

Aortic valve disease: multimodality imaging for risk stratification and evaluation of therapy Vollema, E.M.

Citation

Vollema, E. M. (2022, September 6). *Aortic valve disease: multimodality imaging for risk stratification and evaluation of therapy*. Retrieved from https://hdl.handle.net/1887/3455179

Version: Publisher's Version

License: License agreement concerning inclusion of doctoral thesis in the Institutional Repository of the University of Leiden

Downloaded

from:

https://hdl.handle.net/1887/3455179

Note: To cite this publication please use the final published version (if applicable).

7

ECHOCARDIOGRAPHY IN TRANSCATHETER AORTIC VALVE REPLACEMENT

E. Mara Vollema, Victoria Delgado, Jeroen J. Bax

Published in Heart Lung Circ. 2019; 28: 1354-1399

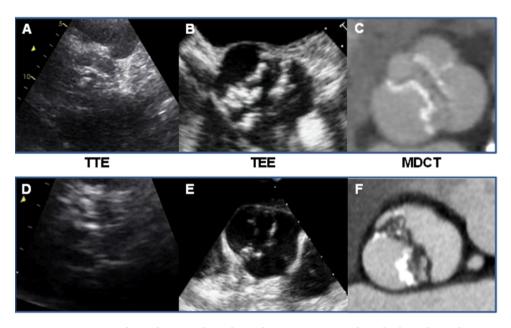
ABSTRACT

RANSCATHETER aortic valve replacement (TAVR) is a safe and efficient alternative for surgical valve aortic replacement in patients with symptomatic severe aortic stenosis who are inoperable or have a high risk for surgery. Randomized clinical trials have shown that TAVR is not inferior to surgical aortic valve replacement in intermediate-risk patients and ongoing trials will demonstrate the effects of TAVR in asymptomatic severe aortic stenosis patients and in patients with heart failure and pseudosevere aortic stenosis. Continuous developments in procedural and post-procedural management along with increased operator experience and technical improvements and ongoing advances in imaging modalities (particularly in 3-dimensional techniques), have reduced the procedural risks and the incidence of complications such as paravalvular aortic regurgitation. Importantly, proper selection of both patient and prosthesis, procedural guidance and follow-up of prosthesis performance remain paramount for the success of the TAVR. In all these steps, echocardiography plays a crucial role. An overview of the clinical applications and current role of echocardiographic techniques in patient selection, prosthesis sizing, periprocedural guidance and post-procedural follow-up will be provided in this review article.

INTRODUCTION

RANSCATHETER aortic valve replacement (TAVR) has become a feasible alternative to surgical aortic valve replacement (SAVR) in the treatment of inoperable or high-risk symptomatic severe aortic stenosis (AS) patients. At mid-term follow-up, TAVR portends similar outcomes to SAVR and good valve durability has been demonstrated [1–3]. For this specific group of patients, TAVR has received a class I recommendation in recently updated guidelines [4, 5]. In addition, TAVR has extended to intermediate-risk patients, in whom studies demonstrate promising outcomes [6–8]. Currently, ongoing large trials are assessing the safety and efficacy of TAVR in low-risk and in asymptomatic severe AS patients [9]. Continuous technical developments in TAVR systems, increased operator experience and developments in procedural (e.g., use of minimalist strategy) and post-procedural (e.g., early discharge) management, careful risk evaluation and proper patient selection remain paramount for successful TAVR.

Echocardiography is the imaging technique of first choice to evaluate patients with severe AS who may be treated with TAVR, particularly for the assessment of aortic valve morphology and AS severity. When the diagnostic accuracy of two-dimensional (2D) transthoracic echocardiography is insufficient, three-dimensional (3D) visualization of the aortic valve or aortic valve calcium scoring using computed tomography (CT) provides incremental diagnostic value. For the proper selection of the transcatheter prosthesis size, CT is considered the preferred imaging tool. However, 3D transesophageal echocardiography is a valid alternative to CT in the presence of contra-indications (e.g., renal dysfunction). Furthermore, echocardiography (transthoracic, transesophageal and, less common, intracardiac echocardiography) is an important imaging technique to assist the TAVR procedure. At follow-up, evaluation of the hemodynamic performance of the transcatheter valve is usually performed with echocardiography.


The present review article provides an overview of the clinical applications and current role of echocardiographic techniques in TAVR for (i) patient selection, (ii) prosthesis sizing, (iii) periprocedural guidance, and (iv) postprocedural follow-up.

ECHOCARDIOGRAPHY IN PATIENT SELECTION PRIOR TO TAVR

Two-dimensional and Doppler transthoracic echocardiography (TTE) is the imaging technique of first choice to diagnose AS severity. Furthermore, it provides information on aortic root dimensions, left ventricular (LV) dimensions and function (e.g., presence of LV hypertrophy), pulmonary arterial pressure and associated valve disease (mitral and tricuspid regurgitation), which are important factors to take into consideration in the clinical decision making of patients with severe AS [10].

AORTIC VALVE MORPHOLOGY

The first step in the evaluation of patients with severe AS is to define the aortic valve morphology. Conventional 2D TTE permits visualization of the number and position of cusps and qualitative assessment of calcium deposition and the movement of the cusps. However, in severely calcified aortic valves, 2D TTE may not be accurate enough to define the morphology of the valve (tricuspid vs. bicuspid). Transoesophageal echocardiography and CT provide better accuracy to identify the valve morphology



Figure 1: Comparison of transthoracic echocardiography (TTE), transoesophageal echocardiography (TEE) and multi-detector row computed tomography (MDCT) for the detection of bicuspid aortic valve (BAV) stenosis. Examples of BAV with a fusion raphe (*panels A-C*) and BAV without a fusion raphe (*panel D-F*) are shown. For both examples, TTE (*panels A and D*) has insufficient accuracy to correctly detect the presence of BAV and its specific morphology. TEE (*panels B and E*) shows a better accuracy for BAV diagnosis. MDCT (*panels C and F*) allows for optimal detection of BAV and the presence and location of raphes, especially when leaflet calcification is present.

(Figure 1) [10, 11].

Bicuspid aortic valve (BAV) is diagnosed in systole by the presence of 2 commissures. However, the phenotype of BAV is highly variable depending on the presence and location of a fusion raphe between cusps. According to the classification of Sievers [12], BAV can be classified into type 0, when there are 2 commissures and 2 cusps without a raphe; type 1, when there are 2 commissures and 3 cusps with 2 of them fused by one raphe; and type 2, when there is 1 commissure with 3 cusps and 2 of them fused by two raphes. These BAV types can be further classified according to the orientation of the commissures and location of the raphe (Figure 2) [12].

Landmark randomized controlled trials on TAVR excluded BAV patients [6, 7]. However, several registries have reported the feasibility of TAVR in patients with BAV. A higher incidence of significant paravalvular leakage has been reported in bicuspid AS patients treated with early-generation TAVR devices as compared to tricuspid AS patients [13, 14]. However, new-generation TAVR devices showed device success rate and incidence of significant paravalvular leakage in BAV patients similar to those reported in tricuspid AS patients [15–17].

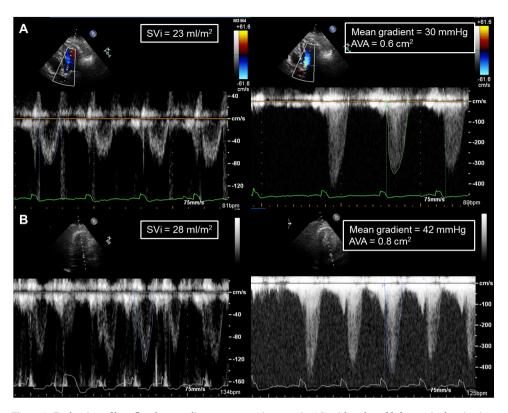


Figure 2: Schematic overview and two-dimensional transthoracic echocardiographic views of the bicuspid aortic valve (BAV) morphologies according to the classification of Sievers [12]. The aortic valves are depicted from the short-axis views from the left ventricular view in both the diastolic and systolic phase. The raphe (commissural fusion) is represented by the blue bands and red arrows. The origins of the left main (LM) and right coronary artery (RCA) are depicted with red lines. Type 0 denotes BAV without a fusion raphe with a lateral or anteroposterior orientation of the commissures and type 1 and 2 denote BAV with one or two fusion raphes, respectively. LM, left main coronary artery; L-N; left and non-coronary cusp; L-R, left and right coronary cusp; RCA, right coronary artery; R-N, right and non-coronary cusp.

