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Introduction

This thesis consists of four research articles that treat different aspects of Kummer
theory for commutative algebraic groups, with particular emphasis on explicit and
effective results. To understand the motivation behind the study of this topic and
what we are trying to achieve, we have to take a step back and see which aspects
of classical Kummer theory we are trying to generalize to algebraic groups.

Kummer theory

If n is a positive integer and K is a field of characteristic coprime to n we may
consider, for any non-zero α ∈ K, the set n

√
α of all elements β in a fixed algebraic

closure K of K such that βn = α. In other words, n
√
α is the set of all n-th roots

of α. Given any n-th root β0 of α, all the others are of the form ζβ0 for some n-th
root of unity ζ ∈ K, that is an element such that ζn = 1. The field generated
over K by all n-th roots of α is a Galois extension of K which contains the n-th
cyclotomic field, that is the field generated over K by all n-th roots of unity.
This remains true if we replace α by a finitely generated subgroup A of the
multiplicative group K×, and we consider the set n

√
A = {β ∈ K | βn ∈ A}.

Roughly speaking, classical Kummer theory is the study of this kind of field
extensions.

The most classical result in Kummer theory is the classification of the abelian
extensions of exponent dividing n of a field K which contains all n-th roots of
unity and whose characteristic does not divide n. Indeed, a bijection between the
set of such extensions, contained in a fixed algebraic closure K, and the set of
subgroups of K× that contain (K×)n is obtained by mapping L to K× ∩ (L×)n,
see for example [Lan02, Theorem VI.8.2].

Kummer theory has interesting applications in studying certain density prob-
lems: if α is a non-zero element of a number field K, then the density of primes
p of K such that the multiplicative order of α modulo p is coprime to some fixed
prime `, or has a prescribed `-adic valuation, can be expressed in terms of the de-
grees of the cyclotomic-Kummer extensions K(ζ`n , `

n√
α) for all n > 0, where ζ`n
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is a root of unity of order `n. See [Per15] for the case we have just described and
[DP16, PS19] for a generalization to finite rank sugroups of K×. These problems
are closely related to Artin’s primitive root conjecture, as explained for example
in [Mor12].

Computing the degrees of infinitely many field extensions might seem an ar-
duous task. However, the following is known (for a direct proof, see [PS19,
Theorem 1.1]): if A is a subgroup of K× of finite rank r, then there is a constant
C > 0 such that for every positive integer n the ratio between nr and the degree
[K( n
√
A) : K(ζn)] divides C. This result can be made effective, see [PST20a,

Theorem 1.2], and the results of [PST20b] provide, for the case K = Q, an al-
gorithm whose output is a finite formula for these degrees. This algorithm has
been implemented in SageMath, see [Tro19].

Algebraic groups

So far we have only discussed Kummer theory in the classical sense, but these
concepts can be generalized as follows. Let K be a field, say for simplicity of
characteristic zero, fix an algebraic closure K of K and let G be a commutative
algebraic group over K. If S is a subset of G(K), the field extension of K
generated by S is the subfield of K obtained by adjoining to K the coordinates
of the points of S. More precisely, identifying every x in S with a morphism of
schemes specK → specK(x), we have a collection of morphisms K(x)→ K as x
varies in S, and the compositum of the images of these morphisms is by definition
K(S).

Let now A ⊆ G(K) be a finitely generated subgroup. For any positive integer
n we may consider the subset n−1A = {P ∈ G(K) | nP ∈ A}. Extensions of K
of the form K(n−1A) are the object of study of Kummer theory for commutative
algebraic groups. As one can see by taking G = Gm, the multiplicative group
over K, this theory is a direct generalization of classical Kummer theory. Even
in this generality, Kummer extensions have many of the interesting properties of
their classical counterparts. For example K(n−1A) is a Galois extension of K
that contains the n-torsion field of G, that is the field extension of K generated
by all n-torsion points of G(K), and it is Galois and abelian over this field.
Torsion fields are the direct generalization of cyclotomic fields, and many results
on Kummer extensions can be deduced from properties of these fields.

If K is a number field, the density problem mentioned above can be stated
mutatis mutandis in this more general context, and it is still related to the de-
grees of Kummer extensions. See [Pin04] for a discussion in the case of abelian
varieties and [Per08, Per11] for the product of an abelian variety and a torus.
This motivates the study of the degrees of Kummer extensions in the general
context. In his foundational paper [Rib79], Ribet proved the following result: if
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G is the product of an abelian variety and a torus and A ⊆ G(K) is a free Z-
module of rank r with a basis over Z of points linearly independent over EndK(G),
there exists a positive integer C such that the ratio between nrs and the degree
[K(n−1A) : K(G[n])] divides C for every positive integer n. Here s is the unique
positive integer such that G(K)[n] ∼= (Z/nZ)s for every n > 1. See also [Ber88,
Théorème 5.2] and [Hin88, Lemme 14]. The papers collected in this thesis are
devoted to making this result more effective, trying to express the constant C in
terms of known quantities related to the torsion fields of G.

Effective results for elliptic curves

The first two papers, written in collaboration with Lombardo, focus on the case
of elliptic curves. Assume that G is an elliptic curve over a number field K and
fix an algebraic closure K of K. Fix moreover a point α ∈ G(K). In [JR10] Jones
and Rouse proved that for every prime `, under some assumption on α and with a
small exception for the prime 2, the surjectivity of the `-adic Galois representation
associated with G implies the maximality of the Kummer extensions K(n−1α)
over K(G[n]) if n is a power of `. See [JR10, Theorem 5.2] for the non-CM case
and [JR10, Theorem 5.8] for the CM case. Two questions, suggested by Perucca,
arose: If the Galois representation is not surjective, can we describe, or at least
bound, the failure of maximality of the Kummer extensions in terms of the failure
of maximality of the Galois representations? Can these results be generalized to
the case where n is any positive integer?

The first paper presented here [Chapter 1] aims at answering these questions.
The main theorem [Chapter 1, Theorem 1.1] provides a positive answer, but only
under the assumption that EndK(G) = Z. This theorem is an effective version of
the classical result by Ribet in the case of a group G generated by a single point
α, and it shows that the constant C mentioned above can be taken to depend
only on properties of the `-adic representations, for all the different primes `,
and other effectively computable quantities associated with G. Examples that
demonstrate the inapplicability of these methods to the CM case are provided
in [Chapter 1, Section 6]. The second main theorem [Chapter 1, Theorem 1.2]
shows that over the field Q there exists a uniform version of this result under
the assumption that the point α is not divisible in G(Q)/G(Q)tors – that is, that
there is no β ∈ G(Q) such that α equals nβ+ τ for some integer n > 1 and some
τ ∈ G(Q)tors.

The goal of the second paper with Lombardo [Chapter 2] is to make the afore-
mentioned result [Chapter 1, Theorem 1.2] explicit by finding an actual numerical
value for the constant C, see [Chapter 2, Theorem 6.5]. These results have been
achieved by giving uniform bounds to other interesting quantities related to the
Galois representations of G. A notable example of such a quantity are the ex-
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ponents of the cohomology groups of Gal(Q(G(Q)tors) | Q) with coefficients in
the torsion subgroups of G, regarded as Galois modules. Bounds for similar
quantities have been found independently by Cerchia and Rouse [CR21].

A technical framework for general Kummer theory

Some of the explicit results mentioned above depend on properties of Galois
representations that are known in an effective form only for elliptic curves, but the
methods used to show that the degrees of Kummer extensions are related to these
quantities do not. In the third article reported here [Chapter 3] this is made clear
by conceptualizing the theoretical background in a framework that is applicable
to any commutative algebraic group over K that satisfies EndK(G) = Z. The
methods used in this work are inspired by results of Palenstijn [Pal04, Pal14] and
by discussions with Lenstra and Stevenhagen. As an application, the results of
[Chapter 1] and [Chapter 2] are extended to groups A of rank higher than 1.

So far we have not yet successfully tackled the case when the endomorphism
ring of G is larger than Z, and it seems that our methods need a substantial
refinement to be applied in that case. In his thesis [JP21], Javan Peykar addresses
this problem in the case of elliptic curves with complex multiplication by taking
A ⊆ G(K) to be an EndK(G)-module, and considering the modules of “division
points” by a Steinitz ideal. Even if with some technical limitation, this method
is very successful.

Motivated by this approach, the last paper in this thesis [Chapter 4] is mostly
devoted to the study of purely algebraic properties of division modules over gen-
eral rings. The Steinitz ideals used by Javan Peykar are replaced by ideal filters,
and a generalization of the classical notion of injectivity, which to the author’s
knowledge is new, is provided. A notion of (J, T )-extension, where J is a fixed
ideal filter and T a suitable R-module, generalizes the modules of division points.
The properties of these objects are then studied with a category-theoretical point
of view before generalizing some results on their automorphism groups that have
appeared in the less general settings of [Pal04], [Pal14] and [JP21].

This long digression in commutative algebra bears in the end its fruits: the
theory so constructed, which generalizes that of [Chapter 3], is finally applied
to unify and generalize the results of [Chapter 1] and [JP21], showing that the
two apparently different approaches are actually just different realizations of a
more general theory. The degree of generality used in this paper opens the
door to applications to higher-dimensional abelian varieties and other classes of
commutative algebraic groups.



Samenvatting

Dit proefschrift bestaat uit vier onderzoeksartikelen die verschillende aspecten
van de Kummertheorie voor commutatieve algebräısche groepen behandelen, met
bijzondere nadruk op expliciete en effectieve resultaten. Om de motivatie achter
de studie van dit onderwerp en onze doelen te begrijpen, moeten we een stap terug
doen en kijken welke aspecten van de klassieke Kummertheorie we proberen te
generaliseren naar algebräısche groepen.

Kummertheorie

Als n een positief geheel getal is en K een lichaam van karakteristiek copriem
met n, kunnen we voor elke α 6= 0 in K de verzameling n

√
α beschouwen van

alle elementen β in een vast gekozen algebräısche afsluiting K van K zodanig
dat βn = α. Met andere woorden, n

√
α is de verzameling van alle n-de wortels

van α. Zij b0 een n-de wortel van α, dan hebben alle andere wortels de vorm
ζβ0 voor een n-de eenheidswortel ζ ∈ K, dat wil zeggen een element zodanig
dat ζn = 1. Het lichaam voortgebracht over K door alle n-de wortels van α is
een Galoisuitbreiding van K die het n-de cyclotomische lichaam bevat, dat wil
zeggen het lichaam voortgebracht over K door alle n-de eenheidswortels. Dit
blijft waar als we α vervangen door een eindig voortgebrachte ondergroep A van
de multiplicatieve groep K×, en we de verzameling n

√
A = {β ∈ K | βn ∈ A}

beschouwen. De klassieke Kummertheorie is grofweg de studie van dit soort
lichaamsuitbreidingen.

Het meest klassieke resultaat in de Kummertheorie is de classificatie van de
abelse uitbreidingen met exponent die n deelt van een lichaam K dat alle n-de
eenheidswortels bevat en waarvan de karakteristiek n niet deelt. Een bijectie
tussen de verzameling van dergelijke uitbreidingen, bevat in een vast gekozen
algebräısche afsluiting K, en de verzameling ondergroepen van K× die (K×)n

bevatten, wordt namelijk verkregen door L te associëren met K× ∩ (L×)n, zie
bijvoorbeeld [Lan02, Theorem VI.8.2].

De Kummertheorie heeft interessante toepassingen bij het bestuderen van
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bepaalde dichtheidsproblemen: als α 6= 0 een element is van een getallenlichaam
K, dan is de dichtheid van priemidealen p van K zodanig dat de multipli-
catieve orde van α modulo p copriem is met een vast priemgetal `, dan wel
een voorgeschreven `-adische valuatie heeft, kan worden uitgedrukt in termen
van de graden van de cyclotomische-Kummeruitbreidingen K(ζ`n , `

n√
α) voor alle

n > 0, waarbij ζ`n een eenheidswortel van orde `n is. Zie [Per15] voor het zojuist
beschreven geval en [DP16, PS19] voor een generalisatie naar ondergroepen van
eindige rang in K×. Deze problemen hangen nauw samen met het vermoeden
van Artin over primitieve wortels, zoals bijvoorbeeld uitgelegd in [Mor12].

Het berekenen van de graden van oneindig veel lichaamsuitbreidingen lijkt
misschien een zware taak. Het volgende is echter bekend (zie [PS19, Theorem 1.1]
voor een direct bewijs): als A een ondergroep van K× is van eindige rang r,
dan is er een constante C > 0 zodanig dat voor elk positief geheel getal n de
verhouding tussen nr en de graad [K( n

√
A) : K(ζn)] een deler is van C. Dit

resultaat kan effectief worden gemaakt, zie [PST20a, Theorem 1.2], en voor het
geval K = Q verschaffen de resultaten van [PST20b] een algoritme waarvan de
output een eindige formule is voor deze graden. Dit algoritme is gëımplementeerd
in SageMath, zie [Tro19].

Algebräısche groepen

Tot nu toe hebben we Kummertheorie alleen in de klassieke zin besproken, maar
deze concepten kunnen als volgt worden veralgemeend. Zijn K een lichaam, zeg
voor de eenvoud van karakteristiek nul, K een algebräısche afsluiting van K,
en G een commutatieve algebräısche groep over K. Als S een deelverzameling
van G(K) is, dan is de lichaamsuitbreiding van K voortgebracht door S het deel-
lichaam van K verkregen door aan K de coördinaten van de punten van S toe
te voegen. Om precies te zijn: als we elke x in S identificeren met een morfisme
van schema’s specK → specK(x), dan hebben we een verzameling morfismen
K(x) → K als x varieert in S, en de samenstelling van de beelden van deze
morfismen is dan per definitie K(S).

Zij nu A ⊆ G(K) een eindig voortgebrachte ondergroep. Voor elk positief
geheel getal n kunnen we de deelverzameling n−1A = {P ∈ G(K) | nP ∈ A}
beschouwen. Uitbreidingen van K van de vorm K(n−1A) zijn het onderwerp
van de studie van de Kummertheorie voor commutatieve algebräısche groepen.
Zoals men kan zien door G = Gm te nemen, waar Gm de multiplicatieve groep
over K is, is deze theorie een directe generalisatie van de klassieke Kummertheo-
rie. Zelfs in deze algemeenheid hebben Kummeruitbreidingen veel van de inter-
essante eigenschappen van hun klassieke tegenhangers. Bijvoorbeeld is K(n−1A)
een Galoisuitbreiding van K die het n-torsielichaam van G bevat, dat wil zeggen
de lichaamsuitbreiding van K voortgebracht door alle n-torsiepunten van G(K);
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bovendien is het Galois en abels over dit lichaam. Torsielichamen zijn de directe
veralgemening van cyclotomische lichamen, en veel resultaten over Kummeruit-
breidingen kunnen worden afgeleid uit eigenschappen van deze lichamen.

Als K een getallenlichaam is, dan kan het bovengenoemde dichtheidsprobleem
mutatis mutandis in deze algemenere context worden geformuleerd, en is het nog
steeds gerelateerd aan de graden van Kummeruitbreidingen. Zie [Pin04] voor
een bespreking in het geval van abelse variëteiten en [Per08, Per11] voor het
product van een abelse variëteit en een torus. Dit motiveert de studie van de
graden van Kummeruitbreidingen in een algemene context. In zijn fundamentele
artikel [Rib79] bewees Ribet het volgende resultaat: als G het product is van
een abelse variëteit en een torus en A ⊆ G(K) een vrij Z-moduul van rang r
is, met een basis over Z van punten lineair onafhankelijk over EndK(G), dan
bestaat er een positief geheel getal C zodanig dat de verhouding tussen nrs en
de graad [K(n−1A) : K(G[n])] een deler is van C voor elk positief geheel getal
n. Hier is s het unieke positieve gehele getal zodanig dat voor elke n > 1 geldt
G(K)[n] ∼= (Z/nZ)s. Zie ook [Ber88, Théorème 5.2] en [Hin88, Lemme 14].
De artikelen die in dit proefschrift zijn verzameld, zijn gewijd aan het effectiever
maken van dit resultaat, waarbij wordt geprobeerd de constante C uit te drukken
in termen van bekende grootheden gerelateerd aan de torsielichamen van G.

Effectieve resultaten voor elliptische krommen

De eerste twee artikelen, geschreven in samenwerking met Lombardo, richten
zich op het geval van elliptische krommen. Zij G een elliptische kromme over een
getallenlichaam K, zij K een algebräısche afsluiting van K, en zij α ∈ G(K). In
[JR10] hebben Jones en Rouse bewezen dat voor elk priemgetal `, onder bepaalde
aannames over α en met een kleine uitzondering voor het priemgetal 2, de surjec-
tiviteit van de `-adische Galoisrepresentatie geassocieerd met G de maximaliteit
van de Kummeruitbreidingen K(n−1α) over K(G[n]) impliceert als n een macht
is van `. Zie [JR10, stelling 5.2] voor het niet-CM-geval en [JR10, stelling 5.8]
voor het CM-geval. In het licht hiervan formuleerde Perucca twee vragen: Als
de Galoisrepresentatie niet surjectief is, kunnen we dan het falen van de maxi-
maliteit van de Kummeruitbreidingen beschrijven, of op zijn minst begrenzen, in
termen van het falen van de maximaliteit van de Galoisrepresentaties? Kunnen
deze resultaten worden gegeneraliseerd naar het geval waarin n een positief geheel
getal is?

Het eerste artikel dat hier [Chapter 1] wordt gepresenteerd, is bedoeld om
deze vragen te beantwoorden. De hoofdstelling [Chapter 1, Theorem 1.1] geeft
een positief antwoord, maar alleen onder de aanname dat EndK(G) = Z. Deze
stelling is een effectieve versie van het klassieke resultaat van Ribet in het geval
van een groep G voortgebracht door een enkel punt α, en het laat zien dat de
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bovengenoemde constante C alleen afhangt van eigenschappen van de `-adische
representaties, voor alle priemgetallen `, en andere effectief berekenbare groothe-
den geassocieerd met G. Voorbeelden die de niet-toepasbaarheid van deze meth-
oden op het CM-geval aantonen, worden gegeven in [Chapter 1, Section 6]. De
tweede hoofdstelling [Chapter 1, Theorem 1.2] laat zien dat er over het lichaam
Q een uniforme versie van dit resultaat bestaat onder de aanname dat het punt α
niet deelbaar is in G(Q)/G(Q)tors – dat wil zeggen dat er geen β ∈ G(Q) bestaat
zodanig dat α geschreven kan worden als nβ + τ voor een geheel getal n > 1 en
τ ∈ G(Q)tors.

Het doel van het tweede artikel met Lombardo [Chapter 2] is om het bovenge-
noemde resultaat [Chapter 1, Theorem 1.2] expliciet te maken door een werkelijke
numerieke waarde te vinden voor de constante C, zie [Chapter 2, Theorem 6.5
]. Deze resultaten zijn bereikt door uniforme grenzen te geven aan andere in-
teressante grootheden die verband houden met de Galoisrepresentaties van G.
Opmerkelijke voorbeelden van zulke grootheden zijn de exponenten van de co-
homologiegroepen van Gal(Q(G(Q)tors) | Q) met coëfficiënten in de torsieon-
dergroepen van G, beschouwd als Galoismodulen. Grenzen voor vergelijkbare
grootheden zijn onafhankelijk gevonden door Cerchia en Rouse [CR21].

Een technisch raamwerk voor de algemene Kum-
mertheorie

Sommige van de bovengenoemde expliciete resultaten zijn afhankelijk van eigen-
schappen van Galoisrepresentaties die alleen voor elliptische krommen in een
effectieve vorm bekend zijn. De methoden die worden gebruikt om aan te tonen
dat de graden van Kummeruitbreidingen gerelateerd zijn aan deze grootheden,
zijn hier echter onafhankelijk van. In het derde artikel dat in dit proefschrift
is opgenomen, wordt dit duidelijk gemaakt door de theoretische achtergrond te
conceptualiseren in een raamwerk dat van toepassing is op elke commutatieve
algebräısche groep G over K die voldoet aan EndK(G) = Z. De methoden
die in dit werk worden gebruikt, zijn gëınspireerd op resultaten van Palenstijn
[Pal04, Pal14] en op gesprekken met Lenstra en Stevenhagen. Als toepassing
worden de resultaten van [Chapter 1] en [Chapter 2] uitgebreid naar groepen A
met een rang hoger dan 1.

Tot nu toe hebben we het geval waarin de endomorfismering van G groter
is dan Z nog niet met succes aangepakt, en het lijkt erop dat onze methoden
in dat geval een substantiële verfijning nodig hebben. In zijn proefschrift [JP21]
gaat Javan Peykar in op dit probleem in het geval van elliptische krommen met
complexe vermenigvuldiging door A ⊆ G(K) te nemen als een EndK(G)-moduul,
en de modulen van “delingspunten” door een Steinitzideaal te beschouwen. Zelfs
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met enige technische beperkingen is deze methode zeer succesvol.
Gemotiveerd door deze benadering is het laatste artikel in dit proefschrift

[Chapter 4] voornamelijk gewijd aan de studie van puur algebräısche eigenschap-
pen van delingsmodulen over algemene ringen. De door Javan Peykar gebruikte
Steinitzidealen worden vervangen door ideaalfilters, en er wordt een veralge-
mening gegeven van het klassieke begrip injectiviteit, dat voor zover de auteur
weet nieuw is. Een notie van (J, T )-uitbreiding, waarbij J een vast ideaalfilter is en
T een geschikt R-moduul, generaliseert de modulen van delingspunten. De eigen-
schappen van deze objecten worden vervolgens bestudeerd vanuit een categori-
etheoretisch oogpunt, waarna enkele resultaten over hun automorfismegroepen
worden gegeneraliseerd die zijn verschenen in de minder algemene settings van
[Pal04], [Pal14] en [JP21].

Deze lange uitweiding in de commutatieve algebra werpt uiteindelijk zijn
vruchten af: de zo geconstrueerde theorie, die die van [Chapter 3] generaliseert,
wordt uiteindelijk toegepast om de resultaten van [Chapter 1] en [JP21] te vereni-
gen en te veralgemenen, wat aantoont dat de twee schijnbaar verschillende be-
naderingen eigenlijk gewoon verschillende realisaties zijn van een algemenere the-
orie. De mate van algemeenheid die in dit artikel wordt gebruikt, opent de deur
naar toepassingen op hogerdimensionale abelse variëteiten en andere klassen van
commutatieve algebräısche groepen.
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Chapter 1

Effective Kummer theory
for elliptic curves

by Davide Lombardo and Sebastiano Tronto [LT21a]

1 Introduction

1.1 Setting

Let E be an elliptic curve defined over a number field K (for which we fix an
algebraic closure K) and let α ∈ E(K) be a point of infinite order. The purpose
of this paper is to study the extensions of K generated by the division points of
α; in order to formally introduce these extensions we need to set some notation.

Given a positive integer M , we denote by E[M ] the group of M -torsion points
of E, that is, the set {P ∈ E(K) : MP = 0} equipped with the group law
inherited from E. Moreover, we denote by KM the M -th torsion field K(E[M ])
of E, namely, the finite extension of K obtained by adjoining the coordinates of
all the M -torsion points of E. For each positive integer N dividing M , we let
N−1α :=

{
β ∈ E(K) | Nβ = α

}
denote the set of N -division points of α and set

KM,N := K(E[M ], N−1α).

The field KM,N is called the (M,N)-Kummer extension of K (associated with α),
and both KM and KM,N are finite Galois extensions of K. It is a classical

13



14 CHAPTER 1. KUMMER THEORY FOR ELLIPTIC CURVES

question to study the degree of KM,N over KM as M,N vary, see for example
[Ber88, Théorème 1], [Hin88, Lemme 14], or Ribet’s foundational paper [Rib79].
In particular, it is known that there exists an integer C = C(E/K,α), depending
only on E/K and α, such that

N2

[KM,N : KM ]
divides C

for every pair of positive integers (M,N) with N | M . The aim of this paper is
to give an explicit version of this result, and to show that it can be made uniform
when the base field is K = Q. Our first result is that, under the assumption
EndK(E) = Z, the integer C can be bounded (explicitly) in terms of the `-adic
Galois representations attached to E and of divisibility properties of the point α,
and that this statement becomes false if we remove the hypothesis EndK(E) = Z.
On the other hand, the assumption EndK(E) = Z is always satisfied whenK = Q,
and we show that in this case C can be taken to be independent of E and α,
provided that α and all its translates by torsion points are not divisible by any
n > 1 in the group E(Q). This is a rather surprising statement, especially
given that such a strong uniformity result is not known for the closely connected
problem of studying the degrees of the torsion fields KM over K.

1.2 Main results

Our main results are the following.

Theorem 1.1. Assume that EndK(E) = Z. There is an explicit constant C,
depending only on α and on the `-adic torsion representations associated to E
for all primes `, such that

N2

[KM,N : KM ]
divides C

for all pairs of positive integers (M,N) with N dividing M .

The proof gives an explicit expression for C that depends on computable
parameters associated with E and α. We also show that all these quantities can
be bounded effectively in terms of standard invariants of the elliptic curve and of
the height of α, see Remark 5.17.

Theorem 1.2. There is a universal constant C > 0 with the following property.
Let E/Q be an elliptic curve, and let α ∈ E(Q) be a point such that the class of
α in the free abelian group E(Q)/E(Q)tors is not divisible by any n > 1. Then

N2

[QM,N : QM ]
divides C
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for all pairs of positive integers (M,N) with N dividing M .

The assumption on the divisibility of the point α is necessary: it is enough to

replace α with a multiple `α to gain an extra factor `2 in the ratio N2

[QM,N :QM ] when

N is divisible by a sufficiently high power of `. However, one can remove this
assumption and obtain a bound that depends only on the largest integer n such
that α is n-divisible in E(Q)/E(Q)tors, but not on the curve, see Remark 7.2.
Also observe that Theorems 1.1 and 1.2 immediately imply lower bounds of the
form [KM,N : KM ] > 1

CN
2.

We remark that recent work by Cerchia and Rouse [CR21] also investigates
similar questions – in particular, the problem of uniformity – but only focuses
on a single `-adic representation at a time (equivalently: the case when M,N
are both powers of some fixed prime `), while our results cover the more general
adelic situation. In fact, the main difficulty in the present work stems from the
possible interactions between the `-power torsion fields for different primes ` (the
so-called entanglement phenomenon), and it is to handle this difficulty that we
need to introduce some new ideas in Section 7. These ideas allow us to reduce
the study of the cohomology of the Galois modules E[N ] for general N to the
corresponding question for E[`k], where `k | N ; this is nontrivial precisely because
there can be interactions between torsion fields related to different primes. Our
main cohomological result (Theorem 7.5) can be stated as follows.

Theorem 1.3. There is a positive integer C1 such that, for every elliptic curve
E/Q, the exponent of H1(Gal(Q(E(Q)tors) | Q), E(Q)tors) divides C1.

It is not hard to see that this statement would follow from a positive answer
to Serre’s well-known uniformity question concerning the Galois representations
attached to elliptic curves over Q (see e.g. [Ser72, §4.3]). In order to obtain
an unconditional proof we need to combine several ingredients: in addition to
some cohomological tools, including the inflation-restriction sequence, our proof
of this theorem relies on several deep results on the images of the modulo-` Galois
representations attached to elliptic curves, including the uniform boundedness of
isogenies for elliptic curves defined over Q (Theorem 3.14). The fact that similar
results are not known for general number fields is the main reason why at present
we cannot easily generalise Theorem 1.2 to number fields other than Q.

1.3 Structure of the paper

We start with some necessary general preliminaries in Section 2, leading up to
a factorisation of the constant C of Theorem 1.1 as a product of certain con-
tributions which we dub the `-adic and adelic failures (corresponding to E, α,
and a fixed prime `). In the same section we also introduce some of the main
actors of this paper, in the form of several Galois representations associated with
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the torsion and Kummer extensions. In Section 3 we then recall some important
properties of the torsion representations that will be needed in the rest of the
paper. In Sections 4 and 5 we study the `-adic and adelic failures respectively.
In Section 6 we show that one cannot hope to näıvely generalise some of the
results in section 4 to CM curves. Finally, in Section 7 we prove Theorem 1.2 by
establishing several auxiliary results about the Galois cohomology of the torsion
modules E[M ] that might have an independent interest.

2 Preliminaries

2.1 Notation and definitions

The letter K will always denote a number field, E an elliptic curve defined over
K, and α a point of infinite order in E(K). For n a positive integer, we denote
by ζn a primitive root of unity of order n. Given a prime `, we denote by v`
the usual `-adic valuation on Q and on Q`. If X is a vector in Zn` or a matrix
in Matm×n(Z`), we call valuation of X, denoted by v`(X), the minimum of the
`-adic valuations of its coefficients.

We shall often use divisibility conditions involving the symbols `∞ (where `
is a prime) and ∞. Our convention is that every power of ` divides `∞, every
positive integer divides ∞, and `∞ divides ∞. Recall from the Introduction
that we denote by KM the field K(E[M ]) generated by the coordinates of the
M -torsion points of E, and by KM,N (for N | M) the field K(E[M ], N−1α).
We extend this notation by setting K`∞ =

⋃
nK`n , K∞ =

⋃
M KM , and more

generally, for M,N ∈ N>0 ∪ {`∞,∞} with N |M ,

KM =
⋃
d|M

Kd, KM,N =
⋃
d|M

⋃
e|d
e|N

Kd,e

If H is a subgroup of GL2(Z`), we denote by Z`[H] the sub-Z`-algebra of
Mat2(Z`) topologically generated by the elements of H. Let G be a (profinite)
group. We write G′ for its derived subgroup, namely, the subgroup of G (topo-
logically) generated by commutators, and Gab = G/G′ for its abelianisation,
namely, its largest abelian (profinite) quotient. We say that a finite simple group
S occurs in a profinite group G if there are closed subgroups H1, H2 of G, with
H1 / H2, such that H2/H1 is isomorphic to S. Finally, we denote by expG the
exponent of a finite group G, namely, the smallest integer e > 1 such that ge = 1
for every g ∈ G.
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2.2 The `-adic and adelic failures

We start by observing that it is enough to restrict our attention to the case
N = M :

Remark 2.1. Suppose that there is a constant C > 1 such that

M2

[KM,M : KM ]
divides C

for all positive integers M . Then for any N | M , since [KM,M : KM,N ] divides
(M/N)2, we have that

N2

[KM,N : KM ]
=
N2[KM,M : KM,N ]

[KM,M : KM ]
divides

M2

[KM,M : KM ]
,

which in turn divides C.

We now describe a decomposition of the ratio N2

[KN,N :KN ] into two arithmeti-

cally meaningful parts. Elementary field theory gives

N2

[KN,N : KN ]
=

∏
`|N

` prime

`2n`

[KN,`n` : KN ]
=

=
∏
`|N

` prime

`2n`

[K`n` ,`n` : K`n` ]
· [K`n` ,`n` : K`n` ]

[KN,`n` : KN ]
=

=
∏
`|N

` prime

`2n`

[K`n` ,`n` : K`n` ]
· [K`n` ,`n` ∩KN : K`n` ]

where n` = v`(N). To see why the first equality holds, recall that the degree
[KN,`n` : KN ] is a power of `, so the fields KN,`n` are linearly disjoint over KN ,
and clearly they generate all of KN,N .

Definition 2.2. Let ` be a prime and N a positive integer. Let n := v`(N). We
call

A`(N) :=
`2n

[K`n,`n : K`n ]

the `-adic failure at N and

B`(N) :=
[K`n,`n : K`n ]

[KN,`n : KN ]
= [K`n,`n ∩KN : K`n ]

the adelic failure at N (related to `). Notice that both A`(N) and B`(N) are
powers of `.
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Example 2.3. It is clear that the `-adic failure A`(N) can be nontrivial, that
is, different from 1. Suppose for example that α = `β for some β ∈ E(K): then
we have

K`n,`n = K`n(`−nα) = K`n(`−n+1β),

and the degree of this field over K`n is at most `2(n−1), so `2 | A`(N). In Example
4.5 we will show that the `-adic failure can be non-trivial also when α is strongly
`-indivisible (see Definition 4.1).

Example 2.4. We now show that the adelic failure B`(N) can be non-trivial as
well. Consider the elliptic curve E over Q given by the equation

y2 = x3 + x2 − 44x− 84

and with Cremona label 624f2 (see [LMF22, label 624f2]). One can show that
E(Q) ∼= Z ⊕ (Z/2Z)2, so that the curve has full rational 2-torsion, and that
a generator of the free part of E(Q) is given by P = (−5, 6). The 2-division
points of P are given by (1 +

√
−3,−3 + 7

√
−3), (−11 + 3

√
−3, 27 + 15

√
−3),

and their Galois conjugates, so they are defined over Q(ζ3) ⊆ Q3, and we have
B2(6) := [Q2,2 ∩ Q6 : Q2] = [Q(ζ3) : Q] = 2. These computations have been
checked with SageMath [The].

2.3 The torsion, Kummer and arboreal representations

In this section we introduce three representations of the absolute Galois group
of K that will be our main tool for studying the extensions KM,N . For further
information about these representations see for example [JR10, Section 3], [BP21],
and [LP21].

The torsion representation

Let N be a positive integer. The group E[N ] of N -torsion points of E is a
free Z/NZ-module of rank 2. Since the multiplication-by-N map is defined over
K, the absolute Galois group of K acts Z/NZ-linearly on E[N ], and we get a
homomorphism

τN : Gal(K | K)→ Aut(E[N ]).

The field fixed by the kernel of τN is exactly the N -th torsion field KN . Thus,
after fixing a Z/NZ-basis of E[N ], the Galois group Gal(KN | K) is identified
with a subgroup of GL2(Z/NZ) which we denote by HN .

As N varies, and provided that we have made compatible choices of bases,
these representations form a compatible projective system. We can therefore pass

http://www.lmfdb.org/EllipticCurve/Q/624f2/
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to the limit over the powers of a fixed prime number ` to obtain the `-adic torsion
representation τ`∞ : Gal(K | K) → GL2(Z`). We can also take the limit over
all integers N (ordered by divisibility) to obtain the adelic torsion representation

τ∞ : Gal(K | K) → GL2(Ẑ). We denote by H`∞ (resp. H∞) the image of
τ`∞ (resp. τ∞). The group H`∞ (resp. H∞) is isomorphic to Gal(K`∞ | K)
(resp. Gal(K∞ | K)).

One can also pass to the limit on the torsion subgroups themselves, obtaining
the `-adic Tate module T`E = lim←−nE[`n] ∼= Z2

` and the adelic Tate module

TE = lim←−M E[M ] ∼= Ẑ2 ∼=
∏
` Z2

` .

The Kummer representation

Let M and N be positive integers with N | M . Let β ∈ E(K) be a point such
that Nβ = α. For any σ ∈ Gal(K | KM ) we have that σ(β)− β is an N -torsion
point, so the following map is well-defined:

κN : Gal(K | KM ) → E[N ]
σ 7→ σ(β)− β.

Since any other N -division point β′ of α satisfies β′ = β + T for some T ∈
E[N ], and the coordinates of T belong to KN ⊆ KM , the map κN does not
depend on the choice of β. It is also immediate to check that κN is a group
homomorphism, and that the field fixed by its kernel is exactly the (M,N)-
Kummer extension of K. Fixing a basis of E[N ] we can identify the Galois group
Gal(KM,N | KM ) with a subgroup of (Z/NZ)2. It is then clear that KM,N is
an abelian extension of KM of degree dividing N2, and the Galois group of this
extension has exponent dividing N . In the special case M = N we denote by VN
the image of Gal (KN,N | KN ) in (Z/NZ)2.

By passing to the limit in the previous constructions we also obtain the fol-
lowing:

(i) There is an `-adic Kummer representation κ`∞ : Gal(K | K`∞) → T`E
which factors via a map Gal(K`∞,`∞ | K`∞)→ T`E (still denoted by κ`∞).

(ii) The image V`∞ of κ`∞ is a sub-Z`-module of T`E ∼= Z2
` , and it is isomorphic

to Gal(K`∞,`∞ | K`∞) as a profinite group. We therefore identify the Galois
group Gal(K`∞,`∞ | K`∞) with V`∞ .

(iii) We can identify the Galois group Gal(K∞,`∞ | K∞) with a Z`-submodule
W`∞ of V`∞ (hence also of T`E) via the representation κ`∞ .

(iv) We can identify the Galois group Gal(K∞,∞ | K∞) with a sub-Ẑ-module

W∞ of TE ∼= Ẑ2.
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Notice that W`∞ is the projection of W∞ in Z2
` , and since W`∞ is a pro-`

group and there are no nontrivial continuous morphisms from a pro-` group to a
pro-`′ group for ` 6= `′ we have W∞ =

∏
`W`∞ .

The arboreal representation

Fix a sequence {βi}i∈N of points in E(K) such that β1 = α and NβM = βM/N

for all pairs of positive integers (N,M) with N | M . For every N > 1 fix

furthermore a Z/NZ-basis {TN1 , TN2 } of E[N ] in such a way that NTM1 = T
M/N
1

and NTM2 = T
M/N
2 for every pair of positive integers (N,M) with N | M . For

every N > 1, the map

ωN : Gal(KN,N | K)→ (Z/NZ)
2 o GL2 (Z/NZ)

σ 7→ (σ(βN )− βN , τN (σ))

is an injective homomorphism (similarly to [JR10, Proposition 3.1]) and thus

identifies the group Gal(KN,N | K) with a subgroup of (Z/NZ)
2 o GL2 (Z/NZ).

It will be important for our applications to notice that VN comes equipped
with an action of HN coming from the fact that VN is the (abelian) kernel of the
natural map Gal(KN,N | K) → HN . More precisely, the action of h ∈ HN on
v ∈ VN is given by conjugating the element (v, Id) ∈ (Z/NZ)2 o GL2(Z/NZ) by
(0, h). Explicitly, we have

(0, h)(v, Id)(0, h)−1 = (hv, h)(0, h−1) = (hv, Id),

so that the action of HN on VN is induced by the natural action of GL2(Z/NZ)

on (Z/NZ)
2
. We obtain similar statements by suitably passing to the limit in N :

Lemma 2.5. For every positive integer N , the group VN is an HN -submodule
of (Z/NZ)2 for the natural action of HN 6 GL2(Z/NZ) on VN 6 (Z/NZ)2.
Similarly, both V`∞ and W`∞ are H`∞-modules.

Remark 2.6. Let N ∈ N ∪ {`∞} and M ∈ N ∪ {`∞,∞} with N |M . Then the
group Gal(KM,N | KM ) can be identified with a subgroup of VN : this follows
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from inspection of the diagram

KM,N

KM KN,N

KM ∩KN,N

KN

which shows that Gal(KM,N | KM ) is isomorphic to Gal(KN,N | KM ∩KN,N ),
which in turn is clearly a subgroup of Gal(KN,N | KN ) ∼= VN .

2.4 Curves with complex multiplication

If EndK(E) 6= Z we say that E has complex multiplication, or CM for short. In
this case EndK(E) is an order in an imaginary quadratic field, called the CM-field
of E. The torsion representations in the CM case have been studied for example
in [Deu53] and [Deu58]. In this case, the image of the torsion representation τ`∞

is closely related to the Cartan subgroup of GL2(Z`) corresponding to EndK(E),
defined as follows:

Definition 2.7. Let F be a reduced Q`-algebra of degree 2 and let A` be a
Z`-order in F . The Cartan subgroup corresponding to A` is the group of units
of A`, which we embed in GL2(Z`) by fixing a Z`-basis of A` and considering
the left multiplication action of A×` . If A is an order in an imaginary quadratic
number field, the Cartan subgroup of GL2(Z`) corresponding to A is defined by
taking A` = A⊗ Z` in the above.

More precisely, when E/K is an elliptic curve with CM, the image of the `-
adic torsion representation τ`∞ is always contained (up to conjugacy in GL2(Z`))
in the normaliser of the Cartan subgroup corresponding to EndK(E), and is
contained in the Cartan subgroup itself if and only if the complex multiplication
is defined over the base field K.

In order to have a practical representation of Cartan subgroups, we recall the
following definition from [LP17]:
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Definition 2.8. Let C be a Cartan subgroup of GL2(Z`). We say that (γ, δ) ∈ Z2
`

are parameters for C if C is conjugated in GL2(Z`) to the subgroup{(
x δy
y x+ γy

)
: x, y ∈ Z`, v`(x(x+ γy)− δy2) = 0

}
. (2.1)

Parameters for C always exist, see [LP17, §2.3].

Remark 2.9 (([LP17, Remark 9])). One may always assume that γ, δ are inte-
gers. Furthermore, one can always take γ ∈ {0, 1}, and γ = 0 if ` 6= 2.

We also recall the following explicit description of the normaliser of a Cartan
subgroup [LP17, Lemma 14]:

Lemma 2.10. A Cartan subgroup has index 2 in its normaliser. If C is as in
(2.1), its normaliser N in GL2(Z`) is the disjoint union of C and

C ′ :=

(
1 γ
0 −1

)
· C .

3 Properties of the torsion representation

Torsion representations are studied extensively in the literature; we have in par-
ticular the following fundamental theorem of Serre [Ser72], which applies to all
elliptic curves (defined over number fields) without complex multiplication:

Theorem 3.1 (Serre). If EndK(E) = Z, then H∞ is open in GL2(Ẑ). Equiva-
lently, the index of HN in GL2(Z/NZ) is bounded independently of N .

There is also a CM analogue of Theorem 3.1, which is more easily stated by
introducing the following definition:

Definition 3.2. Let E/K be an elliptic curve and ` be a prime number. We
say that the image of the `-adic representation is maximal if one of the following
holds:

(i) E does not have CM over K and H`∞ = GL2(Z`).

(ii) E has CM over K by an order A in the imaginary quadratic field F , the
prime ` is unramified in F and does not divide [OF : A], and H`∞ is
conjugated to the Cartan subgroup of GL2(Z`) corresponding to A.

(iii) E has CM overK (but not overK) by an orderA in the imaginary quadratic
field F , the prime ` is unramified in F and does not divide [OF : A], and
H`∞ is conjugated to the normaliser of the Cartan subgroup of GL2(Z`)
corresponding to A.
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Theorem 3.3 ([Ser72, Corollaire on p. 302]). Let E/K be an elliptic curve ad-
mitting CM over K. Then the `-adic representation attached to E/K is maximal
for all but finitely many primes `.

In the rest of this section we recall various important properties of the tor-
sion representations: we shall need results that describe both the asymptotic
behaviour of the mod `n torsion representation as n→∞ (§3.1 and 3.2) and the
possible images of the mod ` representations attached to elliptic curves defined
over the rationals (§3.3).

3.1 Maximal growth

We recall some results on the growth of the torsion extensions from [LP21, §2.3].

Proposition 3.4. Let ` be a prime number. Let δ = 2 if E has complex multi-
plication and δ = 4 otherwise. There exists a positive integer n` such that

#H`n+1/#H`n = `δ for every n > n`.

Proof. This follows from Theorem 3.1 in the non-CM case and from classical
results in the CM case. See also [LP21, Lemma 10 and Remark 13] for a more
general result.

Definition 3.5. We call an integer n` as in Proposition 3.4 a parameter of
maximal growth for the `-adic torsion representation. We say that it is minimal
if n` − 1 is not a parameter of maximal growth; when ` = 2, we require that the
minimal parameter be at least 2.

Remark 3.6. In the non-CM case we can give an equivalent definition of n`
as follows. Consider the fundamental system of open neighbourhoods of Id in
GL2(Z`) given by the normal subgroups

· · · ⊆ Id + `n Mat2(Z`) ⊆ · · · ⊆ Id + `2 Mat2(Z`) ⊆ Id + `Mat2(Z`) ⊆ GL2(Z`).

If E does not have CM over K, Theorem 3.1 implies that H`∞ has finite index
in GL2(Z`), so it must contain a subgroup of the form I + `n Mat2(Z`). Then it
is easy to see that n` is the minimal such positive integer n. One can also give
similar, but more complicated, characterisations of n` in the CM case using the
structure of the Cartan subgroup associated with the `-adic Galois representation
attached to E/K.

Remark 3.7. The assumption n` > 2 when ` = 2 is needed to apply [LP21,
Theorem 12].
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Remark 3.8. Given an explicit elliptic curve E/K and a prime `, the prob-
lem of determining the optimal value of n` can be solved effectively (see [LP21,
Remark 13]). However, computing n` can be challenging in practice, because
the näıve algorithm requires the determination of the Galois groups of the split-
ting fields of several large-degree polynomials. The situation is usually better
for smaller primes `, and especially for ` = 2, for which the 2-torsion tower is
known essentially explicitly (see [RZB15] for a complete classification result when
K = Q, and [Yel15] for a description of the 2-torsion tower of a given elliptic curve
over a number field).

The following lemma, originally due to Serre, is very close in spirit to Propo-
sition 3.4, and gives some control on the growth of the image of the `-adic repre-
sentation when the residual mod-` representation is surjective:

Lemma 3.9 (Serre, [Ser97, IV-23, Lemma 3]). Let ` > 5 be a prime and let
G ⊆ SL2(Z/`kZ) be a subgroup. Let π : SL2(Z/`kZ)→ SL2(Z/`Z) be the reduc-
tion homomorphism and suppose that π(G) = SL2(Z/`Z): then G = SL2(Z/`kZ).

In Section 5 we will need to bound the minimal parameter of maximal growth
for the `-adic torsion representation defined over certain extensions of the base
field. We will do so with the help of the following Lemma:

Lemma 3.10. Let K̃ be a finite extension of K. Let n` (resp. ñ`) be the minimal
parameter of maximal growth for the `-adic torsion representation attached to
E/K (resp. E/K̃). Then ñ` 6 n` + v`([K̃ : K]).

Proof. Let n0 := n` + v`([K̃ : K]) + 1 and consider the following diagram:

K̃`n0

K̃`n` K`n0

K̃`n` ∩K`n0K̃

K`n`

K̃ ∩K`n`

K
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Since clearly [K̃`n` ∩ K`n0 : K`n` ] divides [K̃`n` : K`n` ], which in turn divides
[K̃ : K], and since [K̃`n0 : K̃`n` ] = [K`n0 : K̃`n` ∩K`n0 ], we have

v` ([K`n0 : K`n` ]) = v`

(
[K`n0 : K̃`n` ∩K`n0 ]

)
+ v`

(
[K̃`n` ∩K`n0 : K`n` ]

)
6 v`

(
[K̃`n0 : K̃`n` ]

)
+ v`

(
[K̃ : K]

)
.

By [LP21, Theorem 12] we have

v` ([K`n0 : K`n` ]) = δ(n0 − n`) = δ
(
v`

(
[K̃ : K]

)
+ 1
)
,

where δ is as in Proposition 3.4, and we get

v`

(
[K̃`n0 : K̃`n` ]

)
> δ + (δ − 1)v`

(
[K̃ : K]

)
> (δ − 1)(n0 − n`).

Consider now the tower of extensions K̃`n` ⊆ K̃`n`+1 ⊆ · · · ⊆ K̃`n0 and notice
that by the pigeonhole principle for at least one n ∈ {n`, n` + 1, . . . , n0 − 1} we
must have [K̃`n+1 : K̃`n ] > δ. But then by [LP21, Theorem 12] we have maximal

growth over K̃ from n < n0. Thus we get ñ` 6 n` + v`

(
[K̃ : K]

)
as claimed.

3.2 Uniform growth of `-adic representations

The results in this subsection and the next will be needed in Section 7. We start
by recalling the following result, due to Arai:

Theorem 3.11 ([Ara08, Theorem 1.2]). Let K be a number field and let ` be a
prime. Then there exists an integer n > 0, depending only on K and `, such that
for any elliptic curve E over K with no complex multiplication over K we have

τ`∞(Gal(K | K)) ⊇ {M ∈ GL2(Z`) : M ≡ Id (mod `n)}.

For the next result we shall need a well-known Lemma about twists of elliptic
curves:

Lemma 3.12. Let E1, E2 be elliptic curves over K such that (E1)Q is isomorphic
to (E2)Q. There is an extension F of K, of degree dividing 12, such that E1 and
E2 become isomorphic over F .

Proof. Fixing a Q-isomorphism between E1 and E2 allows us to attach to E2 a
class in the cohomology group H1

(
Gal(K | K),Aut(E1)

)
. Since

H1
(
Gal(K | K),Aut(E1)

) ∼= K×/K×n
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for some n ∈ {2, 4, 6} (see [Sil09, Proposition X.5.4]), the class of E2 corresponds
to the class of a certain [α] ∈ K×/K×n. Letting F = K( n

√
α), whose degree over

K divides 12, it is clear that [α] ∈ F×/F×n is trivial, so the same is true for
[E2] ∈ H1(Gal(F | F ),Aut(E1)), which means that E2 is isomorphic to E1 over
F as desired.

