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CHAPTER 5
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ease: a Mendelian randomization study
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Abstract
Objectives: To investigate possible causal associations between dietary-derived 
circulating antioxidants and primary CHD risk using two-sample Mendelian 
Randomization (MR).

Background: Previously, observational studies have identified associations 
between higher levels of dietary-derived antioxidants and lower risk of coronary 
heart disease (CHD), while randomized clinical trials showed no reduction in 
CHD risk following antioxidant supplementation.

Methods: Single-nucleotide polymorphisms (SNPs) for circulating antioxidants 
(vitamin E, C, retinol, β-carotene, and lycopene), assessed as absolute levels 
and metabolites, were retrieved from literature and were used as genetic instru-
mental variables. Summary statistics for gene-CHD associations were obtained 
from three databases (cases/controls): the CARDIoGRAMplusC4D consortium 
(60 801/123 504), UK Biobank (25 306/46 2011) and FinnGen study (7123/89 
376), respectively. For each exposure, MR analyses were performed per outcome 
database, and subsequently meta-analyzed.

Results: Among the analytic sample of 768 121 individuals (93 230 cases), 
genetically predicted circulating antioxidants were not causally associated with 
CHD risk. For absolute antioxidants, the odds ratio (95% CI) for CHD ranged 
between 0.94 (0.63, 1.41) for retinol and 1.03 (0.97, 1.10) for β-carotene per unit 
increase in ln-transformed antioxidant values. For metabolites, the odds ratio 
ranged between 0.93 (0.82, 1.06) for γ-tocopherol and 1.01 (0.95, 1.08) for 
ascorbate per 10-fold increase in metabolite levels.

Conclusions: Evidence from our study did not support a protective effect of 
genetic predisposition to high dietary-derived antioxidant levels on CHD risk. 
Therefore, it is unlikely that taking antioxidants to increase blood antioxidants 
levels, will have a clinical benefit for the prevention of primary CHD.
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Introduction
Coronary heart disease (CHD) is one of the foremost causes of mortality world-
wide and is responsible for approximately 0.36 million of all deaths in the US and 
1.78 million in Europe each year 1-3. Well-established risk factors for CHD include 
smoking, physical inactivity, inappropriate nutrition, overweight and obesity, 
high blood cholesterol and other lipids, high blood pressure, diabetes mellitus, 
and insufficient/long sleep 2, and interventions targeted to ameliorate these risk 
factors showed a significant reduction in CHD risk. Apart from conventional risk 
factors, oxidative stress has also been hypothesized as a vital component in the 
development and progression of CHD by promoting macromolecular damage 
and endothelium dysfunction 4. Consequently, antioxidants, the scavengers of 
free radicals to diminish oxidative stress-induced damage, would be of interest 
as targets for primary CHD prevention 5. Specifically, dietary-derived antioxidants, 
better known as vitamin E, C, and carotenoids, are the most easily accessible 
and modifiable approach for consideration.

Based on this hypothesis, a large amount of studies have been conducted to 
explore the association between antioxidants and primary CHD. In multiple obser-
vational studies, dietary intake, either as dietary components or supplements, 
or blood concentration of vitamin E, C, and carotenoids were associated with 
a lower risk of primary CHD 6-12. Similarly, adherence to a diet containing high 
amounts of antioxidants, irrespective of the type of antioxidants, was associ-
ated with a lower risk of cardiovascular diseases 13. However, associations as 
these in observational studies are prone to biases including reverse causality 
and unmeasured confounding. While randomized clinical trials (RCTs) generally 
failed to demonstrate a causal benefit of antioxidants supplement on primary 
CHD 14-20, with the exception of lycopene supplement on cardiovascular risk 
factors 21, there are notable limitations. For example, timing, dosage, duration, 
use of natural or synthetic antioxidants, as well as the uncertain time of onset 
and long-term progression of CHD pathogenesis might explain the observed null 
effect 22,23. Therefore, the conflicting results from observational studies and RCTs 
should be interpreted with caution, and the causality between dietary-derived 
antioxidants and CHD is still unclear.

