

How negative experiences influence the brain in pain: neuroimaging and biobehavioral insights

Thomaidou, A.M.

Citation

Thomaidou, A. M. (2022, September 7). *How negative* experiences influence the brain in pain: neuroimaging and biobehavioral insights. Retrieved from https://hdl.handle.net/1887/3455208

Version:	Publisher's Version
License:	Licence agreement concerning inclusion of doctoral thesis in the Institutional Repository of the University of Leiden
Downloaded from:	https://hdl.handle.net/1887/3455208

Note: To cite this publication please use the final published version (if applicable).

Chapter 7.

A pharmacological fMRI investigation of brain plasticity mechanisms in nocebo hyperalgesia.

Submitted for publication as

Thomaidou MA, Blythe JS, Veldhuijzen DS, Peerdeman KJ, van Lennep JPA, Giltay EJ, Cremers HR, Evers AWM. D-cycloserine and brain plasticity mechanisms in nocebo hyperalgesia: A pharmacological fMRI investigation.

Abstract

Negative outcome expectations can increase pain sensitivity, a phenomenon known as nocebo hyperalgesia. An important process thought to be involved in nocebo hyperalgesia is associative learning. In this study, we examined how a targeted pharmacological manipulation of learning would impact nocebo responses and their brain correlates. Participants (n = 50) received either a placebo or a single 80mg dose of D-cycloserine (a partial NMDA receptor agonist) and underwent fMRI. Behavioral conditioning and negative suggestions were used to induce nocebo responses. Participants underwent pre-conditioning outside the scanner. During scanning, we first delivered baseline pain stimulations, followed by nocebo acquisition and extinction phases. During acquisition, thermal pain stimulations of high intensity were paired with the supposed activation of sham electrical stimuli (nocebo trials), whereas moderate intensity pain was administered with inactive electrical stimulation (control trials). During extinction, moderate pain was administered across both nocebo and control trials. Nocebo hyperalgesia (reported pain difference between nocebo/control trials) was induced in both groups (p < 0.001). Nocebo magnitudes and brain activations did not show significant differences between D-cycloserine and placebo. In acquisition and extinction, there were significantly increased activations bilaterally in the amygdala, ACC, and insula, during nocebo compared to control trials. Nocebo acquisition trials also showed increased vIPFC activation. Increased opercular activation differentiated nocebo-augmented pain aggravation from baseline pain. These results support the involvement of integrative cognitiveemotional processes in nocebo hyperalgesia. We discuss our findings in relation to the role of particular learning mechanisms as well as fear in central pain modulation.

Introduction

Pain can arise as a debilitating symptom that is malleable and highly susceptible to an individual's internal and external environment ^{1,2}. Outcome expectations are shown to play a role in shaping pain responses to a given event or treatment ^{3–5}. While positive outcome expectations can produce beneficial effects from inert treatments (placebo effects), negative outcome expectations can blunt the effect of active interventions and even increase pain sensitivity in response to inert treatments, a phenomenon termed nocebo hyperalgesia ^{6–9}.

An important process proposed to be involved in nocebo effects is associative learning ^{10–13}. Classical conditioning is used in experimental nocebo models to form expectations through associative learning ¹¹. In nocebo conditioning, negative associations form by pairing an inert nocebo stimulus (a sham treatment) to surreptitiously increased pain stimulations. After repeated trials, the nocebo stimulus evokes increases in perceived pain. Negative suggestions are commonly used to enhance conditioning ^{9,10,14}. Concurrently, conditioned nocebo effects have been shown to effectively reduce using extinction paradigms in which learned associations are discontinued ^{14–16}.

One of the major neural components mediating associative learning processes are the N-methyl-D-aspartate (NMDA) receptors ^{17,18} whose agonism has been found to augment learning ^{19–22}. Enhanced NMDA receptor activity promotes local neuroplasticity, which in turn is believed to enhance the acquisition and consolidation of learned material in both animals ^{23,24} and humans ^{25,26}. Studies that used pharmacological agents such as D-cycloserine (DCS) to enhance NMDA-dependent learning support the implication of NMDA receptors in associative learning ^{27,28}. DCS is a compound that impacts NMDA-mediated neuroplasticity

differently in different doses. In lower doses (in most studies varying between 50-250 mg) it acts as a partial agonist at the glycine modulatory site of NMDA receptors ²⁹. To our knowledge, no studies have examined the role of NMDA-mediated learning in nocebo effects.

Recent findings on extinction-learning and exposure therapy indicates that DCS may be a promising agent for augmenting NMDA-dependent learning ^{27,30,31}. DCS has also been shown to enhance performance on declarative learning ³² and generalization of conditioned effects to novel contexts ³³. This evidence suggests that by agonizing NMDA receptors, DCS enhances specific learning processes, and can be used to manipulate and investigate the specific learning mechanisms involved in nocebo effects. By utilizing fMRI while pharmacologically agonizing NMDA-mediated learning during nocebo induction, precise neural processes involved in learned pain can be examined.

In the present study we aim to investigate for the first time the role of NMDA-receptor dependent learning in the acquisition and extinction of nocebo effects. As compared to placebo administration, we hypothesize that DCS will augment the acquisition of nocebo hyperalgesia and will induce nocebo effects that are more resistant to extinction. We further hypothesize that differential brain activation will be detected between the DCS and placebo groups during nocebo acquisition, evocation, and extinction, in a number of a priori regions of interest such as the prefrontal cortex, anterior cingulate cortex, amygdala, and hippocampus, that were implicated in previous nocebo studies ³⁴. We also hypothesize that neural activation will differ between the experience of nocebo-augmented pain and the experience of pain stimulations of the same high intensity.

Materials and Methods

Experimental design

This randomized clinical trial utilizes a placebo-controlled, double-blind design with respect to the pharmacological administration. A doubleblind randomization list was created by the Leiden University Medical Center (LUMC) pharmacy. Participants were randomly allocated to one of two pharmacological groups: DCS or placebo. All participants underwent nocebo pre-conditioning outside the scanner and acquisition/extinction procedures in the MR scanner, by use of conditioning and negative verbal suggestions. The entire study consisted of two parts in the same testing day. The screening part lasted approximately 1 hour and took place at the department of Social and Behavioral Sciences, Leiden University, the Netherlands. The fMRI part lasted approximately 3 hours, of which approximately 1 hour took place in the 3 Tesla MRI scanner of the Leiden Institute of Brain and Cognition (LIBC) scanning facilities at the LUMC. This study was approved by the Medical Ethics Committee Leiden, The Hague, Delft (P19.003) and pre-registered on Clinical Trials.gov (NCT04762836).

Participants

The required sample size for the primary analysis was calculated based on a previous imaging study that, similar to our primary study objective, investigated the effects of DCS in a learning task ³². The analysis was conducted in G*power 3.1 ³⁵ for a mixed model analysis of variance (ANOVA). In the experiment by Onur et al. ³² an ANOVA revealed a main effect of the pharmacological agent (DCS vs. placebo) [F(1,27) =5.454; P = .027] on performance in a declarative learning task. We derived partial η^2 from the *F* statistic and degrees of freedom ^{36,37}. With an effect size of $\eta^2 = 0.17$, alpha error probability set at $\alpha = 0.05$, and desired power set at 0.9, the sample size indicated 22 participants per pharmacological group. Given the potential for dropout and artefacts in imaging data, we recruited 25 participants per group in this study.

Inclusion criteria were: age between 18 and 35 years, a good command of the English language, and (corrected to) normal vision and hearing. Exclusion criteria were any history of chronic pain, serious medical or psychiatric conditions, experiencing pain on the day of the study or use of analgesic medication in the 24 hours prior to testing, use of psychotropic drugs in the month prior to testing, and being pregnant or breastfeeding. A physician performed a brief health screening based on our exclusion criteria and to assess vital signs. Participants also needed to be eligible to undergo MRI and were screened for standard MRIcompatibility exclusion criteria. Participants were recruited via the recruitment website Sona (Sona Systems, Tallinn, Estonia). All participants signed written informed consent and were reimbursed with a 90-euro payment.

