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Introduction

This thesis consists of four research articles that treat different aspects of Kummer
theory for commutative algebraic groups, with particular emphasis on explicit and
effective results. To understand the motivation behind the study of this topic and
what we are trying to achieve, we have to take a step back and see which aspects
of classical Kummer theory we are trying to generalize to algebraic groups.

Kummer theory

If n is a positive integer and K is a field of characteristic coprime to n we may
consider, for any non-zero α ∈ K, the set n

√
α of all elements β in a fixed algebraic

closure K of K such that βn = α. In other words, n
√
α is the set of all n-th roots

of α. Given any n-th root β0 of α, all the others are of the form ζβ0 for some n-th
root of unity ζ ∈ K, that is an element such that ζn = 1. The field generated
over K by all n-th roots of α is a Galois extension of K which contains the n-th
cyclotomic field, that is the field generated over K by all n-th roots of unity.
This remains true if we replace α by a finitely generated subgroup A of the
multiplicative group K×, and we consider the set n

√
A = {β ∈ K | βn ∈ A}.

Roughly speaking, classical Kummer theory is the study of this kind of field
extensions.

The most classical result in Kummer theory is the classification of the abelian
extensions of exponent dividing n of a field K which contains all n-th roots of
unity and whose characteristic does not divide n. Indeed, a bijection between the
set of such extensions, contained in a fixed algebraic closure K, and the set of
subgroups of K× that contain (K×)n is obtained by mapping L to K× ∩ (L×)n,
see for example [Lan02, Theorem VI.8.2].

Kummer theory has interesting applications in studying certain density prob-
lems: if α is a non-zero element of a number field K, then the density of primes
p of K such that the multiplicative order of α modulo p is coprime to some fixed
prime `, or has a prescribed `-adic valuation, can be expressed in terms of the de-
grees of the cyclotomic-Kummer extensions K(ζ`n , `

n√
α) for all n > 0, where ζ`n
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is a root of unity of order `n. See [Per15] for the case we have just described and
[DP16, PS19] for a generalization to finite rank sugroups of K×. These problems
are closely related to Artin’s primitive root conjecture, as explained for example
in [Mor12].

Computing the degrees of infinitely many field extensions might seem an ar-
duous task. However, the following is known (for a direct proof, see [PS19,
Theorem 1.1]): if A is a subgroup of K× of finite rank r, then there is a constant
C > 0 such that for every positive integer n the ratio between nr and the degree
[K( n
√
A) : K(ζn)] divides C. This result can be made effective, see [PST20a,

Theorem 1.2], and the results of [PST20b] provide, for the case K = Q, an al-
gorithm whose output is a finite formula for these degrees. This algorithm has
been implemented in SageMath, see [Tro19].

Algebraic groups

So far we have only discussed Kummer theory in the classical sense, but these
concepts can be generalized as follows. Let K be a field, say for simplicity of
characteristic zero, fix an algebraic closure K of K and let G be a commutative
algebraic group over K. If S is a subset of G(K), the field extension of K
generated by S is the subfield of K obtained by adjoining to K the coordinates
of the points of S. More precisely, identifying every x in S with a morphism of
schemes specK → specK(x), we have a collection of morphisms K(x)→ K as x
varies in S, and the compositum of the images of these morphisms is by definition
K(S).

Let now A ⊆ G(K) be a finitely generated subgroup. For any positive integer
n we may consider the subset n−1A = {P ∈ G(K) | nP ∈ A}. Extensions of K
of the form K(n−1A) are the object of study of Kummer theory for commutative
algebraic groups. As one can see by taking G = Gm, the multiplicative group
over K, this theory is a direct generalization of classical Kummer theory. Even
in this generality, Kummer extensions have many of the interesting properties of
their classical counterparts. For example K(n−1A) is a Galois extension of K
that contains the n-torsion field of G, that is the field extension of K generated
by all n-torsion points of G(K), and it is Galois and abelian over this field.
Torsion fields are the direct generalization of cyclotomic fields, and many results
on Kummer extensions can be deduced from properties of these fields.

If K is a number field, the density problem mentioned above can be stated
mutatis mutandis in this more general context, and it is still related to the de-
grees of Kummer extensions. See [Pin04] for a discussion in the case of abelian
varieties and [Per08, Per11] for the product of an abelian variety and a torus.
This motivates the study of the degrees of Kummer extensions in the general
context. In his foundational paper [Rib79], Ribet proved the following result: if
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G is the product of an abelian variety and a torus and A ⊆ G(K) is a free Z-
module of rank r with a basis over Z of points linearly independent over EndK(G),
there exists a positive integer C such that the ratio between nrs and the degree
[K(n−1A) : K(G[n])] divides C for every positive integer n. Here s is the unique
positive integer such that G(K)[n] ∼= (Z/nZ)s for every n > 1. See also [Ber88,
Théorème 5.2] and [Hin88, Lemme 14]. The papers collected in this thesis are
devoted to making this result more effective, trying to express the constant C in
terms of known quantities related to the torsion fields of G.