Mendelian Randomization (MR) is an alternative approach to infer causality of 
life-long risk factors (exposure) on diseases (outcome) using genetic variants as 
instrumental variables 24. In the present study, we used MR analyses to assess 
the associations between genetically determined dietary-derived circulating 
antioxidants and their metabolites with primary CHD risk, in the absence of 
reverse causality and residual confounding factors.
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Methods
Study design
For the current study, we conducted a two-sample MR, which tests the asso-
ciation between genetic instrumental variable(s), as a proxy for the exposure, 
and outcome from three separate data sources, and estimates the effect of an 

Figure 1 Schematic overview of the present study design
CAD: Coronary Artery Disease; CARDIoGRAMplusC4D: Coronary Artery Disease Genome-Wide 
Replication and Meta-analysis plus the Coronary Artery Disease Genetics; CHD: Coronary Heart 
Disease; GWAS, genome-wide association study; IVW: Inverse-Variance weighted; MR PRESSO: 
MR Pleiotropy RESidual Sum and Outlier.
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exposure on an outcome 25. MR is based on 3 principle assumptions, notably that 
the genetic variant(s) should be 1) associated with the exposure, 2) associated 
with the outcome exclusively through the exposure, and 3) independent of any 
measured and unmeasured confounders. Data used in the present study are 
publicly available, and ethical approval and informed consent were obtained in 
each original study. A schematic overview of the present study design is pre-
sented in Figure 1.

Selection of genetic instrumental variables
Five main dietary-derived antioxidants were considered in the present study, 
which included vitamin E (α-tocopherol and γ-tocopherol), β-carotene, lyco-
pene, vitamin C (L-ascorbic acid or ascorbate), and retinol. We considered both 
antioxidants that were measured as authentic absolute levels in the blood, and 
their corresponding circulating metabolites that were quantified as relative 
concentrations in plasma or serum, respectively. For absolute antioxidants lev-
els, α-tocopherol, β-carotene, lycopene, ascorbate, and retinol were identified, 
while for antioxidants metabolites, α-tocopherol, γ-tocopherol, ascorbate, and 
retinol were used.

Genome-Wide Association Studies (GWAS) were searched to extract leading 
SNPs as genetical instrumental variables. When we identified multiple GWAS 
for a single trait, only the largest study with replication was used 26-31. Though 
GWAS was not available for absolute ascorbate levels, a study with a two-stage 
design which used a discovery cohort 
and five replication cohorts and consequently meta-analysis assessed the rela-
tionship between genetic variants located in vitamin C active transporter locus of 
SLC23A1 (Solute Carrier Family 23 Member 1) and circulating levels of ascorbic 
acid and therefore was considered as qualified for genetic instrument extraction 
32. A summary table of instruments is presented in Supplemental Table 1.

Absolute circulating antioxidants
Three SNPs for α-tocopherol levels were identified in a GWAS with 7781 European 
individuals 26. However, those 3 loci were previously reported to be associated 
with lipid metabolism and/or regulation in GWAS on lipid levels 33,34 or coronary 
artery disease 35, and therefore were not considered for MR analysis due to 
likely pleiotropic bias. Three genetic variants (linkage disequilibrium, LD < 0.2 
as indicated in the study, p < 5×10-8) associated with plasma β-carotene levels 
were identified in a GWAS within 2344 participants in the Nurses’ Health Study 
27. Five variants (LD < 0.001, p < 5×10-6) associated with circulating lycopene level 
were identified in a GWAS performed in 441 older Amish adults 28. Two SNPs (LD 
< 0.001, p < 5×10-8) associated with circulating retinol levels were identified in 
a GWAS of 5006 Caucasian individuals from two cohorts 29. As for ascorbate, 
one genetic variant (p = 2.0×10-7) was identified with over 15 000 participants 
32. Summary of the demographic characteristics of the cohort that were used to 
generate genetic instrumental variables is presented in Supplemental Table 2.
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Circulating antioxidants metabolites
Genetic variants for each metabolite at suggestive genome-wide significance 
level (p < 1×10-5) were extracted from published GWAS 30,31, notably 11 instru-
ments for α-tocopherol (n = 7276), 13 for γ-tocopherol (n = 5822) and 14 for 
ascorbate (n = 2063) derived from 7824 adult individuals from 2 European 
population studies, 24 for retinol (n = 1957) from 1960 subjects of European 
descent. Linkage disequilibrium between all SNPs for the same exposure was 
assessed, and when LD was present (LD > 0.001), the variant with the smallest 
P-value was selected.