Thermal pain stimulation

Thermal pain stimuli were delivered to participants' right volar forearm and pain intensities were rated on a numeric rating scale (NRS) ranging from 0 (no pain) to 10 (worst pain imaginable on the arm). In the screening part, pain stimuli were delivered via a Thermal Sensory Analyzer with a 3×3 cm thermode probe (TSA-II; Medoc Advanced Medical Systems, Ramat Yishai, Israel). In the MRI part, pain was delivered with an MR-compatible ATS 3x3 thermode attached to a Pathway device (Medoc Advanced Medical Systems, Israel).

Sensory thresholds

We followed a sensory-thresholds method that follows published standardized and protocolled procedures ³⁸. To test warmth and pain threshold levels, heat stimuli were applied from a baseline of 32°C on the forearm and participants were asked to indicate the first moment that they perceived warmth and the first moment that they perceived pain. After a practice trial for each, the average of 3 warmth and 3 pain detection values were calculated as thresholds for warmth and pain, respectively.

Pain calibration and administered stimuli

Throughout the experiment, each stimulus was initiated from a 32°C baseline, increased to a target temperature with ramp up and return rates of 8°C per second, and presented at peak temperature for 5 seconds. The maximum temperature that could be reached was 50°C. The interstimulus interval consisted of a pain rating screen with a 6 second duration followed by a fixation cross with a mean duration of 5 seconds, jittered around a normal distribution of ± 2 seconds. Pain calibrations were conducted to select the temperatures that would induce moderate and high pain during nocebo conditioning. The calibrations were individually tailored, based on participants' NRS ratings of maximum 30 pain stimuli of varying intensities. We used the median temperatures that participants consistently rated as NRS 6 to 9 (high pain) for nocebo trials in the pre-conditioning and acquisition phases. We used median temperatures consistently rated as approximately NRS 3 to 5 (moderate pain) for all control trials as well as extinction nocebo trials.

After calibrations, a nocebo pre-conditioning took place and included 7 nocebo and 7 control trials, to increase the time of learning and ensure nocebo effects would be induced. At the start of the MRI session a

baseline phase took place during which 5 high and 5 moderate pain stimuli were administered. The acquisition and extinction phases each included 14 nocebo and 14 control trials. All trials were administered in pseudorandom order, so that no more than three trials of the same type were administered in a row. To reduce habituation or sensitization to heat-pain, we moved the thermode higher on the arm between functional scans; the thermode was moved to a more proximal site on the same arm after baseline and at one third and two thirds of the acquisition/extinction procedure).

Nocebo manipulation

A commercial Transcutaneous Electrical Nerve Stimulation (TENS) device (Beurer EM 80) was used to deliver (sham) electrical stimuli, which served as the nocebo manipulation in the procedure. Negative verbal suggestions were used to create expectations regarding the painenhancing effects of administering electrical stimuli in combination with thermal pain. Two electrodes were placed in a diagonal line on the base of the thumb and the inner elbow. Participants underwent a short mock calibration procedure during which they felt a light electrical pulse through the electrodes (ConMed MR-compatible Cleartrace ECG electrodes). This pulse was delivered in order to increase the believability of the nocebo manipulation. The device was not actually present during conditioning in the MRI scanner, but messages displayed on a computer monitor via E-Prime 3.0 (Psychology Software Tools, Pittsburgh, PA, USA) indicated the sham activation of the electrical stimulation during nocebo trials. Negative suggestions indicated to all participants that when the messages "on" (nocebo stimulus in either purple or yellow font, counterbalanced) and "off" (control stimulus in grey font) were displayed, their pain would be respectively aggravated (nocebo trials) or not altered (control trials). In the pre-conditioning and acquisition phases, the activation of sham electrical stimulation was paired to covertly increased pain stimulation during nocebo trials.

Pharmacological manipulation

A single dose of DCS was administered at 80mg for all participants in the DCS group. The LUMC pharmacy prepared DCS (powder form) into capsules, as well as placebo capsules of identical appearance containing the inert agent microcrystalline cellulose. Because plasma concentrations were expected to peak between 1 and 3 hours after DCS administration ^{39,40}, participants ingested the capsule 2 hours before entering the MRI scanner to undergo the main learning paradigm.

Measures

Pain

Throughout the experiment, participants were provided with a 6-second window to rate their pain on a sliding scale representing the pain NRS, following each pain stimulation. A message, presented on the computer monitor 2 seconds after the pain stimulus returned to skin temperature, prompted the pain rating to be given by use of a keyboard in the screening part and button boxes in the MRI session.

Learning

To assess learning rates before and after the administration of DCS, participants completed the Wechsler Memory Scale-Fourth Edition

(WMS–IV) subtest Verbal Paired Associates ⁴¹. The test was performed twice, once before the administration of DCS and once at the end of the scanning session.

MRI

Data were collected at the Leiden Institute for Brain and Cognition imaging facilities at the Leiden University Medical Center, using a Phillips Achieva 3 Tesla scanner with a maximum gradient strength of 40 mT/m, bore diameter of 60cm, and field-of-view of 45cm (head-feet direction), and a 32-channel head coil. A structural MRI was made with a T1 weighted gradient echo sequence. Functional scans were taken utilizing T2* weighted gradient echo planar images (TR=2200ms, voxel size = $2.75 \times 2.5 \times 2.75$ mm, TE= 30ms, flip angle = 80° , matrix = $80 \times$ 80, field of view = 220×220 , slice thickness = 2.75mm, slice gap = 0.28mm, 40 slices per volume, sensitivity encoding factor = 2) with a 32-channel SENSE head coil. Functional scans began with two automatically discarded dummy volumes to allow for magnetic field stabilization. Heart rate (finger pulse oximeter) and respiration (respiratory belt transducer) were measured to correct for physiological artifacts during scanning.

Questionnaires

A questionnaire containing demographic and health questions was used to screen participants for inclusion. An MRI-compatibility questionnaire was also used, to ensure participants were eligible to enter the scanner. The Structured Clinical Interview for the Diagnostic and Statistical manual for Mental disorders (SCID-5-RV ⁴² was used to screen participants for psychiatric disorders. The following four questionnaires were used to measure psychological characteristics: a short version of the State-Trait Anxiety Inventory, State version (STAI-S-s) ^{43,44}, the State-Trait Anxiety Inventory, Trait version (STAI-T) ⁴⁴, the Pain Catastrophizing Scale (PCS) ⁴⁵ which assesses catastrophizing thoughts or worrying relating to pain ⁴⁶, and the Body Vigilance Scale (BVS) ⁴⁷ measuring vigilance about bodily sensations. Total scores were used.

Participants also completed an exit questionnaire at the end of the experiment, containing manipulation checks and questions about their participation and side effects. The questions were: "did you believe the information you received in this study", "how much did you worry about what the experimenter thought of you or changing your responses to please them", "were you focused on the pain stimulations during the study", and "did you notice the association between the electrical stimuli and pain aggravation". Questions were rated on a 0-10 NRS from "not at all" to "very much". All questionnaires were displayed on a computer monitor via web-based survey software (Qualtrics, Provo, Utah, USA).

Study procedures

During the screening part (see **Figure 1**), participants signed an informed consent form and completed the health, psychiatric, and MRI screening for inclusion in the study. Sensory and pain threshold levels were then tested, and pain stimuli were calibrated for each participant. The electrodes were then attached to the hand and arm and the short mock calibration of the sham electrical stimulation took place. Preconditioning was then completed. During the MRI part, participants first completed the WMS–IV and then received the oral pharmacological administration. During a 2-hour waiting time for DCS to take effect, participants had a small, standardized meal, completed the psychological questionnaires, and prepared to enter the MRI scanner. Then, participants entered the scanner, completed a structural scan, and

were then exposed to the baseline pain stimulations. Participants then underwent the nocebo acquisition and extinction procedures. After the end of the experiment, participants completed the second WMS–IV, were asked to answer the exit questions, and then were debriefed.

