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Abstract
Background and Objective The immunosuppressant everolimus is increasingly applied in renal transplantation. Its extensive 
pharmacokinetic variability necessitates therapeutic drug monitoring, typically based on whole-blood trough concentrations 
(C0). Unfortunately, therapeutic drug monitoring target attainment rates are often unsatisfactory and patients with on-target 
exposure may still develop organ rejection. As everolimus displays erythrocyte partitioning, haematocrit-normalised whole-
blood exposure has been suggested as a more informative therapeutic drug monitoring marker. Furthermore, model-informed 
precision dosing has introduced options for more sophisticated dose adaptation. We have previously developed a mecha-
nistic population pharmacokinetic model, which described everolimus plasma pharmacokinetics and enabled estimation of 
haematocrit-normalised whole-blood exposure. Here, we externally evaluated this model for its utility for model-informed 
precision dosing.
Methods The retrospective dataset included 4123 pharmacokinetic observations from routine clinical therapeutic drug 
monitoring in 173 renal transplant recipients. Model appropriateness was confirmed with a visual predictive check. A fit-for-
purpose analysis was conducted to evaluate whether the model accurately and precisely predicted a future C0 or area under 
the concentration–time curve (AUC) from prior pharmacokinetic observations. Bias and imprecision were expressed as the 
mean percentage prediction error (MPPE) and mean absolute percentage prediction error (MAPE), stratified on 6 months 
post-transplant. Additionally, we compared dose adaptation recommendations of conventional C0-based therapeutic drug 
monitoring and C0- or AUC-based model-informed precision dosing, and assessed the percentage of differences between 
observed and haematocrit-normalised C0 (∆C0) and AUC (∆AUC) exceeding ± 20%.
Results The model showed adequate accuracy and precision for C0 and AUC prediction at ≤ 6 months  (MPPEC0: 8.1 ± 2.5%, 
 MAPEC0: 26.8 ± 2.1%;  MPPEAUC : − 9.7 ± 5.1%,  MAPEAUC : 13.3 ± 3.9%) and > 6 months post-transplant  (MPPEC0: 
4.7 ± 2.0%,  MAPEC0: 25.4 ± 1.4%;  MPPEAUC : − 0.13 ± 4.8%,  MAPEAUC : 13.3 ± 2.8%). On average, dose adaptation recom-
mendations derived from C0-based and AUC-based model-informed precision dosing were 2.91 ± 0.01% and 13.7 ± 0.18% 
lower than for conventional C0-based therapeutic drug monitoring at ≤ 6 months, and 0.93 ± 0.01% and 3.14 ± 0.04% lower 
at > 6 months post-transplant. The ∆C0 and ∆AUC exceeded ± 20% on 13.6% and 14.3% of occasions, respectively.
Conclusions We demonstrated that our population pharmacokinetic model was able to accurately and precisely predict future 
everolimus exposure from prior pharmacokinetic measurements. In addition, we illustrated the potential added value of 
performing everolimus therapeutic drug monitoring with haematocrit-normalised whole-blood concentrations. Our results 
provide reassurance to implement this methodology in clinical practice for further evaluation.
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Key Points 

Everolimus therapy is challenged by extensive between- 
and within-patient pharmacokinetic variability, which 
necessitates a personalised treatment approach. While 
most clinics rely on conventional therapeutic drug moni-
toring based on everolimus whole-blood trough con-
centrations, model-informed precision dosing and dose 
adaptation based on haematocrit-normalised everolimus 
exposure have been suggested as options to further opti-
mise everolimus therapy.

We performed an extensive external validation for a 
previously published mechanistic population pharma-
cokinetic model, intended for model-informed preci-
sion dosing of everolimus, which provides a practical 
methodology for sophisticated dose adaptation based on 
haematocrit-normalised everolimus exposure.

The findings of this work demonstrate the utility of the 
model for model-informed precision dosing and illustrate 
its potential added value over conventional therapeutic 
drug monitoring. Furthermore, our results provide reas-
surance that this methodology can be implemented in 
clinical practice for further evaluation.

1 Introduction

Everolimus is an antiproliferative and immunosuppres-
sive drug from the class of mammalian target of rapamycin 
(mTOR) inhibitors. The inhibition of mTOR exerts various 
immunosuppressive effects, including the inhibition of den-
dritic cell maturation and function and T cell proliferation 
[1]. Furthermore, various cancers rely on mTOR activation 
to drive tumour growth [2, 3]. Therefore, everolimus is used 
for the prophylaxis of allograft rejection after transplanta-
tion and for the treatment of a variety of malignant diseases, 
including breast cancer, renal cell carcinoma, neuroendo-
crine tumours and sub-ependymal giant cell astrocytoma 
with tuberous sclerosis complex.

Although everolimus therapy is generally effective, it 
is not often without treatment-limiting toxicity, includ-
ing interstitial pneumonitis, dyspnoea, fever, anaemia, 
hypertension and hyperlipidaemia. In sub-ependymal 
giant cell astrocytoma, assessment of whole-blood trough 
concentrations to individualise everolimus treatment by 
means of therapeutic drug monitoring (TDM) is included 
in the European and US drug labels [4, 5]. Additionally, 

an international consensus exists to perform TDM-guided 
everolimus dose individualisation for prophylaxis of allo-
graft rejection [6]. Although everolimus therapy in cancer 
is typically toxicity driven only [5], TDM is increasingly 
advocated to optimise treatment in this setting as well [7, 
8], arguing from the clear exposure-efficacy and exposure-
toxicity relationship for this indication [9, 10].