Explained variance and instrument strength
Variance (R2) in the MR study refers to the proportion of total variation in the 
exposure which is explained by the genetic instruments. R2 for each trait were 
either derived from the original study or calculated based on the derived sum-
mary statistics in line with what has been described previously 34, and ranged 
from 0.9% to 30.1% for absolute antioxidant levels, and from 3.3% to 18.6% 
for antioxidants metabolites, separately (Supplemental Table 1). 

In order to minimize potential weak instrument bias, we considered an F-statistic 
of at least 10 as sufficient for performing an MR analysis, which is well-accepted 
in the field.

Data source for instrument-outcome associations
Summary statistics for the associations of the identified exposure-related SNPs 
with primary CHD were extracted from three large databases, namely Coronary 
Artery Disease Genome-Wide Replication and Meta-analysis plus the Coronary 
Artery Disease Genetics (CARDIoGRAMplusC4D) consortium, UK Biobank, and 
FinnGen study.

CARDIoGRAMplusC4D assembled 60 801 cases and 123 504 controls for 48 
studies, of which, 77% of the participants were of European ancestry, 19% were 
of south and east Asian ancestry, and a small proportion of Hispanic and African 
Americans. CAD cases were identified as an inclusive diagnosis of myocardial 
infarction, acute coronary syndrome, chronic stable angina, or coronary stenosis 
> 50% 36,37. The summary statistics of the instruments-CAD associations were 
provided in the database.

The UK Biobank cohort is a prospective general population cohort with 502 628 
participants between the age of 40 and 70 years recruited from the general pop-
ulation between 2006 and 2010 38 (https://www.ukbiobank.ac.uk). We restricted 
the analyses to the participants who reported their ancestry as European, and 
who were in the full released imputed genomics databases (UK10K + HRC). CAD 
diagnoses were coded according to the International Classification of Diseases 
(ICD) 38, and CAD cases were retrieved from linkage with NHS database and 
were defined as angina pectoris (I20), myocardial infarction (I21 and I22), and 
acute and chronic ischemic heart disease (I24 and I25). In total, 25 306 cases 
and 46 2011 controls were identified. We performed logistic regression analyses 
to assess the associations between genetic instruments and CAD, adjusted for 
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age, sex, and 10 principal components and corrected for a familial relationship 
using BOLD_LMM (v2.3.2).

The FinnGen study is an ongoing nation-wide cohort study launched in 2017, 
which combines genetic data from Finnish biobanks and health record data from 
Finnish health registries (https://www.finngen.fi/en). Major CHD was defined as 
angina pectoris (I20), myocardial infarction (I21-I23), ischemic heart diseases (I24 
and I25), cardiac arrest (I46), and other unattended or cause unknown sudden 
death (R96 and R98). The analyses were based on the FinnGen data freeze 2, 
which consists of 7123 cases of major CHD and 89 376 controls with complete 
instruments-CHD associations.

Statistical analysis
All the analyses were undertaken using R (v3.6.1) statistical software (The R 
Foundation for Statistical Computing, Vienna, Austria).

Mendelian Randomization
The primary MR analysis was conducted by using Inverse-Variance weighted 
(IVW) regression analysis, which assumes the absence of invalid genetic instru-
ments (e.g., no directional pleiotropy) 39. The mean effect estimate was obtained 
from each outcome database separately by a fixed-effect IVW meta-analysis 
of the Wald ratios (gene-outcome [log odds ratio] divided by gene-exposure 
associations) estimated for each instrumental variable 40. Results are expressed 
as odds ratios (OR) on CHD risk for a corresponding unit change in absolute 
circulating levels of antioxidants on natural log-transformed levels (β-carotene 
and retinol), µg/dL (lycopene) or μmol/L (ascorbate), or a 10-fold change in 
metabolites concentrations. When the MR assumptions are met, this odds ratio 
is an estimate of the causal effect of the exposure on the outcome. MR analyses 
were performed using the R-based package “TwoSampleMR” (https://mrcieu.
github.io/TwoSampleMR/).

