 mi + 2 6 n`,

where the equality follows from the fact that E and Ei are isomorphic over F ,
while the inequality m̃i 6 mi + 2 follows from Lemma 3.10 combined with the
fact that we have v`([F : K]) 6 v`(12) 6 2 for every prime `.

3.3 Possible images of mod ` representations

We recall several results concerning the images of the mod ` representations at-
tached to elliptic curves over Q. We begin with a famous Theorem of Mazur, to
state which we let

T0 := {p prime | p 6 17} ∪ {37}.
Theorem 3.14 ([MG78, Theorem 1]). Let E/Q be an elliptic curve and assume
that E has a Q-rational subgroup of order p. Then p ∈ T0 ∪ {19, 43, 67, 163}. If
E does not have CM over Q, then p ∈ T0.

We then recall the following result of Zywina, which builds upon previous
work of Serre, Mazur [MG78], Bilu-Parent [BP11], and Bilu-Parent-Rebolledo
[BPR13]:
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Theorem 3.15 ([Zyw15a, Proposition 1.13]). Let E/Q be a non-CM elliptic
curve and p 6∈ T0 be a prime. Let Cns(p) be the subgroup of GL2(Fp) consisting of

all matrices of the form

(
a bε
b a

)
with (a, b) ∈ F2

p \ {(0, 0)} and ε a fixed element

of F×p \ F×2
p . Then Hp is conjugate to one of the following:

(i) GL2(Fp);

(ii) the normaliser Nns(p) of Cns(p);

(iii) the index 3 subgroup

D(p) :=
{
a3 | a ∈ Cns(p)

}
∪
{(

1 0
0 −1

)
· a3 | a ∈ Cns(p)

}
of Nns(p).

Moreover, the last case can only occur if p ≡ 2 (mod 3).

Corollary 3.16. Let E/Q be a non-CM elliptic curve and p 6∈ T0 be a prime.
The following hold:

(1) The image Hp of the modulo-p representation attached to E contains

{λ Id | λ ∈ F×p }.

(2) Suppose Hp 6= GL2(Fp) and let gp ∈ GL2(Fp) be an element that nor-
malises Hp. Then there is h ∈ GL2(Fp) such that h−1gph ∈ Nns(p) and
h−1Hph ⊆ Nns(p).

Proof. (1) We apply Theorem 3.15. If Hp is either GL2(Fp) or conjugate to
Nns(p), the conclusion follows trivially, since Cns(p) contains all scalars. In
case (iii) of Theorem 3.15, Hp contains the cubes of the scalars, hence all
scalars since p ≡ 2 (mod 3).

(2) We only have to consider cases (ii) and (iii) of Theorem 3.15. Up to conjuga-
tion, we may assume that Hp ⊆ Nns(p) and the claim becomes gp ∈ Nns(p).

In case (ii) it suffices to check that the normaliser of Nns(p) is Nns(p) it-
self. This holds because Cns(p), being the only cyclic subgroup of index 2 of
Nns(p), is characteristic in Nns(p); hence any element that normalises Nns(p)
normalises Cns(p) as well, so it must be in Nns(p). In case (iii), one similarly
sees that {a3 | a ∈ Cns(p)} is characteristic in D(p) and that its normaliser
is Nns(p), and the conclusion follows as above.
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Lemma 3.17. Let ` be a prime number and let H be a closed subgroup of
GL2(Z`). Denote by H` the reduction of H modulo ` and suppose that H` con-
tains a scalar matrix λ Id. Then H contains a scalar matrix λ Id for some λ ∈ Z×`
with λ ≡ λ (mod `).

Proof. Let h ∈ H be any element that is congruent modulo ` to λ Id. Let λ ∈ Z×`
be the Teichmüller lift of λ (that is, λ` = λ and λ ≡ λ (mod `)) and write h =
λh1, where h1 = Id +`A for some A ∈ Mat2(Z`). The sequence h`

n

= λ`
n

h`
n

1 =

λh`
n

1 converges to λ Id, because for every n we have h`
n

1 = (Id +`A)
`n ≡ Id

(mod `n). As H is closed, the limit of this sequence, namely λ Id, also belongs
to H as claimed.

We conclude this section with a group-theoretic lemma. Recall from Section 2
that we say that a finite simple group S occurs inG if S is isomorphic to a quotient
of a subgroup of G.

Lemma 3.18 (Serre, [Ser97, IV-25]). Let p be a prime and let H be a subgroup
of GL2(Fp). Let S be a non-abelian simple group that occurs in H. Then S
is isomorphic either to A5 or to PSL2(Fp); the latter case is only possible if H
contains SL2(Fp).

4 The `-adic failure

The aim of this section is to study the `-adic failure A`(N) for a fixed prime `.
The divisibility properties of α in the group E(K) play a crucial role in the study
of this quantity, so we begin with the following definition:

Definition 4.1. Let α ∈ E(K) and let n be a positive integer. We say that α
is n-indivisible over K if there is no β ∈ E(K) such that nβ = α; otherwise we
say that α is n-divisible or divisible by n over K. Let ` be a prime number. We
say that α is strongly `-indivisible over K if the point α+ T is `-indivisible over
K for every torsion point T ∈ E(K) of `-power order. Finally, we say that α is
strongly indivisible over K if its image in the free abelian group E(K)/E(K)tors

is not divisible by any n > 1, or equivalently if α is strongly `-indivisible over K
for every prime `.

Our aim is to give an analogue of the following result, which bounds the
index of the image of the Kummer representation, in those cases when the torsion
representation is not surjective.

Theorem 4.2 (Jones-Rouse, [JR10, Theorem 5.2]). Assume that the `-adic tor-
sion representation τ`∞ : Gal(K`∞ | K)→ GL2(Z`) is surjective. Assume that α
is `-indivisible in E(K) and, if ` = 2, assume that K2,2 6⊆ K4. Then the `-adic
Kummer representation κ`∞ : Gal(K`∞,`∞ | K`∞)→ Z2

` is surjective.
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4.1 An exact sequence

We shall need to understand the divisibility properties of α not only over the
base field K, but also over the division fields of E. Thus we turn to studying
how the divisibility of the point α by powers of ` changes when passing to a field
extension. Our main tool will be the following Lemma.

Lemma 4.3. Let L be a finite Galois extension of K with Galois group G. For
every m > 1 there is an exact sequence of abelian groups

0→ mE(K)→ E(K) ∩mE(L)→ H1(G,E[m](L)),

where the injective map on the left is the natural inclusion.

Proof. Consider the short exact sequence of G-modules

0→ E[m](L)→ E(L)
[m]−−→ mE(L)→ 0

and the beginning of the long exact sequence in cohomology,

0→ (E[m](L))G → (E(L))G → (mE(L))G → H1(G,E[m](L)).

Noticing that

(E[m](L))G = E[m](K), (E(L))G = E(K), (mE(L))G = E(K) ∩mE(L)

and that

E(K)/E[m](K) ∼= mE(K)

the lemma follows.

The quotient (E(K) ∩mE(L)) /mE(K) gives a measure of “how many” K-
points of E are m-divisible in E(L) but not m-divisible in E(K). We shall
often use this Lemma in the special case of m = `n being a power of `: in this
context, the quotient (E(K) ∩ `nE(L)) /`nE(K) is a subgroup of E(K)/`nE(K),
so its exponent divides `n. We conclude that if ` - #H1(G,E[`n](L)) then no `-
indivisible K-point of E can become `-divisible in E(L). This applies in particular
when ` - #G, see [NSW13, Proposition 1.6.2].

4.2 Divisibility in the `-torsion field

As an example, we investigate the situation of Lemma 4.3 with m = ` and
L = K`. In this case the exact sequence becomes

0→ `E(K)→ E(K) ∩ `E(K`)→ H1(H`, E[`]).

The following Lemma can also be found in [LW15, Section 3].
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Lemma 4.4. The cohomology group H1(H`, E[`]) is either trivial or cyclic of
order `. When ` = 2 it is always trivial.

Proof. Since `E[`] = 0, we have `H1(H`, E[`]) = 0. It follows from [Ser13, Theo-
rem IX.4] that we have an injective map H1(H`, E[`])→ H1(S`, E[`]), where S` is
an `-Sylow subgroup of H`. This is either trivial, in which case H1(H`, E[`]) = 0,
or cyclic of order `. In the latter case, up to a change of basis for E[`] we can

assume that S` is generated by σ =

(
1 1
0 1

)
. One can conclude the proof

by explicitly computing the cohomology of the cyclic group 〈σ〉 as in [LW15,
Lemma 7].

In [LW15] the authors classify the cases when H1(H`, E[`]) 6= 0 for K = Q and
they give rather complete results in case K is a number field with K∩Q(ζ`) = Q.
In particular, it turns out that, for K = Q, the group H1(H`, E[`]) can be non-
trivial only when ` = 3, 5, 11, and only when additional conditions are satisfied
(see [LW15, Theorem 1]).

The next Example shows that for K = Q a point in E(Q) that is strongly
3-indivisible may become 3-divisible over the 3-torsion field.