Corollary 3.13. Let K be a number field and ` be a prime number. There
exists an integer n` with the following property: for every elliptic curve E/K, the
minimal parameter of maximal growth for the `-adic representation attached to
E is at most n`.

Proof. Let n be the integer whose existence is guaranteed by Theorem 3.11.
By the general theory of CM elliptic curves, we know that there are finitely
many values j1, . . . , jk ∈ Q such that for every CM elliptic curve E/K we have
j(E) ∈ {j1, . . . , jk}. For each such ji, fix an elliptic curve Ei/K with j(Ei) = ji.
To every Ei/K corresponds a minimal parameter of maximal growth for the `-
adic representation that we call mi. Let n` = max{n,mi + 2

∣∣ i = 1, . . . , k}:
we claim that this value of n` satisfies the conclusion of the Corollary. Indeed,
let E/K be any elliptic curve. If E does not have CM, the minimal parameter
of maximal growth for its `-adic representation is at most n 6 n`. If E has
CM, then there exists i such that j(E) = ji = j(Ei), so E is a twist of Ei. By
Lemma 3.12 the curves E and Ei become isomorphic over an extension F/K of
degree dividing 12, so if m (resp. m̃, resp. m̃i) denotes the minimal parameter of
maximal growth for E/K (resp. for E/F , resp. for Ei/F ) we have

m 6 m̃ = m̃i 6 mi + 2 6 n`,

where the equality follows from the fact that E and Ei are isomorphic over F ,
while the inequality m̃i 6 mi + 2 follows from Lemma 3.10 combined with the
fact that we have v`([F : K]) 6 v`(12) 6 2 for every prime `.

3.3 Possible images of mod ` representations

We recall several results concerning the images of the mod ` representations at-
tached to elliptic curves over Q. We begin with a famous Theorem of Mazur, to
state which we let

T0 := {p prime | p 6 17} ∪ {37}.
Theorem 3.14 ([MG78, Theorem 1]). Let E/Q be an elliptic curve and assume
that E has a Q-rational subgroup of order p. Then p ∈ T0 ∪ {19, 43, 67, 163}. If
E does not have CM over Q, then p ∈ T0.

We then recall the following result of Zywina, which builds upon previous
work of Serre, Mazur [MG78], Bilu-Parent [BP11], and Bilu-Parent-Rebolledo
[BPR13]:
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Theorem 3.15 ([Zyw15a, Proposition 1.13]). Let E/Q be a non-CM elliptic
curve and p 6∈ T0 be a prime. Let Cns(p) be the subgroup of GL2(Fp) consisting of

all matrices of the form

(
a bε
b a

)
with (a, b) ∈ F2

p \ {(0, 0)} and ε a fixed element

of F×p \ F×2
p . Then Hp is conjugate to one of the following:

(i) GL2(Fp);

(ii) the normaliser Nns(p) of Cns(p);

(iii) the index 3 subgroup

D(p) :=
{
a3 | a ∈ Cns(p)

}
∪
{(

1 0
0 −1

)
· a3 | a ∈ Cns(p)

}
of Nns(p).

Moreover, the last case can only occur if p ≡ 2 (mod 3).

Corollary 3.16. Let E/Q be a non-CM elliptic curve and p 6∈ T0 be a prime.
The following hold:

(1) The image Hp of the modulo-p representation attached to E contains

{λ Id | λ ∈ F×p }.

(2) Suppose Hp 6= GL2(Fp) and let gp ∈ GL2(Fp) be an element that nor-
malises Hp. Then there is h ∈ GL2(Fp) such that h−1gph ∈ Nns(p) and
h−1Hph ⊆ Nns(p).

Proof. (1) We apply Theorem 3.15. If Hp is either GL2(Fp) or conjugate to
Nns(p), the conclusion follows trivially, since Cns(p) contains all scalars. In
case (iii) of Theorem 3.15, Hp contains the cubes of the scalars, hence all
scalars since p ≡ 2 (mod 3).

(2) We only have to consider cases (ii) and (iii) of Theorem 3.15. Up to conjuga-
tion, we may assume that Hp ⊆ Nns(p) and the claim becomes gp ∈ Nns(p).

In case (ii) it suffices to check that the normaliser of Nns(p) is Nns(p) it-
self. This holds because Cns(p), being the only cyclic subgroup of index 2 of
Nns(p), is characteristic in Nns(p); hence any element that normalises Nns(p)
normalises Cns(p) as well, so it must be in Nns(p). In case (iii), one similarly
sees that {a3 | a ∈ Cns(p)} is characteristic in D(p) and that its normaliser
is Nns(p), and the conclusion follows as above.
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Lemma 3.17. Let ` be a prime number and let H be a closed subgroup of
GL2(Z`). Denote by H` the reduction of H modulo ` and suppose that H` con-
tains a scalar matrix λ Id. Then H contains a scalar matrix λ Id for some λ ∈ Z×`
with λ ≡ λ (mod `).

Proof. Let h ∈ H be any element that is congruent modulo ` to λ Id. Let λ ∈ Z×`
be the Teichmüller lift of λ (that is, λ` = λ and λ ≡ λ (mod `)) and write h =
λh1, where h1 = Id +`A for some A ∈ Mat2(Z`). The sequence h`

n

= λ`
n

h`
n

1 =

λh`
n

1 converges to λ Id, because for every n we have h`
n

1 = (Id +`A)
`n ≡ Id

(mod `n). As H is closed, the limit of this sequence, namely λ Id, also belongs
to H as claimed.

We conclude this section with a group-theoretic lemma. Recall from Section 2
that we say that a finite simple group S occurs inG if S is isomorphic to a quotient
of a subgroup of G.

Lemma 3.18 (Serre, [Ser97, IV-25]). Let p be a prime and let H be a subgroup
of GL2(Fp). Let S be a non-abelian simple group that occurs in H. Then S
is isomorphic either to A5 or to PSL2(Fp); the latter case is only possible if H
contains SL2(Fp).

4 The `-adic failure

The aim of this section is to study the `-adic failure A`(N) for a fixed prime `.
The divisibility properties of α in the group E(K) play a crucial role in the study
of this quantity, so we begin with the following definition:

Definition 4.1. Let α ∈ E(K) and let n be a positive integer. We say that α
is n-indivisible over K if there is no β ∈ E(K) such that nβ = α; otherwise we
say that α is n-divisible or divisible by n over K. Let ` be a prime number. We
say that α is strongly `-indivisible over K if the point α+ T is `-indivisible over
K for every torsion point T ∈ E(K) of `-power order. Finally, we say that α is
strongly indivisible over K if its image in the free abelian group E(K)/E(K)tors

is not divisible by any n > 1, or equivalently if α is strongly `-indivisible over K
for every prime `.

Our aim is to give an analogue of the following result, which bounds the
index of the image of the Kummer representation, in those cases when the torsion
representation is not surjective.

Theorem 4.2 (Jones-Rouse, [JR10, Theorem 5.2]). Assume that the `-adic tor-
sion representation τ`∞ : Gal(K`∞ | K)→ GL2(Z`) is surjective. Assume that α
is `-indivisible in E(K) and, if ` = 2, assume that K2,2 6⊆ K4. Then the `-adic
Kummer representation κ`∞ : Gal(K`∞,`∞ | K`∞)→ Z2

` is surjective.
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4.1 An exact sequence

We shall need to understand the divisibility properties of α not only over the
base field K, but also over the division fields of E. Thus we turn to studying
how the divisibility of the point α by powers of ` changes when passing to a field
extension. Our main tool will be the following Lemma.

Lemma 4.3. Let L be a finite Galois extension of K with Galois group G. For
every m > 1 there is an exact sequence of abelian groups

0→ mE(K)→ E(K) ∩mE(L)→ H1(G,E[m](L)),

where the injective map on the left is the natural inclusion.

Proof. Consider the short exact sequence of G-modules

0→ E[m](L)→ E(L)
[m]−−→ mE(L)→ 0

and the beginning of the long exact sequence in cohomology,

0→ (E[m](L))G → (E(L))G → (mE(L))G → H1(G,E[m](L)).

Noticing that

(E[m](L))G = E[m](K), (E(L))G = E(K), (mE(L))G = E(K) ∩mE(L)

and that

E(K)/E[m](K) ∼= mE(K)

the lemma follows.

The quotient (E(K) ∩mE(L)) /mE(K) gives a measure of “how many” K-
points of E are m-divisible in E(L) but not m-divisible in E(K). We shall
often use this Lemma in the special case of m = `n being a power of `: in this
context, the quotient (E(K) ∩ `nE(L)) /`nE(K) is a subgroup of E(K)/`nE(K),
so its exponent divides `n. We conclude that if ` - #H1(G,E[`n](L)) then no `-
indivisible K-point of E can become `-divisible in E(L). This applies in particular
when ` - #G, see [NSW13, Proposition 1.6.2].

4.2 Divisibility in the `-torsion field

As an example, we investigate the situation of Lemma 4.3 with m = ` and
L = K`. In this case the exact sequence becomes

0→ `E(K)→ E(K) ∩ `E(K`)→ H1(H`, E[`]).

The following Lemma can also be found in [LW15, Section 3].



30 CHAPTER 1. KUMMER THEORY FOR ELLIPTIC CURVES

Lemma 4.4. The cohomology group H1(H`, E[`]) is either trivial or cyclic of
order `. When ` = 2 it is always trivial.

Proof. Since `E[`] = 0, we have `H1(H`, E[`]) = 0. It follows from [Ser13, Theo-
rem IX.4] that we have an injective map H1(H`, E[`])→ H1(S`, E[`]), where S` is
an `-Sylow subgroup of H`. This is either trivial, in which case H1(H`, E[`]) = 0,
or cyclic of order `. In the latter case, up to a change of basis for E[`] we can

assume that S` is generated by σ =

(
1 1
0 1

)
. One can conclude the proof

by explicitly computing the cohomology of the cyclic group 〈σ〉 as in [LW15,
Lemma 7].

In [LW15] the authors classify the cases when H1(H`, E[`]) 6= 0 for K = Q and
they give rather complete results in case K is a number field with K∩Q(ζ`) = Q.
In particular, it turns out that, for K = Q, the group H1(H`, E[`]) can be non-
trivial only when ` = 3, 5, 11, and only when additional conditions are satisfied
(see [LW15, Theorem 1]).

The next Example shows that for K = Q a point in E(Q) that is strongly
3-indivisible may become 3-divisible over the 3-torsion field.

Example 4.5. Consider the elliptic curve E over Q given by the equation

y2 + y = x3 − 216x− 1861

with Cremona label 17739g1 (see [LMF22, label 17739g1]). We have E(Q) ∼=
Z⊕Z/3Z, with a generator of the free part given by P =

(
23769
400 , 3529853

8000

)
, which

is therefore a strongly 3-indivisible point. Since the Q-isogeny class of E consists
of exactly two curves, by [LW15, Theorem 1] we have H1(H3, E[3]) = Z/3Z. The
3-torsion field is given by Q(z), where z is any root of x6 + 3. Over this field the
point

Q =

(
803

400
z4 − 416

400
z2 +

507

400
,

89133

8000
z4 − 199071

8000
z2 − 95323

8000

)
∈ E(Q(z))

is such that 3Q = P .
A computer search performed with the help of the LMFDB [LMF22] and of

Pari/GP [The19] shows that there are only 20 elliptic curves with conductor less
than 4× 105 satisfying this property for ` = 3, none of which has conductor less
than 17739.

4.3 Divisibility in the `-adic torsion tower

As we have seen in the previous Section, the `-divisibility of a point can increase
when we move along the `-adic torsion field tower. We would now like to give a
bound on the extent of this phenomenon.

http://www.lmfdb.org/EllipticCurve/Q/17739g1/
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Our purpose in this section is to prove Proposition 4.10 (essentially an appli-
cation of Sah’s lemma, see [Sah68, Proposition 2.7(b)] and [BR03, Lemma A.2]),
which will allow us to give such a bound in terms of the image of the torsion
representation.

Lemma 4.6. Let L be a finite Galois extension of K containing K`n and let
G := Gal(L|K). Assume that `kH1(G,E[`n]) = 0. If α ∈ E(K) is strongly
`-indivisible in E(K), then α is not `k+1-divisible in E(L).

Proof. Applying Lemma 4.3 with M = `k+1 we see that the quotient

E(K) ∩ `k+1E(L)

`k+1E(K)

embeds inH1(G,E[`n]), so it is killed by `k. It follows that `k
(
E(K) ∩ `k+1E(L)

)
is contained in `k+1E(K). Assuming by contradiction that α ∈ `k+1E(L) we get
`kα = `k+1β for some β ∈ E(K). But then T = `β − α ∈ E[`k](K) is such that
α+T ∈ `E(K), contradicting our assumption that α is strongly `-indivisible.

Lemma 4.7. Assume that for some n0 > 1 we have (1+`n0) Id ∈ H`n (if n 6 n0

the condition is automatically satisfied). Then the exponent of H1(H`n , E[`k])
divides `n0 for every k 6 n.

Proof. Let λ = (1 + `n0) Id and let ϕ : H`n → E[`k] be a cocycle. Using that λ
is central in H`n and that ϕ is a cocycle, for any g ∈ H`n we have

gϕ(λ) + ϕ(g) = ϕ(gλ) = ϕ(λg) = λϕ(g) + ϕ(λ),

so

`n0ϕ(g) = (λ− 1)ϕ(g) = gϕ(λ)− ϕ(λ),

that is, `n0ϕ is a coboundary. This proves that `n0H1(H`n , E[`k]) = 0 as claimed.

Lemma 4.8. Assume that E does not have complex multiplication and let n` > 1
be a parameter of maximal growth for the `-adic torsion representation. Then for
every n > n` and for every g ∈ Mat2(Z`) we have that (Id + `n`g) mod `n is an
element of H`n .

Proof. We prove this by induction. For n = n` the statement is trivial, so
suppose (Id +`n`g) mod `n belongs to H`n for some n > n`. Since the map
H`n+1 → H`n is surjective we can lift this element to an element of the form
Id +`n`g + `ng′ ∈ H`n+1 , where g′ ∈ Mat2(F`). Since

ker(H`n+1 → H`n) = {Id +`nh | h ∈ Mat2(F`)}
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we have that Id−`ng′ is in H`n+1 , hence H`n+1 contains the product

(Id−`ng′)(Id +`n`g + `ng′) ≡ (Id +`n`g) (mod `n+1),

where we use the fact that `2n(g′)2 = `n+n`g′g = 0 since we are working mod-
ulo `n+1.

In the special case g = Id, the same result also holds for elliptic curves with
complex multiplication:

Lemma 4.9. Let E be an arbitrary elliptic curve and let n` > 1 be a parameter
of maximal growth for E (in particular, n` > 2 if ` = 2). Then for every n > n`
we have (1 + `n`) Id ∈ H`n .

Proof. In the light of the previous lemma we may assume that E has complex
multiplication, so that the image of the torsion representation is contained in the
normaliser of a Cartan subgroup of GL2(Z`). The equality #H`n+1 = `2#H`n

for n > n` is equivalent to

ker (H`n+1 → H`n) = Id +`nT,

where both sides are seen as subsets of {M ∈ Mat2(Z/`n+1Z) : M ≡ Id (mod `n)},
and T is the tangent space to the image of the Galois representation as introduced
in [LP21, Definition 9] and further studied in [LP17, Definition 18]. We proceed
by induction, the base case n = n` being trivial. By surjectivity of H`n+1 → H`n

and the inductive hypothesis, we know that H`n+1 contains an element reducing
to (1+`n`) Id modulo `n, that is, an element of the formMn+1 := (1+`n`) Id +`nt.
Here t is an element of T: to see this, notice that Mn+1 is congruent to the identity
modulo `n` , so it cannot lie in the non-trivial coset of the normaliser of a Cartan
subgroup ([LP17, Theorem 40]), and therefore belongs to the Cartan subgroup

itself. But then Mn+1 is of the form

(
x δy
y x+ γy

)
for appropriate parameters

(γ, δ), hence

t =
1

`n

(
x− 1− `n` δy

y (x− 1− `n`) + γy

)
∈ Mat2(F`)

belongs to T by the explicit description given in [LP17, Definition 18]. The
equality ker (H`n+1 → H`n) = Id +`nT implies that H`n+1 also contains Id−`nt,
so it contains

((1 + `n`) Id +`nt)(Id−`nt) ≡ Id−`2nt2 + `n` Id−`n+n`t

≡ (1 + `n`) Id (mod `n+1)

as claimed.
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Proposition 4.10. Assume that α is strongly `-indivisible in E(K). Let n` be
a parameter of maximal growth for the `-adic torsion representation. Then for
every n the point α is not `n`+1-divisible in K`n ; equivalently, α is not `n`+1-
divisible in K`∞ .

Proof. By Lemma 4.9 the group H`n contains (1 + `n`) Id, so by Lemma 4.7 the
exponent of the group H1(H`n , E[`n]) divides `n` . We conclude by Lemma 4.6.

4.4 The `-adic failure is bounded

In this section we establish some general results that will form the basis of all
subsequent arguments (in particular Lemma 4.11 and Proposition 4.12) and use
them to show that the `-adic failure A`(N) can be effectively bounded (Theo-
rem 4.17).

Lemma 4.11. Assume that for some d > 0 the point α ∈ E(K) is not `d+1-
divisible over K`∞ . Then V`∞ contains a vector of valuation at most d. Similarly,
if α ∈ E(K) is not `d+1-divisible over K∞ then W`∞ contains a vector of valua-
tion at most d.

Proof. Assume by contradiction that every element of V`∞ has valuation at least
d+1. Then the image of V`∞ in E[`d+1] = T`(E)/`d+1T`(E) is zero. As this image
is exactly Gal(K`∞,`d+1 | K`∞), we obtain K`∞,`d+1 = K`∞ , so α is `d+1-divisible
in K`∞ , a contradiction.

The second part can be proved in exactly the same way.

The following group-theoretic Proposition will be applied in this section and
in Section 7. In all of our applications the group H will be the image of the `-adic
torsion representation associated with some elliptic curve.

Proposition 4.12. Let ` be a prime number, d be a positive integer, H be a
closed subgroup of GL2(Z`), and A = Z`[H] be the sub-Z`-algebra of Mat2(Z`)
topologically generated by the elements of H. Let V ⊆ Z2

` be an A-submodule of
Z2
` , and suppose that V contains at least one vector of `-adic valuation at most d.

(1) Suppose that H contains {M ∈ Mat2(Z`) : M ≡ Id (mod `n)} for some
n > 1. Then V contains `d+nZ2

` .

(2) Suppose that the reduction of H modulo ` acts irreducibly on F2
` . Then V

contains `dZ2
` .

(3) Let C be a Cartan subgroup of GL2(Z`) with parameters (γ, δ) and let N be
its normaliser. Suppose that H is an open subgroup of N not contained in
C, and that H contains {M ∈ C : M ≡ Id (mod `n)} for some n > 1. Then
V contains `3n+d+v`(4δ)Z2

` .
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Proof. Both the assumptions and the conclusions of the Proposition are invariant
under changes of basis in Z2

` , so we may assume that v = `de1 is in V , where

e1 =

(
1
0

)
.

(1) It is clear that A contains `n Mat2(Z`), so we have

V ⊇ A · v ⊇ `n Mat2(Z`) · v = `n+d Mat2(Z`) · e1 = `n+dZ2
` .

(2) Let H` denote the reduction of H modulo `. The condition that H` acts

irreducibly on F2
` implies that there exists M ∈ F`[H`] such that Me1 ≡

(
0
1

)
(mod `). Fix a lift M ∈ A of M , which exists because the natural reduction
map A = Z`[H]→ F`[H`] is clearly surjective. Then Mv = `dMe1 is a vector
whose second coordinate has valuation exactly d and whose first coordinate
has valuation strictly larger than d. It is then immediate to see that v and
Mv, that are contained in V , generate `dZ2

` .

(3) It is enough to show that A contains `3n+v`(4δ) Mat2(Z`), and the conclusion
follows as in (1) above. Suppose first that γ = 0, and let

M0 =

(
x0 −δy0

y0 −x0

)
∈ H \ C and M1 =

(
1 + `nx0 δ`ny0

`ny0 1 + `nx0

)
∈ H.

The existence and the form of such matrices follow from the assumptions
and from the description of Cartan subgroups and their normaliser given in
Definition 2.8 and Lemma 2.10. Then A contains M2 = M1 − Id +`nM0 =

2`n
(
x0 0
y0 0

)
. Let moreover M3 = `n

(
0 δ
1 0

)
, which is in A since it can be

written as

(
1 `nδ
`n 1

)
− Id, where both matrices are in H by assumption.

Then we have

4`2n
(
x2

0 − δy2
0 0

0 0

)
= (M2 − 2y0M3) ·M2 ∈ A

and x2
0 − δy2

0 = −detM0 ∈ Z×` . It follows that A contains 4`2n
(

1 0
0 0

)
, and

since Id ∈ A we have that all diagonal matrices of valuation at least 2n+v`(4)
are in A, which therefore also contains(

0 0
`3n+v`(4) 0

)
= M3

(
`2n+v`(4) 0

0 0

)
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and (
0 `3n+v`(4)δ
0 0

)
= M3

(
0 0
0 `2n+v`(4)

)
.

Together with the diagonal matrices found above, these elements clearly gen-
erate the submodule `3n+v`(4δ) Mat2(Z`), and we are done. If γ 6= 0, by
Remark 2.9 we may assume γ = 1 and ` = 2. In this case let

M0 =

(
x0 + y0 δy0 + x0 + y0

−y0 −x0 − y0

)
∈ H \ C

and

M1 = Id +`n
(
x0 δy0

y0 x0 + y0

)
∈ H.

Then A contains M2 = M1 − Id +`nM0 = `n
(

2x0 + y0 2δy0 + x0 + y0

0 0

)
.

Let moreover M3 = `n
(
−1 δ
1 0

)
∈ A. Then we have

M2(δM2 − (2δy0 + x0 + y0)M3) = −`2n det(M0)(1 + 4δ)

(
1 0
0 0

)
∈ A,

and using the fact that det(M0) ∈ Z×` (since M0 ∈ H ⊆ GL2(Z`)) we obtain
that A contains all diagonal matrices of valuation at least 2n. We can then
conclude as before.

Proposition 4.13. Assume that α is strongly `-indivisible in E(K) and let n`
be a parameter of maximal growth for the `-adic torsion representation.

(1) Assume that E does not have complex multiplication. Then for every k > 1
we have E[`k] ⊆ V`k+2n` .

(2) Assume that E has complex multiplication by A := EndK(E), and that K
does not contain the imaginary quadratic field A⊗Z Q. Let (γ, δ) be param-
eters for the Cartan subgroup of GL2(Z`) corresponding to A. Then for all
k > 1 we have E[`k] ⊆ V`k+4n`+v`(4δ) .

Proof. By Remark 2.6, in order to show (1) it is enough to prove that `2n`T`(E)
is contained in V`∞ . To see that this holds, notice that by Lemma 4.11 and
Proposition 4.10 there is an element of valuation at most n` in V`∞ . Now we just
need to apply Proposition 4.12(1) with H = H`∞ , V = V`∞ and d = n = n`.
Part (2) can be proved in the same way using Proposition 4.12(3).
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Proposition 4.13 is the main ingredient for the proof of Theorem 4.17 below,
and in fact it implies it directly in case the point α is strongly indivisible. To
finish the proof one also needs to relate the degrees of the Kummer extensions
for divisible and indivisible points, which is accomplished in Lemma 4.16.

In §6 we will show that a näıve analogue of Proposition 4.13 does not hold in
case E has complex multiplication defined over K.

Remark 4.14. Write α = `dβ + Th, where β ∈ E(K) is strongly `-indivisible
and Th ∈ E[`h](K) is a point of order `h, for some h, d > 0. Notice that it is
always possible to do so: first, let β ∈ E(K) and d be such that α = `dβ + T
for some T ∈ E(K) of order a power of `, with d maximal. Assume then by
contradiction that β is not strongly `-indivisible. This means that there are
γ, S ∈ E(K) with S of order a power of ` such that β = `γ + S. But then
α = `d(`γ + S) + T = `d+1γ + (`dS + T ), contradicting the maximality of d.

Remark 4.15. Let ĥ be the canonical (Néron-Tate) height on E, as described in
[Sil09, Section VIII.9]. Following [Pet06], it is possible to bound the divisibility

parameters d and h in terms of ĥ(α), the degree of K over Q, the discriminant
∆E of E over K and the Szpiro ratio

σ =

{
1 if E has everywhere good reduction
log |NK/Q(∆E)|
log |NK/Q(NE)| otherwise

where NE denotes the conductor of E over K. In fact, [Pet06, Theorem 1] gives
the bound

h 6 log`
⌊
c1[K : Q]σ2 log

(
c2[K : Q]σ2

)⌋
where c1 = 134861 and c2 = 104613. Alternatively, one could also use the uniform
boundedness of torsion [Mer96, Par96] to give an upper bound on h that only
depends on [K : Q].

For the parameter d we can reason as follows. For α = `dβ + Th, by [Sil09,
Theorem 9.3] we have

ĥ(α) = ĥ(`dβ + Th) = ĥ(`dβ) = `2dĥ(β)

so we get d 6
1

2 log `
log

(
ĥ(α)

ĥ(β)

)
. Now in view of [Pet06, Theorem 2] for any

non-torsion point β ∈ E(K) we have

ĥ(β) > B :=
log |NK/Q(∆E)|

1015[K : Q]3σ6 log2(c2[K : Q]σ2)
,
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where again c2 = 104613. We thus obtain the effective bound

d 6
1

2 log `
log

(
ĥ(α)

B

)
.

Lemma 4.16. Let α, β ∈ E(K) be points of infinite order such that α = dβ+Th
for positive integers d, h and some Th ∈ E(K)[h]. If N > 1 is a multiple of d
then [

KNh

((
N

d

)−1

β

)
: KNh

]
divides

[
KN

(
N−1α

)
: KN

]
,

thus

N2

[KN (N−1α) : KN ]
divides d2 ·

(
N
d

)2[
KNh

((
N
d

)−1
β
)

: KNh

] .
Proof. Notice that

KNh

((
N

d

)−1

β

)
= KNh

(
N−1(dβ)

)
KNh

(
N−1(dβ + Th)

)
= KNh

(
N−1α

)
and thus [

KNh

((
N

d

)−1

β

)
: KNh

]
=
[
KNh(N−1α) : KNh

]
.

It is clear that
[
KNh(N−1α) : KNh

]
divides

[
KN (N−1α) : KN

]
, so we conclude.

Theorem 4.17. Let ` be a prime and assume that EndK(E) = Z (i.e. either
E does not have CM, or it has CM but the complex multiplication is not defined
over K). There is an effectively computable constant a`, depending only on α and
on the `-adic torsion representation associated to E, such that A`(N) divides `a`

for all positive integers N .
Moreover, a` is zero for every odd prime ` such that α is `-indivisible and for

which the `-adic torsion representation associated with E is maximal (see Defi-
nition 3.2). For the finitely many remaining primes ` we can take a` as follows:
let n` be a parameter of maximal growth for the `-adic torsion representation and
let d be as in Remark 4.14. If E has CM over K, let (γ, δ) be parameters for the
Cartan subgroup of GL2(Z`) corresponding to EndK(E). Then:

(1) a` = 4n` + 2d if E does not have CM over K;
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(2) a` = 8n` + 2v`(4δ) + 2d if E has CM over K.

Proof. Let α = `dβ + Th as described above. Notice that if α is strongly `-
indivisible we have d = 0, and the conclusion follows from Proposition 4.13. If
the `-adic torsion representation is maximal, the fact that a` is zero in the cases
stated follows from [JR10, Theorem 5.2 and Theorem 5.8].

In the general case, let n = v`(N) and notice that the claim is trivial for
n 6 d, so we may assume n > d. By Lemma 4.16, we have that

`2n

[K`n+h(`−nα) : K`n+h ]
divides `2d

`2(n−d)

[K`n+h(`−(n−d)β) : K`n+h ]
,

so in view of Remark 2.1 we are reduced to proving the statement for β instead
of α. Since β is strongly `-indivisible, we can conclude as stated at the beginning
of the proof.

The fact that a` is effective follows from the fact that one can effectively
compute a parameter of maximal growth for the `-adic torsion representation
(Remark 3.8), an upper bound for the value of d (Remark 4.15), and the ring
EndK(E) ([Ach05], [CMSV19], [Lom19]).

Remark 4.18. Recent results by Cerchia and Rouse [CR21], obtained indepen-
dently from those in the present paper, imply that the better bound a` = 3n`+2d
holds in the non-CM case.

5 The adelic failure

In this section we study the adelic failure B`(N), that is, the degree of the
intersection K`n,`n ∩KN over K`n . Notice that this intersection is a finite Galois
extension of K`n .

5.1 Intersection of torsion fields in the non-CM case

We first aim to establish certain properties of the intersections of different torsion
fields of E, assuming for this subsection that E does not have complex multi-
plication over K. Our main tool is the following result, due to Campagna and
Stevenhagen [CS19, Theorem 3.4]:

Theorem 5.1 (Campagna-Stevenhagen). Assume that E does not have complex
multiplication. Let S be the set consisting of the primes ` satisfying one or more
of the following three conditions:

(i) ` | 30 disc(K | Q);
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(ii) E has bad reduction at some prime of K above `;

(iii) the modulo ` torsion representation is not surjective.

For every ` 6∈ S we have K`n ∩KM = K for all M,n > 1 with ` -M .

Remark 5.2. The finite set S appearing in Theorem 5.1 can be computed explic-
itly. In fact, it is well known that one can compute the discriminant of K and the
set of primes of bad reduction of E. An algorithm to compute the set of primes
for which the mod ` representation is not surjective is described in [Zyw15b].

An immediate consequence of the Theorem above is the following corollary,
which gives a slightly more precise version of [Ser97, §3.4, Lemma 6].

Corollary 5.3. Assume that E does not have complex multiplication and let S
be as in Theorem 5.1. Let M be a positive integer and write M = M1M2, where

M1 =
∏
p 6∈S

pep p prime, ep > 0,

M2 =
∏
q∈S

qeq q prime, eq > 0.

Then we have

Gal(KM | K) ∼= GL2 (Z/M1Z)×Gal (KM2
| K) .

Remark 5.4. Let K̃ be the compositum of the fields Kp for all p ∈ S, where S
is as in Theorem 5.1. In the following section it will be important to notice that
S is stable under base change to K̃. More precisely, let S̃ be the set of all primes
` that satisfy one of the following:

(i') ` | 30 disc(K̃ | Q);

(ii') E has bad reduction at some prime of K̃ above `;

(iii') the modulo ` torsion representation attached to E/K̃ is not surjective.

Then S̃ = S.
Indeed, the inclusion S̃ ⊇ S is easy to see: clearly conditions (i) and (iii)

imply (i') and (iii') respectively, so we only need to discuss (ii). Let p be a prime
of K (of characteristic `) at which E has bad reduction, and let q be a prime of
K̃ lying over p. We need to show that ` ∈ S̃. If E has bad reduction at q we
have ` ∈ S̃ by (ii'), while if E has good reduction at q then p ramifies in K̃ by
[Sil09, Proposition VII.5.4 (a)], so we have ` | disc(K̃ | Q) and ` is in S̃ by (i').
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Conversely, let ` ∈ S̃. If (ii') holds, then clearly also (ii) holds, and ` is
in S. Suppose that (i') holds. If ` divides 30, then it is in S by (1). Other-
wise ` divides disc(K̃ | Q), which by [Ser13, III.§4, Proposition 8] is equal to

disc(K | Q)[K̃:K]NK/Q disc(K̃ | K); if ` divides disc(K | Q), then it is in S

by (1), while if it divides disc(K̃ | K) then we have ` ∈ S by [Sil09, Proposi-
tion VIII.1.5(b)]. We may therefore assume that (i') and (ii') do not hold. Since
` is in S̃, (iii') must hold, that is, the modulo-` torsion representation attached
to E/K̃ is not surjective. We claim that the same is true for E/K. Indeed, if ` is
in S this is true by definition, while if ` 6∈ S the previous corollary shows that K`

is linearly disjoint from K̃, so the images of the modulo-` representations over K
and over K̃ coincide.

5.2 The adelic failure is bounded

We now go back to the general case of E possibly admitting complex multiplica-
tion.

Fix an integer N > 1 and a prime number ` dividing N . Write N = `nR
with ` - R and recall that the adelic failure B`(N) is defined to be the degree
[K`n,`n ∩KN : K`n ]. In this section we study this failure for N = `nR, starting
with a simple Lemma in Galois theory.

Lemma 5.5. Let L1, L2 and L3 be field extensions of K, with L1 ⊆ L2 and L2

Galois over K. Then the compositum L1(L2 ∩ L3) is equal to the intersection
L2 ∩ (L1L3).

Proof. Let G = Gal(K | K) and, for i = 1, 2, 3, let Gi := Gal(K | Li). The
claim is equivalent to G1 ∩ 〈G2, G3〉 = 〈G2, G1 ∩ G3〉, where the inclusion “⊇”
is obvious. Since L2 | K is Galois, the Galois group G2 is normal in G, so
we have 〈G2, G3〉 = G2 · G3 and 〈G2, G1 ∩ G3〉 = G2 · (G1 ∩ G3). Let then
g ∈ G1 ∩ (G2 · G3), so that there are g1 ∈ G1, g2 ∈ G2 and g3 ∈ G3 such that
g = g1 = g2g3. But then g−1

2 g1 = g3 ∈ G3 and, since G2 ⊆ G1, also g−1
2 g1 ∈ G1,

so that g = g2(g−1
2 g1) ∈ G2 · (G1 ∩G3).

We now establish some properties of certain subfields of K`nR,`n .

Lemma 5.6. Setting L := K`n,`n ∩ KN , F := L ∩ KR = K`n,`n ∩ KR, and
T := F ∩K`n = K`n ∩KR we have:

(1) The compositum FK`n is L.

(2) Gal(F | T ) ∼= Gal(L | K`n); in particular, Gal(F | T ) is an abelian `-group.

(3) F is the intersection of the maximal abelian extension of T contained in
K`n,`n and the maximal abelian extension of T contained in KR.
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K`nR,`n

K`n,`n K`nR

L := K`n,`n ∩K`nR

K`n KR

F := K`n,`n ∩KR

T := K`n ∩KR

K

Figure 1.1: The situation described in Lemma 5.6 and Proposition 5.7.

Proof. (1) By Lemma 5.5 we have FK`n = K`n(K`n,`n ∩KR) = K`n,`n ∩K`nR =
L. Part (2) follows from (1) and standard Galois theory. For (3), notice that F is
abelian over T by (2), so it must be contained in the maximal abelian extension of
T contained in K`n,`n and in the maximal abelian extension of T contained in KR.
On the other hand, F cannot be smaller than the intersection of these abelian
extensions, because by definition it is the intersection of K`n,`n and KR.

Proposition 5.7. The adelic failure B`(N) is equal to [F : T ], where F =
K`n,`n ∩KR and T = K`n ∩KR.

Proof. Let as above L = K`n,`n ∩K`nR. We have

Gal(K`n,`n |L) ∼= Gal(K`nR,`n |K`nR),
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so we get

[K`n,`n : K`n ] = [K`n,`n : L][L : K`n ] = [K`nR,`n : K`nR][L : K`n ]

and we conclude by Lemma 5.6(b).

In what follows we will need to work over a certain extension K̃ of K; this
extension will depend on the prime `. More precisely, we give the following
definition.

Definition 5.8. Let K̃ be the finite extension of K defined as follows:

(i) If E has complex multiplication, we take K̃ to be the compositum of K with
the CM field of E. This is an at most quadratic extension of K. Notice
that in this case by [LR18, Lemma 2.2] we have K̃n = Kn for every n > 3.

(ii) If E does not have CM and ` is not one of the primes in the set S of
Theorem 5.1, we just let K̃ = K. Notice that this happens for all but
finitely many primes `.

(iii) If E does not have CM and ` is one of the primes in the set S of Theorem 5.1,
we let K̃ be the compositum of all the Kp for p ∈ S. Notice that in this

case K̃` = K̃.

We shall use the notation K̃M (respectively K̃M,N ) for the torsion (respec-

tively Kummer) extensions of K̃. We shall also write

H̃`n := Im
(
τ`n : Gal(K | K̃)→ Aut(E[`n])

)
∼= Gal

(
K̃`n | K̃

)
,

Ṽ`n := Im
(
κ`n : Gal(K | K̃`n)→ E[`n]

)
∼= Gal

(
K̃`n,`n | K̃`n

)
for the images of the `n-torsion representation and of the (`n, `n)-Kummer map
attached to E/K̃. Finally, we let ñ` be the minimal parameter of maximal growth
for the `-adic torsion representation over K̃. Notice that, thanks to Lemma 3.10,
we have ñ` 6 n` + v`([K̃ : K]).

Proposition 5.9. The extension F ′ := K̃`n,`n ∩ K̃R is abelian over K̃.

Proof. This is well known if E has complex multiplication because then K̃R is
itself abelian over K̃, see for example [Sil94, Theorem II.2.3]. In case E does not
have complex multiplication and ` is not in the set S of Theorem 5.1, this follows



5. THE ADELIC FAILURE 43

easily by considering the diagram

K̃`n,`n

K̃`nF
′

K̃`n F ′

K̃

In fact, since K̃`n ∩F ′ = K̃ by Theorem 5.1 (notice that in this case K̃ = K), we
have that Gal(F ′ | K̃) ∼= Gal(K̃`nF

′ | K̃`n) is a quotient of Ṽ`n , hence abelian.
Thus we can assume that E does not have CM and that ` is in the set S of
Theorem 5.1.

Notice that F ′ is a Galois extension of K̃ with degree a power of `, since the
same is true for K̃`n,`n | K̃ and F ′ ⊆ K̃`n,`n . Letting r denote the radical of R,

the degree of [F ′ : F ′ ∩ K̃r], which is still a power of `, divides [K̃R : K̃r], which
is a product of primes dividing R. So since ` - R we obtain [F ′ : F ′ ∩ K̃r] = 1,
that is K̃`n,`n ∩ K̃R = K̃`n,`n ∩ K̃r, and we may assume that R is squarefree.
Write now R = R1R2, where R1 is the product of the prime factors of R that
are not in S and R2 is the product of the prime factors of R that belong to S.
By definition of K̃ we have K̃R = K̃R1 , so we may further assume that no prime
p ∈ S divides R. By Corollary 5.3 we then have Gal(K̃R | K̃) ∼= GL2(Z/RZ).

Since F ′ ⊆ K̃R, there must be a normal subgroup D = Gal(K̃R | F ′) E
GL2(Z/RZ) of index a power of `. In order to conclude we just need to show
thatD contains the subgroup SL2(Z/RZ), for then Gal(F ′ | K̃) ∼= GL2(Z/RZ)/D
is abelian.

Write SL2(Z/RZ) ∼=
∏
p|R SL2(Fp) and consider the intersection Dp := D ∩

SL2(Fp), which is a normal subgroup of SL2(Fp). Here we identify SL2(Fp) with
the corresponding direct factor of SL2(Z/RZ). The quotient SL2(Fp)/Dp cannot
have order a power of ` unless it is trivial (recall that in our case p > 5), so
we deduce that D ⊇ SL2(Fp). As this is true for every p | R, we have D ⊇
SL2(Z/RZ), and we are done.

In what follows, whenever A is an abelian group and Q is a group acting on
A, we denote by [A,Q] the subgroup of A generated by elements of the form
gv − v for v ∈ A and g ∈ Q. For example, we will consider the case A = Ṽ`n and
Q = H̃`n .



44 CHAPTER 1. KUMMER THEORY FOR ELLIPTIC CURVES

Lemma 5.10. Let

1→ A→ G→ Q→ 1

be a short exact sequence of groups, with A abelian, so that Q acts naturally on
A. Let Gab and Qab be the maximal abelian quotients of G and Q respectively.
Then A/[A,Q] surjects onto ker(Gab → Qab).

Proof. We have an injective map of short exact sequences

1 A ∩G′ G′ Q′ 1

1 A G Q 1

from which we get the exact sequence

1→ A

A ∩G′
→ Gab → Qab → 1

and since [A,Q] ⊆ A ∩ G′ we conclude that A/[A,Q] surjects onto A/A ∩ G′ =
ker(Gab → Qab).

Proposition 5.11. The adelic failure B`(N) divides [K̃ : K] ·# Ṽ`n

[Ṽ`n , H̃`n ]
.

Proof. Let J1 and J2 be the maximal abelian extensions of K̃ contained in K̃`n

and K̃`n,`n respectively. Then we have Gal(J1 | K̃) = H̃ab
`n and Gal(J2 | K̃) =

G̃ab
`n , where G̃`n = Gal(K̃`n,`n | K̃). Notice that [J2 : J1] = #W , where W =

ker(G̃ab
`n → H̃ab

`n ) is a quotient of Ṽ`n/[Ṽ`n , H̃`n ] by Lemma 5.10. Let moreover

F ′ := K̃`n,`n ∩ K̃R and T ′ := K̃`n ∩ K̃R. By Proposition 5.9 we have F ′ ⊆ J2

and clearly also T ′ ⊆ J1 (indeed T ′ is abelian over K̃ since it is a sub-extension
of F ′). Consider the compositum J1F

′ inside J2.

J2

J1F
′

J1 F ′

K̃`
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It is easy to check that F ′ ∩ J1 = T ′, so we have that [F ′ : T ′] = [J1F
′ : J1]

divides [J2 : J1], which in turn divides Ṽ`n/[Ṽ`n , H̃`n ].

Now applying Proposition 5.7 with K̃ in place of K we get that

[K̃`n,`n : K̃`n ]

[K̃`nR,`n : K̃`nR]
divides [F ′ : T ′],

and using that [K̃`nR,`n : K̃`nR] divides [K`nR,`n : K`nR] it is easy to see that

[K`n,`n : K`n ]

[K`nR,`n : K`nR]
divides [K̃ : K] · [K̃`n,`n : K̃`n ]

[K̃`nR,`n : K̃`nR]
.

We conclude that

B`(N) =
[K`n,`n : K`n ]

[K`nR,`n : K`nR]
divides [K̃ : K] ·# Ṽ`n

[Ṽ`n , H̃`n ]
.

So we are left with giving an upper bound on the ratio #Ṽ`n/#[Ṽ`n , H̃`n ]:
this is achieved in the following Proposition.

Proposition 5.12. For every n, the order of Ṽ`n/[Ṽ`n , H̃`n ] divides `2ñ` , where
ñ` is the minimal parameter of maximal growth for the `-adic torsion represen-
tation of E/K̃.

Proof. By Lemma 4.9, the group H̃`n contains (1 + `ñ`) Id. This implies that for
every v ∈ Ṽ`n the group [Ṽ`n , H̃`n ] contains[

v, (1 + `ñ`) Id
]

= (1 + `ñ`) Id ·v − v = `ñ`v,

that is, [Ṽ`n , H̃`n ] contains `ñ` Ṽ`n . The claim now follows from the fact that Ṽ`n

is generated over Z/`nZ by at most two elements.

Lemma 5.13. Assume that ` > 5 is unramified in K | Q and that the image
of the mod ` torsion representation is GL2(F`) (so in particular E does not have
CM over K). Assume moreover that α is `-indivisible. Then V`n = [V`n , H`n ].

Proof. Since H ′`∞ is a closed subgroup of SL2(Z`) whose reduction modulo `
contains H ′` = GL2(F`)′ = SL2(F`), by Lemma 3.9 the group H`∞ contains
SL2(Z`). The assumption that ` is unramified in K implies that det(H`∞) = Z×` ,
which together with the inclusion SL2(Z`) ⊆ H`∞ implies H`∞ = GL2(Z`), and in
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particular H`n = GL2(Z/`nZ). By [JR10, Theorem 5.2] we have V`n = (Z/`nZ)2,
so it is enough to consider

g1 :=

(
1 1
0 1

)
∈ H`n , g2 :=

(
1 0
1 1

)
∈ H`n , v :=

(
1
1

)
∈ V`n

to conclude that(
1
0

)
= g1v − v ∈ [V`n , H`n ] and

(
0
1

)
= g2v − v ∈ [V`n , H`n ],

so that V`n ⊆ [V`n , H`n ].

Lemma 5.14. Let E/K be an elliptic curve such that EndK(E) is an order A
in the imaginary quadratic field Q(

√
−d). Let ` > 3 be a prime unramified both

in K and in Q(
√
−d), and suppose that E has good reduction at all places of K

of characteristic `. Then V`n = [V`n , H`n ] and Ṽ`n = [Ṽ`n , H̃`n ].

Proof. By [Lom17, Theorem 1.5], the image of the `-adic representations attached
to both E/K and E/K̃ contains (A ⊗ Z`)×, hence in particular it contains an
operator that acts as multiplication by 2 on E[`n] for every n. Let λ be such an
operator: then [V`n , H`n ] contains [V`n , λ] = {λv− v

∣∣ v ∈ V`n} = V`n as claimed.

The case of Ṽ`n is similar.

Theorem 5.15. Let ` be a prime. There is a constant b`, depending only on the
p-adic torsion representations associated with E for all the primes p, such that
B`(N) divides `b` for all positive integers N . Moreover,

(1) Suppose that E does not have complex multiplication over Q. Then b` is
zero whenever the following conditions all hold: α is `-indivisible, ` > 5 is
unramified in K | Q, the mod ` torsion representation is surjective, and E
has good reduction at all places of K of characteristic `.

(2) Suppose EndK(E) is an order in the imaginary quadratic field Q(
√
−d). Then

b` is zero whenever the following conditions all hold: ` > 3 is a prime un-
ramified both in K and in Q(

√
−d), and E has good reduction at all places

of K of characteristic `.

Both in the CM and non-CM cases, for the finitely many remaining primes `

we can take b` = 2n` + 3v`

(
[K̃ : K]

)
, where K̃ is as in Definition 5.8 and n` is

a parameter of maximal growth for the `-adic torsion part.

Proof. Let n be the `-adic valuation of N . By Proposition 5.11, the adelic failure

B`(N) divides [K̃ : K] ·# Ṽ`n

[Ṽ`n , H̃`n ]
.



6. A COUNTEREXAMPLE IN THE CM CASE 47

(1) Suppose that E does not have CM over Q, that α is `-indivisible, that ` > 5
is unramified in K | Q, that the mod ` torsion representation is surjective,
and that E has good reduction at all places of K of characteristic `. Under
these assumptions, the prime ` does not belong to the set S of Theorem 5.1,

so we have K̃ = K and [K̃ : K] · # Ṽ`n

[Ṽ`n , H̃`n ]
is simply #

V`n

[V`n , H`n ]
. We

conclude because this quotient is trivial by Lemma 5.13.

(2) In the CM case, the conclusion follows from Lemma 5.14 since ` - [K̃ : K] 6 2.

For all other primes, combining Proposition 5.11 and Proposition 5.12 we get
that B`(N) divides [K̃ : K] · `2ñ` and we conclude using Lemma 3.10.

Remark 5.16. The proof shows that the inequality

v`(B`(N)) 6 2n` + 3v`

(
[K̃ : K]

)
holds for every prime ` and for every rational point α ∈ E(K). In other words,
for a fixed prime ` the adelic failure can be bounded independently of the rational
point α.

We can finally prove our first Theorem from the introduction:

Proof of Theorem 1.1. By Remark 2.1, Theorem 1.1 follows from Theorems 4.17
and 5.15 by taking C :=

∏
` `
a`+b` .

Remark 5.17. Theorem 1.1 is completely effective, in the following sense: the
quantities a` and b` can be computed in terms of [K̃ : K], n`, and the divisibility
parameter d. The integer d can be bounded effectively in terms of the height
of α and of standard invariants of the elliptic curve, as showed in Remark 4.15.
The remaining quantities [K̃ : K] and n` can be bounded effectively in terms of
[K : Q] and of the height of E, as shown in [Lom15].

6 A counterexample in the CM case

We give an example showing that Proposition 4.13 does not hold in the CM
case when ` is split in the field of complex multiplication, and that in fact in
this case there can be no uniform lower bound on the image of the Kummer
representation depending only on the image of the torsion representation, even
when α is strongly `-indivisible.

Let E/Q be an elliptic curve with complex multiplication over Q by the imagi-
nary quadratic field F . Let α ∈ E(Q) be such that the `n-arboreal representation
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attached to (E,α) maps onto (Z/`nZ)
2 oN`n for every n > 1, where N`n is the

normaliser of a Cartan subgroup C`n of GL2(Z/`nZ). Suppose furthermore that
` is split in F and does not divide the conductor of the order EndQE ⊆ OF . Such

triples (E,α, `) exist: by [JR10, Example 5.11] we can take E : y2 = x3 + 3x
(which has CM by Z[i]), α = (1,−2) and ` = 5 (which splits in Z[i]). Notice
that for this elliptic curve and this α the same property holds for every ` ≡ 1
(mod 4): [Lom17, Theorem 1.5 (2)] implies that for all ` > 5 the image of the
Galois representation is the full normaliser of a Cartan subgroup, at which point
surjectivity of the Kummer representation follows from [JR10, Theorem 5.8].