Sensitivity analysis
In order to examine whether there was a violation of the main MR assumptions 
due to directional pleiotropy, we performed MR-Egger regression analysis and 
Weighted-Median Estimator 40-42. In MR-Egger, the intercept estimates the average 
pleiotropic effect across the genetic variants; a value that differs from zero indi-
cates that the IVW estimate is biased 41. A Weighted-Median estimator analysis 
can provide a consistent valid estimate if at least half of the instrumental variables 
are valid 42. In addition, MR-PRESSO (MR Pleiotropy RESidual Sum and Outlier) 
was applied to detect and correct for horizontal pleiotropy through removing 
outliers 43, as implemented in the R-based package MRPRESSO (https://github.
com/rondolab/MR-PRESSO). Furthermore, Cochran’s Q statistic was used to 
test the heterogeneity among the estimated Wald ratios from different genetic 
variants 44. Additional sensitivity analyses were performed for β-carotene by 
using a stringent LD threshold of r2 < 0.001, and for lycopene by restricting the 
analyses to only GWAS significant-level (p < 5×10-8) SNPs.
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Meta-analysis of the estimates from three outcome databases
All exposure-specific MR analyses were performed in each outcome database 
of CARDIoGRAMplusC4D consortium, UK Biobank, and FinnGen study, sepa-
rately, and then were meta-analyzed to generate the pooled estimates for each 
exposure on CHD risk. We calculated I2 statistics to quantify heterogeneity 
between estimates from three studies and the corresponding p-value derived 
from Cochran’s Q test. Given no heterogeneity was present across three data-
bases, fixed-effect model meta-analyses were used to pool instrumental variable 
estimates across the three outcome databases for each exposure. All meta-anal-
yses were performed in the R-based “meta” package (https://cran.r-project.
org/web/packages/meta/index.html).

Results
Summary information of instruments identified for dietary-derived antioxidants 
and their metabolites are presented in Supplemental Table 1, and summary 
information of the cohorts contributing to the GWAS of absolute levels is given 
in Supplemental Table 2. Retinol and ascorbate are available both as absolute 
circulating antioxidants and metabolites. Detailed information on the genetic 
variants, their associations with antioxidants (βgene-exposure), and with CHD (βgene-

outcome) across databases is given in Supplemental Tables 3 and 4. F-statistics 
for all genetic instruments used in the present study were above 10.

Absolute circulating antioxidants and CHD
Overall, in the primary analyses using IVW, genetically determined absolute 
dietary-derived antioxidants levels were not associated with the risk of CHD in 
any of the three databases (Figure 2 and Supplemental Table 5). Pooled OR 
for CHD per unit increase of antioxidants were 1.03 (95% confidence interval, CI: 
0.97, 1.10) and 0.94 (95%CI: 0.63, 1.41) for natural log-transformed β-carotene 
and retinol, 1.02 (95%CI: 0.99, 1.06) for 1 µg/dL lycopene, and 1.00 (95%CI: 
0.99, 1.00) for 1 µmol/L ascorbate, respectively.

For β-carotene and lycopene with three or more genetic instruments, Weight-
ed-Median estimator and MR-Egger regression were conducted. The estimates 
did not change substantially compared with IVW regression (Supplemental 
Figure 1). In addition, MR-Egger regression analysis suggested no evidence of 
overall pleiotropy, and there was no evidence of heterogeneity between indi-
vidual genetic instrument estimation (Supplemental Table 5). In addition, no 
outlier SNP was identified in MR-PRESSO test for these two antioxidants in any 
of the databases.

In the sensitivity analysis for β-carotene with LD < 0.001 using 2 SNPs (rs6564851 
and rs7501331), and for lycopene with only GWAS-level significant variant 
(rs7680948, p < 5×10-8), similar results were observed (Supplemental Figure 2).