The term model-informed precision dosing (MIPD) 
has recently been coined as the natural evolution of the 
classical TDM methodology [11]. Whereas classical TDM 
typically comprises an assessment of pharmacokinetics 
and concurrent dose adaptation, MIPD brings pharmaco-
metrics to the bedside of the patient. It captures drug, dis-
ease, and patient characteristics in a mathematical model 
and can be used to perform Bayesian forecasting and dose 
optimisation. Amongst others, important advantages of 
MIPD are that it allows for the extrapolation of existing 
dosing regimens to other populations and that it facilitates 
patient-friendly blood sampling schemes.

In previous work, we have developed a mechanistic 
population pharmacometric model for everolimus in can-
cer and solid organ transplantation [12]. Here, we per-
formed an extensive external validation of this model in 
a retrospective cohort of renal transplant recipients, as an 
important next step towards implementation of this model 
in a MIPD tool for routine clinical care.

2  Methods

2.1  General Approach

Below, we first describe the external validation cohort and 
the previously published mechanistic population pharma-
cokinetic model. Subsequently, the three-step methodol-
ogy for the external validation analysis is described. First, 
we evaluated whether the model adequately described the 
pharmacokinetics of everolimus in the external cohort 
and thus is appropriate for application in this population. 
Second, we assessed the ability of the full model and two 
reduced model versions to predict future everolimus expo-
sure based on prior pharmacokinetic information. This 
was performed to evaluate whether the model is fit for its 
intended clinical purpose and to explore options to opti-
mise its clinical feasibility. Third, we applied the model to 
illustrate the potential added value of our MIPD approach, 
by comparing MIPD-based dose adaptation recommenda-
tions and MIPD-based haematocrit-normalised everolimus 
TDM with conventional TDM.
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2.2  External Validation Cohort

The retrospective external dataset comprised pooled everoli-
mus whole-blood trough concentrations (C0) and short phar-
macokinetic curves sampled at C0 and at approximate times 
of 1, 2, 3, 4, 5, and 6 h after drug administration. These 
originated from routine everolimus whole-blood TDM per-
formed by a standard phlebotomy protocol in adult renal 
transplant recipients treated at Leiden University Medical 
Center between July 2014 and June 2019. This retrospective 
cohort thus provided a cross-sectional representation of a 
real-world clinical setting. Everolimus was quantified using 
a validated multiplex liquid chromatography-tandem mass 
spectrometry assay, capable of determining everolimus, 
tacrolimus, sirolimus and cyclosporine A in whole-blood 
simultaneously [13]. The lower and upper limits of quanti-
fication for everolimus were 0.5 µg/L and 50 µg/L, respec-
tively. Patient characteristics were extracted from clinical 
records, including sex, age, height, weight, haematocrit, date 
of the transplant procedure and immunosuppressant regime.

2.3  Pharmacometric Modelling

2.3.1  Description of the Pharmacokinetic Model

Details on the previously developed mechanistic population 
pharmacometric model, including the population, develop-
ment and evaluation are provided elsewhere [12]. In short, 
the study was based on rich clinical pharmacokinetic data 
of 126 patients treated with everolimus for prophylaxis of 
renal allograft rejection, metastatic thyroid cancer or breast 
cancer. The model was developed with  NONMEM® version 
7.3, using the stochastic approximation expectation–maxi-
misation algorithm followed by Monte Carlo Importance 
Sampling for objective function assessment (SAEM-IMP). 
The model accounted for saturable erythrocyte binding of 
everolimus in whole-blood and estimated the pharmacoki-
netic parameters in plasma from paired observations of 
whole-blood concentrations and haematocrit.

This model is referred to as Model 1 in this article. In 
Model 1, the pharmacokinetics were scaled allometrically 
to fat-free body mass to account for body composition 
[14, 15]. Measures of body composition are, however, not 
always collected routinely in the outpatient setting. Indi-
vidualised dose forecasting without incorporation of body 
size characteristics may, therefore, be more pragmatic. For 
this purpose, a population pharmacokinetic model without 
allometric scaling is required. Hence, the allometric scaling 
was removed from Model 1 and fitted to the same dataset 
to yield a reduced version of Model 1, which is hereinafter 
referred to as Model 2. Last, the utility of model-based dose 
individualisation is challenged by within-subject variabil-
ity [16]. As the mean absorption time of everolimus shows 

extensive within-subject variability, Model 2 was further 
reduced through removal of the within-subject variability on 
mean absorption time and re-estimation of all other param-
eters. This model was used to investigate the importance of 
within-subject variability in dose forecasting of everolimus 
and is further referred to as Model 3. A schematic of the 
base model, parameter estimates, prediction-corrected visual 
predictive checks (pcVPCs) and the NONMEM code for 
these models are provided in the Electronic Supplementary 
Material (ESM).