Consider now the image of the arboreal representation associated with
(E/F, α, `). Base-changing E to F has the effect of replacing the normaliser
of the Cartan subgroup with Cartan itself: more precisely we have
ω`n (Gal(F`n,`n | F )) = (Z/`nZ)

2 o C`n for every n > 1. As ` is split in the
quadratic ring EndQ(E), so is the Cartan subgroup C`n , and therefore we can as-
sume – choosing a different basis for E[`n] if necessary – that C`n is the subgroup
of diagonal matrices in GL2(Z/`nZ). Fix now a large n and let

B`n =
{

(t,M) ∈ (Z/`nZ)
2 o C`n : t ≡ (∗, 0) (mod `n−1)

}
.

Using the explicit group law on (Z/`nZ)2oC`n one checks without difficulty that

B`n is a subgroup of (Z/`nZ)
2 o C`n : indeed, given two elements g1 = (t1,M1)

and g2 = (t2,M2) in B`n , we have

g1 · g2 = (t1,M1) · (t2,M2) = (t1 +M1t2,M1M2),

and (since M1 is diagonal) the second coordinate of t1 +M1t2 is a linear combi-
nation (with Z/`nZ-coefficients) of the second coordinates of t1, t2, hence is zero
modulo `n−1. Finally, let K ⊂ F`n,`n be the field corresponding by Galois theory

to the subgroup B`n of (Z/`nZ)
2 o C`n ∼= Gal(F`n,`n | F ).

We now study the situation of Proposition 4.13 for the elliptic curve E/K
and the point α. By construction, the image of the `n−1-torsion representation
attached to (E/K, `) is C`n−1 , so the parameter of maximal growth can be taken
to be n` = 1. We claim that α ∈ E(K) is strongly `-indivisible. The modulo-`
torsion representation is surjective onto C`, so that in particular no `-torsion point
of E is defined over K, and strongly `-indivisible is equivalent to `-indivisible.
To see that this last condition holds, notice that if α were `-divisible then we
would have K`,` = K`. However this is not the case, because by construction
Gal(K`,` | K`) = {t ∈ (Z/`Z)2 : t ≡ (∗, 0) (mod `)} has order `. Finally, for
k = n− 3 we have

V`k+2n` = V`n−1 = {t ∈ (Z/`n−1Z)2 : t ≡ (∗, 0) (mod `n−1)},
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which is very far from containing E[`k] – in fact, the index of V`k+2n` in E[`k+2n` ]
can be made arbitrarily large by choosing larger and larger values of n. Notice
that in any such example the `-adic representation will be surjective onto a split
Cartan subgroup of GL2(Z`).

7 Uniform bounds for the adelic representation

Our aim in this section is to show:

Theorem 7.1. There is a positive integer C with the following property: for every
elliptic curve E/Q and every strongly indivisible point α ∈ E(Q), the image W∞
of the Kummer map associated with (E/Q, α) has index dividing C in

∏
` T`(E).

This result immediately implies Theorem 1.2:

Proof of Theorem 1.2. By Remark 2.6, for every N | M the ratio
N2

[QM,N : QM ]
divides

N2

[Q∞,N : Q∞]
=
[
(Ẑ/N Ẑ)2 : W∞/NW∞

]
,

which in turn divides [Ẑ2 : W∞].

Remark 7.2. The assumption of strong indivisibility of the point α is necessary.
In fact, one can take a point α that is divisible in E(Q) by an arbitrarily high
power of some prime `, and thus get an index divisible by an arbitrarily large
power of `.

However, one can recover a similar result for divisible points allowing the
constant C to depend on the largest integer d such that α = dβ + T for some
β ∈ E(Q) and some T ∈ E(Q)tors. In fact, Lemma 4.16 tells us that in this
situation the index of the Kummer representation associated with α divides d2

times the index of the Kummer representation associated with β.

As in Subsection 3.3, we will denote by T0 the finite set of primes

T0 := {p prime | p 6 17} ∪ {37}.

7.1 Bounds on cohomology groups

Let E/Q be an elliptic curve and N1, N2 be positive integers with N1 | N2. The
first step in the proof of Theorem 7.1 is to bound the exponent of the cohomology
group H1(HN2

, E[N1]). In the course of the proof we shall need the following
technical result, which will be proved in Section 7.2.
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Proposition 7.3. There is a universal constant e satisfying the following prop-
erty. Let E/Q be a non-CM elliptic curve, N a positive integer and ` a prime fac-
tor of N . Let `k be the largest power of ` dividing N and J = Gal(QN | Q`k)/HN .
Consider the action of HN on Hom(J,E[`k]) defined by (hψ)(x) = hψ(h−1xh) for

all h ∈ HN , ψ : J → E[`k] and x ∈ J . Then the exponent of Hom
(
J,E[`k]

)HN
divides e.

Proposition 7.4. There is a positive integer C1 with the following property. Let
E/Q be an elliptic curve, N1 and N2 be positive integers with N1 | N2. Then the
exponent of H1(HN2 , E[N1]) divides C1.

Proof. We can prove the statement separately for CM and non-CM curves, and
then conclude by taking the least common multiple of the two constants obtained
in the two cases.

Assume first that E/Q has CM over Q. Let F be the CM field of E, let OF be
the ring of integers of F and O` := OF ⊗Z Z`. By [Lom17, Theorem 1.5] we have
d :=

[∏
`O
×
` : H∞ ∩

∏
`O
×
`

]
6 6. In particular all the d-th powers of elements

in
∏
`O
×
` are in H∞, hence we have Ẑ×d ⊆ H∞ ⊆

∏
` GL2(Z`) and H∞ contains

the nontrivial homothety λ = (λ`), where λ2 = 3d and λ` = 2d for ` 6= 2. By
Sah’s Lemma [BR03, Lemma A.2] we have (λ − 1)H1(HN2

, E[N1]) = 0. Notice
that the image of λ − 1 in Z` is nonzero for all `, and that it is invertible for
almost all `. The claim follows from the fact that d is bounded.

Assume now that E does not have complex multiplication over Q. As coho-
mology commutes with finite direct products we have

H1(HN2
, E[N1]) ∼= H1

HN2
,
⊕
`v|N1

E[`v]

 ∼= ⊕
`v|N1

H1 (HN2
, E[`v]) .

Fix an ` in this sum and let J = Gal(QN2
| Q`k) / HN2

, where `k is the largest
power of ` dividing N2. By the inflation-restriction sequence we get

0→ H1(HN2
/J,E[`v]J)→ H1(HN2

, E[`v])→ H1(J,E[`v])HN2 ;

since by definition J fixes E[`v], this is the same as

0→ H1(H`k , E[`v])→ H1(HN2
, E[`v])→ Hom(J,E[`v])HN2 .

It is clear that the exponent of H1(HN2 , E[N1]) is the least common multiple of
the exponents of the direct summands H1 (HN2

, E[`v]) for ` | N1, so we can focus
on one such summand at a time. Furthermore, the above inflation-restriction
exact sequence shows that the exponent of H1(HN2

, E[`v]) divides the product
of the exponents of H1(H`k , E[`v]) and of Hom(J,E[`v])HN2 . It is enough to give
a uniform bound for the exponents of these two cohomology groups.
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(i) H1(H`k , E[`v]) Assume first that ` 6∈ T0. By Theorem 3.14, H` is not con-

tained in a Borel subgroup of GL2(F`), so by [LW15, Lemma 4] it contains
a nontrivial homothety. By Lemma 3.17 the image H`∞ of the `-adic rep-
resentation contains a homothety that is non-trivial modulo `, so by Sah’s
Lemma [BR03, Lemma A.2] we have H1(H`k , E[`v]) = 0. For ` ∈ T0 let n`
be a universal bound on the parameter of maximal growth of the `-adic rep-
resentation, as in Corollary 3.13. By Lemma 4.9 we have (1+ `n`) Id ∈ H`k ,
and from Lemma 4.7 we obtain that the exponent of H1(H`k , E[`v]) divides
`n` .

(ii) Hom(J,E[`v])HN2 As v 6 k, this group is contained in Hom(J,E[`k])HN2 ,

whose exponent is uniformly bounded by Proposition 7.3. Notice that the
action of HN2

on Hom(J,E[`k]) is precisely that considered in Proposi-
tion 7.3 by well-known properties of the inflation-restriction exact sequence
(see e.g. [Ros95, Theorem 4.1.20]).

Proposition 7.4 can be restated in terms of H1(H∞, E(Q)tors).

Theorem 7.5. There is a positive integer C1 such that, for any elliptic curve
E/Q, the exponent of H1(H∞, E(Q)tors) divides C1.

Proof. By [NSW13, Proposition 1.2.6] we have

H1(H∞, E(Q)tors) ∼= lim−→
N

H1(HN , E[N ]),

so the result follows from Proposition 7.4.

Remark 7.6. Let m := [GL2(Ẑ) : H∞]. By basic group theory, there is a normal

subgroup B of GL2(Ẑ) contained in H∞ and having index dividing m!. It follows

that the m!-th power of any element of GL2(Ẑ) is in B, hence in H∞, and in

particular H∞ contains Ẑ×m! · Id. An application of Sah’s lemma then shows
that the exponent of H1(H∞, E(Q)tors) can be upper-bounded purely in terms
of m. A positive answer to Serre’s uniformity question for elliptic curves over Q
would imply that there are only finitely many possibilities for the index m (see
for example [Zyw15c]), so Theorem 7.5 would immediately follow.

Corollary 7.7. Let C1 be as in Proposition 7.4. Let E/Q be an elliptic curve
and let α ∈ E(Q) be a strongly indivisible point. If α is divisible by n > 1 over
Q∞, then n | C1.
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Proof. Without loss of generality we can assume that n = `e is a power of a
prime `. Since Q∞ is the union of the torsion fields QN , there exists N such
that α is divisible by `e over QN , and we may assume that `e divides N . The
claim then follows from Lemma 4.6, since by Proposition 7.4 the exponent of
H1(Gal(QN | Q), E[`e]) is a power of ` that divides C1.

Lemma 7.8. Let C1 be as in Proposition 7.4. The following hold for every prime
`:

(1) The Z`-module W`∞ , considered as a submodule of Z2
` , contains a vector of

valuation at most v`(C1).

(2) Suppose that E does not have CM over Q and let n` be a parameter of
maximal growth for the `-adic torsion representation. Then W`∞ contains
`n`+v`(C1)T`(E).

(3) If E[`] is an irreducible H`-module, then W`∞ contains `v`(C1)T`(E).

(4) Suppose that E has CM over Q and let (γ, δ) be parameters for the Cartan
subgroup of GL2(Z`) corresponding to EndQ(E). If n` is a parameter of
maximal growth for the `-adic torsion representation, then W`∞ contains
`3n`+v`(4δC1)T`(E).

Proof. Part (1) follows from Lemma 4.11, since by Corollary 7.7 the point α
is not divisible by `v`(C1)+1 over Q∞. Parts (2), (3) and (4) then follow from
Proposition 4.12 (for part (4) observe that no elliptic curve over Q has CM
defined over Q).

We can now prove the main Theorem of this section.

Proof of Theorem 7.1. As already explained, we have W∞ =
∏
`W`∞ , so we

obtain [∏
`

T`(E) : W∞

]
=
∏
`

[T`(E) : W`∞ ].

Let

T1 = T0 ∪ {` prime | ` divides C1} ∪ {19, 43, 67, 163} .

Notice that by Theorem 3.14 for ` 6∈ T1 there is no elliptic curve over Q with a
rational subgroup of order `. By Lemma 7.8 (3), for ` 6∈ T1 we have W`∞ = T`(E),
so [∏

`

T`(E) : W∞

]
=
∏
`∈T1

[T`(E) : W`∞ ]. (7.1)
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Now it is enough to prove the Theorem separately in the CM and in the
non-CM case, and then take the least common multiple of the two constants
obtained.

Suppose first that E does not have CM over Q. Applying Lemma 7.8(2) we
see that [T`(E) : W`∞ ] divides `2(n`+v`(C1)), where n` is a parameter of maximal
growth for the `-adic torsion for E. By Theorem 3.11 this can be bounded
uniformly in E. Since C1 does not depend on E, each factor of the right hand
side of (7.1) is uniformly bounded.

Assume now that E has complex multiplication over Q and let (γ, δ) be param-
eters for the Cartan subgroup of GL2(Z`) corresponding to EndQ(E). Applying

Lemma 7.8(4), we see that [T`(E) : W`∞ ] divides `2(3n`+v`(4δC1)), where n` is a
parameter of maximal growth for the `-adic torsion representation for E, which
is uniformly bounded by Corollary 3.13. It remains to show that v`(δ) can be
bounded uniformly as well. This follows from the fact that δ only depends on
the Q-isomorphism class of E, and that there are only finitely many rational
j-invariants corresponding to CM elliptic curves.

7.2 Proof of Proposition 7.3

Recall the setting of Proposition 7.3: E/Q is a non-CM elliptic curve, N is
a positive integer, and ` is a prime factor of N . Let `k be the largest power
of ` dividing N and J = Gal(QN | Q`k) / HN . The question is to study the

exponent of the group Hom
(
J,E[`k]

)HN
. In order to do this, we shall study the

conjugation action of g ∈ HN on the abelianisation of J . More generally, we shall
also consider the conjugation action of elements in GL2(Z/NZ) that normalise
J .

It will be useful to work with a certain subgroup J(2) of J . More generally,
we introduce the following notation.

Definition 7.9. Let G be a group and M a positive integer. We denote by G(M)
the subgroup of G generated by

{
gM | g ∈ G

}
.

Lemma 7.10. The subgroup J(2) is normal in J , the quotient group J/J(2) has
exponent at most 2, J(2) is stable under the conjugation action of HN , and

exp Hom
(
J,E[`k]

)HN | 2 exp Hom
(
J(2), E[`k]

)HN
.

Proof. Clearly J(2) is a characteristic subgroup of J , so it is normal in J and
stable under the conjugation action of HN on J . Given a coset hJ(2) ∈ J/J(2)
we have (hJ(2))2 = h2J(2) = J(2) since h2 ∈ J(2) by definition, so the quo-
tient J/J(2) is killed by 2. Finally, take a homomorphism ψ : J → E[`k] sta-
ble under the conjugation action of HN and denote by d the exponent of the
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abelian group Hom
(
J(2), E[`k]

)HN
. The restriction of ψ to J(2) is an element

of Hom
(
J(2), E[`k]

)HN
, so it satisfies dψ|J(2) = 0, and thus given any h ∈ J we

have dψ|J(2)(h
2) = 0. This implies that for every h ∈ J we have 2dψ(h) = 0,

hence ψ is killed by 2d. Since this is true for all ψ, the claim follows.

We will also need the following two simple lemmas:

Lemma 7.11. Let E/Q be an elliptic curve and let M > 37 be an integer. If
` > M + 1 is a prime number, then H`∞(M) contains a homothety λ Id with
λ 6≡ 1 (mod `).

Proof. By Corollary 3.16, since ` > M + 1 > 37, the image of the modulo-`
representation contains all the homotheties. In particular, if µ ∈ F×` is a generator
of the multiplicative group F×` , then H` contains µ Id, so by Lemma 3.17 H`∞

contains µ Id, where µ ∈ Z×` is congruent to µ modulo `. So H`∞(M) contains
µM Id, which is nontrivial modulo ` since µ has order `− 1 > M .

Lemma 7.12. Let p be a prime and let n be a positive integer (with n > 2 if
p = 2). For every positive integer k let Uk =

{
x ∈ Zp | x ≡ 1 (mod pk)

}
. Let M

be a positive integer. Then
{
xM | x ∈ Un

}
⊇ Un+vp(M).

Proof. Let y ∈ Un+vp(M) and let a = y − 1. By [Coh07, Corollary 4.2.17 and
Corollary 4.2.18(1)], the p-adic integer x = exp(M−1 log y) is well defined and
satisfies the inequality vp(x− 1) > vp(M

−1a) > n. Therefore x ∈ Un and clearly
xM = y.

We will derive Proposition 7.3 from the following statement:

Proposition 7.13. There is a universal constant M with the following property.
For every elliptic curve E/Q, every positive integer N , every prime power `k

dividing N , and every g ∈ HN , the conjugation action of gM on the abelianisation
of J(2) is trivial.

Proof of Proposition 7.13 =⇒ Proposition 7.3. By Lemma 7.10 it is enough to
prove Proposition 7.3 with J replaced by J(2). Let ψ ∈ Hom

(
J(2), E[`k]

)
: then

as E[`k] is abelian ψ factors through J(2)ab.

For every g ∈ HN , every ψ ∈ Hom
(
J(2), E[`k]

)HN
and every h ∈ J(2) we

have
ψ(h) = gM · ψ(g−MhgM ) = gM · ψ(h),

where the first equality holds because ψ is HN -invariant and the second because
the automorphism induced by gM on J(2)ab is trivial by Proposition 7.13. This
means that the image of ψ is contained in E[`k]HN (M). Since the action of HN

on E[`k] factors via the canonical projection HN → GL2(Z/`kZ), this is the
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same as saying that the image of ψ is contained in the subgroup of E[`k] fixed
under H`k(M). It remains to show that the exponent of E[`k]H`k (M) is uniformly
bounded, and trivial for ` sufficiently large.

To see this, recall that by Theorem 3.11 there exists an integer n > 1, inde-
pendent of E, such that H`k contains Id +`n Mat2(Z/`kZ) (and we have n > 2
if ` = 2). By Lemma 7.12, for every E/Q the group H`k(M) contains all scalar
matrices in Mat2(Z/`kZ) that are congruent to the identity modulo `n+v`(M).
We claim that the exponent of E[`k]H`k (M) divides `n+v`(M). In fact, by what
we have seen H`k(M) contains (1 + `n+v`(M)) Id, so E[`k]H`k (M) is in particular
fixed by (1 + `n+v`(M)) Id, hence it is contained E[`n+v`(M)].

Finally, we show that Hom(J,E[`k])HN is trivial for ` > M+1. Since ` > 2, by
Lemma 7.10 it is enough to show that Hom(J(2), E[`k])HN is trivial. As above,
the image of any HN -stable homomorphism from J(2) to E[`k] is contained in the
H`k(M)-fixed points of E[`k]. By Lemma 7.11, H`k(M) contains a homothety
which is nontrivial modulo `, so we are done since the only fixed point of this
homothety is 0.

We now turn to the proof of Proposition 7.13. We start by showing that
we may assume N to be of the form `k ·

∏
p|N,p6=` p. To see this, let N =

`k
∏
p|N,p6=` p

ep be arbitrary and let N ′ := `k
∏
p|N,p6=` p. There is an obvious

reduction map J → Gal(QN ′ | Q`k). The kernel K of this map is a subgroup of
J whose order is divisible only by primes p | N, p 6= `. Recall that we will be
considering Hom(J,E[`k])HN . Let ψ : J → E[`k] be a homomorphism: we claim
that ψ factors via the quotient Gal(QN ′ | Q`k). Indeed, all the elements in K
have order prime to `, hence they must go to zero in E[`k]. Therefore we may
assume N = N ′, that is, N = `k ·

∏
p|N,p6=` p.

We identify HN with a subgroup of GL2(Z/`kZ)×
∏
p|N,p6=` GL2(Z/pZ) and

J with the subgroup of HN consisting of elements having trivial first coordinate,
and for g ∈ HN we write g = (g`, gp1

, . . . , gpr ) with g` ∈ GL2(Z/`kZ) and gpi ∈
GL2(Z/piZ). Finally, for p | N , p 6= ` we denote by πpi : HN → GL2(Z/piZ)
the projection on the factor corresponding to pi, and we denote by π` : HN →
GL2(Z/`kZ) the projection on the factor corresponding to `.

Lemma 7.14. Let p be a prime factor of N with p > 7, p 6= `. Suppose that
the modulo-p representation attached to E/Q is surjective. Then J(2) contains
{1} × · · · × {1} × SL2(Z/pZ)× {1} × · · · × {1}.

Proof. Clearly PSL2(Fp) occurs in HN . Hence it must occur either in J or in
HN/J , but the latter is isomorphic to a subgroup of GL2(Z/`kZ) with ` 6= p, so it
must occur in J . Consider the kernel of the projection J →

∏
q|N,q 6=p GL2(Z/qZ):

then PSL2(Fp) must occur either in this kernel or in
∏
q|N,q 6=p GL2(Z/qZ), but

the latter case is impossible. Using Lemma 3.18, it follows immediately that J
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contains {1} × · · · × {1} × SL2(Z/pZ)× {1} × · · · × {1}. We conclude by noting
that SL2(Fp) is generated by its squares.

Lemma 7.15. Let g ∈ HN and h ∈ J(2). Then gh ∈ HN , and the automor-
phisms of J(2)ab induced by g and by gh coincide.

Proof. As J(2) is a subgroup of HN , the fact that gh ∈ HN is obvious. For the
second statement, notice that for every x ∈ J(2) the element (gh)−1x(gh) differs
from g−1xg by multiplication by

h−1(g−1x−1g)−1h(g−1x−1g),

which is a commutator in J(2). Hence the classes of (gh)−1x(gh) and g−1xg are
equal in J(2)ab.

Lemma 7.16. For each p | N, p 6= `, the component gp of g along GL2(Z/pZ)
normalises πp(J(2)) in GL2(Z/pZ).

Proof. Since HN normalises J(2) by Lemma 7.10, we have πp(g
−1J(2)g) =

πp(J(2)). On the other hand, πp(g
−1J(2)g) = πp(g)−1πp(J(2))πp(g), so that

as desired we obtain g−1
p πp(J(2))gp = πp(J(2)).

Corollary 7.17. Let p1, . . . , ps > 7 be primes all different from ` and such that
the mod-pi representation attached to E/Q is surjective for each pi. Let g ∈ HN

and let ĝ be the element of GL2(Z/NZ) obtained by replacing every pi-component
(for i = 1, . . . , s) of g by Id. Then ĝ2 normalises J(2), and it induces on J(2)ab

the same conjugation action as g2.

Proof. By Lemma 7.15, if we multiply g2 by any element of J(2) the conjugation
action on J(2)ab does not change. By construction, the determinant of πpi(g

2) =
g2
pi is a square in F×pi , say λ2

i . It follows that the determinant of g2
pi/λi is 1,

so g2
pi/λi ∈ SL2(Z/piZ). By Lemma 7.14 we have that J(2) contains hi =

(1, 1, . . . , 1, g2
pi/λi, 1, . . . , 1). Letting h = h1 · · ·hs, we obtain that the action of

g2h−1 is the same as that of g2. But the element

µ = (1, . . . , 1, λ1, 1, . . . , 1) · · · (1, . . . , 1, λs, 1, . . . , 1)

is central in GL2(Z/NZ), so ĝ2 = g2h−1µ−1 normalises J(2) and it induces the
same action as g2 on J(2)ab.

Let M = lcm{exp PGL2(Fp) : p ∈ T0}, where exp PGL2(Fp) denotes the
exponent of the group PGL2(Fp).

Remark 7.18. Notice that M is even. Moreover, for any g ∈ GL2(Z/NZ) and
any p ∈ T0 with p | N and p 6= ` we have that πp(g

M ) is a scalar in GL2(Fp),
since it is trivial in PGL2(Fp).
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We now prove Proposition 7.13, using the constant M just introduced.

Proof of Proposition 7.13. Write as before g = (gp). We divide the prime factors
of N different from ` into three sets as follows:

P0 = {p | N such that p ∈ T0, p 6= `} ,
P1 = {p | N such that Hp = GL2(Fp), p 6= `} ,
P2 = {p | N such that Hp is conjugate to a subgroup of Nns(p), p 6= `} .

Notice that by Theorem 3.15 each prime factor of N different from ` belongs to
one of these three sets.

We now apply Corollary 7.17 with {p1, . . . , ps} = P1 to obtain an element
ĝ ∈ GL2(Z/NZ) such that πp(ĝ) = Id for every p ∈ P1 and such that ĝ2 induces
on J(2)ab the same conjugation action as g2. In particular, ĝM induces on J(2)ab

the same conjugation as gM (recall that M is even).
We now prove that this conjugation action is trivial by showing that ĝM

commutes with every element of J(2). It suffices to show that for each p | N the
projection πp(ĝ

M ) commutes with every element of πp(J(2)).

(i) Case p ∈ P0: by Remark 7.18, πp(ĝ
M ) is a scalar, thus it commutes with

all of GL2(Fp).

(ii) Case p ∈ P1: by construction πp(ĝ
M ) is trivial.

(iii) Case p ∈ P2: by Corollary 3.16 applied to πp(ĝ), there is h ∈ GL2(Fp)
such that πp(ĝ) ∈ hNns(p)h

−1 and Hp ⊆ hNns(p)h
−1. Since M is even

and Cns(p) has index 2 in Nns(p), πp(ĝ
M ) ∈ hCns(p)h

−1 and πp(J(2)) ⊆
〈 a2 | a ∈ Hp〉 ⊆ hCns(p)h

−1. Since Cns(p) is abelian, πp(ĝ
M ) commutes

with every element of πp(J(2)).

(iv) Case p = `: by construction πp(J(2)) is trivial.
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Chapter 2

Some uniform bounds for
elliptic curves over Q

by Davide Lombardo and Sebastiano Tronto [LT21b]

1 Introduction

Let E/Q be an elliptic curve. Our purpose in this paper is to provide universal
bounds on several arithmetically relevant quantities attached to E, and more
precisely to its Galois representations. For each prime ` we denote by G`∞ the
image of the `-adic Galois representation attached to E/Q, and by G∞ the image
of the adelic representation (see Section 2.4 for details). We provide in particular:

1. a uniform upper bound for the index [Z×` : Z×` ∩G`∞ ] (Theorem 3.16), that
is, we show that for every prime ` the subgroup of scalars in the `-adic
image of Galois contains a fixed subgroup of Z×` for all elliptic curves E/Q;

2. a uniform upper bound on the exponent of the cohomology groups
H1(G∞, E[N ]), for all positive integers N (Theorem 4.8);

3. a uniform lower bound for the closed Z`-subalgebra Z`[G`∞ ] of Mat2×2(Z`)
generated by G`∞ ⊆ GL2(Z`) ⊂ Mat2×2(Z`): for each prime ` we com-
pute an optimal exponent m` such that Z`[G`∞ ] contains `m` Mat2×2(Z`)
(Theorem 5.8);

59
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4. a uniform lower bound on the degrees of the relative ‘Kummer extensions’
(Section 6), that is, the extensions Q( 1

N α,E[N ])/Q(E[N ]) obtained by ad-
joining all N -torsion points of E and all N -division points of a fixed rational
point α ∈ E(Q) (Theorem 6.5), provided that α and all its translates by
torsion points are not divisible by any d > 1 in the group E(Q).

We now elaborate on each of these four topics. It is well-known that, for a
fixed prime ` and number field K, the images of the `-adic Galois representations
attached to non-CM elliptic curves over K admit a uniform upper bound for the
index [GL2(Z`) : G`∞ ] (see for example [Ara08]). Since the CM case is easy to
handle, this implies the existence of a bound as in (1). However, the result of
[Ara08] is not effective, and a great deal of work has gone into classifying the
possible `-adic images of Galois even just for elliptic curves over Q (the so-called
‘Program B’ of Mazur), see for example [Maz77, RZB15, Zyw15a, BP11, LFL21,
GRSS14, Gre12]. Our results on (1), which rely heavily on many of these previous
developments, give a complete answer for all primes ` 6= 3, and a rather sharp
bound also for the remaining case ` = 3. With the exception of the case ` = 2,
that was already treated in [RZB15], we prove our estimates by group-theoretic
means (see in particular the criteria given by Corollary 3.7 and Proposition 2.A.1).
The advantage of such an approach is that our methods can easily be extended
to number fields other than Q. The price to pay is that we don’t get the sharpest
possible result for ` = 3, a direction we have decided not to pursue further also
due to the very recent work of Rouse, Sutherland and Zureick-Brown [RSZB21]
on the complete classification of 3-adic images of Galois for elliptic curves over
Q with a rational 3-isogeny (see also Remark 3.15).

Concerning (2), there is already a significant past literature on controlling the
cohomology groups H1(G`∞ , E[`k]), see for example [LW15], [Coa70, Lemma 10]
and [Cre97, Section 3]. Kolyvagin’s celebrated work on the Birch–Swinnerton-
Dyer conjecture also needs to rely on vanishing statements for the Galois H1

of the `-torsion of elliptic curves [Gro91, Proposition 9.1]. In this paper we go
beyond the known results in two different ways. On the one hand, we extend
the statements in [LW15] by giving a uniform upper bound on the exponents of
all the cohomology groups H1(G`∞ , E[`k]), where [LW15] mostly gave vanishing
conditions and did not extensively treat the cases when the cohomology does not
vanish. As we show in Section 7, these results for a fixed prime ` are rather sharp.
Secondly, and more importantly for our application (4), we also treat the Galois
action on the N -torsion of elliptic curves when N is not necessarily a prime power.
While the case N = `k follows easily from the existence of non-trivial scalars in
the image of Galois, the general case introduces a number of additional compli-
cations, connected with the possible ‘entanglement’ of torsion fields at different
primes. Since not even the classification of possible `-adic images is complete, the
problem of describing all possible entanglements between torsion fields seems to
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be out of reach for the moment (but see [Mor19], [CS19, §3], [CP20] and [DLM21]
for some positive results), so the computation of H1(G∞, E[N ]) cannot be ap-
proached directly. We are still able to obtain useful information on this group (in
particular, prove Theorem 4.8) by using the inflation-restriction exact sequence
and controlling the amount of entanglement by using our results on scalars and
the uniform bound on the degrees of prime-degree isogenies (Mazur’s theorem).
As in the case of (1), the intermediate technical results on the way to the proof of
Theorem 4.8 should hopefully apply in more general situations (see in particular
Proposition 4.5). Our numerical estimate on the exponent of H1(G∞, E[N ]) is
nowhere near as sharp as the corresponding bounds for the special case N = `k,
but notice that (unlike in that case) it is not a priori clear that a uniform bound
should even exist. We had in fact already shown the existence of such a bound
in [Chapter 1], but the result was not effective.

We remark that we have chosen to formulate our bounds in terms of divis-
ibility: we prove that multiplication by a suitable universal constant e kills the
abelian group H1(G∞, E[N ]), and therefore the exponent of this group divides
e. The numerical constant would be much smaller if we instead formulated the
result as an inequality (that is, if we were content with knowing that the expo-
nent of H1(G∞, E[N ]) does not exceed a certain constant e′), but we feel that
our version will be more useful in applications. In particular, we would like to
stress that – even ignoring the non-effective parts of the argument – the ideas
of [Chapter 1] would lead to a (divisibility) bound for H1(G∞, E[N ]) involving
primes up to several millions, while the value of e that we find with the new,
more streamlined proof given in the present paper is only divisible by the primes
up to 11 (which, as we show in Section 7, all need to appear as factors of e). In
other words, while our constant e is probably not optimal, it is at least supported
on the correct set of primes.

The algebra Z`[G`∞ ] considered in (3) is also a classical object in the field of
Galois representations, and its analogues in arbitrary dimension most famously
play an important role in Faltings’s proof of his finiteness theorems for abelian
varieties. While in many applications one needs control over the actual image
of Galois G`∞ , in several cases it is enough to get a handle on the sub-algebra
of Mat2×2(Z`) generated by it. In the hope that it will be useful in such cases,
we give explicit values m` with the property that `m` Mat2×2(Z`) is contained in
Z`[G`∞ ] for all elliptic curves E/Q, and we show that these values are optimal.

Finally, (4) was our original motivation for the work done in this paper: we
had already shown a similar result in [Chapter 1], but (lacking all the previous
information (1), (2), (3)) we could not make it explicit, or in fact even effective.
With all the preliminary work done in [Chapter 1] and in the other sections of this
paper, the desired result on Kummer extensions is now easy to prove. Notice that
the assumption on the (in)divisibility of the point α is necessary: if α = Nβ for
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some rational point β then Q( 1
N α,E[N ]) coincides with the torsion field Q(E[N ]),

and clearly no non-trivial lower bound for [Q( 1
N α,E[N ]) : Q(E[N ])] exists in this

case. On the other hand, it is possible to relax this assumption if one is willing
to accept a bound that depends on the largest integer d such that α is d-divisible
in E(Q)/E(Q)tors, but not on the curve E, see [Chapter 1, Remark 7.2].

We make two final comments. In order to get completely uniform results, we
also need to treat the case of CM elliptic curves: while the proofs are generally
easier than their non-CM counterparts, they are genuinely different and require
some additional observations. In several cases we also prove sharper results in
this context (see in particular Theorem 4.9 for a bound on the cohomology groups
attached to CM elliptic curves over number fields). For this reason, while it is
clear that one can obtain uniform statements that do not distinguish between CM
and non-CM curves (essentially, by taking the maximum of the bounds in the two
cases), we have chosen to formulate most of our results with a clear distinction
between the two situations.

Finally, we would like to point out that much of what we do in this paper
can be extended to number fields K having at least one real place, at least if one
is ready to believe the Generalised Riemann Hypothesis. Indeed, under GRH,
the uniform boundedness of isogenies of elliptic curves over K holds by [LV14,
Corollary 6.5]. Concerning the four topics above, we have already pointed out
that (1) is known to be true for all number fields, and the group-theoretic criteria
of Propositions 3.4 and 2.A.1 can in most cases make this explicit (in terms of
a bound on the possible degrees of cyclic isogenies). As for (2), the proof of
Theorem 4.8 can be repeated almost verbatim once one knows that the subgroup
of scalars in G`∞ is uniformly lower-bounded for all ` and that the degrees of
cyclic isogenies are also bounded. A bound as in (3) follows from Proposition 5.1,
Proposition 5.3 and Corollary 5.5. Finally, by the results of [Chapter 1] a bound
as in (4) can be obtained as a consequence of all the above. We do not pursue this
observation further since the result would in any case be conditional on GRH,
but we hope to have convinced the reader that the techniques in this paper have
wider applicability than just the case of rational numbers.

1.1 Structure of the paper

In Section 2 we recall some basic properties of `-adic numbers and of subgroups
of GL2(F`) for ` a prime number. We also introduce our notation for the Galois
representations attached to elliptic curves. In Section 3 we prove our first main
results, Theorems 3.16 and Proposition 3.18, which give a uniform lower bound for
the subgroup of scalars in the image of Galois representations attached to elliptic
curves over Q (in the non-CM and CM case respectively). In Section 4 we deduce
from this an estimate on the exponent of the first cohomology group for the action



2. PRELIMINARIES 63

of Galois on the torsion points of an elliptic curve E/Q, see Theorem 4.8 and
Theorem 4.9 (which covers the CM case for elliptic curves over arbitrary number
fields). In Section 5 we describe the Z`-subalgebra of End(Z2

`) generated by
the image of an `-adic Galois representation attached to an elliptic curve over
Q. Finally, in Section 6 we combine the previous results to study the Kummer
theory of elliptic curves over Q, leading to a uniform estimate on the degrees
of Kummer extensions (Theorem 6.5). Section 7 gives some explicit examples
showing that at least some of our estimates are not too far from optimal. The
group-theoretic Appendix 2.A contains the proof of an auxiliary result needed in
Section 3 to study the case of 3-adic Galois representations.

1.2 Acknowledgements

We thank Peter Bruin for providing us with a reference for Lemma 5.4, and
Andrea Maffei for a useful discussion on reductive groups. We also thank Jeremy
Rouse and Michael Cerchia for fruitful discussions, for informing us of their work
in progress, and for suggesting some improvements to our results.

2 Preliminaries

2.1 The `-adic numbers

For every prime ` we denote by Z` the ring of `-adic integers, which we regard as
a profinite (topological) ring, and by v` the `-adic valuation on Z`. We denote by
Z+
` the underlying abelian group of Z`, which is topologically generated by any

element of `-adic valuation 0, and by Z×` its group of units. For n > 1 we let 1 +
`nZ` = {x ∈ Z` | v`(x− 1) > n}. Since the subgroup `nZ` of Z+

` is topologically
generated by any element of valuation n, from [Coh07, Proposition 4.3.12] one
obtains:

Lemma 2.1. Let n be a positive integer and let ` > 2 be a prime. Let G be a
closed subgroup of Z×` . If there is λ ∈ G such that v`(λ−1) = n, then G contains
1 + `nZ`.

There is group homomorphism F×` → Z×` , the Teichmüller lift, that sends

every λ ∈ F×` to the unique λ̃ ∈ Z×` such that λ̃` = λ̃ and λ̃ ≡ λ (mod `) (such a

λ̃ exists by Hensel’s lemma). The following well-known lemma (see e.g. [Gou97,
Corollary 4.5.10]) shows that Z×` is generated by 1 + `Z` and by the Teichmüller
lifts of all elements of F×` , a fact that will be used in Section 3.

Lemma 2.2. The short exact sequence

1→ 1 + `Z` → Z×` → F×` → 1
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is split by the Teichmüller lift.

If m and n are positive integers we extend v` to the additive group of m×n ma-
trices with coefficients in Z` as follows: if A = (aij)16i6m, 16j6n ∈ Matm×n(Z`)
we let v`(A) := min {v`(aij) | 1 6 i 6 m, 1 6 j 6 n}. The following is proven by
an immediate induction on v`(n):

Lemma 2.3. Let s be a positive integer and let h ∈ GLs(Z`). If v`(h− Id) > 0,
then v`(h

n − Id) > v`(n) for all positive integers n.

2.2 Cartan subgroups of GL2(F`)

We recall the definition and basic properties of Cartan subgroups of GL2(F`)
when ` is an odd prime.

Definition 2.4. Let ` > 2 be a prime and let δ ∈ F×` . We call

C`(δ) :=

{(
x δy
y x

)
| x, y ∈ F`, x2 − δy2 6= 0

}
⊆ GL2(F`)

the Cartan subgroup of GL2(F`) with parameter δ. We call C`(δ) split if δ is a
square in F`, and nonsplit otherwise. We also denote by N`(δ) the normalizer of
C`(δ) in GL2(F`).

Remark 2.5. Let λ ∈ F×` . Conjugating C`(δ) by

(
λ 0
0 1

)
gives C`(δλ

2), so that

a Cartan subgroup is determined (up to conjugacy in GL2(F`)) by the class of
δ ∈ F×` /F

×2
` , that is, only by whether or not δ is a square in F×` .

Lemma 2.6 ([LP17, Lemma 14]). Let ` > 2 be a prime and let δ ∈ F×` . The
Cartan subgroup C`(δ) has index 2 in N`(δ). More precisely, we have

N`(δ) = C`(δ) ∪
(

1 0
0 −1

)
· C`(δ) .

Remark 2.7. Let ` > 2 be a prime and let δ ∈ F×` . Considering the matrix

g =

(
1 1
1 −1

)
, whose inverse is 1

2g, one sees that C`(1) is conjugate to the

subgroup

C∗` (1) := gC`(1)g−1 =

{(
t 0
0 w

)
| t, w ∈ F×`

}
of GL2(F`), whereas for δ 6= 1 it is conjugate to

C∗` (ε) := gC`(δ)g
−1 =

{(
x+ εw −w
w x− εw

)
| x,w ∈ F`, x2 + (1− ε2)w2 6= 0

}
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where ε = δ+1
δ−1 . Similarly, N`(δ) is conjugate to

N∗` (ε) = C∗` (ε) ∪
(

0 1
1 0

)
· C∗` (ε) ,

which is the normalizer of C∗` (ε).

2.3 Subgroups of GL2(F`) and GL2(Z`)

Since we will need to rely on it several times throughout the paper, we remind
the reader of the well-known classification of maximal subgroups of GL2(F`),
traditionally attributed to Dickson. For ` = 2 the group GL2(F2) is isomorphic to
S3, so its subgroup structure is well-known. Assume now that ` > 2. Recall that
a subgroup G of GL2(F`) is said to be Borel if it is conjugate to the subgroup of
upper-triangular matrices, and is said to be exceptional if its image in PGL2(F`)
is isomorphic to A4, S4 or A5. Also recall the definition of Cartan subgroups from
the previous section.

Theorem 2.8 (Dickson’s classification, cf. [Ser72, §2]). Let ` > 2 be a prime
number and G be a subgroup of GL2(F`).

• If ` divides the order of G, then G either contains SL2(F`) or is contained
in a Borel subgroup.

• If ` does not divide the order of G, then G is contained in the normaliser
of a (split or nonsplit) Cartan subgroup or in an exceptional group.

To handle the profinite groups that arise as Galois representations attached
to elliptic curves we will find it useful to employ a notion first introduced by Serre
[Ser97, IV-25]. We say that a non-abelian finite simple group Σ occurs in the
profinite group Y if there exist a closed subgroup Y1 of Y and an open normal
subgroup Y2 of Y1 such that Σ ∼= Y1/Y2. We notice in particular that PSL2(F`)
occurs in GL2(Z`). We will also need the following fact: for every exact sequence
of profinite groups 1→ N → G→ G/N → 1 and every non-abelian finite simple
group Σ, if Σ occurs in G then it occurs in at least one of N and G/N (and
conversely), see again [Ser97, IV-25].

2.4 Galois representations and torsion fields of elliptic curves

Let K be a number field and E/K be a fixed elliptic curve. We will say that E
is non-CM if EndK(E) is Z, or equivalently, if E does not have CM over K. We
will denote by Etors the group of all torsion points in E(K). Consider, for each
positive integer N , the natural Galois representation

ρN : Gal(K | K)→ Aut(E[N ])
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afforded by the N -torsion points of E(K). We will often assume that a basis of
the free Z/NZ-module E[N ] has been fixed, and therefore regard the image GN
of ρN as a subgroup of GL2(Z/NZ).

We denote by KN the field fixed by the kernel of ρN , or equivalently the
Galois extension of K generated by the coordinates of all N -torsion points of E.
When N = `n is a prime power, by passing to the limit in n we also obtain the
group G`∞ = Gal (K(E[`∞]) | K), which we consider as a subgroup of GL2(Z`),
and the corresponding fixed field K`∞ =

⋃
n>1K`n . Finally, we also denote by

K∞ the field generated by the various K`∞ as ` varies. One can also define the
adelic Tate module TE := lim←−N E[N ], isomorphic to Ẑ2, and the adelic Galois

representation ρ∞ : Gal(K | K)→ Aut(TE). The Galois group Gal(K∞ | K) is
then isomorphic to the image G∞ of ρ∞ (hence to the inverse limit lim←−N Im ρN ),

and may be considered – up to the choice of an isomorphism TE ∼= Ẑ2 – as a
subgroup of GL2(Ẑ). Finally we remark that, since all the representations ρN
are continuous and Gal(K | K) is a compact Hausdorff topological group, all
the groups just introduced are compact, and therefore closed in their respective
ambient spaces.

2.5 Modulo ` Galois representations of elliptic curves over Q
Our focus will be on elliptic curves defined over the field of rational numbers. The
Galois representations attached to such curves have been studied extensively, and
a number of powerful results on their possible images have been proven. We will
in particular need to rely on a famous theorem of Mazur concerning the degrees
of cyclic isogenies of elliptic curves defined over Q. To state it, let

T0 := {p prime | p 6 17} ∪ {37}.

Theorem 2.9 ([MG78, Theorem 1]). Let p be a prime number and E/Q be an
elliptic curve, and assume that E has a Q-rational subgroup of order p. Then
p ∈ T0 ∪ {19, 43, 67, 163}. If E does not have CM over Q, then p ∈ T0.

3 Scalars in the image of Galois representations

Let E be an elliptic curve over a number field K and let ` be a prime number.
Our purpose in this section is to study the intersection G`∞ ∩ Z×` · Id, that is,
the subgroup of scalar matrices in the image of the `-adic Galois representation
attached to E/K. We will focus mostly, but not exclusively, on the case K = Q.
The main result is Theorem 3.16, which – for each prime ` – describes a subgroup
of Z×` ·Id that is guaranteed to be contained in G`∞ for all non-CM elliptic curves
over Q (see also Proposition 3.18 for the CM case). To simplify the notation,
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we will often identify (Z/`nZ)× (resp. Z×` ) with the subgroup (Z/`nZ)× · Id
(resp. Z×` · Id) of GL2(Z/`nZ) (resp. GL2(Z`)).

Since it helps understanding the relevance of the criteria in the next sub-
section, we briefly contextualise the group-theoretic properties we are going to
consider in terms of the Galois representations attached to elliptic curves over Q.
Let E/Q be an elliptic curve and let G`∞ (respectively G`) be the image of the
corresponding `-adic (respectively mod `) Galois representation. To begin with,
one has det(G`∞) = Z×` , because for σ ∈ Gal(Q | Q) the determinant of ρ`∞(σ)
is simply χ`∞(σ), and it is well-known that the `-adic cyclotomic character χ`∞

is surjective. Moreover, when E is non-CM and ` 6∈ T0, by Theorem 2.9 we know
that G` acts irreducibly on E[`]; in particular, this holds for all ` > 37. We
prove in Lemma 3.6 below that if G` acts irreducibly on E[`] and ` | #G` then
G`∞ = GL2(Z`), so the most interesting case (for ` large) is ` - #G`. In this
case [Zyw15a, Proposition 1.13] (or equivalently [LFL21, Appendix B]) shows
that (up to conjugacy) there are only two possibilities for G`, namely a non-split
Cartan subgroup or the unique index-3 subgroup thereof. These are therefore
the most interesting situations, and are explored in Corollary 3.7. Finally, no-
tice that the image of a complex conjugation in G`∞ is a matrix of order 2 with
determinant −1, so – up to conjugation – when ` > 2 we may assume that it is(

0 1
1 0

)
. This explains the relevance of this specific matrix for the statement

of Proposition 3.4.

3.1 Group-theoretic criteria

In this section we establish several criteria that guarantee that a closed subgroup
G of GL2(Z`) contains an (explicit) open subgroup of Z×` . A further result of
the same kind, whose proof is however more involved, is stated and proved in
Appendix 2.A. The criteria in this section will be expressed in terms of G`,
the image of G under reduction modulo `. More generally, we will employ the
following notation:

Notation. Let G be a subgroup of GL2(Z`). We denote by G`n the image of G
under the reduction map GL2(Z`)→ GL2(Z/`nZ).

Lemma 3.1. Let ` be a prime and let g ∈ GL2(Z`) be such that g ≡ λ Id (mod `)
for some λ ∈ F×` . Let moreover λ̃ ∈ Z×` be the Teichmüller lift of λ. Then the

sequence {g`n}n>1 converges to λ̃ Id ∈ GL2(Z`).

Proof. By Lemma 2.2 we can write g = λ̃h, where h = Id +`h1 ∈ GL2(Z`) is
congruent to the identity modulo `. Then for any n > 1 we have g`

n

= λ̃`
n

h`
n

=
λ̃h`

n

. By Lemma 2.3 we have that v`((Id +`h1)`
n− Id) > n for every n > 0. This
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means that the sequence {h`n}n>1 converges to Id, hence
{
g`
n}

n>1
converges to

λ̃ Id.

Corollary 3.2. Let ` be a prime and let G be a closed subgroup of GL2(Z`).
Suppose that the image of G in GL2(F`) contains λ Id for some λ ∈ F×` . Then G

contains λ̃ Id.

Proof. Let g ∈ G reduce to λ Id modulo `. By the previous lemma the sequence
{g`n} converges to λ̃ Id, so this is an element of G since by assumption G is
closed.

The following result can be found in [Zyw11, Lemma 2.5], but we include the
proof here for ease of reference.

Lemma 3.3. Let n be a positive integer, let ` > 2 be a prime and let G be a
closed subgroup of GL2(Z`). Let

Hn := {g ∈ G | g ≡ Id (mod `n)} .

If det(G) = Z×` and ` - #G`, then det(Hn) = 1 + `nZ`.

Proof. Clearly det(Hn) ⊆ 1 + `nZ`, so we only need to prove the other inclu-
sion. Since det(G) = Z×` there is g ∈ G such that det(g) = 1 + `. Then by

Lemma 2.3 the element h := g`
n−1·#G` satisfies h ≡ Id (mod `n), so it belongs

to Hn. Moreover

det(h) = (1 + `)`
n−1·#G` ≡ 1 + #G``

n (mod `n+1)

and since ` - #G` we have v`(det(h) − 1) = n. By Lemma 2.1 we conclude that
det(H) contains 1 + `nZ`.

We now come to our criterion for the existence of scalars in G when ` - #G`.

Proposition 3.4. Let ` > 2 be a prime and G be a closed subgroup of GL2(Z`)

such that detG = Z×` . Assume that G` contains τ =

(
0 1
1 0

)
and that ` - #G`.