Example 4.5. Consider the elliptic curve E over Q given by the equation

y2 + y = x3 − 216x− 1861

with Cremona label 17739g1 (see [LMF22, label 17739g1]). We have E(Q) ∼=
Z⊕Z/3Z, with a generator of the free part given by P =

(
23769
400 , 3529853

8000

)
, which

is therefore a strongly 3-indivisible point. Since the Q-isogeny class of E consists
of exactly two curves, by [LW15, Theorem 1] we have H1(H3, E[3]) = Z/3Z. The
3-torsion field is given by Q(z), where z is any root of x6 + 3. Over this field the
point

Q =

(
803

400
z4 − 416

400
z2 +

507

400
,

89133

8000
z4 − 199071

8000
z2 − 95323

8000

)
∈ E(Q(z))

is such that 3Q = P .
A computer search performed with the help of the LMFDB [LMF22] and of

Pari/GP [The19] shows that there are only 20 elliptic curves with conductor less
than 4× 105 satisfying this property for ` = 3, none of which has conductor less
than 17739.

4.3 Divisibility in the `-adic torsion tower

As we have seen in the previous Section, the `-divisibility of a point can increase
when we move along the `-adic torsion field tower. We would now like to give a
bound on the extent of this phenomenon.

http://www.lmfdb.org/EllipticCurve/Q/17739g1/
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Our purpose in this section is to prove Proposition 4.10 (essentially an appli-
cation of Sah’s lemma, see [Sah68, Proposition 2.7(b)] and [BR03, Lemma A.2]),
which will allow us to give such a bound in terms of the image of the torsion
representation.

Lemma 4.6. Let L be a finite Galois extension of K containing K`n and let
G := Gal(L|K). Assume that `kH1(G,E[`n]) = 0. If α ∈ E(K) is strongly
`-indivisible in E(K), then α is not `k+1-divisible in E(L).

Proof. Applying Lemma 4.3 with M = `k+1 we see that the quotient

E(K) ∩ `k+1E(L)

`k+1E(K)

embeds inH1(G,E[`n]), so it is killed by `k. It follows that `k
(
E(K) ∩ `k+1E(L)

)
is contained in `k+1E(K). Assuming by contradiction that α ∈ `k+1E(L) we get
`kα = `k+1β for some β ∈ E(K). But then T = `β − α ∈ E[`k](K) is such that
α+T ∈ `E(K), contradicting our assumption that α is strongly `-indivisible.

Lemma 4.7. Assume that for some n0 > 1 we have (1+`n0) Id ∈ H`n (if n 6 n0

the condition is automatically satisfied). Then the exponent of H1(H`n , E[`k])
divides `n0 for every k 6 n.

Proof. Let λ = (1 + `n0) Id and let ϕ : H`n → E[`k] be a cocycle. Using that λ
is central in H`n and that ϕ is a cocycle, for any g ∈ H`n we have

gϕ(λ) + ϕ(g) = ϕ(gλ) = ϕ(λg) = λϕ(g) + ϕ(λ),

so

`n0ϕ(g) = (λ− 1)ϕ(g) = gϕ(λ)− ϕ(λ),

that is, `n0ϕ is a coboundary. This proves that `n0H1(H`n , E[`k]) = 0 as claimed.

Lemma 4.8. Assume that E does not have complex multiplication and let n` > 1
be a parameter of maximal growth for the `-adic torsion representation. Then for
every n > n` and for every g ∈ Mat2(Z`) we have that (Id + `n`g) mod `n is an
element of H`n .

Proof. We prove this by induction. For n = n` the statement is trivial, so
suppose (Id +`n`g) mod `n belongs to H`n for some n > n`. Since the map
H`n+1 → H`n is surjective we can lift this element to an element of the form
Id +`n`g + `ng′ ∈ H`n+1 , where g′ ∈ Mat2(F`). Since

ker(H`n+1 → H`n) = {Id +`nh | h ∈ Mat2(F`)}
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we have that Id−`ng′ is in H`n+1 , hence H`n+1 contains the product

(Id−`ng′)(Id +`n`g + `ng′) ≡ (Id +`n`g) (mod `n+1),

where we use the fact that `2n(g′)2 = `n+n`g′g = 0 since we are working mod-
ulo `n+1.

In the special case g = Id, the same result also holds for elliptic curves with
complex multiplication:

Lemma 4.9. Let E be an arbitrary elliptic curve and let n` > 1 be a parameter
of maximal growth for E (in particular, n` > 2 if ` = 2). Then for every n > n`
we have (1 + `n`) Id ∈ H`n .

Proof. In the light of the previous lemma we may assume that E has complex
multiplication, so that the image of the torsion representation is contained in the
normaliser of a Cartan subgroup of GL2(Z`). The equality #H`n+1 = `2#H`n

for n > n` is equivalent to

ker (H`n+1 → H`n) = Id +`nT,

where both sides are seen as subsets of {M ∈ Mat2(Z/`n+1Z) : M ≡ Id (mod `n)},
and T is the tangent space to the image of the Galois representation as introduced
in [LP21, Definition 9] and further studied in [LP17, Definition 18]. We proceed
by induction, the base case n = n` being trivial. By surjectivity of H`n+1 → H`n

and the inductive hypothesis, we know that H`n+1 contains an element reducing
to (1+`n`) Id modulo `n, that is, an element of the formMn+1 := (1+`n`) Id +`nt.
Here t is an element of T: to see this, notice that Mn+1 is congruent to the identity
modulo `n` , so it cannot lie in the non-trivial coset of the normaliser of a Cartan
subgroup ([LP17, Theorem 40]), and therefore belongs to the Cartan subgroup

itself. But then Mn+1 is of the form

(
x δy
y x+ γy

)
for appropriate parameters

(γ, δ), hence

t =
1

`n

(
x− 1− `n` δy

y (x− 1− `n`) + γy

)
∈ Mat2(F`)

belongs to T by the explicit description given in [LP17, Definition 18]. The
equality ker (H`n+1 → H`n) = Id +`nT implies that H`n+1 also contains Id−`nt,
so it contains

((1 + `n`) Id +`nt)(Id−`nt) ≡ Id−`2nt2 + `n` Id−`n+n`t

≡ (1 + `n`) Id (mod `n+1)

as claimed.
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Proposition 4.10. Assume that α is strongly `-indivisible in E(K). Let n` be
a parameter of maximal growth for the `-adic torsion representation. Then for
every n the point α is not `n`+1-divisible in K`n ; equivalently, α is not `n`+1-
divisible in K`∞ .

Proof. By Lemma 4.9 the group H`n contains (1 + `n`) Id, so by Lemma 4.7 the
exponent of the group H1(H`n , E[`n]) divides `n` . We conclude by Lemma 4.6.

4.4 The `-adic failure is bounded

In this section we establish some general results that will form the basis of all
subsequent arguments (in particular Lemma 4.11 and Proposition 4.12) and use
them to show that the `-adic failure A`(N) can be effectively bounded (Theo-
rem 4.17).

Lemma 4.11. Assume that for some d > 0 the point α ∈ E(K) is not `d+1-
divisible over K`∞ . Then V`∞ contains a vector of valuation at most d. Similarly,
if α ∈ E(K) is not `d+1-divisible over K∞ then W`∞ contains a vector of valua-
tion at most d.

Proof. Assume by contradiction that every element of V`∞ has valuation at least
d+1. Then the image of V`∞ in E[`d+1] = T`(E)/`d+1T`(E) is zero. As this image
is exactly Gal(K`∞,`d+1 | K`∞), we obtain K`∞,`d+1 = K`∞ , so α is `d+1-divisible
in K`∞ , a contradiction.

The second part can be proved in exactly the same way.

The following group-theoretic Proposition will be applied in this section and
in Section 7. In all of our applications the group H will be the image of the `-adic
torsion representation associated with some elliptic curve.

Proposition 4.12. Let ` be a prime number, d be a positive integer, H be a
closed subgroup of GL2(Z`), and A = Z`[H] be the sub-Z`-algebra of Mat2(Z`)
topologically generated by the elements of H. Let V ⊆ Z2

` be an A-submodule of
Z2
` , and suppose that V contains at least one vector of `-adic valuation at most d.

(1) Suppose that H contains {M ∈ Mat2(Z`) : M ≡ Id (mod `n)} for some
n > 1. Then V contains `d+nZ2

` .

(2) Suppose that the reduction of H modulo ` acts irreducibly on F2
` . Then V

contains `dZ2
` .

(3) Let C be a Cartan subgroup of GL2(Z`) with parameters (γ, δ) and let N be
its normaliser. Suppose that H is an open subgroup of N not contained in
C, and that H contains {M ∈ C : M ≡ Id (mod `n)} for some n > 1. Then
V contains `3n+d+v`(4δ)Z2

` .
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Proof. Both the assumptions and the conclusions of the Proposition are invariant
under changes of basis in Z2

` , so we may assume that v = `de1 is in V , where

e1 =

(
1
0

)
.

(1) It is clear that A contains `n Mat2(Z`), so we have

V ⊇ A · v ⊇ `n Mat2(Z`) · v = `n+d Mat2(Z`) · e1 = `n+dZ2
` .

(2) Let H` denote the reduction of H modulo `. The condition that H` acts

irreducibly on F2
` implies that there exists M ∈ F`[H`] such that Me1 ≡

(
0
1

)
(mod `). Fix a lift M ∈ A of M , which exists because the natural reduction
map A = Z`[H]→ F`[H`] is clearly surjective. Then Mv = `dMe1 is a vector
whose second coordinate has valuation exactly d and whose first coordinate
has valuation strictly larger than d. It is then immediate to see that v and
Mv, that are contained in V , generate `dZ2

` .