2.3.2  Haematocrit‑Normalised Therapeutic Drug 
Monitoring (TDM)

The mechanistic pharmacokinetic model allowed for haema-
tocrit correction of everolimus whole-blood concentrations. 
In routine clinical care, everolimus pharmacokinetics are 
typically assessed in whole-blood. Everolimus, however, 
displays extensive accumulation in erythrocytes. In thera-
peutically relevant concentrations, approximately 75% of 
everolimus partitions in erythrocytes and displays satura-
ble binding [17, 18], whereas protein binding is concentra-
tion independent with very limited variability [19]. Hence, 
changes in haematocrit affect the whole-blood concentra-
tions without impacting the actual pharmacologically active 
(unbound) fraction in the plasma [19]. As everolimus ther-
apy is associated with anaemia, haematocrit often undergoes 
profound changes after solid organ transplantation [20, 21]. 
Similarly, highly variable haematocrit is often observed in 
patients with cancer [22]. Hence, the haematocrit fraction 
is highly variable in the population receiving everolimus. 
Consequently, when whole-blood pharmacokinetics are 
assessed in samples in which the haematocrit differs sub-
stantially from the average haematocrit in the population in 
which the therapeutic ranges were established, this may lead 
to incorrect clinical interpretation and decisions. In patients 
with cancer and renal transplant recipients, the mean haema-
tocrit fraction is approximately 0.38 [19, 23, 24]. Haema-
tocrit-corrected whole-blood concentrations normalised to 
a fraction of 0.38 could, therefore, be more informative for 
TDM-guided clinical decision making in these settings. In 
the pharmacokinetic model, everolimus plasma and erythro-
cyte concentrations are calculated from paired observations 
of haematocrit and whole-blood concentrations, assuming 
that everolimus binds to erythrocytes in a specific and a non-
specific manner, as described with Eq. 1 [12].

In Eq.  1, Crb represents the everolimus erythrocyte 
concentration, Bmax the maximal everolimus concentra-
tion bound specifically to erythrocytes, Kd the predicted 

(1)Crb =
Bmax × Cp

Kd + Cp
+ Kns × Cp.
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dissociation constant, Kns the constant expressing non-
specific binding of everolimus to erythrocytes and Cp the 
everolimus plasma concentration. Details on the derivation 
of these binding constants are provided elsewhere [12]. Fur-
thermore, it is assumed that the whole-blood concentration 
can be described with Eq. 2, in which Cwb represents the 
whole-blood concentration and Ht the haematocrit fraction.

In this article, both the everolimus whole-blood concen-
tration corresponding with the observed haematocrit fraction 
and the whole-blood concentration normalised to a haemato-
crit fraction of 0.38 are presented, with the latter calculated 
using Eq. 3.

2.4  External Validation

2.4.1  Visual Predictive Check

A pcVPC based on a 1000 simulated datasets was con-
structed for each model [25]. A pcVPC allows for visual 
inspection of the concordance between the 5th percentile, 
median, and 95th percentile of the observed and predicted 
everolimus concentrations over time. The extent of overlay 
between the observations and the model simulations pro-
vided information on the appropriateness of the model to 
describe the population pharmacokinetics of everolimus in 
the external cohort.

2.4.2  Fit‑for‑Purpose Validation

A fit-for-purpose validation was performed for each model. 
This procedure was aimed to capture, as best as possible, the 
fitness of each model for its intended purpose [26]. Namely, 
to accurately predict (a posteriori) a future everolimus C0 or 
area under the concentration–time curve from time zero to 
12 h post-dose (AUC 0–12) based on the patient covariates at 
that timepoint and the C0 or AUC 0–12 from the prior TDM 
instance.

The fit-for-purpose validation was performed for C0 
and AUC 0–12, separately, to allow for assessment of model 
performance for both TDM approaches. The paired C0 and 
AUC 0–12 were stratified according to the time after trans-
plantation to distinguish between model performance in 
the pharmacokinetically unstable (≤ 6 months) and stable 
(> 6 months) post-transplant periods. The extent of within-
subject pharmacokinetic variability of everolimus typically 
decreases from approximately 50% in the first 6 months after 
transplantation [27], to approximately 20% thereafter [28]. 
Hence, model performance was expected to vary between 

(2)Cwb = (Ht × Crb) + ((1 − Ht) × Cp).

(3)Cwb, corr = (0.38 × Crb) + ((1 − 0.38) × Cp).

these periods. Last, model performance for the a priori pre-
diction of the initial everolimus C0 and AUC 0–12 was evalu-
ated to provide insight on the added value of performing 
TDM early after transplantation.

All predicted everolimus concentrations were individual 
predictions derived from maximum a posteriori Bayesian 
forecasting using Models 1–3. The predictive performance 
was expressed with the mean percentage prediction error 
(MPPE) for bias, and the mean absolute percentage predic-
tion error (MAPE) and normalised root mean squared error 
for imprecision [29]. In addition, the percentages of predic-
tions within ± 10%, ± 20% and ± 30% of the observations 
 (P10,  P20 and  P30) were assessed to aid interpretation. The 
maximal tolerable discordance was set at ± 25%, as variabil-
ity below this threshold is expected to arise from normal 
within-subject pharmacokinetic variability [30].