Figure 1. Timeline of the experimental procedure of this study. After screening for inclusion and pain calibrations, participants underwent a pre-conditioning phase. After the first learning task, D-cycloserine (DCS) or placebo was administered, and the psychological questionnaires were completed. In the fMRI part, participants completed structural scans and thereafter a first functional scan while receiving baseline moderate and high pain stimuli. Thereafter, three scans covered the acquisition and extinction of nocebo hyperalgesia. Finally, the second learning task, exit questionnaire, and a debriefing were completed.

Statistical analysis

Data screening and behavioral measures

Analyses of demographic, psychological, and behavioral measures were performed for descriptive purposes and as manipulation checks. Behavioral data were analyzed and visualized by use of R programming software (version 4.1.2; R Core Team, 2019), including the MASS ⁴⁸, stargazer ⁴⁹, and ggplot2 ⁵⁰ packages.

The magnitude of reported nocebo hyperalgesia was measured withinsubjects and was defined as the difference in pain ratings for the first nocebo trial compared to the first control trial of the extinction phase. The first evocation trials were selected to check whether significant nocebo hyperalgesia was induced, as previous studies indicate the effect to be clearest in those trials ^{14,51}. We also compared the average of pain ratings of the first 5 pairs of extinction trials for a significant nocebo response, as these were used for brain imaging analysis where more trials are required. Repeated measures ANOVAs were conducted with *trial type* as within-subjects factor with two levels (nocebo trial, control trial), as a separate model, to test whether significant nocebo hyperalgesia was induced.

The first and last pairs of trials of the extinction phase were used to calculate the magnitude of extinction of nocebo responses. The reduction of nocebo responses was measured as the change in magnitude of nocebo responses (nocebo minus control trial difference score) between the start and the end of the extinction phase. A repeated-measures ANOVA was performed with *time of measurement* (pre to post) as within-subjects factor with two levels (nocebo magnitude before extinction, nocebo magnitude after extinction).

Pearson correlation analyses were performed between all questionnaire data (psychological questionnaires, exit questions) and the magnitude of nocebo responses (nocebo minus control trial difference score), to establish whether these factors impacted nocebo responding. We also conducted post-hoc exploratory mediation analyses, to explore potential between-groups mediating effects of the questionnaire scores on nocebo magnitudes. For all behavioral analyses the threshold for significance was set at p < 0.05 and partial eta-squared (η_p^2) was computed as a measure of effect size, with η_p^2 of 0.01 considered small, 0.06 considered medium, and 0.14 considered a large effect size ^{52,53}. To conduct analysis of variance (ANOVA) and correlations, potential outliers and the assumptions of normality and homogeneity were checked.

Pharmacological manipulation

To test the first hypothesis, that DCS would lead to larger nocebo responses than a placebo, we examined whether nocebo hyperalgesia differed between the DCS and Control groups. A 2x2 mixed model ANOVA was performed, with *group* as the between-subjects factor and *trial type* as within-subjects factor (first extinction nocebo trial, first extinction control trial). We also examined the reduction of nocebo magnitudes after extinction. To compare extinction between the pharmacological groups, a 2x2 mixed model ANOVA was performed with *group* as the between-subjects factor and *time of measurement* (pre to post) as within-subjects factor with two levels (nocebo-control trial difference *before* extinction, nocebo-control trial difference *after* extinction).

fMRI analyses

In preprocessing the data anatomical scans were skull stripped with the Brain Extraction Toolbox (BET; ⁵⁴. Subsequent preprocessing was conducted in SPM12 (Wellcome Department of Cognitive Neurology, London; <u>www.fil.ion.ucl.ac.uk/spm</u>) running on MATLAB 2021A (MathWorks, Natick MA, USA; <u>https://www.mathworks.com/products/matlab.htm</u>. Functional scans were realigned to correct for motion artifacts, low frequency drift, temporal autocorrelation, and spatial abnormalities. Structural scans were co-registered to the mean echo planar imaging space, and data was normalized and registered to Montreal Neurological Institute (MNI) space. A Gaussian spatial smoothing kernel of 6mm full width at half maximum was applied to the functional images. Data were visually inspected for successful co-registration. The four functional scans were preprocessed separately, then concatenated to one set of functional images per participant. Heart rate and respiratory data were preprocessed with the PhysIO toolbox ⁵⁵.

For statistical analysis, functional images were modeled on a design matrix consisting of columns for 1. Baseline moderate pain trials, 2. Baseline high pain trials, 3. Acquisition control trials, 4. Acquisition nocebo trials, 5. Evocation control trials, 6. Evocation nocebo trials, 7. Extinction control trials, 8. Extinction nocebo trials (columns 1-8 of the design matrix, each modeled with the onset and duration of the approximately 7000ms pain stimulus), 9. Pain rating periods, 10. Control and nocebo anticipatory cues, 11. RETROICOR regressors for heart rate, respiration, and heart rate-respiration interaction ⁵⁶; 12. respiratory volume per time; 13. heart rate variability (HRV; 11-13 estimated with the PhysIO toolbox); and 14. six motion regressors for the rigid body transformation. All task regressors (1-10) were convolved with the hemodynamic response function. Data were additionally high-pass filtered with a cut-off of 128s and corrected for temporal autocorrelation with a first-order autoregressive model.

First level analyses pertaining to our hypotheses contrasted acquisition control trials with acquisition nocebo trials, evocation control trials with evocation nocebo trials, and baseline high pain trials with evocation nocebo trials. The evocation phase consisted of the first 10 extinction trials and exploratory analyses of the extinction phase included the remaining 18 extinction trials. Second level analyses compared these contrasts between and across pharmacological groups. Masks pertaining to a priori regions of interest (ROI) including the ventrolateral prefrontal cortex (vlPFC), dorsolateral prefrontal cortex (dfPFC), amygdala, anterior cingulate cortex (ACC), operculum, and insula were drawn from the Harvard-Oxford Atlas (HOA; 57 in FSLeyes 58. Masked ROI analyses were conducted separately per ROI. Statistical significance for all contrasts was corrected with a familywise error rate (FWE) correction to a p value of pFWE < .05. This was further adjusted with a Bonferroni correction per hypothesis to pFWE <.01 to correct for five ROI analyses per hypothesis, with a minimum cluster size of 10 voxels (2mm MNI space). Imaging data visualizations were carried out using FSL 59, ITK-SNAP (http://www.itksnap.org; 60 and ParaView (http://www.paraview.org; 61.

Results

Participants and pain reports

Fifty-three participants were enrolled in this study and 2 were excluded upon screening for inclusion, based on their medical history. The data of 1 participant that completed the study were excluded due to technical errors in the experiment. A total of 50 participants (39 women) were included in the final analyses. The mean age of participants was 23 years (SD = 3.3; **Table 1**). **Table 1** also displays mean warmth/pain detection thresholds, temperatures used, and reported pain differences during baseline as well as nocebo acquisition and extinction. Five participants that received DCS and two that received placebo self-reported noticing mild dizziness (n=2 in the DCS group), or sleepiness/tiredness (n=2 in the DCS group).

On average, participants reported that they believed the information they received during the study (M = 7.3, SD = 2.3), they were not concerned about what the researcher thought of them or changing their responses out of compliance (M = 0.6, SD = 1.1), they were focused on the heat stimuli (M = 8.2, SD = 1.2), and they noticed the increased pain association with the nocebo electrical stimuli (Mean = 9.2, SD = 1.2). We ran Pearson's correlations between the magnitude of nocebo hyperalgesia and manipulation check exit questions and none of the responses to exit questions where significantly correlated with the magnitude of nocebo responses (all p > 0.05).

Table 1. Descriptive statistics of demographics, temperatures used, pain ratings, questionnaires, and learning rates.