AORTIC STENOSIS SEVERITY

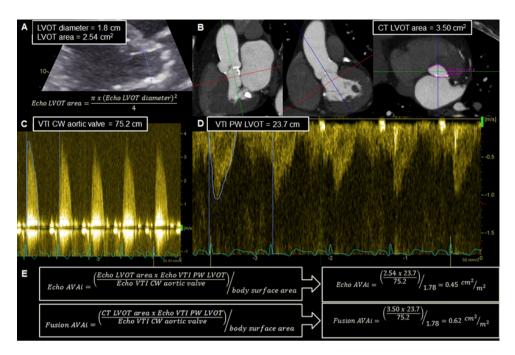
Secondly, assessment of AS severity relies on the following echocardiographic parameters: peak aortic jet velocity, mean transvalvular pressure gradient and the aortic valve area (AVA) by continuity equation. Severe AS is conventionally defined as an aortic jet velocity ≥ 4 m/s, a mean gradient ≥ 40 mmHg and/or an AVA <1.0 cm² [4, 18]. Although the majority of patients with severe AS meet all these criteria, around one third of the patients show discordant grading: an AVA <1.0 cm² with a mean gradient <40 mmHg (so called low-gradient severe AS) [19]. Low-gradient severe AS is frequently observed when the LV ejection fraction (LVEF) is reduced, as this results in a low outflow status [19]. The presence of low flow through the aortic valve, defined as a stroke volume (SV) index <35 ml/m² [4, 18], may result in underestimation of the mean gradient (which is the squared function of flow) [10].

In this clinical scenario, differentiation between true severe AS and pseudosevere AS is crucial to provide the most appropriate treatment to the patient. To differentiate between these two entities, low-dose (up to $20~\mu g/kg/min$) dobutamine stress echocardiography (DSE) is utilized to increase LV contractility and subsequently increase flow rate. In true severe AS, the increased flow (defined as an >20% increase in SV) will cause an increase in mean gradient (>40 mmHg) while the AVA remains <1.0 cm² (Figure 3), whereas in pseudosevere AS, the mean gradient will remain <40 mmHg and the increased SV will result in an AVA >1.0 cm² [10]. In patients without contractile reserve or in whom nor-

Figure 3: Evaluation of low-flow low-gradient severe aortic stenosis (AS) with reduced left ventricular ejection fraction using low-dose dobutamine stress echocardiography. At baseline, discordant grading of AS severity was apparent: the mean gradient was 30 mmHg and the aortic valve area (AVA) was 0.6 cm^2 . The stroke volume index (SVi) was 23 ml/m^2 , corresponding with low-flow low-gradient AS (*panel A*). Low-dose dobutamine stress echocardiography was performed to differentiate between true severe AS and pseudosevere AS. This resulted in an increase of the mean gradient to 42 mmHg and of the SVi by 22% to 28 ml/m^2 while the AVA remained <1.0 cm², consistent with classical low-flow low-gradient true severe AS and the presence of flow reserve (i.e., increase of SVi > 20%)(*panel B*).

malization of flow rate cannot be achieved, quantification of aortic valve calcification with CT can be helpful [20]. Current recommendations indicate that severe AS is likely when the calcium score of the aortic valve is \geq 1200 arbitrary units in women and \geq 2000 arbitrary units in men [4].

Recently, transaortic flow rate (defined as SV divided by the systolic ejection period) has emerged as a potentially useful parameter for the assessment of true severe AS in patients with low-gradient severe AS [21–23]. Chahal et al. demonstrated that, in 67 low-gradient severe AS patients with either low flow or LV systolic dysfunction, normal resting transaortic flow rate (i.e., \geq 200 ml/s) was independently associated with the presence of true severe AS on DSE and suggested that DSE may only be required for the evaluation of AS severity in patients with a resting flow rate <200 ml/s [21]. In a small study of 42 low-flow low-gradient severe AS patients, use of normalized transaortic flow rate (i.e.,


increase up to \geq 200 ml/s) during DSE as a criterium for the assessment of true severe AS instead of the presence of flow reserve (defined as \geq 20% SV increase) resulted in more conclusive tests (82% vs. 36.4%, P=0.13)[22]. Furthermore, low transacrtic flow rate was shown to be an independent predictor of mortality and provided incremental information over SV index in low-gradient severe AS patients undergoing acrtic valve intervention, although these findings need to be confirmed in larger prospective studies [23].

Paradoxical low-flow low-gradient severe AS, defined by a mean gradient >40 mmHg, AVA <1.0 cm² and SV index <35 ml/min with preserved LVEF (\geq 50%), is often characterized by pronounced LV concentric hypertrophy contributing to a small LV cavity with impaired LV filling, resulting in low SV [24]. To correctly diagnose paradoxical low-flow low-gradient severe AS, it is paramount to exclude measurement errors such as underestimation of the LV outflow tract (LVOT) diameter or misalignment of the sample volume resulting in underestimation of the aortic jet velocity and transvalvular gradients. In addition, it is recommended to use indexed AVA (AVAi) [10].

The optimal method to differentiate patients with true severe AS from those with probably moderate AS among paradoxical low-flow low-gradient severe AS patients remains unclear, as the feasibility and safety of DSE in these patients with restrictive physiology is uncertain [25]. Assessment of the degree of aortic valve calcification with CT or calculation of the AVA by combining 3D planimetered LVOT area (on CT or 3D transoesofageal echocardiography [TEE]) with Doppler TTE data can be helpful [26, 27]. Kamperidis et al. showed that by incorporating a CT-derived LVOT-area into the continuity equation formula combined with hemodynamic echocardiographic data as assessed by Doppler TTE, resulted in larger AVA index than that calculated conventionally with 2D TTE (Figure 4) [27]. Accordingly, the use of CT to calculate the AVA resulted in reclassification of a significant proportion of paradoxical low-flow low-gradient severe AS into moderate AS [27]. In a subanalysis of the Placement of Aortic Transcatheter Valves (PARTNER) trial, treatment with TAVR was associated with reduced mortality compared to medical management at 2 year follow-up in both classical (47% vs. 80%, respectively, P=0.039) and paradoxical low-flow low-gradient severe AS (57% vs. 77%, respectively; P=0.047) [28]. Therefore, accurate assessment of AS severity is crucial to provide the best treatment and improve outcomes.

THE ROLE OF 3D TEE IN PROSTHESIS SIZING

M EASUREMENT of the dimensions of the aortic valve annulus and prosthesis size selection are crucial steps in TAVR. Over- or undersizing of the TAVR prosthesis might result in aortic root rupture, valve embolization or paravalvular aortic leakage. The aortic annulus is an oval-shaped virtual ring which dimensions are better measured with 3D imaging techniques [29–31], with CT providing the highest spatial resolution [32]. However, in patients with renal dysfunction in whom associated comorbidities such as heart failure may increase the risk of acute kidney injury, the use of iodinated contrast should be kept at a minimum [33]. Three-dimensional TEE is a valid alternative to CT to measure the aortic annulus. Several studies have reported a moderate to high correlation for cross-sectional dimensions of the aortic annulus (area and perimeter) measured with CT and 3D TEE [34–36]. However, cross-sectional 3D TEE measurements of the aortic annulus were significantly smaller than dimensions obtained by CT, thus potentially resulting

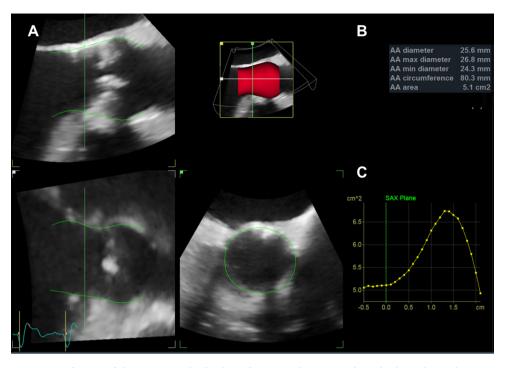


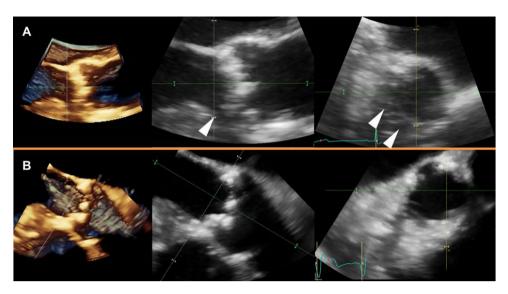
Figure 4: Evaluation of the aortic valve area index (AVAi) by two-dimensional Doppler echocardiography (Echo) and by fusion of multi-detector row computed tomography (CT)-derived and echocardiographic measurements. Using echocardiography, the left ventricular outflow tract (LVOT) diameter was measured 5 mm below the aortic annulus in the parasternal long-axis view and the LVOT area was calculated (*panel A*). Using CT, the LVOT area was located 5 mm below the aortic annulus and planimetered in the reconstructed double oblique transverse view in systole (*panel B*). Continuous-wave (CW) Doppler on the apical 5-chamber view was performed to measure the velocity time integral (VTI) of the aortic valve (*panel C*). Pulsed-wave (PW) Doppler recordings of the LVOT were obtained by placing the sample volume 5 mm below the aortic annulus and the VTI of the flow at the LVOT was measured (*panel D*). By utilizing the continuity equation, the Echo AVAi and fusion AVAi were calculated incorporating the echocardiographically estimated LVOT area and CT-derived LVOT area, respectively. In both calculations, the VTI of the LVOT and the aortic valve area were used (*panel E*). In this example, reclassification to moderate AS was possible by calculating the fusion AVAi.

in prosthesis undersizing when implemented in the sizing algorithms recommended by manufacturers [35, 36].