2.4.3  Evaluation of the Potential Added Value 
of Model‑Informed Precision Dosing (MIPD) 
over Conventional TDM

In addition, we substantiated the potential added value of our 
MIPD approach over conventional TDM. In conventional 
TDM, everolimus dose adaptation is typically performed 
based solely on C0, relying on an assumption of linear phar-
macokinetics in the therapeutic concentration range. For 
example, this means that if a C0 at a given TDM instance is 
half of the desired C0, the everolimus dose is doubled in an 
effort to achieve an on-target subsequent C0.

The dose adaptation recommendations aimed at achiev-
ing an on-target C0 and AUC 0–12 as derived from our MIPD 
approach were compared to those derived using conventional 
C0-based TDM. This analysis was performed solely with 
Model 1, as any differences between Models 1–3 are cap-
tured adequately in the fit-for-purpose analysis. The follow-
ing target ranges for everolimus TDM in renal transplanta-
tion were applied: a C0 of 6 µg/L or 7 µg/L; and AUC 0–12 
of 100 µg/L × h or 120 µg/L × h, for patients with or without 
concomitant tacrolimus therapy, respectively.

2.4.4  Evaluation of the Potential Added Value 
of Haematocrit‑Normalised TDM

Last, we illustrated the potential added value of TDM 
based on haematocrit-corrected everolimus whole-blood 
concentrations, by evaluating the differences between 
TDM based on the observed and haematocrit-corrected 
C0 (ΔC0) and AUC 0–12 (ΔAUC 0–12). For this purpose, all 
observed everolimus whole-blood concentrations were 
normalised to the aforementioned mean haematocrit frac-
tion of 0.38, using Eq. 3 with Model 1. This allowed for 
assessment of ΔC0. For the AUC 0–12, this allowed for esti-
mation of the haematocrit-corrected AUC 0–12 via addition 
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of a virtual compartment in the model code and subse-
quent assessment of ΔAUC 0–12. For ΔC0 and ΔAUC 0–12, 
a change exceeding ± 20% was considered clinically rel-
evant, as changes in C0 or AUC 0–12 exceeding ± 20% typi-
cally result in different dose adaptation recommendations 
in clinical TDM practice. This analysis was performed 
solely with Model 1, as any differences between Models 
1–3 are captured adequately in the fit-for-purpose analysis. 
For additional insight into the impact of our approach for 
extreme cases, we also evaluated the ΔC0 and ΔAUC 0–12 
separately for those occasions in which patients displayed 
very low (5th percentile) or very high (95th percentile) 
haematocrit.

2.5  Software

The pharmacometric modelling and external validation 
were performed with the non-linear mixed-effects mod-
elling software package  NONMEM® version 7.3 (Icon 
Development Solutions, Ellicott City, MD, USA), using 
Pirana 2.9.7 and Perl-speaks-NONMEM (PsN) Toolkit 
4.8.1 as the modelling interface. Data handling, visu-
alisation and statistics were performed in R 3.6.1  (R 

Foundation for Statistical Computing, Vienna, Austria) 
and RStudio 1.2.5001 (RStudio Inc., Boston, MA, USA).

3  Results

3.1  External Validation Cohort

Pharmacokinetic data from 173 renal transplant recipients 
were available, yielding 4123 everolimus whole-blood con-
centrations including 2933 C0 and 322 AUC 0–12. All calcu-
lated AUC 0–12 included the C0 and at least three additional 
concentrations up to 6 h after everolimus intake. The char-
acteristics of the external cohort and the pharmacokinetic 
data are summarised in Table 1.

3.2  External Validation

3.2.1  Prediction‑Corrected Visual Predictive Check

The pcVPCs of Models 1–3 on the external dataset are 
depicted in Fig. 1a–c. The pcVPCs showed a good over-
lay between the median, 5th, and 95th percentiles of the 

Table 1  Summary of the 
clinical characteristics of the 
external validation cohort at 
baseline and overview of the 
available pharmacokinetic data

Parameter n (%) Mean Range

Patients
 Total number of patients 173
 Male 111 (64.2)
 Female 62 (35.8)
 Age (years) 52.2 19.6–79.0
 Height (cm) 174 154–198
 Weight (kg) 76.8 44.0–111
 Haematocrit (fraction) 0.361 0.213–0.537
 Time after transplantation (years) 2.77 0.01–32.3
 Everolimus dose (mg; twice daily) 1.55 0.5–5.0
 Prednisolone co-medication 162 (93.6)
 High-dose prednisolone (≥ 20 mg daily) 88 (54.3)
 Low-dose prednisolone (< 20 mg daily) 74 (45.7)
 Tacrolimus co-medication 126 (72.8)

Pharmacokinetic data
 Total number of observations 4123
 Number of observations per patient 23.8 4–56
 Everolimus trough concentration (µg/L) 2933 (71.1) 5.11 0.68–20.9
 Everolimus concentration 1 hour post-dose (µg/L) 301 (7.3) 13.5 1.61–49.2
 Everolimus concentration 2 hours post-dose (µg/L) 327 (7.9) 10.8 1.50–43.0
 Everolimus concentration 3 hours post-dose (µg/L) 339 (8.2) 8.85 1.21–33.3
 Everolimus concentration 4 hours post-dose (µg/L) 89 (2.2) 6.87 2.02–27.0
 Everolimus concentration 5 hours post-dose (µg/L) 45 (1.1) 5.96 1.56–21.3
 Everolimus concentration 6 hours post-dose (µg/L) 89 (2.2) 4.83 1.63–22.5
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simulations of all three models and the observations, indica-
tive of adequate description of the population pharmacoki-
netics of everolimus in the external cohort. Furthermore, the 
pcVPCs of Models 1–3 showed an overall identical trend, 
which indicated that exclusion of allometric scaling or 
inter-occasion variability did not significantly affect model 
appropriateness.