1. Suppose that G` contains an element u for which one of the following holds:

(a) u anti-commutes with τ , that is, uτ = −τu;

(b) there exists ε ∈ F×` \ {1} such that for all antidiagonal matrices A =(
0 x
y 0

)
we have uAu−1 =

(
0 εx

ε−1y 0

)
.

Then G contains 1 + `Z`.
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2. Suppose that one of the assumptions of (1) holds, and that moreover G`
contains F×` . Then G contains Z×` .

Remark 3.5. It is immediate to check that the following elements of GL2(F`)
have the property required to apply part (1):

(1a) u =

(
a b
−b −a

)
, where a, b ∈ F` are such that det(u) = b2 − a2 6= 0.

(1b) u =

(
a 0
0 b

)
with a, b ∈ F×` , a 6= b.

Proof. By Lemma 2.1 the element 1 + ` generates 1 + `Z`, so it suffices to prove
that (1 + `) Id is in G. For this it suffices to show that (1 + `) Id is in G`n for
every n > 1. We prove this by induction. For n = 1 the statement holds trivially,
so assume that (1 + `) Id belongs to G`n and let C = (1 + `) Id +`nB be a lift of
this element to G`n+1 , which exists because the map G`n+1 → G`n is surjective.
Notice that we may consider B as an element of Mat2×2(F`). In addition, if
n = 1, thanks to Lemma 3.3 we may assume that det(C) 6≡ 1 (mod `2), and
consequently that tr(B) 6≡ −2 (mod `). If τ̃ is any lift of τ to G`n+1 , the element

C ′ := Cτ̃Cτ̃−1 = ((1 + `) Id +`nB)
(
(1 + `) Id +`nτ̃Bτ̃−1

)
= (1 + `)2 Id +(1 + `)`n(B + τ̃Bτ̃−1) + `2nBτ̃Bτ̃−1

≡ (1 + `)2 Id +`n(B + τ̃Bτ̃−1) (mod `n+1)

is in G`n+1 . Notice that D := B + τBτ−1 is congruent to

(
a b
b a

)
modulo `,

where a = tr(B) and b ∈ F`.

• Suppose that G` contains an element u as in part (1a). Then

uDu−1 ≡
(

a −b
−b a

)
(mod `) .

If ũ ∈ G`n+1 is a lift of u, the group G`n+1 contains

C ′ũC ′ũ−1 ≡
(
(1 + `)2 Id +`nD

) (
(1 + `)2 Id +`nũDũ−1

)
≡
(

(1 + `)2 Id +`n
(
a b
b a

))(
(1 + `)2 Id +`n

(
a −b
−b a

))
≡ (1 + `)4 Id +2a`n Id (mod `n+1)

which is a scalar matrix congruent to 1 + 4` modulo `2 if n > 1 or to
1 + 2`(2 + a) if n = 1.
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• Suppose that G` contains an element u as in part (1b). Then we have

Dk := ukDu−k =

(
a bεk

bε−k a

)
.

Letting ũ be a lift of u to G`n+1 we obtain that for every non-negative
integer k the group G`n+1 contains

ũkC ′ũ−k = (1 + `)2 Id +`nDk.

Thus, using the fact that
∑`−2
k=0 ε

k = ε`−1−1
ε−1 = 0, we see that G`n+1 also

contains

`−2∏
k=0

ũkC ′ũ−k ≡
`−2∏
k=0

(
(1 + `)2 Id +`nDk

)
(mod `n+1)

≡ (1 + `)2(`−1) Id +`n(1 + `)2(`−2)
`−2∑
k=0

Dk (mod `n+1)

≡ (1 + `)2(`−1) Id−`n
(
a 0
0 a

)
(mod `n+1),

which is a scalar matrix congruent to 1 − 2` modulo `2 if n > 1 or to
1− (2 + a)` if n = 1.

In any case, using our assumption that a = tr(B) 6≡ −2 (mod `) if n = 1, we
see that G`n+1 contains a scalar matrix λ Id with v`(λ − 1) = 1. We can now
apply Lemma 2.1 to the subgroup of Z×` given by the inverse image of G`n+1 ∩
(Z/`n+1Z)× under the natural projection, and we conclude that (1+`) Id ∈ G`n+1

as desired.
Finally, if F×` is contained in G`, Lemma 3.1 shows that G contains a Te-

ichmüller lift of every element of F×` . By Lemma 2.2 this is enough to conclude
that G contains Z×` .

Lemma 3.6. Let ` > 5 be a prime number and G be a closed subgroup of GL2(Z`).
Suppose that det(G) = Z×` . If ` | #G` and G` acts irreducibly on F2

` , then
G = GL2(Z`).

Proof. Since ` | #G`, the classification of maximal subgroups of GL2(F`) (The-
orem 2.8) shows that either G` is contained in a Borel subgroup of GL2(F`),
or G` contains SL2(F`). However, any subgroup of a Borel acts reducibly on
F2
` by definition, hence we see that G` contains SL2(F`). By a lemma due to

Serre (see [Ser97, IV-23, Lemme 3] and [Lom15, Lemma 3.15] for this exact ver-
sion), this implies that G contains SL2(Z`). From det(G) = Z×` we then obtain
G = GL2(Z`) as desired.
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Corollary 3.7. Let ` > 2 be a prime and let G be a closed subgroup of GL2(Z`)
with det(G) = Z×` . Suppose that (at least) one of the following holds:

1. G` ⊆ GL2(F`) contains (up to conjugacy) the normaliser of a split or non-
split Cartan, and if ` | #G` then ` 6= 3.

2. ` ≡ 2 (mod 3), and G` ⊂ GL2(F`) contains (up to conjugacy) the subgroup
of cubes in the normaliser of a non-split Cartan.

Then G contains Z×` .

Proof. Suppose first that ` | #G` (hence in particular ` > 3). The normaliser
of a (split or non-split) Cartan, or an index-3 subgroup of a non-split Cartan,
acts irreducibly on F2

` , so Lemma 3.6 implies G = GL2(Z`), which in particular
contains Z×` .

Suppose on the other hand that ` - #G`. Notice that – since the scalar
matrices are contained in the centre of GL2(Z`) – the conclusion of Proposition 3.4
is invariant under a change of basis for Z2

` , so it suffices to check that the group
G satisfies the hypotheses of Proposition 3.4 after a suitable change of basis.

1. By what we already remarked, and up to conjugation in GL2(Z`), we may
assume that G` contains the group N∗` (ε) described in Remark 2.7, or an
index-3 subgroup thereof. The explicit description shows that every group

of the form N∗` (ε) contains

(
0 1
1 0

)
; since this matrix is equal to its cube,(

0 1
1 0

)
is also contained in the subgroup of cubes in N∗` (ε).

The normaliser of a split Cartan subgroup contains all anti-diagonal matri-

ces, hence in particular it contains u =

(
0 −1
1 0

)
. The normaliser of a

non-split Cartan contains u =

(
ε −1
1 −ε

)
. Finally, the subgroup of cubes

of such a normaliser contains

(
ε −1
1 −ε

)3

= (ε2 − 1)

(
ε −1
1 −ε

)
. In all

cases we have thus shown that G` contains an element of the form required
to apply Proposition 3.4 (1), see Remark 3.5.

2. As for hypothesis (2) of Proposition 3.4, observe that all scalar matrices are
contained in the normaliser of every (split or non-split) Cartan subgroup of
GL2(F`). When ` ≡ 2 (mod 3) they are also contained in the subgroup of
cubes of a non-split Cartan: indeed, in this case x 7→ x3 is an automorphism
of F×` , so every scalar matrix is a cube.
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3.2 Scalars in the presence of an isogeny

We now specialise to the case of G = G`∞ ⊆ GL2(Z`) being the image of the
`-adic representation attached to an elliptic curve E/Q. Our aim is again to
prove that G contains an (explicitly identifiable) subgroup of Z×` . We begin by
considering the case when ` > 7 and E admits an isogeny of degree ` defined over
Q. The relevant results are essentially already in the literature, and in this short
section we reformulate them in the form needed for our applications.

Definition 3.8 ([GRSS14, Definition 1.1]). Let ` be a prime. An elliptic curve
E over Q is called `-exceptional if E has an isogeny of degree ` defined over Q
and G`∞ does not contain a Sylow pro-` subgroup of GL2(Z`).

Combining [Gre12, Theorem 1] with [Gre12, Remark 4.2.1] and [GRSS14,
Theorem 5.5] one obtains:

Theorem 3.9. Let ` > 7 be a prime. There are no non-CM `-exceptional elliptic
curves defined over Q.

For the case ` = 5 we instead rely on the following result:

Theorem 3.10 ([Gre12, Theorem 2]). Let E/Q be a non-CM elliptic curve.
Suppose that E has an isogeny of degree 5 defined over Q. If none of the elliptic
curves in the Q-isogeny class of E has two independent isogenies of degree 5, then
E is not 5-exceptional. Otherwise, the index [GL2(Z5) : G5∞ ] is divisible by 5,
but not by 25.

Corollary 3.11. Let E/Q be a non-CM elliptic curve, let ` > 5 be a prime
number, and suppose that the Galois module E[`] is reducible. Then G`∞ contains
1 + `Z`.

Proof. A specific Sylow pro-` subgroup S of GL2(Z`) is given by

S =

{(
a b
c d

)
∈ GL2(Z`)

∣∣ a ≡ d ≡ 1 (mod `), c ≡ 0 (mod `)

}
.

It is clear that 1 + `Z` is contained in S. However, since all the pro-` Sylow
subgroups of GL2(Z`) are conjugate to each other and 1+`Z` lies in the center of
GL2(Z`) (hence is stable under conjugation), it follows that 1 + `Z` is contained
in all the Sylow pro-` subgroups of GL2(Z`). For ` > 7 the statement then
becomes a direct consequence of Theorem 3.9. For ` = 5 the claim similarly
follows from Theorem 3.10 if no elliptic curve in the Q-isogeny class of E admits
two independent 5-isogenies. To treat this last case, observe that the intersection
G`∞ ∩ Z×` is the same for all the elliptic curves in a given Q-isogeny class (see
e.g. [Gre12, §2.4]), so we may assume that E admits two independent 5-isogenies
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defined over Q. In particular, the Galois module E[5] decomposes as the direct
sum of two 1-dimensional modules, which implies that in a suitable basis G5

consists of diagonal matrices. Hence [GL2(F5) : G5] is divisible by 5, and on the
other hand 25 - [GL2(Z5) : G5∞ ] by Theorem 3.10 again. It follows immediately
that ker(GL2(Z5) → GL2(F5)), which is a pro-5 group, is entirely contained in
G5∞ , hence in particular that 1 + 5Z5 ⊆ G5∞ , as desired.

3.3 The 3-adic case

Let E/Q be a non-CM elliptic curve. Relying on the group-theoretic results of
Appendix 2.A we now prove that the 3-adic Galois representation attached to E
contains all scalars congruent to 1 modulo 27. We treat separately the two cases
when the Galois module E[3] is respectively irreducible or reducible.

Irreducible case

When E[3] is irreducible for the Galois action, it is not hard to prove that G3∞

contains all scalars:

Proposition 3.12. Suppose E[3] is an irreducible Galois module. Then G3∞

contains Z×3 .

Proof. Up to conjugation, we can assume that G3 contains

(
1 0
0 −1

)
(the image

of complex conjugation). A short direct computation shows that (up to conju-
gacy) there are only 3 possibilities for G3, namely GL2(F3), a 2-Sylow subgroup,

or the group H :=

〈(
0 1
1 0

)
,

(
0 −1
1 0

)〉
of order 8. In particular, in all cases

we may assume that H ⊆ G3. The hypotheses of Proposition 3.4 (2) are then
satisfied, hence G3∞ contains Z×3 .

Reducible case

We now consider the much harder case when E[3] is reducible under the Galois
action. Our analysis is based on the purely group-theoretic Proposition 2.A.1.
To motivate the hypotheses that appear in its statement, we consider a non-CM
elliptic curve E/Q for which the Galois module E[3] is reducible, and denote as
usual by G3n the image of the modulo-3n representation attached to E/Q and
by G3∞ the image of the 3-adic representation. The following hold:

1. Any elliptic curve Ẽ/Q that is Q-isogenous to E gives rise to a 3-adic Galois
image G̃3∞ for which G3∞ ∩ Z×3 = G̃3∞ ∩ Z×3 (notice that this equality is
independent of the choice of basis for T3E, T3Ẽ), see for example [Gre12,
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§2.4]. For all such curves Ẽ/Q, the Galois module Ẽ[3] is clearly reducible,
and at least one Ẽ of this form does not admit two independent cyclic
isogenies of degree 3 defined over Q. Hence, up to replacing E with Ẽ, we
may assume that G3 is contained (up to conjugacy) in a Borel subgroup
and that G3 only fixes one nontrivial F3-subspace of E[3]. This implies
3 | #G3.

2. G27 acts on E[27] without fixing any cyclic subgroup of order 27. Indeed,
the three rational points on X0(27) are two cusps and a single non-cuspidal
point corresponding to a CM elliptic curve [Ogg73, p. 229].

3. det(G3∞) = Z×3 : as already discussed, this follows from the surjectivity of
the 3-adic cyclotomic character.

4. G3∞ contains the image of (any) complex conjugation, which is an element
c of order 2 with determinant −1.

We now check that this information is sufficient to apply Proposition 2.A.1.
Up to a change of basis, we may assume that the element c ∈ G3∞ is represented

by the matrix C =

(
1 0
0 −1

)
. This easily implies that G3 is contained in the

Borel of upper- or lower-triangular matrices (see also Remark 2.A.4). Take now H
to be the pro-3 Sylow subgroup of G3∞ (which is normal, hence unique: it is the
inverse image in G3∞ of the 3-Sylow of G3, which is easily checked to be normal).
We claim that this group satisfies all the assumptions of Proposition 2.A.1 with
p = 3 and k = 3. Hypothesis (1) is satisfied by (1) above. Hypothesis (3) is clear
from the equality det(G3∞) = Z×3 , and (4) follows from the fact that C ∈ G3∞

and H is normal in G3∞ . As for (2), recall that G3 is contained in the upper- or
lower-triangular Borel subgroup, and this implies easily that G3∞ is generated
by H, C, and possibly − Id. Since both C and − Id are diagonal, we see that
if H33 is upper- or lower- triangular, then so is G33 , contradiction, because we
know that E does not admit any cyclic 27-isogeny defined over Q. Hence from
Proposition 2.A.1 we obtain:

Proposition 3.13. Let E/Q be a non-CM elliptic curve for which E[3] is a
reducible Galois module. Then G3∞ contains all scalars congruent to 1 modulo
27.

Combining this result with Proposition 3.12 we have then proved:

Corollary 3.14. Let E/Q be a non-CM elliptic curve. The group G3∞ contains
all scalars congruent to 1 modulo 27.

Remark 3.15. The results of [RSZB21], which appeared almost simultaneously
to the present work, imply that for every non-CM elliptic curve over Q with a
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rational 3-isogeny the group G3∞ contains all scalars congruent to 1 modulo 9
(hence, by Proposition 3.12, the same holds for every non-CM E/Q). The proof
in [RSZB21] relies on the explicit determination of the rational points of suitable
modular curves. As pointed out in the introduction, we think our approach –
which derives the result from properties of isogenies (hence relying only on the
more well-studied modular curves X0(N)) – has the advantage of being easier to
extend to number fields different from Q.

3.4 Main theorem

We are now ready to prove our uniform result for scalars in the image of Galois
representations:

Theorem 3.16. Let E be a non-CM elliptic curve over Q and let ` be a prime
number. Define

s` :=


4, if ` = 2

3, if ` = 3

1, if ` = 5, 7, 11, 13, 17, 37

0, if ` > 19 and ` 6= 37

The image G`∞ of the `-adic Galois representation attached to E/Q contains all
scalars congruent to 1 modulo `s` .

Proof. For ` = 2 and ` = 3 the theorem follows from the results of [RZB15] and
Corollary 3.14 respectively. We may therefore assume ` > 5. We distinguish
several cases:

1. the G`-module E[`] is reducible. The claim follows from Corollary 3.11.

2. the G`-module E[`] is irreducible and ` | #G`. By Lemma 3.6 we obtain
G`∞ = GL2(Z`), and the claim follows.

3. the G`-module E[`] is irreducible and ` - #G`. Suppose first that ` > 17:
then the claim follows from [Zyw15a, Proposition 1.13] (the exceptional j-
invariants correspond to elliptic curves for which G` does not act irreducibly
on E[`], see [Zyw15a, Theorem 1.10]). For ` = 5, 7, 11, Theorems 1.4, 1.5
and 1.6 in [Zyw15a] completely describe the possible mod-` images G`.
Since G` acts irreducibly on E[`] by assumption, we need to consider the
following cases:

(a) for ` = 5, up to conjugacy the group G` contains either the index-3
subgroup of a non-split Cartan or the full normaliser of a split Cartan.
In both cases we may apply Corollary 3.7. Similarly, for ` = 11, up
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to conjugacy the only possibility is that G` is the full normaliser of a
non-split Cartan, and again we conclude by Corollary 3.7.

(b) for ` = 7, up to conjugacy we have that G` is the normaliser of a (split

or non-split) Cartan subgroup, or that it contains 〈
(

2 0
0 4

)
,

(
0 2
1 0

)
〉.

The first case is handled as above. In the other case, one checks

that G` contains

(
0 1
1 0

)
, and clearly it contains

(
2 0
0 4

)
, so the

hypothesis of Proposition 3.4 (1b) is satisfied (see Remark 3.5) and
the claim follows.

This only leaves the prime ` = 13. By [Zyw15a, §1.6], the maximal proper
subgroups of GL2(F13) not contained in a Borel are (up to conjugacy) the
normalisers of (split and non-split) Cartan subgroups and the group

GS4
=

〈(
2 0
0 2

)
,

(
2 0
0 3

)
,

(
0 −1
1 0

)
,

(
1 1
−1 1

)〉
.

The main result of [BDM+19] (precisely, Theorem 1.1 and Corollary 1.3
in op. cit.) shows that G13 is not conjugate to a subgroup of a (split or
non-split) Cartan. It remains to understand the case G13 ⊆ GS4

. Consider
the collection C of subgroups H ⊆ GS4 that satisfy all of the following
conditions:

(a) detH = F×13;

(b) H contains an element h with h2 = Id and tr(h) = 0;

(c) the projective image H/(H ∩ F×13) has exponent at least 3;

(d) H acts irreducibly on E[13].

If E is a non-CM elliptic curve over Q such that G13 is contained (up to
a choice of basis for E[13]) in GS4

and not contained in a Borel subgroup,
then G13 is a member of C: (a) follows from the surjectivity of the mod-
13 cyclotomic character over Q, (b) holds because the image of complex
conjugation has these properties, (c) holds by [Dav11, Lemma 2.4], and (d)
is true by definition. One checks easily that all the groups H in class C

contain both

(
0 1
1 0

)
and

(
0 1
−1 0

)
, hence once again Proposition 3.4

(1) applies to show that 1 + 13Z13 ⊆ G13∞ , as desired.

Remark 3.17. Theorem 1.1 in the very recent preprint [BDM+21], combined
with [BC14], gives the finite list of j-invariants of non-CM elliptic curves E/Q
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for which G13 is contained (up to conjugation) in GS4
. For each of these elliptic

curves, the image of G13 in PGL2(F13) is isomorphic to S4: while this is not
necessary for our proof, it can be used to simplify the case ` = 13 of the previous
argument.

We also have a similar result in the CM case:

Proposition 3.18. Let E/Q be an elliptic curve with CM and let ` be a prime
number. Define

n′` =


3, if ` = 2

1, if ` = 3, 7, 11, 19, 43, 67, 163

0, if ` 6= 2, 3, 7, 11, 19, 43, 67, 163

The image G`∞ of the `-adic Galois representation attached to E/Q contains all
scalars congruent to 1 modulo `n

′
` . Moreover, for ` > 5 the image G`∞ contains

a scalar not congruent to ±1 (mod `).

Proof. Let K be the imaginary quadratic field of complex multiplication of E, let
∆K be its discriminant, and let OK,f be the endomorphism ring of EQ, seen as a
subring of OK (here f denotes the conductor of the order OK,f in OK). It is well-
known that there are 13 possible pairs (K, f), given by K = Q(i) and f = 1, 2,
K = Q(ζ3) and f = 1, 2, 3, K = Q(

√
−7) and f = 1, 2, and K = Q(

√
−d)

for d = 2, 11, 19, 43, 67, 163 with f = 1 (see for example [Sil94, Appendix A,
§3]). If ` - 2f∆K , then by [LR18, Theorem 1.2 (4) and Theorem 1.4] the `-
adic image G`∞ contains all scalars. If ` | f∆K and ` > 2, then G`∞ contains
Z×2
` by [LR18, Theorem 1.5]: notice that by the above this is only possible for

` = 3, 7, 11, 19, 43, 67, 163, and that for ` > 7 the group Z×2
` contains scalars not

congruent to ±1 (mod `). Finally, for ` = 2 we have by [LR18, Theorems 1.6,
1.7, 1.8] that G2∞ contains all scalars congruent to 1 modulo 8.

Remark 3.19. A slightly worse result can be obtained more easily (without the
need to distinguish cases) by applying [Lom17, Theorem 1.5].

3.5 Complements to Theorem 3.16

For future use, we record here the following modest strengthening of Theo-
rem 3.16:

Proposition 3.20. Let E/Q be a non-CM elliptic curve. Let ` ∈ {13, 17, 37}.
The image of the `-adic Galois representation attached to E/Q contains a scalar
λ with v`(λ

2 − 1) = 0.



78 CHAPTER 2. UNIFORM BOUNDS FOR ELLIPTIC CURVES OVER Q

Proof. By Corollary 3.2 it suffices to show that G` contains a scalar different
from ±1. For ` = 17, 37, this follows directly from the results of [Zyw15a] (specif-
ically, Theorem 1.10 and Proposition 1.13). For ` = 13, by Theorem 2.8 and the
fact that G13 has surjective determinant we know that G13 satisfies one of the
following:

1. G13 = GL2(F13): in this case the conclusion is obvious.

2. G13 is contained up to conjugacy in a Borel subgroup: by [Zyw15a, The-
orem 1.8], the possible groups that arise in this way all contain a scalar
different from ±1.

3. G13 is contained up to conjugacy in the normaliser of a (split or nonsplit)
Cartan subgroup: this is impossible by the main result of [BDM+19].

4. the projective image of G13 is isomorphic to a subgroup of S4 or A5: the
claim follows from Lemma 3.21 below.

Lemma 3.21. Let G be a subgroup of GL2(F13) having projective image isomor-
phic to a subgroup of S4 or A5. Suppose that det(G) = F×13: then G contains a
scalar different from ± Id.

Proof. The hypothesis implies that the cyclic group F×13 is a quotient of G, so
G contains an element of order 12. If the claim were false, the projection map
G→ PGL2(F13) would have kernel of order at most 2. The maximal order of an
element in S4 is 4, and in A5 is 5. It would follow that the maximal order of an
element in G is at most 10, contradiction.

4 Galois cohomology of torsion points

In this section we show that there exists a universal constant e > 0 such that, for
all elliptic curves E/Q and all positive integers M,N with N |M , the cohomology
group H1(Gal(QM | Q), E[N ]) is killed by multiplication by e (which we denote
by [e]). We also provide an explicit admissible value for e.

We begin by showing that it suffices to consider the cohomology groups
H1(G∞, E[N ]).

Lemma 4.1. Let E/K be an elliptic curve over a number field K and let M,N
be positive integers with N |M . Suppose that H1(G∞, E[N ]) is killed by [e]: then
H1(Gal(KM | K), E[N ]) is also killed by [e].
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Proof. Denote by H the kernel of the natural map G∞ → Gal(KM | K). As H
acts trivially on E[N ] by the assumption N | M , the inflation-restriction exact
sequence gives an injection of H1(G∞/H,E[N ]) = H1(Gal(KM | K), E[N ]) into
H1(G∞, E[N ]), and the claim follows.

On the other hand, if H1(Gal(KM | K), E[N ]) is killed by [e] for all M divis-
ible by N , passing to the limit in M we also obtain that [e] kills H1(G∞, E[N ]).
The statement we aim for is thus equivalent to saying that, for every E/Q and
positive integer N , the group H1(G∞, E[N ]) has finite exponent dividing e. Our
main tool for bounding the exponent of cohomology groups is the following lemma
(see for example [BR03, Lemma A.2] for a proof).

Lemma 4.2 (Sah’s Lemma). Let G be a profinite group, let M be a continuous
G-module and let g be in the centre of G. Then the endomorphism x 7→ gx − x
of M induces the zero map on H1(G,M). In particular, if x 7→ gx − x is an
isomorphism, then H1(G,M) = 0.

Remark 4.3. In our applications of Lemma 4.2 we will have G ⊆ GL2(R) for a

certain ring R – either Z` for some prime ` or Ẑ – and M will be a submodule of
(Q`/Z`)2

or (Q/Z)
2
. Notice that these objects carry a natural action of GL2(Z`)

and GL2(Ẑ) respectively. We will take g to be a scalar multiple of the identity,
that is, g = λ Id for some λ ∈ R×. The conclusion is then that the R-module
H1(G,M) is killed by λ − 1; when R = Z`, this is equivalent to saying that
H1(G,M) is killed by `v`(λ−1).

Generalising the results of [LW15] we now give a uniform result on the coho-
mology of torsion points of elliptic curves over Q for all powers of primes.

Theorem 4.4. Let ` be a prime number and let E/Q be a non-CM elliptic curve.
For every m > 1, the exponent of H1(G`∞ , E[`m]) divides `n` , where

n` :=


3 for ` = 2, 3,

1 for ` = 5, 7, 11,

0 for ` > 13 .

(4.1)

Proof. For ` > 2 we apply Lemma 4.2 (in the form of Remark 4.3) with g = λ Id,
where λ ∈ Z×` ∩ G`∞ is such that v`(λ − 1) = n`. Note that such a λ exists by
Theorem 3.16 and Proposition 3.20.

For ` = 2 the proof is based on the classification of all possible 2-adic images
provided by [RZB15], and is in part computational. As G2∞ is the inverse limit of
the groups G2n , it suffices to show that for all integers n > m > 1 the exponent of
H1(G2n , E[2m]) divides 8. If G2∞ contains a scalar λ with v2(λ−1) 6 3 the result
follows immediately from Lemma 4.2 as above, so let us assume that this is not
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the case. This leaves us with only 8 groups left, namely those with Rouse–Zureick-
Brown labels X238a, X238b, X238c, X238d, X239a, X239b, X239c, X239d. All
of these groups are the inverse images of their reduction modulo 25 and contain
17 Id. Let now ξ : G2n → E[2m] be a 1-cocycle and let λ ∈ G2n be the scalar 17 Id.
Notice that there is nothing to prove if m 6 3, so we may assume n > m > 4.
Reasoning as in the proof of Sah’s lemma, we observe that

ξ(λg) = ξ(gλ)⇒ (λ− 1)ξ(g) = g · ξ(λ)− ξ(λ).

This formula shows both that 16ξ is a coboundary, and that ξ(λ) is such that
g · ξ(λ)− ξ(λ) is divisible by 16 in E[2m]. Imposing this condition for g varying
in a set of generators of G2∞ (recall that we only have finitely many groups to
test) we obtain that ξ(λ) is divisible by 8. Let us write ξ(λ) = 8a for some
(non-unique) a ∈ E[2m]. As a consequence, we have that for every g ∈ G2n

8 · 2ξ(g) = g · ξ(λ)− ξ(λ) = 8(g · a− a).

Letting ψ be the coboundary g 7→ g ·a−a we then obtain that 2ξ is cohomologous
to the cocycle 2ξ − ψ, which by the above takes values in E[8]. A direct verifi-
cation, for which we give details below, shows that H1(G2n , E[8]) has exponent
dividing 4 for all n > 3. This implies in particular that 4 · (2ξ) : G2n → E[8]
is a coboundary, hence a fortiori 8ξ : G2n → E[2m] is also a coboundary, and
therefore [8] kills H1(G2n , E[2m]) as desired.

To check that H1(G2n , E[8]) has exponent dividing 4 we proceed as fol-
lows. Notice first that by Lemma 4.1 it suffices to show that [4] is zero on
H1(G2∞ , E[8]). On the other hand, consider an element g ∈ G2∞ that is the 8-th
power of an element h congruent to the identity modulo 8, and let ξ : G2∞ → E[8]
be any cocycle. As h acts trivially on E[8], the restriction of ξ to the subgroup
generated by h is a homomorphism, hence ξ(g) = ξ(h8) = 8ξ(h) = 0. This proves
that ξ factors via the finite quotient

G2∞/〈g8 : g ≡ Id (mod 8)〉.

For all the cases of interest we know from [RZB15] that G2∞ contains all matrices
congruent to 1 modulo 25, hence 〈g8 : g ≡ Id (mod 8)〉 contains all matrices
congruent to Id modulo 28. We are thus reduced to considering the group Q :=
G28/〈g8 : g ≡ Id (mod 8)〉 and checking that the exponent of H1(Q,E[8]) divides
4, which we do by explicit computations in MAGMA.

In order to bound the exponent of H1(G∞, E[N ]) we will apply the following
technical result, which is worth stating in a general form.

Proposition 4.5. Let G∞ be a closed subgroup of GL2(Ẑ) and for every prime
` denote by G`∞ the projection of G∞ in GL2(Z`). Let J` be the kernel of the
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projection G∞ → GL2(Z`) and J` be the image of J` in
∏
p prime GL2(Fp). Fi-

nally let T be any G∞-submodule of (Q/Z)2. Assume that for every prime ` there
are a positive integer a` and non-negative integers n`,m` such that the following
hold:

1. For all but finitely many primes ` we have v`(a`) = n` = m` = 0.

2. For every prime ` the exponent of H1(G`∞ , T [`∞]) divides `n` .

3. For every prime ` there is a scalar g` ∈ G`∞ such that v`(g` − 1) 6 m`.

4. For every prime ` and every x ∈ J` the image of [g̃`, x
a` ] in J` is contained

in [J`, J`] for some lift g̃` ∈ G∞ of g`, where g` is as above.

The cohomology group H1(G∞, T ) has finite exponent dividing
∏
` `
n`+m`+v`(a`).

Proof. We will write elements x of G∞ as sequences (xp)p indexed by the prime
numbers p, where each xp is in GL2(Zp). Denoting the `-part of T by T [`∞] we
have

T =
⊕
`

T [`∞]

and since cohomology of profinite groups commutes with direct limits (see [Har20,
Proposition 4.18]), hence with direct sums, we get

H1(G∞, T ) ∼=
⊕
`

H1(G∞, T [`∞]).

Fix now a prime `. The inflation-restriction exact sequence for J` / G∞ gives

0→ H1
(
G`∞ , T [`∞]J`

)
→ H1 (G∞, T [`∞])→ H1(J`, T [`∞])G`∞ . (4.2)

Since J` acts trivially on T [`∞] we have

T [`∞]J` = T [`∞] and H1(J`, T [`∞]) = Hom(J`, T [`∞]),

and the action of G`∞ on the latter group is given, for every g ∈ G`∞ , every
ϕ ∈ Hom(J`, T [`∞]) and every x ∈ J`, by

(gϕ)(x) = gϕ(g̃−1xg̃)

where g̃ ∈ G∞ is any element mapping to g in G`∞ (see for example [Ros95,
Theorem 4.1.20]). By assumption, the cohomology group H1(G`∞ , T [`∞]J`) is
killed by `n` .
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Since every element of T [`∞] has order a power of ` and the kernel of the
quotient map J` → J` is contained in the product of pro-p groups for p 6= `,
every group homomorphism from J` to T [`∞] factors via J`. Moreover, since
T [`∞] is abelian, we have

Hom(J`, T [`∞]) = Hom(J
ab

` , T [`∞]) .

Assume now that ϕ ∈ Hom(J`, T [`∞]) is G`∞-invariant. For every x ∈ J`
and any lift g̃` ∈ G∞ of g` such that [g̃`, x

a` ] ∈ [J`, J`] (hence in particular
ϕ([g̃`, x

a` ]) = 0) we have

a`ϕ(x) = ϕ(xa`) = (g`ϕ)(xa`) = g`ϕ(g̃−1
` xa` g̃`) = a`g`ϕ(x),

so we get a`(g`−1)ϕ(x) = 0. Since v`(g`−1) 6 m` we have that Hom(J`, T [`∞])G`∞

is killed by `m`+v`(a`). From these estimates and the exact sequence (4.2) we con-
clude that the exponent of H1(G∞, T ) divides∏

`

`n`+m`+v`(a`) ,

as required.

Remark 4.6. If, in the previous proposition, one does not assume that g` be
a scalar, the conclusion still holds by letting m` be a non-negative integer such
that v`(det(g` − Id)) 6 m`. This may be established by a slight variation of
the argument above: we only need to notice that a`(g` − Id)ϕ(x) = 0 implies
a` det(g` − Id)ϕ(x) = 0 (this can be seen for example by multiplying by the
adjoint of g` − Id). The more specialised statement given above will allow us to
obtain better numerical constants at the end.

Lemma 4.7. Let G be a subgroup of GL2(Ẑ), let G be the image of G under the

quotient map GL2(Ẑ)→
∏
` prime GL2(F`), and let p > 5 be a prime. If PSL2(Fp)

occurs in G (see §2.3), then G contains SL2(Fp)×
∏
` 6=p {1}.

Proof. Consider the kernel N of the quotient map G →
∏
` GL2(F`). Every

composition factor of N is abelian, and a composition factor of G that does not
occur in N must occur in G. In particular, since PSL2(Fp) is simple and non-
abelian, it must occur in G. Consider now the projection G →

∏
` 6=p GL2(F`)

and let N ′ be its kernel: since PSL2(Fp) does not occur in GL2(F`) for ` 6= p,
it must occur in N ′. Then by [Ser97, IV-25] we must have that G contains
SL2(Fp)×

∏
` 6=p {1}.

We now come to our main result on the Galois cohomology of elliptic curves
over Q.



4. GALOIS COHOMOLOGY OF TORSION POINTS 83

Theorem 4.8. Let E be a non-CM elliptic curve over Q and let N be a positive
integer. The cohomology group

H1(Gal(Q(Etors) | Q), E[N ])

has finite exponent dividing

e := 212 × 38 × 53 × 73 × 112 .

Proof. After fixing an isomorphism Etors
∼= (Q/Z)2, let G∞ ⊆ GL2(Ẑ) be the

image of the adelic Galois representation associated with E/Q and let G`∞ , J`
and J` be as in the statement of Proposition 4.5. For every prime ` we let n` be as
in Equation (4.1) and λ` ∈ G`∞ be a scalar such that v`(λ`−1) = n`+v`(2) and,
for ` > 13, such that λ2

` 6≡ 1 (mod `). The elements λ` exists by Theorem 3.16
and Proposition 3.20. Let g ∈ G∞ be an element whose `-component is λ` and
set g̃` := g2. Finally, let

a` = lcm {exp PGL2(Fp) | p ∈ T0, p 6= `}

and m` = n`+v`(4). We now check that these choices satisfy all the assumptions
of Proposition 4.5, with T = E[N ]. Clearly v`(a`) = n` = m` = 0 for all but
finitely many primes `, and one checks that v`(λ`

2 − 1) = m` for all primes `.
Theorem 4.4 shows that H1(G`∞ , T [`∞]) is killed by `n` . It only remains to check
property (4), that is, we wish to prove that for every x = (xp)p ∈ J` the image
h of h = [g̃`, x

a` ] in J` is contained in [J`, J`]. To see this, notice first of all
that the `-component of h in J` is trivial, since x` = 1. The p-component of h
is trivial for every prime p ∈ T0, because xa`p ∈ GL2(Fp) is a scalar (its image

in PGL2(Fp) is trivial). Moreover, the p-component of h is also trivial for every
prime p 6∈ T0 such that Gp is contained in the normalizer of a Cartan subgroup.
To see this, notice that a` is even and the p-component of g̃` is a square (since
g̃` itself is a square), so that both (g̃`)p and xa` belong to the Cartan subgroup
itself, which is abelian.

For all other primes p, the mod-p Galois representation is surjective. Indeed
by Theorem 2.9 we know that Gp acts irreducibly on E[p] (since p 6∈ T0), by
[Maz77, p. 36] we know that Gp is not contained in an exceptional subgroup, and
by assumption Gp is not contained in the normaliser of a Cartan subgroup. By
Theorem 2.8 we then obtain SL2(Fp) ⊆ Gp, so in particular PSL2(Fp) occurs in
G∞. Since by [Ser97, p. IV-25] it cannot occur in G`∞ , which is a subgroup of
GL2(Z`), it must occur in J`. Then by Lemma 4.7, applied to G = J`, we have
that Sp := SL2(Fp)×

∏
q 6=p {1} is contained in J` for such primes p.

For each prime p, let Hp be the trivial group if p is in T0, if ρp is not surjective,
or if p = `, and let Hp = SL2(Fp) otherwise. By the above, we have (h)p = Id ∈
Hp for p = `, for all p ∈ T0, and for all p such that ρp is not surjective, and
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(h)p ∈ Hp = SL2(Fp) for all other p. We now show that [J`, J`] contains
∏
pHp.

This product is topologically generated by the groups Sp for p 6∈ T0∪{`} such that
the mod-p representation attached to E is surjective, so it suffices to show that
the closed subgroup [J`, J`] contains Sp for every such p. This follows from the
fact that SL2(Fp) is a perfect group, that is it coincides with its own commutator
subgroup, so [J`, J`] ⊇ [Sp, Sp] = Sp. Thus we get h ∈

∏
pHp ⊆ [J`, J`].

We have then checked all the hypotheses needed to apply Proposition 4.5,
and we conclude by noting that

v`(a`) =


4 if ` = 2,

2 if ` = 3,

1 if ` = 5, 7,

0 if ` > 11.

In the CM case we can say something much stronger: we prove a bound that is
valid for all number fields and only depends on the degree of the field of definition
of the elliptic curve.

Theorem 4.9. Let K be a number field of degree d and let E/K be an elliptic
curve such that EK has CM by an order R in the quadratic imaginary field F .
Let h = #R× ∈ {2, 4, 6} and g = [FK : K] ∈ {1, 2}. For every prime `, let
e` = mina∈Z×`

v`(a
hd − 1). Then e` is finite for all primes ` and zero for all but

finitely many `, and the exponent of the cohomology group H1(G∞, T ) divides
g
∏
` `
e` for all Galois submodules T of Etors.

Proof. Let H = Gal(K∞ | KF ), so that H is a subgroup of G∞ of index g (recall
that the field of complex multiplication is contained in K∞). Let Cor and Res
denote respectively the corestriction map from H1(H,−) to H1(G∞,−) and the
restriction map from H1(G∞,−) to H1(H,−). As is well-known, one has the
equality Cor ◦ Res = [g]. Let e be the exponent of H1(G∞, T ) and e′ be the
exponent of H1(H,T ). Observe now that [e′] is zero on H1(H,T ), so one gets

[ge′] = [e′] ◦ Cor ◦ Res = Cor ◦ [e′] ◦ Res = Cor ◦ [0] = [0]

on H1(G∞, T ). Thus the exponent of this latter group divides ge′; it now suffices
to bound e′.

By the theory of complex multiplication the Galois group H is abelian. We
identify this group with a subgroup of

∏
` GL2(Z`), and regard g ∈ H as a

collection (g`)` of elements in GL2(Z`). Since H is abelian, Lemma 4.2 applies
to any (g`)` ∈ H, so H1(H,T ) is killed by (g` − 1)`. Writing H1(H,T ) =
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⊕
`H

1(H,T [`∞]), we see that each direct summand H1(H,T [`∞]) (which is the
pro-` part of H1(H,T )) is killed by g` − 1 for every (g`)` ∈ H.

Let now H`∞ be the projection of H to GL2(Z`), or equivalently the image
of the `-adic representation attached to E/FK. We know from [Lom17, Theo-
rem 6.6] (or [BC20a, Theorem 1.1(a)]) that H`∞ is contained in (R ⊗ Z`)×, and
that [(R⊗Z`)× : H`∞ ] | h2 [FK : Q]. Notice that [Lom17, Theorem 6.6] only gives
an inequality, but it is clear from the proof that we actually have divisibility. In
particular, [Z×` : Z×` ∩ H`∞ ] divides h

2 [FK : Q], so for every a ∈ Z×` the scalar

ah[FK:Q]/2 is in H`∞ , and multiplication by ah[FK:Q]/2−1 kills H1(H,T [`∞]). No-
tice that h[FK : Q]/2 divides hd, so the same statement holds with ah[FK:Q]/2−1
replaced by ahd − 1. As H1(H,T [`∞]) is a (pro-)` group, this shows that the ex-
ponent of H1(H,T [`∞]) is finite and divides `e` . Finally, for `−1 > hd, choosing
a that is a primitive root modulo ` gives v`(a

hd − 1) = 0, hence e` = 0 and
H1(H,T [`∞]) is trivial for all such primes. The theorem now follows from the
fact that the exponent e′ of H1(H,T ) is the least common multiple of the expo-
nents of the groups H1(H,T [`∞]) as ` varies among the primes.

In the special case K = Q we may further improve the previous result.

Proposition 4.10. Let E/Q be an elliptic curve such that EQ has CM. The expo-

nent e of the cohomology group H1(G∞, T ) divides 22 ·3 for all Galois submodules
T of Etors.

Proof. Let F be the field of complex multiplication of E, let O be the endo-
morphism ring of EF , and let H = ρ∞(Gal(F/F )), considered as a subgroup of

GL2(Ẑ). There are inclusions Ẑ× ∩ H ⊆ H ⊆ (O ⊗ Ẑ)×, and [Ẑ× : Ẑ× ∩ H] 6
[(O⊗ Ẑ)× : H]. Suppose first j 6∈ {0, 1728}. Then [(O⊗ Ẑ)× : H] 6 2 by [BC20a,

Corollary 1.5], hence [Ẑ× : Ẑ× ∩H] 6 2. This implies easily that H (hence G∞)

contains an element λ = (λ`) ∈
∏
` Z
×
` = Ẑ× with v2(λ2 − 1) 6 2, v3(λ3 − 1) 6 1

and v`(λ`−1) = 0 for all ` > 5 (for ` = 2 notice that a subgroup of index at most

2 of Ẑ× cannot be trivial modulo 8). The claim in this case thus follows from
Lemma 4.2. When j ∈ {0, 1728} the argument is similar, but one also needs to
rely on the classification of the possible `-adic images of Galois for ` 6 7 provided
by [LR18]. We give some more details for ` = 2, the other cases being similar
and easier.

Suppose that all the scalars λ = (λ`) in H ∩ Ẑ× satisfy v2(λ2 − 1) > 3. Then

[Ẑ× : Ẑ× ∩ H] is a multiple of 4, which (since Ẑ× is a normal subgroup of H)

implies 4 | [(O⊗Ẑ)× : H]. Due to [BC20a, Corollary 1.5] this must be an equality,
and we must have O = Z[i] and j = 1728. On the other hand, from the proof of
Theorem 4.9 we know that the 2-part of the exponent of H1(G∞, T ) is at most
twice the 2-part of the exponent of H1(H,T ), so if the latter is not divisible by 4
we are already done. Moreover, 4 can divide this exponent only if all the scalars
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in ρ2∞(Gal(F/F )) are congruent to 1 modulo 4. By [LR18, Theorem 1.7], this

implies that [(O⊗Z2)× : ρ2∞(Gal(F/F ))] = 4. Combined with [(O⊗Ẑ)× : H] =
4, this shows that H is the product ρ2∞(Gal(F/F )) ×

∏
`>3(O ⊗ Z`)×. By

[LR18, Theorem 1.7] again, the factor ρ2∞(Gal(F/F )) contains a scalar λ2 with
v2(λ2 − 1) = 2. Since H is the above direct product, we obtain that H (hence
G∞) contains (λ2,−1,−1, . . .). Applying Sah’s lemma to this element then shows
that the 2-part of the exponent of H1(G∞, T ) divides 4.

To conclude this section we discuss the case of Serre curves, namely those
elliptic curves over Q for which [GL2(Ẑ) : G∞] is minimal (hence equal to 2,
see [Ser72]). It is known that, when ordered by height, 100% of elliptic curves
over Q are Serre curves [Jon10], so our next theorem describes the ‘generic’
situation. The proof combines many of the same ingredients that already appear
in Theorems 4.8 and 4.4.

Theorem 4.11. Suppose E/Q is a Serre curve. For every Galois submodule T
of Etors we have

H1(G∞, T ) =

{
Z/2Z, if T [2] 6= {0}
{0}, if T [2] = {0}.

Proof. The description of Serre curves given in [Jon10, Section 5] implies that G∞
contains SL2(Ẑ). We will make use of two special elements of SL2(Ẑ) ⊂ G∞: one

is − Id, while the other is h = (h2, Id, Id, . . .), where h2 =

(
0 −1
1 −1

)
∈ SL2(Z2).

Notice that h2 − Id is invertible over Z2. Let ξ : G∞ → Etors be any cocycle and
let g ∈ G∞ be arbitrary. We have the equality

ξ(− Id)− ξ(g) = ξ((− Id) · g) = ξ(g · (− Id)) = ξ(g) + gξ(− Id).

Choosing g = h gives −2ξ(h) = (h− Id) · ξ(− Id) in T =
⊕

` T [`∞]. Taking into
account that the 2-adic component of h− Id is invertible, while multiplication by
2 is invertible on T [`∞] for each ` > 2, we obtain that ξ(− Id) is divisible by 2 in
T . Writing ξ(− Id) = −2a for some a ∈ T we then have 2(ξ(g)− (g · a− a)) = 0,
that is, the cocycle ξ is cohomologous to the cocycle g 7→ ξ(g)− (g · a− a) with
values in T [2].

We have thus shown that the natural map H1(G∞, T [2]) → H1(G∞, T ) is
surjective. It is also injective, as one sees by taking the cohomology of the ex-
act sequence 0 → T [2] → T → 2T → 0 and observing that H0(G∞, T ) =
H0(G∞, 2T ) = (0). Hence H1(G∞, T ) = H1(G∞, T [2]). We now describe this
group. Let N = ker(G∞ → G2∞), so that G∞/N ∼= G2∞ = GL2(Z2). The
inflation-restriction sequence yields

0→ H1(G/N, T [2])→ H1(G∞, T [2])→ H1(N,T [2])G∞ ,
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so it suffices to show that H1(GL2(Z2), T [2]) is either trivial or isomorphic to
Z/2Z according to whether T [2] is trivial or not, while H1(N,T [2])G∞ vanishes.
We prove the latter statement first. Since N acts trivially on T [2] by construction
we have H1(N,T [2])G∞ = Hom(N,T [2])G∞ . The conjugation action of h ∈ G∞
on N is trivial (the only nontrivial coordinate of h is h2, while elements of N have
trivial 2-adic component), so a homomorphism ϕ ∈ Hom(N,T [2]) is h-invariant
if and only if for all n ∈ N we have ϕ(n) = (hϕ)(n) = h · ϕ(h−1nh) = h · ϕ(n).
Since h acts on T [2] via h2, which has no nonzero fixed points on T [2], this
implies that the only h-invariant homomorphism N → T [2] is the trivial one.
Thus H1(N,T [2])G∞ vanishes as claimed. Finally consider H1(GL2(Z2), T [2]).
Notice that T [2] is a Galois submodule of E[2], so we either have T [2] = E[2]
or T [2] = {0}. In the latter case the cohomology group certainly vanishes, so
we can assume T [2] = E[2]. As in the proof of Theorem 4.4, every cocycle
GL2(Z2) → E[2] factors via GL2(Z2)/〈g2 : g ≡ Id (mod 2)〉, hence in particular
via GL2(Z/8Z). Thus it suffices to check that H1(GL2(Z/8Z), E[2]) = Z/2Z,
which is easy to do directly with the help of a computer algebra sofware.

5 The algebra Z`[G`∞]

Following the strategy suggested by [Chapter 1, Proposition 4.12], in order to
study the degrees of Kummer extensions in the next section we now study the
algebra A = Z`[G`∞ ], by which we mean the closed subalgebra of Mat2×2(Z`)
generated by G`∞ ⊆ Mat2×2(Z`). The hardest case is when the action of G` on
E[`] is reducible, and to handle this situation we rely on the following general
estimate for A.

Proposition 5.1. Let E be an elliptic curve over a number field K having at
least one real place. Let ` > 2 be a prime number. Suppose that G` acts reducibly
on E[`] and let `m be the maximal degree of an `-power cyclic isogeny E → E′

defined over K. The algebra A = Z`[G`∞ ] contains `m Mat2×2(Z`).