(3) It is enough to show that A contains `3n+v`(4δ) Mat2(Z`), and the conclusion
follows as in (1) above. Suppose first that γ = 0, and let

M0 =

(
x0 −δy0

y0 −x0

)
∈ H \ C and M1 =

(
1 + `nx0 δ`ny0

`ny0 1 + `nx0

)
∈ H.

The existence and the form of such matrices follow from the assumptions
and from the description of Cartan subgroups and their normaliser given in
Definition 2.8 and Lemma 2.10. Then A contains M2 = M1 − Id +`nM0 =

2`n
(
x0 0
y0 0

)
. Let moreover M3 = `n

(
0 δ
1 0

)
, which is in A since it can be

written as

(
1 `nδ
`n 1

)
− Id, where both matrices are in H by assumption.

Then we have

4`2n
(
x2

0 − δy2
0 0

0 0

)
= (M2 − 2y0M3) ·M2 ∈ A

and x2
0 − δy2

0 = −detM0 ∈ Z×` . It follows that A contains 4`2n
(

1 0
0 0

)
, and

since Id ∈ A we have that all diagonal matrices of valuation at least 2n+v`(4)
are in A, which therefore also contains(

0 0
`3n+v`(4) 0

)
= M3

(
`2n+v`(4) 0

0 0

)
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and (
0 `3n+v`(4)δ
0 0

)
= M3

(
0 0
0 `2n+v`(4)

)
.

Together with the diagonal matrices found above, these elements clearly gen-
erate the submodule `3n+v`(4δ) Mat2(Z`), and we are done. If γ 6= 0, by
Remark 2.9 we may assume γ = 1 and ` = 2. In this case let

M0 =

(
x0 + y0 δy0 + x0 + y0

−y0 −x0 − y0

)
∈ H \ C

and

M1 = Id +`n
(
x0 δy0

y0 x0 + y0

)
∈ H.

Then A contains M2 = M1 − Id +`nM0 = `n
(

2x0 + y0 2δy0 + x0 + y0

0 0

)
.

Let moreover M3 = `n
(
−1 δ
1 0

)
∈ A. Then we have

M2(δM2 − (2δy0 + x0 + y0)M3) = −`2n det(M0)(1 + 4δ)

(
1 0
0 0

)
∈ A,

and using the fact that det(M0) ∈ Z×` (since M0 ∈ H ⊆ GL2(Z`)) we obtain
that A contains all diagonal matrices of valuation at least 2n. We can then
conclude as before.

Proposition 4.13. Assume that α is strongly `-indivisible in E(K) and let n`
be a parameter of maximal growth for the `-adic torsion representation.

(1) Assume that E does not have complex multiplication. Then for every k > 1
we have E[`k] ⊆ V`k+2n` .

(2) Assume that E has complex multiplication by A := EndK(E), and that K
does not contain the imaginary quadratic field A⊗Z Q. Let (γ, δ) be param-
eters for the Cartan subgroup of GL2(Z`) corresponding to A. Then for all
k > 1 we have E[`k] ⊆ V`k+4n`+v`(4δ) .

Proof. By Remark 2.6, in order to show (1) it is enough to prove that `2n`T`(E)
is contained in V`∞ . To see that this holds, notice that by Lemma 4.11 and
Proposition 4.10 there is an element of valuation at most n` in V`∞ . Now we just
need to apply Proposition 4.12(1) with H = H`∞ , V = V`∞ and d = n = n`.
Part (2) can be proved in the same way using Proposition 4.12(3).
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Proposition 4.13 is the main ingredient for the proof of Theorem 4.17 below,
and in fact it implies it directly in case the point α is strongly indivisible. To
finish the proof one also needs to relate the degrees of the Kummer extensions
for divisible and indivisible points, which is accomplished in Lemma 4.16.

In §6 we will show that a näıve analogue of Proposition 4.13 does not hold in
case E has complex multiplication defined over K.

Remark 4.14. Write α = `dβ + Th, where β ∈ E(K) is strongly `-indivisible
and Th ∈ E[`h](K) is a point of order `h, for some h, d > 0. Notice that it is
always possible to do so: first, let β ∈ E(K) and d be such that α = `dβ + T
for some T ∈ E(K) of order a power of `, with d maximal. Assume then by
contradiction that β is not strongly `-indivisible. This means that there are
γ, S ∈ E(K) with S of order a power of ` such that β = `γ + S. But then
α = `d(`γ + S) + T = `d+1γ + (`dS + T ), contradicting the maximality of d.

Remark 4.15. Let ĥ be the canonical (Néron-Tate) height on E, as described in
[Sil09, Section VIII.9]. Following [Pet06], it is possible to bound the divisibility

parameters d and h in terms of ĥ(α), the degree of K over Q, the discriminant
∆E of E over K and the Szpiro ratio

σ =

{
1 if E has everywhere good reduction
log |NK/Q(∆E)|
log |NK/Q(NE)| otherwise

where NE denotes the conductor of E over K. In fact, [Pet06, Theorem 1] gives
the bound

h 6 log`
⌊
c1[K : Q]σ2 log

(
c2[K : Q]σ2

)⌋
where c1 = 134861 and c2 = 104613. Alternatively, one could also use the uniform
boundedness of torsion [Mer96, Par96] to give an upper bound on h that only
depends on [K : Q].

For the parameter d we can reason as follows. For α = `dβ + Th, by [Sil09,
Theorem 9.3] we have

ĥ(α) = ĥ(`dβ + Th) = ĥ(`dβ) = `2dĥ(β)

so we get d 6
1

2 log `
log

(
ĥ(α)

ĥ(β)

)
. Now in view of [Pet06, Theorem 2] for any

non-torsion point β ∈ E(K) we have

ĥ(β) > B :=
log |NK/Q(∆E)|

1015[K : Q]3σ6 log2(c2[K : Q]σ2)
,
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where again c2 = 104613. We thus obtain the effective bound

d 6
1

2 log `
log

(
ĥ(α)

B

)
.

Lemma 4.16. Let α, β ∈ E(K) be points of infinite order such that α = dβ+Th
for positive integers d, h and some Th ∈ E(K)[h]. If N > 1 is a multiple of d
then [

KNh

((
N

d

)−1

β

)
: KNh

]
divides

[
KN

(
N−1α

)
: KN

]
,

thus

N2

[KN (N−1α) : KN ]
divides d2 ·

(
N
d

)2[
KNh

((
N
d

)−1
β
)

: KNh

] .
Proof. Notice that

KNh

((
N

d

)−1

β

)
= KNh

(
N−1(dβ)

)
KNh

(
N−1(dβ + Th)

)
= KNh

(
N−1α

)
and thus [

KNh

((
N

d

)−1

β

)
: KNh

]
=
[
KNh(N−1α) : KNh

]
.

It is clear that
[
KNh(N−1α) : KNh

]
divides

[
KN (N−1α) : KN

]
, so we conclude.

Theorem 4.17. Let ` be a prime and assume that EndK(E) = Z (i.e. either
E does not have CM, or it has CM but the complex multiplication is not defined
over K). There is an effectively computable constant a`, depending only on α and
on the `-adic torsion representation associated to E, such that A`(N) divides `a`

for all positive integers N .
Moreover, a` is zero for every odd prime ` such that α is `-indivisible and for

which the `-adic torsion representation associated with E is maximal (see Defi-
nition 3.2). For the finitely many remaining primes ` we can take a` as follows:
let n` be a parameter of maximal growth for the `-adic torsion representation and
let d be as in Remark 4.14. If E has CM over K, let (γ, δ) be parameters for the
Cartan subgroup of GL2(Z`) corresponding to EndK(E). Then:

(1) a` = 4n` + 2d if E does not have CM over K;
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(2) a` = 8n` + 2v`(4δ) + 2d if E has CM over K.

Proof. Let α = `dβ + Th as described above. Notice that if α is strongly `-
indivisible we have d = 0, and the conclusion follows from Proposition 4.13. If
the `-adic torsion representation is maximal, the fact that a` is zero in the cases
stated follows from [JR10, Theorem 5.2 and Theorem 5.8].

In the general case, let n = v`(N) and notice that the claim is trivial for
n 6 d, so we may assume n > d. By Lemma 4.16, we have that

`2n

[K`n+h(`−nα) : K`n+h ]
divides `2d

`2(n−d)

[K`n+h(`−(n−d)β) : K`n+h ]
,

so in view of Remark 2.1 we are reduced to proving the statement for β instead
of α. Since β is strongly `-indivisible, we can conclude as stated at the beginning
of the proof.

The fact that a` is effective follows from the fact that one can effectively
compute a parameter of maximal growth for the `-adic torsion representation
(Remark 3.8), an upper bound for the value of d (Remark 4.15), and the ring
EndK(E) ([Ach05], [CMSV19], [Lom19]).

Remark 4.18. Recent results by Cerchia and Rouse [CR21], obtained indepen-
dently from those in the present paper, imply that the better bound a` = 3n`+2d
holds in the non-CM case.

5 The adelic failure

In this section we study the adelic failure B`(N), that is, the degree of the
intersection K`n,`n ∩KN over K`n . Notice that this intersection is a finite Galois
extension of K`n .