The advent of semi-automated quantitative software for direct planimetry of the aortic annulus has allowed a more systematic approach minimizing the influence of the observer (Figure 5). Studies comparing semi-automated or automated software by different vendors have demonstrated good to excellent agreement between 3D TEE and CT for the measurements of the annular area, mean diameter and perimeter with low interobserver and intraobserver variability [37–41].

The limitations of 3D TEE include the semi-invasive approach and the acoustic shadowing due to bulky calcification of the aortic valve or annulus which can challenge the visualization of the annulus [38, 40]. By acquiring the 3D TEE data of the aortic root in an off-axis plane, the acoustic shadowing created by the aortic valve calcification can be minimized resulting in improved agreement between CT and 3D TEE measurements of

Figure 5: Evaluation of the aortic annulus by three-dimensional transoesophageal echocardiography using automated software (4D Automated Aortic Valve Quantification (4D Auto AVQ); EchoPAC, version 201, GE-Vingmed). First, a multiplanar reconstruction of the aortic valve is constructed in mid-systole by aligning the two long-axis orthogonal planes through the aortic valve and moving the transverse plane toward the hinge points of the aortic valve leaflet insertions. Automatic delineation of the left ventricular outflow tract and aortic root is then performed by the 4D Auto AVQ program and, if needed, manual adjustments can be made (*panel A*). After approval of the contouring of the aortic annulus (AA) and aortic root, the automatic software computes the annular dimensions: average diameter (calculated based on the perimeter), maximum and minimum diameters, circumference (perimeter) and area (*panel B*). The software generates a graph representing the cross-sectional area along the aortic root and left ventricular outflow tract (*panel C*).


the aortic annulus dimensions (Figure 6) [42].

With the prospect that future TAVR procedures will be performed in younger patients with low operative risk in whom radiation needs to be minimized, 3D TEE may be a good alternative to CT for aortic annulus sizing.

ECHOCARDIOGRAPHIC GUIDANCE DURING TAVR PROCEDURE

PROCEDURAL guidance during TAVR is routinely performed using fluoroscopy [43]. Transoesofageal echocardiography is used as an adjunct to fluoroscopy and offers multiple advantages: it reduces the amount of nephrotoxic iodine contrast and radiation exposure and allows for early assessment of potential intra-procedural or immediate post-procedural complications [44, 45]. As TEE offers real-time and continuous monitoring, it is useful for all aspects of the TAVR procedure.

Although manipulation and positioning of wires is usually monitored by fluoroscopy,

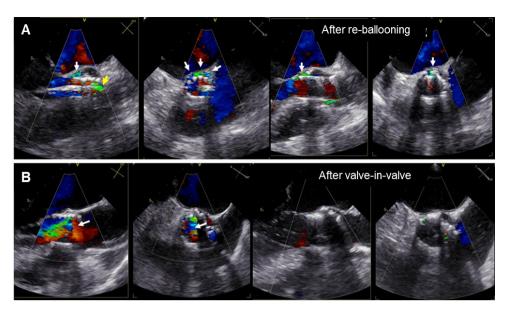


Figure 6: Assessment of the aortic valve and annulus using three-dimensional transoesophageal echocardiography. From the three-dimensional full volume, the two-dimensional long-axis multiplanar reconstruction (middle) and the short-axis multiplanar reconstruction at the level of the aortic annulus (right) are displayed. In *panel A*, the ultrasound beam is angled parallel to the calcified aortic valve causing considerable acoustic shadowing over the aortic annulus, which challenges accurate assessment of the aortic annulus (white arrows). In *panel B*, the three-dimensional echocardiographic data were acquired in an off-axis plane, causing the acoustic shadowing to be projected over the sinus of Valsalva and providing a more clear view of the aortic annulus and more accurate measurements of the aortic annulus dimensions.

TEE can help to confirm the correct positioning the pacing wire in the right ventricular apex as well as the position of the retrograde stiff wire in the left ventricle. TEE also permits rapid assessment of potential pericardial effusion in the event of ventricular perforation. During positioning of the wire, entrapment of the guidewire within the mitral apparatus causing mitral regurgitation can be detected at an early stage [45].

If balloon aortic valvuloplasty is deemed necessary, TEE can be used to guide the balloon positioning relative to the valve and to ensure a stable position. Furthermore, it may aid in visualizing how calcified aortic valve cusps will displace relative to the coronary ostia and predict whether occlusion of coronary ostia might occur. For the correct positioning of both balloon- and self-expandable prostheses prior to deployment, fluoroscopy plays a pivotal role. However, fluoroscopy can prove challenging in the setting of limited calcification of the aortic valve / annulus, in which case TEE can be particularly useful. Although the simultaneous use of TEE can cause an obstruction of the fluoroscopic view, changing the echocardiographic window or fluoroscopic angle may overcome this disadvantage [45].

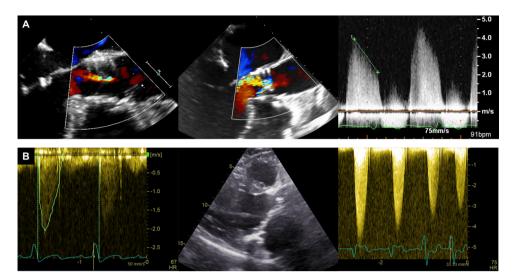
Immediately after the valve is deployed, appropriate valve position and function can be confirmed by TEE. Importantly, the presence and severity of paravalvular aortic regurgitation should be assessed. Correct assessment of the severity of paravalvular aortic regurgitation is challenging as multiple paravalvular jets with an eccentric and irregular appearance can be present [43]. Aortography provides a qualitative assessment of the

Figure 7: Evaluation of transcatheter aortic valve replacement results: differentiating paravalvular from transvalvular regurgitation. *Panel A* shows a patient who received a self-expanding valve prosthesis. The images on the left show the presence of paravalvular regurgitation (white arrow) and transvalvular regurgitation caused by the presence of the wire (yellow arrow). The orthogonal simultaneous view shows the short-axis of the transcatheter valve with paravalvular regurgitation along >25% of the prosthesis frame circumference (arrows). After re-ballooning of the valve, the paravalvular regurgitation significantly reduced to trace. *Panel B* shows a patient who received a balloon-expandable prosthesis with a frozen (i.e., not deployed) leaflet resulting in severe transvalvular regurgitation (arrow) and hemodynamic instability of the patient. The orthogonal short-axis view shows the regurgitant jet covering 50% of the internal area of the transcatheter valve (arrow). In this situation, valve-in-valve implantation is needed to hemodynamically stabilize the patient and treat the regurgitation.

residual aortic regurgitation, but it does not provide information on the mechanism of regurgitation (paravalvular versus transvalvular), which is important to decide whether re-ballooning of the transcatheter valve is needed to ensure good sealing of the annulus and reduce paravalvular regurgitation, or if rescue valve-in-valve is needed to reduce transvalvular regurgitation (Figure 7).

The importance of using the recommended multi-window and multi-parametric echo-cardiographic approach, incorporating both qualitative (i.e., jet features) and semiquantitative (i.e., jet width at origin as percentage of LVOT diameter and circumferential extent of the jet(s)) parameters [43, 46], was recently illustrated by Hahn et al. [47]. In this study, 15.9% of patients who were graded as moderate paravalvular aortic regurgitation by a method using the circumferential extent of the regurgitant jet, were reclassified as mild paravalvular aortic regurgitation when the multiparametric approach was used [47].

Growing operator experience and the development of smaller delivery systems has increased the feasibility of transfemoral TAVR with local anaesthesia or conscious sedation (also called monitored anaesthesia care) rather than general anaesthesia [48, 49], resulting in the increased use of TTE to evaluate the results of TAVR. This less invasive


strategy has been associated with a shorter duration of hospitalization and improved post-procedural outcomes without safety issues [49–52]. In addition to using TTE for intraprocedural guidance, transnasal TEE and intracardiac echocardiography have been suggested as alternative imaging methods in procedures with monitored anaesthesia care [43]. Compared to conventional TEE, transnasal TEE does not have the capability for 3D assessment and the image quality is considerably less [43]. Intracardiac echocardiography provides better image quality than transnasal TEE and uninterrupted monitoring without fluoroscopic interference [53]. This is achieved by using a steerable catheter, which is introduced into the femoral vein and advanced via the inferior vena cava and right atrium towards the superior cavo-atrial junction [53]. In this position, the aortic valve and root can be continuously monitored. Real time 3D imaging, with a 22 x 90° volume image, allows for the postprocedural assessment of paravalvular aortic regurgitation and potential complications [53]. Major disadvantages of this technique are the lesser image quality (particularly in 3D due to the small image volume), the possible interference of the device with the pacemaker lead with subsequent risk of lead displacement and loss of capture, lack of experience and especially the high costs of the device [53].