Proof. We claim that there exists a basis of T`E with respect to which G`∞ con-

tains

(
1 0
0 −1

)
. To see this, let τ ∈ Gal(K/K) be a complex conjugation,

corresponding to a real embedding K ↪→ R (one exists by assumption), and let
h = ρ`∞(τ). Then we have h2 = Id and deth = χ`∞(τ) = −1, which implies that
the eigenvalues of h are ±1. It follows that h can be diagonalised over Q`, and
also over Z` since its eigenvalues are distinct modulo ` 6= 2. As the conclusion
of the proposition is independent of the choice of basis, we may assume that

h = ρ`∞(τ) =

(
1 0
0 −1

)
∈ A. It follows that E11 :=

(
1 0
0 0

)
= 1

2 (1 + h)
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and E22 :=

(
0 0
0 1

)
= 1

2 (1− h) are in A. By assumption, E does not admit a

cyclic isogeny of degree `m+1 defined over K. In terms of the matrix representa-
tion of the Galois action, this implies in particular that G`∞ contains a matrix
M1 whose coefficient in position (2, 1) is nonzero modulo `m+1 (for otherwise,

〈
(

1
0

)
〉 ⊂ (Z/`m+1Z)2 ∼= E[`m+1] would be a Galois-stable cyclic subgroup of

order `m+1), and similarly it also contains a matrix M2 whose (1, 2)-coefficient is

nonzero modulo `m`+1. Thus we have E22M1E11 =

(
0 0
a 0

)
with v`(a) 6 m and

E11M2E22 =

(
0 b
0 0

)
with v`(b) 6 m. The four matrices E11, E22, E22M1E11

and E11M2E22 are all in A, and their Z`-span contains `m Mat2×2(Z`).

Remark 5.2. The exponent m is optimal. Indeed, if E admits a K-rational
isogeny of degree `m, choosing a suitable basis of T`E we can ensure that G`m

consists of upper-triangular matrices. In particular, the (2,1)-coefficient of all
matrices in Z`[G`∞ ] is divisible by `m, so that the result cannot be improved.

We also give a variant of the previous result for ` = 2. Notice that in this
case we do not require that E[2] be reducible.

Proposition 5.3. Let E be an elliptic curve over a number field K having at
least one real place. Let 2m be the maximal degree of a 2-power cyclic isogeny
E → E′ defined over K (including m = 0 if there are no such isogenies). The
algebra A = Z2[G2∞ ] contains 2m+1 Mat2×2(Z2).

Proof. Let τ ∈ Gal(K | K) be a complex conjugation. There is a basis of
T2E whose first element is fixed by ρ2∞(τ): indeed, τ fixes all torsion points in
E(R), whose identity component is isomorphic to the circle group, hence con-
tains a compatible family of 2n-torsion points. It follows easily that ρ2∞(τ) is

GL2(Z2)-conjugate to either

(
1 0
0 −1

)
or

(
1 1
0 −1

)
. In the first case one may

reason as in Proposition 5.1 to obtain that Z2[G2∞ ] contains 2E11, 2E22, 2E22M1,
and 2M2E22, hence that it contains 2m+1 Mat2×2(Z2). In the second case, sup-
pose first that G2 acts on E[2] with a fixed point P , which is necessarily the
first 2-torsion point in the given basis of E[2] ∼= T2E/2T2E. Let E → E′ be
the 2-isogeny with kernel 〈P 〉. The 2-adic representations attached to E,E′

differ by conjugation by

(
2 0
0 1

)
. The 2-adic representation attached to E′

maps τ to

(
1 2
0 −1

)
, which is GL2(Z2)-conjugate to

(
1 0
0 −1

)
. More-

over, the maximal degree of a 2-power isogeny E′ → E′′ is at most 2max{m−1,1}
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The previous arguments then apply to E′, hence the corresponding algebra A′

contains 2max{m−1,1}+1 Mat2×2(Z2). Conjugating back we find that A contains
2max{m,2}+1 Mat2×2(Z2), and a direct check for m = 1 finishes the proof in this

case. Finally, if ρ2∞(τ) =

(
1 1
0 −1

)
and E[2] is an irreducible Galois mod-

ule (hence m = 0), then G2 = GL2(F2) (notice that #G2 is even since ρ2(τ)
is nontrivial). This implies G2 = GL2(F2), from which it follows that the re-
duction modulo 2 of A is all of Mat2×2(F`). By Nakayama’s lemma we obtain
A = Mat2×2(Z2).

For the irreducible case (and ` > 2) we rely instead on the following two
observations. The first one is well-known (see for example [BJR91, Remark after
Theorem 2]); it is usually stated for elliptic curves over Q, but – as in the previous
propositions – it only depends on the number field having a real place.

Lemma 5.4. Let K be a number field having at least one real place, ` > 2 be
a prime number, E/K be an elliptic curve, and G` ⊆ GL2(F`) be the image of
the mod-` Galois representation. The action of G` on E[`] is either reducible or
absolutely irreducible.

Corollary 5.5. Let K be a number field having at least one real place, ` > 2 be
a prime number, and E/K be an elliptic curve. If E[`] is an irreducible Galois
module, then the algebra A = Z`[G`∞ ] is all of Mat2×2(Z`).

Proof. Let A ⊆ Mat2×2(F`) be the image of A under reduction modulo `. By
Nakayama’s lemma, it suffices to prove that A = Mat2×2(F`). Notice that A =
F`[G`]. AsG` acts irreducibly on E[`] ∼= F2

` by assumption, Lemma 5.4 shows that

it also acts irreducibly on E[`]⊗F` F`, hence the natural module F`
2

for A⊗F` F`
is irreducible. By [EGH+11, Theorem 3.2.2] we obtain A ⊗F` F` = Mat2×2(F`),
which implies A = Mat2×2(F`).

We now specialise to the case K = Q. For ` = 2 we have the following.

Proposition 5.6. Let E be an elliptic curve over Q. The algebra Z2[G2∞ ] con-
tains 24 Mat2×2(Z2), and if E has potential complex multiplication it also contains
23 Mat2×2(Z2).

Proof. If E does not have complex multiplication over Q we can check the claim
directly by a short computer calculation, looping over all subgroups of GL2(Z2)
that can arise as the image of the 2-adic representation (the list of such groups
is known as a consequence of the results in [RZB15]). If E has CM over Q, then
every 2-power isogeny E → E′ defined over Q has degree dividing 4 (see for
example [BC20b, Remark 5.2]). It follows from Proposition 5.3 that A contains
23 Mat2×2(Z2).
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Remark 5.7. The result is optimal. This follows from [RZB15] in the non-CM
case, while in the CM case it suffices to consider an elliptic curve with CM by
Z[
√
−4], see [LR18, Theorem 1.6].

We are now ready to obtain a uniform lower bound on the algebra A.

Theorem 5.8. Let E be an elliptic curve over Q and let ` be a prime number.
Set

mnon-CM,` =


4, if ` = 2

2, if ` = 3, 5

1, if ` = 7, 11, 13, 17, 37

0, otherwise

mCM,` =


3, if ` = 2, 3

1, if ` = 7, 11, 19, 43, 67, 163

0, otherwise

and m` = mCM,` or m` = mnon-CM,` according to whether or not EQ has CM.
The algebra A = Z`[G`∞ ] contains `m` Mat2×2(Z`).

Proof. The case ` = 2 is covered by Proposition 5.6. If ` 6∈ T0 ∪ {19, 43, 67, 163}
(or just ` 6∈ T0 if E is not CM), by Theorem 2.9 the curve E does not admit any
rational subgroup of order `, so E[`] is irreducible as a G`-module and we can
apply Corollary 5.5. For the remaining cases we apply Proposition 5.1, reading
from [Ken82, Theorem 1] the maximal degrees of cyclic isogenies of `-power de-
gree. Notice that isogenies of degree 33 are possible only for CM elliptic curves,
see [Ogg73, p. 229]. Also notice that `-isogenies between rational CM elliptic
curves are only possible for ` ∈ {2, 3, 7, 11, 19, 43, 167}, as follows for example
from [BC20b, §5].

6 Kummer degrees

Let E be an elliptic curve over a number field K and let α ∈ E(K) be a point of
infinite order. We give a brief description of the construction of the Kummer ex-
tensions of K attached to (E,α), and refer the reader to [Chapter 1, Section 2.3],
[JR10, Section 3], [BP21], or [LP21] for more details.

Let (M,N) be either a pair of positive integers with N | M , or (∞, N) with
N a positive integer. We define KM,N as the extension of KM generated by the
coordinates of all points β ∈ E(K) such that Nβ = α. The homomorphism

κM,N : Gal(K | KM ) → E[N ]
σ 7→ σ(β)− β (6.1)

is independent of the choice of β ∈ E(K) such that Nβ = α, and has kernel
Gal(K | KM,N ), hence identifies Gal(KM,N | KM ) with a subgroup of E[N ]. We
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will also need to pass to the limit in N : if ` is a prime number, we denote by
K∞,`∞ the extension of K∞ generated by the coordinates of the points β ∈ E(K)
that satisfy `nβ = α for some n > 0. Similarly, we write K∞,∞ for the extension
of K∞ generated by the coordinates of the points β ∈ E(K) that satisfy Nβ = α
for some N > 1. Passing to the limit in N in Equation (6.1) we obtain an
identification of Gal(K∞,`∞ | K∞) with a Z`-submodule V`∞ of T`E ∼= Z2

` , and

of Gal(K∞,∞ | K∞) with a Ẑ-submodule V∞ of TE ∼= Ẑ2. We remark that V`∞

is the projection of V∞ to Z2
` , and since V`∞ is a pro-` group and there are no

nontrivial continuous morphisms from a pro-` group to a pro-`′ group for ` 6= `′

we have V∞ =
∏
` V`∞ . Finally, we recall the following fact, which will be crucial

in our applications.

Lemma 6.1 ([Chapter 1, Lemma 2.5]). For every prime `, the Z`-module V`∞ ⊆
Z2
` is also a module for the natural action of G`∞ ⊆ GL2(Z`) on Z2

` .

We are interested in studying the degrees

[KM,N : KM ] (6.2)

as the positive integers N | M vary. As explained above, the Galois group
Gal(KM,N | KM ) is isomorphic to a subgroup of E[N ], which has order N2, so
the ratio

N2

[KM,N : KM ]
(6.3)

is an integer. It is well-known that (6.3) is bounded independently of the integers
M and N (see for example [Ber88, Théorème 1], [Hin88, Lemme 14], or [Rib79]).
In [Chapter 1] we have shown that, if K = Q and the image of α in the free
abelian group E(K)/E(K)tors is not divisible by any n > 1, this ratio can be
bounded independently also of E and α. We will now provide an explicit value
for this bound.

Remark 6.2. It is immediate to check that the ratio (6.3) divides
N2

[K∞,N : K∞] ’

which in turn divides the index of V∞ in Ẑ2.

Lemma 6.3. Let E be an elliptic curve over a number field K and let α ∈ E(K)
be a point whose image in the free abelian group E(K)/E(K)tors is not divisible
by any n > 1. Let e be a positive integer such that, for all positive integers N ,
the group H1(G∞, E[N ]) has exponent dividing e. For every prime ` the group
V`∞ contains an element of `-adic valuation at most v`(e).

Proof. This follows immediately from [Chapter 1, Lemma 7.8(1)] since for any
positive integers M,N with N | M the exponent of H1(GM , E[N ]) divides e
(Lemma 4.1).
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Lemma 6.4. Let E be an elliptic curve over a number field K and let α ∈ E(K).
Suppose that V`∞ contains an element v of `-adic valuation at most d and that
Z`[G`∞ ] ⊇ `n Mat2×2(Z`) for some non-negative integer n. Then [T`E : V`∞ ]
divides `n+2d.

Proof. We may assume without loss of generality that v has exact valuation d.

Up to a choice of isomorphism T`E ∼= Z2
` we may then further assume v = `d

(
1
0

)
.

The Z`[G`∞ ]-module V`∞ contains `n Mat2×2(Z`) ·v, hence in particular contains

`n+d

(
0
1

)
, and the claim follows immediately.

Theorem 6.5. Let E be an elliptic curve defined over Q and let

Bnon-CM := (224 × 316 × 56 × 76 × 114)× (24 × 32 × 52 × 7× 11× 13× 17× 37)

BCM := (24 × 32)× (23 × 33 × 7× 11× 19× 43× 67× 163).

Set B = BCM or B = Bnon-CM according to whether or not EQ has complex
multiplication. For all positive integers M and N with N | M the ratio (6.3)
divides B.

Proof. Let e be a positive integer such that [e] kills H1(G∞, E[N ]) for all positive
integers N . For every prime ` let m` be a non-negative integer such that Z`[G`∞ ]
contains `m` Mat2×2(Z`). As explained above, the ratio (6.3) divides

[Ẑ2 : V∞] =
∏
`

[Z2
` : V`∞ ] ,

and by Lemmas 6.3 and 6.4 we have that

[Z2
` : V`∞ ] divides `m`+2v`(e).

The conclusion then follows by taking e as in Theorem 4.8 (for the non-CM case)
or as in Proposition 4.10 (for the CM case), and m` as in Theorem 5.8.

Remark 6.6. Taking into account Remark 3.15, one can take v3(e) = 6 instead
of 8 in Theorem 4.8, so that the exponent of 3 in Bnon-CM can be improved from
18 to 14.

7 Examples

In this short section we give examples showing that most of our results are sharp
or close to being sharp. We start with Theorems 4.4 and 4.8. For every positive
integer N we have an exact sequence of Gal(Q | Q)-modules

0→ E[N ]→ Etors
[N ]−−→ Etors → 0,
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and taking Galois cohomology we get

0→ E(Q)tors

NE(Q)tors
→ H1(G∞, E[N ])→ H1(G∞, Etors)[N ]→ 0.

As it is well-known that there exist elliptic curves over Q with torsion points of
order 23, 32, 5, 7, taking N equal to each of these numbers in turn shows that the
constant of Theorem 4.8 has to be divisible at least by 23 · 32 · 5 · 7. Moreover,
by [LW15, Theorem 1] we know that there exists an elliptic curve E/Q with
H1(G11, E[11]) 6= 0. Thus in particular all the primes appearing in the constant
of Theorem 4.8 are necessary. A simple variant of this argument, working with
E[`∞] instead of Etors, also shows that Theorem 4.4 is optimal at least for ` 6= 3.
As already remarked in the introduction we do not seek to obtain the best possible
value for ` = 3, but in any case our estimate is not far from sharp: the previous
argument shows that the optimal value of n3 is at least 2, while Theorem 4.4
shows that 3 suffices.

Consider now the CM case and Proposition 4.10. The elliptic curve with
LMFDB label 27.a2 [LMF22, 27.a2] admits a rational 3-torsion point and no
other 3-isogenies defined over Q, hence it satisfies the hypotheses of [LW15, The-
orem 1], which proves that for this curve H1(G3, E[3]) 6= 0. Thus the factor 3 in
Proposition 4.10 is necessary. As for the power of 2, the curve with LMFDB label
32.a2 [LMF22, 32.a2] has potential CM and a rational 4-torsion point, which as
above shows that H1(G2∞ , E[4]) has exponent 4. Thus Proposition 4.10 is sharp.

Finally we turn to the primes that can appear in the ratio of Equation (6.3).
In order to find examples where a given prime ` divides the degree (6.3) we
proceed as follows. Let E/Q be a rational elliptic curve and let P ∈ E(Q) be a
point not divisible by any n > 1 in E(Q)/E(Q)tors. For a fixed prime ` > 2, we
write the multiplication by ` map as

[`](x, y) =

(
φ`(x)

ψ`(x)2
,
ω`(x, y)

ψ`(x)3

)
as in [Sil09, Exercise 3.7] and consider the polynomial g(x) = φ`(x)−x(P )ψ`(x)2 ∈
Q[x]. Suppose that this polynomial has an irreducible factor g1(x) ∈ Q[x] of de-

gree strictly less than `2

2 (equivalently, for ` > 2, that g(x) is reducible), and let
L be the field generated over Q by a root x1 of g1(x). Over an at most quadratic
extension L′ of L, the elliptic curve E admits a point Q with x-coordinate equal

to x1. It follows that [`]Q =
(
φ`(x1)
ψ`(x1)2 , y([`]Q)

)
= (x(P ), y([`]Q)) = ±P , because

the only two points on E with x-coordinate equal to x(P ) are ±P . In particular,
at least one `-division point of P (namely ±Q) is defined over L′, which has
degree strictly less than `2 over Q. Since all `-division points of P are obtained
from ±Q by adding a `-torsion point, the field Q`,` is the compositum of L′ and

https://www.lmfdb.org/EllipticCurve/Q/27/a/2
https://www.lmfdb.org/EllipticCurve/Q/32/a/2
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` E LMFDB Label P

2 y2 + xy + y = x3 − x2 − 41x+ 96 117.a3 (2,−6)

3 y2 + y = x3 + x2 − 7x+ 5 91.b2 (−1, 3)

5 y2 = x3 − x2 − x− 1 704.c3 (2, 1)

7 y2 + xy = x3 − x2 − 389x− 2859 338.c1 (26, 51)

11 y2 + xy + y = x3 − x2 − 32693x− 2267130 1089.c1 (212, 438)

13 y2 + y = x3 − 8211x− 286610 441.a1 (235, 3280)

17 y2 + xy + y = x3 − x2 − 27365x− 1735513 130050.gu2 ( 4047
4

, 249623
8

)

37 y2 + xy + y = x3 + x2 − 208083x− 36621194 1225.b1 (1190, 36857)

Table 2.1: Primes ` dividing the relative Kummer degree (6.3), non-CM curves.

Q(E[`]), hence [Q`,` : Q(E[`])] 6 [L′ : Q] < `2. It follows that in this case the
prime ` divides the ratio (6.3) for M = N = `.

We have considered several pairs (E,P ) taken from the LMFDB [LMF22], and
have computed (for well-chosen primes `) the factorisation of the polynomial g(x)
above. For each prime ` appearing as a factor of the constants of Theorem 6.5,
we have thus been able to find examples of pairs (E,P ) for which ` divides the
index (6.3) in the case M = N = `, and this both for CM and non-CM curves
(for ` = 2 we proceeded differently and explicitly computed the field generated
by the 2-division points of P ; this easily yields examples). In particular, this
shows that the prime factors of the constants of Theorem 6.5 are all necessary.

We would like to point out that for most primes ` we have found several
examples of the behaviour described above (for ` = 163 we have only been able
to test two curves, and only one of them yielded an example). It is hard to
make conjectures based on the limited evidence we have collected, but it seems
plausible that ` divides the Kummer degree (6.3) (with M = N = `) for a positive
proportion of rank-1 curves E/Q whose mod-` Galois representation lands in a
Borel (when P is taken to be a generator of the free part of E(Q)). In Tables 2.1
and 2.2 we give one explicit example for every relevant prime, both for non-CM
and CM curves, specifying the curve E/Q together with its LMFDB label and
the point P ∈ E(Q).

The points P43 and P67 are given by P43 =

(
66276734

29929
,−419567566482

5177717

)
and

P67 =

(
49970077554856210455913

1635061583290810756
,

10956085084392718114395997318977993

2090745506172424414999081096

)

https://www.lmfdb.org/EllipticCurve/Q/117/a/3
https://www.lmfdb.org/EllipticCurve/Q/91/b/2
https://www.lmfdb.org/EllipticCurve/Q/704/c/3
https://www.lmfdb.org/EllipticCurve/Q/338/c/1
https://www.lmfdb.org/EllipticCurve/Q/1089/c/1
https://www.lmfdb.org/EllipticCurve/Q/441/a/1
https://www.lmfdb.org/EllipticCurve/Q/130050/gu/2
https://www.lmfdb.org/EllipticCurve/Q/1225/b/1
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` E LMFDB Label P

2 y2 = x3 − 36x 576.c3 (−2,−8)

3 y2 + y = x3 − 34 225.c1 (6, 13)

7 y2 = x3 − 1715x− 33614 784.f2 (57, 232)

11 y2 + y = x3 − x2 − 887x− 10143 121.b1 (81, 665)

19 y2 + y = x3 − 13718x− 619025 361.a1 (2527, 126891)

43 y2 + y = x3 − 1590140x− 771794326 1849.b1 P43

67 y2 + y = x3 − 33083930x− 73244287055 4489.b1 P67

163
y2 + y = x3 − 57772164980x

−5344733777551611
26569.a1 P163

Table 2.2: Primes ` dividing the relative Kummer degree (6.3), CM curves.

respectively. The point P163 is the unique generator of E(Q) ∼= Z with positive
y-coordinate; it has canonical height approximately equal to 373.48, so its co-
ordinates are too large to be displayed here, but they can be found at [LMF22,
Elliptic Curve 26569.a1].

We have also considered the divisibility of (6.3) by higher powers of `. Exper-
iments analogous to the above are computationally intensive, so we only studied
the very small primes 2 and 3. An example where the index (6.3) is divisible by
16 was found by Rouse and Cerchia [CR21]: letting E : y2 = x3 − 343x + 2401
and P = (0,−49), there is a point P4 ∈ E(Q(E[8])) such that 4P4 = P . This im-
plies that 24 divides (6.3) for N = 4,M = 8. We found several other examples in
which (6.3) is divisible by 24 for suitable values of M,N , but no example involving
higher powers of 2. This might in part be due to the fact that – for computational
reasons – we have only been able to extend our search to M = 8, N |M .

Remark 7.1. J. Rouse recently informed us that he constructed an example
where (6.3) is divisible by 26 when M and N are sufficiently large powers of 2.

For ` = 3 we consider

E : y2 + y = x3 − 6924x+ 221760

and P = (2354/49,−176/343), which is a generator of E(Q)/E(Q)tors. Write g(x)
for the polynomial whose roots are the x-coordinates of the 9-division points of
P : one may check that g(x) ∈ Q[x] has an irreducible factor g1(x) of degree 9.
Further denote by ψ9(x) the 9-th division polynomial of E, whose roots are the x-
coordinates of the points in E[9]. We have also computed that the Galois groups

https://www.lmfdb.org/EllipticCurve/Q/576/c/3
https://www.lmfdb.org/EllipticCurve/Q/225/c/1
https://www.lmfdb.org/EllipticCurve/Q/784/f/2
https://www.lmfdb.org/EllipticCurve/Q/121/b/1
https://www.lmfdb.org/EllipticCurve/Q/361/a/1
https://www.lmfdb.org/EllipticCurve/Q/1849/b/1
https://www.lmfdb.org/EllipticCurve/Q/4489/b/1
https://www.lmfdb.org/EllipticCurve/Q/26569/a/1
https://www.lmfdb.org/EllipticCurve/Q/26569/a/1
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of ψ9(x), g1(x) and ψ9(x)g1(x) over Q have order 462, 27 and 3 · 462 respectively.
This proves that the Galois group of g1(x) over Q(E[9]) has order 3, hence in
particular that g1(x) becomes reducible over Q(E[9]). A 9-division point of P is
then defined over an extension of Q(E[9]) of degree at most (and in fact exactly)
3. As before, all other 9-division points are defined over the same field, hence
the relative Kummer degree (6.3) is divisible by 33 for M = N = 9. We have
found other examples where 33 divides (6.3), but none involving a factor 34; as
with ` = 2, it is entirely possible that this is only due to the limits of our search
range.

2.A Scalars in pro-p subgroups of GL2(Zp)
In this appendix we prove an abstract group-theoretic result, used in Section 3.3
to study the subgroup of scalar matrices in the image of the 3-adic representation
attached to a non-CM elliptic curve over Q. In the statement and proof of
Proposition 2.A.1 we will employ the notation Hpn for the reduction modulo pn

of a closed subgroup H of GL2(Zp) (cf. Section 3.1).

Proposition 2.A.1. Let p be an odd prime, H be a closed pro-p subgroup of
GL2(Zp), and k be a positive integer. Suppose that the following hold:

1. Hp has order p,

2. Hpk is not contained in the subgroup of upper- or lower-triangular matrices;

3. det(H) = 1 + pZp;

4. H is normalised by C :=

 1 0

0 −1

.

Then H contains all scalars congruent to 1 modulo pk.

Remark 2.A.2. From a group-theoretic point of view this result is optimal, at
least in the case p = 3, k = 3 that we are interested in. The subgroup H of
GL2(Z3) given by the inverse image of the subgroup of GL2(Z/33Z) generated
by the matrices  10 0

0 16

 ,

 10 9

23 10


satisfies all the properties (1)-(4) in the statement, and

H ∩ Z×3 = {λ ∈ Z×3 : λ ≡ 1 (mod 33)}.
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Remark 2.A.3. We also note that the methods of [Pin93] and [Lom15, §4] are
not easily applicable here, since there is no reason to expect a group H as in
the statement of Proposition 2.A.1 to be open in GL2(Zp). This implies that the
Zp-integral Lie algebra L attached to H by [Pin93] could be quite small, with
L/[L,L] infinite, which makes it hard to extract useful information from the main
theorem of [Pin93].

The proof of the proposition is by induction: we will show that, for every
n > k, the group Hpn contains all scalars congruent to 1 modulo pk. Since H is
closed this gives the desired conclusion.

Remark 2.A.4. The group Hp is cyclic, generated by any element g of order p.
The condition that H be stable under conjugation by C implies easily that g is
either upper- or lower-unitriangular (that is, triangular with diagonal coefficients

equal to 1). This shows in particular that for every h =

 a b

c d

 ∈ H we have

a ≡ d ≡ 1 (mod p), so that the diagonal entries of h− Id are divisible by p. Any
h ∈ H may therefore be written as h = λ Id +D + A, where λ = 1

2 tr(h) ≡ 1
(mod p), D is diagonal, tr(D) = 0, D ≡ 0 (mod p), and A is anti-diagonal. This
decomposition will play an important role in the proof.

The following lemma will be key in our approach.

Lemma 2.A.5. Let p be an odd prime, let Hpn be a p-subgroup of GL2(Z/pnZ)

stable under conjugation by C :=

 1 0

0 −1

, and let M be an element of Hpn .

Consider the sequence of elements of Hpn defined by M0 = M and Mi+1 =
Mi · CMiC

−1. Then:

1. for every i > 0, the elements detMi and detM generate the same subgroup
of (Z/pnZ)×;

2. write each Mi as λi Id +Di +Ai, where Di is diagonal and has trace 0 and
Ai is anti-diagonal. Then there exists a scalar µi ∈ (Z/pnZ)× such that
Di = µiD0;

3. the matrix Mi is diagonal for all i > n.

Proof. For the first statement we have det(Mi+1) = det(Mi)
2 and the map

x 7→ x2 is an automorphism of the abelian p-group det(H). Write now Mi =
λi Id +Di + Ai as in the statement. It follows from Remark 2.A.4 that Di ≡ 0
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(mod p). One computes CMiC
−1 = λi Id +Di −Ai and therefore

Mi+1 = (λi Id +Di +Ai) (λi Id +Di −Ai)
= λ2

i +D2
i + 2λiDi −A2

i + [Ai, Di].

Notice that D2
i is a multiple of the identity (since the two diagonal elements of

Di are opposite to each other, hence have the same square), and so is A2
i , while

[Ai, Di] is anti-diagonal. Hence{
Di+1 = 2λiDi

Ai+1 = [Ai, Di],

which immediately implies the statement about Di since (2λi, p) = 1. Moreover,
since vp(Di) > 1 we have vp(Ai+1) > vp(Ai) + 1: in particular, for i > n we have
vp(Ai) > n, hence for such i the matrix Ai is 0 and Mi is diagonal.

We notice in particular the following immediate consequence of the previous
lemma:

Corollary 2.A.6. Let Hpn be a p-subgroup of GL2(Z/pnZ) stable under con-
jugation by C, and let Dn be the subgroup of diagonal matrices in Hpn . Then
det(Hpn) = det(Dn).

Proof. The group det(Hpn) is contained in (Z/pnZ)×, hence is cyclic. Let M ∈
Hpn be a matrix whose determinant generates det(Hpn): by the previous lemma,
we can find a diagonal matrix whose determinant generates the same subgroup
as det(M).

Before proving Proposition 2.A.1 we need one further definition:

Definition 2.A.7. For n > 1 we let Ln be the image of the map

ker(Hpn+1 → Hpn) → Mat2×2(Fp)

g 7→ g−Id
pn .

The formulas

(Id +pnM1)(Id +pnM2) ≡ Id +pn(M1 +M2) (mod pn+1)

and (Id +pnM)p ≡ Id +pn+1M (mod pn+2), valid for all n > 1, show that the
set Ln is an additive subgroup of Mat2×2(Fp), and that moreover Ln ⊆ Ln+1 for
all n > 1.

We further observe that since C normalises H the subspace Ln of Mat2×2(Fp)
is stable under conjugation by C. Since p is odd, the conjugation action of C
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on Mat2×2(Fp) decomposes it as the direct sum of the subspaces of diagonal and
anti-diagonal matrices. We then have a corresponding decomposition Ln = dn ⊕
an, where dn (respectively an) is the subspace of diagonal (resp. anti-diagonal)
matrices in Ln. We are now ready to begin the proof proper.

Proof of Proposition 2.A.1. We show by induction on n that Hpn contains all
scalar matrices congruent to 1 modulo pk. Notice that the claim is trivial for
n 6 k, so we only need to take care of the inductive step. For each positive
integer n we denote by Dn the subgroup of diagonal matrices in Hpn and by
Λn the subgroup {λ ∈ (Z/pnZ)× : λ ≡ 1 (mod p)} of (Z/pnZ)×. By Corollary
2.A.6 and the hypothesis det(H) = 1 + pZp (hence det(Hpn) = Λn) we have
#Dn > #Λn = pn−1 for all n > 1. The kernel of the reduction map Dn+1 → Dn
is isomorphic to dn by construction. Notice that #dn ∈ {1, p, p2}.

If #dn = p2, the map Dn+1 → Dn is p2-to-1, which implies that, for every
element in Dn, all its p2 diagonal lifts to GL2(Z/pn+1Z) are in Dn+1. In par-
ticular, since (1 + pk) Id mod pn is an element of Dn by the inductive hypothesis
and (1 + pk) Id mod pn+1 is one such possible lift, we obtain immediately that
(1 + pk) Id is in Hpn+1 , and the induction step is complete (notice that the cyclic
subgroup generated by (1+pk) Id contains all scalars congruent to 1 modulo pk).

Suppose on the other hand that #dn | p. Then, using the fact that #di
divides #di+1, we obtain immediately

#Dn+1 = #D1 ·#d1 · · ·#dn | pn,

which combined with our previous observation #Dn+1 > pn implies #Dn+1 = pn.
In particular,

det : Dn+1 → Λn+1

is a surjective group homomorphism between groups of the same order, hence is
an isomorphism. This also implies that the only diagonal matrix in Hpn+1 with
determinant 1 is the identity.

Let now d : Λn+1 → Dn+1 be the isomorphism given by the inverse of the
determinant, which we write as

d(x) =

α(x) 0

0 β(x)


for suitable group homomorphisms α(x), β(x) : Λn+1 → Λn+1. As Λn+1 is a
cyclic group, we have α(x) = xa and β(x) = xb for suitable integers a, b. Since
d(x) is inverse to the determinant, we have x = det(d(x)) = α(x)β(x) = xa+b,
so that in particular a+ b is relatively prime to p. This implies that at least one
between a and b is prime to p.
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We now show that the intersection Sn+1 := Hpn+1 ∩ SL2(Z/pn+1Z) consists
of matrices of the form λ Id +A, where λ ∈ Z/pn+1Z is a scalar and A is antidi-
agonal. To see this, let M ∈ Sn+1, and write it as M = λ Id +D + A, with D
diagonal of trace 0 and A antidiagonal. Lemma 2.A.5 yields a diagonal matrix
M ′ = λ′ Id +D′ in Sn+1 (in particular, det(M ′) = 1) with D′ = µD for some
scalar µ prime to p. Since the only diagonal matrix with determinant 1 in Hpn+1

is the identity, we get λ′ = 1 and D′ = 0. As µ is invertible, this implies D = 0
as desired.

On the other hand, Sn+1 – being the kernel of the determinant – is normal in
Hpn+1 , hence in particular is stable under conjugation by the diagonal matrices
d(x). Let M = λ Id +A be any element of Sn+1 and let x ∈ Λn+1. Then Sn+1

also contains d(x) ·M · d(x)−1 and their product M · d(x) ·M · d(x)−1, that is,

(λ Id +A)(λ Id +d(x) ·A · d(x)−1). (2.A.1)

Like all elements of Sn+1, this matrix has the form λ′ Id +A′ for some scalar λ′

and some anti-diagonal matrix A′. The diagonal part of (2.A.1) is λ2 +A · d(x) ·
A · d(x)−1, so A · d(x) · A · d(x)−1 is a multiple of the identity modulo pn+1.

Writing A =

0 y

z 0

, the condition becomes

yz

(
α(x)

β(x)
− β(x)

α(x)

)
≡ 0 (mod pn+1). (2.A.2)

We will show below that there exists M ∈ Sn+1, M = λ Id +

 0 y

z 0

, with

vp(yz) 6 k − 1. Assuming for now that we have such an M , in Equation (2.A.2)

we may assume vp(yz) 6 k − 1, hence we obtain
(
α(x)
β(x)

)2

≡ 1 (mod pn+2−k).

Recalling that α(x) = xa, β(x) = xb, this rewrites as xa ≡ xb (mod pn+2−k)
(notice that x 7→ x2 is an automorphism of Λn+1). Raising to the pk−1-th power

we get xp
k−1a ≡ xpk−1b (mod pn+1), hence

xp
k−1a Id = xp

k−1b Id = d
(
xp

k−1
)
∈ Hpn+1

for every x ∈ Λn+1. Recall now that at least one between a and b is prime to
p, say (a, p) = 1: then x 7→ xa is an automorphism of Λn+1, so it follows that
all the pk−1-th powers of the scalars ≡ 1 (mod p) are in Hpn+1 . The induction
step is now complete, because all scalars congruent to 1 modulo pk are pk−1-th
powers in Λn+1.



2.A. SCALARS IN PRO-P SUBGROUPS OF GL2(ZP ) 101

It only remains to show that we can find an element M ∈ Sn+1 such that,

writing M = λ Id +

 0 y

z 0

, we have vp(yz) 6 k − 1. We first prove that it

is enough to find N =

n11 n12

n21 n22

 ∈ Hpn+1 with vp(n12n21) 6 k − 1. Indeed,

given such an N , we know from above that there is a diagonal matrix Q =q11 0

0 q22

 ∈ Hpn+1 with det(Q) = det(N)−1. Notice that q11, q22 are invertible.

ThenNQ =

q11n11 q22n12

q11n21 q22n22

 belongs to Sn+1, so it is automatically of the form

λ Id +A, and its anti-diagonal part satisfies vp(q22n12 q11n21) = vp(n12n21) 6 k−1
as desired. Thus it suffices to find N ∈ Hpn+1 , of arbitrary determinant, with
vp(n12n21) 6 k − 1.

By Remark 2.A.4, there exists g ∈ H that reduces modulo p to

 1 1

0 1


or

 1 0

1 1

: for simplicity of exposition, we only discuss the former case, the

latter being completely analogous. Consider the image

g11 g12

g21 g22

 of g in Hpk :

since vp(g12) = 0, if vp(g21) 6 k − 1 we are done by taking N = g mod pn+1.

Otherwise, let h ∈ H be an element whose image

h11 h12

h21 h22

 in Hpk satisfies

vp(h21) 6 k − 1: such an element exists, for otherwise Hpk would be contained
in the subgroup of upper-triangular matrices. If vp(h12) = 0 we are done by
taking N = h mod pn+1, while if vp(h12) > 0 it is easy to check that we can take
N = hg mod pn+1.

Remark 2.A.8. Part of the proof is inspired by the structure theorem for re-
ductive groups. Indeed, in the course of the argument we prove that the di-
agonal torus of Hpn+1 is isomorphic to Λn+1, which is the pro-p subgroup of
Gm(Z/pn+1Z), that Sn+1 = Hpn+1 ∩ SL2(Z/pn+1Z) (morally, the derived sub-
group) intersects the diagonal torus trivially, and finally that the conjugation
action of the torus on the “semisimple part” Sn+1 is (essentially) trivial, so that
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the diagonal torus (essentially) consists of scalar matrices. This is reminiscent of
the decomposition G = Z(G).G′ that holds for reductive groups, and indeed hy-
pothesis (2) of the proposition may be seen as a discrete analogue of the statement
“H is reductive”.



Chapter 3

Radical entanglement for
elliptic curves

by Sebastiano Tronto [Tro20]

1 Introduction

1.1 Setting

Let K be a number field and fix an algebraic closure K of K. If G is a com-
mutative connected algebraic group over K and A is a finitely generated and
torsion-free subgroup of G(K), for any positive integer n we may consider the
field K

(
n−1A

)
, that is the smallest extension of K inside K containing the co-

ordinates of all points P ∈ G(K) such that nP ∈ A. This is a Galois extension
of K containing the n-th torsion field K(G[n]) of G.

If G = Gm is the multiplicative group, such extensions are studied by classical
Kummer theory. The more general case of an extension of an abelian variety by a
torus is treated in Ribet’s foundational paper [Rib79]. Under certain assumptions,
for example if G is the product of an abelian variety and a torus and A has rank
1, it is known that the ratio

ns

[K (n−1A) : K(G[n])]
(1.1)

103
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where s is the unique positive integer such that G(K)[n] ∼= (Z/nZ)s for all n > 1,
is bounded independently of n (see also [Ber88, Théorème 5.2] and [Hin88, Lemme
14]).

In [Chapter 1] Lombardo and the author were able to give an effective bound
for the ratio (1.1) if G = E is an elliptic curve with EndK(E) = Z and A = 〈α〉
has rank 1. Moreover, a uniform bound in the case K = Q, under some necessary
assumptions on the divisibility of α in E(K)/E(K)tors, was given.

The bounds given in [Chapter 1] essentially depend on three properties of E
and α:

(1) The finitess of the divisibility of α in E(K)/E(K)tors;

(2) Properties of the `-adic Galois representations associated with E, for every
prime `;

(3) The finiteness of the exponent of H1(Gal(K(E(K)tors) | K), E(K)tors).

The goal of the present paper is twofold: firstly, we use the properties of r-
extensions of abelian groups introduced by Palenstijn in [Pal04] and [Pal14] to
generalize the methods of [Chapter 1] to groups A of arbitrary finite rank and
any commutative connected algebraic group G that satisfies the same properties
mentioned above. The result we obtain is the following (see Theorem 5.9):

Theorem 1.1. Let G be a commutative connected algebraic group over a number
field K and let A ⊆ G(K) be a finitely generated and torsion-free subgroup of
rank r. Let s be the unique non-negative integer such that G[n] ∼= (Z/nZ)s for
all n > 1. Let H denote, after a choice of basis, the image of the adelic Galois
representation associated with G over K

Gal(K | K)→ GLs(Ẑ).

For every prime `, let H` denote the image of H under the projection GLs(Ẑ)→
GLs(Z`) and denote by Z`[H`] the closed Z`-subalgebra of Mats×s(Z`) generated
by H`. Assume that

(1) There is an integer dA > 1 such that

dA · {P ∈ G(K) | ∃n ∈ N>1 : nP ∈ A} ⊆ A+G(K)tors .

(2) There is an integer N > 1 such that Z`[H`] ⊇ N Mats×s(Z`) for every
prime `.

(3) There is an integer M > 1 such that the exponent of the cohomology group
H1(Gal(K∞ | K), G(K)tors) divides M , where K∞ = K(G(K)tors).
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Then for every n > 1 the ratio

nrs

[K (n−1A) : K(G[n])]

divides (dANM)rs.

The first condition of Theorem 1.1 is always satisfied if G is an abelian variety
or G = Gm (see Example 5.2). We call such an integer dA a divisibility parameter
for A in G(K). One has dA = 1 if, for example, the group G(K) is finitely
generated and torsion-free and A = G(K).

Notice that if a set of generators for A is known, modulo the torsion subgroup
of G(K), in terms of a Z-basis of G(K)/G(K)tors, one can compute a divisibility
parameter dA. See section 6.1.

Our second goal is to apply Theorem 1.1 to some specific cases. In particular,
we generalize the results of [Chapter 1] to the case of arbitrary rank. Theorems
1.2 and 1.3 below follow from Theorems 6.14, 6.16 and 6.17 and Lemma 5.7.

Theorem 1.2. Let E be an elliptic curve over a number field K such that
EndK(E) = Z. Let A be a finitely generated and torsion-free subgroup of E(K)
of rank r. There is an effectively computable integer N > 1, depending only on
E and K, such that for every n > 1

n2r

[K (n−1A) : K(E[n])]
divides (dAN)

2r

where dA is a divisibility parameter for A in E(K).

Theorem 1.3. There is a universal constant C > 1 such that for every elliptic
curve E over Q, for every torsion-free subgroup A of E(Q) and for every n > 1

n2 rk(A)

[Q (n−1A) : Q(E[n])]
divides (dAC)

2 rk(A)

where dA is a divisibility parameter for A in E(Q).

1.2 Notation

If A is an abelian group and n is a positive integer we denote by A[n] the subgroup
of the elements of A of order dividing n. We denote by Ators the subgroup
consisting of all elements of A of finite order. We denote by rk(A) the rank of A,
that is the dimension of A⊗Z Q as a Q-vector space.

If R is a commutive ring, then we denote by Matn×m(R) the R-module of
n×m matrices with entries in R, which we regard as an R-algebra if n = m. If
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at least one between n and m is zero then Matn×m(R) is the R-module ring (or
trivial R-algebra if n = m = 0). For n > 0 we denote by GLn(R) the group of
invertible n× n matrices with entries in R.

For any prime number ` and any non-zero integer n we denote by v`(n) the

`-adic valuation of n. We denote by Z` the ring of `-adic integers and by Ẑ the
ring of profinite integers, which we identify with the product

∏
` Z`.

If K is a number field and K is a fixed algebraic closure of K, we denote by
ζn a primitive n-th root of unity in K, for any positive integer n. If G is any
algebraic group over K and L is any field extension of K, we denote by G(L) the
group of L-points of G. If S is a subset of G(K), we denote by K(S) the subfield
of K whose elements are fixed by

H =
{
g ∈ Gal(K | K) | g(P ) = P ∀P ∈ S

}
.

If G is embedded in an affine or projective space (notice that, as a consequence of
Chevalley’s structure theorem, any algebraic group over a field is quasi-projective)
then K(S) coincides with the field generated by K and any choice of affine coor-
dinates of all points P ∈ S.

1.3 Structure of the paper

After some necessary group-theoretic preliminaries in Section 2, we investigate
in Section 3 the theory of s-extensions of abelian groups introduced by Palenstijn.
Much of the content of that section can be found, with few differences, in [Pal04].

We then move on to prove some Ẑ-linear algebra results in Section 4, and
finally develop our theory of entanglement for commutative algebraic groups in
Section 5. In Section 6 we apply this theory to the case of elliptic curves without
complex multiplication.

1.4 Acknowledgements

I am grateful to my advisors Antonella Perucca and Peter Bruin for their constant
support during the preparation of this paper. I am also very grateful to Hendrik
Lenstra and Peter Stevenhagen for giving me some of the main ideas for this
work.

2 Group-theoretic preliminaries

We collect here some basic group-theoretic results that we will need throughout
this paper.
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2.1 Pontryagin duality

Let G be a locally compact Hausdorff topological abelian group. Let S1 = R/Z
with the usual topology. The group Hom(G,S1) of continuous homomorphisms
from G to S1 endowed with the compact-open topology is itself a locally compact
abelian group, and it is called the group of characters or the (Pontryagin) dual
of G (see [Pon66, Chapter 6]). We will denote it by G∧.

Example 2.1. Consider Q/Z as a topological group with the discrete topology.

We have (Q/Z)∧ ∼= Ẑ. To see this, notice first that for every positive integer n
there is a natural isomorphism

Hom

( 1
nZ
Z
,Q/Z

)
∼= Z/nZ

given by sending a homomorphism ϕ : 1
nZ/Z → Q/Z to the unique d ∈ Z/nZ

such that ϕ
(

1
n

)
= d

n . Now we have

Hom(Q/Z, S1) = Hom(Q/Z,Q/Z) ∼=

∼= Hom

(
lim−→
n

1
nZ
Z
,Q/Z

)
∼=

∼= lim←−
n

Hom

( 1
nZ
Z
,Q/Z

)
∼=

∼= lim←−
n

Z/nZ.

The maps forming this last projective system are just the natural projections,
since for n | m the restriction of

ϕ : Z/mZ→ Q/Z
1

m
7→ d

m

to Z/nZ maps 1
n to d

n . So we get Hom(Q/Z, S1) ∼= Ẑ.

Remark 2.2. In Section 4 we will need a higher-dimensional analogue of Ex-
ample 2.1. By the previous example we easily deduce that, for r, s > 1, the
group Hom((Q/Z)r, (Q/Z)s) can be identified with Mats×r(Ẑ). This can be seen
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directly on the finite level as follows: let

ϕ :

( 1
nZ
Z

)r
→

( 1
nZ
Z

)s
(

1
n , 0, . . . , 0

)
7→

(
d11

n ,
d21

n , . . . ,
ds1
n

)(
0, 1

n , . . . , 0
)
7→

(
d12

n ,
d22

n , . . . ,
ds2
n

)
...

...(
0, 0, . . . , 1

n

)
7→

(
d1r

n , d2r

n , . . . , dsrn
)

be a group homomorphism. The matrix Dϕ = (dij) ∈ Mats×r(Z/nZ) com-
pletely describes the homomorphism ϕ, and the map ϕ 7→ Dϕ is easily checked to
be a group isomorphism between Hom(( 1

nZ/Z)r, ( 1
nZ/Z)s) and Mats×r(Z/nZ).

Passing to the limit in n we obtain a description of the natural isomorphism
Hom((Q/Z)r, (Q/Z)s) ∼= Mats×r(Ẑ).

Furthermore, if r = s the map ϕ 7→ Dϕ is a ring homomorphism from

End((Q/Z)s) to Mats×s(Ẑ). This allows us to identify Aut((Q/Z)s) =

End((Q/Z)s)× with GLs(Ẑ).

Theorem 2.3 (Pontryagin duality, see [Pon66, Theorems 39 and 40]). The hom-
functor Hom(−, S1) that maps G to its dual G∧ is an anti-equivalence of the cate-
gory of locally compact Hausdorff topological abelian groups with itself. Moreover
(G∧)∧ is naturally isomorphic to G.

This anti-equivalence induces an inclusion-reversing bijection between the
closed subgroups of any locally compact topological abelian group G and those
of G∧, given by

{closed subgroups of G} ↔ {closed subgroups of G∧}

U 7→ AnnU = {f ∈ G∧ | f(u) = 0∀u ∈ U}

{g ∈ G | f(g) = 0∀f ∈ V } = AnnV ← [ V

Moreover, G is discrete if and only if G∧ is compact, and G is discrete and
torsion if and only if G∧ is profinite.

2.2 Relative automorphism groups

In this section we establish some basic results on relative automorphism groups of
abelian groups, that is the groups containing those automorphisms that restrict
to the identity on a given subgroup.
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If A is an abelian group and B,C are abelian groups containing A as a sub-
group, then we denote by HomA(B,C) the set of homomorphisms B → C that
restrict to the identity on A. Similarly we define the ring of endomorphisms
EndA(B). We also denote by AutA(B) the group of all automorphisms of B that
restrict to the identity on A, that is the group of invertible elements in the ring
EndA(B). We call any element of AutA(B) an A-automorphism of B.

Lemma 2.4. Let M and N be abelian groups and let A and B be subgroups
of M . If f : A → N and g : B → N are group homomorphisms such that
f|A∩B = g|A∩B, then there exists a unique map ϕ : A+B → N such that ϕ|A = f
and ϕ|B = g.

Proof. This is just a rephrasing of the universal property of A+B as the pushout
of A ∩B ↪→ A and A ∩B ↪→ B.

Definition 2.5. Let A ⊆ B ⊆M be abelian groups. We say that B is A-normal
in M if the restriction to B of every element of AutA(M) is an automorphism of
B.

If B′ ⊆M is a subgroup not necessarily containing A, then we say that B′ is
A-normal in M if the following two conditions hold:

(1) The group B′ is (A ∩B′)-normal in A+B′ and

(2) The group A+B′ is A-normal in M .

Remark 2.6. The choice of the word normal in the above definition is in analogy
with the case of field extensions in Galois theory.

Remark 2.7. Let A ⊆ B ⊆ C ⊆ M be abelian groups. If C is A-normal in M ,
then C is also B-normal in M . If B is A-normal in C and C is A-normal in M ,
then B is A-normal in M .

If A ⊆ B ⊆M are abelian groups, then B is A-normal in M if and only if the
restriction map AutA(M)→ HomA(B,M) factors via AutA(B). In this situation
we call this map AutA(M)→ AutA(B) the natural restriction map.