	Mean	SD	Min.	Median	Max.
Age	22.9	3.3	18	22	35
Moderate pain used (°C)	46.78	0.56	45.00	46.9	48.00
High pain used (°C)	48.48	0.50	47.00	48.5	50.00
Warmth threshold (°C)	34.07	1.31	32.80	33.80	40.00
Pain threshold (°C)	44.47	2.56	34.80	45.10	47.20
Pre-conditioning pain difference	3.26	0.96	1.29	3.36	5.71
Baseline pain difference	2.40	1.33	-0.50	2.30	6.10
Acquisition pain difference	3.44	1.29	0.89	3.36	6.82
Extinction first trials pain difference *	1.77	1.47	-1.00	2.00	5.00
Extinction five trials pain difference *	1.14	1.05	-0.90	0.90	3.90
Extinction final trials pain difference *	0.73	0.63	-0.33	0.53	2.22
PCS score	25.12	6.82	13.00	24.00	45.00
BVS score	17.03	5.65	6.31	17.41	31.38
STAI state score	32.73	8.74	20.00	33.33	60.00
STAI trait score	37.46	7.385	25.00	37.00	58.00
Learning ± score total pre-DCS	5.59	1.49	2.00	5.75	8.00
Learning ± score total post-DCS	5.28	1.84	0.75	5.50	8.00
Learning ± change pre- to post-DCS	-0.31	1.59	-4.00	-0.50	5.00

Note: All temperatures are reported in degrees Celsius. * Pain differences represent the mean NRS difference between nocebo/high pain trials minus control/moderate pain trials for each phase. In extinction, the first pair (evocation), first 5 pairs (evocation), and final 9 pairs of nocebo and control trials are reported. ± Learning was measured as a manipulation check with the Weehsler Memory Scale. PCS, Pain Catastrophizing Scale; BVS, Body Vigilance Scale; STAI, Spielberger State-Trait Anxiety Inventory; DCS, D-cycloserine.

Behavioral results

The regression assumptions of linearity and homogeneity were met, and behavioral data were normally distributed. No outliers were present, determined by Mahalanobis distance. Correlation analyses of psychological questionnaire scores (**Table 1**) did not yield significant associations with nocebo magnitude or any other pain measures (all p > 0.05). Results on the between-groups mediating effect of questionnaire scores on nocebo magnitudes also yielded non-significant results (for all paths $p \ge 0.05$). Baseline and post-experimental learning rates are shown in **Table 1** and indicate that WMS learning rates remained stable from before to after DCS administration.

The nocebo manipulation successfully induced nocebo responses as measured during the first trials of extinction (Figure 2A). Across both groups, there was a significant difference between pain reports for the first nocebo and first control trial of the extinction phase (F(1,49) = 73.03, p < 0.001, $\eta_{p^2} = 0.19$) indicating the presence of nocebo hyperalgesia. We also found a significant nocebo effect in the first five pairs of extinction trials which were used as an evocation phase for fMRI analysis (F(1,49) = 59.73, p < 0.001, $\eta_{p^2} = 0.08$; Figure 2B). Finally, there was significant extinction of nocebo responses, with the magnitude of nocebo responses being significantly lower in the last pair of (nocebo/control) extinction trials, as compared to the first pair of extinction trials (F(1,49) = 13.17, p = 0.001, $\eta_{p^2} = 0.08$).

Pharmacological manipulation

A mixed ANOVA indicated that there was no significant interaction between drug group and the magnitude of nocebo responses based on trial type (F(1,48) = 0.002, p = 0.97, $\eta_p^2 < 0.001$; Figure 2C). This was aligned with no increases in learning rate from pre to post drug administration in the DCS as compared to the placebo group (**Figure 2D, Figure 3**). We did not find an effect of DCS on the magnitude of extinction either, as there was no significant interaction between drug group and the reduction of nocebo responses at the end of extinction ($F(1,48) = 0.11, p = 0.73, \eta_p^2 = 0.001$).

Figure 2. Behavioral results. Behavioral results represented as group means and standard deviations. There was a significant nocebo effect in the first pair (A) and first 5 pairs of extinction trials (B). Nocebo responses were not affected by D-cycloserine (DCS) compared to placebo (C). Learning rates were measured on the WMS-IV before and after DCS administration (D). There was only a slight non-significant reduction in learning rates of all participants, irrespective of drug group.

Figure 3. Mean pain ratings are shown in pre-conditioning (*Pri*) baseline (*Basel*), nocebo induction (*Indu*), and extinction (*Ext*) including the first two extinction trials (*Evocation*) where behavioral nocebo effects were measured. D-cycloserine (DCS) administration did not significantly affect the magnitude of nocebo responses. The slight group difference in ratings observed indicates a minor average difference in individually calibrated pain intensities and had no significant effects on outcomes.

fMRI results

Increased activity in evocation nocebo trials compared to baseline high pain was found in the right operculum (**Table 2**, **Figure 4A**). During the acquisition phase, we detected an increased BOLD response during nocebo trials in bilateral ACC, bilateral amygdala, bilateral insula, and bilateral vIPFC (all clusters from a priori analyses are presented in **Table 2**, **Figure 4B**, **Figure 5A-C**).

No clusters reached the threshold for significance in the evocation (first 10 extinction trials) control and nocebo contrast initially, but notably, in exploratory analyses of the evocation phase with no minimum cluster size, we detected an increased BOLD response during nocebo trials in the left insula (all clusters from exploratory findings in **Table 3**, **Figure 4C**), albeit this did not reach significance. Exploratory analysis of the remaining 18 extinction trials detected increased BOLD signal during

nocebo trials in bilateral amygdala and insula, as well as a small, belowthreshold cluster of the ACC (**Table 3**, **Figure 4D**, **Figure 5A-C**). Parameter estimates were computed with MarsBaR⁶² and are plotted for all clusters (**Figure 4E**).

No differences between pharmacological groups were detected in any a priori ROIs, or in exploratory whole brain analyses, for hypothesized contrasts between acquisition control/nocebo trials, evocation control/nocebo trials, or baseline high pain/evocation nocebo trials.

	Region (HOA mask)	MNI-coordinates (peak voxel)				t value	P-value (peak voxel)	Voxels
Acquisition								
	ACC	LR	2	-6	42	9.87	<.001	1544
	Amygdala	L	-20	2	16	5.21	.002	110
	Amygdala	R	22	2	16	6.81	.002	115
	Insula	L	-36	16	14	8.29	<.001	1467
	Insula	R	36	4	8	7.05	<.001	1453
	vlPFC	L	-46	16	10	6.49	.002	68
	vlPFC	R	52	6	2	7.39	<.001	337
	ACC	LR	2	-6	42	9.87	<.001	1544
Baseline- evocation								
	Operculum	R	42	-12	14	6.04	<.001	173

Table 2. Results of ROI analyses for acquisition nocebo > control, and evocation nocebo > baseline high pain contrasts.

Note. Coordinates given in x, y, z for MNI space. T statistics calculated with df=48, $p<.05_{\rm FWE}$. HOA, Harvard Oxford Atlas; MNI, Montreal Neurological Institute; FWE, familywise error; vIPFC, ventrolateral prefrontal cortex; ACC, anterior cingulate cortex.

	Region (HOA mask)	MP	MNI coordinates (peak voxel)			t value	P value (peak voxel)	Voxels
Evocation								
	Insula	R	36	-22	10	4.33	.031	4
Extinction								
	ACC	R	12	-26	48	-4.54	.027	3
	Amygdala	L	-24	-8	-8	-5.93	.005	40
	Amygdala	R	24	-2	-12	-4.32	.016	14
	Insula	L	-38	-10	18	-6.31	.001	56
	Insula	R	36	-4	18	-4.63	.01	14

Table 3. Results of exploratory ROI analyses for evocation (first 10 extinction trials) nocebo > control, and extinction (remaining 18 extinction trials) nocebo > control contrasts.

Note. Coordinates given in x, y, z for MNI space. T statistics calculated with df=48, $p<.05_{\rm FWE}$. HOA, Harvard Oxford Atlas; MNI, Montreal Neurological Institute. FWE, familywise error.

Figure 4. Results of the fMRI analysis. Differences in BOLD activations between baseline pain and nocebo-augmented increased pain responses were found in the operculum (**A**). Contrasting nocebo and control trials resulted in differential BOLD activations during nocebo acquisition (**B**), evocation (first 10 extinction trials; **C**), and extinction (last 18 extinction trials; **D**). Parameter estimates are plotted for all clusters and contrasts (**E**). Brain images are in neurological display convention.