ECHOCARDIOGRAPHY DURING FOLLOW-UP AFTER TAVR: WHAT TO LOOK FOR?

For the assessment of prosthesis function and durability after TAVR and detection of possible late complications, TTE is the mainstay imaging modality. According to current guidelines, echocardiographic follow-up of TAVR should be performed prior to discharge or within 30 days after implantation, after 6 months and 1 year and yearly thereafter [32, 54]. Importantly, if new symptoms and signs of valve dysfunction appear, echocardiography should be performed and the frequency of follow-up visits should be increased when deterioration of LV function and valve hemodynamics are noted. Using TTE, the position of the TAVR stent and the morphology of the prosthesis leaflets, in particular cusp thickness and mobility, and the presence of valve stenosis or regurgitation should be assessed.

STENT POSITION AND LEAFLET MORPHOLOGY

Deployment of the TAVR prosthesis lower than recommended can result in protruding native valve leaflets above the aortic edge of the frame and limited anchoring, increasing the risk of delayed migration of the prosthetic valve into the LVOT or LV [43, 55]. This can cause either prosthetic regurgitation or native valve restenosis or result in mitral regurgitation due to interaction with the mitral apparatus [55]. Structural valve deterioration (SVD), i.e., acquired and permanent intrinsic deterioration of the prosthetic valve, typically manifests as prosthesis stenosis caused by thickening and calcification of the prosthesis leaflets (Figure 8). Less often, flailing or tearing of a leaflet can be observed causing new onset of transvalvular regurgitation (Figure 8).

Figure 8: Structural valve deterioration after transcatheter aortic valve replacement showing severe transvalvular aortic regurgitation (*panel A*) or severe prosthetic valve stenosis (*panel B*). *Panel A* shows a patient receiving a balloon-expandable valve with periprocedural transoesophageal echocardiography demonstrating mild paravalvular regurgitation on color Doppler (left panel). After 4 years follow-up, transoesophageal echocardiography showed severe transvalvular aortic regurgitation on the color Doppler image (middle panel), confirmed by continuous wave Doppler recordings with steep downsloping of the regurgitant flow (right panel). *Panel B* shows a patient receiving a balloon-expandable valve with periprocedural transoesophageal echocardiography demonstrating low transprosthetic gradients (left panel). After 6 years of follow-up, transthoracic echocardiography showed thickened and calcified prosthetic valve leaflets on the long-axis view (middle panel). Increased transprosthetic gradients were observed on continuous wave Doppler (right panel), confirming the presence of severe prosthetic valve stenosis. Both patients underwent a valve-in-valve implantation.

PROSTHETIC VALVE STENOSIS

For valve stenosis, peak velocity and mean gradient (flow-dependent parameters) and the effective orifice area (EOA) (flow-independent parameter) should be evaluated. For the calculation of the EOA, it is important to measure the LVOT diameter and flow velocity immediately proximal of the prosthesis stent to prevent EOA overestimation caused by flow acceleration within the stent. The Valve Academic Research Consortium-2 (VARC-2) has proposed the use of one flow-independent (e.g., EOA) and one flow-dependent (e.g., mean transvalvular gradient) parameter for the assessment of prosthetic aortic valve stenosis [54]. Recent recommendations by the Valve in Valve Interventional Data (VIVID group) propose to define severe prosthetic valve stenosis by an increase in mean gradient >20 mmHg compared to the baseline post-procedural gradient accompanied by a decrease in EOA [56]. Alternatively, European recommendations suggest to define severe hemodynamic SVD as a mean gradient \geq 40 mmHg and/or \geq 20 mmHg change from baseline and/or severe new or worsening intraprosthetic aortic regurgitation [57].

Table 1: Parameters used for the assessment of severity of paravalvular regurgitation on echocardiography and cardiac magnetic resonance imaging.

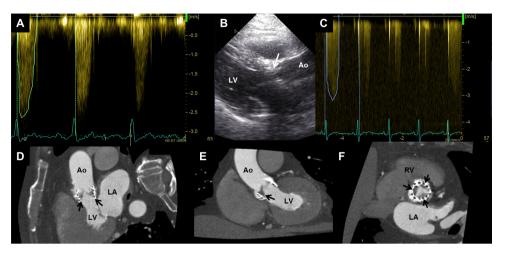
Parameter	Severity of paravalvular regurgitation			Main limitation	
	Mild	Moderate	Severe		
Echocardiography Qualitative or semi- quantitive parameters					
, tell ength and width + num- ber of jets and jet origins*	Non extensive, multiple jets possible	Extensive, multiple jets often present	Extensive, multiple jets often present	Jets may not be visible due to acoustic shadowing of stent and native valve or LVOT calcifications jet length and width only weakl correlated with severity of regurgi- tation	
Circumferential extent jet (color Doppler)*	<10%	10-29%	≥30%	Less reliable in the presence of multiple or eccentric jets, plan- position dependent, poor correlation with cardiac magnetic resonance imaging	
Ratio jet width at ori-	5-30%	30-60%	>60%	May be difficult to visualize (as	
gin/LVOT diameter (color Doppler)*	(narrow/intermediate)	(intermediate)	(large)	sessed visually)	
Vena contracta width (color Doppler)	<3 mm	3-6 mm	>6 mm	Often irregularly shaped, may b difficult to visualize (assessed v sually) due to acoustic shadowin and in case of multiple jets	
Signal intensity of jet (CW Doppler)	Faint/variable	Dense	Dense		
Pressure half-time (CW	>500 ms	200-500 ms	<200 ms	Heart rate and rhythm dependen	
Doppler)	(slow)	(variable)	(steep)	strongly influenced by compliance of LV and aorta	
Diastolic flow reversal in descending aorta (PW Doppler)	Absent/intermediate	Intermediate/holo- diastolic (>20 cm/s)	Holodiastolic (>25 cm/s)	Strongly influenced by compliance of LV and aorta	

CW, continuous wave; LVOT, left ventricular outflow tract; PW, pulsed wave; TAVR, transcatheter aortic valve replacement; TTE, transthoracic echocardiography. *Of particular importance for the assessment of paravalvular regurgitation severity.

Table 1: Parameters used for the assessment of severity of paravalvular regurgitation on echocardiography and cardiac magnetic resonance imaging (continued).

Parameter	Severity of paravalvular regurgitation			Main limitation
	Mild	Moderate	Severe	
Quantitative parameters				
Regurgitant volume	<30 ml/beat	30-59 ml/beat	≥60 ml/beat	Large inter- and intra-observer variability, cannot be assessed in the presence of >mild mitral or pulmonary regurgitation
Other				
Left ventricular dimensions	Normal	Normal/mildly dilated	Moderately/severely dilated	More useful in the setting of chronic paravalvular regurgitation
TAVR stent position	Normal/abnormal	Normal/abnormal	Usually abnormal	
Cardiac magnetic resonance imaging				
Regurgitant fraction (phase- contrast velocity mapping)	<20%	20-30%	>30%	Variable cut-offs reported (not ye validated), often overestimation compared to TTE

TAVR, transcatheter aortic valve replacement; TTE, transthoracic echocardiography.


PROSTHETIC VALVE REGURGITATION

Prosthetic valve regurgitation after TAVR is assessed using both qualitative and quantitative criteria similar to surgical prosthetic valve regurgitation (Table 1) [46, 56]. Although this is primarily assessed using TTE, TEE may be considered if image quality is suboptimal. Proper evaluation of the severity of paravalvular aortic regurgitation after TAVR can be challenging, as it is often characterized by the presence of multiple eccentric and irregularly shaped jets which limit proper assessment of the circumferential extent and diameter of the regurgitant jet. Acoustic shadowing by the prosthesis stent and native valve calcifications further complicate correct quantification, particularly when measuring the vena contracta width. Furthermore, LV and aortic compliance is often lacking in elderly patients undergoing TAVR, which might influence pressure half time and potentially cause holodiastolic flow reversal in the absence of significant aortic regurgitation. These limitations and difficulties in the evaluation of paravalvular aortic regurgitation after TAVR emphasize the importance of the use of the multi-parametric approach [46]. Using this approach, both mild and moderate/severe paravalvular regurgitation were independently associated with higher late all-cause mortality in the patients of the PART-NER I trial [58], although other studies have reported no significant prognostic effect of mild paravalvular regurgitation [59]. When the severity of the paravalvular regurgitation remains uncertain after TEE assessment or insufficiently corresponds with clinical assessment, cardiac magnetic resonance imaging may help to confirm the severity of the aortic regurgitation. Ribeiro et al. quantified aortic regurgitation after TAVR in 135 patients using regurgitant fraction measured by phase-contrast velocity mapping [60]. Higher regurgitant fraction was associated with increased mortality and a regurgitant fraction ≥30% best predicted poorer clinical outcomes [60]. However, cardiac magnetic resonance imaging has multiple limitations, such as the inability to differentiate paravalvular from transvalvular regurgitation, and further studies are needed as variable cut-off values of regurgitant fraction have been reported.