Lemma 2.8. Let M be an abelian group and let A,B ⊆ M be subgroups of
M . Assume that B is A-normal in A + B. Then the natural restriction map
AutA∩B(A+B)→ AutA∩B(B) induces an isomorphism

AutA(A+B) ∼= AutA∩B(B).

Proof. The inclusion AutA(A+B) ↪→ AutA∩B(A+B) composed with the natural
restriction yields a group homomorphism ρ : AutA(A+B)→ AutA∩B(B), which
is injective because ker ρ = AutA+B(A+B) = 1.
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Let σ ∈ AutA∩B(B) and let σ̃ : A + B → A + B be the homomorphism
obtained by applying Lemma 2.4 to σ and idA. This map is clearly surjective,
since every element of A and every element of B are in its image. If σ̃(a+ b) = 0
for some a ∈ A and some b ∈ B, then σ(b) = −a ∈ A ∩ B, which implies that
b ∈ A ∩ B and thus a + b = 0. So σ̃ is injective, thus an automorphism. We
conclude that ρ is an isomorphism.

2.3 Projective limits of exact sequences

Remark 2.9. Let

1→ A→ G→ H → 1

be an exact sequence of groups, and assume that A is abelian. Then there is a
natural left action of H on A, defined as follows.

Let h ∈ H and consider any lift h̃ ∈ G of h. Then the action of h on a ∈ A is
defined as

h̃ah̃−1

where we see a as an element of G via the inclusion map. This definition does
not depend on the choice of the lift h̃, because if ĥ is a different lift of h then
ĥ = h̃b for some b ∈ A, and we have ĥaĥ−1 = h̃bab−1h̃−1 = h̃ah̃−1. Moreover
h̃ah̃−1 is mapped to 1 in H, so this clearly defines an action of H on A.

Lemma 2.10. Let I be a partially ordered set. For every i ∈ I let Ai denote an
exact sequence of topological groups

1→ A′i → Ai → A′′i → 1

such that A′i and A′′i have the subspace and quotient topology with respect to Ai,
respectively. For every i 6 j let ρij : Aj → Ai be a map of exact sequences such
that {(A)i∈I , (ρij)i,j∈I} is a projective system. Let {A, (πi)i∈I} be the limit of
this projective system, where A is

1→ A′ → A→ A′′ → 1 .

Then the subspace topology on A′ and the quotient topology on A′′ coincide with
their respective limit topology.

Proof. The limit topologies on A and A′ are the subspace topologies with re-
spect to the products

∏
i∈I Ai and

∏
i∈I A

′
i, respectively. Since each A′i has the

subspace topology with respect to Ai, it follows that
∏
i∈I A

′
i has the subspace

topology with respect to
∏
i∈I Ai, so A′ has the subspace topology with respect

to A.
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In order to show that the limit topology on A′′ is the quotient topology, we
need to show that every U ⊆ A′′ is open for the limit topology if and only if
its preimage in A is open. If U ⊆ A′′ is open for the limit topology, there is
V ⊆

∏
i∈I A

′′
i open such that V ∩ A′′ = U . Its preimage W ⊆

∏
i∈I Ai is open

and such that W ∩A, which coincides with the preimage of U in A, is open. On
the other hand, if the preimage V ′ ⊆ A of U is open, there must be W ⊆

∏
i∈I Ai

open and such that W ∩ A = V ′. But then, since a quotient map between
topological groups is open and the product of surjective open maps is open, the
projection V of W in

∏
i∈I A

′′
i is open, and so is V ∩ A′′, which coincides with

U .

3 The s-extensions of abelian groups

In this section we are going to revisit the theory of certain kinds of extensions
of abelian groups that were first introduced by Palenstijn in his master thesis
[Pal04]. These extensions arise naturally when considering the so-called division
points of a certain subgroup A of the rational points of a commutative algebraic
group. In particular, the automorphism groups of these extension provide a
framework to study the Galois groups of field extensions generated by division
points.

3.1 General definitions and first results

Fix a positive integer s.

Definition 3.1. Let A be a finitely generated abelian group. An s-extension of
A is an abelian group B containing A such that:

(1) B/A is torsion;

(2) the torsion subgroup of B is isomorphic to a subgroup of (Q/Z)s.

Remark 3.2. A necessary (and sufficient) condition for a finitely generated
abelian group A to admit an s-extension is that the torsion subgroup Ators of A
can be embedded in (Q/Z)s.

Definition 3.3. Let A be a finitely generated abelian group. For every s-
extension B of A, every a ∈ A and every positive integer n we call any b ∈ B
such that nb = a an n-division point of a (in B). We denote by

n−1
B a := {b ∈ B | nb = a}
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the set of n-division points of a. We omit the subscript B from n−1
B if this is

clear from the context. We also denote by

Bn := {b ∈ B | nb ∈ A} =
⋃
a∈A

n−1
B a

the set of all n-division points of elements of A, which is again an s-extension of
A. Notice that for n | m we have Bn ⊆ Bm and that B =

⋃
n>1Bn.

Remark 3.4. Assume that n−1
B a is not empty. Then for any fixed b0 ∈ n−1

B a,
the map

n−1
B a → B[n]

b 7→ b− b0

is a bijection.

The following lemmas will be used in what follows, in particular in Section
3.2.

Lemma 3.5. Let B and C be two s-extensions of a finitely generated abelian
group A and let ϕ : B → C be a group homomorphism that is the identity on A.
For every a ∈ A and every b ∈ n−1

B a we have ϕ(b) ∈ n−1
C a. In particular, we

have ϕ(Bn) ⊆ Cn.

Proof. It is enough to notice that nϕ(b) = ϕ(nb) = ϕ(a) = a.

Lemma 3.6. Let B and C be two s-extensions of a finitely generated abelian
group A and let ϕ : B → C be a group homomorphism that is the identity on
A. The kernel of ϕ is contained in Btors. Moreover, if for every prime ` the
restriction of ϕ to B[`] is injective, then ϕ is injective.

Proof. Let b ∈ kerϕ and let n be a positive integer such that nb = a ∈ A.
By Lemma 3.5 we have 0 ∈ n−1

C a, which implies that a = 0. In particular, b
is torsion. For the second assertion, assume that b 6= 0 and let ` be a prime
dividing the order of b. But then b has a multiple of order ` which is in kerϕ, a
contradiction.

Lemma 3.7. Let B be an s-extension of a finitely generated abelian group A and
let ϕ : B → B be an endomorphism that is the identity on A. If ϕ is injective,
then it is an automorphism.

Proof. Assume first that ϕ is injective and let b ∈ B. Let n be a positive integer
such that nb = a ∈ A. By Lemma 3.5 we have ϕ(n−1a) ⊆ n−1a. Since n−1a is
finite there must be some b′ ∈ n−1a such that ϕ(b′) = b, hence ϕ is surjective.
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The following proposition gives a criterion to verify if an s-extension is normal
in the sense of Definition 2.5.

Proposition 3.8. Let B be an s-extension of a finitely generated abelian group
A and let C ⊆ B be a subgroup. If HomA∩C(C,B) ⊆ HomA∩C(C,C), then C is
A-normal in B.

Moreover, under the same assumptions, for every A ⊆ A′ ⊆ C ⊆ B′ ⊆ B we
have that C is A′-normal in B′.

Proof. First of all, notice that C is an s-extension of A ∩ C and that A + C is
an s-extension of A. Let now σ ∈ AutA∩C(A + C) and consider its restriction
σC : C → A+ C. We then have

σC ∈ HomA∩C(C,A+ C) ⊆ HomA∩C(C,B) ⊆ HomA∩C(C,C).

Moreover σC is injective, thus an automorphism by Lemma 3.7. This shows that
C is (A ∩ C)-normal in A+ C.

To see that A + C is A-normal in B, let τ ∈ AutA(B) and consider its
restriction τA+C : A+ C → B. Since τ is the identity on A and the image of its
restriction to C is contained in C by assumption, we have that the image of τA+C

is contained in A + C. Since τ is injective, by applying Lemma 3.7 we see that
τA+C is an A-automorphism of A + C, so we conclude that A + C is A-normal
in B. Thus C is A-normal in B.

The second assertion follows from the first by noticing that HomA′∩C(C,B′)
is contained in HomA∩C(C,B).

Example 3.9. Let B be an s-extension of a finitely generated abelian group A.
Proposition 3.8 can be applied in the following cases:

(1) Let C be either Btors or B[n] for some positive integer n. Then the image of
every group homomorphism from C to B is contained in C, so in particular
HomA∩C(C,B) ⊆ HomA∩C(C,C).

(2) If C = Bn for some positive integer n, then by Lemma 3.5 we have
HomA(Bn, B) ⊆ HomA(Bn, Bn) and hence

HomA∩Bn(Bn, B) ⊆ HomA∩Bn(Bn, Bn).

3.2 Automorphisms of s-extensions

We now study the automorphisms of an s-extension that are the identity on the
base group. Recall that if B is an abelian group and A ⊆ B is a subgroup we
denote by AutA(B) the group of all automorphisms of B that restrict to the
identity on A.
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Fix for the remainder of this section a finitely generated abelian group A.
The following result is a generalization of [Pal14, Lemma 1.8], and the proof

is essentially the same. We include it here for the sake of completeness.

Proposition 3.10. Let B be an s-extension of A and let C ⊆ B be a subgroup. If
C is A-normal in B, the image of the restriction map AutA(B)→ HomA∩C(C,B)
is AutA∩C(C).

Proof. By Lemma 2.8 we have AutA(A + C) ∼= AutA∩C(C) via the restriction
map, so it is enough to show that the restriction AutA(B)→ AutA(A+C), which
exists because A+ C is A-normal in B, is surjective. Thus we may assume that
A ⊆ C.

In view of Lemma 3.7 it is enough to prove that every ϕ ∈ Aut(C) can
be extended to an injective homomorphism B → B. Consider the set of pairs
(M,φ), where M is a subgroup of B containing C and φ : M → B is an injective
homomorphism extending ϕ, ordered by inclusion

(M,φ) ⊆ (M ′, φ′) ⇐⇒ M ⊆M ′ and φ′|M = φ.

By Zorn’s Lemma this ordered set admits a maximal element (B̃, ϕ̃) and we need
to show that B̃ = B. We prove this by contradiction, assuming that there exists
x ∈ B\B̃ and proving that we can then extend ϕ̃ to an injective map 〈B̃, x〉 → B.

Assume first that the order of x is a prime number `. An element of B̃
mapping to B[`] must be in B̃[`] because ϕ̃ is injective. Since x ∈ B[`] \ B̃[`] we
have #B̃[`] < #B[`], so there must be y ∈ B[`] \ {0} that is not in the image of
ϕ̃. Using Lemma 2.4 we can then extend ϕ̃ to 〈B̃, x〉 by letting ϕ̃(x) := y. The
map we obtain is still injective, so we may assume that B̃ contains all elements
of prime order of B.

Let now k be the smallest positive integer such that kx ∈ B̃. Up to replacing
x with a suitable multiple, we may assume that k = ` is a prime number. Let
b = `x ∈ B̃. The fact that B[`] ⊆ B̃ implies that `−1

B b ⊆ B \ B̃.

Consider now ϕ̃(b) ∈ B and let y ∈ `−1
B ϕ̃(b). If y ∈ Im(ϕ̃), then there is z ∈ B̃

such that ϕ̃(z) = y, thus ϕ̃(`z) = `y = ϕ̃(b) and so `z = b, a contradiction. Since
B̃∩〈x〉 = 〈`x〉 and ϕ̃(`x) = `y, using again Lemma 2.4 we can extend ϕ̃ to 〈B̃, x〉
by letting ϕ̃(x) := y. By Lemma 3.6, the homomorphism 〈B̃, x〉 → B that we
obtain is still injective.

We conclude that B̃ = B, thus the restriction map AutA(B) → AutA(C) is
surjective.

Proposition 3.11. Let B be an s-extension of A. There is a canonical isomor-
phism

ϕ : AutA+Btors
(B) ∼= Hom(B/(A+Btors), Btors)
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which sends any σ ∈ AutA+Btors
(B) to the group homomorphism [b] 7→ σ(b)− b.

Proof. Let σ ∈ AutA+Btors
(B). By Lemma 3.5 we can define a map

ϕσ : B/(A+Btors)→ Btors

[b] 7→ σ(b)− b

which is clearly a group homomorphism. We claim that the map

ϕ : AutA+Btors
(B)→ Hom(B/(A+Btors), Btors)

σ 7→ ϕσ

is also a group homomorphism. To see this, let σ, τ ∈ AutA+Btors
(B). Notice

that, since τ(b)− b ∈ Btors for every b ∈ B, we have σ(τ(b)− b) = τ(b)− b. Then
we have

ϕστ ([b]) = σ(τ(b))− b =

= σ(τ(b))− b+ τ(b)− b− σ(τ(b)− b) =

= τ(b)− b+ σ(b)− b =

= ϕσ([b]) + ϕτ ([b])

which proves our claim.
The homomorphism ϕ is injective, because if ϕσ = 0 then σ(b) = b for all

b ∈ B. To see that ϕ is surjective, for any ψ ∈ Hom(B/(A+Btors), Btors) let

σψ : B −→ B

b 7−→ b+ ψ([b])

which is clearly a group homomorphism that is the identity on A + Btors. It is
also injective, because if b+ψ([b]) = 0 then b = −ψ([b]) must be a torsion point,
hence −b = ψ([b]) = ψ(0) = 0. By Lemma 3.7, we have σψ ∈ AutA+Btors

(B) and
clearly ϕσψ = ψ, so ϕ is surjective. We conclude that ϕ is an isomorphism.

Combining the previous results, we obtain a fundamental exact sequence that
provides our framework for the study of Kummer extensions.

Proposition 3.12 ([Pal04, Corollary 3.12 and Corollary 3.18]). Let B be an
s-extension of A. There is an exact sequence

0→ Hom

(
B

A+Btors
, Btors

)
→ AutA(B)→ AutAtors(Btors)→ 1 .

Moreover, the group AutAtors
(Btors) acts on Hom (B/(A+Btors), Btors) by com-

position.
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Proof. Notice that Btors is A-normal in B by Example 3.9, so the restriction
AutA(B) → AutAtors(Btors) is surjective by Proposition 3.10, and its kernel is
AutA+Btors(B). By Proposition 3.11 we have

AutA+Btors
(B) ∼= Hom(B/(A+Btors), Btors)

so we get the desired exact sequence.
It follows from the existence of the exact sequence above and by Remark 2.9

that the group AutAtors(Btors) acts naturally on Hom (B/(A+Btors), Btors). Let
now ψ ∈ Hom (B/(A+Btors), Btors) correspond to the automorphism σψ : b →
b + ψ([b]) via the isomorphism of Proposition 3.11, and let τ ∈ AutAtors

(Btors).
Let moreover τ̃ be any lift of τ to AutA(B). Then for every b ∈ B we have

(τ̃ ◦ σψ ◦ τ̃−1)(b) = τ̃
(
τ̃−1(b) + ψ([τ̃−1(b)])

)
=

= b+ τ̃
(
ψ([τ̃−1(b)])

)
and since τ̃−1 fixes A, as in the proof of Proposition 3.11 we have that τ̃−1(b)−b ∈
Btors. It follows that ψ([τ̃−1(b)]) = ψ([b]), so

(τ̃ ◦ σψ ◦ τ̃−1)(b) = b+ τ̃(ψ([b])) = b+ (τ ◦ ψ)([b]),

where the last equality follows from the fact that ψ([b]) ∈ Btors. We conclude
that the natural action of AutAtors(Btors) on Hom (B/(A+Btors), Btors) is given
by composition.

3.3 Profinite structure of automorphism groups

Fix for the remainder of this section a finitely generated abelian group A. For
any s-extension B of A and for any positive integer n we can consider the group
Bn and its automorphism group AutA(Bn) which, according to the following
proposition, is finite.

Proposition 3.13. Let B be an s-extension of A and assume that B/A has finite
exponent. Then the automorphism group AutA(B) is finite.

Proof. In view of Proposition 3.12 it is enough to prove that
Hom (B/(A+Btors), Btors) and AutAtors

(Btors) are finite. But this follows from
the fact that both Btors and B/(A+Btors) are finite, since A is finitely generated,
B/A has finite exponent and Btors embeds in (Q/Z)s.

Let B be an s-extension of A. By Proposition 3.12 for every positive n we
have an exact sequence

0→ Hom

(
Bn

A+Bn,tors
, Bn,tors

)
→ AutA(Bn)→ AutAtors

(Bn,tors)→ 1
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and for every n | m the restriction maps make the following diagram commute:

0 Hom

(
Bm

A+Bm,tors
, Bm,tors

)
AutA(Bm) AutAtors

(Bm,tors) 1

0 Hom

(
Bn

A+Bn,tors
, Bn,tors

)
AutA(Bn) AutAtors

(Bn,tors) 1

Notice that the rows of this diagram are exact and that every vertical map is
surjective by Propostion 3.10. In fact, we have

• The map on the left is, once we apply Proposition 3.11, the restriction map

AutA+Bm,tors
(Bm)→ AutA+Bn,tors

(Bn)

and A+Bn,tors is A-normal in A+Bm,tors by Proposition 3.8 (notice that the
image of any A-homomorphism from A+Bn,tors to A+Bm,tors is contained
in A+Bn,tors).

• The group Bn is A-normal in Bm by Example 3.9(2) and Proposition 3.8.

• The groups Bn,tors and Bm,tors are s-extensions of Ators, and Bn,tors is
Ators-normal in Bm,tors by Example 3.9(1) and Proposition 3.8.

Proposition 3.14. Let B be an s-extension of A. The groups AutA(Bn) together
with the natural restriction maps ρnm : AutA(Bm)→ AutA(Bn) for n | m form a
projective system. The group AutA(B) together with the natural restriction maps
ρn : AutA(B)→ AutA(Bn) is the limit of this projective system.

Proof. By Proposition 3.10 the restriction map ρm : AutA(B) → AutA(Bm) is
surjective for every m. Since for every n | m we have ρn = ρnm ◦ ρm, the map
ρnm is surjective as well. These maps are clearly compatible, so they form a
projective system.

Let G be any group with a compatible system of maps ϕn : G→ AutA(Bn).
Then we can define a map ϕ : G→ AutA(B) by letting for every g ∈ G and every
b ∈ B

ϕ(g)(b) := ϕn(g)(b)

where n is such that b ∈ Bn. It is easy to check that this map is well-defined and
that it is the unique map G→ AutA(B) compatible with the projections.
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From the above proposition it follows that the projective limit of these exact
sequences is the same exact sequence of Proposition 3.12:

0→ Hom

(
B

A+Btors
, Btors

)
→ AutA(B)→ AutAtors

(Btors)→ 1 .

Since this sequence is a projective limit we can endow the groups involved
with the natural profinite topology by giving each finite group the discrete topol-
ogy. The maps appearing in the exact sequence above are then continuous
and, in particular, Hom (B/(A+Btors), Btors) and AutAtors(Btors) have the sub-
space and quotient topology, respectively (see Lemma 2.10). Notice also that
Hom (B/(A+Btors), Btors), being the kernel of a continuous homomorphism, is
a closed normal subgroup of AutA(B).

We have obtained the following refinement of Proposition 3.12.

Proposition 3.15. Let B be an s-extension of A. The group AutA(B) to-
gether with the natural restriction maps is the projective limit of the finite groups
AutA(Bn), thus it is a profinite group. In particular, AutA(B) is a compact
Hausdorff topological group.

There is an exact sequence of profinite groups

0→ Hom

(
B

A+Btors
, Btors

)
→ AutA(B)→ AutAtors

(Btors)→ 1 .

Moreover, the group AutAtors
(Btors) acts on Hom (B/(A+Btors), Btors) by com-

position, and the action is continuous.

3.4 Full s-extensions

In this section we give a characterization of the maximal s-extensions of [Pal04,
Section 2.2]. We will not prove here the maximality of these extensions in the
sense of [Pal04, Theorem 2.6], hence the change of name to full s-extensions.
Our motivation for the study of these kind of extensions is that they provide a
useful abstraction for the set of points of a commutative algebraic group that
have a multiple in a fixed subgroup of rational points, in other words it is “full”
of all division points. However, the equivalence of the two definitions follows
immediately from Proposition 3.19.

Definition 3.16. Let A be a finitely generated abelian group. An s-extension Γ
of A is called full if Γ is a divisible abelian group and Γtors

∼= (Q/Z)s.

Remark 3.17. Recall from Remark 3.2 that a necessary condition for A to
admit any s-extension is that Ators can be embedded in (Q/Z)s. This condition
is also sufficient for A to admit a full s-extension. To see this, fix an isomorphism
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A ∼= Zrk(A)⊕T , where T is a finite subgroup of (Q/Z)s. Then the natural inclusion
Zrk(A)⊕T ↪→ Qrk(A)⊕ (Q/Z)s realizes Qrk(A)⊕ (Q/Z)s as a full s-extension of A.

Remark 3.18. Let Γ be a full s-extension of a finitely generated abelian group
A. Then Γtors

∼= (Q/Z)s is a divisible abelian group. It follows that the exact
sequence

0→ Γtors → Γ→ Γ/Γtors → 0

splits (non-canonically), so that Γ ∼= (Γ/Γtors)⊕ Γtors
∼= (Γ/Γtors)⊕ (Q/Z)s.

The following proposition shows in particular that a finitely generated abelian
group A can have at most one full s-extension, up to (a not necessarily unique)
isomorphism.

Proposition 3.19. Let A be a finitely generated abelian group of rank r which
admits a full s-extension Γ. There is a canonical isomorphism

Γ/Γtors
∼→ A⊗Z Q (3.1)

that sends the subgroup A/Ators of Γ/Γtors to A := {a⊗ 1 | a ∈ A}.
Moreover, there is an isomorphism

Γ
∼→ Qr ⊕ (Q/Z)s (3.2)

that sends A to Zr ⊆ Qr.

Proof. Since Γ/A is torsion, for every b ∈ Γ there is an integer n > 1 such that
nb ∈ A. Let nb := min{n ∈ N>1 | nb ∈ A}. We define a map

ψ : Γ −→ A⊗Z Q

b 7−→ (nbb)⊗
1

nb
.

The map ψ is a group homomorphism. To see this, notice first that for every
b ∈ Γ and every n ∈ N>1 such that nb ∈ A we have (nb)⊗ 1

n = (nbb)⊗ 1
nb

. Then
for every b, c ∈ Γ we have

ψ(b+ c) =nb+c(b+ c)⊗ 1

nb+c
= nbnc(b+ c)⊗ 1

nbnc
=

=(nbncb)⊗
1

nbnc
+ (nbncc)⊗

1

nbnc
=

=(nbb)⊗
1

nb
+ (ncc)⊗

1

nc
=

=ψ(b) + ψ(c).
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The map ψ is also surjective: in fact, let a ∈ A and n ∈ N>1. Since Γ is divisible,
there must be an element b ∈ Γ such that nb = a, and thus ψ(b) = a⊗ 1

n .
Now we show that the kerψ = Γtors. If b ∈ Γ has order n > 1, then ψ(b) =

(nb)⊗ 1
n = 0, showing that b ∈ kerψ. On the other hand, if ψ(b) = (nbb)⊗ 1

nb
= 0,

then necessarily nbb = 0, so that b ∈ Γtors. So we get an isomorphism which sends
A/Ators to A.

For the second part, since A has rank r we have A ⊗Z Q ∼= Qr. It follows
from the first part that there is an isomorphism Γ/Γtors

∼→ Qr that sends A/Ators

to Zr ⊆ Qr. The conclusion follows by combining this with any isomorphism
Γ
∼→ (Γ/Γtors)⊕ (Q/Z)s (see Remark 3.18).

Remark 3.20. In Proposition 3.19 the isomorphism (3.1) is canonical, while the
isomorphism (3.2) depends on the choice of three isomorphisms: an isomorphism
between A ⊗Z Q and Qr (or, equivalently, a choice of a Z-basis of A/Ators), a
splitting isomorphism Γ ∼= (Γ/Γtors)⊕Γtors (see Remark 3.18) and an isomorphism
Γtors

∼= (Q/Z)s.

3.5 Automorphisms of full s-extensions

For this section, let A be a finitely generated and torsion-free abelian group
of rank r and let Γ be a full s-extension of A. Notice that, since Ators = 0,
we have AutAtors

(Γtors) = Aut(Γtors) and Γn,tors = Γ[n] for every n > 0. By
Proposition 3.19 we can fix an isomorphism

Φ : Γ
∼−→ Qr ⊕ (Q/Z)s

that maps A onto Zr ⊆ Qr. This induces isomorphisms

Φkumm :
Γ

A+ Γtors

∼−→ (Q/Z)r,

Φtors : Γtors
∼−→ (Q/Z)s.

Recall from Remark 2.2 that we have canonical isomorphisms

Aut((Q/Z)s) ∼= GLs(Ẑ),

Hom((Q/Z)r, (Q/Z)s) ∼= Mats×r(Ẑ)

under which the action of Aut((Q/Z)s) on Hom((Q/Z)r, (Q/Z)s) given by com-
position becomes matrix multiplication on the left. So we get isomorphisms

Φ∗kumm : Hom

(
Γ

A+ Γtors
,Γtors

)
∼−→ Mats×r(Ẑ),

Φ∗tors : Aut(Γtors)
∼−→ GLs(Ẑ).
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On the finite level, these isomorphisms induce, for every n > 0, isomorphisms

ψn : Hom

(
Γn

A+ Γ[n]
,Γ[n]

)
∼−→ Mats×r (Z/nZ)

ϕn : Aut(Γ[n])
∼−→ GLs (Z/nZ)

which are compatible with the natural projections, in the sense that for every
n | m the diagrams

Hom

(
Γm

A+ Γ[m]
,Γ[m]

)
Mats×r (Z/mZ)

Hom

(
Γn

A+ Γ[n]
,Γ[n]

)
Mats×r (Z/nZ)

ψm

ψn

and
Aut(Γ[m]) GLs(Z/mZ)

Aut(Γ[n]) GLs(Z/nZ)

ϕm

ϕn

commute. This shows that the topology with which we endowed our automor-
phism groups coincides with the natural topology of the Ẑ-matrix rings, as stated
in the following proposition.

Proposition 3.21. Let A be a finitely generated and torsion-free abelian group of
rank r and let Γ be a full s-extension of A. Consider the group AutA(Γ) with the

profinite topology described in Section 3.3 and the groups Mats×r(Ẑ) and GLs(Ẑ)

with the topology induced by the profinite topology of Ẑ.
Then every isomorphism of abelian groups

Φ : Γ
∼−→ Qr ⊕ (Q/Z)s

that maps A onto Zr ⊆ Qr induces isomorphisms of topological groups

Φ∗kumm : Hom

(
Γ

A+ Γtors
,Γtors

)
∼−→ Mats×r(Ẑ),

Φ∗tors : Aut(Γtors)
∼−→ GLs(Ẑ) .

Moreover, the action of Aut(Γtors) on Hom (Γ/(A+ Γtors),Γtors) given by com-
position is identified under these isomorphisms with matrix multiplication on the
left.
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4 Some linear algebra

Motivated by the results of the previous sections we will now establish some
results of linear algebra over the ring Ẑ. In particular, we are interested in
certain properties of Mats×r(Ẑ) as a left Mats×s(Ẑ)-module.

Fix for this section two non-negative integers s and r.

Proposition 4.1. Let R := Mats×s(Ẑ) and view M := Mats×r(Ẑ) as a left
R-module. Let V ⊆ M be a left R-submodule. Assume that there is a positive
integer n such that, viewing the elements of V as maps (Q/Z)r → (Q/Z)s, we
have ⋂

f∈V

ker f ⊆ (Q/Z)
r

[n]. (4.1)

Then V ⊇ nM .

Proof. Let L denote the right R-module Ẑs of row vectors and let N denote the
left R-module Ẑs of column vectors. Notice that there is a natural R-module iso-
morphism, obtained by applying ⊗RM to the natural isomorphism N⊗ẐL→ R:

N ⊗Ẑ L⊗RM → M

x⊗ y ⊗m 7→ x · y ·m

whose inverse is

ψ : M → N ⊗Ẑ L⊗RM
m 7→

∑s
i=1 ei ⊗ fi ⊗m

where {ei} and {fi} are the canonical bases for N and L respectively.

Consider now the abelian group ML := L ⊗R M , which is isomorphic to Ẑr
via

L⊗RM → Ẑr

y ⊗ v 7→ y · v

and its subgroup
VL = 〈y ⊗ v | y ∈ L, v ∈ V 〉.

Condition (4.1) implies that, seeing the elements of VL as maps (Q/Z)r → Q/Z,
we have

⋂
f∈VL ker f ⊆ (Q/Z)r[n]. Then by Pontryagin duality (Theorem 2.3)

we have VL ⊇ nML.
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The image of V in N ⊗Ẑ L⊗RM under the isomorphism ψ is

ψ(V ) = 〈x⊗ y ⊗ v | x ∈ N, y ∈ L, v ∈ V 〉 = 〈x⊗ vL | x ∈ N, vL ∈ VL〉

and since

n(N ⊗Ẑ L⊗RM) = 〈n(x⊗ y ⊗ v) | x ∈ N, y ∈ L, v ∈M〉 =

= 〈x⊗ n(y ⊗ v) | x ∈ N, y ∈ L, v ∈M〉 =

= 〈x⊗ w | x ∈ N, w ∈ nML〉

we have

ψ(V ) ⊇ n(N ⊗Ẑ L⊗RM)

which is equivalent to V ⊇ nM .

Lemma 4.2. Let R be a compact topological ring and let M be a compact topo-
logical R-module. Let T ⊆ R be a subring of R and let S denote the smallest
closed subring of R containing T . If V ⊆ M is a closed T -submodule, then V is
also an S-module.

Proof. Let v ∈ V and consider the continuous map

fv : R→M

x 7→ xv

Since S is the closure of T in R, we have

fv(S) = fv

(⋂
{C | C closed, T ⊆ C ⊆ R}

)
⊆
⋂
{fv(C) | C closed, T ⊆ C ⊆ R} .

For any closed subset D of M containing f(T ) we have that f−1(D) is closed and
contains T and f(f−1(D)) ⊆ D, so fv(S) is contained in the closure of f(T ).

Since V is a T -module, we have fv(T ) ⊆ V , and since V is closed we have
fv(S) ⊆ V by what we have just said. Since this holds for any v ∈ V , we conclude
that V is an S-module.

The following proposition is essentially a generalization of [Chapter 1, Propo-
sition 4.12(1)].

Proposition 4.3. Let R := Mats×s(Z`) and view M := Mats×r(Z`) as a left
R-module. Let H be a closed subgroup of GLs(Z`) and V ⊆ M a closed left
H-submodule. Let W = R · V and let S denote the closed Z`-subalgebra of R
generated by H. Suppose that there are non-negative integers n and m such that
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(1) W ⊇ `nM and

(2) S ⊇ `mR.

Then we have V ⊇ `n+mM .

Proof. Let T denote the (not necessarily closed) Z`-subalgebra of R generated
by H, so that S is the closure of T . It is clear that V , being both a Z`-module
and an H-module, is a T -module. Since it is closed, V is also an S-module by
Lemma 4.2 above.

Then we have V ⊇ S · V ⊇ `mR · V = `mW ⊇ `m · `nM .

The following result is an adelic version of Proposition 4.3.

Proposition 4.4. Let R := Mats×s(Ẑ) and view M := Mats×r(Ẑ) as a left R-

module. Let H be a closed subgroup of GLs(Ẑ) and let V ⊆ M be a closed left
H-submodule. Let W = R · V and, for every prime `, let H` denote the image
of H under the projection GLs(Ẑ) → GLs(Z`) and let Z`[H`] denote the closed
sub-Z`-algebra of Mats×s(Z`) generated by H`. Suppose that there are positive
integers n and m such that

(1) W ⊇ nM ;

(2) For every prime ` we have Z`[H`] ⊇ mMats×s(Z`).

Then we have V ⊇ nmM .

Proof. Let R` := Mats×s(Z`) and M` := Mats×r(Z`), so that

R =
∏
`

R` and M =
∏
`

M`.

Let moreover V` and W` denote the images of V and W in M`, respectively.
Notice that V` is an H`-submodule of M` and that W` is the R`-submodule of
M` generated by V`.

By (1) we have that W` contains the image of nM in M`, which is nM`. By
(2) we have Z`[H`] ⊇ mMats×s(Z`), so we can apply Proposition 4.3 and deduce
that V` ⊇ nmM`.

We claim that V =
∏
` V`, seen as a subgroup of

∏
`M`. Clearly V ⊆

∏
` V`,

since every v ∈ V is equal to the tuple (e`v)`, where e` ∈ Ẑ =
∏

Zp is the
element whose `-component is 1 and whose p-component is 0 for all p 6= `. For
the other inclusion, let (w`)` ∈

∏
` V`. Since V` is the image of V under the

natural projection, for every ` there must be w̃` ∈ V whose `-component is w`.
Then the infinite sum ∑

`

e`w̃`
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converges to (w`)` in M : consider the sequence of partial sums

{xk}k∈N =

∑
`6k

e`w̃`


k∈N

and let U ⊆M be an open neighbourhood of (w`)`, which must be of the form∏
`6N

U` ×
∏
`>N

M`

for some integer N and some open neighbourhoods U` of w` in M`; then clearly
xk ∈ U for all k > N .

Since V is closed in M , we must then have (w`)` ∈ V , which shows that
V =

∏
` V`.

Since for every prime ` the multiplication-by-` endomorphism on a Ẑ-module
is invertible on all prime-to-` components, we have

∏
` nmM` =

∏
` `
v`(nm)M` =

nmM , so

V =
∏
`

V` ⊇
∏
`

nmM` = nmM

and we conclude.

5 General entanglement theory

5.1 Initial remarks and definitions

Fix a number field K and an algebraic closure K of K. Let G be a commutative
connected algebraic group over K. It is well-known that there is a non-negative
integer s, depending only on G, such that G(K)[n] ∼= (Z/nZ)s for all integers
n > 1. For example, if G is an abelian variety of dimension g, we have s = 2g.

Let A ⊆ G(K) be a finitely generated and torsion-free subgroup of rank r and
consider the divisible hull of A in G(K)

Γ :=
{
P ∈ G(K) | ∃n ∈ N>1 : nP ∈ A

}
(5.1)

which is a subgroup of G(K) and a full s-extension of A.
We have Γtors = G(K)tors, which we will also denote by Gtors. We also have

A+G(K)tors ⊆ Γ ∩G(K).

The quotient group (Γ ∩G(K))/(A+G(K)tors), being a quotient of a subgroup
of Γ/A, is always a torsion group.
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Definition 5.1. We call any integer dA > 1 such that dA(Γ ∩ G(K)) ⊆ A +
G(K)tors a divisibility parameter for A in G(K). If such an integer exists, we say
that A has finite divisibility in G(K).

Example 5.2. (1) IfG(K) is finitely generated, every torsion-free subgroup A ⊆
G(K) has finite divisibility in G(K): in fact, the abelian group
(Γ ∩G(K))/(A+G(K)tors) is torsion and finitely generated, so it is finite.

(2) Let G = Gm be the multiplicative group, so that s = 1. In this case G(K) =
K× is not finitely generated, but it still holds that every finitely generated
A ⊆ G(K) has finite divisibility. In order to prove this it is enough to show
that for every prime number ` there is a non-negative integer m` such that
the `-power torsion of (Γ ∩G(K))/(A+G(K)tors) is contained in

Γ ∩G(K)

A+G(K)tors
[`m` ]

and that we can take m` = 0 for all but finitely many primes `. The first part
is just [DP16, Lemma 12]. As for the second part, assume that A admits a
strongly `-independent basis a1, . . . , ar as in [PS19, Definition 2.1], which is
true for all but finitely many ` by [PS19, Theorem 2.7]. Let b ∈ Γ ∩K× be
such that b`

m ∈ A · µ(K) for some m > 1. Then

b`
m

= ζ ·
r∏
i=1

axii

for some x1, . . . , xr ∈ Z and some root of unity ζ ∈ K of order a power of
`. Since the ai are strongly `-independent, every xi is divisible by `m. This
means that b ∈ A · µ(K) = A+G(K)tors, so we can take m` = 0.

Notice that the cited results are fully explicit, so a divisibility parameter for
A is effectively computable.

(3) Let G = Ga be the additive group, so that s = 0. In this case no non-trivial
subgroup A ⊆ G(K) has finite divisibility. In fact we have

Γ =
{
b ∈ K | ∃n ∈ N>1 such that nb ∈ A

}
⊆ K.

Then (Γ ∩ G(K))/A = Γ/A contains elements of unbounded order. Since
Γ ⊆ G(K), Kummer theory for the additive group is trivial.

5.2 Torsion and Kummer representations and the entan-
glement group

Fix for the rest of the section a finitely generated subgroup A ⊆ G(K). For
simplicity, we will denote K(Gtors) by K∞. We are interested in studying the
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tower of extensions K(Γ) | K∞ | K. Notice that K(Γ) is a Galois extension of
K: in fact it is the union of its finite subextensions of the form K(Γn), where
Γn = {P ∈ G(K) | nP ∈ A}, which are Galois. Similarly, K∞ | K is Galois,
since it is the union of the finite Galois extensions Kn := K(G[n]) of K.

The action of Gal(K | K) on G(K) gives rise, for every n > 1, to injective
homomorphisms

Gal(K(Γn) | Kn) ↪→ AutA+G[n](Γn) ∼= Hom

(
Γn

A+G[n]
, G[n]

)
,

Gal(K(Γn) | K) ↪→ AutA(Γn),

Gal(Kn | K) ↪→ Aut(G[n])

which by Proposition 3.15 fit into the commutative diagram with exact rows

1 Gal(K(Γn) | Kn) Gal(K(Γn) | K) Gal(Kn | K) 1

0 Hom

(
Γn

A+G[n]
, G[n]

)
AutA(Γn) Aut(G[n]) 1

Taking the projective limit we obtain the following commutative diagram of
topological groups with exact rows:

1 Gal(K(Γ) | K∞) Gal(K(Γ) | K) Gal(K∞ | K) 1

0 Hom

(
Γ

A+Gtors
, Gtors

)
AutA(Γ) Aut(Gtors) 1

and the Krull topology on the Galois groups coincides with the subspace topology
with respect to the automorphism groups.

Definition 5.3. We call the cokernel of the above defined map

Gal(K(Γ) | K∞) ↪→ Hom

(
Γ

A+Gtors
, Gtors

)
the entanglement group of A, and we denote it by Ent(A).

Fixing an isomorphism as in Proposition 3.19

Φ : Γ
∼→ Qr ⊕ (Q/Z)s



128 CHAPTER 3. RADICAL ENTANGLEMENT FOR ELLIPTIC CURVES

that maps A to Zr ⊆ Qr, we get by Proposition 3.21 isomorphisms of topological
groups

Φ∗kumm : Hom

(
Γ

A+ Γtors
,Γtors

)
∼−→ Mats×r(Ẑ),

Φ∗tors : Aut(Γtors)
∼−→ GLs(Ẑ).

Then we get a diagram with exact rows

1 Gal(K(Γ) | K∞) Gal(K(Γ) | K) Gal(K∞ | K) 1

0 Mats×r(Ẑ) AutZr (Qr ⊕ (Q/Z)s) GLs(Ẑ) 1

which we will refer to as the torsion-Kummer representation related to A.
We will also call the map

Gal(K(Γ) | K∞) ↪→ Mats×r(Ẑ)

the Kummer representation, and the map

Gal(K∞ | K) ↪→ GLs(Ẑ)

the torsion representation.

Definition 5.4. We will denote by H(G) the image of Gal(K∞ | K) in GLs(Ẑ)

and by V (A) the image of Gal(K(Γ) | K∞) in Mats×r(Ẑ).

Since all groups appearing in the diagram above are profinite and all the
maps are continuous, it follows that V (A) and H(G) are closed subgroups of

Mats×r(Ẑ) and GL2(Ẑ), respectively. One of our goals is proving that, under
certain conditions, V (A) is also open. More precisely, we want to bound the

order of Ent(A) ∼= Mats×r(Ẑ)/V (A).

Remark 5.5. It follows from the existence of the Kummer representation that
for any n > 1 the degree [K(n−1A) : K(G[n])] divides nrs.

Remark 5.6. The definition of entanglement group given here is different from
that of [Pal14], where the entanglement group for G = Gm is defined as the
quotient of AutA(Γ) by the image of Gal(K(Γ) | K), which in the cases considered
there is a normal subgroup (see [Pal14, Theorem 1.6]). In fact, the entanglement
group defined here is a subgroup of that of [Pal14].

We conclude this section by remarking the following fact.
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Lemma 5.7. Let G be a commutative connected algebraic group over a number
field K and let A ⊆ G(K) be a finitely generated, torsion-free subgroup of G(K)
of rank r. If Ent(A) is finite, then for every n > 1

nrs

[K (n−1A) : K (G[n])]
divides # Ent(A) .

Proof. The image of V (A) under the natural quotient map Mats×r(Ẑ) →
Mats×r(Z/nZ) is Gal(K∞(n−1A) | K∞), so the ratio

nrs

[K∞ (n−1A) : K∞]

divides # Ent(A). In order to conclude it suffices to notice that

[K(n−1A) :K(G[n])] =

= [K(n−1A) : K∞ ∩K(n−1A)] · [K∞ ∩K(n−1A) : K(G[n])] =

= [K∞
(
n−1A

)
: K∞] · [K∞ ∩K(n−1A) : K(G[n])].

5.3 Bounding the entanglement group

We now give some sufficient conditions for the finiteness of the entanglement
group Ent(A). In particular, we want to explicitly bound its cardinality in terms
of some known quantities. This will be accomplished by applying the results of
Section 4.

Assume for the rest of this section that A has finite divisibility and that dA is
a divisibility parameter for A in G(K). Consider the joint kernel of the elements
of V (A), that is

S(A) :=
⋂

f∈V (A)

ker f ⊆ (Q/Z)r.

where we consider elements of Mats×r(Ẑ) as maps (Q/Z)r → (Q/Z)s. The image
of any [b] ∈ Γ/(A + Gtors) in (Q/Z)r is in the kernel of every f ∈ V (A) if and
only if b is fixed by every automorphism σ ∈ Gal(K(Γ) | K∞), that is if and only
if b ∈ G(K∞). So we have

S(A) = Φ

(
Γ ∩G(K∞)

A+Gtors

)
.
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where we have denoted by Φ the isomorphism Γ/(A + Γtors)
∼→ (Q/Z)r induced

by Φ. Let

ϕ : Γ ∩G(K∞) −→ H1(Gal(K∞ | K), Gtors)

be the group homomorphism that maps an element b ∈ Γ∩G(K∞) to the class of
the cocyle ϕb : σ 7→ σ(b)−b. Notice that A+Gtors ⊆ kerϕ, because Gal(K∞ | K)
acts trivially on A and ϕt is a coboundary for every t ∈ Gtors. So ϕ gives rise to
a map

S(A) −→ H1(Gal(K∞ | K), Gtors)

which we also denote by ϕ.

Proposition 5.8. The kernel of ϕ : S(A) → H1(Gal(K∞ | K), Gtors) is con-
tained in S(A)[dA]. In particular, if H1(Gal(K∞ | K), Gtors) has finite exponent
n, then the exponent of S(A) divides ndA.

Proof. Let b ∈ Γ∩G(K∞) and assume that ϕb is a coboundary. We want to show
that dAb ∈ A+Gtors. Since ϕb is a coboundary, there is t0 ∈ Gtors such that for
all σ ∈ Gal(K∞ | K) we have σ(b)− b = σ(t0)− t0, hence σ(b− t0) = b− t0. This
means that b−t0 ∈ Γ∩G(K), hence dAb = dA(b−t0)+dAt0 ∈ dA(Γ∩G(K))+Gtors.
Since dA is a divisibility parameter for A we have

A+G(K)tors ⊇ dA(Γ ∩G(K))

so that

A+Gtors ⊇ dA(Γ ∩G(K)) +Gtors

and it follows that dAb ∈ A+Gtors, so we conclude.

We can finally prove the main theorem of this section. Recall that s is a
non-negative integer such that G[n] ∼= (Z/nZ)s for every n > 1 and that H(G)

denotes the image of Gal(K∞ | K) in GLs(Ẑ).

Theorem 5.9. Let G be a commutative connected algebraic group over a num-
ber field K and let A ⊆ G(K) be a finitely generated and torsion-free subgroup
of rank r. For every prime `, let H`(G) denote the image of H(G) under the

projection GLs(Ẑ)→ GLs(Z`) and denote by Z`[H`(G)] the closed sub-Z`-algebra
of Mats×s(Z`) generated by H`(G). Assume that

(1) The group A admits a divisibility parameter dA in G(K).

(2) There is an integer n > 1 such that Z`[H`(G)] ⊇ nMats×s(Z`) for every
prime `.
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(3) There is an integer m > 1 such that the exponent of H1(Gal(K∞ | K), Gtors)
divides m.

Then V (A) is open in Matr×s(Ẑ). More precisely, the order of Ent(A) divides
(dAnm)rs.

Proof. Let Γ :=
{
P ∈ G(K) | ∃n ∈ N>1 : nP ∈ A

}
and fix an isomorphism Γ

∼→
Qr ⊕ (Q/Z)s that sends A to Zr as in Proposition 3.19, so that we get a torsion-
Kummer representation as in the previous subsection.We can then identify H(G)

with a subgroup of GLs(Ẑ) and V (A) with a subgroup of Mats×r(Ẑ), and the
natural action of H(G) on V (A) is identified with the usual matrix multiplication
on the left (see Proposition 3.21).

Thanks to conditions (1) and (3) we can apply Proposition 5.8 and deduce
that

S(A) =
⋂

f∈V (A)

ker f ⊆ (Q/Z)r[dAm],

so that by Proposition 4.1 we have that the GLs(Ẑ)-submodule of Mats×r(Ẑ)

generated by V (A) contains dAmMats×r(Ẑ). This property and (2) allow us to

apply Proposition 4.4 and deduce that the index of V (A) in Mats×r(Ẑ) divides
(dAnm)rs.

Remark 5.10. Let G = Gm and let A be a finitely generated and torsion-free
subgroup of G(K) of rank r. Theorem 5.9 gives us another way of proving [PS19,
Theorem 1.1], which states that there exists an integer C > 1 such that for every
n > 1 the ratio

nr[
K
(
ζn,

n
√
A
)

: K (ζn)
] (5.2)

divides C. Indeed, the ratio (5.2) always divides # Ent(A) (Lemma 5.7), and we
have:

(1) The group A has finite divisibility (see Example 5.2).

(2) The torsion representation τ : Gal(K∞ | K)→ GL1(Ẑ) = Ẑ× coincides with

the adelic cyclotomic character, whose image is open in Ẑ×; more precisely,
the index of H(Gm) in Ẑ× divides [K : Q], so that Z`[H`(Gm)] contains
[K : Q] Mats×s(Z`) for every prime `.

(3) By (2) above H(Gm) contains every element of Z× that is congruent to the
identity modulo [K : Q]; an application of Sah’s Lemma (see also the proof
of Proposition 6.3) tells us that

[K : Q]H1(Gal(K∞ | K),Gm,tors) = 0 .
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So by Theorem 5.9 we may take C = (dA · [K : Q]2)r.
It is worth noting that the methods of [PS19] provide a more precise bound.

6 Elliptic curves

For this section we fix a number field K with algebraic closure K and an elliptic
curve E over K with EndK(E) = Z. Moreover, we let A be a torsion-free
subgroup of E(K) of rank r and let Γ ⊆ E(K) be the subgroup defined in (5.1),
which is a full 2-extension of A.

Our goal is to apply Theorem 5.9 to get an explicit bound on the cardinality
of Ent(A). In order to do so, we need to study the divisibility parameter dA and
the torsion representations associated with E/K.

6.1 The divisibility parameter

If a set of generators for A, modulo torsion in E(K), is known in terms of a
Z-basis for E(K)/E(K)tors, then we can compute dA effectively. In fact, let
E(K) = E(K)/E(K)tors and let A be the image of A in E(K). Let e1, . . . , eρ be

a basis for E(K) as a free Z-module and let a1, . . . ,at be a set of generators for
A. Write

ai =

ρ∑
j=1

mijej

for some integers mij , and let M be the ρ × t matrix (mji) whose columns are
the coordinate vectors representing the ai.

We can then reduce M to its Smith Normal Form (see [Jac12, Chapter 3]),
that is, we can find matrices P ∈ GLρ(Z) and Q ∈ GLt(Z) such that

PMQ =



d1 0 · · · · · · · · · · · · 0

0 d2

...
...

. . .
...

... dr
...

... 0
...

...
. . .

...

0 · · · · · · · · · · · · · · · 0
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where d1, . . . , dr are integers such that d1 | d2 | · · · | dr and r is the rank
of A. The integers di are uniquely determined up to sign, and they are easily
computable from the minors of M (see [Jac12, Theorem 3.9]).