5.1 Intersection of torsion fields in the non-CM case

We first aim to establish certain properties of the intersections of different torsion
fields of E, assuming for this subsection that E does not have complex multi-
plication over K. Our main tool is the following result, due to Campagna and
Stevenhagen [CS19, Theorem 3.4]:

Theorem 5.1 (Campagna-Stevenhagen). Assume that E does not have complex
multiplication. Let S be the set consisting of the primes ` satisfying one or more
of the following three conditions:

(i) ` | 30 disc(K | Q);
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(ii) E has bad reduction at some prime of K above `;

(iii) the modulo ` torsion representation is not surjective.

For every ` 6∈ S we have K`n ∩KM = K for all M,n > 1 with ` -M .

Remark 5.2. The finite set S appearing in Theorem 5.1 can be computed explic-
itly. In fact, it is well known that one can compute the discriminant of K and the
set of primes of bad reduction of E. An algorithm to compute the set of primes
for which the mod ` representation is not surjective is described in [Zyw15b].

An immediate consequence of the Theorem above is the following corollary,
which gives a slightly more precise version of [Ser97, §3.4, Lemma 6].

Corollary 5.3. Assume that E does not have complex multiplication and let S
be as in Theorem 5.1. Let M be a positive integer and write M = M1M2, where

M1 =
∏
p 6∈S

pep p prime, ep > 0,

M2 =
∏
q∈S

qeq q prime, eq > 0.

Then we have

Gal(KM | K) ∼= GL2 (Z/M1Z)×Gal (KM2
| K) .

Remark 5.4. Let K̃ be the compositum of the fields Kp for all p ∈ S, where S
is as in Theorem 5.1. In the following section it will be important to notice that
S is stable under base change to K̃. More precisely, let S̃ be the set of all primes
` that satisfy one of the following:

(i') ` | 30 disc(K̃ | Q);

(ii') E has bad reduction at some prime of K̃ above `;

(iii') the modulo ` torsion representation attached to E/K̃ is not surjective.

Then S̃ = S.
Indeed, the inclusion S̃ ⊇ S is easy to see: clearly conditions (i) and (iii)

imply (i') and (iii') respectively, so we only need to discuss (ii). Let p be a prime
of K (of characteristic `) at which E has bad reduction, and let q be a prime of
K̃ lying over p. We need to show that ` ∈ S̃. If E has bad reduction at q we
have ` ∈ S̃ by (ii'), while if E has good reduction at q then p ramifies in K̃ by
[Sil09, Proposition VII.5.4 (a)], so we have ` | disc(K̃ | Q) and ` is in S̃ by (i').
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Conversely, let ` ∈ S̃. If (ii') holds, then clearly also (ii) holds, and ` is
in S. Suppose that (i') holds. If ` divides 30, then it is in S by (1). Other-
wise ` divides disc(K̃ | Q), which by [Ser13, III.§4, Proposition 8] is equal to

disc(K | Q)[K̃:K]NK/Q disc(K̃ | K); if ` divides disc(K | Q), then it is in S

by (1), while if it divides disc(K̃ | K) then we have ` ∈ S by [Sil09, Proposi-
tion VIII.1.5(b)]. We may therefore assume that (i') and (ii') do not hold. Since
` is in S̃, (iii') must hold, that is, the modulo-` torsion representation attached
to E/K̃ is not surjective. We claim that the same is true for E/K. Indeed, if ` is
in S this is true by definition, while if ` 6∈ S the previous corollary shows that K`

is linearly disjoint from K̃, so the images of the modulo-` representations over K
and over K̃ coincide.

5.2 The adelic failure is bounded

We now go back to the general case of E possibly admitting complex multiplica-
tion.

Fix an integer N > 1 and a prime number ` dividing N . Write N = `nR
with ` - R and recall that the adelic failure B`(N) is defined to be the degree
[K`n,`n ∩KN : K`n ]. In this section we study this failure for N = `nR, starting
with a simple Lemma in Galois theory.

Lemma 5.5. Let L1, L2 and L3 be field extensions of K, with L1 ⊆ L2 and L2

Galois over K. Then the compositum L1(L2 ∩ L3) is equal to the intersection
L2 ∩ (L1L3).

Proof. Let G = Gal(K | K) and, for i = 1, 2, 3, let Gi := Gal(K | Li). The
claim is equivalent to G1 ∩ 〈G2, G3〉 = 〈G2, G1 ∩ G3〉, where the inclusion “⊇”
is obvious. Since L2 | K is Galois, the Galois group G2 is normal in G, so
we have 〈G2, G3〉 = G2 · G3 and 〈G2, G1 ∩ G3〉 = G2 · (G1 ∩ G3). Let then
g ∈ G1 ∩ (G2 · G3), so that there are g1 ∈ G1, g2 ∈ G2 and g3 ∈ G3 such that
g = g1 = g2g3. But then g−1

2 g1 = g3 ∈ G3 and, since G2 ⊆ G1, also g−1
2 g1 ∈ G1,

so that g = g2(g−1
2 g1) ∈ G2 · (G1 ∩G3).

We now establish some properties of certain subfields of K`nR,`n .

Lemma 5.6. Setting L := K`n,`n ∩ KN , F := L ∩ KR = K`n,`n ∩ KR, and
T := F ∩K`n = K`n ∩KR we have:

(1) The compositum FK`n is L.

(2) Gal(F | T ) ∼= Gal(L | K`n); in particular, Gal(F | T ) is an abelian `-group.

(3) F is the intersection of the maximal abelian extension of T contained in
K`n,`n and the maximal abelian extension of T contained in KR.
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K`nR,`n

K`n,`n K`nR

L := K`n,`n ∩K`nR

K`n KR

F := K`n,`n ∩KR

T := K`n ∩KR

K

Figure 1.1: The situation described in Lemma 5.6 and Proposition 5.7.

Proof. (1) By Lemma 5.5 we have FK`n = K`n(K`n,`n ∩KR) = K`n,`n ∩K`nR =
L. Part (2) follows from (1) and standard Galois theory. For (3), notice that F is
abelian over T by (2), so it must be contained in the maximal abelian extension of
T contained in K`n,`n and in the maximal abelian extension of T contained in KR.
On the other hand, F cannot be smaller than the intersection of these abelian
extensions, because by definition it is the intersection of K`n,`n and KR.

Proposition 5.7. The adelic failure B`(N) is equal to [F : T ], where F =
K`n,`n ∩KR and T = K`n ∩KR.

Proof. Let as above L = K`n,`n ∩K`nR. We have

Gal(K`n,`n |L) ∼= Gal(K`nR,`n |K`nR),
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so we get

[K`n,`n : K`n ] = [K`n,`n : L][L : K`n ] = [K`nR,`n : K`nR][L : K`n ]

and we conclude by Lemma 5.6(b).

In what follows we will need to work over a certain extension K̃ of K; this
extension will depend on the prime `. More precisely, we give the following
definition.

Definition 5.8. Let K̃ be the finite extension of K defined as follows:

(i) If E has complex multiplication, we take K̃ to be the compositum of K with
the CM field of E. This is an at most quadratic extension of K. Notice
that in this case by [LR18, Lemma 2.2] we have K̃n = Kn for every n > 3.

(ii) If E does not have CM and ` is not one of the primes in the set S of
Theorem 5.1, we just let K̃ = K. Notice that this happens for all but
finitely many primes `.

(iii) If E does not have CM and ` is one of the primes in the set S of Theorem 5.1,
we let K̃ be the compositum of all the Kp for p ∈ S. Notice that in this

case K̃` = K̃.

We shall use the notation K̃M (respectively K̃M,N ) for the torsion (respec-

tively Kummer) extensions of K̃. We shall also write

H̃`n := Im
(
τ`n : Gal(K | K̃)→ Aut(E[`n])

)
∼= Gal

(
K̃`n | K̃

)
,

Ṽ`n := Im
(
κ`n : Gal(K | K̃`n)→ E[`n]

)
∼= Gal

(
K̃`n,`n | K̃`n

)
for the images of the `n-torsion representation and of the (`n, `n)-Kummer map
attached to E/K̃. Finally, we let ñ` be the minimal parameter of maximal growth
for the `-adic torsion representation over K̃. Notice that, thanks to Lemma 3.10,
we have ñ` 6 n` + v`([K̃ : K]).

Proposition 5.9. The extension F ′ := K̃`n,`n ∩ K̃R is abelian over K̃.

Proof. This is well known if E has complex multiplication because then K̃R is
itself abelian over K̃, see for example [Sil94, Theorem II.2.3]. In case E does not
have complex multiplication and ` is not in the set S of Theorem 5.1, this follows
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easily by considering the diagram

K̃`n,`n

K̃`nF
′

K̃`n F ′

K̃

In fact, since K̃`n ∩F ′ = K̃ by Theorem 5.1 (notice that in this case K̃ = K), we
have that Gal(F ′ | K̃) ∼= Gal(K̃`nF

′ | K̃`n) is a quotient of Ṽ`n , hence abelian.
Thus we can assume that E does not have CM and that ` is in the set S of
Theorem 5.1.