Figure 5. The loci of all significant fMRI results represented in a 3D model. Horizontal (**A**), sagittal (**B**), and coronal (**C**) views are displayed. As compared to control, nocebo trials and nocebo-augmented pain were characterized by differential BOLD activations in the vIPFC (light green), ACC (dark green), amygdala (red), and operculum/insula (orange).

Discussion

This study investigated the role of DCS on the acquisition and extinction of nocebo hyperalgesia in an fMRI study. Significant nocebo effects were induced but DCS did not influence nocebo magnitudes or brain activation, suggesting that the pharmacological manipulation did not influence learning in this nocebo paradigm. Results of the fMRI analyses indicated that in acquisition and extinction phases, there were significantly increased BOLD activations bilaterally in the amygdala, ACC, and insula, during nocebo compared to control trials. Nocebo acquisition trials also showed increased vlPFC activation. Increased opercular activation further differentiated nocebo-augmented pain aggravation from baseline high pain. These results are in line with previous nocebo studies and provide support for the involvement of specific cognitive processes in nocebo hyperalgesia. The learning paradigm induced significant nocebo responses across both groups, as was anticipated. The pharmacological manipulation in this study did not affect learning of verbal pairs or nocebo associations. Although DCS is known to impact neuroplasticity ²⁹ previous findings are mixed. Many studies show effects of DCS on phobia and symptoms that are known to result from aversive learning 29,63-65,65,66. Yet, other studies have shown differential effects of DCS, for example facilitating procedural but not declarative learning 67, and extinction or memory consolidation, but not necessarily acquisition of learned responses 63,68,69. These differential findings could theoretically be related to the dosage used, with doses in the relevant studies mentioned above varying from 50 to 250mg and fixed, rather than measured based on body weight. We choose a moderate dose of 80mg. Generally, there does not seem to be an apparent dose-related efficacy of DCS, with one review of the literature reporting that neither the dose nor the time of administration had an effect on the learning outcomes 65.

Interestingly, DCS augmentation effects have mainly been studied in phobic stimuli and for fear memory 29. These results suggest that DCS is effective in modulating limbic NMDA circuits engaged in paradigms with a heavy fear load 70. We did find increased amygdala activation for nocebo trials over control trials during acquisition and extinction of the nocebo effect irrespective of pharmacological group, and there seems to be some involvement of fear in nocebo (Schmid et al., 2015; Thomaidou, Veldhuijzen, et al., 2021; Tinnermann et al., 2017b). Speculatively, the type of pain-learning task employed in our nocebo experiment may potentially not primarily rely on the same fear-learning circuits that DCS has been found to affect in previous studies. DCS not affecting nocebo responding may point to a potential differentiation between the specific mechanisms involved in pain-learning versus fearlearning. In other words, we speculate that learning a negative nocebo association may not involve the NMDA-mediated learning that DCS may be able to augment in more fear-specific contexts.

The amygdala has been consistently implicated in fear-learning 32,74,75, but amygdala involvement may not be an essential feature or necessary prerequisite for nocebo induction. Other brain areas are shown to underlie nocebo hyperalgesia in the absence of an amygdala involvement ^{76–78}. Interestingly, the amygdala seems to be involved when experimental contexts or suggestions are especially negative or frightening, such as in visceral pain studies (Schmid et al., 2015) or studies of a higher threat-load that include extensive conditioning and negative suggestions ⁷³. In line with this, our study with pre-conditioning and negative suggestions showed increased activation of the amvgdala on nocebo compared to control trials. Involvement of the amygdala in the more negative experimental contexts could suggest that fear may be a secondary modulatory factor in nocebo hyperalgesia 72,79. Pain-related learning thus seems to potentially take place on two conceptual levels. On one hand, cortical-level associative learning mechanisms may be at the core of acquiring learned pain effects. On the other hand, fearrelated learning, that may take place in subcortical loops involving the amygdala, mediates pain worsening, and may be a secondary modulatory factor in pain chronification 72,80.

Distinct learning mechanisms mediated via the vIPFC may also have engaged during nocebo acquisition in our study. The vIPFC is linked to learning, belief formation, and stimulus-response associations ^{81–85}. Neural circuits involving the vIPFC are thought to communicate through oscillations in gamma-band (60–160 Hz) frequency channels. This relates to previous studies implicating gamma-band oscillations as a marker of learning in nocebo acquisition ^{16,86,87}. The vIPFC, as the present study also suggests, may be implicated in sensory stimuli whose properties are processed bottom-up ⁸⁸. This corresponds to participants engaging in this type of bottom-up processing of nocebo versus control stimuli, only in the acquisition phase of our experiment, before topdown processing based on learned information of nocebo associations begins taking place. The insula and more broadly the operculum are also thought to be central cognitive features of sensory perception ^{89–91}. Opercular involvement is consistently found in nocebo hyperalgesia and marks mechanisms of sensory discrimination and cognitive pain modulation ^{78,92–94}. We also found differences in insular and opercular activations between nocebo and control stimuli. It is perhaps unsurprising that sensory modulation is involved in the acquisition of nocebo hyperalgesia. Crucially, however, we found a persistence of insular activations even when all heat administrations were equal in intensity, during extinction, albeit this was only a small cluster of activations. This may indicate that the brain continues engaging in cognitive pain discrimination during nocebo responding, when nocebo stimuli were generally perceived as more painful while all heat intensities were actually identical. Indeed, this is in line with findings of the present study indicating that nocebo responses were not completely attenuated.

We also found further differences in opercular activations between evoked nocebo responses and baseline pain. Before learning took place, we administered participants with baseline high pain stimuli. Our results show increased activation of the operculum during nocebo-augmented high pain in the evocation phase, as compared to the baseline high pain stimuli. The operculum was significantly less engaged in experiencing high pain before learning took place, while increased cognitive sensory processing seems to take place when pain sensitivity is increased under nocebo hyperalgesic conditions. The consistent involvement of subregions of the operculum, ACC, and PFC in nocebo responding may underscore a primary role of cognitive and sensory integration and modulation in nocebo hyperalgesia.

A limitation of this study was in analyzing the small number of initial nocebo evocation trials, before prolonged extinction, which underpowered the evocation results. Given that extinction begins soon after the pairing of the cues and varying stimulus intensities is discontinued, only the first few extinction trials can be considered to distinctly represent nocebo evocation. One solution that would allow future studies to examine brain activity during evocation, before extinction occurs, is to reinforce nocebo associations throughout extinction. Some nocebo studies employed such continued reinforcement paradigms and achieved persistent nocebo responding that may have been less contaminated by extinction effects ^{92,94}. Additionally, while we conducted our power analysis for this study based on the behavioral-pharmacological primary outcome, a sample of 25 participants per group is considered a minimum required sample for fMRI analyses, and this may have led to some of the imaging results for smaller brain clusters being underpowered ^{95,96}.

This study also had other limitations that future research should address. It is important to note that the generalizability of our results may be limited, due to the recruitment of a healthy, young participant sample. Results of this study may not represent pain processing correlates in patients or individuals who have experienced severe or chronic pain, as their neurophysiology may differ from that of healthy people ⁹⁷. It is imperative for future research to replicate our findings both in patient populations and in more realistic clinical contexts.

Albeit the pharmacological manipulation using a partial NMDA receptor agonist did not affect nocebo responses, this study provided important support for the integration of specific cognitive-emotional and sensory processes in nocebo hyperalgesia. The acquisition of nocebo hyperalgesia was primarily characterized by increased activation in brain regions that cognitively integrate and modulate pain inputs. We showed that cognitive-emotional processing of pain signals in the operculum and ACC may integrate prior negative experiences. Understanding the intricate relationship of learning and sensory modulation in the formation of negative pain associations is highly relevant for the effective management of pain.