3.2.2  Fit‑for‑Use Validation

The predictive performances of Models 1–3 for estimation of 
the initial (a priori) and future (a posteriori) C0 or AUC 0–12 
in the unstable and stable post-transplant periods are graphi-
cally depicted in Fig. 2a–d and summarised in Table 2. Scat-
ter plots of the individual predicted and observed C0 and 
AUC 0–12 are provided in the ESM. 

The a priori C0 prediction showed a relatively low bias 
(MPPE: 5.4–7.4%, 95% confidence interval − 4.7, 17.6) but 
unacceptable extent of imprecision (MAPE: > 30%, normal-
ised root mean squared error: 78.1–82.7%). Furthermore, 
the a priori AUC 0–12 prediction was profoundly biased and 
imprecise as indicated by the MPPE (42.7–49.3%), MAPE 
(52.7–58.0%) and the normalised root mean squared error 
(66.8–75.2%) exceeding 40%.

The a posteriori C0 prediction with Model 1 showed a low 
mean positive bias in the unstable (MPPE: 8.12% ± 2.54%) 
and stable (MPPE: 4.74% ± 1.97%) post-transplant periods, 
indicative of accurate model predictions for the average 
renal transplant recipient. The MAPE for C0 prediction in 
the unstable (26.8% ± 2.09%) and stable (25.4% ± 1.41%) 
post-transplant periods slightly exceeded the imprecision 
limit of 25%. Overall, 71.1% and 70.7% of C0 predictions 
fell within 30% of the observations. The a posteriori AUC 

0–12 prediction with Model 1 showed a relatively low mean 
negative bias in the unstable (MPPE: − 9.70% ± 5.10%) and 
the stable (MPPE: − 0.13% ± 4.79%) post-transplant peri-
ods, indicative of accurate model predictions for the aver-
age renal transplant recipient. Furthermore, AUC 0–12 were 
predicted precisely, with a MAPE of 13.3% ± 3.87% and 
13.3% ± 2.80% for the unstable and stable post-transplant 
periods, respectively. Overall, 90.6% and 95.8% of predicted 
AUC 0–12 fell within 30% of the observations.

For C0, extreme prediction errors (absolute prediction 
error > 100%) were observed on 3.6%, 2.7% and 2.1% of 
occasions for the initial C0 and the unstable and stable 
periods, respectively. For the AUC 0–12, extreme prediction 
errors were observed on 3.6% of occasions for the initial 
AUC 0–12, whereas none occurred for the unstable and stable 
periods. Inconsistent small deviations between the predic-
tive performances of Models 1–3 within the various fit-for-
purpose scenarios were observed, with differences in MPPE, 
MAPE and normalised root mean squared error between the 
models with ranges of 0.0–5.4%, 0.0–3.3% and 0.1–2.8%, 
respectively.

3.2.3  Evaluation of the Potential Added Value of MIPD 
over Conventional TDM

The relations between the MIPD-based and conventional C0-
based dosing recommendations are graphically depicted in 
Fig. 3a, b. For C0-based MIPD, the dosing recommendations 
were on average 0.25 ± 0.03 mg (2.91% ± 0.01%) lower than 
for conventional C0-based dosing in the unstable period, and 
0.07 ± 0.02 mg (0.93% ± 0.01%) lower for the stable period. 
For AUC 0–12-based MIPD, the dosing recommendations 
were on average 1.25 ± 0.62 mg (13.7% ± 0.18%) lower than 
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Fig. 1  Prediction-corrected visual predictive checks of a Model 1, b 
Model 2 and c Model 3 on the external dataset. The solid black lines 
depict the 5th, median and 95th percentiles of the observed everoli-
mus concentrations. The dashed black lines and blue-shaded areas 

depict the 5th, median, and 95th percentiles of the model-simulated 
everolimus concentrations and their respective 95% confidence inter-
vals
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for conventional C0-based dosing in the unstable period, and 
0.14 ± 0.09 mg (3.14% ± 0.04%) lower in the stable period. 
Overall, a trend towards lower dosing recommendations for 
MIPD as compared with conventional TDM was apparent 
for the unstable period, whereas differences were limited for 
the stable period.

3.2.4  Evaluation of the Potential Added Value 
of Haematocrit‑Normalised TDM

The relationships between the observed and the haemato-
crit-normalised C0 and AUC 0–12 are depicted in Fig. 4a, 
b. The average ΔC0 was 4.01% ± 0.47% (range − 34.3% 
to 52.6%) and the ΔAUC 0–12 was 2.92% ± 1.43% (range 
− 30.8 to 51.2%). For patients with very low (5th percen-
tile: 0.280; n = 147) and very high (95th percentile: 0.472; 
n = 148) haematocrit, the average ΔC0 was 31.0% ± 0.8% and 
− 20.9% ± 0.7%, respectively. Similarly, an average ΔAUC 
0–12 of 32.1% ± 3.2% and − 21.5% ± 2.6% was observed for 
patients with very low (5th percentile: 0.279; n = 17) and 
very high (95th percentile: 0.461; n = 17) haematocrit.