Notice that F ′ is a Galois extension of K̃ with degree a power of `, since the
same is true for K̃`n,`n | K̃ and F ′ ⊆ K̃`n,`n . Letting r denote the radical of R,

the degree of [F ′ : F ′ ∩ K̃r], which is still a power of `, divides [K̃R : K̃r], which
is a product of primes dividing R. So since ` - R we obtain [F ′ : F ′ ∩ K̃r] = 1,
that is K̃`n,`n ∩ K̃R = K̃`n,`n ∩ K̃r, and we may assume that R is squarefree.
Write now R = R1R2, where R1 is the product of the prime factors of R that
are not in S and R2 is the product of the prime factors of R that belong to S.
By definition of K̃ we have K̃R = K̃R1 , so we may further assume that no prime
p ∈ S divides R. By Corollary 5.3 we then have Gal(K̃R | K̃) ∼= GL2(Z/RZ).

Since F ′ ⊆ K̃R, there must be a normal subgroup D = Gal(K̃R | F ′) E
GL2(Z/RZ) of index a power of `. In order to conclude we just need to show
thatD contains the subgroup SL2(Z/RZ), for then Gal(F ′ | K̃) ∼= GL2(Z/RZ)/D
is abelian.

Write SL2(Z/RZ) ∼=
∏
p|R SL2(Fp) and consider the intersection Dp := D ∩

SL2(Fp), which is a normal subgroup of SL2(Fp). Here we identify SL2(Fp) with
the corresponding direct factor of SL2(Z/RZ). The quotient SL2(Fp)/Dp cannot
have order a power of ` unless it is trivial (recall that in our case p > 5), so
we deduce that D ⊇ SL2(Fp). As this is true for every p | R, we have D ⊇
SL2(Z/RZ), and we are done.

In what follows, whenever A is an abelian group and Q is a group acting on
A, we denote by [A,Q] the subgroup of A generated by elements of the form
gv − v for v ∈ A and g ∈ Q. For example, we will consider the case A = Ṽ`n and
Q = H̃`n .
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Lemma 5.10. Let

1→ A→ G→ Q→ 1

be a short exact sequence of groups, with A abelian, so that Q acts naturally on
A. Let Gab and Qab be the maximal abelian quotients of G and Q respectively.
Then A/[A,Q] surjects onto ker(Gab → Qab).

Proof. We have an injective map of short exact sequences

1 A ∩G′ G′ Q′ 1

1 A G Q 1

from which we get the exact sequence

1→ A

A ∩G′
→ Gab → Qab → 1

and since [A,Q] ⊆ A ∩ G′ we conclude that A/[A,Q] surjects onto A/A ∩ G′ =
ker(Gab → Qab).

Proposition 5.11. The adelic failure B`(N) divides [K̃ : K] ·# Ṽ`n

[Ṽ`n , H̃`n ]
.

Proof. Let J1 and J2 be the maximal abelian extensions of K̃ contained in K̃`n

and K̃`n,`n respectively. Then we have Gal(J1 | K̃) = H̃ab
`n and Gal(J2 | K̃) =

G̃ab
`n , where G̃`n = Gal(K̃`n,`n | K̃). Notice that [J2 : J1] = #W , where W =

ker(G̃ab
`n → H̃ab

`n ) is a quotient of Ṽ`n/[Ṽ`n , H̃`n ] by Lemma 5.10. Let moreover

F ′ := K̃`n,`n ∩ K̃R and T ′ := K̃`n ∩ K̃R. By Proposition 5.9 we have F ′ ⊆ J2

and clearly also T ′ ⊆ J1 (indeed T ′ is abelian over K̃ since it is a sub-extension
of F ′). Consider the compositum J1F

′ inside J2.

J2

J1F
′

J1 F ′

K̃`



5. THE ADELIC FAILURE 45

It is easy to check that F ′ ∩ J1 = T ′, so we have that [F ′ : T ′] = [J1F
′ : J1]

divides [J2 : J1], which in turn divides Ṽ`n/[Ṽ`n , H̃`n ].

Now applying Proposition 5.7 with K̃ in place of K we get that

[K̃`n,`n : K̃`n ]

[K̃`nR,`n : K̃`nR]
divides [F ′ : T ′],

and using that [K̃`nR,`n : K̃`nR] divides [K`nR,`n : K`nR] it is easy to see that

[K`n,`n : K`n ]

[K`nR,`n : K`nR]
divides [K̃ : K] · [K̃`n,`n : K̃`n ]

[K̃`nR,`n : K̃`nR]
.

We conclude that

B`(N) =
[K`n,`n : K`n ]

[K`nR,`n : K`nR]
divides [K̃ : K] ·# Ṽ`n

[Ṽ`n , H̃`n ]
.

So we are left with giving an upper bound on the ratio #Ṽ`n/#[Ṽ`n , H̃`n ]:
this is achieved in the following Proposition.

Proposition 5.12. For every n, the order of Ṽ`n/[Ṽ`n , H̃`n ] divides `2ñ` , where
ñ` is the minimal parameter of maximal growth for the `-adic torsion represen-
tation of E/K̃.

Proof. By Lemma 4.9, the group H̃`n contains (1 + `ñ`) Id. This implies that for
every v ∈ Ṽ`n the group [Ṽ`n , H̃`n ] contains[

v, (1 + `ñ`) Id
]

= (1 + `ñ`) Id ·v − v = `ñ`v,

that is, [Ṽ`n , H̃`n ] contains `ñ` Ṽ`n . The claim now follows from the fact that Ṽ`n

is generated over Z/`nZ by at most two elements.

Lemma 5.13. Assume that ` > 5 is unramified in K | Q and that the image
of the mod ` torsion representation is GL2(F`) (so in particular E does not have
CM over K). Assume moreover that α is `-indivisible. Then V`n = [V`n , H`n ].

Proof. Since H ′`∞ is a closed subgroup of SL2(Z`) whose reduction modulo `
contains H ′` = GL2(F`)′ = SL2(F`), by Lemma 3.9 the group H`∞ contains
SL2(Z`). The assumption that ` is unramified in K implies that det(H`∞) = Z×` ,
which together with the inclusion SL2(Z`) ⊆ H`∞ implies H`∞ = GL2(Z`), and in
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particular H`n = GL2(Z/`nZ). By [JR10, Theorem 5.2] we have V`n = (Z/`nZ)2,
so it is enough to consider

g1 :=

(
1 1
0 1

)
∈ H`n , g2 :=

(
1 0
1 1

)
∈ H`n , v :=

(
1
1

)
∈ V`n

to conclude that(
1
0

)
= g1v − v ∈ [V`n , H`n ] and

(
0
1

)
= g2v − v ∈ [V`n , H`n ],

so that V`n ⊆ [V`n , H`n ].

Lemma 5.14. Let E/K be an elliptic curve such that EndK(E) is an order A
in the imaginary quadratic field Q(

√
−d). Let ` > 3 be a prime unramified both

in K and in Q(
√
−d), and suppose that E has good reduction at all places of K

of characteristic `. Then V`n = [V`n , H`n ] and Ṽ`n = [Ṽ`n , H̃`n ].

Proof. By [Lom17, Theorem 1.5], the image of the `-adic representations attached
to both E/K and E/K̃ contains (A ⊗ Z`)×, hence in particular it contains an
operator that acts as multiplication by 2 on E[`n] for every n. Let λ be such an
operator: then [V`n , H`n ] contains [V`n , λ] = {λv− v

∣∣ v ∈ V`n} = V`n as claimed.

The case of Ṽ`n is similar.

Theorem 5.15. Let ` be a prime. There is a constant b`, depending only on the
p-adic torsion representations associated with E for all the primes p, such that
B`(N) divides `b` for all positive integers N . Moreover,

(1) Suppose that E does not have complex multiplication over Q. Then b` is
zero whenever the following conditions all hold: α is `-indivisible, ` > 5 is
unramified in K | Q, the mod ` torsion representation is surjective, and E
has good reduction at all places of K of characteristic `.

(2) Suppose EndK(E) is an order in the imaginary quadratic field Q(
√
−d). Then

b` is zero whenever the following conditions all hold: ` > 3 is a prime un-
ramified both in K and in Q(

√
−d), and E has good reduction at all places

of K of characteristic `.

Both in the CM and non-CM cases, for the finitely many remaining primes `

we can take b` = 2n` + 3v`

(
[K̃ : K]

)
, where K̃ is as in Definition 5.8 and n` is

a parameter of maximal growth for the `-adic torsion part.

Proof. Let n be the `-adic valuation of N . By Proposition 5.11, the adelic failure

B`(N) divides [K̃ : K] ·# Ṽ`n

[Ṽ`n , H̃`n ]
.
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(1) Suppose that E does not have CM over Q, that α is `-indivisible, that ` > 5
is unramified in K | Q, that the mod ` torsion representation is surjective,
and that E has good reduction at all places of K of characteristic `. Under
these assumptions, the prime ` does not belong to the set S of Theorem 5.1,

so we have K̃ = K and [K̃ : K] · # Ṽ`n

[Ṽ`n , H̃`n ]
is simply #

V`n

[V`n , H`n ]
. We

conclude because this quotient is trivial by Lemma 5.13.

(2) In the CM case, the conclusion follows from Lemma 5.14 since ` - [K̃ : K] 6 2.