FURTHER CONSIDERATIONS

Varying rates of SVD in TAVR have been reported in mid-term and long-term follow-up studies, partly caused by differences in the definition of SVD. In both balloon-expandable and self-expandable TAVR prostheses, 3 to 5 year follow-up studies have reported low rates of SVD [57]. A recent meta-analysis including 13 studies reporting SVD rates in TAVR, based on VARC-2 definition (i.e., need for repeat procedure, increased mean gradient >20 mmHg, EOA <0.9-1.1 cm 2 and/or Doppler velocity index <0.35 m/s), showed a pooled estimate of a SVD incidence rate of 28 per 10000 patient years [61].


When signs of prosthetic valve stenosis are observed, prosthetic valve thrombosis should be considered. Although TEE is the reference standard for the evaluation of prosthetic valve thrombosis, the high spatial resolution of CT allows for better distinction between thrombosis and other causes of obstruction such as pannus (Figure 9) [62]. In two multicentre registries, Del Trigo et al. demonstrated that 4.5% of patients treated with TAVR presented with valve hemodynamic deterioration (VHD) defined as an absolute increase in mean transprosthetic gradient ≥10 mmHg between discharge and last follow-up [63, 64]. Absence of anticoagulation therapy was an independent predictor for VHD [63], and when comparing propensity-matched populations, VHD appeared

Figure 9: Prosthetic transcatheter aortic valve thrombosis in a patient presenting with heart failure symptoms 1 year after receiving a balloon-expandable valve. Directly after implantation, transoesophageal echocardiography showed low transprosthetic gradients (10 mmHg, *panel A*). After 1 year, follow-up transthoracic echocardiography demonstrated thickened prosthesis leaflets (white arrow, *panel B*) and increased transprosthetic gradients compared to baseline (25 mmHg, *panel C*) consistent with severe prosthetic valve stenosis. Four-dimensional computed tomography was performed showing hypoattenuated lesions and leaflet thickening (black arrows) with reduced leaflet mobility on the sagittal oblique (*panel D*), coronal oblique (*panel E*) and double oblique (*panel F*) reconstruction views, confirming the presence of prosthetic valve thrombosis. Ao, aortic root; LA, left atrium; LV, left ventricle; RV, right ventricle.

to be less prevalent in patients receiving anticoagulation treatment compared to patients without anticoagulation (0.6 vs. 3.9%. *P*<0.001) [64]. Although TEE or CT were not performed, the authors postulated that prosthetic valve thrombosis may be likely the main mechanism underlying VHD. Prior studies evaluating obstructive prosthetic valve thrombosis after TAVR, with patients often presenting with heart failure symptoms or increased transprosthetic gradients on follow-up echocardiography, have reported relatively low incidences ranging from 0.61 to 2.8% [65–67]. However, studies performing (4D) CT post-TAVR regardless of symptoms or transprosthetic gradients have detected the presence of hypoattenuated leaflet thickening with or without reduced leaflet motion suggestive of subclinical leaflet thrombosis in a significantly higher proportion of patients, with incidences ranging from 4 to 40% [68–74].

More interesting, the time course of hypoattenuated leaflet thickening was described by Sondergaard et al. [72] in 84 patients (61 patients treated with TAVR and 23 patients with SAVR). After a mean follow-up of 140 days, 38.1% of patients showed hypoattenuated leaflet thickening and 20.2% displayed hypoattentuation affecting motion (leaflet thickening with reduced leaflet motion). After a mean follow-up of 298 days, a second CT scan was performed showing that the abnormalities noted in the first CT scan progressed in 15.5% of patients, regressed in 10.7% and remained unchanged in 73.8%. Importantly, patients receiving oral antiocoagulation did not show progression of the abnormalities suggesting that this treatment prevents from further thickening and restriction of prosthesis leaflets. Future prospective studies will likely shed more light on the incidence,

Figure 10: Prosthetic valve endocarditis 6 months after transcatheter aortic valve replacement assessed by twodimensional transoesophageal echocardiography. The mid-oesophageal aortic valve long-axis (left panel) and short-axis (mid panel) views show signs of a paravalvular abcess (white arrows) and of vegetations located on the prosthetic valve leaflets. Color Doppler of the long-axis view (right panel) demonstrates mild paravalvular aortic regurgitation. Ao, aortic root; LA, left atrium; LV, left ventricle; RA, right atrium; RV, right ventricle.

optimal antithrombotic/anticoagulant treatment regimen and effect on TAVR durability of subclinical prosthetic valve thrombosis.

Endocarditis is another complication that should be suspected based on the clinical presentation and when new periprosthetic valve regurgitation is detected. Echocardiography, in particular TEE, can be used for the detection of vegetations, abcesses or pseudoaneurysms (Figure 10), and to assess potential involvement of the mitral or tricuspid valve [75]. For improved prediction of embolic risk, real-time 3D TEE can be used for more precise estimation of vegetation morphology and size [76]. Recent multicentre registries have reported a 1.1% incidence of prosthetic valve endocarditis after TAVR, with the majority of patients presenting within 1 year after the procedure [77, 78]. Similarly to infective endocarditis after surgical valve replacement, the mortality rates are high (62% to 67%) [77, 78], emphasizing the importance of early detection and treatment. Unfortunately, the Duke criteria used for diagnosis of infective endocarditis have proven to be less sensitive if a prosthetic valve is involved and positive signs on TTE are often lacking in this setting [75]. A multimodality imaging approach adding ¹⁸F-fluorodeoxyglucose positron emission (PET)/CT to the conventional modified Duke criteria has been recommended and has been shown to significantly increase diagnostic accuracy, especially in cases initially classified as "possible infective endocarditis" [75, 79, 80].

CONCLUSIONS AND FUTURE PERSPECTIVES: WILL THERE BE ROOM FOR ECHOCARDIOGRAPHY?

F OR symptomatic severe AS patients who are inoperable or have a high risk for surgery, TAVR has proven to be a feasible alternative to surgical valve replacement with good mid-term valve durability. Recently, TAVR has been increasingly performed in intermediate-risk patients and it is currently extending even to low-risk and asymptomatic patients. Proper patient and prosthesis selection, procedural surveillance and follow-up are para-mount for TAVR success. Echocardiography is an important imaging modality in all these steps of TAVR. However, emerging multimodality imaging techniques en-

7

able a more tailored approach based on patient-specific characteristics and often provide additional information in particular settings, emphasizing the importance of a multimodality imaging approach combining echocardiography with other modalities (Table 2). Numerous studies have established that 3D techniques such as CT and 3D TEE provide more accurate measurements of the aortic annulus and root, resulting in improved prosthesis selection and consequently higher procedural success rates. Additionally, growing operator experience and technical improvements in both prostheses and delivery systems have led to the increased use of conscious sedation with procedural guidance by fluoroscopy and TTE only instead of general anaesthesia guided by TEE, reducing invasiveness and procedural risks. At follow-up, echocardiography (particularly TTE) remains the main imaging modality for the assessment of prosthetic valve durability and detection of valve deterioration or late complications. However, for the detection of prosthetic valve thrombosis and endocarditis, alternative imaging modalities such as CT and PET/CT have demonstrated superior diagnostic accuracy and the implementation of these techniques in future studies will shed more light on the incidence, optimal patient management and effect on prosthetic valve durability of these complications.

Table 2: Role of multimodality imaging techniques in the different stages of the transcatheter aortic valve replacement procedure.

	Transcatheter aortic valve replacement procedure				
Imaging technique	Preprocedural	Periprocedural	Follow-up		
Echocardiography					
TTE	Aortic valve morphology and degree of calcium deposition Aortic valve morphology and degree of calcium deposition Severity AS (+/- dobutamine stress echocardiography) Aortic root and ascending aorta dimensions Left ventricular function and dimensions Pulmonary arterial pressure Assessment of aortic regurgitation Concomitant valvular disease (mitral or tricuspid regurgitation)	Correct positioning and deployment of valve prosthesis Valve hemodynamics Assessment of aortic regurgitation Detection of other complications (pericardial effusion, mitral regurgitation, myocardial ischemia, aortic annular rupture, etc.)	Correct positioning and deploment of valve prosthesis Valve hemodynamics Assessment of aortic regurgitatio Left ventricular function and dimensions Concomitant valvular disease (mixal or tricuspid regurgitation)		
TEE (2D or 3D)	Aortic valve morphology and degree of calcium deposition Aortic annulus and root dimensions (3D)	Correct positioning of wires and catheters Guidance of balloon positioning Visualization of calcium displacement Correct positioning and deployment of valve prosthesis Valve hemodynamics Assessment of aortic regurgitation and distinguishing paravalvular and transvalvular regurgitation Detection of other complications (pericardial effusion, mitral regurgitation, myocardial ischemia, aortic annular rupture, etc.)	Correct positioning and deployment of valve prosthesis Valve hemodynamics Assessment of aortic regurgitatio Left ventricular function and dimensions Concomitant valvular disease (mitral or tricuspid regurgitation) Detection prosthetic valve throm bosis and infective endocarditis		

²D, two-dimensional; 3D, three-dimensional; AS, a ortic stenosis; TEE, transoes op hage all echocardiography; TTE, transthoracic echocardiography. TTE and the standard of the standard or the standard or two standard or the standard or t

Table 2: Role of multimodality imaging techniques in the different stages of the transcatheter aortic valve replacement procedure (continued).