Circulating antioxidants metabolites and CHD
Consistent with the findings from absolute circulating antioxidants, no association 
between genetically predicted circulating antioxidants metabolites concentration 
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and CHD risk was observed, as shown in Figure 3. The combined ORs for CHD 
per 10-fold increase in metabolites concentration were 1.00 (95% CI: 0.75, 1.35) 
for α-tocopherol, 0.93 (0.82, 1.06) for γ-tocopherol, 1.00 (0.98, 1.02) for retinol 
and 1.01 (0.95, 1.08) for ascorbate.

Sensitivity analyses for metabolites on CHD risk were provided in Supplemen-
tal Table 6. Estimates using the Weighted-Median estimator were consistently 
comparable to those from IVW regression. No horizontal pleiotropy was detected 
in MR-Egger regression, with the exception of retinol in UK Biobank database 
(intercept: -0.028, se: 0.010, p-value: 0.01). Although MR PRESSO detected 
outliers for α-tocopherol, retinol, and ascorbate in the UK Biobank database, 
the estimate did not change materially after correction.

Heterogeneity was detected using Cochran’s Q statistics for all metabolites in 
different databases, especially with outliers as identified using MR PRESSO. 
However, in the leave-one-out analyses, we found that the risk estimates of 
genetically predicted antioxidants’ metabolites and risk of CHD did not change 
substantially after excluding one SNP at each time, indicating that it is unlikely 
that potential driving SNPs could bias the causal association (data not shown).

Discussion
In the present study, we investigated the relationship between dietary-derived 
antioxidants and CHD risk using Mendelian Randomization. Instrumental vari-
ables were used as proxies for circulating antioxidants assessed both as absolute 
levels and metabolites, and comparable results were obtained. Our findings 
indicate that dietary-derived antioxidants are unlikely to be causal determinants 
of primary CHD risk.

Two previous studies using an MR approach found that a genetic predisposition 
to high a vitamin E level was associated with an increased risk of CAD 45,46. How-
ever, instruments selected in these studies play clear roles in lipid metabolism, 
which violated the InSIDE assumption in MR design and introduced bias in the 
effect estimates 47. To provide insights into the magnitude of the effects of genetic 
instruments on circulating antioxidant levels, we compared the effects from the 
genetic instruments and dietary supplementation (Supplemental Tables 7 and 
8). The effects on circulating antioxidant levels achieved by genetic instruments, 
with the exception of ascorbate, are within the range of the effects observed 
by antioxidant supplementation in RCTs, for which we prioritized the trials on 
cardiovascular outcomes that have been included in previous meta-analyses 14-20. 
However, direct comparisons between these two effects should be interpreted 
with caution, given that the effect of genetic predisposition is assumed to be 
lifelong whereas the effect of supplementation only lasts for the duration of the 
trial. The exposure during the whole life course with a slightly minor effect could 
have a potential biological effect that exceeds the temporarily larger effect of 
supplements given the long period needed to develop coronary heart disease. 
The robust null results in our studies, however, suggest that lifelong exposure 
to somewhat higher antioxidant levels did not decrease the risk of CHD, in line 
with earlier findings from the trials and meta-analyses on trials.
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Study strengths and limitations
There are two main strengths in the present study. First, we used two separate 
sets of instrumental variables, for both absolute circulating antioxidants and 
their metabolites. Specifically, for retinol and ascorbate that is presented in both 
sets, similar results were generated, which is supportive of the robustness of our 
findings. Second, three large databases comprising 768 121 participants with 
93 230 CHD cases for gene-outcome associations were meta-analyzed in the 
present study. The results from these 3 databases are generally consistent with 
no evidence of heterogeneity. Therefore, the precision for final MR estimates 
and the reliability of the results were significantly improved despite the limited 
number of strong genetic instruments.