For all other primes, combining Proposition 5.11 and Proposition 5.12 we get
that B`(N) divides [K̃ : K] · `2ñ` and we conclude using Lemma 3.10.

Remark 5.16. The proof shows that the inequality

v`(B`(N)) 6 2n` + 3v`

(
[K̃ : K]

)
holds for every prime ` and for every rational point α ∈ E(K). In other words,
for a fixed prime ` the adelic failure can be bounded independently of the rational
point α.

We can finally prove our first Theorem from the introduction:

Proof of Theorem 1.1. By Remark 2.1, Theorem 1.1 follows from Theorems 4.17
and 5.15 by taking C :=

∏
` `
a`+b` .

Remark 5.17. Theorem 1.1 is completely effective, in the following sense: the
quantities a` and b` can be computed in terms of [K̃ : K], n`, and the divisibility
parameter d. The integer d can be bounded effectively in terms of the height
of α and of standard invariants of the elliptic curve, as showed in Remark 4.15.
The remaining quantities [K̃ : K] and n` can be bounded effectively in terms of
[K : Q] and of the height of E, as shown in [Lom15].

6 A counterexample in the CM case

We give an example showing that Proposition 4.13 does not hold in the CM
case when ` is split in the field of complex multiplication, and that in fact in
this case there can be no uniform lower bound on the image of the Kummer
representation depending only on the image of the torsion representation, even
when α is strongly `-indivisible.

Let E/Q be an elliptic curve with complex multiplication over Q by the imagi-
nary quadratic field F . Let α ∈ E(Q) be such that the `n-arboreal representation
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attached to (E,α) maps onto (Z/`nZ)
2 oN`n for every n > 1, where N`n is the

normaliser of a Cartan subgroup C`n of GL2(Z/`nZ). Suppose furthermore that
` is split in F and does not divide the conductor of the order EndQE ⊆ OF . Such

triples (E,α, `) exist: by [JR10, Example 5.11] we can take E : y2 = x3 + 3x
(which has CM by Z[i]), α = (1,−2) and ` = 5 (which splits in Z[i]). Notice
that for this elliptic curve and this α the same property holds for every ` ≡ 1
(mod 4): [Lom17, Theorem 1.5 (2)] implies that for all ` > 5 the image of the
Galois representation is the full normaliser of a Cartan subgroup, at which point
surjectivity of the Kummer representation follows from [JR10, Theorem 5.8].

Consider now the image of the arboreal representation associated with
(E/F, α, `). Base-changing E to F has the effect of replacing the normaliser
of the Cartan subgroup with Cartan itself: more precisely we have
ω`n (Gal(F`n,`n | F )) = (Z/`nZ)

2 o C`n for every n > 1. As ` is split in the
quadratic ring EndQ(E), so is the Cartan subgroup C`n , and therefore we can as-
sume – choosing a different basis for E[`n] if necessary – that C`n is the subgroup
of diagonal matrices in GL2(Z/`nZ). Fix now a large n and let

B`n =
{

(t,M) ∈ (Z/`nZ)
2 o C`n : t ≡ (∗, 0) (mod `n−1)

}
.

Using the explicit group law on (Z/`nZ)2oC`n one checks without difficulty that

B`n is a subgroup of (Z/`nZ)
2 o C`n : indeed, given two elements g1 = (t1,M1)

and g2 = (t2,M2) in B`n , we have

g1 · g2 = (t1,M1) · (t2,M2) = (t1 +M1t2,M1M2),

and (since M1 is diagonal) the second coordinate of t1 +M1t2 is a linear combi-
nation (with Z/`nZ-coefficients) of the second coordinates of t1, t2, hence is zero
modulo `n−1. Finally, let K ⊂ F`n,`n be the field corresponding by Galois theory

to the subgroup B`n of (Z/`nZ)
2 o C`n ∼= Gal(F`n,`n | F ).

We now study the situation of Proposition 4.13 for the elliptic curve E/K
and the point α. By construction, the image of the `n−1-torsion representation
attached to (E/K, `) is C`n−1 , so the parameter of maximal growth can be taken
to be n` = 1. We claim that α ∈ E(K) is strongly `-indivisible. The modulo-`
torsion representation is surjective onto C`, so that in particular no `-torsion point
of E is defined over K, and strongly `-indivisible is equivalent to `-indivisible.
To see that this last condition holds, notice that if α were `-divisible then we
would have K`,` = K`. However this is not the case, because by construction
Gal(K`,` | K`) = {t ∈ (Z/`Z)2 : t ≡ (∗, 0) (mod `)} has order `. Finally, for
k = n− 3 we have

V`k+2n` = V`n−1 = {t ∈ (Z/`n−1Z)2 : t ≡ (∗, 0) (mod `n−1)},
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which is very far from containing E[`k] – in fact, the index of V`k+2n` in E[`k+2n` ]
can be made arbitrarily large by choosing larger and larger values of n. Notice
that in any such example the `-adic representation will be surjective onto a split
Cartan subgroup of GL2(Z`).

7 Uniform bounds for the adelic representation

Our aim in this section is to show:

Theorem 7.1. There is a positive integer C with the following property: for every
elliptic curve E/Q and every strongly indivisible point α ∈ E(Q), the image W∞
of the Kummer map associated with (E/Q, α) has index dividing C in

∏
` T`(E).

This result immediately implies Theorem 1.2:

Proof of Theorem 1.2. By Remark 2.6, for every N | M the ratio
N2

[QM,N : QM ]
divides

N2

[Q∞,N : Q∞]
=
[
(Ẑ/N Ẑ)2 : W∞/NW∞

]
,

which in turn divides [Ẑ2 : W∞].

Remark 7.2. The assumption of strong indivisibility of the point α is necessary.
In fact, one can take a point α that is divisible in E(Q) by an arbitrarily high
power of some prime `, and thus get an index divisible by an arbitrarily large
power of `.

However, one can recover a similar result for divisible points allowing the
constant C to depend on the largest integer d such that α = dβ + T for some
β ∈ E(Q) and some T ∈ E(Q)tors. In fact, Lemma 4.16 tells us that in this
situation the index of the Kummer representation associated with α divides d2

times the index of the Kummer representation associated with β.

As in Subsection 3.3, we will denote by T0 the finite set of primes

T0 := {p prime | p 6 17} ∪ {37}.

7.1 Bounds on cohomology groups

Let E/Q be an elliptic curve and N1, N2 be positive integers with N1 | N2. The
first step in the proof of Theorem 7.1 is to bound the exponent of the cohomology
group H1(HN2

, E[N1]). In the course of the proof we shall need the following
technical result, which will be proved in Section 7.2.
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Proposition 7.3. There is a universal constant e satisfying the following prop-
erty. Let E/Q be a non-CM elliptic curve, N a positive integer and ` a prime fac-
tor of N . Let `k be the largest power of ` dividing N and J = Gal(QN | Q`k)/HN .
Consider the action of HN on Hom(J,E[`k]) defined by (hψ)(x) = hψ(h−1xh) for

all h ∈ HN , ψ : J → E[`k] and x ∈ J . Then the exponent of Hom
(
J,E[`k]

)HN
divides e.

Proposition 7.4. There is a positive integer C1 with the following property. Let
E/Q be an elliptic curve, N1 and N2 be positive integers with N1 | N2. Then the
exponent of H1(HN2 , E[N1]) divides C1.

Proof. We can prove the statement separately for CM and non-CM curves, and
then conclude by taking the least common multiple of the two constants obtained
in the two cases.

Assume first that E/Q has CM over Q. Let F be the CM field of E, let OF be
the ring of integers of F and O` := OF ⊗Z Z`. By [Lom17, Theorem 1.5] we have
d :=

[∏
`O
×
` : H∞ ∩

∏
`O
×
`

]
6 6. In particular all the d-th powers of elements

in
∏
`O
×
` are in H∞, hence we have Ẑ×d ⊆ H∞ ⊆

∏
` GL2(Z`) and H∞ contains

the nontrivial homothety λ = (λ`), where λ2 = 3d and λ` = 2d for ` 6= 2. By
Sah’s Lemma [BR03, Lemma A.2] we have (λ − 1)H1(HN2

, E[N1]) = 0. Notice
that the image of λ − 1 in Z` is nonzero for all `, and that it is invertible for
almost all `. The claim follows from the fact that d is bounded.

Assume now that E does not have complex multiplication over Q. As coho-
mology commutes with finite direct products we have

H1(HN2
, E[N1]) ∼= H1

HN2
,
⊕
`v|N1

E[`v]

 ∼= ⊕
`v|N1

H1 (HN2
, E[`v]) .

Fix an ` in this sum and let J = Gal(QN2
| Q`k) / HN2

, where `k is the largest
power of ` dividing N2. By the inflation-restriction sequence we get

0→ H1(HN2
/J,E[`v]J)→ H1(HN2

, E[`v])→ H1(J,E[`v])HN2 ;

since by definition J fixes E[`v], this is the same as

0→ H1(H`k , E[`v])→ H1(HN2
, E[`v])→ Hom(J,E[`v])HN2 .