The ΔC0 and ΔAUC 0–12 exceeded the predefined ± 20% 
threshold on 13.6% and 14.3% of occasions, respectively. 
This roughly translates to the situation in which in one in 
every seven to eight TDM instances the patient displayed 
such a divergent haematocrit that the pharmacologically 
active everolimus plasma fraction is affected by over ± 20%, 
but not accounted for in the clinical decision.

4  Discussion

In this study, a previously published population pharma-
cokinetic model for everolimus was externally validated 
in a retrospective cohort of renal transplant recipients and 
evaluated for its utility for MIPD. Whereas other population 
pharmacokinetic models for everolimus in renal transplanta-
tion and various malignant diseases are available [10, 18, 23, 
31–36], our model is, to the best of our knowledge, the first 
to be thoroughly validated externally.

First, we showed that our model adequately described the 
population pharmacokinetics of everolimus in the external 
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Fig. 2  Predictive performance of Models 1, 2 and 3 in terms of bias 
(prediction error) and imprecision (absolute prediction error) for 
(a–b) everolimus trough concentrations (C0) and (c–d) area under the 
everolimus concentration–time curves from time zero to 12  h after 

administration (AUC 0–12) for the fit-for-purpose analysis. The solid 
black line represents the line of equality, whereas the grey-shaded 
area depicts the predefined tolerable extent of bias or imprecision



198 T. C. Zwart et al.

cohort and thus is appropriate for this population. Second, 
the model was unable to accurately and precisely predict 
a priori the optimal initial everolimus dosage based solely 
on the baseline patient characteristics. This was expected, 
as the model was intended specifically for a posteriori pre-
diction purposes and relies heavily on the input of prior 
pharmacokinetic information to guide its predictions. 
These findings underline the need to perform TDM after 
renal transplantation to provide pharmacokinetic input for 
the model. Third, we demonstrated that our model was able 
to predict a posteriori a future everolimus C0 or AUC 0–12 
with a bias of < 15% and < 10% and imprecision of ≤ 30% 
and < 15%, respectively. Model performance for a posteriori 
C0 prediction was lower than for AUC 0–12, as most clearly 
reflected in their respective  P20 of approximately 50% and 
80%. However, as approximately 70% of the a posteriori C0 
predictions were within 30% of the observations, the data 
demonstrated that the model is fit for a posteriori estima-
tion of both AUC 0–12 and C0. Whereas extreme prediction 

errors occurred on approximately 3% of occasions, we 
suspected that these outliers mainly arose from premature 
everolimus intakes prior to the C0 blood draw or missed 
everolimus intakes during the dosing interval prior to C0 
assessment. This could, however, not be confirmed owing 
to the retrospective nature of the study. Fourth, model per-
formance varied only very slightly between Models 1, 2 and 
3, as indicated by comparable visual diagnostics, prediction 
bias and prediction imprecision across the three models. 
Hence, removal of allometric scaling from Model 1 could 
be considered to improve clinical feasibility and exclusion 
of within-subject variability on  the mean absorption time 
seems possible without giving in on model performance. 
In addition, we performed an explorative comparison of 
our MIPD-derived and conventional TDM-derived dosing 
recommendations, in an effort to substantiate the potential 
added value of the MIPD approach. Here, we observed that 
the MIPD approach on average yielded slightly lower dosing 
recommendations. This finding was most pronounced for the 

Table 2  Model predictive performance for the various scenarios in the fit-for-use validation

AUC 0–12 area under the everolimus concentration–time curve from time zero to 12 h after administration, C0 everolimus trough concentration, 
CI confidence interval, MAPE mean absolute percentage prediction error, MPPE mean percentage prediction error, n number of observations, 
NRMSE normalised root median squared error, P10–P30 percentage of predictions within ± 10–30% of observations

Scenario n MPPE (%)
[95% CI]

MAPE (%)
[95% CI]

NRMSE (%)
[95% CI]

P10 (%) P20 (%) P30 (%)

C0

 Initial
  Model 1 84 7.07 [– 2.92, 17.1] 32.6 [25.5, 39.8] 78.1 [76.8, 79.4] 23.8 42.9 61.9
  Model 2 84 7.36 [– 2.89, 17.6] 33.2 [25.7, 40.6] 82.5 [81.1, 83.9] 20.2 42.9 61.9
  Model 3 84 5.38 [– 4.67, 15.4] 32.3 [25.1, 39.6] 82.7 [81.3, 84.1] 25.0 45.2 61.9

 ≤ 6 months
  Model 1 1212 8.12 [5.57, 10.7] 26.8 [24.7, 28.9] 39.4 [39.4, 39.5] 30.9 53.7 71.1
  Model 2 1212 9.69 [7.06, 12.3] 27.8 [25.6, 30.0] 40.3 [40.3, 40.4] 29.3 53.2 70.5
  Model 3 1212 13.5 [10.9, 16.1] 30.1 [27.9, 32.2] 38.8 [38.7, 38.9] 25.6 47.0 65.4