References

1. Yosipovitch G, Greaves MW, Schmelz M. Itch. *The Lancet.* 2003;361(9358):690-694. doi:10.1016/S0140-6736(03)12570-6

2. Colloca L, Miller FG. The nocebo effect and its relevance for clinical practice. *Psychosomatic medicine*. 2011;73(7):598-603. doi:10.1097/PSY.0b013e3182294a50

3. Albu S, Meagher MW. Expectation of nocebo hyperalgesia affects EEG alphaactivity. *International Journal of Psychophysiology*. 2016;109:147-152. doi:10.1016/j.ijpsycho.2016.08.009

Manaï M, van Middendorp H, Veldhuijzen DS, Huizinga TWJ, Evers AWM.
 How to prevent, minimize, or extinguish nocebo effects in pain. *PAIN Reports.* 2019;4(3):e699-e699. doi:10.1097/PR9.0000000000000699

5. Peci S, Peci F. Nocebo phenomenon. *Neuropsychological Trends*. Published online 2016. doi:10.7358/neur-2016-020-peci

 Amanzio M. Expert Review of Clinical Pharmacology Nocebo effects and psychotropic drug action Nocebo effects and psychotropic drug action. *Expert Rev Clin Pharmacol.* 2015;8(2):159-161.

doi:10.1586/17512433.2015.992877doi.org/10.1586/17512433.2015.992877

7. Benedetti F, Lanotte M, Lopiano L, Colloca L. When words are painful: Unraveling the mechanisms of the nocebo effect. *Neuroscience*. 2007;147(2):260-271. doi:10.1016/j.neuroscience.2007.02.020

8. Blasini M, Corsi N, Klinger R, Colloca L. Nocebo and pain: An overview of the psychoneurobiological mechanisms. Published online 2017. doi:10.1097/PR9.00000000000585

9. Thomaidou MA, Veldhuijzen DS, Peerdeman KJ, Sifra Wiebing NZ, Blythe JS, Evers AWM. Learning mechanisms in nocebo hyperalgesia: The role of conditioning and extinction processes. *PAIN*. Published online March 5, 2020:1. doi:10.1097/j.pain.00000000001861

10. Blythe JS, Peerdeman KJ, Veldhuijzen DS, van Laarhoven AIM, Evers AWM. Placebo and nocebo effects on itch. *Itch.* 2019;4(3):e27. doi:10.1097/itx.00000000000027

11. Bräscher AK, Witthöft M, Becker S. The Underestimated Significance of Conditioning in Placebo Hypoalgesia and Nocebo Hyperalgesia. *Pain Research and Management.* 2018;2018:1-8. doi:10.1155/2018/6841985

12. Icenhour A, Labrenz F, Ritter C, et al. Learning by experience? Visceral painrelated neural and behavioral responses in a classical conditioning paradigm. *Neurogastroenterology and Motility*. 2017;29:e13026. doi:10.1111/nmo.13026

13. van de Sand MF, Menz MM, Sprenger C, Büchel C. Nocebo-induced modulation of cerebral itch processing – An fMRI study. *NeuroImage*. 2018;166:209-218. doi:10.1016/J.NEUROIMAGE.2017.10.056

14. Colagiuri B, Quinn VF, Colloca L. Nocebo Hyperalgesia, Partial Reinforcement, and Extinction. *The Journal of Pain.* 2015;16(10):995-1004. doi:10.1016/J.JPAIN.2015.06.012

15. Colagiuri B, Quinn VF. Autonomic Arousal as a Mechanism of the Persistence of Nocebo Hyperalgesia. *The journal of pain: official journal of the American Pain Society.* 2018;19(5):476-486. doi:10.1016/j.jpain.2017.12.006

16. Thomaidou MA, Blythe JS, Houtman SJ, Veldhuijzen DS, van Laarhoven AIM, Evers AWM. Temporal structure of brain oscillations predicts learned nocebo responses to pain. *Sci Rep.* 2021;11(1):9807. doi:10.1038/s41598-021-89368-0

17. Castellano C, Cestari V, Ciamei A. NMDA receptors and learning and memory processes. *Current drug targets.* 2001;2(3):273-283.

18. Rezvani AH. Involvement of the NMDA System in Learning and Memory. CRC Press/Taylor & Francis; 2006.

19. Glanzman DL. Associative Learning: Hebbian Flies. *Current Biology*. 2005;15(11):R416-R419. doi:10.1016/J.CUB.2005.05.028

20. Karel P, Calabrese F, Riva M, et al. d -Cycloserine enhanced extinction of cocaine-induced conditioned place preference is attenuated in serotonin transporter knockout rats. *Addiction Biology*. 2018;23(1):120-129. doi:10.1111/adb.12483

21. Wu IT, Tang TH, Ko MC, Chiu CY, Lu KT. Amygdaloid zif268 participated in the D-cycloserine facilitation effect on the extinction of conditioned fear. *Psychopharmacology*. 2015;232(20):3809-3819. doi:10.1007/s00213-015-4042-7

22. Henneberger C, Papouin T, Oliet SHR, Rusakov DA. Long-term potentiation depends on release of d-serine from astrocytes. *Nature*. 2010;463(7278):232-236. doi:10.1038/nature08673

23. Horio M, Mori H, Hashimoto K. Is D-cycloserine a prodrug for D-serine in the brain? *Biological Psychiatry*. 2013;73(12):e33-e34. doi:10.1016/j.biopsych.2012.07.013

24. Ledgerwood L, Richardson R, Cranney J. d-cycloserine facilitates extinction of learned fear: Effects on reacquisition and generalized extinction. *Biological Psychiatry*. 2005;57(8):841-847. doi:10.1016/j.biopsych.2005.01.023

25. Levin R, Dor-Abarbanel AE, Edelman S, et al. Behavioral and cognitive effects of the N-methyl-d-aspartate receptor co-agonist d-serine in healthy humans: Initial findings. *Journal of Psychiatric* Research. 2015;61:188-195. doi:10.1016/j.jpsychires.2014.12.007

26. Guastella AJ, Dadds MR, Lovibond PF, Mitchell P, Richardson R. A randomized controlled trial of the effect of d-cycloserine on exposure therapy for spider fear. *Journal of Psychiatric Research.* 2007;41(6):466-471. doi:10.1016/J.JPSYCHIRES.2006.05.006

27. Goff DC. D-Cycloserine: An Evolving Role in Learning and Neuroplasticity in Schizophrenia. *Schizophrenia Balletin*. 2012;38(5):936-941. doi:10.1093/schbul/sbs012

28. Inslicht S, Niles A, Metzler T, et al. S14. Randomized Controlled Trial of Hydrocortisone and D-Cycloserine on Fear Extinction in PTSD. *Biological Psychiatry*. 2018;83(9):S352. doi:10.1016/J.BIOPSYCH.2018.02.905

29. Norberg MM, Krystal JH, Tolin DF. A Meta-Analysis of D-Cycloserine and the Facilitation of Fear Extinction and Exposure Therapy. *Biological Psychiatry*. 2008;63(12):1118-1126. doi:10.1016/J.BIOPSYCH.2008.01.012

30. Davis M, Ressler K, Rothbaum BO, Richardson R. Effects of D-Cycloserine on Extinction: Translation From Preclinical to Clinical Work. *Biological Psychiatry*. 2006;60(4):369-375. doi:10.1016/J.BIOPSYCH.2006.03.084

31. Ebrahimi C, Koch SP, Friedel E, et al. Combining D-cycloserine with appetitive extinction learning modulates amygdala activity during recall. *Neurobiology of Learning and Memory*. 2017;142(pt.B):209-217. doi:10.1016/j.nlm.2017.05.008

32. Onur OA, Schlaepfer TE, Kukolja J, et al. The N-Methyl-D-Aspartate Receptor Co-agonist D-Cycloserine Facilitates Declarative Learning and Hippocampal Activity in Humans. *Biological Psychiatry*. 2010;67(12):1205-1211. doi:10.1016/J.BIOPSYCH.2010.01.022 33. Brom M, Laan E, Everaerd W, Spinhoven P, Trimbos B, Both S. d-Cycloserine reduces context specificity of sexual extinction learning. *Neurobiology of Learning and Memory*. 2015;125:202-210. doi:10.1016/J.NLM.2015.09.010