It is clear that the exponent of H1(HN2 , E[N1]) is the least common multiple of
the exponents of the direct summands H1 (HN2

, E[`v]) for ` | N1, so we can focus
on one such summand at a time. Furthermore, the above inflation-restriction
exact sequence shows that the exponent of H1(HN2

, E[`v]) divides the product
of the exponents of H1(H`k , E[`v]) and of Hom(J,E[`v])HN2 . It is enough to give
a uniform bound for the exponents of these two cohomology groups.
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(i) H1(H`k , E[`v]) Assume first that ` 6∈ T0. By Theorem 3.14, H` is not con-

tained in a Borel subgroup of GL2(F`), so by [LW15, Lemma 4] it contains
a nontrivial homothety. By Lemma 3.17 the image H`∞ of the `-adic rep-
resentation contains a homothety that is non-trivial modulo `, so by Sah’s
Lemma [BR03, Lemma A.2] we have H1(H`k , E[`v]) = 0. For ` ∈ T0 let n`
be a universal bound on the parameter of maximal growth of the `-adic rep-
resentation, as in Corollary 3.13. By Lemma 4.9 we have (1+ `n`) Id ∈ H`k ,
and from Lemma 4.7 we obtain that the exponent of H1(H`k , E[`v]) divides
`n` .

(ii) Hom(J,E[`v])HN2 As v 6 k, this group is contained in Hom(J,E[`k])HN2 ,

whose exponent is uniformly bounded by Proposition 7.3. Notice that the
action of HN2

on Hom(J,E[`k]) is precisely that considered in Proposi-
tion 7.3 by well-known properties of the inflation-restriction exact sequence
(see e.g. [Ros95, Theorem 4.1.20]).

Proposition 7.4 can be restated in terms of H1(H∞, E(Q)tors).

Theorem 7.5. There is a positive integer C1 such that, for any elliptic curve
E/Q, the exponent of H1(H∞, E(Q)tors) divides C1.

Proof. By [NSW13, Proposition 1.2.6] we have

H1(H∞, E(Q)tors) ∼= lim−→
N

H1(HN , E[N ]),

so the result follows from Proposition 7.4.

Remark 7.6. Let m := [GL2(Ẑ) : H∞]. By basic group theory, there is a normal

subgroup B of GL2(Ẑ) contained in H∞ and having index dividing m!. It follows

that the m!-th power of any element of GL2(Ẑ) is in B, hence in H∞, and in

particular H∞ contains Ẑ×m! · Id. An application of Sah’s lemma then shows
that the exponent of H1(H∞, E(Q)tors) can be upper-bounded purely in terms
of m. A positive answer to Serre’s uniformity question for elliptic curves over Q
would imply that there are only finitely many possibilities for the index m (see
for example [Zyw15c]), so Theorem 7.5 would immediately follow.

Corollary 7.7. Let C1 be as in Proposition 7.4. Let E/Q be an elliptic curve
and let α ∈ E(Q) be a strongly indivisible point. If α is divisible by n > 1 over
Q∞, then n | C1.
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Proof. Without loss of generality we can assume that n = `e is a power of a
prime `. Since Q∞ is the union of the torsion fields QN , there exists N such
that α is divisible by `e over QN , and we may assume that `e divides N . The
claim then follows from Lemma 4.6, since by Proposition 7.4 the exponent of
H1(Gal(QN | Q), E[`e]) is a power of ` that divides C1.

Lemma 7.8. Let C1 be as in Proposition 7.4. The following hold for every prime
`:

(1) The Z`-module W`∞ , considered as a submodule of Z2
` , contains a vector of

valuation at most v`(C1).

(2) Suppose that E does not have CM over Q and let n` be a parameter of
maximal growth for the `-adic torsion representation. Then W`∞ contains
`n`+v`(C1)T`(E).

(3) If E[`] is an irreducible H`-module, then W`∞ contains `v`(C1)T`(E).

(4) Suppose that E has CM over Q and let (γ, δ) be parameters for the Cartan
subgroup of GL2(Z`) corresponding to EndQ(E). If n` is a parameter of
maximal growth for the `-adic torsion representation, then W`∞ contains
`3n`+v`(4δC1)T`(E).

Proof. Part (1) follows from Lemma 4.11, since by Corollary 7.7 the point α
is not divisible by `v`(C1)+1 over Q∞. Parts (2), (3) and (4) then follow from
Proposition 4.12 (for part (4) observe that no elliptic curve over Q has CM
defined over Q).

We can now prove the main Theorem of this section.

Proof of Theorem 7.1. As already explained, we have W∞ =
∏
`W`∞ , so we

obtain [∏
`

T`(E) : W∞

]
=
∏
`

[T`(E) : W`∞ ].

Let

T1 = T0 ∪ {` prime | ` divides C1} ∪ {19, 43, 67, 163} .

Notice that by Theorem 3.14 for ` 6∈ T1 there is no elliptic curve over Q with a
rational subgroup of order `. By Lemma 7.8 (3), for ` 6∈ T1 we have W`∞ = T`(E),
so [∏

`

T`(E) : W∞

]
=
∏
`∈T1

[T`(E) : W`∞ ]. (7.1)
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Now it is enough to prove the Theorem separately in the CM and in the
non-CM case, and then take the least common multiple of the two constants
obtained.

Suppose first that E does not have CM over Q. Applying Lemma 7.8(2) we
see that [T`(E) : W`∞ ] divides `2(n`+v`(C1)), where n` is a parameter of maximal
growth for the `-adic torsion for E. By Theorem 3.11 this can be bounded
uniformly in E. Since C1 does not depend on E, each factor of the right hand
side of (7.1) is uniformly bounded.

Assume now that E has complex multiplication over Q and let (γ, δ) be param-
eters for the Cartan subgroup of GL2(Z`) corresponding to EndQ(E). Applying

Lemma 7.8(4), we see that [T`(E) : W`∞ ] divides `2(3n`+v`(4δC1)), where n` is a
parameter of maximal growth for the `-adic torsion representation for E, which
is uniformly bounded by Corollary 3.13. It remains to show that v`(δ) can be
bounded uniformly as well. This follows from the fact that δ only depends on
the Q-isomorphism class of E, and that there are only finitely many rational
j-invariants corresponding to CM elliptic curves.

7.2 Proof of Proposition 7.3

Recall the setting of Proposition 7.3: E/Q is a non-CM elliptic curve, N is
a positive integer, and ` is a prime factor of N . Let `k be the largest power
of ` dividing N and J = Gal(QN | Q`k) / HN . The question is to study the

exponent of the group Hom
(
J,E[`k]

)HN
. In order to do this, we shall study the

conjugation action of g ∈ HN on the abelianisation of J . More generally, we shall
also consider the conjugation action of elements in GL2(Z/NZ) that normalise
J .

It will be useful to work with a certain subgroup J(2) of J . More generally,
we introduce the following notation.

Definition 7.9. Let G be a group and M a positive integer. We denote by G(M)
the subgroup of G generated by

{
gM | g ∈ G

}
.

Lemma 7.10. The subgroup J(2) is normal in J , the quotient group J/J(2) has
exponent at most 2, J(2) is stable under the conjugation action of HN , and

exp Hom
(
J,E[`k]

)HN | 2 exp Hom
(
J(2), E[`k]

)HN
.

Proof. Clearly J(2) is a characteristic subgroup of J , so it is normal in J and
stable under the conjugation action of HN on J . Given a coset hJ(2) ∈ J/J(2)
we have (hJ(2))2 = h2J(2) = J(2) since h2 ∈ J(2) by definition, so the quo-
tient J/J(2) is killed by 2. Finally, take a homomorphism ψ : J → E[`k] sta-
ble under the conjugation action of HN and denote by d the exponent of the
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abelian group Hom
(
J(2), E[`k]

)HN
. The restriction of ψ to J(2) is an element

of Hom
(
J(2), E[`k]

)HN
, so it satisfies dψ|J(2) = 0, and thus given any h ∈ J we

have dψ|J(2)(h
2) = 0. This implies that for every h ∈ J we have 2dψ(h) = 0,

hence ψ is killed by 2d. Since this is true for all ψ, the claim follows.

We will also need the following two simple lemmas:

Lemma 7.11. Let E/Q be an elliptic curve and let M > 37 be an integer. If
` > M + 1 is a prime number, then H`∞(M) contains a homothety λ Id with
λ 6≡ 1 (mod `).

Proof. By Corollary 3.16, since ` > M + 1 > 37, the image of the modulo-`
representation contains all the homotheties. In particular, if µ ∈ F×` is a generator
of the multiplicative group F×` , then H` contains µ Id, so by Lemma 3.17 H`∞

contains µ Id, where µ ∈ Z×` is congruent to µ modulo `. So H`∞(M) contains
µM Id, which is nontrivial modulo ` since µ has order `− 1 > M .

Lemma 7.12. Let p be a prime and let n be a positive integer (with n > 2 if
p = 2). For every positive integer k let Uk =

{
x ∈ Zp | x ≡ 1 (mod pk)

}
. Let M

be a positive integer. Then
{
xM | x ∈ Un

}
⊇ Un+vp(M).

Proof. Let y ∈ Un+vp(M) and let a = y − 1. By [Coh07, Corollary 4.2.17 and
Corollary 4.2.18(1)], the p-adic integer x = exp(M−1 log y) is well defined and
satisfies the inequality vp(x− 1) > vp(M

−1a) > n. Therefore x ∈ Un and clearly
xM = y.