 > 6 months
  Model 1 1272 4.74 [2.77, 6.72] 25.4 [24.0, 26.8] 36.1 [36.1, 36.1] 28.2 52.7 70.7
  Model 2 1272 5.08 [3.11, 7.04] 25.4 [24.1, 26.8] 36.2 [36.2, 36.3] 27.9 52.9 70.6
  Model 3 1272 6.32 [4.36, 8.27] 26.2 [24.8, 27.5] 35.7 [35.7, 35.7] 25.9 50.2 68.5

AUC 0–12

 Initial
  Model 1 45 46.6 [29.1, 64.1] 53.6 [38.1, 69.1] 66.8 [64.7, 69.0] 24.4 31.1 46.7
  Model 2 45 49.3 [29.0, 69.6] 58.0 [39.9, 76.0] 75.2 [72.8, 77.6] 24.4 37.8 48.9
  Model 3 45 42.7 [23.6, 61.9] 52.7 [36.0, 69.4] 68.7 [66.5, 70.9] 26.7 44.4 48.9

 ≤ 6 months
  Model 1 32 – 9.70 [– 14.8, – 4.60] 13.3 [9.40, 17.1] 17.4 [16.6, 18.2] 50.0 78.1 90.6
  Model 2 32 – 8.31 [– 13.2, – 3.41] 12.1 [8.42, 15.8] 15.9 [15.1, 16.6] 50.0 78.1 93.8
  Model 3 32 – 6.75 [– 11.5, – 2.00] 11.1 [7.59, 14.6] 14.6 [13.9, 15.3] 56.3 81.3 93.8

 > 6 months
  Model 1 48 – 0.13 [– 4.92, 4.66] 13.3 [10.5, 16.1] 16.3 [15.8, 16.8] 37.5 79.2 95.8
  Model 2 48 0.05 [– 4.81, 4.92] 13.3 [10.3, 16.2] 16.7 [16.2, 17.2] 43.8 79.2 95.8
  Model 3 48 0.08 [– 4.46, 4.62] 12.3 [9.56, 15.0] 15.6 [15.1, 16.1] 47.9 85.4 95.8
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unstable post-transplant period, which could be indicative 
of slight overdosing of everolimus early after transplanta-
tion when relying on conventional TDM. This also indicated 
that, for the stable post-transplant period, performing AUC 
0–12-based MIPD may be of limited added value as compared 
with conventional C0-based TDM. It is important to note, 
however, that the discrepancy in the monitoring frequencies 
for AUC 0–12 (annually) and C0 (every 3 months) in the stable 
post-transplant period may have influenced this compari-
son. In addition, AUC 0–12 monitoring in the stable period 
may still be warranted for patients whom display a vari-
able C0–AUC 0–12 correlation, for which the C0 is of limited 

informative value for everolimus exposure assessment [37]. 
In any case, these results should be interpreted with caution 
as the retrospective nature of our study complicated transla-
tion to the real-world clinical setting. Last, we explored the 
potential added value of performing everolimus TDM using 
haematocrit-normalised whole-blood concentrations. Here, 
we found that in roughly one in every seven to eight TDM 
instances, the patient displayed such a divergent haema-
tocrit that the everolimus plasma fraction was affected by 
over ± 20%, which is not accounted for in current clinical 
decision making.
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Fig. 3  Potential added value of (a) everolimus trough concentra-
tion (C0)-based model-informed precision dosing (MIPD) and (b) 
area under the everolimus concentration–time curve from time zero 
to 12  h after administration (AUC 0–12)-based MIPD over conven-
tional C0-based therapeutic drug monitoring. Each hexagram depicts 

the conventional dosing advice and concurrent MIPD dosing advice, 
shaded according to the number of observations for that particular 
combination. The solid black line represents the loess regression line, 
whereas the solid grey line depicts the line of equality
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When interpreting the predictive performance of our 
model, one should take into account that maximum a pos-
teriori Bayesian dose adaptation is challenged by within-
subject variability. Namely, the extent of within-subject vari-
ability of a given drug ultimately determines the maximal 
degree of target attainment to be expected. Holford and Buc-
lin have illustrated that if 90% of the population is to achieve 
exposure within 80–125% of the target for a given drug, 
this can only be achieved if the within-subject variability is 
below 13.6% [38]. The within-subject variability of everoli-
mus C0 and AUC 0–12 in stable renal transplant recipients has 
been reported to range from 10 to 19% and from 14 to 16%, 
respectively [28]. For unstable patients, however, variability 
of C0 and AUC 0–12 is reported to be in the range of 45% and 
27% [27]. A significant portion of the discrepancy between 
the variability in the unstable and stable post-transplant 
periods can, likely, be explained by haematocrit-dependent 
erythrocyte partitioning. Whereas the haematocrit typically 
changes profoundly over the unstable period, this is not cor-
rected for in current TDM practice. It might, therefore, be 
more informative to focus on the within-subject variability 
across the entire post-transplant period without stratification, 

which has been reported to be approximately 25% [30]. A 
significant portion of this variability is expected to arise 
from within-subject variability in bioavailability, which has 
been reported to be approximately 25% [23]. When taking 
into account these phenomena and the residual unexplained 
variability of 17.9% of our model, the observed prediction 
bias of < 15% and imprecision of ≤ 30% are reassuring that 
the model in general is performing well.