34. Thomaidou MA, Peerdeman KJ, Koppeschaar MI, Evers AWM, Veldhuijzen DS. How Negative Experience Influences the Brain: A Comprehensive Review of the Neurobiological Underpinnings of Nocebo Hyperalgesia. *Frontiers in Neuroscience*. 2021;15. doi:10.3389/fnins.2021.652552

35. Faul F, Erdfelder E, Lang AG. G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. *Behavior Research Methods*. 2007;39(2):175-191. doi:10.3758/BF03193146

36. Kennedy JJ. THE ETA COEFFICIENT IN COMPLEX ANOVA DESIGNS. Vol 30. Cohen; 1970.

37. Cohen J. ETA-SQUARED AND PARTIAL ETA-SQUARED IN FIXED FACTOR ANOVA DESIGNS.; 1973.

38. Rolke R, Magerl W, Campbell KA, et al. Quantitative sensory testing: a comprehensive protocol for clinical trials. *European Journal of Pain.* 2006;10(1):77-88. doi:10.1016/J.EJPAIN.2005.02.003

39. D'Souza DC, Gil R, Cassello K, et al. IV glycine and oral d-cycloserine effects on plasma and CSF amino acids in healthy humans. *Biological Psychiatry*. 2000;47(5):450-462. doi:10.1016/S0006-3223(99)00133-X

40. Meftah A, Hasegawa H, Kantrowitz JT. D-Serine: A Cross Species Review of Safety. *Frontiers in Psychiatry*. 2021;12:1346. doi:10.3389/fpsyt.2021.726365

41. Wechsler D. Wechsler Adult Intelligence Scale–Fourth Edition (WAIS–IV).; 2014.

42. First M, Williams JBW, Karg RS, Spitzer RL. *The Structured Clinical Interview for the DSM-5, Research Version (SCID-RV)*. American Psychiatric Association; 2015. https://www.columbiapsychiatry.org/research/research-labs/diagnostic-andassessment-lab/structured-clinical-interview-dsm-disorders-14

assessment-lab/structured-clinical-interview-dsm-disorders-14

43. Marteau TM, Bekker H. The development of a six-item short-form of the state scale of the Spielberger State-Trait Anxiety Inventory (STAI). *British Journal of Clinical Psychology*. 1992;31(3):301-306. doi:10.1111/j.2044-8260.1992.tb00997.x

44. Spielberger C, Gorsuch R, Lushene P, Vagg P, Jacobs A. Manual for the State-Trait Anxiety Inventory STAI (Form Y) ("Self-Evaluation Questionnaire"). In: *Man State-Trait Anxiety Invent STAI*. Consulting Psychologists Press, Inc.; 1983:4-6.

45. Sullivan M, Bishop S, Pivik J. The Pain Catastrophizing Scale: Development and validation. *Psychological Assessment*. 1995;7(4):524-532.

46. Crombez G, De Paepe AL, Veirman E, Eccleston C, Verleysen G, Van Ryckeghem DML. Let's talk about pain catastrophizing measures: an item content analysis. *PeerJ*. 2020;8:e8643. doi:10.7717/peerj.8643

47. Schmid NB, Lerew DR, Trakowski JH. Body vigilance in panic disorder: Evaluating attention to bodily perturbations. *Journal of Consulting and Clinical Psychology*, 1997;65(2):214-220. doi:10.1037/0022-006X.65.2.214

48. Venables WN, Ripley BD. *Modern Applied Statistics with S - MASS*. 4th ed. Springer; 2002. https://www.stats.ox.ac.uk/pub/MASS4/

49. Hlavac M. stargazer: Well-Formatted Regression and Summary Statistics Tables. R package version 5.2.2. Published online 2018. https://CRAN.Rproject.org/package=stargazer

50. Wickham H. *Ggplot2: Elegant Graphics for Data Analysis.* Springer-Verlag; 2016. https://ggplot2.tidyverse.org

51. Bartels DJP, van Laarhoven AIM, Haverkamp EA, et al. Role of Conditioning and Verbal Suggestion in Placebo and Nocebo Effects on Itch. Sakakibara M, ed. *PLoS ONE*. 2014;9(3):e91727. doi:10.1371/journal.pone.0091727

52. Richardson JTE. Eta squared and partial eta squared as measures of effect size in educational research. *Educational Research Review*. 2011;6(2):135-147. doi:10.1016/j.edurev.2010.12.001

53. Cohen J. A power primer. *Psychological Bulletin*. 1992;112(1):155-159. doi:10.1037/0033-2909.112.1.155

54. Smith SM. Fast robust automated brain extraction. Human Brain Mapping. 2002;17(3):143-155. doi:10.1002/hbm.10062

55. Kasper L, Bollmann S, Diaconescu AO, et al. The PhysIO Toolbox for Modeling Physiological Noise in fMRI Data. *Journal of Neuroscience Methods.* 2017;276:56-72. doi:10.1016/j.jneumeth.2016.10.019

56. Glover GH, Li TQ, Ress D. Image-based method for retrospective correction of physiological motion effects in fMRI: RETROICOR. *Magnetic Resonance in Medicine*. 2000;44(1):162-167. doi:10.1002/1522-2594(200007)44:1<162::AID-MRM23>3.0.CO;2-E

57. Desikan RS, Ségonne F, Fischl B, et al. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. *Neuroimage*. 2006;31(3):968-980. doi:10.1016/j.neuroimage.2006.01.021

58. McCarthy P. FSLeyes V.1.3.0. Zenodo; 2021. doi:10.5281/zenodo.3937147

59. Jenkinson M, Beckmann CF, Behrens TEJ, Woolrich MW, Smith SM. FSL. *NeuroImage*. 2012;62(2):782-790. doi:10.1016/J.NEUROIMAGE.2011.09.015

60. Yushkevich P, Piven J, Cody H, et al. User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. *NeuroImage*. 2006;31:1116-1128. doi:10.1016/j.neuroimage.2006.01.015

61. Ayachit U, Bauer A, Geveci B, et al. ParaView Catalyst: Enabling In Situ Data Analysis and Visualization. In: *Proceedings of the First Workshop on In Situ Infrastructures for Enabling Extreme-Scale Analysis and Visualization*. ISAV2015. Association for Computing Machinery; 2015:25-29. doi:10.1145/2828612.2828624

62. Brett M, Anton JL, Valabregue R, Poline JB. Region of Interest Analysis Using an SPM Toolbox. *Neuroimage*. 2002;16. doi:10.1016/S1053-8119(02)90013-3

63. Aupperle RL, Hale LR, Chambers RJ, et al. An fMRI Study Examining Effects of Acute D-Cycloserine During Symptom Provocation in Spider Phobia. *CNS Spectrums*. 2009;14(10):556-571. doi:10.1017/S1092852900024044

64. Guastella AJ, Dadds MR, Lovibond PF, Mitchell P, Richardson R. A randomized controlled trial of the effect of d-cycloserine on exposure therapy for spider fear. *Journal of Psychiatric Research.* 2007;41(6):466-471. doi:10.1016/J.JPSYCHIRES.2006.05.006

65. Mataix-Cols D, Fernández de la Cruz L, Monzani B, et al. D-Cycloserine Augmentation of Exposure-Based Cognitive Behavior Therapy for Anxiety, Obsessive-Compulsive, and Posttraumatic Stress Disorders: A Systematic Review and Meta-analysis of Individual Participant Data. *JAMA Psychiatry.* 2017;74(5):501-510. doi:10.1001/jamapsychiatry.2016.3955

66. Nave AM, Tolin DF, Stevens MC. Exposure therapy, D-cycloserine, and functional magnetic resonance imaging in patients with snake phobia: a randomized pilot study. *The Journal of clinical psychiatry*. 2012;73(9):1179-1186. doi:10.4088/JCP.11m07564