Effective results for elliptic curves

The first two papers, written in collaboration with Lombardo, focus on the case
of elliptic curves. Assume that G is an elliptic curve over a number field K and
fix an algebraic closure K of K. Fix moreover a point α ∈ G(K). In [JR10] Jones
and Rouse proved that for every prime `, under some assumption on α and with a
small exception for the prime 2, the surjectivity of the `-adic Galois representation
associated with G implies the maximality of the Kummer extensions K(n−1α)
over K(G[n]) if n is a power of `. See [JR10, Theorem 5.2] for the non-CM case
and [JR10, Theorem 5.8] for the CM case. Two questions, suggested by Perucca,
arose: If the Galois representation is not surjective, can we describe, or at least
bound, the failure of maximality of the Kummer extensions in terms of the failure
of maximality of the Galois representations? Can these results be generalized to
the case where n is any positive integer?

The first paper presented here [Chapter 1] aims at answering these questions.
The main theorem [Chapter 1, Theorem 1.1] provides a positive answer, but only
under the assumption that EndK(G) = Z. This theorem is an effective version of
the classical result by Ribet in the case of a group G generated by a single point
α, and it shows that the constant C mentioned above can be taken to depend
only on properties of the `-adic representations, for all the different primes `,
and other effectively computable quantities associated with G. Examples that
demonstrate the inapplicability of these methods to the CM case are provided
in [Chapter 1, Section 6]. The second main theorem [Chapter 1, Theorem 1.2]
shows that over the field Q there exists a uniform version of this result under
the assumption that the point α is not divisible in G(Q)/G(Q)tors – that is, that
there is no β ∈ G(Q) such that α equals nβ+ τ for some integer n > 1 and some
τ ∈ G(Q)tors.

The goal of the second paper with Lombardo [Chapter 2] is to make the afore-
mentioned result [Chapter 1, Theorem 1.2] explicit by finding an actual numerical
value for the constant C, see [Chapter 2, Theorem 6.5]. These results have been
achieved by giving uniform bounds to other interesting quantities related to the
Galois representations of G. A notable example of such a quantity are the ex-
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ponents of the cohomology groups of Gal(Q(G(Q)tors) | Q) with coefficients in
the torsion subgroups of G, regarded as Galois modules. Bounds for similar
quantities have been found independently by Cerchia and Rouse [CR21].

A technical framework for general Kummer theory

Some of the explicit results mentioned above depend on properties of Galois
representations that are known in an effective form only for elliptic curves, but the
methods used to show that the degrees of Kummer extensions are related to these
quantities do not. In the third article reported here [Chapter 3] this is made clear
by conceptualizing the theoretical background in a framework that is applicable
to any commutative algebraic group over K that satisfies EndK(G) = Z. The
methods used in this work are inspired by results of Palenstijn [Pal04, Pal14] and
by discussions with Lenstra and Stevenhagen. As an application, the results of
[Chapter 1] and [Chapter 2] are extended to groups A of rank higher than 1.

So far we have not yet successfully tackled the case when the endomorphism
ring of G is larger than Z, and it seems that our methods need a substantial
refinement to be applied in that case. In his thesis [JP21], Javan Peykar addresses
this problem in the case of elliptic curves with complex multiplication by taking
A ⊆ G(K) to be an EndK(G)-module, and considering the modules of “division
points” by a Steinitz ideal. Even if with some technical limitation, this method
is very successful.

Motivated by this approach, the last paper in this thesis [Chapter 4] is mostly
devoted to the study of purely algebraic properties of division modules over gen-
eral rings. The Steinitz ideals used by Javan Peykar are replaced by ideal filters,
and a generalization of the classical notion of injectivity, which to the author’s
knowledge is new, is provided. A notion of (J, T )-extension, where J is a fixed
ideal filter and T a suitable R-module, generalizes the modules of division points.
The properties of these objects are then studied with a category-theoretical point
of view before generalizing some results on their automorphism groups that have
appeared in the less general settings of [Pal04], [Pal14] and [JP21].

This long digression in commutative algebra bears in the end its fruits: the
theory so constructed, which generalizes that of [Chapter 3], is finally applied
to unify and generalize the results of [Chapter 1] and [JP21], showing that the
two apparently different approaches are actually just different realizations of a
more general theory. The degree of generality used in this paper opens the
door to applications to higher-dimensional abelian varieties and other classes of
commutative algebraic groups.