For tacrolimus, which displays similar erythrocyte parti-
tioning as everolimus, various authors have advocated for the 
implementation of TDM based on haematocrit-normalised 
whole-blood concentrations across different fields of trans-
plantation [39–43]. Additionally, a recent consensus paper 
on tacrolimus TDM included recommendations for fur-
ther investigation of alternative TDM strategies, including 
haematocrit normalisation, to explain and resolve the highly 
variable tacrolimus efficacy in patient subpopulations [37]. 
As TDM based on intracellular everolimus concentrations 
or pharmacodynamic monitoring remain distant prospects, 
haematocrit-normalised whole-blood concentrations might 
pose the most informative marker for patient and graft out-
comes, which is currently available. Our findings add to the 
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Fig. 4  Potential added value of haematocrit normalisation of the 
whole-blood (a) everolimus trough concentration (C0) and (b) area 
under the everolimus concentration–time curve from time zero to 
12  h after administration (AUC 0–12) to a haematocrit of 0.38 over 
the haematocrit range. The data points depict the absolute haemato-

crit-normalised C0 (∆C0) or ∆AUC 0–12 over the haematocrit range, 
shaded according to the relative ∆C0 or ∆AUC 0–12. The dots and tri-
angles represent a ΔC0 or ΔAUC 0–12 of ≤ ±20% and > ±20%, respec-
tively. The solid grey lines represent the lines of equality, whereas the 
dashed black lines indicate the haematocrit fraction of 0.38
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support and provide a pragmatic methodology for clinical 
implementation of this approach to further optimise everoli-
mus therapy.

Our study has some limitations. We included renal 
transplant recipients exclusively, whereas the evaluated 
model was also intended for application in patients with 
cancer. We postulate, however, that our results can be 
extrapolated to the oncology setting, as we demonstrated 
that the pharmacokinetics of everolimus is similar for this 
patient population [12]. Furthermore, no full pharmacoki-
netic curves were available to unequivocally quantify the 
observed AUC 0–12. Alternatively, these were estimated 
from the observed short pharmacokinetic curves using 
model-based extrapolation. This may have rendered the 
a posteriori AUC 0–12 estimation slightly biased towards 
more favourable model performance. This method was, 
however, the most pragmatic approach to capture this 
aspect in this retrospective cohort. To enable clinically fea-
sible AUC 0–12-based everolimus MIPD for routine patient 
care, an important next step would be to develop a prag-
matic limited sampling schedule. In addition, we included 
the pharmacokinetic information from only the prior TDM 
instance in the fit-for-purpose validation. Although this 
was the most stringent evaluation given the limited data 
provided to the model, which thus ensured that our model 
is fit for purpose, we did not investigate whether inclusion 
of additional historic TDM data yielded improved model 
performance. However, incorporation of, for instance, 
an autoregressive model component for weighted inclu-
sion of additional historic TDM data would have notably 
complexified the model and possibly limited its clinical 
feasibility owing to excessive run times. Furthermore, 
inclusion of additional historic TDM data may introduce 
additional bias from within-subject pharmacokinetic 
variability, which is minimised when taking into account 
only the most recent observation. Last, our model was 
developed and validated in patients without concomitant 
cyclosporine therapy or strong cytochrome P450 enzyme 
3A-inducing or inhibiting agents. While the combination 
of everolimus with these agents is often avoided in clinical 
practice and maximum a posteriori Bayesian estimation 
is able to capture divergent pharmacokinetic behaviour if 
provided sufficient a posteriori pharmacokinetic data [44], 
there currently is no solid evidence that, if provided with 
only a limited number of samples, our pharmacokinetic 
model would be able to adequately capture the pharma-
cokinetic profile for patients who do concomitantly use 
these types of drugs. Hence, until it is demonstrated that 
this phenomenon does not compromise its predictive per-
formance, individual predictions of our model for these 
patients should be interpreted with caution.

We demonstrated that our MIPD approach poses a valid 
tool to predict future individual everolimus exposure and 

can be implemented in clinical practice for further evalua-
tion. Whereas it is expected that MIPD-guided everolimus 
therapy yields improved C0 or AUC 0–12 target attainment 
as compared with conventional TDM, it is important to 
evaluate its clinical feasibility and cost effectiveness.

5  Conclusions

We have demonstrated that our previously published 
mechanistic population pharmacokinetic model adequately 
described the population pharmacokinetics of everolimus 
and was able to accurately and precisely predict future 
everolimus exposure from prior TDM measurements, in 
this retrospective cohort of adult renal transplant recipients. 
In addition, we have illustrated the potential added value of 
performing everolimus TDM based on haematocrit-normal-
ised whole-blood concentrations, which poses a promising 
strategy to further optimise everolimus therapy for patients 
with extreme haematocrit values. The results of the current 
study provide adequate reassurance to implement this meth-
odology in clinical practice for further evaluation.
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