It follows that there is a Z-basis {f1, . . . , fρ} of E(K) such that {d1f1, . . . , drfr}
is a Z-basis for A. Moreover, if Γ is defined as in (5.1), we have that
(Γ ∩ E(K))/E(K)tors is generated by {f1, . . . , fr}. We then have that
dr(Γ ∩ E(K)) ⊆ A+ E(K)tors, so we can take dA = dr.

6.2 The torsion representation

The torsion representation is nothing but the usual Galois representation attached
to the torsion of E. After a choice of basis, we will denote it by

τ∞ : Gal(K∞ | K)→ GL2(Ẑ)

and we will denote its image by H(E). If ` is a prime we will denote by τ` the

composition of τ∞ with the natural projection GL2(Ẑ)→ GL2(Z`) and by H`(E)
the image of τ`.

The non-CM case

Definition 6.1. We call adelic bound for the torsion representation a positive
even integer mE such that H(E) contains all the elements of GL2(Ẑ) congruent
to the identity modulo mE . If ` is a prime, we call an integer n` > 1 such that
H`(E) ⊇ I+`n` Mat2×2(Z`) a parameter of maximal growth for the `-adic torsion
representation. If ` = 2 we require n` > 2.

If E does not have complex multiplication over K, by Serre’s Open Image
Theorem (see [Ser72]) we know that an adelic bound exists.

Remark 6.2. Notice that, if an explicit bound for mE is known, one can easily
give a bound for each n` by just letting n` = max(1, v`(mE)). However, it is
possible to give an effective bound for each n` (see [LP21, Theorem 14 and Re-
mark 15] and [Chapter 1, Remark 3.7]), so we will keep these constants separate.

Proposition 6.3. If mE is an adelic bound for the torsion representation of E
over K, then mEH

1(Gal(K∞ | K), Etors) = 0.

Proof. Let G = Gal(K∞ | K) and let z = (z`)` ∈ Ẑ =
∏
` Z` be defined as

z` =

{
1 + `v`(mE) if ` | mE ,

2 if ` - mE .
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Since by definition 2 | mE we have z ∈ Ẑ×. Moreover z − 1 = umE for some

u ∈ Ẑ×.
Consider now the element g = zI ∈ GL2(Ẑ): it is congruent to the identity

matrix modulo mE , so it lies in G; moreover it is a scalar matrix, so it lies in
the center of G. By Sah’s Lemma (see [BR03, Lemma A.2]) the endomorphism
of H1(G,Etors) defined by f 7→ (g − I)f kills H1(G,Etors). Since g − I = umEI

for u ∈ Ẑ×, we have that mEH
1(G,Etors) = 0, as required.

Definition 6.4. Let K be a number field with absolute discriminant ∆K and
let E be an elliptic curve over K without CM over K. We denote by S(E) the
finite set of primes ` that satisfy at least one of the following conditions:

(1) ` | 2 · 3 · 5 ·∆K ;

(2) the Galois group Gal(K` | K) is not isomorphic to GL2(F`).

(3) E has bad reduction at some prime of K of characteristic `.

Remark 6.5. The set S(E) is effectively computable (see [Chapter 1, Remark 5.2]).

An explicit value for the adelic bound mE is provided by the following result
by F. Campagna and P. Stevenhagen:

Theorem 6.6 ([CS19, Theorem 3.4]). Let E be an elliptic curve over K without
CM over K. Write K`∞ for the compositum of all `-power division fields of E
over K, and KS(E) for the compositum of the fields K`∞ with ` ∈ S(E). Then
the family consisting of KS(E) and {K`∞}` 6∈S(E) is linearly disjoint over K, that
is, the natural map

Gal(K∞ | K)→ Gal(KS(E) | K)×
∏

` 6∈S(E)

Gal(K`∞ | K)

is an isomorphism.

Remark 6.7. For every prime ` 6∈ S(E), the `-adic representation associated
with E is surjective. This follows from the fact that the mod ` torsion repre-
sentation associated with E and the `-adic cyclotomic character of K are both
surjective (since ` - ∆K): in fact in this case we have (H(E) mod `) ⊇ SL2(Z/`Z)
and det(H`(E)) = Z×` , which implies (see [Ser97, IV-23]) that H`(E) = GL2(Z`).

Corollary 6.8. For every prime ` ∈ S(E) let n` be a parameter of maximal
growth for the `-adic torsion representation. Let moreover R :=

∏
`∈S(E) ` and

m` = v` ([KR : K]). Then an adelic bound for the torsion representation is given
by

mE =
∏

`∈S(E)

`n`+m` .
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Proof. We have to show that the image of Gal(K∞ | K) in GL2(Ẑ) contains∏
`∈S(E)

(
I + `m`+n` Mat2×2(Z`)

)
×

∏
` 6∈S(E)

GL2(Z`) .

We will do so by considering the subgroup Gal(K∞ | KR) of Gal(K∞ | K).
Notice that, since for every prime ` and every n > 1 the degree of K`n over

K` is a power of `, the family {K`∞R}`∈S(E) is linearly disjoint over KR. Then
we have

Gal(K∞ | KR) = Gal(KS(E) | KR)×
∏

` 6∈S(E)

Gal(K`∞ | K) =

=
∏

`∈S(E)

Gal(K`∞R | KR)×
∏
6̀∈S(E)

Gal(K`∞ | K).

For every ` ∈ S(E) we have τ`(Gal(K`∞R | KR)) ⊇ I + `r` Mat2×2(Z`), where r`
is a parameter of maximal growth for the `-adic torsion representation attached
to E over KR. By [Chapter 1, Lemma 3.10] we can take r` 6 n + m`, so
ρ∞(Gal(K∞ | KR)) contains∏

`∈S(E)

(
I + `n`+m` Mat2×2(Z`)

)
×

∏
6̀∈S(E)

GL2(Z`)

so it contains all elements that are congruent to I modulo mE , as required.

Remark 6.9. We can give an explicit bound for the integers m` of the above
corollary:

m` = v` ([KR : K]) 6 v` (# GL2 (Z/RZ)) =
∑

p∈S(E)

v`
(
(p2 − 1)(p2 − p)

)
.

The CM case

The torsion representations associated with elliptic curves with complex multi-
plication have been studied for example in [Deu53] and [Deu58]. They are deeply
related to the endomorphism ring OE = EndK(E) of E, which is an order in an
imaginary quadratic number field F .

For every prime `, the group

C`(E) := (OE ⊗Z Z`)×

can be identified with a subgroup of GL2(Z`) via the action of OE on the `-power
torsion of E, and is called the Cartan subgroup of GL2(Z`) associated with E.
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We also let

C(E) :=
(
OE ⊗Z Ẑ

)×
=

∏
` prime

C`(E)

which can be identified with a subgroup of GL2(Ẑ), and we denote by N`(E) and

N (E) the normalizers of C`(E) in GL2(Z`) and of C(E) in GL2(Ẑ), respectively.
The group C`(E) is always conjugate to a subgroup of GL2(Z`) of the form

x δy

y x+ γy

 : x, y ∈ Z`, v`(x(x+ γy)− δy2) = 0


for some integers γ and δ, which are called parameters for C`(E) (see [LP17,
§2.3]).

The image of the torsion representation associated with E is contained in
N (E), and can be described as follows.

Proposition 6.10 ([Lom17, Theorem 1.5]). Let E be an elliptic curve over K
with CM over K, and let F be the CM field of E. Let S denote the set of primes
` that either ramify in K ·F or are such that E has bad reduction at some prime
of K of characteristic `. Then:

1. if F ⊆ K, then H(E) ⊆ C(E) and [C(E) : H(E)] divides 6[K : Q]. More-
over, H`(E) = C`(E) for every ` 6∈ S;

2. if F 6⊆ K, then H(E) ⊆ N (E), but H(E) 6⊆ C(E), and [C(E) : C(E)∩H(E)]
divides 12[K : Q]. Moreover, H`(E) = N`(E) for every ` 6∈ S.

Remark 6.11. The result mentioned above [Lom17, Theorem 1.5] states that
[C(E) : H(E)] 6 3[K : Q] if F ⊆ K and [C(E) : C(E) ∩ H(E)] 6 6[K : Q] if
F 6⊆ K. However, one can check that its proof also yields Proposition 6.10 as
stated here.

Proposition 6.12. Let E be a CM elliptic curve over K and let eK = 12[K : Q].
Let moreover

mK := 4eK ·
∏
`

`eK ,

where the product runs over all odd primes ` such that (`− 1) divides eK . Then
we have mKH

1(Gal(K∞ | K), Etors) = 0.

Proof. Let k2 = 3 and, for any odd prime `, let k` be an integer whose class
modulo ` is a generator of (Z/`Z)× and 1 < k` < `. Let then z = (keK` )` ∈ Ẑ,
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and let g = zI ∈ GL2(Ẑ) By Proposition 6.10 we have (C(E))eK ⊆ H(E), so in
particular g ∈ H(E). Applying Sah’s Lemma as in Proposition 6.3 we see that
g − I kills H1(Gal(K∞ | K), Etors). Since

v2 (3eK − 1) 6 2eK ,

v` (keK` − 1) 6 eK for all ` > 2 ,

v` (keK` − 1) = 0 for all ` such that (`− 1) - eK ,

we have that z− 1 = um for some u ∈ Ẑ× and some m which divides mK . As in
Proposition 6.3 we conclude that the exponent of H1(Gal(K∞ | K), Etors) = 0
divides mK .

It follows from classical results (see also [LP21, Section 2]) that for every
prime ` there is a positive integer n` such that

#(H(E) mod `n+1)/#(H(E) mod `n) = `2 for all n > n` . (6.1)

Definition 6.13. We call a positive integer n` satisfying (6.1) a parameter of
maximal growth for the `-adic torsion representation. If ` = 2 we require n` > 2.

6.3 Main theorems

We can finally prove our main results, which are higher-rank generalizations of
[Chapter 1, Theorems 1.1 and 1.2].

Theorem 6.14. Let E be an elliptic curve over a number field K without complex
multiplication over K. Let A be a finitely generated and torsion-free subgroup of
E(K) of rank r.

Let dA be a divisibility parameter for A. Let S(E) be the finite set of primes
of Definition 6.4 and for every ` ∈ S(E) let n` be a parameter of maximal growth
for the `-adic torsion representation of E/K and

m` :=
∑

p∈S(E)

v`((p
2 − 1)(p2 − p)).

Then V (A) is open in Matr×2(Ẑ). More precisely, the order of Ent(A) dividesdA · ∏
`∈S(E)

`2n`+m`

2r

.
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Proof. By Remark 6.7, the integer n :=
∏
`∈S(E) `

n` is such that Z` [H`(E)]

contains nMat2×2(Z`) for every prime number `. By Corollary 6.8 and Re-
mark 6.9 the integer m :=

∏
`∈S(E) `

n`+m` is an adelic bound for the torsion rep-
resentation associated with E, so by Proposition 6.3 the exponent of the group
H1 (Gal(K∞ | K), Etors) divides m.

Then by Theorem 5.9 we have that the order of Ent(A) divides (dAnm)2r.

Definition 6.15. Let E be an elliptic curve over a number field K with CM over
K. Let OE = EndK(E) and let F = Frac(OE). We denote by S(E) the finite
set of primes such that at least one of the following conditions is satisfied:

1. ` divides the conductor of OE ;

2. ` ramifies in K;

3. E has bad reduction at some prime of K of characteristic `.

Theorem 6.16. Let E be an elliptic curve over a number field K, with CM over
K but not over K. Let A be a finitely generated and torsion-free subgroup of
E(K) of rank r.

Let dA be a divisibility parameter for A. For every prime ` let n` be a parame-
ter of maximal growth for the `-adic torsion representation of E/K and let (γ`, δ`)
be parameters for C`(E). Let mK be the integer defined in Proposition 6.12. Let
moreover S(E) be the finite set of primes of Definition 6.15.

Then V (A) is open in Matr×2(Ẑ). More precisely, the order of Ent(A) dividesdAmK ·
∏

`∈S(E)

`n`+v`(4δ`)

2r

,

where we let v`(0) = 0 for every prime `.

Proof. In order to apply Theorem 5.9 we only need to prove that:

1. for every prime ` 6∈ S(E) we have

Z`[H`(E)] = Mat2×2(Z`) ;

2. for every prime ` ∈ S(E) we have

Z`[H`(E)] ⊇ `n`+v`(4δ`) Mat2×2(Z`) .

Both parts follow from from [Chapter 1, Proposition 4.12, proof of (3)], noticing
that for every ` 6∈ S(E) one may take d = 0 by [LP17, Proposition 10].
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Theorem 6.17. There is a universal constant C > 1 such that, for every elliptic
curve E/Q and every torsion-free subgroup A of E(Q), the order of Ent(A) divides
(dAC)2 rk(A).

Proof. By [Chapter 1, Corollary 3.13] (which relies on [Ara08, Theorem 1.2] for
the non-CM case) the parameters of maximal growth for the `-adic torsion repre-
sentation associated with an elliptic curve over Q can be bounded independently
of E. By [Chapter 1, Theorem 1.3] there is a constant C1 such that the expo-
nent of H1(Gal(Q∞ | Q), Etors) divides C1. The conclusion then follows from
Theorem 5.9.

Remark 6.18. Theorem 6.16 does not hold if OE = EndK(E) 6= Z. In fact in
this case one may find a subgroup A ⊆ E(K) such that Ent(A) is infinite.

To see this, let P ∈ E(K) be a point of infinite order and let A = OEP and
A′ = ZP . Since A is a free OE-module of rank 1, it has rank 2 as an abelian
group.

Let Q ∈ n−1P . For every n > 1 and every σ ∈ OE we have n−1σ(P ) =
σ(Q) + E[n], so

n−1A = OEQ+ E[n].

Since Q ∈ n−1A′ and OE is defined over K we have that OEQ is defined over
K(n−1A′). Since moreover E[n] ⊆ n−1A′ we deduce that K(n−1A) ⊆ K(n−1A′).
In fact, since A ⊇ A′, the two fields coincide. So in particular[

K
(
n−1A

)
: K (E[n])

]
=
[
K
(
n−1A′

)
: K (E[n])

]
.

Then for every n > 1 we have by Remark 5.5

n4

[K (n−1A) : K (E[n])]
=

n4

[K (n−1A′) : K (E[n])]
> n2

which, by Lemma 5.7, implies that Ent(A) is infinite.
Notice that two generators of A as a free Z-module cannot be linearly indepen-

dent over O. In fact, the condition that the points are linearly independent over
the endomorphism ring of the curve can also be found in [Rib79, Theorem 1.2].
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Chapter 4

Division in modules and
Kummer theory

by Sebastiano Tronto [Tro21]

1 Introduction

Let K be a number field and fix an algebraic closure K of K. If G is a connected
commutative algebraic group over K and A is a subgroup of G(K), we may
consider for every positive integer n the field extension K(n−1A) of K inside K
generated by all points P ∈ G(K) such that nP ∈ A. This is a Galois extension
of K containing the n-torsion field K(G[n]) of G.

If G = Gm is the multiplicative group, extensions of this kind are studied by
classical Kummer theory. Explicit results for this case can be found for example
in [PS19], [PST20b] and [PST20a]. The more general case of an extension of an
abelian variety by a torus is treated in Ribet’s foundational paper [Rib79]. Under
certain assumptions, for example if G is the product of an abelian variety and a
torus and A is free of rank r with a basis of points that are linearly independent
over EndK(G), it is known that the ratio

nrs

[K (n−1A) : K(G[n])]
(1.1)

141
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where s is the positive integer such that G(K)[n] ∼= (Z/nZ)s for all n > 1, is
bounded independently of n (see also [Ber88, Théorème 5.2] and [Hin88, Lemme
14]).

In the case of elliptic curves, one may hope to obtain an explicit version of
this result. Indeed the results of [Chapter 1] and [Chapter 3] provide such a
statement under the assumption that EndK(G) = Z, and they show that an
effective bound depends only on the abelian group structure of A and on the
`-adic Galois representations associated with the torsion of G for every prime `.

It is clear from the above discussion that the existence of non-trivial endo-
morphisms defined over K plays an essential role in this theory. Without loss of
generality we can take A to be an EndK(G)-module, as done by Javan Peykar in
his thesis [JP21]. This approach leads to an explicit “open image theorem” for
Kummer extensions for CM elliptic curves, albeit under certain technical assup-
tions on EndK(G).

Motivated by [JP21] and by the author’s previous results [Chapter 3], most
of this paper is devoted to developing a general abstract framework for the study
of certain division modules of a fixed R-module M , where R is any unitary ring.
We strive to develop this theory in a way that is independent from the “ambient
module” G(K), taking inspiration from [Pal04] as well.

We introduce a natural generalization of the concept of injective modules,
which to the author’s knowledge is new. We also define a category of (J, T )-
extensions, which shares many interesting properties with the category of field
extensions. We believe that these topics are interesting in their own right.

At the end of the paper we prove the following result, which was previously
known in this effective form only under certain restrictions on EndK(E):

Theorem. Let E be an elliptic curve over a number field K, let R = EndK(E)
and let M be an R-submodule of E(K). There exists a positive integer c, de-
pending only on the R-module structure of M and on the image of the Galois
representations associated with the torsion of E, such that for every positive in-
teger n

n2 rkR(M)

[K(n−1M) : K(E[n])]
divides c .

This result follows from Theorem 5.11, which is essentially an application
of Theorem 5.4, which in turn is a generalization of [Chapter 3, Theorem 5.9].
The results on Galois representations needed to apply this general theorem are
mostly taken from [Chapter 1], and it can be easily seen that the given bounds
only depend on the `-adic representations, so that the constant c of our main
theorem is effectively computable.
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1.1 Notation

In this paper, rings are assumed to be unitary, but not necessarily commutative;
subrings always contain the multiplicative unit 1. Unless otherwise specified, by
ideal of a ring we mean a right ideal and by module over a ring we mean a left
module. If R is a ring and n is a positive integer, we will denote by Matn×n(R)
the ring of n× n matrices with coefficients in R.

We denote by Z the integers and by Z>0 the set of positive integers. If p
is a prime number we denote by Zp the completion of the ring Z at the ideal

(p). We denote by Ẑ the product of Zp over all primes p, which we identify with
lim←−n∈Z>0

Z/nZ.

1.2 Structure of the paper

In Section 2 we introduce the concept of ideal filter and of division module by
an ideal filter. This provides us with a way to generalize the notion of injective
module, and we are able to show the equivalent of Baer’s criterion for injectivity
and the existence of the analogue of injective hulls in this setting. At the end of
Section 2 we prove a certain duality result for J-injective modules that will be
applied in Section 5.

In Section 3 we construct the category of (J, T )-extensions, our abstraction
for the modules of division points of an algebraic group. This category behaves
similarly to that of field extensions of a given field. After studying an interesting
pair of adjoint functors, we conclude this section by proving the existence of a
maximal (J, T )-extension, in analogy with field theory.

Section 4 is devoted to the study of automorphism groups of (J, T )-extensions.
The fundamental exact sequence of Theorem 4.10 gives us a framework to study
the Galois groups of Kummer extensions associated with a commutative algebraic
group, provided that some technical assumptions hold. This is what we do in
Section 5, and we conclude by applying these results to elliptic curves.
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2 J-injectivity

2.1 Ideal filters and division in modules

In order to study division in modules over a general ring, we take inspiration from
[JP21]. However, instead of using Steinitz ideals (that is, ideals of the completion
of a ring), we use a more general concept that we now introduce.

Definition 2.1. Let R be a ring. We call a non-empty set J of right ideals of R
an ideal filter if the following conditions hold:

1. If I, I ′ ∈ J then I ∩ I ′ ∈ J .

2. If I ∈ J and I ′ is a right ideal containing I, then I ′ ∈ J .

The minimal ideal filter is {R}, while the maximal ideal filter contains all
ideals (equivalently, it contains the zero ideal): we denote the former by 1 and
the latter by 0.

For any ring R and any set S of right ideals of R we call the ideal filter
generated by S the smallest ideal filter containing S: it consists of all ideals of R
which contain a finite intersection of elements of S.

Example 2.2. We will be interested in the ideal filters generated by the powers
of a given prime number p

p∞ := {I right ideal of R | I ⊇ pnR for some n ∈ N}

and the one generated by all non-zero integers

∞ := {I right ideal of R | I ⊇ nR for some n ∈ Z>0} .

Notice that if pn = 0 (resp. n = 0) for some n ∈ Z>0 then p∞ (resp.∞) is simply
the maximal ideal filter 0. We will often consider such ideal filters in the case
where R is a commutative integral domain of characteristic different from p (resp.
characteristic 0).

Fix for the remainder of this section a ring R.

Definition 2.3. If M ⊆ N are left R-modules, for any right ideal I of R we call

(M :N I) := {x ∈ N | Ix ⊆M}

the I-division module of M in N .

A similar concept for ideals of R is sometimes referred to as quotient ideal,
but we deemed a change of terminology appropriate.

We can easily generalize this notion to ideal filters of R.
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Definition 2.4. Let J be an ideal filter of R and let M ⊆ N be left R-modules.
We call

(M :N J) :=
⋃
I∈J

(M :N I)

the J-division module of M in N . One can easily check that (M :N J) is an
R-submodule of N .

Moreover, we call N [J ] := (0 :N J) the J-torsion submodule of N . We call N
a J-torsion module if N = N [J ].

Remark 2.5. If J = 0 then (M :N J) = N and M [J ] = M . On the other hand,
if J = 1 then (M :N J) = M and M [J ] = 0.

Remark 2.6. Let M ⊆ N be left R-modules and let J and J ′ be ideal filters of
R with J ′ ⊆ J . If M ′ ⊆ M and N ′ ⊆ N are submodules with M ′ ⊆ N ′, then it
is clear from the definition of J-division module that (M ′ :N ′ J

′) ⊆ (M :N J).

Definition 2.7. We say that an ideal filter J of R is complete if for every left
R-module N and every submodule M ⊆ N we have

((M :N J) :N J) = (M :N J) .

We say that an ideal filter J is product-closed if for any I, I ′ ∈ J we have
II ′ ∈ J .

Proposition 2.8. Let R be a ring and let J be a product-closed ideal filter of R.
If for every I ∈ J the left ideal RI is finitely generated, then J is complete. In
particular, every product-closed ideal filter over a left-Noetherian ring is complete.

Proof. Let J be a product-closed ideal filter of R and let M ⊆ N be left R-
modules. The inclusion (M :N J) ⊆ ((M :N J) :N J) is always true, so let us
prove the other inclusion. Let x ∈ N be such that there is I ∈ J with Ix ⊆
(M :N J). Let {y1, . . . yn} be a set of generators for the left ideal RI. Then for
every i = 1, . . . n there is Ii ∈ J such that Iiyix ⊆M . By definition of ideal filter
we have I ′ :=

⋂n
i=1 Ii ∈ J and since J is product-closed we have I ′I ∈ J . Since

{y1, . . . , yn} is a set of generators of the left ideal RI and I ′ is a right ideal we
have I ′Ix = I ′(RI)x ⊆M , which shows that J is complete.

Example 2.9. The ideal filters introduced in Example 2.2 are both product-
closed. If, for example, R is Noetherian, then they are also complete.

We conclude this subsection with a list of properties of division modules.

Lemma 2.10. Let M ⊆ N ⊆ P and M ′ be left R-modules and let J and J ′ be
ideal filters of R. Then the following properties hold:
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1. (M :N J) = (M :P J) ∩N .

2.
(
M :(M :NJ) J

)
= (M :N J).

3. (N/M)[J ] = (M :N J) /M .

4. (M :N J) = N if and only if N/M is J-torsion.

5. (M ⊕M ′)[J ] = M [J ]⊕M ′[J ].

Proof.

1. The inclusion “⊆” is obvious; for the other inclusion it suffices to notice
that if n ∈ N is such that In ⊆ M for some I ∈ J then by definition
n ∈ (M :N J).

2. Follows directly from (1).

3. We have

(N/M)[J ] =
⋃
I∈J

(N/M)[I] =

=
⋃
I∈J
{n+M ∈ N/M | I(n+M) = M} =

=
⋃
I∈J
{n ∈ N | In ⊆M} /M =

=
⋃
I∈J

(M :N I) /M =

= (M :N J) /M .

4. By (3) we have that (N/M)[J ] = N/M if and only if (M :N J) = N .

5. For any right ideal I and any (m,m′) ∈M ⊕M ′ we have that I(m,m′) = 0
if and only if Im = Im′ = 0. This implies that (M⊕M ′)[I] = M [I]⊕M ′[I],
so we have

(M ⊕M ′)[J ] =
⋃
I∈J

(M ⊕M ′)[I] =

=
⋃
I∈J

M [I]⊕M ′[I] =

= M [J ]⊕M ′[J ].
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2.2 J-maps and J-extensions

Fix for this section a ring R and a complete ideal filter J of R. We introduce here
some simple notions that will lead us closer to our definition of (J, T )-extensions.

Definition 2.11. Let M be a left R-module. An R-module homomorphism
ϕ : M → N is called a J-map if (ϕ(M) :N J) = N . If ϕ is injective we will call
it a J-extension, and we say that N is a J-extension of M .

Remark 2.12. By Lemma 2.10(4) a homomorphism ϕ : M → N is a J-map if
and only if N/ϕ(M) is J-torsion. In particular, if J = 0, then every homomor-
phism of R-modules is a J-map.

It is clear from the definition that, if ϕ : M → N and ψ : M → P are two
J-maps, then any R-module homomorphism f : N → P such that f ◦ ϕ = ψ is
also a J-map.

The following lemma, which strongly relies on the assumption that J is com-
plete, shows moreover that R-modules and J-maps form a subcategory of the
category of R-modules.

Lemma 2.13. Let M,N and P be R-modules and let ϕ : M → N and ψ : N → P
be R-module homomorphisms. If ϕ and ψ are J-maps, then so is ψ ◦ ϕ.

Proof. Since J is complete we have

P = (ψ(N) :P J) =

=
((
ψϕ(M) :ψ(N) J

)
:P J

)
⊆

⊆ ((ψϕ(M) :P J) :P J) =

= (ψϕ(M) :P J)

hence (ψϕ(M) :P J) = P and ψ ◦ ϕ is a J-map.

Remark 2.14. Any homomorphism of R-modules ϕ : M → N such that N is J-
torsion is a J-map. In particular, the restriction of an R-module homomorphism
to the J-torsion submodule is a J-map.

The following lemma illustrates how certain properties of a J-map largely
depend on its restriction to the J-torsion submodule. Recall that an injective R-
module homomorphism f : M ↪→ N is called an essential extension if for every
submodule N ′ ⊆ N we have N ′ ∩ f(M) = 0 =⇒ N ′ = 0.

Lemma 2.15. A J-map ϕ : M → N is essential if and only if ϕ|M [J] : M [J ]→
N [J ] is.
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Proof. Notice that the statement is trivially true in case J = 0, so we may assume
that J 6= 0. If ϕ is essential then clearly so is ϕ|M [J], because any submodule N ′

of N [J ] such that N ′ ∩ϕ(M [J ]) = 0 is in particular a submodule of N such that
N ′ ∩ ϕ(M) = 0.

Assume than that ϕ|M [J] : M [J ] → N [J ] is essential. Let N ′ ⊆ N be a

non-trivial submodule and let n ∈ N ′ be a non-zero element. If n ∈ N [J ] then
N ′ ∩N [J ] is non-trivial, and since ϕ|M [J] is essential then N ′ ∩ ϕ(M)[J ] is non-

trivial as well. So we may assume that n 6∈ N [J ].
Since ϕ : M → N is a J-map, there is I ∈ J such that In ⊆ ϕ(M). In

particular, since 0 6∈ J and n is not J-torsion, there is r ∈ R such that 0 6= rn ∈
ϕ(M). Since N ′ is a submodule we have rn ∈ N ′ ∩ ϕ(M), so ϕ : M → N is an
essential extension.

Lemma 2.16. Let ϕ : M → N be a J-map and let f, g : N → P be R-module
homomorphisms such that f ◦ ϕ = g ◦ ϕ. Then for every n ∈ N we have that
f(n)− g(n) ∈ P [J ].

Proof. The statement is clearly true for J = 0, so we may assume that J 6= 0.
Since (ϕ(M) :N J) = N there is I ∈ J such that In ⊆ ϕ(M). In particular there
is a non-zero r ∈ I such that rn ∈ ϕ(M), say rn = ϕ(m) for some m ∈M . This
implies that

r(f(n)− g(n)) = f(ϕ(m))− g(ϕ(m)) = 0

thus f(n)− g(n) ∈ P [J ].

2.3 J-injective modules and J-hulls

Fix for this section a ring R and a complete ideal filter J of R. We introduce the
notion of J-injective module, which generalizes the classical notion of injectivity.

Definition 2.17. A left R-module Q is called J-injective if for every J-extension
i : M ↪→ N and every R-module homomorphism f : M → Q there exists a
homomorphism g : N → Q such that g ◦ i = f .

Remark 2.18. Notice that in case J = 0 the definition of J-injective R-module
coincides with that of injective module. Moreover, if J ′ is a complete ideal filter
of R such that J ′ ⊆ J , then a J-injective module is also J ′-injective.

Example 2.19. A Z-module is p∞-injective if and only if it is p-divisible as
an abelian group. The proof of this fact is completely analogous to that of the
well-known result that a Z-module is injective if and only if it is divisible.

The following proposition is an analogue of the well-known Baer’s criterion in
the classical case of injective modules.
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Proposition 2.20. A left R-module Q is J-injective if and only if for every
two-sided ideal I ∈ J and every R-module homomorphism f : I → Q there is an
R-module homomorphism g : R→ Q that extends f .

Proof. The “only if” part is trivial, because any two-sided ideal of R is also a left
R-module and I ↪→ R is a J-extension if I ∈ J . For the other implication, let i :
M ↪→ N be a J-extension and let f : M → Q be any R-module homomorphism.
By Zorn’s Lemma there is a submodule N ′ of N and an extension g′ : N ′ → Q
of f to N ′ that is maximal in the sense that it cannot be extended to any larger
submodule of N . If N ′ = N we are done, so assume that N ′ 6= N and let
x ∈ N \N ′.

Let I be the two-sided ideal of R generated by {r ∈ R | rx ∈ N ′}. Since
i(M) ⊆ N ′ and (i(M) :N J) = N there is I ′ ∈ J such that I ′x ⊆ N ′, which
implies I ′ ⊆ I, so also I ∈ J . By assumption the map I → Q that sends y ∈ I to
g′(yx) extends to a map h : R → Q. Since ker(R → Rx) is contained in ker(h),
the map h gives rise to a map h′ : Rx → Q by sending rx ∈ Rx to h(r). By
definition the restrictions of g′ and h′ to N ′ ∩ Rx coincide, so we can define a
map g′′ : N ′ + Rx → Q that extends both. This contradicts the maximality of
g′, so we conclude that N ′ = N .

Remark 2.21. Let R be an integral domain and let J be the ideal filter 0 on
R. Since R is an integral domain, the set of ideals J ′ = J \ {0} is an ideal filter.
Using Proposition 2.20 one can easily show that an R-module Q is J-injective if
and only if it is J ′-injective. Indeed, one implication holds, as remarked above,
because J ⊆ J ′, and for the other it is enough to notice that the unique map
0→ Q can always be extended to the zero map on R.

One advantage of using J ′ instead of J is that the J ′-torsion submodule may
be different from the whole module.

Example 2.22. Let M be an abelian group, let p be a prime and let J = p∞ be
the ideal filter of Z introduced in Example 2.2. Then the localization M [p−1] is a
J-injective Z-module. Indeed, if i : N ↪→ P is a J-extension and f : N →M [p−1]
is any homomorphism then for every x ∈ P there is k ∈ N such that pkx ∈ i(N),

and one can define g(x) := f(pkx)
pk

. It is easy to check that g is a well-defined
group homomorphism such that g ◦ i = f .

Proposition 2.23. Let M be a J-injective R-module. If f : M ↪→ N is an
essential J-extension, then it is an isomorphism.

Proof. By definition of J-injectivity there is a map g : N →M such that g ◦ f =
idM . Then g is surjective and since f is an essential extension g is also injective,
so it is an isomorphism.
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Recall that an injective hull of an R-module M is an essential extension
i : M ↪→ N such that N is injective as an R-module. It is well-known that every
R-module M admits an injective hull and that any two injective hulls i : M ↪→ Ω
and j : M ↪→ Γ are isomorphic via a (not necessarily unique) isomorphism that
commutes with i and j, see [Bae40], [ES53] or [Fle68].

Lemma 2.24. Let R be a ring and let M be a left R-module. If i : M ↪→ Ω is
an injective hull and j : M ↪→ N is an essential extension, there is an injective
R-module homomorphism ϕ : N ↪→ Ω such that ϕ ◦ j = i. Moreover, ϕ : N ↪→ Ω
is an injective hull.

Proof. Since Ω is injective there exists an R-module homomorphism ϕ : N → Ω
such that ϕ ◦ j = i. Since i is injective and j is an essential extension, then also
ϕ is injective.

The last part follows from the fact that Ω is injective and ϕ : N ↪→ Ω is an
essential extension, since i : M ↪→ Ω is.

We conclude this section by proving that every R-module admits a J-hull,
which is the generalization of an injective hull:

Definition 2.25. Let M be a left R-module. A J-extension ι : M ↪→ Ω is called
a J-hull of M if it is an essential extension and Ω is J-injective.

Remark 2.26. If J = 0 the definition of J-hull coincides with that of injective
hull.

Remark 2.27. If fi : Mi ↪→ Ni, for i = 1, . . . , k, are J-hulls, then the finite sum

⊕ifi :

k⊕
i=1

Mi ↪→
k⊕
i=1

Ni

is a J-hull. Indeed
⊕

iNi is J-injective because it is a finite direct sum of J-
injective modules, and it is easy to see that it is also an essential J-extension of⊕

iMi.

Lemma 2.28. Let Q be a J-injective R-module and let P ⊆ Q be any submodule.
Then (P :Q J) is J-injective.

Proof. Let i : M ↪→ N be a J-extension and let f : M → (P :Q J) be any R-
module homomorphism. Denote by j : (P :Q J) ↪→ Q the inclusion. Since Q is J-
injective, there is a map g : N → Q such that g◦i = j◦f . For every x ∈ N there is
some I ∈ J such that Ix ⊆ i(M) and thus Ig(x) = g(Ix) ⊆ g(i(M)) = j(f(M)),
which means that the image of g is contained in (P :Q J). This shows that
(P :Q J) is J-injective.
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Theorem 2.29. Every left R-module M admits a J-hull. Moreover, the following
holds for any J-hull ι : M ↪→ Ω of M :

1. For every J-extension i : M ↪→ N there is a J-hull j : N ↪→ Ω with j◦i = ι.

2. For every J-hull ι′ : M ↪→ Ω′ there is an isomorphism ϕ : Ω
∼→ Ω′ with

ϕ ◦ ι = ι′.

Proof. Let ι : M ↪→ Γ be an injective hull of M and let Ω := (ι(M) :Γ J). Since
ι : M ↪→ Γ is an essential extension then also ι : M ↪→ Ω is, and by Lemma 2.10(2)
we have (ι(M) :Ω J) = Ω, so ι : M ↪→ Ω is a J-extension of M . By Lemma 2.28
the R-module Ω is J-injective, so it is a J-hull of M .

For (1), since Ω is J-injective there is a map j : N → Ω such that j ◦ i = ι.
Moreover since ι : M ↪→ Ω is an essential extension also j : N ↪→ Ω is, so it is a
J-hull.

For (2), let ι : M ↪→ Ω and ι′ : M ↪→ Ω′ be two J-hulls. Since Ω′ is J-injective
there is an R-module homomorphism f : Ω→ Ω′ such that f ◦ ι = ι′, so since ι is
an essential extension f is injective. But then, since idΩ : Ω ↪→ Ω is a J-hull by
(1), there is an R-module homomorphism g : Ω′ → Ω such that g ◦ f = idΩ, so in
particular g is surjective. But we also have g ◦ ι′ = ι, and since ι′ is an essential
extension then g must be injective too, hence it is an isomorphism.

Example 2.30. Let M be a finitely generated abelian group, let p be a prime
number and let J = p∞ be the ideal filter of Z introduced in Example 2.2. Write
M as

M = Zr ⊕
k⊕
i=1

Z/peiZ⊕M [n]

where n is a positive integer coprime to p and the ei’s are suitable exponents.
Let

Γ = (Z[p−1])r ⊕ (Z[p−1]/Z)k ⊕M [n]

and

ι : M → Γ

(z, (si mod pei)i, t) 7→
(
z
1 ,
(

s
pei mod Z

)
i
, t
)

Then ι : M → Γ is a J-hull. To see this it is enough to show that f : Zr ↪→
(Z[p−1])r and gi : Z/peiZ ↪→ Z[p−1]/Z for every i = 1, . . . , k are J-hulls, and that
M [n] is J-injective, being trivially an essential extension of itself. The assertions
about f and M [n] follow from Example 2.22, noticing that multiplication by p is
an automorphism of M [n] and that Zr ↪→ (Z[p−1])r is an essential J-extension.
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So we are left to show that for every positive integer e the map g : Z/peZ ↪→
Z[p−1]/Z defined by (s mod pe) 7→ ( spe mod Z) is a J-hull. It is a J-extension,

because the Prüfer group Z[p−1]/Z itself is J-torsion, and it is also essential
because every subgroup of Z[p−1]/Z is of the form 1

pd
Z, so it intersects the image

of g in 1
pmin(e,d)Z.

Finally, Z[p−1]/Z is divisible as an abelian group, so in particular it is J-
injective, since in this case it is equivalent to being p-divisible.

2.4 Duality

Fix again a ring R and a complete ideal filter J of R. Fix as well a left R-module
M and a J-injective and J-torsion left R-module T and let E = EndR(T ).

In this section we prove an elementary duality result that will be key to the
proof of our main Kummer-theoretic results (Theorem 5.3).

Definition 2.31. If V is a subset of HomR(M,T ) we denote by ker(V ) the
submodule of M given by

ker(V ) :=
⋂
f∈V

ker(f)

and we call it the joint kernel of V .

If M ′ is a submodule of M we will identify HomR(M/M ′, T ) with the sub-
module {f ∈ HomR(M,T ) | ker(f) ⊇M ′} of HomR(M,T ).

Proposition 2.32. If V is a finitely generated E-submodule of HomR(M,T ) we
have V = HomR(M/ ker(V ), T ).

Proof. Notice that the inclusion V ⊆ HomR(M/ ker(V ), T ) is obvious. For the
other inclusion we want to show that every homomorphism g : M → T with
ker(g) ⊇ ker(V ) belongs to V . Let then g be such a map and let g : M/ ker(V )→
T be its factorization through the quotient M/ ker(V ). Let {f1, . . . , fn} be a set
of generators for V as an E-module and let

ε : M → Tn

x 7→ (f1(x), . . . , fn(x))

We have ker(ε) = ker(V ), so that ε factors as an injective map ε : M/ ker(V )→
Tn. Since T is J-torsion, so is Tn, hence ε is a J-extension. Since T is J-injective
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there is an R-linear map λ : Tn → T such that λ◦ε = g, or equivalently λ◦ε = g.

T

M M/ ker(V )

Tn
ε

g

g

ε

λ

Since HomR(Tn, T ) ∼=
⊕n

i=1 EndR(T ), there are elements e1, . . . , en ∈ EndR(T )
such that λ(t1, . . . , tn) = e1(t1) + · · · + en(tn) for every (t1, . . . , tn) ∈ Tn. Then
for x ∈M we get

λ(ε(x)) = λ(f1(x), . . . , fn(x))

= e1(f1(x)) + · · ·+ en(fn(x))

which means that g = e1 ◦ f1 + · · ·+ en ◦ fn ∈ V because V is an E-module.

Remark 2.33. Proposition 2.32 is a generalization of the following fact from
linear algebra: let V be a finite-dimensional vector space over a field K and let
f1, . . . , fn : V → K be linear functions. If f : V → K is a linear function such
that ker(f) ⊇

⋂n
i=1 ker(fi), then f is a linear combination of f1, . . . , fn.

Definition 2.34. Let N and Q be left R-modules. We say that Q is a cogenerator
for N if ker(HomR(N,Q)) = 0.

Theorem 2.35. Let R be a ring and let J be a complete ideal filter on R. Let
T be a J-injective and J-torsion left R-module and let M be any left R-module.
Assume that T is a cogenerator for every quotient of M and that HomR(M,T )
is Noetherian as an EndR(T )-module. The maps

{R-submodules of M} → {EndR(T )-submodules of HomR(M,T )}
M ′ 7→ HomR(M/M ′, T )

ker(V ) ← [ V

define an inclusion-reversing bijection between the set of R-submodules of M and
that of EndR(T )-submodules of HomR(M,T ).

Proof. Notice first the above maps are well-defined and they are both inclusion-
reversing. Since HomR(M,T ) is Noetherian as an EndR(T )-module, every sub-
module is finitely generated, so we may apply Proposition 2.32. Since T is a
cogenerator for every quotient of M we can conclude that the two given maps
are inverse of each other.
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Example 2.36. Let R = Z, let J = ∞ and let T = (Q/Z)s for some positive
integer s. Let M be a finitely generated abelian group. Notice that T is J-torsion
and, since it is injective, it is in particular J-injective. Since Q/Z is a cogenerator

for every abelian group, so is T . We have EndR(T ) = Mats×s(Ẑ) and since M

is finitely generated HomR(M,T ) is Noetherian over Mats×s(Ẑ). We are then in
the setting of Theorem 2.35.

3 The category of (J, T )-extensions

Fix for this section a ring R, a complete ideal filter J of R and a J-torsion and
J-injective left R-module T .

In this section we introduce (J, T )-extensions, which are essentially J-exten-
sions whose J-torsion is contained in an R-module T as above (see Definition
3.12). These extensions of R-modules share many interesting properties with
field extensions, and in fact at the end of this section we will be able to prove
the existence of a “maximal” (J, T )-extension, analogous to an algebraic closure
in field theory.

3.1 T -pointed R-modules

In order to define (J, T )-extensions we first introduce the more fundamental con-
cept of T -pointed R-module.

Definition 3.1. A T -pointed R-module is a pair (M, s), where M is a left R-
module and s : M [J ] ↪→ T is an injective homomorphism.

If (L, r) and (M, s) are two T -pointed R-modules, we call an R-module ho-
momorphism ϕ : L → M a homomorphism or map of T -pointed R-modules if
s ◦ ϕ|L[J] = r.

In the following we will sometimes omit the map s from the notation and
simply refer to the T -pointed R-module M .

Remark 3.2. A map ϕ : (L, r)→ (M, s) of T -pointed R-modules is injective on
L[J ]. Indeed s ◦ ϕ|L[J] = r is injective, so ϕ|L[J] must be injective as well.

Definition 3.3. If (M, s) is a T -pointed R-module we denote the T -pointed R-
module (M [J ], s) by tor(M, s), or simply by tor(M). We will denote the natural
inclusion tor(M) ↪→M by tM .

Example 3.4. Let R = Z and let J be the complete ideal filter ∞ on Z. Let
T = (Q/Z)2, which is ∞-injective and ∞-torsion. The abelian group M =
Z ⊕ Z/6Z ⊕ Z/2Z together with the map s : Z/6Z ⊕ Z/2Z that sends (1, 0) to(

1
6 , 0
)

and (0, 1) to
(
0, 1

2

)
is a T -pointed R-module.
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As is the case with field extensions, pushouts do not always exist in our newly-
defined category. However the pushout of two maps of T -pointed R-modules
exists if at least one of the two is injective and “as little a J-map as possible”.

Definition 3.5. We say that a map f : L→M of T -pointed R-modules is pure
if (f(L) :M J) = f(L) +M [J ].

Proposition 3.6. Let (L, r), (M, s) and (N, t) be T -pointed R-modules and let
f : L → M and g : L → N be maps of T -pointed R-modules. Assume that f is

injective and pure. Then the pushout M P Ni j
of f along g exists

in the category of T -pointed R-modules.
Moreover the pushout map j : N → P is injective, and if g is injective the

pushout map i : M → P is injective.

Proof. We have to show that there is a T -pointed R-module (P, u) with maps
i : M → P and j : N → P such that the diagram

L M

N P

g

f

i

j

commutes and such that for every T -pointed R-module (Q, v) with maps k :
M → Q and l : N → Q with k ◦ f = l ◦ g there is a unique map ϕ : L→ Q such
that the diagram

L M

N P

Q

g

f

i
k

j

l

ϕ

commutes.
Let P ′ be the pushout of f along g as maps of R-modules, and let i′ : M →

P ′ and j′ : N → P ′ be the pushout maps. Write P ′ as (M ⊕ N)/S where
S = {(f(λ),−g(λ)) | λ ∈ L}. Let π : P ′ → P be the quotient by the submodule

K := 〈{[(m,−n)] | for all m ∈M [J ], n ∈ N [J ] such that s(m) = t(n)}〉

and let i = π ◦ i′ and j = π ◦ j′. Notice that i ◦ f = j ◦ g.
We claim that P ′[J ] is generated by i′(M [J ]) and j′(N [J ]). The claim is

obviously true if J = 0, so we may assume that J 6= 0. To prove the claim, notice
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that by Lemma 2.10(3) we have P ′[J ] = (S :M⊕N J) /S, so any element of P ′[J ]
is represented by a pair (m,n) such that I(m,n) ⊆ S for some I ∈ J . Then since
f is a pure map we have m = f(λ) + tm for some λ ∈ L and some tm ∈M [J ].

Let I ′ ∈ J be such that I ′tm = 0. Then I ∩ I ′ ∈ J and for any nonzero
h ∈ I ∩ I ′ we have (f(hλ), hn) = h(m − tm, n) = h(m,n) ∈ S, which means
that hn = −g(hλ + z) for some z ∈ ker(f). Since f is injective we have that
n = −g(λ) + tn for some tn ∈ N [J ]. It follows that the class of (m,n) in P ′[J ] is
the same as that of (tm, tn), which proves our claim.

Since K ⊆ P ′[J ], it follows easily from our claim that P [J ] = P ′[J ]/K and
thus that the map

u : P [J ]→ T

[(m,n)] 7→ s(m) + t(n)

is well-defined and injective. This shows that (P, u) is a T -pointed R-module and
that i : M → P and j : N → P are maps of T -pointed R-modules.

Let now (Q, v), k and l be as above. By the universal property of the pushout
there is a unique R-module homomorphism ϕ′ : P ′ → Q such that ϕ′ ◦ i′ = k
and ϕ′ ◦ j′ = l. Since k is a map of T -pointed R-modules, this implies that
v ◦ ϕ′ ◦ i′ = s and v ◦ ϕ′ ◦ j′ = t, so that ϕ′ factors through P as a T -pointed
R-module homomorphism ϕ : P → Q.

For the last assertion we first notice that if g is injective, then so is the R-
module pushout map i′. Then we claim that i′(M)∩K = 0. Indeed if [(m0, 0)] =
[(m,−n)] in P ′ for some m0 ∈ m, m ∈M [J ] and n ∈ N [J ] such that s(m) = t(n),
then there is some λ ∈ L such that m − m0 = f(λ) and n = g(λ). Since g is
injective λ is J-torsion, and we have r(λ) = s(m) − s(m0) = t(n). But, since
s(m) = t(n), we must have m0 = 0, and we conclude that i′(M) ∩ K = 0. It
follows that i = π ◦ i′ is injective. Analogously, injectivity of f implies that of
j.

Remark 3.7. Let R = Z, J = 2∞, T = Z
[

1
2

]
/Z, L = Z and M = N = 1

2Z. The
R-modules L, M and N are T -pointed via the zero map, since their J-torsion
is trivial. Let f : L ↪→ M and g : L ↪→ N be the natural inclusion and notice
that they are maps of T -pointed R-modules that are not pure. We claim that
the pushout of f along g does not exist in the category of T -pointed R-modules.

Suppose instead that (P, u) is a pushout of f along g and consider the T -
pointed R-module

(
1
2Z⊕ Z/2Z, z

)
, where z : Z/2Z → T is the only possible

injective map. Consider the diagram
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L M

N P

1
2Z⊕

Z
2Z

g

f

i k

j

l

ϕ

where the maps k and l are defined as

k : 1
2Z → 1

2Z⊕
Z
2Z l : 1

2Z → 1
2Z⊕

Z
2Z

and

1
2 7→

(
1
2 , 0
)

1
2 7→

(
1
2 , 1
)

Notice that k and l are maps of T -pointed R-modules such that k ◦ f = l ◦ g.
Then by assumption there exists a unique map of T -pointed R-modules ϕ : P →
1
2Z ⊕ Z/2Z that makes the diagram commute. In particular we have ϕ(j( 1

2 )) 6=
ϕ(i( 1

2 )), which implies that j( 1
2 ) 6= i( 1

2 ). But since 2j( 1
2 ) = j(g(1)) = i(f(1)) =

i( 1
2 ) we have that t := j( 1

2 )− i( 1
2 ) is a 2-torsion element of P , and we must have

u(t) = 1
2 .