	Transcatheter aortic valve replacement procedure				
Imaging technique Computed tomography	Preprocedural Aortic valve morphology Severity AS (by quantification aortic valve calcification) Aortic annulus and root dimensions Thoracic aorta (+ degree of calcification) Peripheral artery accessibility Left ventricular function Projections C-arm for fluoroscopy	Periprocedural	Follow-up Correct positioning and deployment of valve prosthesis Detection (subclinical) prosthetic valve thrombosis, infective endo- carditis and/or pannus		
Fluoroscopy	Aortic annulus dimensions Peripheral artery accessibility	Correct positioning of wires and catheters Correct positioning and deployment of valve prosthesis Assessment of paravalvular regurgitation Detection of other complications (occlusion coronary ostia, rupture aortic annulus or ascending aorta, etc.)			
Cardiac magnetic resonance imaging	Aortic valve morphology and degree of calcium deposition Aortic root and ascending aorta dimensions Thoracic aorta dimensions Peripheral artery accessibility Left ventricular function		Correct positioning and deploy- ment of valve prosthesis Assessment of aortic regurgitation Left ventricular function and di- mensions		
Nuclear imaging	10 10		¹⁸ F-FDG PET/CT: detection of prosthetic valve infective endocarditis		

AS, aortic stenosis; CT, computed tomography; ¹⁸F-FDG PET, ¹⁸F-fluorodeoxyglucose positron emission tomography; TEE, transoesophageal echocardiography; TTE, transthoracic echocardiography.

REFERENCES

- [1] Mack MJ, Leon MB, Smith CR, Miller DC, Moses JW, Tuzcu EM, et al. 5-year outcomes of transcatheter aortic valve replacement or surgical aortic valve replacement for high surgical risk patients with aortic stenosis (PARTNER 1): a randomised controlled trial. Lancet. 2015;385(9986):2477-84.
- [2] Gerckens U, Tamburino C, Bleiziffer S, Bosmans J, Wenaweser P, Brecker S, et al. Final 5-year clinical and echocardiographic results for treatment of severe aortic stenosis with a self-expanding bioprosthesis from the ADVANCE Study. Eur Heart J. 2017;38(36):2729-38.
- [3] Douglas PS, Leon MB, Mack MJ, Svensson LG, Webb JG, Hahn RT, et al. Longitudinal hemodynamics of transcatheter and surgical aortic valves in the PARTNER Trial. JAMA Cardiology. 2017;2(11):1197-206.
- [4] Baumgartner H, Falk V, Bax JJ, De Bonis M, Hamm C, Holm PJ, et al. 2017 ESC/EACTS Guidelines for the management of valvular heart disease. Eur Heart J. 2017;38(36):2739-86.
- [5] Nishimura RA, Otto CM, Bonow RO, Carabello BA, Erwin JP, Fleisher LA, et al. 2017 AHA/ACC Focused Update of the 2014 AHA/ACC Guideline for the Management of Patients With Valvular Heart Disease. J Am Coll Cardiol. 2017;70(2):252-89.
- [6] Leon MB, Smith CR, Mack MJ, Makkar RR, Svensson LG, Kodali SK, et al. Transcatheter or Surgical Aortic-Valve Replacement in Intermediate-Risk Patients. N Engl J Med. 2016;374(17):1609-20.
- [7] Reardon MJ, Van Mieghem NM, Popma JJ, Kleiman NS, Søndergaard L, Mumtaz M, et al. Surgical or Transcatheter Aortic-Valve Replacement in Intermediate-Risk Patients. N Engl J Med. 2017;376(14):1321-31.
- [8] Thyregod HGH, Steinbrüchel DA, Ihlemann N, Nissen H, Kjeldsen BJ, Petursson P, et al. Transcatheter versus surgical aortic valve replacement in patients with severe aortic valve stenosis: 1-year results from the allcomers NOTION Randomized Clinical Trial. J Am Coll Cardiol. 2015;65(20):2184-94.
- [9] Tarantini G, Nai Fovino L, Gersh BJ. Transcatheter aortic valve implantation in lower-risk patients: what is the perspective? Eur Heart J. 2018;39(8):658-66.
- [10] Baumgartner H, Hung J, Bermejo J, Chambers JB, Edvardsen T, Goldstein S, et al. Recommendations on the echocardiographic assessment of aortic valve stenosis: A focused update from the European Association of Cardiovascular Imaging and the American Society of Echocardiography. Eur Heart J Cardiovasc Imaging. 2017;18(3):254-75.
- [11] Tanaka R, Yoshioka K, Niinuma H, Ohsawa S, Okabayashi H, Ehara S. Diagnostic value of cardiac CT in the evaluation of bicuspid aortic stenosis: comparison with echocardiography and operative findings. Am J Roentgenol. 2010;195(4):895-9.
- [12] Sievers HH, Schmidtke C. A classification system for the bicuspid aortic valve from 304 surgical specimens. J Thorac Cardiovasc Surg. 2007;133(5):1226-33.
- [13] Mylotte D, Lefevre T, Søndergaard L, Watanabe Y, Modine T, Dvir D, et al. Transcatheter aortic valve replacement in bicuspid aortic valve disease. J Am Coll Cardiol. 2014;64(22):2330-9.

- [14] Bauer T, Linke A, Sievert H, Kahlert P, Hambrecht R, Nickenig G, et al. Comparison of the effectiveness of transcatheter aortic valve implantation in patients with stenotic bicuspid versus tricuspid aortic valves (from the German TAVI Registry). Am J Cardiol. 2014;113(3):518-21.
- [15] Perlman GY, Blanke P, Dvir D, Pache G, Modine T, Barbanti M, et al. Bicuspid Aortic Valve Stenosis: Favorable Early Outcomes with a Next-Generation Transcatheter Heart Valve in a Multicenter Study. J Am Coll Cardiol Intv. 2016;9(8):817-24.
- [16] Yoon SH, Lefèvre T, Ahn JM, Perlman GY, Dvir D, Latib A, et al. Transcatheter Aortic Valve Replacement With Early- and New-Generation Devices in Bicuspid Aortic Valve Stenosis. J Am Coll Cardiol. 2016;68(11):1195-205.
- [17] Yoon SH, Bleiziffer S, De Backer O, Delgado V, Arai T, Ziegelmueller J, et al. Outcomes in Transcatheter Aortic Valve Replacement for Bicuspid Versus Tricuspid Aortic Valve Stenosis. J Am Coll Cardiol. 2017;69(21):2579-89.
- [18] Nishimura RA, Otto CM, Bonow RO, Carabello BA, Erwin JP, Guyton RA, et al. 2014 AHA/ACC Guideline for the Management of Patients With Valvular Heart Disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2014;63(22):e57-185.
- [19] Clavel MA, Magne J, Pibarot P. Low-gradient aortic stenosis. Eur Heart J. 2016;37(34):2645-57.
- [20] Cueff C, Serfaty JM, Cimadevilla C, Laissy JP, Himbert D, Tubach F, et al. Measurement of aortic valve calcification using multislice computed tomography: correlation with haemodynamic severity of aortic stenosis and clinical implication for patients with low ejection fraction. Heart. 2011;97(9):721-6.
- [21] Chahal NS, Drakopoulou M, Gonzalez-Gonzalez AM, Manivarmane R, Khattar R, Senior R. Resting aortic valve area at normal transaortic flow rate reflects true valve area in suspected low-gradient severe aortic stenosis. J Am Coll Cardiol Img. 2015;8(10):1133-9.
- [22] Vamvakidou A, Chahal N, Senior R. Lack of Stroke Volume Determined Flow Reserve Does Not Always Preclude Assessment of Severity of Aortic Stenosis in Low-Flow Low-Gradient State During Dobutamine Echocardiography. J Am Coll Cardiol Img. 2017;10(4):491-3.
- [23] Vamvakidou A, Jin W, Danylenko O, Chahal N, Khattar R, Senior R. Low Transvalvular Flow Rate Predicts Mortality in Patients With Low-Gradient Aortic Stenosis Following Aortic Valve Intervention. J Am Coll Cardiol Img. 2019;12(9):1715-24.
- [24] Hachicha Z, Dumesnil JG, Bogaty P, Pibarot P. Paradoxical low-flow, low-gradient severe aortic stenosis despite preserved ejection fraction is associated with higher afterload and reduced survival. Circulation. 2007;115(22):2856-64.
- [25] Clavel MA, Ennezat PVI, Maréchaux S, Dumesnil JG, Capoulade R, Hachicha Z, et al. Stress echocardiography to assess stenosis severity and predict outcome in patients with paradoxical low-flow, low-gradient aortic stenosis and preserved LVEF. J Am Coll Cardiol Img. 2013;6(2):175-83.
- [26] Clavel MA, Messika-Zeitoun D, Pibarot P, Aggarwal SR, Malouf J, Araoz PA, et al. The complex nature of discordant severe calcified aortic valve disease grading: new insights from combined Doppler echocardiographic and computed tomographic study. J Am Coll Cardiol. 2013;62(24):2329-38.