We will derive Proposition 7.3 from the following statement:

Proposition 7.13. There is a universal constant M with the following property.
For every elliptic curve E/Q, every positive integer N , every prime power `k

dividing N , and every g ∈ HN , the conjugation action of gM on the abelianisation
of J(2) is trivial.

Proof of Proposition 7.13 =⇒ Proposition 7.3. By Lemma 7.10 it is enough to
prove Proposition 7.3 with J replaced by J(2). Let ψ ∈ Hom

(
J(2), E[`k]

)
: then

as E[`k] is abelian ψ factors through J(2)ab.

For every g ∈ HN , every ψ ∈ Hom
(
J(2), E[`k]

)HN
and every h ∈ J(2) we

have
ψ(h) = gM · ψ(g−MhgM ) = gM · ψ(h),

where the first equality holds because ψ is HN -invariant and the second because
the automorphism induced by gM on J(2)ab is trivial by Proposition 7.13. This
means that the image of ψ is contained in E[`k]HN (M). Since the action of HN

on E[`k] factors via the canonical projection HN → GL2(Z/`kZ), this is the
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same as saying that the image of ψ is contained in the subgroup of E[`k] fixed
under H`k(M). It remains to show that the exponent of E[`k]H`k (M) is uniformly
bounded, and trivial for ` sufficiently large.

To see this, recall that by Theorem 3.11 there exists an integer n > 1, inde-
pendent of E, such that H`k contains Id +`n Mat2(Z/`kZ) (and we have n > 2
if ` = 2). By Lemma 7.12, for every E/Q the group H`k(M) contains all scalar
matrices in Mat2(Z/`kZ) that are congruent to the identity modulo `n+v`(M).
We claim that the exponent of E[`k]H`k (M) divides `n+v`(M). In fact, by what
we have seen H`k(M) contains (1 + `n+v`(M)) Id, so E[`k]H`k (M) is in particular
fixed by (1 + `n+v`(M)) Id, hence it is contained E[`n+v`(M)].

Finally, we show that Hom(J,E[`k])HN is trivial for ` > M+1. Since ` > 2, by
Lemma 7.10 it is enough to show that Hom(J(2), E[`k])HN is trivial. As above,
the image of any HN -stable homomorphism from J(2) to E[`k] is contained in the
H`k(M)-fixed points of E[`k]. By Lemma 7.11, H`k(M) contains a homothety
which is nontrivial modulo `, so we are done since the only fixed point of this
homothety is 0.

We now turn to the proof of Proposition 7.13. We start by showing that
we may assume N to be of the form `k ·

∏
p|N,p6=` p. To see this, let N =

`k
∏
p|N,p6=` p

ep be arbitrary and let N ′ := `k
∏
p|N,p6=` p. There is an obvious

reduction map J → Gal(QN ′ | Q`k). The kernel K of this map is a subgroup of
J whose order is divisible only by primes p | N, p 6= `. Recall that we will be
considering Hom(J,E[`k])HN . Let ψ : J → E[`k] be a homomorphism: we claim
that ψ factors via the quotient Gal(QN ′ | Q`k). Indeed, all the elements in K
have order prime to `, hence they must go to zero in E[`k]. Therefore we may
assume N = N ′, that is, N = `k ·

∏
p|N,p6=` p.

We identify HN with a subgroup of GL2(Z/`kZ)×
∏
p|N,p6=` GL2(Z/pZ) and

J with the subgroup of HN consisting of elements having trivial first coordinate,
and for g ∈ HN we write g = (g`, gp1

, . . . , gpr ) with g` ∈ GL2(Z/`kZ) and gpi ∈
GL2(Z/piZ). Finally, for p | N , p 6= ` we denote by πpi : HN → GL2(Z/piZ)
the projection on the factor corresponding to pi, and we denote by π` : HN →
GL2(Z/`kZ) the projection on the factor corresponding to `.

Lemma 7.14. Let p be a prime factor of N with p > 7, p 6= `. Suppose that
the modulo-p representation attached to E/Q is surjective. Then J(2) contains
{1} × · · · × {1} × SL2(Z/pZ)× {1} × · · · × {1}.

Proof. Clearly PSL2(Fp) occurs in HN . Hence it must occur either in J or in
HN/J , but the latter is isomorphic to a subgroup of GL2(Z/`kZ) with ` 6= p, so it
must occur in J . Consider the kernel of the projection J →

∏
q|N,q 6=p GL2(Z/qZ):

then PSL2(Fp) must occur either in this kernel or in
∏
q|N,q 6=p GL2(Z/qZ), but

the latter case is impossible. Using Lemma 3.18, it follows immediately that J
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contains {1} × · · · × {1} × SL2(Z/pZ)× {1} × · · · × {1}. We conclude by noting
that SL2(Fp) is generated by its squares.

Lemma 7.15. Let g ∈ HN and h ∈ J(2). Then gh ∈ HN , and the automor-
phisms of J(2)ab induced by g and by gh coincide.

Proof. As J(2) is a subgroup of HN , the fact that gh ∈ HN is obvious. For the
second statement, notice that for every x ∈ J(2) the element (gh)−1x(gh) differs
from g−1xg by multiplication by

h−1(g−1x−1g)−1h(g−1x−1g),

which is a commutator in J(2). Hence the classes of (gh)−1x(gh) and g−1xg are
equal in J(2)ab.

Lemma 7.16. For each p | N, p 6= `, the component gp of g along GL2(Z/pZ)
normalises πp(J(2)) in GL2(Z/pZ).

Proof. Since HN normalises J(2) by Lemma 7.10, we have πp(g
−1J(2)g) =

πp(J(2)). On the other hand, πp(g
−1J(2)g) = πp(g)−1πp(J(2))πp(g), so that

as desired we obtain g−1
p πp(J(2))gp = πp(J(2)).

Corollary 7.17. Let p1, . . . , ps > 7 be primes all different from ` and such that
the mod-pi representation attached to E/Q is surjective for each pi. Let g ∈ HN

and let ĝ be the element of GL2(Z/NZ) obtained by replacing every pi-component
(for i = 1, . . . , s) of g by Id. Then ĝ2 normalises J(2), and it induces on J(2)ab

the same conjugation action as g2.

Proof. By Lemma 7.15, if we multiply g2 by any element of J(2) the conjugation
action on J(2)ab does not change. By construction, the determinant of πpi(g

2) =
g2
pi is a square in F×pi , say λ2

i . It follows that the determinant of g2
pi/λi is 1,

so g2
pi/λi ∈ SL2(Z/piZ). By Lemma 7.14 we have that J(2) contains hi =

(1, 1, . . . , 1, g2
pi/λi, 1, . . . , 1). Letting h = h1 · · ·hs, we obtain that the action of

g2h−1 is the same as that of g2. But the element

µ = (1, . . . , 1, λ1, 1, . . . , 1) · · · (1, . . . , 1, λs, 1, . . . , 1)

is central in GL2(Z/NZ), so ĝ2 = g2h−1µ−1 normalises J(2) and it induces the
same action as g2 on J(2)ab.

Let M = lcm{exp PGL2(Fp) : p ∈ T0}, where exp PGL2(Fp) denotes the
exponent of the group PGL2(Fp).

Remark 7.18. Notice that M is even. Moreover, for any g ∈ GL2(Z/NZ) and
any p ∈ T0 with p | N and p 6= ` we have that πp(g

M ) is a scalar in GL2(Fp),
since it is trivial in PGL2(Fp).
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We now prove Proposition 7.13, using the constant M just introduced.

Proof of Proposition 7.13. Write as before g = (gp). We divide the prime factors
of N different from ` into three sets as follows:

P0 = {p | N such that p ∈ T0, p 6= `} ,
P1 = {p | N such that Hp = GL2(Fp), p 6= `} ,
P2 = {p | N such that Hp is conjugate to a subgroup of Nns(p), p 6= `} .

Notice that by Theorem 3.15 each prime factor of N different from ` belongs to
one of these three sets.

We now apply Corollary 7.17 with {p1, . . . , ps} = P1 to obtain an element
ĝ ∈ GL2(Z/NZ) such that πp(ĝ) = Id for every p ∈ P1 and such that ĝ2 induces
on J(2)ab the same conjugation action as g2. In particular, ĝM induces on J(2)ab

the same conjugation as gM (recall that M is even).
We now prove that this conjugation action is trivial by showing that ĝM

commutes with every element of J(2). It suffices to show that for each p | N the
projection πp(ĝ

M ) commutes with every element of πp(J(2)).

(i) Case p ∈ P0: by Remark 7.18, πp(ĝ
M ) is a scalar, thus it commutes with

all of GL2(Fp).

(ii) Case p ∈ P1: by construction πp(ĝ
M ) is trivial.

(iii) Case p ∈ P2: by Corollary 3.16 applied to πp(ĝ), there is h ∈ GL2(Fp)
such that πp(ĝ) ∈ hNns(p)h

−1 and Hp ⊆ hNns(p)h
−1. Since M is even

and Cns(p) has index 2 in Nns(p), πp(ĝ
M ) ∈ hCns(p)h

−1 and πp(J(2)) ⊆
〈 a2 | a ∈ Hp〉 ⊆ hCns(p)h

−1. Since Cns(p) is abelian, πp(ĝ
M ) commutes

with every element of πp(J(2)).

(iv) Case p = `: by construction πp(J(2)) is trivial.
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