Consider now the map k′ : M → 1
2Z ⊕ Z/2Z mapping 1

2 to
(

1
2 , 0
)
, just as

l does. This is again a map of T -pointed R-modules such that k′ ◦ f = l ◦ g,
so there must be a map of T -pointed R-modules ϕ′ : P → 1

2Z ⊕ Z/2Z that
makes this new diagram commute. Such a map ϕ′ must map t to 0, because
ϕ′(j( 1

2 )) =
(

1
2 , 0
)

= ϕ′(i( 1
2 )). But then the diagram of structural maps into T

P [J ]

T

Z
2Z

u

ϕ′|
P [J]

z

would not commute, which is a contradiction. This proves our claim.

The class of T -pointed R-modules whose torsion submodule is isomorphic to
T will be particularly important for us.

Definition 3.8. Let (M, s) be a T -pointed R-module. We say that (M, s) is
saturated if tM : M [J ] ↪→ T is surjective (and hence an isomorphism).

Remark 3.9. The map tM is a pure and injective map.
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Every T -pointed R-module can be embedded in a saturated module, and
the smallest saturated module containing a given one can be constructed as a
pushout.

Definition 3.10. If (M, s) is a T -pointed R-module we call saturation of (M, s),
denoted by sat(M, s) or simply by sat(M), the T -pointed R-module (P, u) which
is the pushout (in the category of T -pointed R-modules) of the diagram

M [J ] M

T P

s

tM

sM

We will also denote by sat(s) the map u and by sM the pushout map M → P .

Remark 3.11. Notice that the pushout map T → P of Definition 3.10 is an
isomorphism onto P [J ]. Indeed by definition of T -pointed R-module the following
diagram commutes:

T = T [J ]

T

P [J ]

idT

sat(s)

where the vertical map on the left is the pushout map. It follows that sat(s),
which is injective by definition, is also surjective, hence an isomorphism, and
the pushout map is its inverse. In other words, the saturation of a T -pointed
R-module is saturated.

3.2 (J, T )-extensions

We can finally introduce the main object of study of this section.

Definition 3.12. Let (M, s) be a T -pointed R-module. A (J, T )-extension of
(M, s) is a triple (N, i, t) such that (N, t) is a T -pointed R-module and i : M ↪→ N
is a map of T -pointed R-modules and a J-extension.

If (N, i, t) and (P, j, u) are two (J, T )-extensions of (M, s) we call a homo-
morphism of T -pointed R-modules ϕ : N → P a homomorphism or map of
(J, T )-extensions if ϕ ◦ i = j.

We denote by JT(M, s) the category of (J, T )-extensions of (M, s).
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In the following we will sometimes omit the maps i and t from the notation
and simply refer to the (J, T )-extension N of M.

Remark 3.13. Let (N, i, t) and (P, j, u) be (J, T )-extensions of the T -pointed
R-module (M, s) and let ϕ : N → P be a map of (J, T )-extensions. Then (P,ϕ, u)
is a (J, T )-extension of (N, t). In fact we have

(ϕ(N) :P J) ⊇ (j(M) :P J) = P .

Example 3.14. Let R = Z, let J be the complete ideal filter 2∞ of Z and let T be

the 2∞-torsion and 2∞-injective Z-module
(
Z
[

1
2

]
/Z
)2

. If M = Z⊕Z/2Z⊕Z/2Z
then the map s : Z/2Z⊕Z/2Z→ T that sends (1, 0) to

(
1
2 , 0
)

and (0, 1) to
(
0, 1

2

)
turns (M, s) into a T -pointed R-module.

Let N = 1
2Z⊕ Z/4Z⊕ Z/2Z. The maps

t1 : Z/4Z⊕ Z/2Z → T

(1, 0) 7→
(

1
4 , 0
)

(0, 1) 7→
(
0, 1

2

) and

t2 : Z/4Z⊕ Z/2Z → T

(1, 0) 7→
(
0, 1

4

)
(0, 1) 7→

(
1
2 , 0
)

define two different T -pointed R-module structures (N, t1) and (N, t2) on N . The
componentwise inclusion f : M ↪→ N is a 2∞ extension. Since it is compatible
with all the maps to T , both (N, f, t1) and (N, f, t2) are (2∞, T )-extensions of M .
They are not isomorphic as (2∞, T )-extensions, because they are not isomorphic
as T -pointed R-modules.

We can immediately see some similarities between (J, T )-extensions and field
extensions: every map is injective, and every surjective map is an isomorphism.

Lemma 3.15. Every map of (J, T )-extensions is injective.

Proof. Let (N, i, t) and (P, j, u) be (J, T )-extensions of the T -pointed R-module
(M, s) and let ϕ : N → P be a map of (J, T )-extensions. Let n ∈ kerϕ. Since
i : M ↪→ N is a J-extension there is I ∈ J such that In ⊆ i(M). But since
j : M ↪→ P is injective and ϕ(In) = 0, we must have In = 0, hence n is J-
torsion. But since ϕ is a map of T -pointed R-modules it is injective on M [J ] (see
Remark 3.2) so n = 0.

Corollary 3.16. Every surjective map of (J, T )-extensions is an isomorphism.

Proof. Let (N, i, t) and (P, j, u) be (J, T )-extensions of the T -pointed R-module
(M, s) and let ϕ : N → P be a map of (J, T )-extensions. In view of Lemma 3.15 it
is enough to show that if ϕ is an isomorphism of R-modules, then its inverse ϕ−1 :
P
∼→ N is also a map of (J, T )-extensions. But the fact that ϕ−1 ◦ j = i follows

directly from ϕ ◦ i = j while t = u ◦ ϕ|−1
P [J] = u follows from u ◦ ϕ|N [J] = t.
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Proposition 3.17. Let (M, s) be a T -pointed R-module, let (N, i, t) be a
(J, T )-extension of (M, s) and let (P, j, u) be a (J, T )-extension of (N, t).
Then (P, j ◦ i, u) is a (J, T )-extension of (M, s).

Proof. The map j ◦ i is clearly a J-injective map of T -pointed R-modules, and it
is a J-map by Lemma 2.13.

3.3 Pullback and pushforward

One can recover much information about the (J, T )-extensions of a certain T -
pointed R-module by studying the extensions of its torsion submodule and of its
saturation – see for example our construction of the maximal (J, T )-extension in
Section 3.4. In order to study the relation between these categories, we introduce
the more general pullback and pushforward functors which, interestingly, form
an adjoint pair.

Definition 3.18. If ϕ : L → M is a map of T -pointed R-modules and (N, i, t)
is a (J, T )-extension of M , we let

ϕ∗N := (i(ϕ(L)) :N J) , ϕ∗i := i|ϕ(L) , ϕ∗t := t|(ϕ∗N)[J]

and we call them the pullback along ϕ of N , i and t respectively.

Lemma 3.19. Let ϕ : L→M be a map of T -pointed R-modules and let (N, i, t)
be a (J, T )-extension of M . Then (ϕ∗N,ϕ∗i, ϕ∗t) is a (J, T )-extension of ϕ(L).

Proof. Clearly (ϕ∗N,ϕ∗t) is a T -pointed R-module and

ϕ∗t ◦ ϕ∗i|ϕ(L)[J] = t ◦ i|ϕ(L)[J] = s|ϕ(L)

so ϕ∗i : (ϕ(L), s|ϕ(L))→ (ϕ∗N,ϕ∗t) is an injective map of T -pointed R-modules.

Moreover (ϕ∗i(ϕ(L)) :ϕ∗N J) = ϕ∗N by definition and by Lemma 2.10(2), so
that (ϕ∗N,ϕ∗i, ϕ∗t) is a J-extension.

Definition 3.20. If ϕ : L→M is a map of T -pointed R-modules, N and P are
(J, T )-extensions of M and f : N → P is a map of (J, T )-extensions, the map

f |ϕ∗N : ϕ∗N → ϕ∗P

is a map of (J, T )-extensions of ϕ(L), which we denote by ϕ∗f .

Proposition 3.21. Let ϕ : L → M be a map of T -pointed R-modules. The
diagram
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(N, i, t) (ϕ∗N,ϕ∗i, ϕ∗t)

(P, j, u) (ϕ∗P,ϕ∗j, ϕ∗u)

f ϕ∗f

defines a functor from JT(M, s) to JT(ϕ(L), s|ϕ(L)).

Proof. In view of Lemma 3.19 we only need to check that ϕ∗ behaves well with
the respect to the composition of maps of (J, T )-extensions. If

N
f−→ P

g−→ Q

are maps of (J, T )-extensions of (M, s), we have

ϕ∗g ◦ ϕ∗f = g|ϕ∗P ◦ f |ϕ∗N = (g ◦ f)|ϕ∗N = ϕ∗(g ◦ f) .

Definition 3.22. We call the functor of Proposition 3.21 the pullback along ϕ,
and we denote it by ϕ∗.

Definition 3.23. If ϕ : L → M is an injective and pure map of T -pointed R-
modules and (N, i, t) is a (J, T )-extension of L we denote by ϕ∗i : M → ϕ∗N the
pushout of i along ϕ.

Lemma 3.24. Let ϕ : L → M be an injective and pure map of T -pointed R-
modules and let (N, i, t) be a (J, T )-extension of L. Then (ϕ∗N,ϕ∗i, ϕ∗t) is a
(J, T )-extension of (M, s).

Proof. This follows from the fact that ϕ∗i is injective and ϕ∗N/(ϕ∗i)(M) ∼=
N/i(L) is J-torsion, because i : L→ N is a J-extension.

Lemma 3.25. Let ϕ : L → M be an injective and pure map of T -pointed R-
modules, let (N, i, t) and (P, j, u) be (J, T )-extensions of L and let f : N → P
be a map of (J, T )-extensions. Then there is a unique map of (J, T )-extensions
of M

ϕ∗f : ϕ∗N → ϕ∗P

such that the diagram

N ϕ∗N

P ϕ∗P

f ϕ∗f
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commutes, where the horizontal maps are the pushout maps.

Proof. It is enough to apply the universal property of the pushout of ϕ∗N to the
diagram

L M

N ϕ∗N

P ϕ∗P

i

ϕ

ϕ∗i ϕ∗j

f

ϕ∗f

Indeed the map ϕ∗f : ϕ∗N → ϕ∗P , whose existence is ensured by the universal
property, is such that ϕ∗P/ϕ∗f(ϕ∗N) ∼= P/f(N) is J-torsion.

Proposition 3.26. Let ϕ : L → M be an injective and pure map of T -pointed
R-modules. The diagram

(N, i, t) (ϕ∗N,ϕ∗i, ϕ∗t)

(P, j, u) (ϕ∗P,ϕ∗j, ϕ∗u)

f ϕ∗f

where ϕ∗f is as in Lemma 3.25, defines a functor from JT(L, r) to JT(M, s).

Proof. In view of Lemmas 3.24 and 3.25 it is enough to show that ϕ∗ behaves well
with respect to the composition of maps of (J, T )-extensions. This is immediate
from the construction in Lemma 3.25 and the uniqueness part of the universal
property of the pushout.

Definition 3.27. We call the functor of Proposition 3.26 the pushforward along
ϕ, and we denote it by ϕ∗.

Theorem 3.28. Let ϕ : (L, r) ↪→ (M, s) be an injective pure map of T -pointed
R-modules. Then the functor ϕ∗ is left adjoint to ϕ∗.

Proof. Since ϕ is injective we will, for simplicity, denote ϕ(L) by L.
Let (N, i, t) be a (J, T )-extension of L and let (P, j, u) be a (J, T )-extension

of M . We want to show that we have

HomJT(L,r)(N,ϕ
∗P ) ∼= HomJT(M,s)(ϕ∗N,P )

naturally in N and P .
Let f : N → ϕ∗P be a map of (J, T )-extensions of L; notice that in particular

f ◦ i = ϕ∗j. Composing f with the natural inclusion ϕ∗P ↪→ P we get a map of
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T -pointed R-modules f ′ : N → P such that f ′ ◦ i = j ◦ ϕ, so by the universal
property of the pushout there exists a unique map g : ϕ∗N → P that is a map
of (J, T )-extensions of M .

We define a map

ΨN,P : HomJT(L,r)(N,ϕ
∗P )→ HomJT(M,s)(ϕ∗N,P )

by letting ΨN,P (f) := g. The map Ψ is natural in N and P , since it is defined by
means of a universal property. Indeed, if h : N ′ → N is a map of (J, T )-extensions
of L and f ′ = f ◦h then ΨN ′,P (f ′) is by definition the unique map ϕ∗N

′ → P that
makes the pushout diagram commute so it must coincide with g ◦ϕ∗h. Similarly
if k : P → P ′ is a map of (J, T )-extensions of M then ΨN,P ′(ϕ

∗k ◦ f) must
coincide with k ◦ g.

To see that the map ΨN,P is injective, let f ′ : N → ϕ∗P be another map and
assume that ΨN,P (f) = ΨN,P (f ′). But then the composition of ΨN,P (f) with
the pushout map N → ϕ∗N coincides with the composition of f and the natural
inclusion ϕ∗P ↪→ P , and analogously for f ′, so we conclude that f = f ′.

To see that ΨN,P is surjective, let g′ : ϕ∗N → P be a map of (J, T )-extensions
of M . Then by definition of pullback its composition with N → ϕ∗N factors
through ϕ∗P ↪→ P as a map of (J, T )-extensions f ′ : N → ϕ∗P , and again by
the uniqueness of the map of the universal property of the pushout one can check
that ΨN,P (f ′) = g′.

Remark 3.29. Let ϕ : L ↪→ M be an injective and pure map of T -pointed R-
modules and let (N, i, t) and (P, j, u) be (J, T )-extensions of L andM respectively.
We can give an explicit description of the unit

ηN : N → ϕ∗ϕ∗N

and the counit
εP : ϕ∗ϕ

∗P → P

of the adjunction.
Notice that the pushout map N → ϕ∗N is injective. Moreover, since N is a J-

extension of L, the image of this map is contained in ϕ∗ϕ∗N = (ϕ∗i(ϕ(L)) :ϕ∗N J).
The resulting inclusion N ↪→ ϕ∗ϕ∗N is the unit ηN .

By definition ϕ∗P is contained in P , and the diagram

L M

ϕ∗P P

ϕ

j

commutes, so by the universal property of the pushout there exists a map
ϕ∗ϕ

∗P → P . This map is the counit εP .
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The following examples of pullback and pushforward functors are of particular
importance to us, because they will be key to the construction of maximal (J, T )-
extensions.

Definition 3.30. Let M be a T -pointed R-module and let tM : M [J ] → M be
the natural inclusion of its torsion submodule. We will call the pullback functor
t∗M the torsion functor and we will denote it by tor.

Remark 3.31. For every (J, T )-extension of tor(M) the unit map

ηN : tor((tM )∗N)→ N

is an isomorphism. Indeed, we have tor((tM )∗N) = ((tM )∗N)[J ] = N [J ], and
since N is a (J, T )-extension of a J-torsion module and J is complete then
N [J ] = N .

Notice that the inclusion sM of a T -pointed R-module into its saturation is
injective and pure.

Definition 3.32. Let M be a T -pointed R-module and let sM : M → sat(M)
be the inclusion into its saturation. We will call the pushforward functor (sM )∗
the saturation functor and we will denote it by sat.

Remark 3.33. The counit map εP : P → sat(s∗MP ) is an isomorphism. Indeed,
one can see from the definition of pullback that s∗MP = P is saturated, hence it
coincides with its own saturation.

3.4 Maximal (J, T )-extensions

Maximal (J, T )-extensions are the analogue of algebraic closures in field theory.
The main result of this section is the proof of the existence of a maximal (J, T )-
extension for any T -pointed R-module, and we achieve this by first constructing
such an extension for its torsion and its saturation.

Definition 3.34. A (J, T )-extension Γ of the T -pointed R-module M is called
maximal if for every (J, T )-extension N of M there is a map of (J, T )-extensions
ϕ : N ↪→ Γ.

The definition of T -pointed R-module already provides a maximal (J, T )-
extension for any J-torsion module.

Lemma 3.35. Let (M, s) be a T -pointed R-module. If M is J-torsion, then
(T, s, idT ) is a maximal (J, T )-extension of (M, s).
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Proof. If (N, i, t) is a (J, T )-extension of M , then in particular we have

N = (i(M) :N J) =
((

0 :i(M) J
)

:N J
)
⊆ ((0 :N J) :N J) = (0 :N J) = N [J ]

so N is J-torsion. Then t : N ↪→ T satisfies t ◦ i = s and idT ◦t = t, so it is a
map of (J, T )-extensions.

The existence of a maximal (J, T )-extension of a saturated module comes from
the existence of a J-hull, and it requires only a little more technical work.

Lemma 3.36. Let (M, s) be a saturated T -pointed R-module and let ι : M ↪→ Γ
be a J-hull of M . Then

1. ι|M [J] : M [J ] ↪→ Γ[J ] is an isomorphism.

2. (Γ, ι, τ) is a maximal (J, T )-extension of (M, s), where τ := s ◦ ι|−1
M [J].

Proof. For (1) notice that ι|M [J] : M [J ] ↪→ Γ[J ] is an essential extension by
Lemma 2.15, so it is an isomorphism by Proposition 2.23.

For (2) we have that Γ is a (J, T )-extension of M , because it is a J-extension
and τ ◦ ι|M [J] = s. Let (N, i, t) be any (J, T )-extension of M . Since i : M ↪→ N is
a J-extension, there is a homomorphism ϕ : N → Γ such that ϕ◦i = ι. Moreover,
since t◦ i|M [J] = s and τ ◦ (ϕ ◦ i)|M [J] = τ ◦ ι|[M [J] = s, we have τ ◦ ϕ|N [J] = t, so

ϕ is a map of (J, T )-extensions. It follows that Γ is a maximal (J, T )-extension
of M .

Finally we can construct a (J, T )-extension of any T -pointed R-module.

Proposition 3.37. Let (Γ, ι, τ) be a (J, T )-extension of the T -pointed R-module
(M, s) such that Γ is saturated. Then Γ is a maximal (J, T )-extension of M if
and only if sat(Γ) is a maximal (J, T )-extension of sat(M).

Proof. Assume first that Γ is a maximal (J, T )-extension of M and let (N, i, t) be
a (J, T )-extension of sat(M). Then there is a map ϕ : s∗MN → Γ of (J, T )-
extensions of M , so there is a map sat(ϕ) : sat(s∗MN) → sat(Γ) of (J, T )-
extensions of sat(M). By Remark 3.33 we have N ∼= sat(s∗MN), so there is also
a map N → sat(Γ). This proves that sat(Γ, ι, τ) is a maximal (J, T )-extension of
sat(M).

Assume now that sat(Γ) is a maximal (J, T )-extension of sat(M). Let (N, i, t)
be a (J, T )-extension of M . Then there is a map of (J, T )-extensions f : sat(N)→
sat(Γ) completing the following diagram:
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M [J ] M

N [J ] N Γ

T sat(M)

T sat(N) sat(Γ)

s

i|M[J]

sM

i ι

t sN

ϕ

sΓ
sat(s)−1

idT

sat(i)

sat(ι)

sat(t)−1 f

Notice that since Γ is saturated the map sΓ : Γ ↪→ sat(Γ) is an isomorphism. So
we can define ϕ := s−1

Γ ◦ f ◦ sN : N → Γ and we have

sΓ ◦ ϕ ◦ i = f ◦ sN ◦ i = f ◦ sat(i) ◦ sM = sat(ι) ◦ ss = sΓ ◦ ι

hence ϕ ◦ i = ι. Moreover, since sat(τ) ◦ sΓ = τ , we have

τ ◦ ϕ|N [J] = τ ◦ s−1
Γ ◦ f ◦ sN |N [J] =

= τ ◦ s−1
Γ ◦ f ◦ sat(t)

−1 ◦ t =

= τ ◦ s−1
Γ ◦ sat(τ)−1 ◦ t =

= t

so ϕ is a map of (J, T )-extensions. Hence Γ is a maximal (J, T )-extension of
M .

Theorem 3.38. Every T -pointed R-module M admits a maximal (J, T )-extension.
Moreover, for any maximal (J, T )-extension Γ of M the following hold:

1. If Γ′ is another maximal (J, T )-extension of M , then Γ ∼= Γ′ as (J, T )-
extensions;

2. The module Γ is saturated;

3. The module Γ is J-injective;

4. If (N, i, t) is a (J, T )-extension of M and ϕ : N → Γ is a map of (J, T )-
extensions, then (Γ, ϕ, τ) is a maximal (J, T )-extension of (N, t).
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Proof. Let j : sat(M) ↪→ Γ be a J-hull of the saturation of M and let τ :=

sat(s) ◦ j|−1
sat(M)[J]. By Lemma 3.36 we have that (Γ, j, τ) is a maximal (J, T )-

extension of sat(M). By Remark 3.33 we have that (Γ, ι, τ) = t∗M (Γ, j, τ) is a
(J, T )-extension of M such that sat(Γ, ι, τ) ∼= (Γ, j, τ), so by Proposition 3.37 we
conclude that it is a maximal (J, T )-extension of M .

Let now (Γ′, ι′, τ ′) be another maximal (J, T )-extension of (M, s). Then there
is a map of (J, T )-extensions f : Γ ↪→ Γ′ which is an essential J-extension by
Lemma 2.15, as it is an isomorphism on the J-torsion. Since Γ is J-injective we
have that f is an isomorphism by Proposition 2.23. This shows that any maximal
(J, T )-extension of M is isomorphic to Γ, which proves (1), (2) and (3) at once.

For (4) it is enough to notice that if j : sat(M) ↪→ Γ is a J-hull, then so
is sat(ϕ), thus by the same argument as above Γ is a maximal (J, T )-extension
of N .

4 Automorphisms of (J, T )-extensions

Fix for this section a ring R, a complete ideal filter J of R and a J-torsion and
J-injective left R-module T . Fix moreover a T -pointed R-module (M, s) and a
maximal (J, T )-extension (Γ, ι, τ) of (M, s).

4.1 Normal extensions

We define normal extensions in analogy with field theory.

Definition 4.1. A (J, T )-extension i : M ↪→ N is called normal if every injective
J-map f : N ↪→ Γ such that f ◦ i = ι has the same image.

Notice that we are considering all injective J-maps that respect ι : M ↪→ Γ,
even if they are not maps of (J, T )-extensions, that is even if they do not respect
the embeddings of the torsion submodules into T .

Remark 4.2. Although we will not make use of it, it interesting to notice that
the group AutM (N) acts on EmbM (N,Γ) by composition on the right. It is then
easy to see that N is normal if and only if this action is transitive.

This is reminiscent of Galois theory à la Grothendieck. One might wonder
if, assuming the necessary finiteness conditions on automorphism groups hold,
the category of (J, T )-extensions is indeed a Galois category with fundamental
functor EmbM (−,Γ). Unfortunately, the fact that in general pushouts of (J, T )-
extensions do not exist (see Remark 3.7) implies that this is not the case.

We may refine this question as follows: does the category of (J, T )-extensions
embed as the subcategory of connected objects of some Galois category?

Proposition 4.3. Every saturated (J, T )-extension of M is normal.
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Proof. Assume that M is saturated, let i : M ↪→ N be a (J, T )-extension and let
f, g : N ↪→ Γ be injective J-maps with f ◦ i = g ◦ i = ι. If f(N) 6= g(N), we may
assume without loss of generality that there is n ∈ N with f(n) 6∈ g(N). Then
t := f(n) − g(n) ∈ Γ[J ] by Lemma 2.16. Since N is saturated and g is injective
we have t ∈ g(N), thus f(n) = g(n) + t ∈ g(N), a contradiction. We deduce that
f(N) = g(N), so N is normal.

Corollary 4.4. Every maximal (J, T )-extension is normal.

4.2 A fundamental exact sequence

Proposition 4.5. Let (N, i, t) be a normal (J, T )-extension of (M, s) and let
AutM+N [J](N) denote the subgroup of AutM (N) consisting of those automor-
phisms that restrict to the identity on the submodule of N generated by i(M) and
N [J ]. Then the restriction map along sN : N → sat(N)

Autsat(M)(sat(N))→ AutM+N [J](N)

is a well-defined group isomorphism.

Proof. Let us identify for simplicity N with its image sN (N) in sat(N), and let
σ ∈ Autsat(M)(sat(N)). To see that the image of σ|N is contained in N , let
f : sat(N) ↪→ Γ be a map of (J, T )-extensions of sat(M), which is necessarily also
a map of (J, T )-extensions of M . Since sat(s) is an isomorphism, also f ◦ σ is a
map of (J, T )-extensions of sat(M), and since N is normal we have that the image
of N in Γ under f and under f ◦ σ are the same, which shows that σ(N) = N .
Since this holds for both σ and its inverse, we have that σ|N ∈ AutM (N), and
clearly σ is the indentity on N [J ].

To show that the restriction to N is an isomorphism, we construct an inverse.
Let now σ ∈ AutM+N [J](N), and recall that we can see it as a map of (J, T )-
extensions of (M, s)

σ : (N, t)→ (N, t ◦ σ|N [J]) .

Composing it with sN we get a map

sN ◦ σ : (N, t)→ (sat(N), (sN )∗(t ◦ σ|N [J])) .

Moreover, the map sat(i) is also a map of (J, T )-extensions

sat(i) : (sat(M), (sM )∗s)→ (sat(N), (sN )∗(t ◦ σ|N [J]))

so by the universal property of the pushout there is a map of (J, T )-extensions

σ′ : (sat(N), (sN )∗t), (sat(N), (sN )∗(t ◦ σ|N [J])) .
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It is straightforward to check that σ 7→ σ′ provides an inverse for the restriction
map Autsat(M)(sat(N))→ AutM (N), which is then an isomorphism.

Proposition 4.6. Let (N, i, t) be a (J, T )-extension of (M, s). Then the map

ϕ : AutM+N [J](N)→ Hom

(
N

i(M) +N [J ]
, N [J ]

)
σ 7→ (ϕσ : [n] 7→ σ(n)− n)

is an isomorphism of groups. In particular, Autsat(M)(sat(N)) is abelian.

Proof. We will denote by [n] the class of an element n ∈ N in N/(i(M) +N [J ]).
Notice that for any σ ∈ AutM+N [J](N) we have σ(n)−n ∈ N [J ] by Lemma 2.16,
and ϕσ is a homomorphism of R-modules. To see that σ 7→ ϕσ is a group
homomorphism, let σ′ ∈ AutM+N [J](N). Then, since σ is the identity on N [J ]
and σ′(n)− n ∈ N [J ], we have

σ(σ′(n))− n = σ(σ′(n))− n+ σ′(n)− n− σ(σ′(n)− n)

= σ(n)− n+ σ′(n)− n

which shows that ϕ is a group homomorphism. It is also clearly injective, because
if ϕσ(n) = n then σ must be the identity.

To prove surjectivity it is enough to show that for any R-module homomor-
phism h : N/(i(M) +N [J ])→ N [J ] the map

σh : N → N

n 7→ n+ h([n])

which is clearly the identity on i(M) + N [J ], is an automorphism of N . It is
injective, because if n = −h([n]) then in particular n is torsion and thus [n] = 0.
It is also surjective, because for any n ∈ N we have

σh(n− h([n])) = n− h([n]) + h([n− h([n])])

= n− h([n]− [n+ h([n])])

= n

Corollary 4.7. Let (N, i, t) be a normal (J, T )-extension of M . Denoting for
simplicity by sat(M) the image of sat(M) inside sat(N) we have

Autsat(M)(sat(N)) ∼= Hom

(
sat(N)

sat(M)
, tor(N)

)
.
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Proof. The claim follows from the two propositions above and the fact that

N

i(M) +N [J ]
∼=

sat(N)

sat(M)
.

To see that the two quotients are isomorphic, consider the following map:

N → sat(N)/sat(M)

n 7→ sN (n) + sat(M)

Its kernel is i(M) +N [J ] and it is surjective because sat(N) is generated by the
images of N and T .

Remark 4.8. Let N be a (J, T )-extension of M and let σ ∈ AutM (N). The
restriction of σ to N [J ] is an element of AutM [J](N [J ]). Indeed, the image of a
J-torsion element under a map of (J, T )-extensions is again a J-torsion element;
since this is true for both σ and σ−1 we can conclude that σ|N [J] : N [J ]→ N [J ]
is an automorphism.

Lemma 4.9. If (N, i, t) is a normal (J, T )-extension of (M, s), the restriction
map

AutM (N)→ AutM [J](N [J ])

is surjective.

Proof. Let σ ∈ AutM [J](N [J ]). Notice that (N, i, t ◦ σ) is also a (J, T )-extension
of M , and let f : (N, i, t) ↪→ (Γ, ι, τ) and g : (N, i, t ◦ σ) ↪→ (Γ, ι, τ) be maps of
(J, T )-extensions. Since N is normal we have f(N) = g(N), thus f−1 ◦ g is an
automorphism of N that restricts to σ.

The exact sequence appearing in the following theorem has been studied, in
some particular cases, in [JP21], [Pal14] and [Chapter 3].

Theorem 4.10. Let M be a T -pointed R-module and let N be a normal (J, T )-
extension of M . Then there is an exact sequence of groups

1→ Hom

(
sat(N)

sat(M)
, tor(N)

)
→ AutM (N)→ Auttor(M)(tor(N))→ 1

Moreover Auttor(M)(tor(N)) acts on Hom(sat(N)/sat(M), tor(N)) by composi-
tion.

Proof. By Lemma 4.9 the map AutM (N)→ Auttor(M)(tor(N)) is surjective and
its kernel is Auti(M)+N [J](N) by definition. By Proposition 4.5 this group is
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isomorphic to Autsat(M)(sat(N)) via the restriction under sN : N → sat(N).
Combining this with Corollary 4.7 we get the desired exact sequence.

The fact that Auttor(M)(tor(N)) acts on Auti(M)+N [J] by conjugation is a
standard result on short exact sequences with abelian kernel, and one can trace
this action under the isomorphisms described above to check that on
Hom(sat(N)/sat(M), tor(N)) this action is indeed the composition of maps, sim-
ilarly to [Chapter 3, Proposition 3.12].

5 Kummer theory for algebraic groups

5.1 General theory

Let K be a field and fix a separable closure Ks of K. Let G be a commu-
tative algebraic group over K, let R ⊆ EndK(G) be a subring of the ring of
K-endomorphisms of G and let M ⊆ G(K) be an R-submodule. Let J be a

complete ideal filter of R, let T := G(K)[J ] and let Γ :=
(
M :G(K) J

)
.

We are interested in studying the field extension K(Γ) of K, that is the
fixed field of the subgroup of Gal(Ks | K) that acts trivially on Γ, and we
want to do so using the theory of (J, T )-extensions introduced in the previous
section. A necesary and sufficient condition in order to proceed this way is that
T = G(K)[J ] be J-injective: indeed in this case Γ is a saturated, and thus normal,
(J, T )-extension of M .

Remark 5.1. The condition that T is J-injective for some, and in fact for all,
ideal filters J , holds for example if G is a simple abelian variety with R a maximal
order in the division algebra EndK(G) ⊗ Q. Indeed in this case every non-zero
element r of R is surjective on G(K), which implies that T is divisible: if an
element u ∈ G(K) is such that ru = t ∈ T and I ∈ J is such that It = 0, then
since I is a right ideal we have Iu = 0, so u ∈ T ; hence r : T → T is surjective
and T is divisible.

It follows that T is injective: this is a well-known statement if R is a Dedekind
domain, but the proof can be adapted to the non-commutative case as follows.
Let I be a left ideal of R and let f : I → T be a map that we wish to extend to
a map f̃ : R→ T . By [Rei75, Theorem 22.7] there is a right fractional ideal J of
R such that IJ = R and 1 ∈ JI ⊆ R. In particular there are non-zero elements
b1, . . . , bn ∈ J and a1, . . . , an ∈ I such that

∑n
i=1 biai = 1, and since T is divisible

there are x1, . . . , xn ∈ T such that aixi = f(ai). It follows that for every y ∈ I
we have

f(y) = f

(
y

n∑
i=1

biai

)
=

n∑
i=1

(ybi)f(ai) = y

n∑
i=1

(biai)xi
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and we can let f̃(r) = r
∑n
i=1(biai)xi for every r ∈ R.

Let us then assume that T = G(K)[J ] is J-injective, so that Γ is a saturated,
therefore normal, (J, T )-extension of M . Then the standard exact sequence of
groups coming from the tower of Galois extensions K ⊆ K(T ) ⊆ K(Γ) maps into
the exact sequence 4.10 via the Galois action on the points of G, and we obtain
the following commutative diagram of groups with exact rows:

1 Gal(K(Γ) | K(T )) Gal(K(Γ) | K) Gal(K(T ) | K) 1

1 Hom
(

Γ
sat(M) , T

)
AutM (Γ) Auttor(M)(T ) 1

κ ρ τ

Notice that the action of AutM [J](T ) on Hom(Γ/(M + T ), T ) restricts to an
action of Im(τ) on Im(κ).

Definition 5.2. In the situation described above we will call the maps κ, τ and ρ
the Kummer representation, the torsion representation and the torsion-Kummer
representation, respectively.

As in Section 2.4, if N and P are R-modules and S is a subset of HomR(N,P )
we let ker(S) =

⋂
f∈S ker(f).

Theorem 5.3. There is an exact sequence of abelian groups

0→
(
sat(M) :sat(G(K)) J

)
sat(M)

→ ker(Im(κ))→ H1(Im(τ), T )

Proof. By Lemma 2.16 for any b ∈ G(K(T )) we may define a map

ϕb : Im(κ)→ T

σ 7→ σ(b)− b

which is a cocycle. It follows that the map

ϕ : G(K(T ))→ H1(Im(τ), T )

b 7→ ϕb

is a group homomorphism. Moreover its kernel is

ker(ϕ) = {b ∈ G(K(T )) | ϕb is a coboundary}
= {b ∈ G(K(T )) | ∃ t ∈ T such that σ(b)− b = σ(t)− t∀σ ∈ Im(κ)}
= {b ∈ G(K(T )) | ∃ t ∈ T such that σ(b− t) = b− t∀σ ∈ Im(κ)}
= G(K) + T
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so that we have an exact sequence

0→ G(K) + T → G(K(T ))→ H1(Im(τ), T )

and considering the intersection of the first two terms with Γ we get

0→ Γ ∩ (G(K) + T )→ Γ ∩G(K(T ))→ H1(Im(τ), T ) .

Since M + T ⊆ Γ ∩ (G(K) + T ) we also have

0→ Γ ∩ (G(K) + T )

M + T
→ Γ ∩G(K(T ))

M + T
→ H1(Im(τ), T ) .

Rewriting M + T = sat(M) and G(K) + T = sat(G(K)), noticing that

Γ ∩ sat(G(K)) =
(
sat(M) :sat(G(K)) J

)
and that

ker(Im(κ)) =

{
x ∈ Γ

M + T
| f(x) = 0∀ f ∈ Im(κ)

}
=
{x̃ ∈ Γ | σ(x̃) = x̃ ∀σ ∈ Im(κ)}

M + T

=
Γ ∩G(K(T ))

M + T

we get the desired exact sequence.

The following theorem generalizes [Chapter 3, Theorem 5.9].

Theorem 5.4. Assume that the End(T )-submodule of Hom(Γ/sat(M), T ) gen-
erated by Im(κ) is finitely generated. Suppose that the following three conditions
hold

1. There is a positive integer d such that

d ·
(
sat(M) :sat(G(K)) J

)
⊆ sat(M) .

2. There is a positive integer n such that

n ·H1(Im(τ), T ) = 0 .

3. There is a positive integer m such that the subring of End(T ) generated by
Im(τ) contains

m · End(T ) .
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Then Im(κ) contains dnm ·Hom(Γ/sat(M), T ).

Proof. Let V be the End(T )-submodule of Hom(Γ/sat(M), T ) generated by Im(κ)
and let X = Γ/sat(M). From (1) and (2) it follows that ker(V ) = ker(Imκ) ⊆
X[dn]. Since V is finitely generated as an End(T )-module, by Proposition 2.32
we have

V = Hom

(
X

ker(V )
, T

)
⊇ Hom

(
X

X[dn]
, T

)
⊇ dn ·Hom(X,T ) .

Since Im(κ) is an Im(τ)-module, we have

Im(κ) = Im(τ) · Im(κ) ⊇ m · End(T ) · Im(κ) = m · V ⊇ dnm ·Hom(X,T )

and we conclude.

5.2 Elliptic curves over number fields

We keep the notation of the previous section and we further assume that K
is a number field, that G = E is an elliptic curve and that R = EndK(E). In
particular we have that Ks = K and that R is either Z or an order in an imaginary
quadratic number field. Up to replacing K by an extension of degree 2 we may
assume that EndK(E) = EndK(E).

Notice that T = E(K)[J ] is contained in E(K)tors: indeed, if x ∈ T then
there is I ∈ J such that Ix = 0. Since R is an order in a number field there is
some non-zero integer n ∈ I, so nx = 0 and x is torsion.

Proposition 5.5. The R-module E(K)[J ] is J-injective.

Proof. By [LJ96, Proposition 5.1] the R-module E(K)tors is injective, thus in par-

ticular J-injective. Since E(K)[J ] =
(

0 :E(K)tors
J
)

it follows from Lemma 2.28

that E(K)[J ] is J-injective.

Remark 5.6. Although not necessary for our applications, it is interesting
to notice that in this setting Γ is a maximal (J, T )-extension of M . Indeed
E(K)/E(K)tors is a torsion-free module over the commutative integral domain
R, so it is injective. Then the short exact sequence of R-modules

0→ E(K)tors → E(K)→ E(K)/E(K)tors → 0

splits, so that E(K) ∼= E(K)/T ⊕ T as R-modules and since R is Noetherian it
follows that E(K) is injective. As in the above proposition we may conclude that
Γ is J-injective, thus it is a maximal (J, T )-extension of M .
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We now specialize to the case J =∞.

Remark 5.7. Notice that in case J =∞ we have T = G(K)tors and

Γ =
{
x ∈ E(K) | nx ∈M for some n ∈ Z>0

}
.

If R = Z then EndR(T ) is isomorphic, after fixing an isomorphism T ∼= (Q/Z)2,

to Mat2×2(Ẑ). If R is instead an order in an imaginary quadratic field then

EndR(T ) ∼= R⊗ZẐ. Indeed, fix for every prime p a Zp-basis for Rp := R⊗ZZp and

consider the Ẑ-subalgebra C =
∏
p Cp of Mat2×2(Ẑ) =

∏
p Mat2×2(Zp), where Cp

is the image of the embedding of Rp into Mat2×2(Zp) given by its multiplication

action on the Zp-module Z2
p
∼= Rp. Then R⊗Z Ẑ ∼= C is a Ẑ-algebra free of rank

2 as a Ẑ-module, since every Cp is a Zp-algebra of rank 2. Then for a suitable
choice of an isomorphism T ∼= (Q/Z)2 we have

EndR(T ) = {ϕ ∈ EndZ(T ) | f(r(t)) = r(f(t))∀r ∈ R, t ∈ T}

=
{
ϕ ∈ Mat2×2(Ẑ) | fc = cf ∀c ∈ C

}
= C

where the last equality follows by applying the Centralizer Theorem to the central
simple Qp-subalgebra R⊗ZQp of Mat2×2(Qp) and then restricting the coefficients
to Zp.

In both cases, the map τ coincides with the usual Galois representation asso-
ciated with the torsion of E.

Proposition 5.8. Assume that the abelian group structure of E(K) is known
and that M is given in terms of set of generators for E(K). Then there exists
an effectively computable positive integer d such that

d ·
(
sat(M) :sat(G(K)) ∞

)
⊆ sat(M) .

Proof. First of all notice that sat(M) = M +T and sat(G(K)) = G(K) +T seen
as subgroups of E(K). We conclude thanks to the considerations of [Chapter 3,
Section 6.1].

Proposition 5.9. There exists an effectively computable positive integer n such
that

n ·H1(Im(τ), T ) = 0 .

Proof. This follows from [Chapter 3, Proposition 6.3] and [Chapter 3, Corol-
lary 6.8] in the non-CM case and from [Chapter 3, Proposition 6.12] in the CM
case.
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Proposition 5.10. There exists an effectively computable positive integer m such
that the subring of EndR(T ) generated by Im(τ) contains m · EndR(T ).

Proof. This follows again from [Chapter 3, Corollary 6.8] in the case R = Z and
from [Lom17, Theorem 1.5] in the CM case.

Theorem 5.11. Assume that the abelian group structures of E(K) and M are
effectively computable. Then there exists an effectively computable positive con-
stant c such that the index of Im(κ) in Hom(Γ/sat(M), T ) divides c.

Proof. This is a direct consequence of Theorem 5.4 and the three propositions
above.

Remark 5.12. Since Theorem 5.4 is stated in a fairly general form, one might
wonder if it can be applied to obtain a version of Theorem 5.11 for higer-
dimensional abelian varieties.

Provided that one is in, or can reduce to, a case in which T is a J-injective R-
module (for example if the abelian variety is simple and its endomorphism ring is
a maximal order in a division algebra, see Remark 5.1), the key steps are finding
effective bounds for the integers n and m of Theorem 5.4. Effective bounds for
m are known, see for example [RG20, Théorème 1.5(2)].

It is also known (see [Chapter 1]) that a bound for n can be obtained by finding
explicit homotheties in Im(τ). This seems a harder problem to tackle, but one can
hope to reduce to finding homotheties in the images of the `-adic representations,
as done in [Chapter 1, Section 7]. Explicit results on the existence of homotheties
in the image of `-adic representations attached to abelian varieties are obtained
for example in [GM20].
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Mathematik, 4(2):75–78, 1953.

[Fle68] Isidore Fleischer. A new construction of the injective hull. Canadian
Mathematical Bulletin, 11(1):19–21, 1968.
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Preprint available at https://hal.archives-ouvertes.fr/hal-02445032,
January 2020.

[Rib79] Kenneth A. Ribet. Kummer theory on extensions of abelian varieties
by tori. Duke Mathematical Journal, 46(4):745–761, 1979.

[Ros95] Jonathan Rosenberg. Algebraic K-theory and its applications. Springer
Science & Business Media, 1995.

[RSZB21] Jeremy Rouse, Andrew V. Sutherland, and David Zureick-Brown.
`-adic images of Galois for elliptic curves over Q. arXiv preprint
arXiv:2106.11141, 2021.

[RZB15] Jeremy Rouse and David Zureick-Brown. Elliptic curves over Q and
2-adic images of Galois. Research in Number Theory, 1(1):1–34, 2015.

[Sah68] Chih-Han Sah. Automorphisms of finite groups. Journal of Algebra,
10(1):47–68, 1968.

[Ser72] Jean-Pierre Serre. Propriétés galoisiennes des points d’ordre fini des
courbes elliptiques. Inventiones Mathematicae, 15:259–331, 1972.

[Ser97] Jean-Pierre Serre. Abelian l-Adic Representations and Elliptic Curves.
CRC Press, 1997.

[Ser13] Jean-Pierre Serre. Local fields. Springer Science & Business Media,
2013.

[Sil94] Joseph H. Silverman. Advanced topics in the arithmetic of elliptic
curves. Springer Science & Business Media, 1994.

[Sil09] Joseph H. Silverman. The arithmetic of elliptic curves. Springer, 2009.

[The] The Sage Developers. SageMath, the Sage Mathematics Software Sys-
tem. https://www.sagemath.org.

https://www.sagemath.org


184 BIBLIOGRAPHY

[The19] The PARI Group, University of Bordeaux. PARI/GP version 2.11.2,
2019. available from http://pari.math.u-bordeaux.fr/.

[Tro19] Sebastiano Tronto. Kummer Degrees, 2019. GitHub repository https:

//github.com/sebastianotronto/kummer-degrees.

[Tro20] Sebastiano Tronto. Radical entanglement for elliptic curves. arXiv
preprint arXiv:2009.08298, 2020. Submitted for publication.

[Tro21] Sebastiano Tronto. Division in modules and Kummer theory. arXiv
preprint arXiv:2111.14363, 2021. Submitted for publication.

[Yel15] Jeffrey Yelton. Dyadic torsion of elliptic curves. European Journal of
Mathematics, 1(4):704–716, 2015.

[Zyw11] David Zywina. Bounds for Serre’s open image theorem. arXiv preprint
arXiv:1102.4656, 2011.

[Zyw15a] David Zywina. On the possible images of the mod ` representations
associated to elliptic curves over Q. arXiv preprint arXiv:1508.07660,
2015.

[Zyw15b] David Zywina. On the surjectivity of mod ` representations associated
to elliptic curves. arXiv preprint arXiv:1508.07661, 2015.

[Zyw15c] David Zywina. Possible indices for the Galois image of elliptic curves
over Q. arXiv preprint arXiv:1508.07663, 2015.

http://pari.math.u-bordeaux.fr/
https://github.com/sebastianotronto/kummer-degrees
https://github.com/sebastianotronto/kummer-degrees


Curriculum Vitae

Sebastiano Tronto was born in Feltre, Italy in 1994. During high school he com-
peted in many Mathematics and programming competitions, obtaining multiple
medals at the national level and a qualification for the International Olympiad
in Informatics in 2012.

In 2013 he enrolled at the University of Trento, where he obtained his bachelor
degree with honour in 2016 with a thesis on Galois groups and fundamental
groups, under the supervision of prof. Edoardo Ballico.

He then joined the ALGANT Master program, spending one year at the Uni-
versity of Milan and one year at Leiden University. He wrote his thesis, entitled
The Brauer-Manin obstruction to strong approximation, under the supervision of
Dr. Martin Bright at Leiden University. He was awarded his Masters diploma
cum laude by the University of Milan and summa cum laude by Leiden University.

After completing his master program, he started his PhD in a cotutelle be-
tween the University of Luxembourg and Leiden University, under the supervision
of Antonella Perucca and Peter Bruin.

After his PhD he is starting a carreer outside academia, where he can put to
work the problem-solving skills he developed as a Mathematics student.


	Effective Kummer theory for elliptic curves
	Introduction
	Setting
	Main results
	Structure of the paper

	Preliminaries
	Notation and definitions
	The l-adic and adelic failures
	The torsion, Kummer and arboreal representations
	Curves with complex multiplication

	Properties of the torsion representation
	Maximal growth
	Uniform growth of l-adic representations
	Possible images of mod l representations

	The l-adic failure
	An exact sequence
	Divisibility in the l-torsion field
	Divisibility in the l-adic torsion tower
	The l-adic failure is bounded

	The adelic failure
	Intersection of torsion fields in the non-CM case
	The adelic failure is bounded

	A counterexample in the CM case
	Uniform bounds for the adelic Kummer representation
	Bounds on cohomology groups
	Proof of Proposition 7.3


	Some uniform bounds for elliptic curves over Q
	Introduction
	Structure of the paper
	Acknowledgements

	Preliminaries
	The l-adic numbers
	Cartan subgroups
	Subgroups of the 2-dimensional linear group
	Galois representations and torsion fields of elliptic curves
	Modulo l Galois representations of elliptic curves over Q

	Scalars in the image of Galois representations
	Group-theoretic criteria
	Scalars in the presence of an isogeny
	The 3-adic case
	Main theorem
	Complements to Theorem 3.16

	Galois cohomology of torsion points
	The algebra Z[G]
	Kummer degrees
	Examples
	Scalars in pro-p subgroups of `3́9`42`"̇613A``45`47`"603AGL2(Zp)

	Radical entanglement for elliptic curves
	Introduction
	Setting
	Notation
	Structure of the paper
	Acknowledgements

	Group-theoretic preliminaries
	Pontryagin duality
	Relative automorphism groups
	Projective limits of exact sequences

	The s-extensions of abelian groups
	General definitions and first results
	Automorphisms of s-extensions
	Profinite structure of automorphism groups
	Full s-extensions
	Automorphisms of full s-extensions

	Some linear algebra
	General entanglement theory
	Initial remarks and definitions
	Torsion and Kummer representations and the entanglement group
	Bounding the entanglement group

	Elliptic curves
	The divisibility parameter
	The torsion representation
	Main theorems


	Division in modules and Kummer theory
	Introduction
	Notation
	Structure of the paper

	J-injectivity
	Ideal filters and division in modules
	J-maps and J-extensions
	J-injective modules and J-hulls
	Duality

	The category of (J,T)-extensions
	T-pointed R-modules
	(J,T)-extensions
	Pullback and pushforward
	Maximal (J,T)-extensions

	Automorphisms of (J,T)-extensions
	Normal extensions
	A fundamental exact sequence

	Kummer theory for algebraic groups
	General theory
	Elliptic curves over number fields