67. Kuriyama K, Honma M, Koyama S, Kim Y. d-cycloserine facilitates procedural learning but not declarative learning in healthy humans: A randomized controlled trial of the effect of d-cycloserine and valproic acid on overnight properties in

the performance of non-emotional memory tasks. *Neurobiology of Learning and Memory*. 2011;95(4):505-509. doi:10.1016/J.NLM.2011.02.017

68. Goff DC. D-Cycloserine: An Evolving Role in Learning and Neuroplasticity in Schizophrenia. *Schizophrenia Bulletin.* 2012;38(5):936-941. doi:10.1093/schbul/sbs012

69. Ledgerwood L, Richardson R, Cranney J. d-cycloserine facilitates extinction of learned fear: Effects on reacquisition and generalized extinction. *Biological Psychiatry*. 2005;57(8):841-847. doi:10.1016/j.biopsych.2005.01.023

70. Millecamps M, Centeno MV, Berra HH, et al. d-Cycloserine reduces neuropathic pain behavior through limbic NMDA-mediated circuitry. *Pain.* 2007;132(1-2):108-123. doi:10.1016/j.pain.2007.03.003

71. Schmid J, Bingel U, Ritter C, et al. Neural underpinnings of nocebo hyperalgesia in visceral pain: A fMRI study in healthy volunteers. *NeuroImage*. 2015;120:114-122-114-122. doi:10.1016/j.neuroimage.2015.06.060

72. Thomaidou MA, Veldhuijzen DS, Meulders A, Evers AWM. An experimental investigation into the mediating role of pain-related fear in boosting nocebo hyperalgesia. *Pain.* 2021;162(1):287-299. doi:10.1097/j.pain.00000000002017

73. Tinnermann A, Geuter S, Sprenger C, Finsterbusch J, Büchel C. Interactions between brain and spinal cord mediate value effects in nocebo hyperalgesia. *Science*. 2017;358:105-108.

74. Etkin A, Wager TD. Functional neuroimaging of anxiety: a meta-analysis of emotional processing in PTSD, social anxiety disorder, and specific phobia. *The American journal of psychiatry*. 2007;164(10):1476-1488. doi:10.1176/appi.ajp.2007.07030504

75. Pissiota A, Frans O, Michelgard A, et al. Amygdala and anterior cingulate cortex activation during affective startle modulation: a PET study of fear. *European Journal of Neuroscience*. 2003;18(5):1325-1331. doi:10.1046/j.1460-9568.2003.02855.x

76. Ellerbrock I, Wiehler A, Arndt M, May A. Nocebo context modulates longterm habituation to heat pain and influences functional connectivity of the operculum. *Pain.* 2015;156(11):2222-2233-2222-2233. doi:10.1097/j.pain.00000000000297

77. Keltner JR. Isolating the Modulatory Effect of Expectation on Pain Transmission: A Functional Magnetic Resonance Imaging Study. *Journal of Neuroscience*. Published online 2006. doi:10.1523/JNEUROSCI.4463-05.2006

78. Rodriguez-Raecke R, Doganci B, Breimhorst M, et al. Insular cortex activity is associated with effects of negative expectation on nociceptive long-term habituation. *Journal of Neuroscience*. 2010;30(34):11363-11368. doi:10.1523/JNEUROSCI.2197-10.2010

79. Egorova N, Benedetti F, Gollub RL, Kong J. Between placebo and nocebo: response to control treatment is mediated by amygdala activity and connectivity. *Eur J Pain.* 2020;24(3):580-592. doi:10.1002/ejp.1510

80. Timmers I, López-Solà M, Heathcote LC, et al. Amygdala functional connectivity mediates the association between catastrophizing and threat-safety learning in youth with chronic pain. *PAIN*. 2021;162(12). doi:10.1097/j.pain.000000000002410

81. Donohue SE, Wendelken C, Crone EA, Bunge SA. Retrieving rules for behavior from long-term memory. *NeuroImage*. 2005;26(4):1140-1149. doi:10.1016/j.neuroimage.2005.03.019

82. Sakagami M, Tsutsui K ichiro, Lauwereyns J, Koizumi M, Kobayashi S, Hikosaka O. A Code for Behavioral Inhibition on the Basis of Color, But Not Motion, in Ventrolateral Prefrontal Cortex of Macaque Monkey. *J Neurosci.* 2001;21(13):4801-4808. doi:10.1523/JNEUROSCI.21-13-04801.2001

 Salmi J, Nyberg L, Laine M. Working memory training mostly engages generalpurpose large-scale networks for learning. *Neuroscience & Biobehavioral Reviews*. 2018;93:108-122. doi:10.1016/j.neubiorev.2018.03.019 84. Toni I, Ramnani N, Josephs O, Ashburner J, Passingham RE. Learning arbitrary visuomotor associations: temporal dynamic of brain activity. *Neuroimage*. 2001;14(5):1048-1057. doi:10.1006/nimg.2001.0894

85. Versteeg M, Hafkemeijer A, de Beaufort AJ, Steendijk P. An Understanding of (Mis)Understanders: Exploring the Underlying Mechanisms of Concept Learning Using Functional Magnetic Resonance Imaging. *Mind, Brain, and Education.* 2021;15(1):129-138. doi:10.1111/mbe.12273

86. Miltner WHR, Braun C, Arnold M, Witte H, Taub E. Coherence of gammaband EEG activity as a basis for associative learning. *Nature*. 1999;397(6718):434-436. doi:10.1038/17126

87. Tu Y, Park J, Ahlfors SP, et al. A neural mechanism of direct and observational conditioning for placebo and nocebo responses. *NeuroImage*. Published online 2019. doi:10.1016/j.neuroimage.2018.10.020

88. Zeithamova D, Mack ML, Braunlich K, et al. Brain Mechanisms of Concept Learning. J Neurosci. 2019;39(42):8259-8266. doi:10.1523/JNEUROSCI.1166-19.2019

89. Craig AD. Interoception: the sense of the physiological condition of the body. *Current opinion in neurobiology*. 2003;13(4):500-505.

90. Veldhuijzen DS, Greenspan JD, Kim JH, Lenz FA. Altered pain and thermal sensation in subjects with isolated parietal and insular cortical lesions. *European Journal of Pain.* 2010;14(5):535.e1-535.e11. doi:10.1016/j.ejpain.2009.10.002

91. Wiech K, Lin C shu, Brodersen KH, Bingel U, Ploner M, Tracey I. Anterior insula integrates information about salience into perceptual decisions about pain. *The Journal of neuroscience : the official journal of the Society for Neuroscience.* 2010;30(48):16324-16331. doi:10.1523/JNEUROSCI.2087-10.2010

92. Freeman S, Yu R, Egorova N, et al. Distinct neural representations of placebo and nocebo effects. *NeuroImage*. 2015;112. doi:10.1016/j.neuroimage.2015.03.015

93. Jensen K, Kaptchuk TJ, Chen X, et al. A neural mechanism for nonconscious activation of conditioned placebo and nocebo responses. *Cerebral Cortex*. 2015;25(10):3903-3910. doi:10.1093/cercor/bhu275

94. Kong J, Gollub RL, Polich G, et al. A Functional Magnetic Resonance Imaging Study on the Neural Mechanisms of Hyperalgesic Nocebo Effect. *Journal of Neuroscience*. 2008;28(49):13354-13362-13354-13362. doi:10.1523/JNEUROSCI.2944-08.2008

95. Button KS, Ioannidis JPA, Mokrysz C, et al. Power failure: why small sample size undermines the reliability of neuroscience. *Nat Rev Neurosci.* 2013;14(5):365-376. doi:10.1038/nrn3475

96. Cremers H, Wager T, Yarkoni T. The relation between statistical power and inference in fMRI. *PLOS ONE*. 2017;12:e0184923. doi:10.1371/journal.pone.0184923

97. Pinheiro ES dos S, de Queirós FC, Montoya P, et al. Electroencephalographic Patterns in Chronic Pain: A Systematic Review of the Literature. *PloS one*. 2016;11(2):e0149085. doi:10.1371/journal.pone.0149085