Figure 2 Causal association between absolute circulating antioxidants 
with Coronary Heart Disease
Estimated odds ratios for the effect of per unit increase in ln-transformed β-carotene and retinol 
values, 1 µg/dL lycopene and 1 µmol/L ascorbate on coronary heart disease, obtained from an 
Inverse-Variance Weighted (IVW) analysis, per outcome database separately and combined over 
the three databases using fixed-effect meta-analyses.
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This study has some limitations to address. First, we are unable to test for a 
non-linear causal association between the antioxidant levels and CHD that has 
previously been suggested, especially for α-tocopherol and β-carotene 6. Despite 
analytic methods having been developed, these require individual-level data of 
the exposure 40,48, and the published data we used are summary-level statistics, 
therefore we were not able to perform such analyses. Second, no sensitivity anal-
ysis could be performed for some absolute antioxidants (retinol and ascorbate) 
with limited genetic variants. Notwithstanding, these instruments are mapped 
in the genes which are crucial in the metabolism of antioxidants and are not 
associated with any other CHD risk factors in the GWAS catalog or PhennoS-
canner databases, suggesting no directional pleiotropy as also confirmed in the 
analyses. Third, only one SNP with a small R2 of 0.9% for absolute ascorbate was 
used. However, with the considerable instrumental strength and large sample 
size and cases in which the analyses were conducted, we had more than suffi-
cient statistical power to estimate a possible causal effect 49. In addition, results 
from ascorbate metabolites with larger R2 (18.6%) gave very similar estimates 
which further reinforces the validity of the findings. Forth, protective effects of 
antioxidants might still exist in discriminatingly selected subgroups who have 

Figure 3 Causal association between circulating antioxidants metabo-
lites with Coronary Heart Disease
Estimated odds ratios for the effect of per 10-fold increase in antioxidants metabolites’ concentrations 
on coronary heart disease, obtained from an Inverse-Variance Weighted (IVW) analysis, per outcome 
database separately and combined over the three databases using fixed-effect meta-analyses.
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elevated oxidative stress levels, for example, vitamin E supplement provided 
cardiovascular-protective effects only in individuals with both diabetes and 
haptoglobin2-2 genotype. Besides, multiple treatments simultaneously might 
be more effective for multifactorial diseases since there could be a synergistic 
benefit from two agents with acceptable safety and efficacy, for example, tra-
ditional treatment plus antioxidants, to achieve better effects than antioxidants 
only 50. However, we could not explore these associations in the population with 
high risk or a known nutritional deficiency that might be more promising for 
antioxidant supplements or test the effect of antioxidants in combination with 
other treatments. Lastly, although no causal associations between circulating 
antioxidants and CHD risk were detected, we could not completely rule out the 
possibility that the effect size is too small to be identified even within our large 
sample size. Nevertheless, such a potential effect, if it exists at all by incorpo-
rating additional databases, will be extremely small and is unlikely to result in 
a clinically relevant reduction of CHD risk as obtained by other strategies, for 
instance, a 25% to 45% reduction of cardiovascular events of statins, physical 
activity or weight loss for primary CHD prevention 51-54.

Conclusion
In conclusion, evidence from the present study did not support a beneficial role 
of circulating dietary-derived vitamin E, C, β-carotene, lycopene, or retinol on 
CHD risk in the general population. This signifies the absence of a substantial 
role of antioxidants supplements on CHD risk identified in RCTs and is in accor-
dance with the recommendations from the U.S. Preventive Services Task Force 
19. Therefore, for healthy adults without nutritional deficiency, dietary-derived 
antioxidant supplement use that improves circulating antioxidant levels to pre-
vent primary CHD is of limited clinical benefit.

Clinical Perspectives
Competency in Medical Knowledge: Dietary-derived circulating antioxidants 
(vitamin E, vitamin C, β-carotene, lycopene and retinol) are not causally associ-
ated with coronary heart disease in healthy adults without nutritional deficiency.

Translational Outlook: Future studies are needed to confirm the effect of 
dietary-derived antioxidants in discriminatingly selected subgroups who have 
elevated oxidative stress or known nutritional deficiency and to investigate the 
preventive and therapeutic effect of antioxidants in combination with other 
agents or traditional treatments that may generate synergistic benefit than 
antioxidants only.
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Central Illustration Antioxidants and Coronary Heart Disease
Theoretically, antioxidants can act as scavengers of oxidants to mitigate oxidative stress-induced 
damage, thus preventing coronary heart disease. However, findings from our study demonstrated 
that there is no casual association between dietary-derived antioxidants with primary coronary 
heart disease risk.
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