- [27] Kamperidis V, Van Rosendael PJ, Katsanos S, Van Der Kley F, Regeer M, Al Amri I, et al. Low gradient severe aortic stenosis with preserved ejection fraction: reclassification of severity by fusion of Doppler and computed tomographic data. Eur Heart J. 2015;36(31):2087-96.
- [28] Herrmann HC, Pibarot P, Hueter I, Gertz ZM, Stewart WJ, Kapadia S, et al. Predictors of mortality and outcomes of therapy in low-flow severe aortic stenosis: a placement of aortic transcatheter valves (PARTNER) trial analysis. Circulation. 2013;127(23):2316-26.
- [29] Delgado V, Ng ACT, Van De Veire NR, Van Der Kley F, Schuijf JD, Tops LF, et al. Transcatheter aortic valve implantation: role of multi-detector row computed tomography to evaluate prosthesis positioning and deployment in relation to valve function. Eur Heart J. 2010;31(9):1114-23.
- [30] Altiok E, Koos R, Schröder J, Brehmer K, Hamada S, Becker M, et al. Comparison of twodimensional and three-dimensional imaging techniques for measurement of aortic annulus diameters before transcatheter aortic valve implantation. Heart. 2011;97(19):1578-84.
- [31] Jilaihawi H, Kashif M, Fontana G, Furugen A, Shiota T, Friede G, et al. Cross-sectional computed tomographic assessment improves accuracy of aortic annular sizing for transcatheter aortic valve replacement and reduces the incidence of paravalvular aortic regurgitation. J Am Coll Cardiol. 2012;59(14):1275-86.
- [32] Otto CM, Kumbhani DJ, Alexander KP, Calhoon JH, Desai MY, Kaul S, et al. 2017 ACC Expert Consensus Decision Pathway for Transcatheter Aortic Valve Replacement in the Management of Adults With Aortic Stenosis: A Report of the American College of Cardiology Task Force on Clinical Expert Consensus Documents. J Am Coll Cardiol. 2017;69(10):1313-46.
- [33] Mohananey D, Griffin BP, Svensson LG, Popovic ZB, Tuzcu EM, Rodriguez LL, et al. Comparative Outcomes of Patients With Advanced Renal Dysfunction Undergoing Transcatheter Aortic Valve Replacement in the United States From 2011 to 2014. Circ Cardiovasc Interv. 2017;10(10):e005477.
- [34] Ng ACT, Delgado V, Van Der Kley F, Shanks M, Van De Veire NRL, Bertini M, et al. Comparison of aortic root dimensions and geometries before and after transcatheter aortic valve implantation by 2-and 3-dimensional transesophageal echocardiography and multislice computed tomography. Circ Cardiovasc Imaging. 2010;3(1):94-102.
- [35] Jilaihawi H, Doctor N, Kashif M, Chakravarty T, Rafique A, Makar M, et al. Aortic annular sizing for transcatheter aortic valve replacement using cross-sectional 3-dimensional transesophageal echocardiography. J Am Coll Cardiol. 2013;61(9):908-16.
- [36] Vaquerizo B, Spaziano M, Alali J, Mylote D, Theriault-Lauzier P, Alfagih R, et al. Three-dimensional echocardiography vs. computed tomography for transcatheter aortic valve replacement sizing. Eur Heart J Cardiovasc Imaging. 2016;17(1):15-23.
- [37] Khalique OK, Kodali SK, Paradis JM, Nazif TM, Williams MR, Einstein AJ, et al. Aortic annular sizing using a novel 3-dimensional echocardiographic method use and comparison with cardiac computed tomography. Circ Cardiovasc Imaging. 2014;7(1):155-63.
- [38] Khalique OK, Hamid NB, White JM, Bae DJ, Kodali SK, Nazif TM, et al. Impact of Methodologic Differences in Three-Dimensional Echocardiographic Measurements of the Aortic Annulus Compared with Computed Tomographic Angiography Before Transcatheter Aortic Valve Replacement. J Am Soc Echocardiogr. 2017;30(4):414-21.

- [39] García-Martín A, Lázaro-Rivera C, Fernández-Golfín C, Salido-Tahoces L, Moya-Mur JL, Jiménez-Nacher JJ, et al. Accuracy and reproducibility of novel echocardiographic three-dimensional automated software for the assessment of the aortic root in candidates for transcatheter aortic valve replacement. Eur Heart J Cardiovasc Imaging. 2016;17(7):772-8.
- [40] Prihadi EA, van Rosendael PJ, Vollema EM, Bax JJ, Delgado V, Ajmone Marsan N. Feasibility, Accuracy, and Reproducibility of Aortic Annular and Root Sizing for Transcatheter Aortic Valve Replacement Using Novel Automated Three-Dimensional Echocardiographic Software: Comparison with Multi-Detector Row Computed Tomography. J Am Soc Echocardiogr. 2018 apr;31(4):505-14.e3.
- [41] Stella S, Italia L, Geremia G, Rosa I, Ancona F, Marini C, et al. Accuracy and reproducibility of aortic annular measurements obtained from echocardiographic 3D manual and semi-automated software analyses in patients referred for transcatheter aortic valve implantation: implication for prosthesis size selection. Eur Heart J Cardiovasc Imaging, 2019;20(1):45-55.
- [42] Podlesnikar T, Prihadi EA, van Rosendael PJ, Vollema EM, van der Kley F, de Weger A, et al. Influence of the Quantity of Aortic Valve Calcium on the Agreement Between Automated 3-Dimensional Transesophageal Echocardiography and Multidetector Row Computed Tomography for Aortic Annulus Sizing. Am J Cardiol. 2018;121(1):86-93.
- [43] Zamorano JL, Badano LP, Bruce C, Chan Kl, Gonçalves A, Hahn RT, et al. EAE/ASE Recommendations for the Use of Echocardiography in New Transcatheter Interventions for Valvular Heart Disease. J Am Soc Echocardiogr. 2011;24(9):937-65.
- [44] Bagur R, Rodés-Cabau J, Doyle D, De Larochellière R, Villeneuve J, Lemieux J, et al. Usefulness of TEE as the primary imaging technique to guide transcatheter transapical aortic valve implantation. J Am Coll Cardiol Img. 2011;4(2):115-24.
- [45] Hahn RT, Little SH, Monaghan MJ, Kodali SK, Williams M, Leon MB, et al. Recommendations for comprehensive intraprocedural echocardiographic imaging during TAVR. J Am Coll Cardiol Img. 2015;8(3):261-87.
- [46] Lancellotti P, Pibarot P, Chambers J, Edvardsen T, Delgado V, Dulgheru R, et al. Recommendations for the imaging assessment of prosthetic heart valves. Eur Heart J Cardiovasc Imaging. 2016;17(6):589-90.
- [47] Hahn RT, Pibarot P, Weissman NJ, Rodriguez L, Jaber WA. Assessment of paravalvular aortic regurgitation after transcatheter aortic valve replacement: intra-core laboratory variability. J Am Soc Echocardiogr. 2015;28(4):415-22.
- [48] Auffret V, Lefevre T, Van Belle E, Eltchaninoff H, Iung B, Koning R, et al. Temporal Trends in Transcatheter Aortic Valve Replacement in France: FRANCE 2 to FRANCE TAVI. J Am Coll Cardiol. 2017;70(1):42-55.
- [49] Hyman MC, Vemulapalli S, Szeto WY, Stebbins A, Patel PA, Matsouaka RA, et al. Conscious sedation versus general anesthesia for transcatheter aortic valve replacement: insights from the National Cardiovascular Data Registry Society of Thoracic Surgeons/American College of Cardiology Transcatheter Valve Therapy Registry. Circulation. 2017;136(22):2132-40.
- [50] Babaliaros V, Devireddy C, Lerakis S, Leonardi R, Iturra SA, Mavromatis K, et al. Comparison of transfemoral transcatheter aortic valve replacement performed in the catheterization laboratory (minimalist approach) versus hybrid operating room (standard approach): outcomes and cost analysis. J Am Coll Cardiol Intv. 2014;7(8):898-904.

- [51] Kamioka N, Wells J, Keegan P, Lerakis S, Binongo J, Corrigan F, et al. Predictors and Clinical Outcomes of Next-Day Discharge After Minimalist Transfemoral Transcatheter Aortic Valve Replacement. J Am Coll Cardiol Intv. 2018;11(2):107-15.
- [52] Husser O, Fujita B, Hengstenberg C, Frerker C, Beckmann A, Möllmann H, et al. Conscious Sedation Versus General Anesthesia in Transcatheter Aortic Valve Replacement: the German Aortic Valve Registry. J Am Coll Cardiol Intv. 2018;11(6):567-78.
- [53] Bartel T, Edris A, Velik-Salchner C, Muller S. Intracardiac echocardiography for guidance of transcatheter aortic valve implantation under monitored sedation: a solution to a dilemma? Eur Heart J Cardiovasc Imaging. 2016;17(1):1-8.
- [54] Kappetein AP, Head SJ, Généreux P, Piazza N, van Mieghem NM, Blackstone EH, et al. Updated standardized endpoint definitions for transcatheter aortic valve implantation: the Valve Academic Research Consortium-2 consensus document. J Am Coll Cardiol. 2012 oct;60(15):1438-54.
- [55] Pislaru SV, Nkomo VT, Sandhu GS. Assessment of Prosthetic Valve Function After TAVR. J Am Coll Cardiol Img. 2016;9(2):193-206.
- [56] Dvir D, Bourguignon T, Otto CM, Hahn RT, Rosenhek R, Webb JG, et al. Standardized Definition of Structural Valve Degeneration for Surgical and Transcatheter Bioprosthetic Aortic Valves. Circulation. 2018;137(4):388-99.
- [57] Capodanno D, Petronio AS, Prendergast B, Eltchaninoff H, Vahanian A, Modine T, et al. Standardized definitions of structural deterioration and valve failure in assessing long-term durability of transcatheter and sur- gical aortic bioprosthetic valves: a consensus statement from the Euro- pean Association of Percutaneous Cardiovascular Interventions (EAPCI) endorsed by the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS). Eur Heart J. 2017;38(45):3382-90.
- [58] Kodali S, Pibarot P, Douglas PS, Williams M, Xu K, Thourani V, et al. Paravalvular regurgitation after transcatheter aortic valve replacement with the Edwards sapien valve in the PARTNER trial: characterizing patients and impact on outcomes. Eur Heart J. 2015;36(7):449-56.
- [59] Athappan G, Patvardhan E, Tuzcu EM, Svensson LG, Lemos PA, Fraccaro C, et al. Incidence, predictors, and outcomes of aortic regurgitation after transcatheter aortic valve replacement: meta-analysis and systematic review of literature. J Am Coll Cardiol. 2013;61(15):1585-95.
- [60] Ribeiro HB, Orwat S, Hayek SS, Larose É, Babaliaros V, Dahou A, et al. Cardiovascular Magnetic Resonance to Evaluate Aortic Regurgitation After Transcatheter Aortic Valve Replacement. J Am Coll Cardiol. 2016;68(6):577-85.
- [61] Foroutan F, Guyatt GH, Otto CM, Siemieniuk RA, Schandelmaier S, Agoritsas T, et al. Structural valve deterioration after transcatheter aortic valve implantation. Heart. 2017;103(23):1899-905.
- [62] Bonnichsen CR, Pellikka PA. Prosthetic Valve Thrombus Versus Pannus. Circ Cardiovasc Imaging. 2015;8(12).
- [63] Del Trigo M, Muñoz-Garcia AJ, Wijeysundera HC, Nombela-Franco L, Cheema AN, Gutierrez E, et al. Incidence, timing, and predictors of valve hemodynamic deterioration after transcatheter aortic valve replacement: multicenter registry. J Am Coll Cardiol. 2016;67(6):644-55.

- [64] Del Trigo M, Muñoz-García AJ, Latib A, Auffret V, Wijeysundera HC, Nombela-Franco L, et al. Impact of anticoagulation therapy on valve haemodynamic deterioration following transcatheter aortic valve replacement. Heart. 2018;104(10):814-20.
- [65] Latib A, Naganuma T, Abdel-Wahab M, Danenberg H, Cota L, Barbanti M, et al. Treatment and Clinical Outcomes of Transcatheter Heart Valve Thrombosis. Circ Cardiovasc Interv. 2015;8(4).
- [66] Franzone A, Pilgrim T, Haynes AG, Lanz J, Asami M, Praz F, et al. Transcatheter aortic valve thrombosis: incidence, clinical presentation and long-term outcomes. Eur Heart J Cardiovasc Imaging. 2018;19(4):398-404.
- [67] Jose J, Sulimov DS, El-Mawardy M, Sato T, Allali A, Holy EW, et al. Clinical bioprosthetic heart valve thrombosis after transcatheter aortic valve replacement: incidence, characteristics, and treatment outcomes. J Am Coll Cardiol Intv. 2017;10(7):686-97.
- [68] Leetmaa T, Hansson NC, Leipsic J, Jensen K, Poulsen SH, Andersen HR, et al. Early aortic transcatheter heart valve thrombosis: diagnostic value of contrast-enhanced multidetector computed tomography. Circ Cardiovasc Interv. 2015;8(4):1-9.
- [69] Pache G, Schoechlin S, Blanke P, Dorfs S, Jander N, Arepalli CD, et al. Early hypo-attenuated leaflet thickening in balloon-expandable transcatheter aortic heart valves. Eur Heart J. 2016;37(28):2263-71.
- [70] Hansson NC, Grove EL, Andersen HR, Leipsic J, Mathiassen ON, Jensen JM, et al. Transcatheter Aortic Valve Thrombosis: Incidence, Predisposing Factors, and Clinical Implications. J Am Coll Cardiol. 2016;68(19):2059-69.
- [71] Makkar RR, Fontana G, Jilaihawi H, Chakravarty T, Kofoed KF, De Backer O, et al. Possible Subclinical Leaflet Thrombosis in Bioprosthetic Aortic Valves. N Engl J Med. 2015;373(21):2015-24.
- [72] Sondergaard L, De Backer O, Kofoed KF, Jilaihawi H, Fuchs A, Chakravarty T, et al. Natural history of subclinical leaflet thrombosis affecting motion in bioprosthetic aortic valves. Eur Heart J. 2017;38(28):2201-7.
- [73] Chakravarty T, Søndergaard L, Friedman J, De Backer O, Berman D, Kofoed KF, et al. Subclinical leaflet thrombosis in surgical and transcatheter bioprosthetic aortic valves: an observational study. Lancet. 2017;389(10087):2383-92.
- [74] Vollema EM, Kong WKF, Katsanos S, Kamperidis V, Van Rosendael PJ, Van Der Kley F, et al. Transcatheter aortic valve thrombosis: the relation between hypo-attenuated leaflet thickening, abnormal valve haemodynamics, and stroke. Eur Heart J. 2017;38(16):1207-17.
- [75] Habib G, Lancellotti P, Antunes MJ, Bongiorni MG, Casalta JP, Del Zotti F, et al. 2015 ESC Guidelines for the management of infective endocarditis. Eur Heart J. 2015;36(44):3075-128.
- [76] Berdejo J, Shibayama K, Harada K, Tanaka J, Mihara H, Gurudevan SV, et al. Evaluation of vegetation size and its relationship with embolism in infective endocarditis: a real-time 3-dimensional transesophageal echocardiography study. Circ Cardiovasc Imaging. 2014;7(1):149-54.

- [77] Latib A, Naim C, De Bonis M, Sinning JM, Maisano F, Barbanti M, et al. TAVR-associated prosthetic valve infective endocarditis: results of a large, multicenter registry. J Am Coll Cardiol. 2014;64(20):2176-8.
- [78] Regueiro A, Linke A, Latib A, Ihlemann N, Urena M, Walther T, et al. Association between transcatheter aortic valve replacement and subsequent infective endocarditis and in-hospital death. JAMA. 2016;316(10):1083-92.
- [79] Pizzi MN, Roque A, Fernandez-Hidalgo N, Cuellar-Calabria H, Ferreira-Gonzalez I, Gonzalez-Alujas MT, et al. Improving the diagnosis of infective endocarditis in prosthetic valves and intracardiac devices with 18F-fluordeoxyglucose positron emission tomography. Circulation. 2015;132(12):1113-26.
- [80] Salaun E, Sportouch L, Barral PA, Hubert S, Lavoute C, Casalta AC, et al. Diagnosis of Infective Endocarditis After TAVR: Value of a Multimodality Imaging Approach. J Am Coll Cardiol Img. 2018;11(1):143-6.